WO2022220019A1 - 非天然塩基を利用した長鎖dna合成 - Google Patents

非天然塩基を利用した長鎖dna合成 Download PDF

Info

Publication number
WO2022220019A1
WO2022220019A1 PCT/JP2022/012843 JP2022012843W WO2022220019A1 WO 2022220019 A1 WO2022220019 A1 WO 2022220019A1 JP 2022012843 W JP2022012843 W JP 2022012843W WO 2022220019 A1 WO2022220019 A1 WO 2022220019A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nucleoside
phosphoramidite
nucleic acid
nucleobase
Prior art date
Application number
PCT/JP2022/012843
Other languages
English (en)
French (fr)
Inventor
慶昭 正木
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2023514539A priority Critical patent/JPWO2022220019A1/ja
Publication of WO2022220019A1 publication Critical patent/WO2022220019A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/14Pyrrolo-pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for synthesizing long-chain nucleic acids (particularly DNA) using non-natural nucleobases, and long-chain nucleic acids produced by said synthesis method.
  • Oligonucleotides ( ⁇ 10 2 mers) are widely used for a wide variety of applications including PCR, antisense technology, nucleic acid structure analysis, and RNAi studies.
  • the phosphate diester method (Non-Patent Document 1) was first developed by Khorana et al. 4)
  • the phosphoramidite method of Caruthers et al. which is an improved method of the phosphite method and uses a more stable phosphoroamidated nucleoside derivative (Non-Patent Documents 5 and 6), and the H-phosphonate method (Non-Patent Document 7). etc. have been developed.
  • the ⁇ -cyanoethyl phosphoramidite method (Non-Patent Document 6) developed by Koster et al. as an improved method of the phosphoramidite method is widely used in automatic DNA/RNA synthesizers.
  • oligonucleotide synthesis techniques reagents and reaction conditions suitable for each reaction have been studied and improved in detail.
  • the phosphite method including the -cyanoethyl phosphoramidite method, has achieved about 98-99%.
  • oligonucleotide synthesis methods are considered to be almost perfect methods as chemical reactions, but even if the yield of a single condensation reaction is 99%, mutations are introduced due to minor side reactions. .
  • synthesizing long-chain oligonucleotides exceeding 50mers there is a problem that it is not easy to remove these mutations by HPLC or the like. Therefore, a synthesis method with higher accuracy is required.
  • An object of the present invention is to provide a highly accurate long-chain nucleic acid (especially DNA) synthesis method and a long-chain nucleic acid produced by the synthesis method.
  • the present inventors have found that the most frequently observed mutation, guanosine to adenosine, occurs by using non-natural nucleobases in long-chain DNA synthesis. We have found that the probability can be reduced to 1/10 or less, and have completed the present invention.
  • the present invention includes the following.
  • [1] In chemical synthesis of nucleic acids based on the phosphoramidite method, (i) a nucleoside-O-phosphoramidite derivative having an unnatural nucleobase, or (ii) a nucleoside-O-phosphoramidite having an unnatural nucleobase
  • a method of synthesizing long nucleic acids comprising using nucleoside-O-phosphoramidite derivatives with derivatives and natural nucleobases.
  • B 1 is a non-natural nucleobase or a non-natural nucleobase protected with a protecting group;
  • R 1 is a hydrogen atom, a hydroxyl group, or a hydroxyl group protected with a protecting group;
  • R 2 is a hydrogen atom or a hydroxyl-protecting group;
  • R 3 is a 2-cyanoethyl group, a 2-trimethylsilylethyl group, a nitrophenylethyl group, or a 2-nitroethyl group;
  • R 4 is —N(R 5 ) 2 , wherein R 5 is independently a C 1-6 alkyl group or up to 3 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen; 4- to 7-membered heterocycloalkyl or heterocycloalkenyl), morpholino group, or dialkylamino group
  • the non-natural nucleobase has the following formula:
  • R 6 is from a hydrogen atom, a C 1-6 alkyl group, a C 7-16 aralkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a halogen, a cyano group, an aryl group, an acyl group, and a vinyl group; selected from the group consisting of; R 7 is a hydrogen atom or an amino group; X is N or CH;
  • R 8 is from a hydrogen atom, a C 1-6 alkyl group, a C 7-16 aralkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a halogen, a cyano group, an aryl group, an acyl group, and a vinyl group; selected from the group consisting of;
  • R 9 is a hydrogen atom or an amino group;
  • Y is N or CH;
  • B 2 is a natural nucleobase or a natural nucleobase protected with a protecting group;
  • R 1 is a hydrogen atom, a hydroxyl group, or a hydroxyl group protected with a protecting group;
  • R 2 is a hydrogen atom or a hydroxyl-protecting group;
  • R 3 is a 2-cyanoethyl group, a 2-trimethylsilylethyl group, a nitrophenylethyl group, or a 2-nitroethyl group;
  • R 4 is —N(R 5 ) 2 , wherein R 5 is independently C 1 -C 6 alkyl or up to 3 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen; 4- to 7-membered heterocycloalkyl or heterocycloalkenyl), morpholino group, or dialkylamino group]
  • R 5 is independently C 1 -C 6 alkyl or up to 3 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen; 4- to
  • the chemical synthesis of nucleic acids is a solid-phase synthesis method, and the following: (a) removing the 5' or 3' hydroxyl group of the nucleoside bound to the solid support by acid treatment; (b) a step of activating a nucleoside-O-phosphoramidite derivative with an acid catalyst and linking it with a 5' or 3' hydroxyl group of a nucleoside on a solid phase support via a trivalent phosphate bond through a condensation reaction; (c) capping the unreacted 5' or 3' hydroxyl group; and (d) oxidizing the trivalent phosphate bond.
  • the method according to any one of [1] to [8] above.
  • [10] The method according to any one of [1] to [9] above, wherein the nucleic acid is DNA.
  • the present invention it is possible to provide a long-chain nucleic acid with reduced mutation by providing a method for synthesizing nucleic acid using non-natural nucleic acid bases.
  • Synthesized samples shows an agarose gel electrophoresis image.
  • C1 synthesized under normal DNA synthesis conditions A heat map of the error rate [%] at each position of the da7G sequence is shown. The framed “G” corresponds to "da 7 G”.
  • C1 synthesized under normal DNA synthesis conditions A heat map of the error rate [%] at each position of the da7G sequence is shown. The framed “G” corresponds to "da 7 G”.
  • C1 synthesized under normal DNA synthesis conditions A heat map of the error rate [%] at each position of the da7G sequence is shown. The framed “G” corresponds to "da 7 G”.
  • the present invention is characterized by using an unnatural nucleic acid base in whole or in part as a nucleic acid base in a nucleoside-O-phosphoramidite derivative in a nucleic acid synthesis method by the phosphoramidite method. Longer nucleic acids (ie, with reduced mutations) can be synthesized.
  • nucleic acid or “nucleic acid sequence” is used synonymously with “nucleotide” or “nucleotide sequence”, refers to a nucleotide having a length of 2 bases (2mer or 2bp) or more, and is an oligonucleotide ( ⁇ 10 2 bp) , genes (10 2 -10 3 bp), gene clusters (10 3 -10 4 bp), genomes (>10 5 bp).
  • nucleic acids can be DNA (oligodeoxyribonucleotides) and RNA (oligoribonucleotides).
  • the nucleic acid synthesis method of the present invention can reduce mutations seen during synthesis through the use of non-natural nucleobases, the long-chain synthesis method does not involve any or a reduced number of error-correction steps in conventional methods. Allows synthesis of nucleic acids. Therefore, not only the synthesis of oligonucleic acids (eg, ⁇ 10 2 mers of DNA), but also gene clusters of about 10 4 bp and genome synthesis of 10 5 bp or more can be generated more accurately.
  • particularly preferred examples of oligonucleotides for use in long-chain nucleic acid synthesis are 30-200mer nucleic acids, preferably 50-100mer nucleic acids.
  • the method of the present invention can generally be applied to gene synthesis by the PCA method and gene cluster synthesis by the Gibson Assembly method, which are generally known to those skilled in the art. More specifically, the method of the present invention is based on the principles of the known phosphoramidite method of Caruthers et al., its modification, the ⁇ -cyanoethyl phosphoramidite method of Koster et al., or modifications thereof. In these known methods, the nucleoside-3′-O-phosphoramidite derivative used in the condensation reaction is activated by donating protons to its N—N-diisopropylamino group using an acid catalyst, thereby solidifying.
  • a condensation reaction is caused between the nucleic acid (nucleoside or polynucleotide) immobilized on the phase carrier and the 5'-hydroxyl group of the 5'-terminal nucleoside (5'-terminal hydroxyl group) to form a trivalent phosphate bond. and oxidizing the trivalent phosphate bond to a stable pentavalent phosphate bond.
  • nucleoside-3'-O-phosphoramidite derivative or the nucleoside-5'-O-phosphoramidite derivative has a nucleobase that constitutes the nucleoside, which is a non-natural nucleobase.
  • the method of the present invention includes, for example, unnatural nucleobases (eg, 7-deazaguanine, 7-deazaadenine, 8-aza-7-deazaguanine, 8-aza-7) in all or part of the reaction cycle of the phosphoramidite method.
  • -deazaadenine can be introduced and used to synthesize long-chain nucleic acids with reduced mutations.
  • Natural nucleic acid bases include adenine, guanine, cytosine, thymine, or uracil.
  • B PG represents a protected nucleobase and represents the same or different nucleobase.
  • the nucleobase can be a non-natural nucleobase or a natural nucleobase.
  • DMTr is a hydroxyl-protecting group and is a dimethoxytrityl group.
  • the four steps of (1) deprotection ⁇ (2) condensation (coupling) ⁇ (3) capping ⁇ (4) oxidation are continuously repeated on the surface of the solid support. , extending one base in the 3′ ⁇ 5′ direction per cycle.
  • nucleobase refers to a portion in a deoxyribonucleotide other than the deoxyribose moiety and the 3'- or 5'-phosphate moiety, or a portion in a deoxyribonucleoside other than the deoxyribose moiety.
  • nucleic acid bases are used in the form of nucleoside-O-phosphoramidite derivatives having said nucleic acid bases in nucleic acid synthesis.
  • a nucleoside-O-phosphoramidite derivative having an unnatural nucleobase is preferably represented by the following general formula.
  • the compound represented by formula (I-1) is a nucleotide-3'-O-phosphoramidite derivative having an unnatural nucleobase, while the compound represented by formula (I-2) is Nucleotide-5'-O-phosphoramidite derivatives with unnatural nucleobases.
  • B1 may be a non-natural nucleobase or a non-natural nucleobase protected with a protecting group.
  • Non-natural nucleotide refers to any nucleobase other than the naturally occurring nucleobases that make up nucleic acids in nature (i.e., adenine, guanine, cytosine, thymine, and uracil) and that have properties similar or similar to those of naturally occurring nucleobases. and structure.
  • non-natural nucleobases include, but are not limited to, the following formula:
  • R 6 is from a hydrogen atom, a C 1-6 alkyl group, a C 7-16 aralkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a halogen, a cyano group, an aryl group, an acyl group, and a vinyl group; selected from the group consisting of; R 7 is a hydrogen atom or an amino group; X is N or CH;
  • examples of non-natural nucleobases include, but are not limited to:
  • the unnatural nucleobase has the formula:
  • R 8 is from a hydrogen atom, a C 1-6 alkyl group, a C 7-16 aralkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a halogen, a cyano group, an aryl group, an acyl group, and a vinyl group; selected from the group consisting of;
  • R 9 is a hydrogen atom or an amino group;
  • Y is N or CH;
  • alkyl group refers to a linear, branched or cyclic monovalent saturated aliphatic hydrocarbon group, preferably an alkyl group having from 1 to 6 carbon atoms, More preferred is an alkyl group having 1 to 3 carbon atoms.
  • alkyl group include methyl group, ethyl group, propyl group, isopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • aralkyl group refers to an alkyl group substituted with one or more aryl groups, preferably an aralkyl group having 7 to 15 carbon atoms, more preferably an aralkyl group having 7 to 11 carbon atoms.
  • Alkyl group includes, for example, benzyl group, phenethyl group, 2-naphthylmethyl group and the like.
  • alkenyl group refers to a linear, branched or cyclic monovalent unsaturated hydrocarbon group having at least one carbon-carbon double bond, preferably an alkenyl group having 2 to 6 carbon atoms, Alkenyl groups having 2 or 3 carbon atoms are more preferred.
  • alkenyl group examples include vinyl group, 1-propenyl group, 2-propenyl group, 2-methyl-1-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-methyl- 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 4-methyl-3-pentenyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 2 -cyclohexenyl group and the like.
  • alkynyl group refers to a linear, branched or cyclic monovalent unsaturated hydrocarbon group having at least one carbon-carbon triple bond, preferably an alkenyl group having 2 to 6 carbon atoms. Alkenyl groups having 2 or 3 atoms are more preferred.
  • alkynyl group includes, for example, ethynyl group, 1-propynyl group, propargyl, 2-butynyl group, 3-butynyl group, 1-methyl-2-propynyl group, 2-pentynyl group, 3-pentynyl, 5- xynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group, dodecynyl group, undecynyl group and the like.
  • halogen includes, for example, fluorine atom, chlorine atom, bromine atom and the like.
  • aryl group refers to a monovalent aromatic hydrocarbon group, preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms.
  • Aryl group includes, for example, phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • non-natural nucleobases include, but are not limited to, 2-aminoadenine, alkyl derivatives such as 6-methylated purine; alkyl derivatives such as 2-propylated purine; 5-halouracyl and 5-halocytosine; 5-propynyluracil and 5-propynylcytosine; 6-azouracil, 6-azocytosine and 6-azothymine; 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino Allyluracil; 8-halogenated, aminated, thiolated, thioalkylated, hydroxylated and other 8-substituted purines; 5-trifluoromethylated and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines 6-azapyrimidines; N-2, N-6, and O-6 substituted purines
  • R 1 can be a hydrogen atom, a hydroxyl group, or a hydroxyl group protected with a protecting group.
  • R 2 is a hydrogen atom or a hydroxyl-protecting group.
  • a hydroxyl-protecting group dimethoxytrityl group (DMTr) is used in the above reaction step, but it is not limited thereto.
  • benzyl ester group (DMNB), bromohydroxycoumarin (Bhc) group, dimethoxybenzoin group, 2-nitropiperonyloxycarbonyl (NPOC) group, 2-nitroveratryloxycarbonyl (NVOC) group, 5'-( ⁇ - methyl-2-nitropiperonyl)oxycarbonyl (MeNPOC) group, 2-(2-nitro-4-ethyl-5-thiophenylphenyl)propyloxycarbonyl (PhSNPPOC) group, ⁇ -methyl-2-nitroveratryloxycarbonyl ( MeNVOC) group, 2,6-dinitrobenzyloxycarbonyl (DNBOC) group, ⁇ -methyl-2,6-dinitrobenzyloxycarbonyl (MeDNBOC) group, 1-(2-nitrophenyl)ethyloxycarbonyl (NPEOC) group, 1-methyl-1-(2-nitrophenyl)ethyloxycarbonyl (MeNPEOC) group, 9-anth
  • R 3 is a phosphate group-protecting group and can be, for example, a 2-cyanoethyl group, a 2-trimethylsilylethyl group, a nitrophenylethyl group, or a 2-nitroethyl group.
  • a protecting group that does not leave under acidic conditions but easily leaves under basic conditions is preferred, and a 2-cyanoethyl group is more preferred, from the standpoint of easiness of leaving the protecting group.
  • R 4 may be a dialkylamino group having two identical or different alkyl groups having 1 to 6 carbon atoms bonded to the nitrogen atom.
  • Typical examples include amine derivatives including amines such as diisopropylamino group, diethylamino group, ethylmethylamino group, or morpholino group.
  • amino group-protecting group examples include, but are not limited to, edition, JOHN WILLY & SONS Publishing (1999) and the like.
  • amino-protecting group examples include, for example, pivaloyl group, pivaloyloxymethyl group, trifluoroacetyl group, phenoxyacetyl group, 4-isopropylphenoxyacetyl group, 4-tert-butylphenoxyacetyl group, acetyl group, benzoyl group, isobutyryl group, dimethylformamidinyl group, 9-fluorenylmethyloxycarbonyl group and the like.
  • phenoxyacetyl group, 4-isopropylphenoxyacetyl group, acetyl group, benzoyl group, isobutyryl group and dimethylformamidinyl group are preferred.
  • the carbonyl group may be protected, for example phenol, 2,5-dichlorophenol, 3-chlorophenol, 3,5-dichlorophenol, 2-formylphenol, 2-naphthol, 4-methoxyphenol, 4-chlorophenol, 2-nitrophenol, 4-nitrophenol, 4-acetylaminophenol, pentafluorophenol, 4-pivaloyloxybenzyl alcohol, 4-nitrophenethyl alcohol, 2-(methylsulfonyl) ethanol, 2-(phenylsulfonyl)ethanol, 2-cyanoethanol, 2-(trimethylsilyl)ethanol, dimethylcarbamic acid chloride, diethylcarbamic acid chloride, ethylphenylcarbamic acid chloride, 1-pyrrolidinecarboxylic acid chloride, 4-morpholinecarboxylic acid
  • the carbonyl group can be protected by reaction with acid chloride, diphenylcarbamic acid chloride, or the like. In some cases, the carbonyl-protecting
  • a nucleoside-O-phosphoramidite derivative having a natural nucleobase is preferably represented by the following general formula.
  • the compound represented by formula (II-1) is a nucleotide-3'-O-phosphoramidite derivative having a natural nucleobase, while the compound represented by formula (II-2) is a natural It is a nucleotide-5'-O-phosphoramidite derivative with a nucleobase.
  • B2 can be a natural nucleobase, including but not limited to adenine, guanine, cytosine, thymine, uracil, etc., optionally substituted with a protecting group.
  • R 1 to R 4 have the same definitions as R 1 to R 4 in formulas (I-1) and (I-2) above. When each substituent is protected by a protecting group, the definitions in formulas (I-1) and (I-2) are followed.
  • the number and type of nucleic acid can be appropriately determined according to the desired nucleic acid sequence to be synthesized.
  • the phosphoramidite method involves continuously performing the four steps of (1) deprotection ⁇ (2) condensation (coupling) ⁇ (3) capping ⁇ (4) oxidation on a solid phase support.
  • the target nucleic acid sequence can be obtained by repeating the process of completing the chain elongation reaction for one base as one cycle until the target chain length is reached.
  • solid phase supports used for solid phase synthesis of nucleic acid sequences can have a variety of forms and compositions, including naturally occurring materials (native materials), synthetically modified It can be obtained from natural or synthetic materials.
  • silicon e.g., silicon; glass (e.g., microporous glass, porous glass (e.g., control pore glass (CPG), etc.); metal (e.g., gold, platinum, etc.); ferrite core and glycine methacrylate covering the surface Magnetic beads; plastics (e.g., polyethylene glycol resin, silica gel resin, polytetrafluoroethylene resin, polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, acrylonitrile butadiene styrene resin, nylon, acrylic resin, fluorine resin, polycarbonate resin, polyurethane resin , methylpentene resin, phenolic resin, melamine resin, epoxy resin, vinyl chloride resin); polysaccharides (eg,
  • the solid-phase carrier may be of any shape. However, it is preferable to use it in a form packed in a container such as a column in an automatic DNA/RNA synthesizer, etc.
  • a solid phase carrier to be used conventionally Those used for manufacturing DNA chips and microarrays for gene detection can be used without particular limitation.
  • a solid phase carrier immobilized with a nucleoside containing the 3′-terminal base of the nucleic acid sequence to be synthesized preferably a derivative in which succinic acid is introduced into the 3′-hydroxyl group, etc. It can be used as a starting material for nucleic acid synthesis reactions.
  • Nucleosides can be immobilized onto a solid-phase carrier by a conventional method, preferably via a linker, for example.
  • the solid-phase carrier on which nucleosides are immobilized is a solid-phase carrier in which an aminoalkyl group such as an aminopropyl group is introduced into the silanol hydroxyl group, and a nucleoside-3'-O-succinyl derivative is bound. It's okay.
  • a protected nucleoside may be introduced into a solid-phase carrier using a Q linker, or a nucleoside amidite into a solid-phase carrier universal support may be used as a known technique in the present invention.
  • Elimination of the dimethoxytrityl group from the 5'-hydroxyl group is not limited, but preferably a 3% trichloroacetic acid-dichloromethane solution or a 3% dichloroacetic acid-dichloromethane solution can be used.
  • the acid catalyst As the acid catalyst, known acid catalysts (activators) such as, but not limited to, 1H-tetrazole, 5′-ethylthio-1H-tetrazole, benzylthio-1H-tetrazole, dicyanoimidazole, saccharin/1-methylimidazole are used. can do.
  • the acid catalyst is preferably added as a solution dissolved in a solvent such as acetonitrile, and the acid catalyst solution is 0.1M to 0.45M, preferably 0.25M to 0.45M.
  • the concentration is not limited to this concentration and can be adjusted as appropriate by those skilled in the art.
  • the phosphoramidite method is the most active among the phosphate ester condensation reactions developed so far, reacting with 98-99% of 5'-hydroxyl groups.
  • a small amount of unreacted nucleoside having a 5'-hydroxyl group remains on the solid-phase support, and this becomes an impurity that is difficult to separate when an elongation reaction occurs in the next chain elongation reaction cycle. Therefore, the extension reaction is stopped by inactivating the unreacted 5′-hydroxyl group by capping so that unreacted nucleosides or nucleotides with unreacted free 5′-hydroxyl groups are not carried over to the next cycle. It is preferable to let
  • Capping can be performed by a known method, but is generally preferably performed by acetylating the unreacted 5'-hydroxyl group.
  • Acetylation of the unreacted 5'-hydroxyl group can utilize, but is not limited to, acetylation with acetic anhydride or phenoxyacetic anhydride.
  • Capping of unreacted 5'-hydroxyl groups can also be accomplished using phosphorylating reagents (e.g., UniCap), leaving phosphate groups rather than free hydroxyl groups on the nucleotide sequence after deprotection.
  • phosphorylating reagents e.g., UniCap
  • a solution containing acetic anhydride can be added to the solid phase support along with a basic catalyst for forming a salt with the acetic acid produced during the reaction.
  • a solution containing acetic anhydride and a solution containing a basic catalyst such as 1-methylimidazole are preferably prepared separately and prepared just before use in the capping step.
  • Basic catalysts added with acetic anhydride include, but are not limited to, 1-methylimidazole, pyridine, 2,6-lutidine, and the like.
  • Acetic anhydride and basic catalyst may each be added as a solution in a suitable solvent (eg, tetrahydrofuran (THF), acetonitrile, etc.).
  • the trivalent phosphate bond of the nucleotide chain-extended in the condensation step is oxidized by adding an oxidizing reagent to the solid-phase carrier to convert it to a stable pentavalent orthophosphate bond.
  • an oxidizing reagent a known oxidizing reagent can be used, and for example, an aqueous solution containing iodine or a peroxide can be preferably used.
  • solutions obtained by dissolving 0.02 M iodine-pyridine solution in an aqueous solvent or an organic solvent such as iodine-pyridine-water-tetrahydrofuran solution, (1S)-(+)-(10-camphorsulfonyl)oxaziridine, Peroxides such as, but not limited to, t-butyl hydroperoxide-methylene chloride can be used.
  • a desired nucleic acid sequence can be obtained by changing the type of nucleic acid base and repeating the above steps (1) to (4).
  • the phosphoramidite method described above is employed in today's automatic DNA/RNA synthesizers because the condensation reaction is carried out by activating the phosphoramidite unit having a PN bond and the reaction can be performed rapidly. .
  • the phosphoramidite method is used as a method for accurately synthesizing nucleic acid sequences, but it is not necessarily a means for completely suppressing side reactions.
  • oligo oligonucleotide
  • the yield of a strand having the correct base in the extension of one base is 99%
  • the yield of the correct 70mer oligo is approximately 50%.
  • About 50% of the remaining impurities contain errors due to side reactions such as mutations, insertions, and deletions, and separation and purification are not easy.
  • long-chain DNA is synthesized using the synthesized oligo as a template, errors such as mutations, insertions, and deletions contained in the template oligo are reflected in the long-chain DNA. Therefore, techniques for minimizing errors such as mutations, insertions, and deletions contained in template oligos are required for accurate long-chain DNA synthesis without errors.
  • a long-chain nucleic acid preferably a long-chain DNA
  • higher purity for example, a purity of 40% or higher
  • side reactions for example, a purity of 40% or higher
  • G ⁇ A mutations frequently observed in nucleic acid synthesis are added to phosphoramidite units with, for example, the following unnatural nucleobases (7-deazaguanine): (hereinafter sometimes abbreviated as "da 7 G") to synthesize nucleic acids
  • da 7 G unnatural nucleobases
  • the rate of mutation is estimated when a nucleoside-O-phosphoramidite derivative having a corresponding natural nucleobase is used. can be reduced by a factor of 10 or less compared to .
  • the incidence of mutations is not limited to the above specific mutations, but is reduced by 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold , 16 times, 17 times, 18 times, 19 times, 20 times, or less (or less).
  • a long-chain nucleic acid having a desired length can be obtained by appropriately determining the reaction cycle number (repetition number) in the phosphoramidite method.
  • nucleic acid synthesis method of the present invention By using the nucleic acid synthesis method of the present invention, a non-natural nucleobase is introduced into the nucleic acid sequence, but due to an increase in the number of times of amplification using the synthesized nucleic acid sequence as a template, the sequence substantially contains the non-natural nucleobase. Nucleic acid sequences are assumed to be absent.
  • a long-chain nucleic acid with reduced mutations can be provided by the nucleic acid synthesis method using non-natural nucleic acid bases according to the present invention.
  • the present invention contributes to improving the reliability of techniques that apply long-chain DNA. For example, synthesis of microbial genomes and new genes that produce useful substances such as functional molecules and biofuels, synthesis of nucleic acid-related pharmaceuticals such as template DNA and DNA vaccines in the production of mRNA vaccines, and chemical synthesis in the writing of information in DNA storage. The reliability of the DNA base sequence obtained can be improved.
  • Example 1 Synthesis of C1 (Control Oligonucleotide) Oligonucleotide (C1: 5'- ACGACGCTCTTCCGATCT CGTCATGACGTCATGATGCAGCACTGCAGCACGTAGTACTGTAGTACT AGATCGGAAGAGCACACGT -3' (SEQ ID NO: 1) (underlined part is the adapter sequence)) was synthesized using an automatic DNA synthesizer NTS-M-4-MX (Nippon Techno Service) by default. Synthesis was carried out using the reagents described below under the DNA synthesis conditions set in .
  • Activator (5-Benzylthio-1-H-tetrazole; BTT) (Product Code 30-3172-52), CapMixA (Pac 2 O) (40-4212-52), CapMixB (NMI) (40- 4122-52), oxidizing agent (40-4132-52), UnySupport 1.0 ⁇ mol (20-5241-41), dT-CE (10-1030-2C), dG-CE (10-1020-2C), Ac -dC-CE (10-1015-2C) and dA-CE (10-1000-2C) were purchased from Glen Research. Acetonitrile (017-27111) and deblocking reagent (042-28921) were purchased from Fujifilm Wako Pure Chemical Industries, Ltd.
  • Example 2 C1 Synthesis of da7G Oligonucleotide (C1 da7G: 5′ -ACGACGCTCTTCCGATCT CGTCATGACGTCATXATGCAGCACTGCAXCACGTAGTACTXTAGTACT AGATCGGAAGAGCACACGT -3′ (SEQ ID NO: 2) (underlined is the adapter sequence and “X” is da 7 G (boxed bases in FIGS. 2A-2C))).
  • NTS-M-4-MX Nippon Techno Service
  • separately described reagents and 7-deazadeoxyguanosine phosphoramidite was used for the synthesis.
  • Example 3 C1 and C1 Preparation of library for da7G next-generation sequencer Take adapter (15 ⁇ M, 1 ⁇ L) to be used from xGen UDI-UMI adapter (IDT), P2 primer (15 ⁇ M, 1 ⁇ L) purchased from Eurofins Genomics Co., Ltd.
  • 2x Q5 master mix [Q5 polymerase, 0.02 U/ ⁇ L, 1000 ⁇ M dNTP, 2x Q5 reaction buffer (Q5 High-Fidelity DNA polymerase, New England BioLabs), water (UltraPure DNase/RNase-free distilled water, ThermoFisher Scientific)] and pre-assembled using a PCR device (Veriti thermal cycler, Applied Biosystems).
  • the pre-assembly was held at 98°C for 30 seconds, then 98°C for 5 seconds, 70°C for 1 second, then ramped to 50°C at 0.5°C/s, held at 50°C for 30 seconds, then cooled to 72°C. 20 seconds at 72° C.
  • the assembled product was purified with a GenElute PCR cleanup kit (Sigma Aldrich) and the concentration was determined using qPCR (KAPA library quantification kit, Nippon Genetics). Synthesized samples (C1 and C1 da7G) is shown in FIG.
  • the sequences of the P1 and P2 primers (Eurofins Genomics, Inc.) used for the above assembly and PCR are as follows.
  • P1 primer 5'-AATGATACGGCGACCACCGA-3' (SEQ ID NO: 3)
  • P2 primer 5'-CAAGCAGAAGACGGCATACGA-3' (SEQ ID NO: 4)
  • the synthesized sample was sequenced using iSeq100 (Illumina Inc.) and BBTools (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/) , reads were merged, adapter sequences were removed, and contaminant genomes were removed. Then, using the Needleman-Wunsch exhaustive global alignment algorithm, the error rate at each position (number of sequences in error/total number of reads ⁇ 100) was calculated.
  • the read region in the next-generation sequencer in the C1 sequence is a repeated sequence, one of which can be used as a control sequence and the other as a test sequence (see Figures 2A-2C).
  • the 5' upstream side was used as a control sequence and the 3' downstream side was used as a test sequence, which is expected to reduce synthetic errors.
  • the error rate at each position was further defined as an error ratio (test sequence error rate/control sequence error rate) to calculate a correction value based on the internal standard. For example, the test sequence error rate of 0.17% at the 29th G (da 7 G) is divided by the control sequence error rate of 1.89% at the 21st G to give 0.09. error ratio can be obtained.
  • the average error ratio of the natural nucleobase (G) is 1.28, while the average error ratio at the site where da 7 G is introduced is 0.10, which is about 1/13. decreased.
  • Example 4 C1 Synthesis of a8da7G Using an automatic DNA synthesizer NTS-M-4-MX (Nippon Techno Service Co., Ltd.), oligonucleotides were synthesized with reagents and 8-aza-7-deazadeoxy separately described under the default DNA synthesis conditions. Synthesis was performed using guanosine phosphoramidites (Glen Research, 10-1073-90E). After synthesis, 1 mL of triethylamine--acetonitrile (2:3, v/v) was used to react for 1 hour at room temperature to remove the cyanoethyl group, followed by reaction with 28% aqueous ammonia (1 mL) at room temperature for 1 hour.
  • Example 5 C1 Preparation of library for next-generation sequencer of a8da7G Take the adapter (15 ⁇ M, 1 ⁇ L) to be used from xGen UDI-UMI adapter (IDT), P2 primer (15 ⁇ M, 1 ⁇ L) purchased from Eurofins Genomics Co., Ltd.
  • 2x Q5 master mix [Q5 polymerase, 0.02 U/ ⁇ L, 1000 ⁇ M dNTP, 2x Q5 reaction buffer (Q5 High-Fidelity DNA polymerase, New England BioLabs), water (UltraPure DNase/RNase-free distilled water, ThermoFisher Scientific)] and pre-assembled using a PCR device (Veriti thermal cycler, Applied Biosystems).
  • the pre-assembly was maintained at 98°C for 30 seconds, then at 98°C for 5 seconds, at 70°C for 1 second, then to 50°C at a rate of 0.5°C/s, maintained at 50°C for 30 seconds, and then at 72°C. 20 seconds at 72° C.
  • the assembled product was purified with the GenElute PCR cleanup kit (Sigma Aldrich) and the concentration determined using qPCR.
  • GenElute PCR cleanup kit Sigma Aldrich
  • the synthesized sample was sequenced using iSeq100 (Illumina), and BBTools (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/), Reads were merged, adapter sequences were removed, and contaminant genomes were removed. Then, using the Needleman-Wunsch exhaustive global alignment algorithm, it was calculated as the error rate at each position (number of sequences with errors/total number of reads ⁇ 100).
  • the read region in the next-generation sequencer in the C1 sequence is a repeated sequence, and one can be used as a control sequence and the other as a test sequence.
  • the 5' upstream side which is expected to reduce synthetic errors, was used as a control sequence, and the 3' downstream side was used as a test sequence.
  • the error rate at each position was further defined as an error ratio (test sequence error rate/control sequence error rate) to calculate a correction value based on the internal standard. For example, the test sequence error rate of 0.02% at the 29th G (a8daG) is divided by the control sequence error rate of 1.49% at the 21st G to give 0.01. error ratio can be obtained.
  • the average error ratio of the natural nucleic acid base (G) is 1.28, while the average error ratio at the site where a8da7G is introduced is 0.02, which is about 1/64. did.
  • the synthesized sequences are as follows: C1 a8da7G: 5' -ACGACGCTCTTCCGATCT CGTCATGACGTCATXATGCAGCACTGCAXCACGTAGTACTXTAGTACT AGATCGGAAGAGCACACGT -3' (SEQ ID NO: 5) (underlined is the adapter sequence, "X” is a8da7G)
  • Primers used for assembly and qPCR are as follows: P1 primer: 5'-AATGATACGGCGACCACCGA-3' (SEQ ID NO: 3)
  • P2 primer 5'-CAAGCAGAAGACGGCATACGA-3' (SEQ ID NO: 4)
  • the reagents used were purchased from Glen Research. activator (BTT) 30-3172-52 CapMixA (Pac2O) 40-4212-52 CapMixB (NMI) 40-4122-52 Oxidizing Reagent 40-4132-52 Uny Support 1.0 ⁇ m 20-5241-41 dT-CE 10-1030-2C dG-CE 10-1020-2C Ac-dC-CE 10-1015-2C dA-CE 10-1000-2C
  • the following reagents were purchased from Fujifilm Wako Pure Chemical Industries, Ltd. Acetonitrile 017-27111 Deblocking Reagent 042-28921
  • the present invention relates to a method for synthesizing long-chain nucleic acids using non-nucleobase, and is capable of providing nucleic acids with higher purity than conventionally at low cost. It can be applied to animal creation, medical application research, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明は、正確性の高い長鎖核酸(特にDNA)を合成するための方法を提供すること目的とする。本発明によれば、ホスホロアミダイト法に基づく核酸の化学合成において、(i)非天然核酸塩基を有するヌクレオシド-3'-O-ホスホロアミダイト誘導体、又は(ii)非天然核酸塩基を有するヌクレオシド-3'-O-ホスホロアミダイト誘導体及び天然核酸塩基を有するヌクレオシド-3'-O-ホスホロアミダイト誘導体を用いることを含む、長鎖核酸を合成する方法が提供される。

Description

非天然塩基を利用した長鎖DNA合成
 本発明は、非天然核酸塩基を利用した長鎖核酸(特にDNA)合成法、及び該合成法により製造した長鎖核酸に関する。
 PCR、アンチセンス技術、核酸構造解析、及びRNAi研究を含む広範な用途にオリゴヌクレオチド(<10mer)が広く用いられている。オリゴヌクレオチドの化学合成技術は、最初にKhoranaらのリン酸ジエステル法(非特許文献1)が開発され、その後、リン酸トリエステル法(非特許文献2、3)、ホスファイト法(非特許文献4)、ホスファイト法の改良法でありホスホロアミダイト化したより安定なヌクレオシド誘導体を用いるCaruthersらのホスホロアミダイト法(非特許文献5、6)、さらにH-ホスホネート法(非特許文献7)等が開発された。ホスホロアミダイト法の改良法としてKosterらによって開発されたβ-シアノエチルホスホロアミダイト法(非特許文献6)は、DNA/RNA自動合成装置において広く利用されている。
 これらのオリゴヌクレオチド合成技術に関しては、それぞれの反応に適した試薬や反応条件の検討、改良が詳細になされてきており、例えば1回のオリゴヌクレオチド鎖伸長反応(縮合反応)の収率として、β-シアノエチルホスホロアミダイト法等を含むホスファイト法ではおよそ98~99%を達成している。
 これらのオリゴヌクレオチド合成法は、化学反応としては、ほぼ完成された方法とみなされているが、1回の縮合反応の収率が99%であっても微量な副反応によって変異が導入される。50merを超えるような長鎖オリゴヌクレオチドの合成を行う場合、これらの変異をHPLC等で除去することは容易ではないという問題がある。そこで、より正確性の高い合成方法が求められる。
P.T.Gilham,H.G.Khorana,J.Am.Chem.Soc.,80,6212(1958) R.L.Letsinger,K.K.Ogilvie,J.Am.Chem.Soc.,89,4801(1967) H.Ito et al.,Nucleic Acids Res.,10,1755(1982) R.L.Letsinger,W.B.Lundsford,J.Am.Chem.Soc.,98,3655(1976) M.D.Matteucci,M.H.Caruthers,J.Am.Chem.Soc.,103,3185(1981) N.D.Sinha,J.Biernat and H.Koster,Nucleic Acids Res.,12,4539(1984) B.C.Froehler et al.,Nucleic Acids Res.,14,5399(1986)
 本発明は、正確性の高い長鎖核酸(特にDNA)合成法、及び該合成法により製造した長鎖核酸を提供することを課題とする。
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、長鎖DNA合成において、非天然核酸塩基を利用することによって、最も多く見られる変異であるグアノシンからアデノシンへの変異の発生確率を10分の1又はそれ以下に低減することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下を包含する。
 [1]ホスホロアミダイト法に基づく核酸の化学合成において、(i)非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体、又は(ii)非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体及び天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体を用いることを含む、長鎖核酸を合成する方法。
 [2]非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体が、下記式:
Figure JPOXMLDOC01-appb-C000007
〔式中、
 Bは、非天然核酸塩基又は保護基で保護された非天然核酸塩基であり;
 Rは、水素原子、水酸基、又は保護基で保護された水酸基であり;
 Rは、水素原子又は水酸基の保護基であり;
 Rは、2-シアノエチル基、2-トリメチルシリルエチル基、ニトロフェニルエチル基、又は2-ニトロエチル基であり;
 Rは、-N(R(式中、Rは、独立して、C1~6アルキル基、または窒素、硫黄及び酸素からなる群から選択される3個までのヘテロ原子を有する4~7員環のへテロシクロアルキル若しくはヘテロシクロアルケニルである)、モルホリノ基、又はジアルキルアミノ基である〕
で表される、上記[1]に記載の方法。
 [3]非天然核酸塩基が、下記式:
Figure JPOXMLDOC01-appb-C000008
〔式中、
 Rは、水素原子、C1~6アルキル基、C7~16アラルキル基、C2~6アルケニル基、C2~6アルキニル基、ハロゲン、シアノ基、アリール基、アシル基、及びビニル基からなる群から選択され;
 Rは、水素原子又はアミノ基であり;
 Xは、N又はCHであり;
Figure JPOXMLDOC01-appb-C000009
は、結合点を示す〕
で表される化合物である、上記[2]に記載の方法。
 [4]非天然核酸塩基が、下記式:
Figure JPOXMLDOC01-appb-C000010
〔式中、
 Rは、水素原子、C1~6アルキル基、C7~16アラルキル基、C2~6アルケニル基、C2~6アルキニル基、ハロゲン、シアノ基、アリール基、アシル基、及びビニル基からなる群から選択され;
 Rは、水素原子又はアミノ基であり;
 Yは、N又はCHであり;
Figure JPOXMLDOC01-appb-C000011
は、結合点を示す〕
で表される化合物である、上記[2]に記載の方法。
 [5]天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体が、下記式:
Figure JPOXMLDOC01-appb-C000012
〔式中、
 Bは、天然核酸塩基又は保護基で保護された天然核酸塩基であり;
 Rは、水素原子、水酸基、又は保護基で保護された水酸基であり;
 Rは、水素原子又は水酸基の保護基であり;
 Rは、2-シアノエチル基、2-トリメチルシリルエチル基、ニトロフェニルエチル基、又は2-ニトロエチル基であり;
 Rは、-N(R(式中、Rは、独立して、C~Cアルキル、または窒素、硫黄及び酸素からなる群から選択される3個までのヘテロ原子を有する4~7員環のへテロシクロアルキル若しくはヘテロシクロアルケニルである)、モルホリノ基、又はジアルキルアミノ基である〕
で表される、上記[1]~[4]のいずれかに記載の方法。
 [6]Bが、アデニン、グアニン、シトシン、チミン、及びウラシルからなる群から選択される、上記[5]に記載の方法。
 [7]長鎖核酸の合成において変異の発生率を、対応する天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体を利用した場合と比較して10分の1又はそれ以下に低減させることを特徴とする、上記[1]~[6]のいずれかに記載の方法。
 [8]変異が、グアノシンからアデノシンへの置換である、上記[1]~[7]のいずれかに記載の方法。
 [9]核酸の化学合成が固相合成法であって、下記:
 (a)固相担体に結合させたヌクレオシドの5’又は3’水酸基を酸処理により除去する工程;
 (b)ヌクレオシド-O-ホスホロアミダイト誘導体を酸触媒で活性化し、縮合反応により固相担体上のヌクレオシドの5’又は3’水酸基と三価リン酸結合により連結させる工程;
 (c)未反応の該5’又は3’水酸基をキャッピングする工程;及び
 (d)該三価リン酸結合を酸化する工程
を含む反応サイクルを反復的に行うことを含む固相合成である、上記[1]~[8]のいずれかに記載の方法。
 [10]核酸がDNAである、上記[1]~[9]のいずれかに記載の方法。
 [11]上記[1]~[10]のいずれかに記載の方法により製造した長鎖核酸。
 本発明により、非天然核酸塩基を利用した核酸合成法を提供することにより、変異を低減させた長鎖核酸を提供することができる。
合成したサンプル(C1及びC1 da7G)のアガロースゲル電気泳動像を示す。 通常のDNA合成条件で合成したC1 da7G配列の各位置におけるエラー率[%]のヒートマップを示す。枠で囲まれた「G」が「daG」に対応する。 通常のDNA合成条件で合成したC1 da7G配列の各位置におけるエラー率[%]のヒートマップを示す。枠で囲まれた「G」が「daG」に対応する。 通常のDNA合成条件で合成したC1 da7G配列の各位置におけるエラー率[%]のヒートマップを示す。枠で囲まれた「G」が「daG」に対応する。 天然核酸塩基を使用した場合とdaGを使用した場合のエラー比を比較した結果を示す。 通常のDNA合成条件で合成したC1 a8da7G配列の各位置におけるエラー率[%]のヒートマップを示す。枠で囲まれた「G」が「a8da7G」に対応する。 通常のDNA合成条件で合成したC1 a8da7G配列の各位置におけるエラー率[%]のヒートマップを示す。枠で囲まれた「G」が「a8da7G」に対応する。 通常のDNA合成条件で合成したC1 a8da7G配列の各位置におけるエラー率[%]のヒートマップを示す。枠で囲まれた「G」が「a8da7G」に対応する。
 本発明は、ホスホロアミダイト法による核酸合成法において、ヌクレオシド-O-ホスホロアミダイト誘導体における核酸塩基に非天然核酸塩基を全部又は一部に使用することを特徴とし、これにより、正確性の高い(すなわち、変異が低減した)長鎖核酸を合成することができる。本発明において「核酸」又は「核酸配列」とは、「ヌクレオチド」又は「ヌクレオチド配列」と同義に使用され、2塩基長(2mer又は2bp)以上のヌクレオチドを指し、オリゴヌクレオチド(<10bp)、遺伝子(10~10bp)、遺伝子クラスター(10~10bp)、ゲノム(>10bp)が含まれ得る。本発明では、核酸は、DNA(オリゴデオキシリボヌクレオチド)及びRNA(オリゴリボヌクレオチド)であり得る。
 本発明の核酸合成法は、非天然核酸塩基の使用により、合成中に見られる変異を低減させることができるため、従来法におけるエラー修復のステップを全く行わないか又はその回数を抑えた長鎖核酸の合成を可能にする。したがって、オリゴ核酸(例えば、<10mer程度のDNA)の合成に限らず、約10bpの遺伝子クラスターや105bp以上のゲノム合成もより正確に生成させることができる。本発明によれば、長鎖核酸合成に用いるオリゴヌクレオチドのとりわけ好適な例としては、30~200merの核酸、好ましくは50~100merの核酸である。
 本発明の方法は、概して、当該技術分野において当業者に公知である、例えば、PCA法による遺伝子合成、Gibson Assembly法による遺伝子クラスター合成に適用することができる。より具体的には、本発明の方法は、公知のCaruthersらのホスホロアミダイト法、その改良法であるKosterらのβ-シアノエチルホスホロアミダイト法又はそれらの改良法の原理に基づく。これらの公知の方法は、縮合反応に用いるヌクレオシド-3’-O-ホスホロアミダイト誘導体を、酸触媒を用いてそのN-N-ジイソプロピルアミノ基に対しプロトンを供与して活性化し、それにより固相担体上に固定された核酸(ヌクレオシド又はポリヌクレオチド)の5’-末端のヌクレオシドの5’-水酸基(5’-末端水酸基)との間で縮合反応を起こさせ、それらを三価リン酸結合により結合させること、及びその三価リン酸結合を酸化して安定な五価リン酸結合にすることに基づくものである。
 本発明の方法では、ヌクレオシド-3’-O-ホスホロアミダイト誘導体又はヌクレオシド-5’-O-ホスホロアミダイト誘導体の全部又は一部に、ヌクレオシドを構成する核酸塩基が非天然核酸塩基である該誘導体を用いる点以外は、上記の公知のホスホロアミダイト法によるオリゴヌクレオチド合成法の各工程を実施することでよい。本発明の方法は、ホスホロアミダイト法の反応サイクルの全部又は一部に、例えば、非天然核酸塩基(例えば、7-デアザグアニン、7-デアザアデニン、8-アザ-7-デアザグアニン、8-アザ-7-デアザアデニンなど)を有するヌクレオシド-3’-O-ホスホロアミダイト誘導体を導入して、使用することにより、変異が低減した長鎖核酸を合成することができる。なお、天然核酸塩基としては、アデニン、グアニン、シトシン、チミン、又はウラシルが挙げられる。
 一般的に使用されているβ-シアノエチルホスホロアミダイト法による典型的なオリゴヌクレオチド固相合成サイクルを以下に示す。下記「BPG」は、保護された核酸塩基を表し、同一又は異なる核酸塩基を表す。本発明の方法では、核酸塩基は、非天然核酸塩基又は天然核酸塩基であり得る。また、「DMTr」は、水酸基の保護基であり、ジメトキシトリチル基である。
Figure JPOXMLDOC01-appb-C000013
 上記に示されるように、ホスホロアミダイト法は、(1)脱保護→(2)縮合(カップリング)→(3)キャッピング→(4)酸化の4工程を固相担体表面で連続的に繰り返し、1サイクル毎に1つの塩基を3’→5’の方向に伸長する。
 本明細書で使用する場合、用語「核酸塩基」とは、デオキシリボース部分および3’-または5’-リン酸部分以外のデオキシリボヌクレオチド中の部分、あるいはデオキシリボース部分以外のデオキシリボヌクレオシド中の部分をいう。本発明の方法では、核酸塩基として「非天然核酸塩基」と「天然核酸塩基」を区別して使用される。なお、本発明では、核酸合成において、このような核酸塩基は、該核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体の形態で使用される。
 非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体は、下記の一般式で表されることが好ましい。なお、式(I-1)で表される化合物は、非天然核酸塩基を有するヌクレオチド-3’-O-ホスホロアミダイト誘導体であり、一方、式(I-2)で表される化合物は、非天然核酸塩基を有するヌクレオチド-5’-O-ホスホロアミダイト誘導体である。
Figure JPOXMLDOC01-appb-C000014
 上記式中、Bは、非天然核酸塩基又は保護基で保護された非天然核酸塩基であり得る。「非天然ヌクレオチド」とは、自然界の核酸を構成する天然核酸塩基(すなわち、アデニン、グアニン、シトシン、チミン、及びウラシル)以外の任意の核酸塩基を指し、天然核酸塩基と同様の又は類似した性質及び構造を有するものを指す。
 非天然核酸塩基の例としては、限定されないが、下記式:
Figure JPOXMLDOC01-appb-C000015
で表される化合物が挙げられる。
 上記式中、
 Rは、水素原子、C1~6アルキル基、C7~16アラルキル基、C2~6アルケニル基、C2~6アルキニル基、ハロゲン、シアノ基、アリール基、アシル基、及びビニル基からなる群から選択され;
 Rは、水素原子又はアミノ基であり;
 Xは、N又はCHであり;
Figure JPOXMLDOC01-appb-C000016
は、結合点を示す。
 さらなる実施形態では、非天然核酸塩基の例としては、限定されないが、
 非天然核酸塩基が、下記式:
Figure JPOXMLDOC01-appb-C000017
で表される化合物が挙げられる。
 上記式中、
 Rは、水素原子、C1~6アルキル基、C7~16アラルキル基、C2~6アルケニル基、C2~6アルキニル基、ハロゲン、シアノ基、アリール基、アシル基、及びビニル基からなる群から選択され;
 Rは、水素原子又はアミノ基であり;
 Yは、N又はCHであり;
Figure JPOXMLDOC01-appb-C000018
は、結合点を示す。
 本明細書で使用される場合、用語「アルキル基」とは、直鎖、分枝鎖又は環状の1価の脂肪族飽和炭化水素基を指し、好ましくは炭素原子数1~6のアルキル基、より好ましは炭疽原子数1~3のアルキル基である。「アルキル基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。用語「アラルキル基」とは、1又は2個以上のアリール基で置換されたアルキル基を指し、炭素原子数7~15のアラルキル基が好ましく、炭素原子数7~11のアラルキル基がより好ましい。「アラルキル基」としては、例えば、ベンジル基、フェネチル基、2-ナフチルメチル基等が挙げられる。「アルケニル基」とは、少なくとも1つの炭素-炭素二重結合を有する直鎖、分枝鎖又は環状の1価の不飽和炭化水素基を指し、炭素原子数2~6のアルケニル基が好ましく、炭素原子数2又は3のアルケニル基がより好ましい。「アルケニル基」としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-メチル-1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-メチル-2-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、4-メチル-3-ペンテニル基、1-ヘキセニル基、3-ヘキセニル基、5-ヘキセニル基、2-シクロヘキセニル基等が挙げられる。「アルキニル基」とは、少なくとも1つの炭素-炭素三重結合を有する直鎖、分枝鎖又は環状の1価の不飽和炭化水素基を指し、炭素原子数2~6のアルケニル基が好ましく、炭素原子数2又は3のアルケニル基がより好ましい。「アルキニル基」としては、例えば、エチニル基、1-プロピニル基、プロパルギル、2-ブチニル基、3-ブチニル基、1-メチル-2-プロピニル基、2-ペンチニル基、3-ペンチニル、5-へキシニル基、ヘプチニル基、オクチニル基、ノニニル基、デシニル基、ドデシニル基、およびウンデシニル基等が挙げられる。用語「ハロゲン」としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。用語「アリール基」とは、1価の芳香族炭化水素基を指し、炭素原子数6~14のアリール基が好ましく、炭素原子数6~10のアリール基がより好ましい。「アリール基」としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 より具体的には、非天然核酸塩基には、限定されないが、2-アミノアデニン、6-メチル化プリン等のアルキル誘導体;2-プロピル化プリン等のアルキル誘導体;5-ハロウラシル及び5-ハロシトシン;5-プロピニルウラシル及び5-プロピニルシトシン;6-アゾウラシル、6-アゾシトシン及び6-アゾチミン;5-ウラシル(プソイドウラシル)、4-チオウラシル、5-ハロウラシル、5-(2-アミノプロピル)ウラシル、5-アミノアリルウラシル;8-ハロ化、アミノ化、チオール化、チオアルキル化、ヒドロキシル化及び他の8-置換プリン;5-トリフルオロメチル化及び他の5-置換ピリミジン;7-メチルグアニン;5-置換ピリミジン;6-アザピリミジン;N-2、N-6、及びO-6置換プリン(2-アミノプロピルアデニンを含む);5-プロピニルウラシル及び5-プロピニルシトシン;ジヒドロウラシル;5-アザシトシン;2-アミノプリン;5-アルキルウラシル;7-アルキルグアニン;5-アルキルシトシン;7-デアザアデニン;8-アザ-7-デアザアデニン;N6,N6-ジメチルアデニン;7-デアザグアニン;8-アザ-7-デアザグアニン;2,6-ジアミノプリン;5-アミノ-アリル-ウラシル;N3-メチルウラシル;置換1,2,4-トリアゾール;2-ピリジノン;5-ニトロインドール;3-ニトロピロール;5-メトキシウラシル;ウラシル-5-オキシ酢酸;5-メトキシカルボニルメチルウラシル;5-メチル-2-チオウラシル;5-メトキシカルボニルメチル-2-チオウラシル;5-メチルアミノメチル-2-チオウラシル;3-(3-アミノ-3-カルボキシプロピル)ウラシル;3-メチルシトシン;5-メチルシトシン;N4-アセチルシトシン;2-チオシトシン;N6-メチルアデニン;N6-イソペンチルアデニン;2-メチルチオ-N6-イソペンテニルアデニン;N-メチルグアニン;O-アルキル化塩基;並びにこれらの誘導体などが挙げられる。好ましくは、8-アザ-7-デアザグアニン又はその誘導体である。
 Rは、水素原子、水酸基、又は保護基で保護された水酸基であり得る。また、Rは、水素原子又は水酸基の保護基である。水酸基の保護基としては、上記の反応工程においては、ジメトキシトリチル基(DMTr)を使用しているが、これに限定されず、例えば、ニトロベンジル基、ニトロフェニルエチルエステル基(NPE)、ジメトキシニトロベンジルエステル基(DMNB)、ブロモヒドロキシクマリン(Bhc)基、ジメトキシベンゾイン基、2-ニトロピペロニルオキシカルボニル(NPOC)基、2-ニトロベラトリルオキシカルボニル(NVOC)基、5’-(α-メチル-2-ニトロピペロニル)オキシカルボニル(MeNPOC)基、2-(2-ニトロ-4-エチル-5-チオフェニルフェニル)プロピルオキシカルボニル(PhSNPPOC)基、α-メチル-2-ニトロベラトリルオキシカルボニル(MeNVOC)基、2,6-ジニトロベンジルオキシカルボニル(DNBOC)基、α-メチル-2,6-ジニトロベンジルオキシカルボニル(MeDNBOC)基、1-(2-ニトロフェニル)エチルオキシカルボニル(NPEOC)基、1-メチル-1-(2-ニトロフェニル)エチルオキシカルボニル(MeNPEOC)基、9-アントラセニルメチルオキシカルボニル(ANMOC)基、1-ピレニルメチルオキシカルボニル(PYMOC)基、3’-メトキシベンゾイニルオキシカルボニル(MBOC)基、3’,5’-ジメトキシベンゾイルオキシカルボニル(DMBOC)基、7-ニトロインドリニルオキシカルボニル(NIOC)基、5,7-ジニトロインドリニルオキシカルボニル(DNIOC)基、2-アントラキノニルメチルオキシカルボニル(AQMOC)基、α,α-ジメチル-3,5-ジメトキシベンジルオキシカルボニル基、5-ブロモ-7-ニトロインドリニルオシキカルボニル(BNIOC)基等であってもよい。
 Rは、リン酸基の保護基であり、例えば、2-シアノエチル基、2-トリメチルシリルエチル基、ニトロフェニルエチル基、又は2-ニトロエチル基であり得る。本発明では、保護基の脱離容易性の点から、酸性条件下では脱離しないが塩基性条件下で容易に脱離する保護基が好ましく、2-シアノエチル基がより好ましい。
 Rは、窒素原子上に炭素数1~6個の同一又は異なるアルキル基が2個結合したジアルキルアミノ基であり得る。典型的には、ジイソプロピルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、又はモルホリノ基などのアミン類を含むアミン誘導体が挙げられる。
 上記のいずれの置換基においてアミノ基を有する場合、反応においてアミノ基が保護されていることが好ましく、「アミノ基の保護基」の例としては、限定されないが、PROTECTIVE GROUPS IN ORGANIC SYNTHESIS、第3版、JOHN WILLY&SONS出版(1999年)等に記載されている保護基であってもよい。「アミノ基の保護基」の具体例としては、例えば、ピバロイル基、ピバロイロキシメチル基、トリフルオロアセチル基、フェノキシアセチル基、4-イソプロピルフェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、アセチル基、ベンゾイル基、イソブチリル基、ジメチルホルムアミジニル基、9-フルオレニルメチルオキシカルボニル基等を挙げることができる。これらの中でも、フェノキシアセチル基、4-イソプロピルフェノキシアセチル基、アセチル基、ベンゾイル基、イソブチリル基およびジメチルホルムアミジニル基が好ましい。
 また、本発明によれば、カルボニル基が保護されていてもよく、例えば、フェノール、2,5-ジクロロフェノール、3-クロロフェノール、3,5-ジクロロフェノール、2-ホルミルフェノール、2-ナフトール、4-メトキシフェノール、4-クロロフェノール、2-ニトロフェノール、4-ニトロフェノール、4-アセチルアミノフェノール、ペンタフルオロフェノール、4-ピバロイロキシベンジルアルコール、4-ニトロフェネチルアルコール、2-(メチルスルフォニル)エタノール、2-(フェニルスルフォニル)エタノール、2-シアノエタノール、2-(トリメチルシリル)エタノール、ジメチルカルバミン酸クロライド、ジエチルカルバミン酸クロライド、エチルフェニルカルバミン酸クロライド、1-ピロリジンカルボン酸クロライド、4-モルフォリンカルボン酸クロライド、ジフェニルカルバミン酸クロライド等を反応させて、カルボニル基を保護することができる。ここで、カルボニル基の保護基については、特に導入しなくてもよい場合がある。
 一方、天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体は、下記の一般式で表されることが好ましい。なお、式(II-1)で表される化合物は、天然核酸塩基を有するヌクレオチド-3’-O-ホスホロアミダイト誘導体であり、一方、式(II-2)で表される化合物は、天然核酸塩基を有するヌクレオチド-5’-O-ホスホロアミダイト誘導体である。
Figure JPOXMLDOC01-appb-C000019
 上記式中、Bは、天然核酸塩基であり得て、限定されないが、アデニン、グアニン、シトシン、チミン、ウラシルなどが挙げられ、保護基で置換されていてもよい。
 R~Rは、前述の式(I-1)及び式(I-2)中のR~Rと同義である。なお、各置換基が保護基で保護されている場合は、式(I-1)及び(I-2)における定義に従うものとする。
 本発明によれば、上記式(I-1)及び/又は式(I-2)で表されるヌクレオシド-3’-O-ホスホロアミダイト誘導体、及び/又は上記式(II-1)及び/又は式(II-2)で表されるヌクレオチド-5’-O-ホスホロアミダイト誘導体を用いて長鎖核酸(配列)を合成する方法を提供するが、核酸配列中に非天然核酸を導入する数及び核酸の種類は、合成の目的とする核酸配列に応じて適宜、決定することができる。
 上記の通り、ホスホロアミダイト法は、固相担体上で(1)脱保護→(2)縮合(カップリング)→(3)キャッピング→(4)酸化の4工程を連続的に行うものであるが、1塩基分の鎖伸長反応を完了する過程を1サイクルとし、それを目的の鎖長に達するまで繰り返し行うことにより、目的の核酸配列を得ることができる。
 当業者に理解されるように、核酸配列の固相合成に使用される固相担体として、種々の形態及び組成を有することができ、天然に存在する材料(天然材料)、合成により修飾された天然材料、又は合成材料から得ることができる。例えば、シリコン;ガラス(例えば、微小多孔質ガラス、多孔質ガラス(例えば、コントロールポアドガラス(CPG)など);金属(例えば、金、プラチナなど);フェライトを芯にグリシンメタクリレートで表面を覆った磁性ビーズ;プラスチック(例えば、ポリエチレングリコール樹脂、シリカゲル樹脂、ポリテトラフルオロエチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、アクリロニトリルブタジエンスチレン樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂);多糖(例えば、アガロース、デキストラン、ニトロセルロースなど);ポリアクリルアミド;ポリビニルアルコール;ヒドロキシエチルメタクリレートとメチルメタクリレートとのコポリマーなどが挙げられる。固相担体の形状としては、板状(基板状)、ビーズ状、糸状、球状、多角形状、粉末状など、任意の形状のものであってもよい。また、固相担体は、任意の形態で用いることができるが、DNA/RNA自動合成装置等では、カラム等の容器に充填した形態で用いることが好ましい。また、上記と関連して、使用される固相担体として、従来よりDNAチップ及び遺伝子検出用マイクロアレイを製造するために用いられているものを特に制限なく用いることができる。
 本発明では、限定されないが、例えば、合成すべき核酸配列の3’-末端の塩基を含むヌクレオシドの、好ましくは3’-水酸基にコハク酸が導入された誘導体等を固定した固相担体を、出発物質として核酸合成反応に供することが可能である。ヌクレオシドの固相担体上への固定は、常法により行うことができ、例えば、好ましくはリンカーを介して行うことができる。具体的には、ヌクレオシドを固定した固相担体は、固相担体上のシラノール水酸基にアミノプロピル基等のアミノアルキル基が導入されたものにヌクレオシド-3’-O-サクシニル体が結合されたものでもよい。あるいは、保護ヌクレオシドにQリンカーを用いて固相担体に導入したものでもよいし、ヌクレオシドのアミダイト体を固相担体ユニバーサルサポートに導入したものも公知技術として本発明において利用することができる。
 以下、前述のホスホロアミダイト法の反応工程を、典型例を用いて簡単に説明する。
(1)脱保護工程
 固相担体上に固定された核酸(オリゴヌクレオチド又はヌクレオシド)を酸処理することにより、その核酸の5’-末端のヌクレオシドの5’-水酸基(以下、単に「5’-水酸基」とも呼ぶ)の保護基を酸性条件下で脱離(脱保護)させ、この5’-水酸基を遊離状態とする。5’-水酸基の保護基は、限定されないが、一般的にはジメトキシトリチル基(DMTr)である。5’-水酸基からのジメトキシトリチル基の脱離は、限定されはないが、好ましくは、3%トリクロロ酢酸-ジクロロメタン溶液又は3%ジクロロ酢酸-ジクロロメタン溶液を用いることができる。
(2)縮合工程(カップリング工程)
 上記脱保護工程で脱保護された5’-水酸基を有する固相担体上の核酸に、次に該核酸に連結させるべきヌクレオシド-3’-O-ホスホロアミダイト誘導体と、活性化剤である酸触媒とを添加する。この結果、ヌクレオシド-3’-O-ホスホロアミダイト誘導体は、酸触媒により活性化され、それに固相担体上の核酸の遊離5’-水酸基が反応して、両者は縮合反応により連結されることになる。この縮合反応により生じる結合は、三価のリン酸結合である。
 酸触媒としては、限定されないが、1H-テトラゾール、5’-エチルチオ-1H-テトラゾール、ベンチルチオ-1H-テトラゾール、ジシアノイミダゾール、サッカリン/1-メチルイミダゾールなどの公知の酸触媒(活性化剤)を使用することができる。酸触媒は、アセトニトリル等の溶媒に溶解させた溶液として添加することが好ましく、その酸触媒溶液は0.1M~0.45M、好ましくは0.25M~0.45Mで調製したものを用いることができるが、この濃度に限定されるものではなく、当業者が適宜調節可能である。
(3)キャッピング工程
 上記縮合工程後、固相担体上のヌクレオシドの未反応の5’-水酸基を、脱保護工程で脱保護するものとは別の保護基で保護することにより、不活性化(すなわち、キャッピング)することができる。
 ホスホロアミダイト法はこれまでに開発されたリン酸エステル縮合反応の中では最も活性があり、98~99%の5’-水酸基と反応する。その結果、固相担体上にはわずかに未反応の5’-水酸基を有するヌクレオシドが残存することになるが、これは次の鎖長伸長反応サイクルで伸長反応を生じると分離し難い不純物となるため、未反応の遊離な状態の5’-水酸基を有する未反応のヌクレオシド又はヌクレオチドを次のサイクルに持ち越さないようにする、キャッピングにより未反応の5’-水酸基を不活性化して伸長反応を停止させることが好ましい。
 キャッピングは、公知の方法で行うことができるが、一般的には、その未反応の5’-水酸基をアセチル化することにより行うことが好ましい。未反応の5’-水酸基のアセチル化は、限定されないが、無水酢酸又は無水フェノキシ酢酸によるアセチル化を利用することができる。また、未反応の5’-水酸基のキャッピングには、リン酸化試薬(例えば、UniCap)を使用して達成され、脱保護後、ヌクレオチド配列上に遊離水酸基ではなくリン酸基を残すことができる。
 上記の例において、未反応の5’-水酸基のキャッピングのためには、例えば、無水酢酸を含む溶液を、反応時に生じる酢酸と塩形成させるための塩基性触媒と共に固相担体に添加することが好ましい。無水酢酸を含む溶液と、塩基性触媒である1-メチルイミダゾール等を含む溶液は、別々に調製してキャッピング工程の際に用時調製することが好ましい。無水酢酸とともに添加される塩基性触媒としては、限定されないが、1-メチルイミダゾール、ピリジン、2,6-ルチジンなどが挙げられる。無水酢酸及び塩基性触媒は、各々、適切な溶媒(例えば、テトラヒドロフラン(THF)、アセトニトリル等)に溶解した溶液として添加すればよい。
(4)酸化工程
 上記縮合工程で鎖伸長されたヌクレオチドの三価のリン酸結合を、酸化試薬を固相担体に添加することにより酸化し、安定な五価の正リン酸結合に変換する。三価のリン酸結合(三価リン酸トリエステル結合)は加水分解されやすく不安定なためである。酸化試薬としては、公知の酸化試薬を用いることができるが、例えば、ヨウ素を含む水性溶液又は過酸化物などを好適に使用することができる。具体例としては、0.02Mヨウ素-ピリジン溶液を水性溶媒又は有機溶媒に溶解した溶液、例えば、ヨウ素-ピリジン-水-テトラヒドロフラン溶液、(1S)-(+)-(10-カンファースルホニル)オキサジリジン、t-ブチルハイドロパーオキシド-メチレンクロリドなどの過酸化物を用いることができるが、これに限定されない。
 核酸塩基の種類を変更して、上記工程(1)~(4)を繰り返すことにより、所望の核酸配列を得ることができる。
 上記のホスホロアミダイト法は、縮合反応はP-N結合を有するホスホロアミダイトユニットを活性化することにより行われ、反応も迅速にできることから、今日のDNA/RNA自動合成機に採用されている。
 しかしながら、従来の核酸合成技術と比較して、ホスホロアミダイト法は正確に核酸配列を合成できる手法として使用されているが、必ずしも副反応を完全に抑制できる手段とはなっていない。例えば、長鎖DNAの合成に使用する鋳型として70merのオリゴヌクレオチド(以下、単に「オリゴ」という)をホスホロアミダイト法により合成する場合、1塩基の伸長において正しい塩基を有する鎖が得られる収率が99%であると仮定すると、正確な70merのオリゴの収率は約50%となる。残りの不純物の約50%には、変異、挿入、欠失といった副反応によるエラーも含まれており、分離精製は容易ではない。合成したオリゴを鋳型として長鎖DNAを合成するため、鋳型のオリゴに含まれる変異、挿入、欠失といったエラーは長鎖DNAに反映されることになる。そのためエラーを含まない正確な長鎖DNA合成にむけて、鋳型となるオリゴに含まれる変異、挿入、欠失といったエラーを最小化させる技術が必要となる。
 一般的に、核酸の固相合成では、副反応(合成エラー)が生じるため、高い精度で1塩基を伸長させる上で、「問題となる副反応」(例えば、変異、挿入、及び欠失など)を生じさせない技術開発が必要となる。一方で、増幅されない副生成物は長鎖DNA合成において除かれるため、「問題とならない副反応」と言える。そこで、各反応工程における上記の問題となる副反応(以下、単に「副反応」という)としては、例えば、下記の表に例示されるものが挙げられる。
Figure JPOXMLDOC01-appb-T000020
 本発明によれば、このように副反応を抑制しながら、かつより高い純度(例えば、40%以上の純度)で長鎖核酸(好ましくは、長鎖DNA)を合成することが可能である。典型的には、後述する実施例3に記載されるように、核酸合成において頻繁に観察されるG→A変異を、例えば、以下の非天然核酸塩基(7-デアザグアニン)を有するホスホロアミダイトユニット(以下、「daG」と略することがある)を用いて核酸合成をすることにより、変異の発生率を、対応する天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体を利用した場合と比較して10分の1又はそれ以下に低減させることができる。本発明によれば、上記の特定の変異に限定されず、変異の発生率を10分の1、11分の1、12分の1、13分の1、14分の1、15分の1、16分の1、17分の1、18分の1、19分の1、20分の1、又はそれ以下(若しくはそれ未満)に低減させることができる。
 さらに、本発明の合成法において、ホスホロアミダイト法における反応サイクル数(反復数)を適宜決定することにより、所望の長さを有する長鎖核酸を得ることができる。
Figure JPOXMLDOC01-appb-C000021
N2-アセチル-5’-O-(4,4’-ジメトキシトリチル)-2’-デオキシ-7-デアザグアノシン-3’-シアノエチルホスホロアミダイト
 なお、本発明の核酸合成方法を用いることにより、非天然核酸塩基が核酸配列中に導入されるが、合成した核酸配列を鋳型として増幅する回数の増加により、実質的に非天然核酸塩基を含む核酸配列は存在しないものとみなされる。
 本発明による非天然核酸塩基を利用した核酸合成法により、変異を低減させた長鎖核酸を提供することができる。また、本発明は長鎖DNAを応用する技術の信頼性の向上に寄与する。例えば、機能性分子やバイオ燃料などの有用物質を生産する微生物ゲノムや新規遺伝子の合成、mRNAワクチン製造における鋳型DNAやDNAワクチンなどの核酸関連医薬品の合成、DNAストレージにおける情報の書き込みなどにおいて化学合成されるDNAの塩基配列の信頼性を向上させることができる。
 以下、本発明を実施例に基づいて、より具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。
実施例1:C1の合成(コントロールオリゴヌクレオチド)
 オリゴヌクレオチド(C1:5'-ACGACGCTCTTCCGATCTCGTCATGACGTCATGATGCAGCACTGCAGCACGTAGTACTGTAGTACTAGATCGGAAGAGCACACGT-3'(配列番号1)(下線部はアダプター配列である))をDNA自動合成機NTS-M-4-MX(日本テクノサービス)を用い、デフォルトの設定のDNA合成条件にて下記に記載した試薬を用いて合成を行なった。
 使用した試薬:活性剤(5-ベンジルチオ-1-H-テトラゾール;BTT)(製品コード30-3172-52)、CapMixA(PacO)(40-4212-52)、CapMixB(NMI)(40-4122-52)、酸化剤(40-4132-52)、UnySupport 1.0μmol(20-5241-41)、dT-CE(10-1030-2C)、dG-CE(10-1020-2C)、Ac-dC-CE(10-1015-2C)、及びdA-CE(10-1000-2C)は、Glen Research社より購入した。また、アセトニトリル(017-27111)及びデブロッキング試薬(042-28921)は、富士フィルム和光純薬株式会社より購入した。
 合成後、1mLのトリエチルアミン-アセトニトリル(2:3、v/v)を用いて、室温で1時間反応させ、シアノエチル基を除去した後、28%アンモニア水(1mL)を室温で1時間反応させて固相担体からの切り出しを行なった。次に、55℃に加熱し、12時間かけて脱保護反応を行なった。脱保護後、遠心エバポレータを用いてアンモニアを除去し、Sep-pakを用いてDMTr-ON精製を行なった。
実施例2:C1 da7Gの合成
 オリゴヌクレオチド(C1 da7G:5'-ACGACGCTCTTCCGATCTCGTCATGACGTCATXATGCAGCACTGCAXCACGTAGTACTXTAGTACTAGATCGGAAGAGCACACGT-3'(配列番号2)(下線部はアダプター配列であり、「X」はdaGである(図2A~2Cにおいて枠で囲まれた塩基)))をDNA自動合成機NTS-M-4-MX(日本テクノサービス)を用い、デフォルトの設定のDNA合成条件にて別途記載した試薬類及び7-デアザデオキシグアノシンホスホロアミダイト(GhemGenes社、ANP-4857)を用いて合成を行なった。合成後、1mLのトリエチルアミン-アセトニトリル(2:3、v/v)を用いて、室温で1時間反応させ、シアノエチル基を除去した後、28%アンモニア水(1mL)を室温で1時間反応させて固相担体からの切り出しを行なった。次に、55℃に加熱し、12時間かけて脱保護反応を行なった。脱保護後、遠心エバポレータを用いてアンモニアを除去し、Sep-pakを用いてDMTr-ON精製を行なった。
実施例3:C1及びC1 da7Gの次世代シーケンサー用ライブラリーの調整
 xGen UDI-UMIアダプター(IDT社)の中から使用するアダプター(15μM、1μL)をとり、ユーロフィンジェノミクス株式会社から購入したP2プライマー(15μM、1μL)及び別途調整した2×Q5マスターミックス[Q5ポリメラーゼ、0.02U/μL、1000μM dNTP、2×Q5反応バッファー(Q5 High-Fidelity DNAポリメラーゼ、New England BioLabs社)、水(UltraPure DNase/RNase不含蒸留水、ThermoFisher Scientific社)]と混合し、PCR装置(Veritiサーマルサイクラー、Applied Biosystems)を用いてプレアセンブリを行なった。プレアセンブリは、98℃で30秒維持した後、98℃で5秒、70℃で1秒、その後50℃まで0.5℃/秒で降温し、50℃で30秒維持した後に、72℃で20秒を5サイクル繰り返し、最後は72℃で5分維持することにより行われた。プレアセンブルした反応溶液10μLと別途合成したオリゴヌクレオチドC1(1μM、1μL)、P1プライマー(15μM、4μL)、P2プライマー(15μM、4μL)、2×Q5反応バッファー(50μL)および水(30μL)を混合し、アセンブリ反応を行なった。アセンブリは、98℃で30秒維持した後、98℃で5秒、70℃で1秒、その後55℃まで0.5℃/秒で降温し、55℃で30秒維持した後に、72℃で20秒を20サイクル繰り返し、最後は72℃で5分維持することにより行われた。アセンブルした産物は、GenElute PCRクリーンアップキット(Sigma Aldrich社)で精製を行い、qPCRを用いて濃度を決定した(KAPAライブラリー定量キット、日本ジェネティクス社)。合成したサンプル(C1及びC1 da7G)のアガロースゲル電気泳動像を図1に示す。なお、上記のアセンブリ及びPCRに使用したP1及びP2プライマー(ユーロフィンジェノミクス株式会社)の配列は、それぞれ以下の通りである。
 P1プライマー:5'-AATGATACGGCGACCACCGA-3'(配列番号3)
 P2プライマー:5'-CAAGCAGAAGACGGCATACGA-3'(配列番号4)
 合成したサンプルは、iSeq100(イルミナ株式会社)を用いてシークエンスを行い、BBTools(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/)を用いて、リードのマージ、アダプター配列の除去、コンタミゲノムの除去を行った。その後、Needleman-Wunschイグゾースティヴ・グローバル・アラインメントのアルゴリズムを使用し、各位置におけるエラー率(エラーとなっている配列数/全リード数×100)として算出した。
 C1配列における次世代シーケンサーでのリード領域は、繰り返し配列となっており、一方をコントロール配列、他方をテスト配列として使用できる(図2A~2Cを参照されたい)。本実施例では合成エラーが少なくなると期待される5’上流側をコントロール配列、3’下流側をテスト配列として使用した。
各位置におけるエラー率をさらにエラー比(テスト配列のエラー率/コントロール配列のエラー率)とすることで、内部標準による補正値を算出した。例えば、テスト配列のエラー率である29番目のG(daG)の値0.17%を、コントロール配列のエラー率である21番目のGの値1.89%で割ることで0.09というエラー比を得ることができる。
 C1 da7G配列のdaGを導入した位置におけるエラー比と、別途天然核酸塩基のみを使用して合成したC1配列の対応する位置におけるエラー比(n=2)を比較した結果を図3に示す。天然核酸塩基(G)のエラー比の平均値は1.28であるのに対し、daGを導入した箇所のエラー比の平均値は0.10であり、約13分の1にエラー比が低下した。
実施例4:C1 a8da7Gの合成
 オリゴヌクレオチドをDNA自動合成機NTS-M-4-MX(日本テクノサービス社)を用い、デフォルトの設定のDNA合成条件にて別途記載した試薬類および8-アザ-7-デアザデオキシグアノシンホスホロアミダイト(Glen Research社、10-1073-90E)を用いて合成を行なった。合成後、1mLのトリエチルアミン--アセトニトリル(2:3、v/v)を用いて、室温で1時間反応させ、シアノエチル基を除去した後、28%アンモニア水(1mL)を室温で1時間反応させて固相担体からの切り出しを行なった。次に、55℃に加熱し、12時間かけて脱保護反応を行なった。脱保護後、遠心エバポレータを用いてアンモニアを除去し、Sep-pak(Waters社)を用いてDMTr-ON精製を行なった。
実施例5:C1 a8da7Gの次世代シーケンサー用ライブラリーの調整
 xGen UDI-UMIアダプター(IDT社)の中から使用するアダプター(15μM、1μL)をとり、ユーロフィンジェノミクス株式会社から購入したP2プライマー(15μM、1μL)及び別途調整した2×Q5マスターミックス[Q5ポリメラーゼ、0.02U/μL、1000μM dNTP、2×Q5反応バッファー(Q5 High-Fidelity DNAポリメラーゼ、New England BioLabs社)、水(UltraPure DNase/RNase不含蒸留水、ThermoFisher Scientific社)]と混合し、PCR装置(Veritiサーマルサイクラー、Applied Biosystems)を用いてプレアセンブリを行なった。プレアセンブリは、98℃で30秒維持した後、98℃で5秒、70℃で1秒、その後50℃まで0.5℃/秒で降温し、50℃、30秒維持した後に、72℃で20秒を5サイクル繰り返し、最後は72℃で5分維持することにより行われた。プレアセンブルした反応溶液10μLと別途合成したオリゴヌクレオチドC1 a8da7G(1μM、1μL)、ユーロフィンジェノミクス社から購入したP1プライマー(15μM、4μL)、P2プライマー(15μM、4μL)、2×Q5反応バッファー(50μL)、及び水(30μL)を混合し、アセンブリ反応を行なった。アセンブリは、98℃で30秒維持した後、98℃で5秒、70℃で1秒、その後55℃まで0.5℃/秒で降温し、55℃で30秒維持した後に、72℃で20秒を20サイクル繰り返し、最後は72℃で5分維持することにより行われた。アセンブルした産物は、GenElute PCRクリーンアップキット(Sigma Aldrich社)で精製を行い、qPCRを用いて濃度を決定した。合成したサンプルは、iSeq100(イルミナ社)を用いてシークエンスを行い、BBTools(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/)を用いて、リードのマージ、アダプター配列の除去、コンタミゲノムの除去を行った。その後、Needleman-Wunsch exhaustive global alignmentのアルゴリズムを使用し、各位置におけるエラー率(エラーとなっている配列数/全リード数×100)として算出した。
 C1配列における次世代シーケンサーでのリード領域は、繰り返し配列となっており、一方をコントロール配列、他方をテスト配列として使用することができる。本実施例では合成エラーが少なくなると期待される5’上流側をコントロール配列、3’下流側をテスト配列として使用した。各位置におけるエラー率をさらにエラー比(テスト配列のエラー率/コントロール配列のエラー率)とすることで、内部標準による補正値を算出した。例えば、テスト配列のエラー率である29番目のG(a8daG)の値0.02%を、コントロール配列のエラー率である21番目のGの値1.49%で割ることにより、0.01というエラー比を得ることができる。C1 a8da7G配列のa8da7Gを導入した位置におけるエラー比と、別途天然核酸塩基のみを使用して合成したC1配列の対応する位置におけるエラー比(n=2)を比較した結果を図4A~C4に示す。天然核酸塩基(G)のエラー比の平均値は1.28であるのに対し、a8da7Gを導入した箇所のエラー比の平均値は0.02であり、約64分の1にエラー比が低下した。
 合成した配列は下記の通りである:
 C1 a8da7G:5'-ACGACGCTCTTCCGATCTCGTCATGACGTCATXATGCAGCACTGCAXCACGTAGTACTXTAGTACTAGATCGGAAGAGCACACGT-3'(配列番号5)(下線部はアダプター配列であり、「X」はa8da7Gである)
 アセンブリ及びqPCRで使用したプライマー(ユーロフィンジェノミクス株式会社)は以下の通りである:
 P1プライマー:5'-AATGATACGGCGACCACCGA-3'(配列番号3)
 P2プライマー:5'-CAAGCAGAAGACGGCATACGA-3'(配列番号4)
 使用した試薬は、Glen Research社より購入した。
 activator(BTT) 30-3172-52
 CapMixA (Pac2O) 40-4212-52
 CapMixB (NMI) 40-4122-52
 Oxidizing Reagent 40-4132-52
 Uny Support 1.0μm 20-5241-41
 dT-CE 10-1030-2C
 dG-CE 10-1020-2C
 Ac-dC-CE 10-1015-2C
 dA-CE 10-1000-2C
 下記試薬は、富士フィルム和光純薬株式会社より購入した。
 Acetonitrile 017-27111
 Deblocking Reagent 042-28921
 本発明は、非核酸塩基を利用した長鎖核酸を合成する方法に関し、従来より純度の高い核酸を低コストで提供することができるため、長鎖DNAを応用する物質生産等の工学研究やモデル動物作成、医療応用研究等に応用することができる。
 本明細書に引用する全ての刊行物及び特許文献は、参考により全体として本明細書中に援用される。なお、例示の目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。

Claims (11)

  1.  ホスホロアミダイト法に基づく核酸の化学合成において、(i)非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体、又は(ii)非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体及び天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体を用いることを含む、長鎖核酸を合成する方法。
  2.  非天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体が、下記式:
    Figure JPOXMLDOC01-appb-C000001
    〔式中、
     Bは、非天然核酸塩基又は保護基で保護された非天然核酸塩基であり;
     Rは、水素原子、水酸基、又は保護基で保護された水酸基であり;
     Rは、水素原子又は水酸基の保護基であり;
     Rは、2-シアノエチル基、2-トリメチルシリルエチル基、ニトロフェニルエチル基、又は2-ニトロエチル基であり;
     Rは、-N(R(式中、Rは、独立して、C1~6アルキル基、または窒素、硫黄及び酸素からなる群から選択される3個までのヘテロ原子を有する4~7員環のへテロシクロアルキル若しくはヘテロシクロアルケニルである)、モルホリノ基、又はジアルキルアミノ基である〕
    で表される、請求項1に記載の方法。
  3.  非天然核酸塩基が、下記式:
    Figure JPOXMLDOC01-appb-C000002
    〔式中、
     Rは、水素原子、C1~6アルキル基、C7~16アラルキル基、C2~6アルケニル基、C2~6アルキニル基、ハロゲン、シアノ基、アリール基、アシル基、及びビニル基からなる群から選択され;
     Rは、水素原子又はアミノ基であり;
     Xは、N又はCHであり;
    Figure JPOXMLDOC01-appb-C000003
    は、結合点を示す〕
    で表される化合物である、請求項2に記載の方法。
  4.  非天然核酸塩基が、下記式:
    Figure JPOXMLDOC01-appb-C000004
    〔式中、
     Rは、水素原子、C1~6アルキル基、C7~16アラルキル基、C2~6アルケニル基、C2~6アルキニル基、ハロゲン、シアノ基、アリール基、アシル基、及びビニル基からなる群から選択され;
     Rは、水素原子又はアミノ基であり;
     Yは、N又はCHであり;
    Figure JPOXMLDOC01-appb-C000005
    は、結合点を示す〕
    で表される化合物である、請求項2に記載の方法。
  5.  天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体が、下記式:
    Figure JPOXMLDOC01-appb-C000006
    〔式中、
     Bは、天然核酸塩基又は保護基で保護された天然核酸塩基であり;
     Rは、水素原子、水酸基、又は保護基で保護された水酸基であり;
     Rは、水素原子又は水酸基の保護基であり;
     Rは、2-シアノエチル基、2-トリメチルシリルエチル基、ニトロフェニルエチル基、又は2-ニトロエチル基であり;
     Rは、-N(R(式中、Rは、独立して、C~Cアルキル、または窒素、硫黄及び酸素からなる群から選択される3個までのヘテロ原子を有する4~7員環のへテロシクロアルキル若しくはヘテロシクロアルケニルである)、モルホリノ基、又はジアルキルアミノ基である〕
    で表される、請求項1~4のいずれか1項に記載の方法。
  6.  Bが、アデニン、グアニン、シトシン、チミン、及びウラシルからなる群から選択される、請求項5に記載の方法。
  7.  長鎖核酸の合成において変異の発生率を、対応する天然核酸塩基を有するヌクレオシド-O-ホスホロアミダイト誘導体を利用した場合と比較して10分の1又はそれ以下に低減させることを特徴とする、請求項1~6のいずれか1項に記載の方法。
  8.  変異が、グアノシンからアデノシンへの置換である、請求項1~7のいずれか1項に記載の方法。
  9.  核酸の化学合成が固相合成法であって、下記:
     (a)固相担体に結合させたヌクレオシドの5’又は3’水酸基を酸処理により除去する工程;
     (b)ヌクレオシド-O-ホスホロアミダイト誘導体を酸触媒で活性化し、縮合反応により固相担体上のヌクレオシドの5’又は3’水酸基と三価リン酸結合により連結させる工程;
     (c)未反応の該5’又は3’水酸基をキャッピングする工程;及び
     (d)該三価リン酸結合を酸化する工程
    を含む反応サイクルを反復的に行うことを含む固相合成である、請求項1~8のいずれか1項に記載の方法。
  10.  核酸がDNAである、請求項1~9のいずれか1項に記載の方法。
  11.  請求項1~10のいずれか1項に記載の方法により製造した長鎖核酸。
PCT/JP2022/012843 2021-04-16 2022-03-18 非天然塩基を利用した長鎖dna合成 WO2022220019A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514539A JPWO2022220019A1 (ja) 2021-04-16 2022-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069896 2021-04-16
JP2021-069896 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022220019A1 true WO2022220019A1 (ja) 2022-10-20

Family

ID=83640586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012843 WO2022220019A1 (ja) 2021-04-16 2022-03-18 非天然塩基を利用した長鎖dna合成

Country Status (2)

Country Link
JP (1) JPWO2022220019A1 (ja)
WO (1) WO2022220019A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520438A (ja) * 2010-02-19 2013-06-06 ケムジーンズ コーポレーション 逆方向合成rnaのためのホスホルアミダイト
JP2018090562A (ja) * 2016-12-01 2018-06-14 武田薬品工業株式会社 環状ジヌクレオチド
WO2018155450A1 (ja) * 2017-02-21 2018-08-30 国立大学法人大阪大学 アンチセンスオリゴ核酸
WO2019125974A1 (en) * 2017-12-20 2019-06-27 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520438A (ja) * 2010-02-19 2013-06-06 ケムジーンズ コーポレーション 逆方向合成rnaのためのホスホルアミダイト
JP2018090562A (ja) * 2016-12-01 2018-06-14 武田薬品工業株式会社 環状ジヌクレオチド
WO2018155450A1 (ja) * 2017-02-21 2018-08-30 国立大学法人大阪大学 アンチセンスオリゴ核酸
WO2019125974A1 (en) * 2017-12-20 2019-06-27 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as sting agonists

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Therapeutic oligonucleotides : methods and protocols", 1 January 2011, HUMANA PRESS, US, ISBN: 978-1-61779-187-1, article PUTTA, M.R., YU, D., KANDIMALLA, E.R.: "Chapter 18: Synthesis, purification, and characterization of immune-modulatory oligodeoxynucleotides that act as agonists of Toll-like receptor 9", pages: 263 - 277, XP009540442, DOI: 10.1007/978-1-61779-188-8_18 *
F.SEELA ET AL.: "Alternating d(G-C)3 and d(C-G)3 Hexanucleotides Containing 7-Deaza-2'-Deoxyguanosine or 8-Aza-7-deaza-2'-deoxyguanosine in Place of dG.", NUCLEIC ACIDS RESEARCH, vol. 17., no. 03., 1 January 1989 (1989-01-01), Oxford University Press, GB, pages 901 - 910., XP002078861, ISSN: 0305-1048 *
HU TIANNAN; SUTER SCOTT R.; MUMBLEAU MADELINE M.; BEAL PETER A.: "TLR8 activation and inhibition by guanosine analogs in RNA: Importance of functional groups and chain length", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 26, no. 1, 11 November 2017 (2017-11-11), ELSEVIER, AMSTERDAM, NL, pages 77 - 83, XP085307307, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2017.11.020 *
INGALE SACHIN A., MEI HUI, LEONARD PETER, SEELA FRANK: "Ethynyl Side Chain Hydration during Synthesis and Workup of "Clickable" Oligonucleotides: Bypassing Acetyl Group Formation by Triisopropylsilyl Protection", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 78, no. 22, 15 November 2013 (2013-11-15), American Chemical Society, US, pages 11271 - 11282, XP055977937, ISSN: 0022-3263, DOI: 10.1021/jo401780u *
INGALE SACHIN A., SEELA FRANK: "7-Deaza-2′-deoxyguanosine: Selective Nucleobase Halogenation, Positional Impact of Space-Occupying Substituents, and Stability of DNA with Parallel and Antiparallel Strand Orientation", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 81, no. 18, 16 September 2016 (2016-09-16), American Chemical Society, US, pages 8331 - 8342, XP055977933, ISSN: 0022-3263, DOI: 10.1021/acs.joc.6b01498 *
SEELA FRANK, XU KUIYING: "DNA with stable fluorinated dA and dG substitutes: syntheses, base pairing and 19F-NMR spectra of 7-fluoro-7-deaza-2′-deoxyadenosine and 7-fluoro-7-deaza-2′-deoxyguanosine", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 6, no. 19, 1 January 2008 (2008-01-01), pages 3552 - 3560, XP055774483, ISSN: 1477-0520, DOI: 10.1039/b806145a *

Also Published As

Publication number Publication date
JPWO2022220019A1 (ja) 2022-10-20

Similar Documents

Publication Publication Date Title
JP3368353B2 (ja) オリゴヌクレオチド類を開裂及び脱保護する方法及び試薬
JP4138000B2 (ja) 新規な保護基及びオリゴヌクレオチド合成のための改良方法における核新規な保護基の使用
DE69635744T2 (de) Modifizierte Nukleinsäuresonden
JP3081882B2 (ja) 還元によるヒドロキシル保護基の直交除去及びオリゴヌクレオチドの化学合成におけるそれらの利用
US5908926A (en) 5'to 3' nucleic acid synthesis using 3'-photoremovable protecting group
JPH10513178A (ja) 新規な鎖停止剤、核酸配列決定および合成用のその使用、ならびにその製法
JP6730932B2 (ja) リン保護基ならびにそれらの調製方法および使用
JP2010248084A (ja) 新規洗浄溶媒を用いるオリゴヌクレオチド合成法
JP3675847B2 (ja) ヌクレオチド又はオリゴヌクレオチドホスホロアミダイトの合成方法
WO2007102581A1 (ja) 2'水酸基修飾リボヌクレオシド誘導体
WO2022220019A1 (ja) 非天然塩基を利用した長鎖dna合成
CA2424716A1 (en) Process for producing multiple oligonucleotides on a solid support
JP2023067467A (ja) 3’-エキソヌクレアーゼを用いた長鎖核酸の精製法
Gong et al. Synthesis and properties of rnas that contain a PNA-RNA dimer
JP6429264B2 (ja) ボラノホスフェート化合物、及び核酸オリゴマー
Prakash et al. N, N′-Bis-(2-(cyano) ethoxycarbonyl)-2-methyl-2-thiopseudourea: A Guanylating Reagent for Synthesis of 2′-O-[2-(Guanidinium) ethyl]-Modified Oligonucleotides
WO2024143276A1 (ja) オリゴヌクレオチドの製造方法
CA2685515A1 (en) Synthesis of oligonucleotides
JPH0374239B2 (ja)
Ferrazzano Stereopure Oligonucleotides
JP5105404B2 (ja) 水素結合性置換基を有する8−置換グアノシン誘導体及びそれを含むオリゴヌクレオチド
RU2440364C2 (ru) Синтез фосфитилированных соединений с использованием четвертичного гетероциклического активатора
Thillier et al. Innovative Chemistry for Synthesis of Regular RNA, 5′-Triphosphate RNA, or 5′-Capped RNA
JP2005046073A (ja) 修飾核酸を用いるrna転写および/または増幅方法
Kawaguchi et al. Synthetic nucleosides and nucleotides. 37. Antisense oligodeoxynucleotides bearing 5‐(phenylethyl)‐2′‐deoxyuridylate at the 3′‐terminus: Exonuclease‐resistant molecule with natural phosphodiester backbone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22786745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514539

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22786745

Country of ref document: EP

Kind code of ref document: A1