WO2022219851A1 - Resin-molding device and method for producing resin molded article - Google Patents

Resin-molding device and method for producing resin molded article Download PDF

Info

Publication number
WO2022219851A1
WO2022219851A1 PCT/JP2021/048395 JP2021048395W WO2022219851A1 WO 2022219851 A1 WO2022219851 A1 WO 2022219851A1 JP 2021048395 W JP2021048395 W JP 2021048395W WO 2022219851 A1 WO2022219851 A1 WO 2022219851A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
resin
unit
imaging
release film
Prior art date
Application number
PCT/JP2021/048395
Other languages
French (fr)
Japanese (ja)
Inventor
慎 竹内
良太 岡本
侑扶 石川
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Priority to KR1020237026114A priority Critical patent/KR20230128088A/en
Priority to CN202180095712.4A priority patent/CN116981554A/en
Publication of WO2022219851A1 publication Critical patent/WO2022219851A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Definitions

  • the present invention relates to a resin molding apparatus and a method for manufacturing a resin molded product.
  • Patent Document 1 describes a technique of placing a release film on a table, supplying a liquid resin onto the release film, and imaging this with a camera (see FIG. 3, etc.).
  • Patent Document 2 describes a technique of placing a release film on a moving table and then supplying granular resin onto the release film and observing it (paragraphs 0048 and 0049, FIG. 1st prize).
  • the in-plane uniformity of the resin material is identified by observing the resin material laminated on the release film.
  • the camera is arranged above the resin material, and the illumination is also arranged above. Therefore, the irradiation direction of illumination is inclined with respect to the imaging direction. As a result, shadows are formed on the resin material, causing brightness and darkness, which may lead to erroneous recognition of in-plane uniformity.
  • a resin molding apparatus comprises a table at least partially translucent, an illumination section capable of illuminating from below the table, a resin material supply section for supplying a resin material onto the table, and the table.
  • An imaging unit capable of imaging the resin material supplied above from above, and a resin molding unit performing resin molding using the resin material supplied onto the table are provided.
  • a method for manufacturing a resin molded product according to the present invention comprises the steps of: supplying a resin material onto a table at least partially translucent; and performing resin molding using the resin material supplied on the table.
  • FIG. 4 is a cross-sectional view schematically showing a resin material supply section;
  • FIG. 4 is a diagram for explaining an imaging state by an imaging unit;
  • FIG. 10 is a diagram showing an example of recesses in a state in which a resin material is supplied;
  • FIG. 10 is a flowchart which shows the one part operation
  • FIG. 10 is a flowchart showing the procedure of analysis processing executed in step S230 of FIG. 9;
  • FIG. 10 is a flowchart showing the procedure of analysis processing executed in step S230 of FIG. 9;
  • FIG. 4 is a cross-sectional view for explaining irradiation of light onto a resin material; It is the photograph of the resin material imaged with the resin molding apparatus to which this invention is applied. It is the photograph of the resin material imaged by the conventional resin molding apparatus.
  • each drawing may be schematically drawn by appropriately omitting or exaggerating objects for easy understanding.
  • FIG. 1 is a schematic plan view of a resin molding apparatus 100 according to this embodiment.
  • the resin molding apparatus 100 is configured to perform resin sealing on a substrate W to which electronic elements such as a semiconductor chip, a resistor element, and a capacitor element are connected, thereby manufacturing a resin molded product.
  • the component mounting surface of the substrate W on which electronic components are mounted is resin-sealed.
  • Examples of the substrate W used here include semiconductor substrates such as silicon wafers, lead frames, printed wiring boards, metal substrates, resin substrates, glass substrates, ceramic substrates, and the like.
  • the substrate W may be a carrier used for FOWLP (Fan Out Wafer Level Packaging) and FOPLP (Fan Out Panel Level Packaging). Wiring may already be provided on the substrate W, or wiring may not be provided.
  • the resin molding apparatus 100 includes a substrate supply/storage module A (hereinafter also simply referred to as “module A”) and two resin molding modules B (hereinafter also simply referred to as “module B”). ), a resin material supply module C (hereinafter also simply referred to as “module C”), and a first controller 14 .
  • a PLC Programmable Logic Controller
  • PC Personal Computer
  • the first control unit 14 includes a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and is configured to control each of modules A to C according to information processing. ing.
  • Each module A to C will be described in detail below.
  • Each of the modules is detachable and replaceable with other modules.
  • each of the modules A to C can be increased or decreased.
  • Module A is a module for supplying pre-sealed substrates W and storing sealed substrates W, and includes a substrate supply section 1, a substrate storage section 2, a substrate placement section 3, and a substrate transfer mechanism 4. ,have.
  • the substrate supply section 1 is configured to supply the pre-sealing substrate W onto the substrate mounting section 3 .
  • the substrate storage part 2 is configured to store a sealed substrate W (resin molded product).
  • the substrate mounting part 3 is configured to move in the arrow Y direction between a position corresponding to the substrate supply part 1 and a position corresponding to the substrate storage part 2 .
  • the substrate transport mechanism 4 is configured to move in the directions of the arrows X and Y across the module A and the module B. is held and transported to module B. Alternatively, the sealed substrate W manufactured in the module B is placed on the substrate placement part 3 of the module A. As shown in FIG.
  • Each module B is a module for molding a resin material, and has a compression molding section 5 for manufacturing a sealed substrate W (resin molded product) by compression molding.
  • a black granular resin material P is used.
  • the compression molding unit 5 has an upper mold 52 , a lower mold 51 facing the upper mold 52 , and a mold clamping mechanism 53 .
  • the upper mold 52 is configured to hold the substrate W on its lower surface.
  • the lower mold 51 has a bottom member and side members for forming a concave cavity 51C. That is, the bottom member constitutes the bottom surface of the cavity 51C, and the side member constitutes the side surface of the cavity 51C.
  • a resin material P prepared in the module C is placed in the cavity 51C, as will be described later.
  • the mold clamping mechanism 53 is configured to clamp the upper mold 52 and the lower mold 51 on which the resin material P is arranged.
  • Module C is a module for supplying a resin material. As shown in FIG. 1, the module C includes a moving table 6, a resin material container 7, a resin material supply unit 8, a release film supply unit 9, an imaging unit 300, a resin material transport mechanism 90, have. Furthermore, this module C is provided with an HDD (Hard Disc Drive) 200 and a second controller 150 . This second controller 150 corresponds to the controller of the present invention. Each configuration will be described in detail below.
  • HDD Hard Disc Drive
  • Moving table> 2 is a plan view of the moving table
  • FIG. 3 is a sectional view of FIG.
  • the moving table 6 is configured to move in the direction of the arrow X and the direction of the arrow Y in the module C.
  • a concave portion 61 is formed in the upper surface of the moving table 6, and a light guide plate 62 is arranged in this concave portion 61.
  • an LED module 63 as an illumination unit is arranged on the side end face of the light guide plate 62 .
  • the upper surface of the light guide plate 62 emits light.
  • the light guide plate 62 a known plate made of acrylic resin or the like can be appropriately used, and a reflective film or a diffusion film can be provided as necessary.
  • a suction port (not shown) is formed around the light guide plate 62 on the upper surface of the moving table 6, and is configured to hold a release film 73 described below by suction.
  • FIG. 4 is a side view for explaining the operation of the release film supplying section.
  • a release film supply unit 9 for placing a release film 73 on the upper surface of the moving table 6 is provided at one end of the moving table 6 .
  • the release film supply unit 9 includes a roll 91 on which the release film 73 is wound, a delivery unit 92 that feeds the release film 73 from the roll 91 and arranges it on the moving table 6, and the release film 73. and a cutting portion 93 for cutting.
  • the feeding unit 92 is configured to hold the end of the release film 73 wound on the roll 91 and feed the release film 73 by separating from the roll 91 . ing.
  • the extractor 92 moves above the moving table 6 from one end to the other end.
  • the release film 73 is placed on the moving table 6 .
  • the release film 73 on the moving table 6 is sucked by the above suction port and held on the moving table 6 .
  • the release film 73 is cut by a cutting section 93 at the end on the roll 91 side. As a result, the sheet-shaped release film 73 is arranged on the moving table 6 .
  • the resin material container 7 has a frame member 72 and a moving mechanism (not shown) for moving the member.
  • the frame-shaped member 72 is formed in a rectangular shape and placed on the moving table 6 on which the release film 73 is placed by the moving mechanism.
  • recesses 71 into which the resin material is supplied are formed. That is, the release film 73 constitutes the bottom surface of the recess 71 , and the frame member 72 constitutes the side surface of the recess 71 .
  • the recess 71 has a space corresponding to the size of the cavity 51C of the lower mold 51 of the module B. As shown in FIG.
  • FIG. 6 is a cross-sectional view schematically showing a resin material supply section.
  • the resin material supply unit 8 is configured to supply a preset weight of the resin material P to the concave portion 71 of the frame-shaped member 72. a portion 16;
  • the storage unit 11 temporarily stores the granular resin material P and supplies the resin material P to the transport path 12 .
  • the resin material supplied to the conveying path 12 is discharged from the ejection port 121 at the end and supplied to the concave portion 71 of the frame-shaped member 72 .
  • the transport path 12 is vibrated by the vibrating portion 13, thereby transporting the resin material P to the ejection port side.
  • the weighing unit 16 is configured to measure the weight of the resin material P in the resin material supply unit 8.
  • the first control unit 14 controls the vibrating unit 13 based on the weighing result of the weighing unit 16 so that the amount of the resin material P supplied to the resin material storage unit 7 becomes a target value.
  • the resin material P dropped from the discharge port 121 of the resin material supply unit 8 is evenly spread over the concave portion 71 by the relative movement of the moving table 6 with respect to the discharge port of the resin material supply unit 8 .
  • FIG. 7 is a diagram for explaining an imaging state by the imaging unit.
  • the imaging unit 300 is configured to capture an image of the resin material P supplied to the concave portion 71 of the frame member 72 from above and generate image data.
  • the image pickup unit 300 picks up an image of the resin material P in the recess 71 with the moving table 6 positioned below the image pickup unit 300, for example.
  • the imaging unit 300 is configured by a camera module including an image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the resin material P is irradiated with light from below through the release film 73 by the light guide plate 62 described above.
  • the HDD 200 described above is configured to store image data generated by the imaging section 300 .
  • the HDD 200 may be replaced with another storage medium such as a solid state drive.
  • the second control unit 150 includes a CPU, RAM, ROM, etc., and is configured to control the imaging unit 300 and the like according to information processing. Various controls by the first control unit 14 and the second control unit 150 will be described later in detail.
  • the resin material transport mechanism 90 is configured to move in the arrow X direction and the arrow Y direction in the modules C and B. As shown in FIG. As shown in FIG. 5B, the resin material transport mechanism 90 separates the frame member 72 containing the resin material P and the release film 73 from the moving table 6 . Then, it is configured to convey this to the lower mold 51 of the module B and supply the resin material P to the cavity 51C of the lower mold 51 .
  • FIG. 8 is a diagram showing an example of the recess 71 in a state in which the resin material P is supplied.
  • the recess 71 includes a region T30 and a region T40. Although the resin material P is sufficiently supplied in the region T30, the resin material P is insufficient in the region T40. In the region where the resin material P is insufficient, the bottom surface of the recess 71 is exposed. The color of the bottom surface of the recess 71 is closer to white than the resin material P. As shown in FIG.
  • the imaging section 300 images the resin material P supplied to the frame-shaped member 72 before performing resin molding.
  • the second control section 150 analyzes the image data generated by the imaging section 300 and controls the resin material supply section 8 based on the analysis results.
  • the resin material supply section 8 is controlled based on the analysis result of the supply state of the resin material P in the recess 71, so the supply state of the resin material P in the recess 71 is improved.
  • the resin molding apparatus 100 it is possible to prevent a situation in which resin molded products having variations in thickness within one resin molded product are manufactured. The operation of the resin molding apparatus 100 will be described in detail below.
  • FIG. 9 is a flow chart showing part of the operation procedure in the resin molding apparatus 100. As shown in FIG. The processing shown in this flow chart is executed in a state where the concave portion 71 of the frame-shaped member 72 is positioned below the discharge port 121 of the resin material supply section 8 . The processing shown in the left flowchart is executed by the first control unit 14 and the processing shown in the right flowchart is executed by the second control unit 150 .
  • the first control unit 14 controls the resin material supply unit 8 to discharge the resin material P toward the recess 71 (step S100).
  • the first control unit 14 determines whether or not the ejection of the resin material P is completed (step S110). When it is determined that the ejection of the resin material P has not been completed (NO in step S110), the first control unit 14 continues to perform necessary processes while the resin material P is being ejected. For example, the first controller 14 moves the moving table 6 so that the resin material P is evenly supplied to the concave portion 71 .
  • the first control unit 14 sends a signal (imaging instruction signal) instructing imaging by the imaging unit 300 to the second control unit 150. Send (S120).
  • the second control unit 150 determines whether or not an imaging instruction signal has been received from the first control unit 14 (step S200). If it is determined that the imaging instruction signal has not been received (NO in step S200), second control unit 150 waits until the imaging instruction signal is received.
  • second control unit 150 causes imaging unit 300 to image resin material P in concave portion 71 from above and generate image data. is controlled (step S210).
  • the second control unit 150 controls the imaging unit 300 to store the image data generated by the imaging unit 300 in the HDD 200 (step S220).
  • the second control unit 150 executes image data analysis processing (step S230).
  • FIG. 10 is a flowchart showing the procedure of analysis processing executed in step S230 of FIG.
  • second control unit 150 reads image data stored in HDD 200 (step S300).
  • the second control unit 150 applies gradation processing and binarization processing to the read image data (step S310).
  • each pixel of image data is classified into 256 levels [0 (dark)-255 (bright)]. For example, white pixels are assigned “255” and black pixels are assigned "0".
  • each pixel of image data is classified as "white” or "black”. For example, pixels whose values assigned by the gradation process are equal to or greater than the threshold X1 (eg, 200) are classified as "white”, and pixels whose values assigned by the gradation process are less than the threshold X1 are classified as "black”. be.
  • the threshold X1 eg, 200
  • FIG. 11 is a diagram for explaining the area included in the image data showing the recess 71.
  • the image data includes regions T1-T18.
  • the second control unit 150 calculates numerical data corresponding to each of the regions T1 to T18 included in the image data (step S320).
  • this numerical data is the number of pixels classified as "white” in each region. That is, in step S320, the number of pixels classified as "white” in each of regions T1-T18 is calculated.
  • a large number of pixels classified as “white” means that the resin material P is not evenly supplied and that the surface of the concave portion 71 is exposed over a large area.
  • the second control unit 150 compares each numerical data calculated in step S320 with a threshold value X2 (eg, 10), and determines whether or not a problem occurs in each of the regions T1 to T18 (step S330 ). For example, the second control unit 150 determines that an area in which the numerical data exceeds the threshold value X2 is "defective (NG)", and an area in which the numerical data is equal to or less than the threshold value X2 is determined to be "good (OK)". judge. That is, in step S320, it is determined whether or not there is a shortage of the resin material P in each region of the concave portion 71 corresponding to each of the regions T1 to T18 (whether or not the number of "white” pixels is greater than the threshold value X2). or) is determined. The second control unit 150 generates analysis data based on the comparison result in step S330 (step S340).
  • a threshold value X2 eg, 10
  • FIG. 12 is a diagram showing an example of analysis data.
  • the analysis data D1 includes the OK/NG judgment result in each area of the image data and the number of pixels classified as "white” in each area of the image data.
  • the second control unit 150 transmits the analysis data D1 to the first control unit 14 (step S240).
  • the first control unit 14 determines whether or not the analysis data D1 has been received from the second control unit 150 (step S130). If it is determined that analysis data D1 has not been received (NO in step S130), first control unit 14 waits until analysis data D1 is received.
  • the first control unit 14 determines whether or not there is any problem with the state of the resin material P in the recess 71 based on the analysis data D1. (step S140). For example, the first control unit 14 determines that there is a problem with the state of the resin material P of the recess 71 (NG) when any of the regions T1-T18 is determined to be "NG”, and the region T1-T18 is determined to be "NG", it is determined that there is no problem with the state of the resin material P in the concave portion 71 (OK).
  • the first control unit 14 controls each configuration so as to proceed to the step of resin molding (step S150). . That is, the first control unit 14 maintains the operation state of the resin material supply unit 8 without changing the operation state of the resin material supply unit 8 even when the resin material supply unit 8 is controlled next time.
  • the first control unit 14 executes the processing when it is determined to be NG (step S160). That is, the first control unit 14 changes the contents of control when the resin material supply unit 8 is controlled next time, stores the changed contents, and stops the resin molding apparatus 100 . For example, when the resin material supply unit 8 is controlled next time, the first control unit 14 eliminates the shortage of the resin material P in the region (T1-T18) determined to have the shortage of the resin material P.
  • the resin material supply unit 8 is controlled as follows.
  • the first control unit 14 reduces the amount of the resin material P to be supplied to the region where the shortage of the resin material P has not occurred, and supplies the region where the shortage of the resin material P has occurred.
  • the amount of resin material P is increased. As a result, the resin material P is evenly supplied to the concave portion 71 .
  • FIG. 14 is an example of the imaged image, and white portions are portions through which light is transmitted (the thickness of the resin material P is approximately 1.0 mm). That is, it is considered that the resin material P is not densely laminated in this white portion and that voids are formed inside.
  • FIG. 15 are images of the same resin material P.
  • the central portion (dotted line) of the resin material appears to be densely laminated, but in FIG. 14, a white portion is generated at this portion, and it can be seen that a gap is formed inside. .
  • the shadow of the resin material P makes it appear as if the resin material P is densely laminated when light is irradiated obliquely from above.
  • irradiating light from the lower side of the resin material P in this way has the advantage that it is easy to see even with the naked eye, regardless of inspection with a camera.
  • the configuration of the moving table 6 is not particularly limited, and various modes are possible as long as the resin material P can be irradiated with light from below.
  • the light guide plate 62 is used to irradiate light.
  • the resin material P can be irradiated with light from below.
  • the type of light source is not particularly limited, and for example, organic EL, inorganic EL, etc. can be used in addition to LED.
  • the arrangement range of the light-transmitting material on the moving table 6 can be appropriately changed according to the size of the concave portion 71 of the frame-shaped member 72 or the imaging range.
  • the wavelength of the light from the light source may be changed according to the type of resin material used. That is, since light may be absorbed depending on the type of resin material, the wavelength of light can be selected according to the type of resin material so that the light can sufficiently pass through areas where the resin material is not dense. .
  • the present invention can also be applied to liquid resin such as paste. Even with such a resin material, light can pass through areas where the layers are not densely laminated, so these areas can be identified.
  • the resin molded portion of the present invention corresponds to the module B shown in the above embodiment, but the configuration of the module B is an example, and various modes are possible. That is, the configuration is not particularly limited as long as resin molding is performed using the resin material supplied on the moving table 6 .
  • the imaging unit 300 performs imaging after the ejection of the resin material P is completed.
  • the imaging timing by the imaging unit 300 is not limited to this.
  • the imaging unit 300 may be arranged near the ejection port of the resin material supply unit 8 and constantly capture a moving image of the concave portion 71 while the resin material P is being supplied by the resin material supply unit 8 .
  • the second control unit 150 determines in real time whether or not there is a problem with the state of the resin material P in the concave portion 71 based on the moving image data being captured, and determines the control contents of the resin material supply unit 8. can be changed in real time.
  • image analysis was performed through gradation processing and binarization processing.
  • the technique used for image analysis is not limited to this. For example, based on the results of unevenness measurement based on a 3D image of the recess 71, a region in which the resin material P is insufficient in the recess 71 may be detected, pattern matching, a statistical method, AI (Artificial Intelligence), or the like. may be used to detect a region in which the resin material P is insufficient in the concave portion 71 .
  • AI Artificial Intelligence
  • the first control unit 14 controls the shortage of the resin material P from the next time.
  • the amount of the resin material P to be supplied to the area where the shortage of the resin material P has occurred is decreased, and the amount of the resin material P to be supplied to the area where the shortage of the resin material P has occurred is increased.
  • the content of control by the first control unit 14 from the next time is not limited to this.
  • the first control unit 14 refers to the analysis data D1 to increase the amount of the resin material P to be supplied to an area with fewer pixels classified as "white", The amount of resin material P supplied to a region with more pixels may be increased.
  • the resin molding apparatus 100 is controlled by the first controller 14 and the second controller 150 .
  • the control performed by the first control unit 14 and the second control unit 150 may be configured by a common control unit, or may be realized by, for example, one computer, or by three or more controllers. It may be implemented by a computer.
  • the resin molding apparatus 100 includes the HDD 200 .
  • resin molding apparatus 100 does not necessarily need to include HDD 200 .
  • the HDD 200 may exist on a cloud server, for example.
  • the second control unit 150 accesses the cloud server via a communication unit (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

The resin-molding device according to the present invention is provided with a table that is at least partially translucent, an illumination unit capable of illuminating the table from below, a resin-material-supplying unit that supplies a resin material onto the table, an imaging unit capable of capturing an image of the resin material supplied onto the table, and a resin-molding unit that performs resin molding using the resin material supplied onto the table.

Description

樹脂成形装置、及び、樹脂成形品の製造方法RESIN MOLDING APPARATUS AND METHOD FOR MANUFACTURING RESIN MOLDED PRODUCTS
 本発明は、樹脂成形装置、及び、樹脂成形品の製造方法に関する。 The present invention relates to a resin molding apparatus and a method for manufacturing a resin molded product.
 近年、半導体パッケージの厚さを薄くすることが望まれており、樹脂供給においては、広面積でパッケージ厚さがばらつかずに揃うよう、樹脂供給量の面内均一性が求められている。そのため、例えば、特許文献1には、テーブル上に離型フィルムを配置した後、離型フィルム上に液状樹脂を供給し、これをカメラにより撮像する技術が記載されている(図3等参照)。また、特許文献2には、移動テーブル上に離型フィルムを配置した後、離型フィルム上に顆粒状の樹脂を供給し、これを観察する技術が記載されている(段落0048,0049、図1等参照)。いずれの特許文献の技術においても、離型フィルムに積層された樹脂材料を観察することで、樹脂材料の面内均一性を識別するようにしている。 In recent years, it has been desired to reduce the thickness of semiconductor packages, and in resin supply, in-plane uniformity in the amount of resin supplied is required so that the thickness of the package can be uniform over a wide area. Therefore, for example, Patent Document 1 describes a technique of placing a release film on a table, supplying a liquid resin onto the release film, and imaging this with a camera (see FIG. 3, etc.). . Further, Patent Document 2 describes a technique of placing a release film on a moving table and then supplying granular resin onto the release film and observing it (paragraphs 0048 and 0049, FIG. 1st prize). In any of the techniques of the patent documents, the in-plane uniformity of the resin material is identified by observing the resin material laminated on the release film.
特許第6218891号公報Japanese Patent No. 6218891 特開2020-82534号公報JP 2020-82534 A
 ところで、上記各公報には明示されていないが、従来技術では、樹脂材料の上方にカメラを配置するとともに、照明も上方に配置している。そのため、撮像方向に対して、照明の照射方向が傾斜することになる。その結果、樹脂材料に影ができて明暗が生じ、面内均一性を誤認識する要因となるおそれがある。 By the way, although not explicitly stated in each of the above publications, in the conventional technology, the camera is arranged above the resin material, and the illumination is also arranged above. Therefore, the irradiation direction of illumination is inclined with respect to the imaging direction. As a result, shadows are formed on the resin material, causing brightness and darkness, which may lead to erroneous recognition of in-plane uniformity.
 本発明は、この問題を解決するためになされたものであり、1つの樹脂成形品内での厚みのばらつきの発生を検出可能な樹脂成形装置及び樹脂成形品の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin molding apparatus and a method of manufacturing a resin molded product that can detect the occurrence of variations in thickness within a single resin molded product. and
 本発明に係る樹脂成形装置は、少なくとも一部が透光性を有するテーブルと、前記テーブルの下方から照明可能な照明部と、前記テーブル上に樹脂材料を供給する樹脂材料供給部と、前記テーブル上に供給された前記樹脂材料を上方から撮像可能な撮像部と、前記テーブル上に供給された樹脂材料を用いて樹脂成形を行う樹脂成形部と、を備えている。 A resin molding apparatus according to the present invention comprises a table at least partially translucent, an illumination section capable of illuminating from below the table, a resin material supply section for supplying a resin material onto the table, and the table. An imaging unit capable of imaging the resin material supplied above from above, and a resin molding unit performing resin molding using the resin material supplied onto the table are provided.
 本発明に係る樹脂成形品の製造方法は、少なくとも一部が透光性を有するテーブル上に、樹脂材料を供給するステップと、前記テーブルの下方から照明を行った状態で、供給された樹脂材料を上方から撮像するステップと、前記テーブル上に供給された樹脂材料を用いて樹脂成形を行うステップと、を備えている。 A method for manufacturing a resin molded product according to the present invention comprises the steps of: supplying a resin material onto a table at least partially translucent; and performing resin molding using the resin material supplied on the table.
 本発明によれば、1つの樹脂成形品内での厚みのばらつきの発生を検出することができる。 According to the present invention, it is possible to detect the occurrence of variations in thickness within one resin molded product.
樹脂成形装置を模式的に示す平面図である。It is a top view which shows a resin molding apparatus typically. 移動テーブルの平面図である。It is a top view of a moving table. 移動テーブルの断面図である。It is a sectional view of a moving table. 離型フィルム供給部の動作を説明する図である。It is a figure explaining operation|movement of a release film supply part. 樹脂材料収容部を説明する断面図である。It is a sectional view explaining a resin material accommodation part. 樹脂材料供給部を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a resin material supply section; 撮像部による撮像状態を説明するための図である。FIG. 4 is a diagram for explaining an imaging state by an imaging unit; 樹脂材料が供給された状態における凹部の一例を示す図である。FIG. 10 is a diagram showing an example of recesses in a state in which a resin material is supplied; 樹脂成形装置における一部の動作手順を示すフローチャートである。It is a flowchart which shows the one part operation|movement procedure in a resin molding apparatus. 図9のステップS230において実行される解析処理の手順を示すフローチャートである。FIG. 10 is a flowchart showing the procedure of analysis processing executed in step S230 of FIG. 9; FIG. 凹部を示す画像データに含まれる領域について説明するための図である。It is a figure for demonstrating the area|region contained in the image data which show a recessed part. 解析データの一例を示す図である。It is a figure which shows an example of analysis data. 樹脂材料に対する光の照射を説明する断面図である。FIG. 4 is a cross-sectional view for explaining irradiation of light onto a resin material; 本発明を適用した樹脂成形装置で撮像された樹脂材料の写真である。It is the photograph of the resin material imaged with the resin molding apparatus to which this invention is applied. 従来の樹脂成形装置で撮像された樹脂材料の写真である。It is the photograph of the resin material imaged by the conventional resin molding apparatus.
 以下、本発明に係る樹脂成形装置の一実施形態について、図面を用いて詳細に説明する。また、各図面は、理解の容易のために、適宜対象を省略又は誇張して模式的に描かれていることがある。  Hereinafter, one embodiment of the resin molding apparatus according to the present invention will be described in detail with reference to the drawings. In addition, each drawing may be schematically drawn by appropriately omitting or exaggerating objects for easy understanding.
 <1.樹脂成形装置の構成>
 図1は、本実施形態に係る樹脂成形装置100の概略平面図である。樹脂成形装置100は、半導体チップ、抵抗素子、キャパシタ素子等の電子素子が接続された基板Wに樹脂封止を施し、樹脂成形品を製造するように構成されている。この樹脂成形装置100においては、基板Wのうち電子部品が搭載された部品搭載面が樹脂封止される。
<1. Configuration of Resin Molding Apparatus>
FIG. 1 is a schematic plan view of a resin molding apparatus 100 according to this embodiment. The resin molding apparatus 100 is configured to perform resin sealing on a substrate W to which electronic elements such as a semiconductor chip, a resistor element, and a capacitor element are connected, thereby manufacturing a resin molded product. In this resin molding apparatus 100, the component mounting surface of the substrate W on which electronic components are mounted is resin-sealed.
 ここで用いられる基板Wの一例としては、シリコンウェーハ等の半導体基板、リードフレーム、プリント配線基板、金属製基板、樹脂製基板、ガラス製基板、セラミック製基板等を挙げることができる。基板Wは、FOWLP(Fan Out Wafer Level Packaging)、FOPLP(Fan Out Panel Level Packaging)に用いられるキャリアであってもよい。基板Wにおいては、配線が既に施されていてもよいし、配線が施されていなくてもよい。 Examples of the substrate W used here include semiconductor substrates such as silicon wafers, lead frames, printed wiring boards, metal substrates, resin substrates, glass substrates, ceramic substrates, and the like. The substrate W may be a carrier used for FOWLP (Fan Out Wafer Level Packaging) and FOPLP (Fan Out Panel Level Packaging). Wiring may already be provided on the substrate W, or wiring may not be provided.
 図1に示すように、樹脂成形装置100は、基板供給・収納モジュールA(以下、単に「モジュールA」とも称する。)と、2つの樹脂成形モジュールB(以下、単に「モジュールB」とも称する。)と、樹脂材料供給モジュールC(以下、単に「モジュールC」とも称する。)と、第1制御部14と、を有している。第1制御部としては、例えば、PLC(Programable Logic Controller)、PC(Personal Computer)等を用いることができる。第1制御部14は、CPU(Central Processing Unit)、RAM(Random Access Memory)及びROM(Read Only Memory)等を含み、情報処理に応じてモジュールA~Cの各々の制御を行なうように構成されている。以下、各モジュールA~Cについて詳細に説明する。なお、モジュールの各々は、他のモジュールに着脱可能かつ交換可能である。また、樹脂成形装置100において、モジュールA~Cの各々は増減可能である。 As shown in FIG. 1, the resin molding apparatus 100 includes a substrate supply/storage module A (hereinafter also simply referred to as "module A") and two resin molding modules B (hereinafter also simply referred to as "module B"). ), a resin material supply module C (hereinafter also simply referred to as “module C”), and a first controller 14 . For example, a PLC (Programmable Logic Controller), a PC (Personal Computer), or the like can be used as the first control unit. The first control unit 14 includes a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and is configured to control each of modules A to C according to information processing. ing. Each module A to C will be described in detail below. Each of the modules is detachable and replaceable with other modules. Moreover, in the resin molding apparatus 100, each of the modules A to C can be increased or decreased.
 <1-1.モジュールA>
 モジュールAは、封止前基板Wの供給、及び封止済基板Wの収納を行うモジュールであり、基板供給部1と、基板収納部2と、基板載置部3と、基板搬送機構4と、を有している。基板供給部1は、封止前基板Wを基板載置部3上に供給するように構成されている。基板収納部2は、封止済基板W(樹脂成形品)を収納するように構成されている。基板載置部3は、基板供給部1に対応する位置と基板収納部2に対応する位置との間で矢印Y方向に移動するように構成されている。基板搬送機構4は、モジュールAとモジュールBとに亘って、矢印X方向及び矢印Y方向に移動するように構成されており、例えば、モジュールAにおいて基板載置部3上の封止前基板Wを保持し、モジュールBに搬送する。あるいは、モジュールBで製造された封止済基板Wを、モジュールAの基板載置部3上に載置する。
<1-1. Module A>
Module A is a module for supplying pre-sealed substrates W and storing sealed substrates W, and includes a substrate supply section 1, a substrate storage section 2, a substrate placement section 3, and a substrate transfer mechanism 4. ,have. The substrate supply section 1 is configured to supply the pre-sealing substrate W onto the substrate mounting section 3 . The substrate storage part 2 is configured to store a sealed substrate W (resin molded product). The substrate mounting part 3 is configured to move in the arrow Y direction between a position corresponding to the substrate supply part 1 and a position corresponding to the substrate storage part 2 . The substrate transport mechanism 4 is configured to move in the directions of the arrows X and Y across the module A and the module B. is held and transported to module B. Alternatively, the sealed substrate W manufactured in the module B is placed on the substrate placement part 3 of the module A. As shown in FIG.
 <1-2.モジュールB>
 各モジュールBは、樹脂材料の成形を行うモジュールであり、圧縮成形によって封止済基板W(樹脂成形品)を製造する圧縮成形部5を有している。この圧縮成形においては、例えば、黒色の顆粒状の樹脂材料Pが用いられる。圧縮成形部5は、上型52と、上型52に対向する下型51と、型締め機構53と、を有している。上型52は、下面に基板Wを保持するように構成されている。一方、下型51は、凹状のキャビティ51Cを形成するための底面部材と側面部材とを有している。すなわち、底面部材がキャビティ51Cの底面を構成し、側面部材がキャビティ51Cの側面を構成する。キャビティ51Cには、後述するように、モジュールCで準備された樹脂材料Pが配置される。そして、型締め機構53は、上型52と、樹脂材料Pが配置された下型51とを型締めするように構成されている。
<1-2. Module B>
Each module B is a module for molding a resin material, and has a compression molding section 5 for manufacturing a sealed substrate W (resin molded product) by compression molding. In this compression molding, for example, a black granular resin material P is used. The compression molding unit 5 has an upper mold 52 , a lower mold 51 facing the upper mold 52 , and a mold clamping mechanism 53 . The upper mold 52 is configured to hold the substrate W on its lower surface. On the other hand, the lower mold 51 has a bottom member and side members for forming a concave cavity 51C. That is, the bottom member constitutes the bottom surface of the cavity 51C, and the side member constitutes the side surface of the cavity 51C. A resin material P prepared in the module C is placed in the cavity 51C, as will be described later. The mold clamping mechanism 53 is configured to clamp the upper mold 52 and the lower mold 51 on which the resin material P is arranged.
 <1-3.モジュールC>
 モジュールCは、樹脂材料を供給するためのモジュールである。図1に示すように、モジュールCは、移動テーブル6と、樹脂材料収容部7と、樹脂材料供給部8と、離型フィルム供給部9と、撮像部300と、樹脂材料搬送機構90と、を有している。さらに、このモジュールCには、HDD(Hard Disc Drive)200と、第2制御部150とが設けられている。この第2制御部150が、本発明の制御部に相当する。以下、各構成について詳細に説明する。
<1-3. Module C>
Module C is a module for supplying a resin material. As shown in FIG. 1, the module C includes a moving table 6, a resin material container 7, a resin material supply unit 8, a release film supply unit 9, an imaging unit 300, a resin material transport mechanism 90, have. Furthermore, this module C is provided with an HDD (Hard Disc Drive) 200 and a second controller 150 . This second controller 150 corresponds to the controller of the present invention. Each configuration will be described in detail below.
 <1-3-1.移動テーブル>
 図2は移動テーブルの平面図、図3は図2の断面図である。図1に示すように、移動テーブル6は、モジュールCにおいて矢印X方向及び矢印Y方向に移動するように構成されている。図2及び図3に示すように、移動テーブル6の上面には凹部61が形成されており、この凹部61に導光板62が配置されている。また、導光板62の側端面には、照明部としてのLEDモジュール63が配置されており、このLEDモジュール63から照射された光が導光板62に入射し、導光板62内で拡散することで、導光板62の上面が発光するようになっている。導光板62は、アクリル樹脂などで形成された公知のものを適宜用いることができ、必要に応じて、反射フィルムや拡散フィルムを設けることができる。
<1-3-1. Moving table>
2 is a plan view of the moving table, and FIG. 3 is a sectional view of FIG. As shown in FIG. 1, the moving table 6 is configured to move in the direction of the arrow X and the direction of the arrow Y in the module C. As shown in FIG. As shown in FIGS. 2 and 3, a concave portion 61 is formed in the upper surface of the moving table 6, and a light guide plate 62 is arranged in this concave portion 61. As shown in FIGS. Further, an LED module 63 as an illumination unit is arranged on the side end face of the light guide plate 62 . , the upper surface of the light guide plate 62 emits light. As the light guide plate 62, a known plate made of acrylic resin or the like can be appropriately used, and a reflective film or a diffusion film can be provided as necessary.
 移動テーブル6の上面において、導光板62の周囲には、吸引口(図示省略)が形成されており、次に説明する離型フィルム73を吸引により保持するように構成されている。 A suction port (not shown) is formed around the light guide plate 62 on the upper surface of the moving table 6, and is configured to hold a release film 73 described below by suction.
 <1-3-2.離型フィルム供給部>
 図4は離型フィルム供給部の動作を説明する側面図である。図4(a)に示すように、移動テーブル6の一端部側には、移動テーブル6の上面に離型フィルム73を配置するための離型フィルム供給部9が設けられている。離型フィルム供給部9は、離型フィルム73が巻き取られたロール91と、このロール91から離型フィルム73を繰り出し、移動テーブル6上に配置する操出部92と、離型フィルム73を切断する切断部93と、を有している。
<1-3-2. Release film supply unit>
FIG. 4 is a side view for explaining the operation of the release film supplying section. As shown in FIG. 4( a ), a release film supply unit 9 for placing a release film 73 on the upper surface of the moving table 6 is provided at one end of the moving table 6 . The release film supply unit 9 includes a roll 91 on which the release film 73 is wound, a delivery unit 92 that feeds the release film 73 from the roll 91 and arranges it on the moving table 6, and the release film 73. and a cutting portion 93 for cutting.
 図4(b)に示すように、操出部92は、ロール91に巻き取られた離型フィルム73の端部を把持し、ロール91から離れることで離型フィルム73を繰り出すように構成されている。このとき、操出部92は、移動テーブル6の上方を、その一端部から他端部まで移動する。これにより、離型フィルム73が移動テーブル6上に配置される。移動テーブル6上の離型フィルム73は、上述した吸引口によって吸引され、移動テーブル6上に保持される。また、図4(c)に示すように、離型フィルム73において、ロール91側の端部は、切断部93によって切断される。これにより、枚葉状の離型フィルム73が移動テーブル6上に配置される。 As shown in FIG. 4( b ), the feeding unit 92 is configured to hold the end of the release film 73 wound on the roll 91 and feed the release film 73 by separating from the roll 91 . ing. At this time, the extractor 92 moves above the moving table 6 from one end to the other end. Thereby, the release film 73 is placed on the moving table 6 . The release film 73 on the moving table 6 is sucked by the above suction port and held on the moving table 6 . In addition, as shown in FIG. 4C, the release film 73 is cut by a cutting section 93 at the end on the roll 91 side. As a result, the sheet-shaped release film 73 is arranged on the moving table 6 .
 <1-3-3.樹脂材料収容部>
 次に、樹脂材料収容部7について説明する。図5(a)に示すように、樹脂材料収容部7は、枠状部材72と、これを移動させる移動機構(図示省略)とを有している。枠状部材72は矩形状に形成され、移動機構によって、離型フィルム73が配置された移動テーブル6上に配置される。これにより、樹脂材料が供給される凹部71が形成される。すなわち、離型フィルム73がこの凹部71の底面を構成し、枠状部材72は凹部71の側面を構成する。なお、この凹部71は、モジュールBの下型51のキャビティ51Cの大きさに対応する空間を有している。
<1-3-3. Resin Material Storage Unit>
Next, the resin material containing portion 7 will be described. As shown in FIG. 5A, the resin material container 7 has a frame member 72 and a moving mechanism (not shown) for moving the member. The frame-shaped member 72 is formed in a rectangular shape and placed on the moving table 6 on which the release film 73 is placed by the moving mechanism. As a result, recesses 71 into which the resin material is supplied are formed. That is, the release film 73 constitutes the bottom surface of the recess 71 , and the frame member 72 constitutes the side surface of the recess 71 . The recess 71 has a space corresponding to the size of the cavity 51C of the lower mold 51 of the module B. As shown in FIG.
 <1-3-4.樹脂材料供給部>
 続いて、樹脂材料供給部8について説明する。図6は樹脂材料供給部を模式的に示す断面図である。樹脂材料供給部8は、予め設定された重量の樹脂材料Pを枠状部材72の凹部71に供給するように構成されており、貯留部11と、搬送路12と、振動部13と、計量部16と、を有している。貯留部11は、顆粒状の樹脂材料Pを一時的に貯留し、この樹脂材料Pを搬送路12に供給する。搬送路12に供給された樹脂材料は、その端部の吐出口121から排出され、枠状部材72の凹部71に供給される。このとき、振動部13によって搬送路12が振動され、これによって樹脂材料Pを吐出口側に搬送するように構成されている。
<1-3-4. Resin Material Supply Unit>
Next, the resin material supply section 8 will be described. FIG. 6 is a cross-sectional view schematically showing a resin material supply section. The resin material supply unit 8 is configured to supply a preset weight of the resin material P to the concave portion 71 of the frame-shaped member 72. a portion 16; The storage unit 11 temporarily stores the granular resin material P and supplies the resin material P to the transport path 12 . The resin material supplied to the conveying path 12 is discharged from the ejection port 121 at the end and supplied to the concave portion 71 of the frame-shaped member 72 . At this time, the transport path 12 is vibrated by the vibrating portion 13, thereby transporting the resin material P to the ejection port side.
 計量部16は、樹脂材料供給部8内の樹脂材料Pの重量を計測するように構成されている。第1制御部14は、計量部16による計量結果に基づいて、樹脂材料収容部7への樹脂材料Pの供給量が目標値となるように振動部13を制御する。 The weighing unit 16 is configured to measure the weight of the resin material P in the resin material supply unit 8. The first control unit 14 controls the vibrating unit 13 based on the weighing result of the weighing unit 16 so that the amount of the resin material P supplied to the resin material storage unit 7 becomes a target value.
 樹脂材料供給部8の吐出口121から落下する樹脂材料Pは、移動テーブル6が樹脂材料供給部8の吐出口に対して相対移動することによって、凹部71において万遍なく敷き詰められる。 The resin material P dropped from the discharge port 121 of the resin material supply unit 8 is evenly spread over the concave portion 71 by the relative movement of the moving table 6 with respect to the discharge port of the resin material supply unit 8 .
 <1-3-5.撮像部>
 図7は撮像部による撮像状態を説明するための図である。図7に示すように、撮像部300は、枠状部材72の凹部71に供給された樹脂材料Pを上方から撮像し、画像データを生成するように構成されている。撮像部300は、例えば、移動テーブル6が撮像部300の下方に位置する状態で、凹部71内の樹脂材料Pを撮像する。撮像部300は、例えば、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等のイメージセンサを含むカメラモジュールで構成される。この撮影の際、上述した導光板62により、離型フィルム73を介して樹脂材料Pの下方から光が照射される。
<1-3-5. Imaging unit>
FIG. 7 is a diagram for explaining an imaging state by the imaging unit. As shown in FIG. 7, the imaging unit 300 is configured to capture an image of the resin material P supplied to the concave portion 71 of the frame member 72 from above and generate image data. The image pickup unit 300 picks up an image of the resin material P in the recess 71 with the moving table 6 positioned below the image pickup unit 300, for example. The imaging unit 300 is configured by a camera module including an image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor. At the time of this photographing, the resin material P is irradiated with light from below through the release film 73 by the light guide plate 62 described above.
 上述したHDD200は、撮像部300によって生成された画像データを記憶するように構成されている。なお、HDD200は、ソリッドステートドライブ等の他の記憶媒体に置き換えられてもよい。 The HDD 200 described above is configured to store image data generated by the imaging section 300 . Note that the HDD 200 may be replaced with another storage medium such as a solid state drive.
 第2制御部150は、CPU、RAM及びROM等を含み、情報処理に応じて撮像部300等の制御を行なうように構成されている。第1制御部14及び第2制御部150による各種制御に関しては、後程詳しく説明する。 The second control unit 150 includes a CPU, RAM, ROM, etc., and is configured to control the imaging unit 300 and the like according to information processing. Various controls by the first control unit 14 and the second control unit 150 will be described later in detail.
 <1-3-6.樹脂材料搬送機構>
 図1に示すように、樹脂材料搬送機構90は、モジュールC及びモジュールBにおいて、矢印X方向及び矢印Y方向に移動するように構成されている。図5(b)に示すように、樹脂材料搬送機構90は、樹脂材料Pを収容した枠状部材72及び離型フィルム73を、移動テーブル6から離間する。そして、これをモジュールBの下型51に搬送し、下型51のキャビティ51Cに樹脂材料Pを供給するように構成されている。
<1-3-6. Resin Material Conveying Mechanism>
As shown in FIG. 1, the resin material transport mechanism 90 is configured to move in the arrow X direction and the arrow Y direction in the modules C and B. As shown in FIG. As shown in FIG. 5B, the resin material transport mechanism 90 separates the frame member 72 containing the resin material P and the release film 73 from the moving table 6 . Then, it is configured to convey this to the lower mold 51 of the module B and supply the resin material P to the cavity 51C of the lower mold 51 .
 <2.樹脂成形品の厚みのばらつき抑制>
 続いて、上記のように構成されたモジュールCにおける樹脂成形品の厚みの抑制方法について説明する。
<2. Suppression of Variation in Thickness of Resin Molded Products>
Next, a method for suppressing the thickness of the resin molded product in the module C configured as described above will be described.
 近年、半導体パッケージ(樹脂成形品の一例)の薄型化が進み、例えば、厚さが0.38mm又は0.43mmの製品が市場で求められている。一方、成形プロセスの質次第では、一つの樹脂成形品内で厚みにばらつきが生じる場合がある。厚さが薄い樹脂成形品においては、少しの厚みのばらつきが樹脂成形品の品質に大きい影響を与える。一つの樹脂成形品内での厚みのばらつきとは、複数の樹脂成形品の厚みを比較した場合の厚みのばらつきではなく、一つの樹脂成形品の面内での厚みのばらつきであり、その樹脂成形品内の複数の部分での厚みのばらつきを意味する。 In recent years, semiconductor packages (an example of resin molded products) have become thinner, and products with a thickness of 0.38 mm or 0.43 mm, for example, are in demand in the market. On the other hand, depending on the quality of the molding process, variations in thickness may occur within one resin molded product. In a resin molded article having a small thickness, a slight variation in thickness has a large effect on the quality of the resin molded article. The variation in thickness within a single resin molded product is not the variation in thickness when comparing the thickness of a plurality of resin molded products, but the variation in thickness within the surface of a single resin molded product. It refers to variations in thickness at multiple locations within a molded product.
 例えば、枠状部材72の凹部71に樹脂材料Pが万遍なく供給されていない場合に、このような問題が顕著になる。すなわち、凹部71の一部の領域において樹脂材料Pが不足した状態で樹脂成形が行なわれると、完成した樹脂成形品の領域毎の厚みにばらつきが生じる。 For example, when the resin material P is not evenly supplied to the concave portion 71 of the frame-shaped member 72, such a problem becomes conspicuous. That is, if resin molding is performed in a state where the resin material P is insufficient in some regions of the recess 71, the thickness of the completed resin molded product varies from region to region.
 図8は、樹脂材料Pが供給された状態における凹部71の一例を示す図である。図8に示されるように、凹部71は、領域T30と、領域T40とを含んでいる。領域T30においては樹脂材料Pが十分に供給されているが、領域T40においては樹脂材料Pが不足している。樹脂材料Pが不足している領域においては、凹部71の底面が露出している。凹部71の底面の色は、樹脂材料Pよりも白色に近い色である。 FIG. 8 is a diagram showing an example of the recess 71 in a state in which the resin material P is supplied. As shown in FIG. 8, the recess 71 includes a region T30 and a region T40. Although the resin material P is sufficiently supplied in the region T30, the resin material P is insufficient in the region T40. In the region where the resin material P is insufficient, the bottom surface of the recess 71 is exposed. The color of the bottom surface of the recess 71 is closer to white than the resin material P. As shown in FIG.
 この樹脂成形装置100においては、樹脂成形を行なう前に、枠状部材72に供給された樹脂材料Pが撮像部300によって撮像される。第2制御部150は、撮像部300によって生成された画像データを解析し、解析結果に基づいて樹脂材料供給部8を制御する。樹脂成形装置100においては、凹部71における樹脂材料Pの供給状態の解析結果に基づいて樹脂材料供給部8が制御されるため、凹部71における樹脂材料Pの供給状態が改善される。その結果、樹脂成形装置100によれば、一つの樹脂成形品内での厚みがばらついた樹脂成形品が製造される事態を抑制することができる。以下、樹脂成形装置100の動作について詳細に説明する。 In this resin molding apparatus 100, the imaging section 300 images the resin material P supplied to the frame-shaped member 72 before performing resin molding. The second control section 150 analyzes the image data generated by the imaging section 300 and controls the resin material supply section 8 based on the analysis results. In the resin molding apparatus 100, the resin material supply section 8 is controlled based on the analysis result of the supply state of the resin material P in the recess 71, so the supply state of the resin material P in the recess 71 is improved. As a result, according to the resin molding apparatus 100, it is possible to prevent a situation in which resin molded products having variations in thickness within one resin molded product are manufactured. The operation of the resin molding apparatus 100 will be described in detail below.
 <3.樹脂成形装置の動作例>
 図9は、樹脂成形装置100における一部の動作手順を示すフローチャートである。このフローチャートに示される処理は、枠状部材72の凹部71が樹脂材料供給部8の吐出口121の下方に位置する状態で実行される。左側のフローチャートに示される処理は第1制御部14によって実行され、右側のフローチャートに示される処理は第2制御部150によって実行される。
<3. Example of operation of resin molding apparatus>
FIG. 9 is a flow chart showing part of the operation procedure in the resin molding apparatus 100. As shown in FIG. The processing shown in this flow chart is executed in a state where the concave portion 71 of the frame-shaped member 72 is positioned below the discharge port 121 of the resin material supply section 8 . The processing shown in the left flowchart is executed by the first control unit 14 and the processing shown in the right flowchart is executed by the second control unit 150 .
 図9の左側を参照して、第1制御部14は、凹部71に向かって樹脂材料Pを吐出するように樹脂材料供給部8を制御する(ステップS100)。第1制御部14は、樹脂材料Pの吐出が完了したか否かを判定する(ステップS110)。樹脂材料Pの吐出が完了していないと判定されると(ステップS110においてNO)、第1制御部14は、樹脂材料Pの吐出中に必要な処理を継続して実行する。例えば、第1制御部14は、凹部71に万遍なく樹脂材料Pが供給されるように移動テーブル6を移動させる。 Referring to the left side of FIG. 9, the first control unit 14 controls the resin material supply unit 8 to discharge the resin material P toward the recess 71 (step S100). The first control unit 14 determines whether or not the ejection of the resin material P is completed (step S110). When it is determined that the ejection of the resin material P has not been completed (NO in step S110), the first control unit 14 continues to perform necessary processes while the resin material P is being ejected. For example, the first controller 14 moves the moving table 6 so that the resin material P is evenly supplied to the concave portion 71 .
 一方、樹脂材料Pの吐出が完了したと判定されると(ステップS110においてYES)、第1制御部14は、撮像部300による撮像を指示する信号(撮像指示信号)を第2制御部150に送信する(S120)。 On the other hand, when it is determined that the ejection of the resin material P has been completed (YES in step S110), the first control unit 14 sends a signal (imaging instruction signal) instructing imaging by the imaging unit 300 to the second control unit 150. Send (S120).
 図9の右側を参照して、第2制御部150は、第1制御部14から撮像指示信号を受信したか否かを判定する(ステップS200)。撮像指示信号を受信していないと判定されると(ステップS200においてNO)、第2制御部150は、撮像指示信号を受信するまで待機する。 With reference to the right side of FIG. 9, the second control unit 150 determines whether or not an imaging instruction signal has been received from the first control unit 14 (step S200). If it is determined that the imaging instruction signal has not been received (NO in step S200), second control unit 150 waits until the imaging instruction signal is received.
 一方、撮像指示信号を受信したと判定されると(ステップS200においてYES)、第2制御部150は、凹部71内における樹脂材料Pを上方から撮像し、画像データを生成するように撮像部300を制御する(ステップS210)。第2制御部150は、撮像部300によって生成された画像データをHDD200に保存させるように撮像部300を制御する(ステップS220)。第2制御部150は、画像データの解析処理を実行する(ステップS230)。 On the other hand, when it is determined that the imaging instruction signal has been received (YES in step S200), second control unit 150 causes imaging unit 300 to image resin material P in concave portion 71 from above and generate image data. is controlled (step S210). The second control unit 150 controls the imaging unit 300 to store the image data generated by the imaging unit 300 in the HDD 200 (step S220). The second control unit 150 executes image data analysis processing (step S230).
 図10は、図9のステップS230において実行される解析処理の手順を示すフローチャートである。図10を参照して、第2制御部150は、HDD200に保存されている画像データを読み込む(ステップS300)。第2制御部150は、読み込まれた画像データに階調処理及び二値化処理を施す(ステップS310)。 FIG. 10 is a flowchart showing the procedure of analysis processing executed in step S230 of FIG. Referring to FIG. 10, second control unit 150 reads image data stored in HDD 200 (step S300). The second control unit 150 applies gradation processing and binarization processing to the read image data (step S310).
 階調処理においては、画像データの各画素が256段階[0(暗)-255(明)]に分類される。例えば、白色の画素には「255」が割り当てられ、黒色の画素には「0」が割り当てられる。二値化処理においては、画像データの各画素が「白」又は「黒」に分類される。例えば、階調処理によって割り当てられた値が閾値X1(例えば、200)以上の画素は「白」に分類され、階調処理によって割り当てられた値が閾値X1未満の画素は「黒」に分類される。 In gradation processing, each pixel of image data is classified into 256 levels [0 (dark)-255 (bright)]. For example, white pixels are assigned "255" and black pixels are assigned "0". In the binarization process, each pixel of image data is classified as "white" or "black". For example, pixels whose values assigned by the gradation process are equal to or greater than the threshold X1 (eg, 200) are classified as "white", and pixels whose values assigned by the gradation process are less than the threshold X1 are classified as "black". be.
 図11は、凹部71を示す画像データに含まれる領域について説明するための図である。図11に示されるように、画像データには、領域T1-T18が含まれている。 FIG. 11 is a diagram for explaining the area included in the image data showing the recess 71. FIG. As shown in FIG. 11, the image data includes regions T1-T18.
 再び図10を参照して、第2制御部150は、画像データに含まれる領域T1-T18の各々に対応する数値データを算出する(ステップS320)。本実施形態において、この数値データは、各領域における「白」に分類された画素の数である。すなわち、ステップS320においては、領域T1-T18の各々における「白」に分類された画素の数が算出される。「白」に分類された画素の数が多いということは、樹脂材料Pが万遍なく供給されておらず、凹部71の表面が露出している範囲が広いことを意味する。  Referring to FIG. 10 again, the second control unit 150 calculates numerical data corresponding to each of the regions T1 to T18 included in the image data (step S320). In this embodiment, this numerical data is the number of pixels classified as "white" in each region. That is, in step S320, the number of pixels classified as "white" in each of regions T1-T18 is calculated. A large number of pixels classified as “white” means that the resin material P is not evenly supplied and that the surface of the concave portion 71 is exposed over a large area.
 第2制御部150は、ステップS320において算出された各数値データと閾値X2(例えば、10)とを比較し、領域T1-T18の各々において問題が発生しているか否かを判定する(ステップS330)。第2制御部150は、例えば、数値データが閾値X2を超えた領域は「不良(NG)」であると判定し、数値データが閾値X2以下である領域は「良(OK)」であると判定する。すなわち、ステップS320においては、領域T1-T18の各々に対応する凹部71の各領域において樹脂材料Pの不足が発生しているか否か(「白」の画素の数が閾値X2よりも大きいか否か)が判定されている。第2制御部150は、ステップS330における比較結果に基づいて解析データを生成する(ステップS340)。 The second control unit 150 compares each numerical data calculated in step S320 with a threshold value X2 (eg, 10), and determines whether or not a problem occurs in each of the regions T1 to T18 (step S330 ). For example, the second control unit 150 determines that an area in which the numerical data exceeds the threshold value X2 is "defective (NG)", and an area in which the numerical data is equal to or less than the threshold value X2 is determined to be "good (OK)". judge. That is, in step S320, it is determined whether or not there is a shortage of the resin material P in each region of the concave portion 71 corresponding to each of the regions T1 to T18 (whether or not the number of "white" pixels is greater than the threshold value X2). or) is determined. The second control unit 150 generates analysis data based on the comparison result in step S330 (step S340).
 図12は、解析データの一例を示す図である。図12に示されるように、解析データD1は、画像データの各領域におけるOK/NGに関する判定結果、及び、画像データの各領域における「白」に分類された画素の数を含んでいる。 FIG. 12 is a diagram showing an example of analysis data. As shown in FIG. 12, the analysis data D1 includes the OK/NG judgment result in each area of the image data and the number of pixels classified as "white" in each area of the image data.
 再び図9の右側を参照して、ステップS230において画像解析が終了すると、第2制御部150は、解析データD1を第1制御部14に送信する(ステップS240)。  Referring to the right side of FIG. 9 again, when the image analysis is completed in step S230, the second control unit 150 transmits the analysis data D1 to the first control unit 14 (step S240).
 再び図9の左側を参照して、第1制御部14は、第2制御部150から解析データD1を受信したか否かを判定する(ステップS130)。解析データD1を受信していないと判定されると(ステップS130においてNO)、第1制御部14は、解析データD1を受信するまで待機する。  Referring to the left side of FIG. 9 again, the first control unit 14 determines whether or not the analysis data D1 has been received from the second control unit 150 (step S130). If it is determined that analysis data D1 has not been received (NO in step S130), first control unit 14 waits until analysis data D1 is received.
 一方、解析データD1を受信したと判定されると(ステップS130においてYES)、第1制御部14は、解析データD1に基づいて凹部71の樹脂材料Pの状態に問題がないか否かを判定する(ステップS140)。第1制御部14は、例えば、領域T1-T18のいずれかが「NG」と判定されている場合に凹部71の樹脂材料Pの状態に問題があると判定し(NG)、領域T1-T18のいずれもが「NG」と判定されていない場合に凹部71の樹脂材料Pの状態に問題がないと判定する(OK)。 On the other hand, when it is determined that the analysis data D1 has been received (YES in step S130), the first control unit 14 determines whether or not there is any problem with the state of the resin material P in the recess 71 based on the analysis data D1. (step S140). For example, the first control unit 14 determines that there is a problem with the state of the resin material P of the recess 71 (NG) when any of the regions T1-T18 is determined to be "NG", and the region T1-T18 is determined to be "NG", it is determined that there is no problem with the state of the resin material P in the concave portion 71 (OK).
 凹部71の樹脂材料Pの状態に問題がないと判定されると(ステップS140においてOK)、第1制御部14は、樹脂成形を行なう工程に移行するように各構成を制御する(ステップS150)。すなわち、第1制御部14は、樹脂材料供給部8を次回制御する場合においても、樹脂材料供給部8の動作状態を特に変更することなく、樹脂材料供給部8の動作状態を維持する。 When it is determined that there is no problem with the state of the resin material P in the concave portion 71 (OK in step S140), the first control unit 14 controls each configuration so as to proceed to the step of resin molding (step S150). . That is, the first control unit 14 maintains the operation state of the resin material supply unit 8 without changing the operation state of the resin material supply unit 8 even when the resin material supply unit 8 is controlled next time.
 一方、凹部71の樹脂材料Pの状態に問題があると判定されると(ステップS140においてNG)、第1制御部14は、NGと判定された場合の処理を実行する(ステップS160)。すなわち、第1制御部14は、樹脂材料供給部8を次回制御する場合の制御内容を変更し変更内容を記憶すると共に、樹脂成形装置100を停止させる。第1制御部14は、例えば、樹脂材料供給部8を次回制御する場合に、樹脂材料Pの不足が発生していると判定された領域(T1-T18)において樹脂材料Pの不足が解消するように樹脂材料供給部8を制御する。より詳細には、第1制御部14は、樹脂材料Pの不足が発生していなかった領域に供給する樹脂材料Pの量を減少させ、樹脂材料Pの不足が発生していた領域に供給する樹脂材料Pの量を増加させる。これにより、凹部71において樹脂材料Pが万遍なく供給される。 On the other hand, if it is determined that there is a problem with the state of the resin material P in the concave portion 71 (NG in step S140), the first control unit 14 executes the processing when it is determined to be NG (step S160). That is, the first control unit 14 changes the contents of control when the resin material supply unit 8 is controlled next time, stores the changed contents, and stops the resin molding apparatus 100 . For example, when the resin material supply unit 8 is controlled next time, the first control unit 14 eliminates the shortage of the resin material P in the region (T1-T18) determined to have the shortage of the resin material P. The resin material supply unit 8 is controlled as follows. More specifically, the first control unit 14 reduces the amount of the resin material P to be supplied to the region where the shortage of the resin material P has not occurred, and supplies the region where the shortage of the resin material P has occurred. The amount of resin material P is increased. As a result, the resin material P is evenly supplied to the concave portion 71 .
 <4.特徴>
 本実施形態に係る樹脂成形装置100によれば、次の効果を得ることができる。
<4. Features>
According to the resin molding apparatus 100 according to this embodiment, the following effects can be obtained.
 モジュールCでは、上記のように移動テーブル6の下方から樹脂材料Pに光を照射し、これを上方から撮像部300で撮像している。そのため、例えば、図13に示すように、樹脂材料Pが密に積層されておらず空隙が生じている箇所(所定の厚みを形成できない薄い箇所)では、導光板62からの光が透過し、これを撮像部300によって撮像することができる。図14は撮像された画像の一例であり、白い箇所が光が透過している部分である(樹脂材料Pの厚みは概ね1.0mm)。すなわち、この白い箇所は樹脂材料Pが密に積層されておらず、内部に空隙が形成されていると考えられる。 In the module C, light is applied to the resin material P from below the moving table 6 as described above, and the image is captured by the imaging unit 300 from above. For this reason, for example, as shown in FIG. 13 , light from the light guide plate 62 is transmitted at locations where the resin material P is not densely laminated and voids are generated (thin locations where a predetermined thickness cannot be formed). This can be imaged by the imaging unit 300 . FIG. 14 is an example of the imaged image, and white portions are portions through which light is transmitted (the thickness of the resin material P is approximately 1.0 mm). That is, it is considered that the resin material P is not densely laminated in this white portion and that voids are formed inside.
 これに対して、例えば、移動テーブル6の上方から斜めに光を照射し、撮像部300で撮像した場合には、図15のような画像が得られる。図14と図15とは同じ樹脂材料Pを撮像している。図15では、樹脂材料の中央部分(破線箇所)が密に積層されているように見えるが、図14では、この箇所に白い部分が生じており、内部に隙間が形成されていることが分かる。例えば、顆粒状の樹脂材料Pの重なりが薄い部分であっても、上方から斜めに光を照射すると樹脂材料Pの影によって樹脂材料Pが密に積層されているように見える。したがって、上方からの照明により撮像を行うと、樹脂材料Pが密に積層されていなくても、これを誤認識し、密に積層されていると認識されるおそれがある。これに対して、本実施形態のように、移動テーブル6の下から光を照射すると、樹脂材料Pが密に積層されていない箇所を的確に検出することができ、誤認識を防止することができる。 On the other hand, for example, when light is obliquely emitted from above the moving table 6 and an image is captured by the imaging unit 300, an image as shown in FIG. 15 is obtained. 14 and 15 are images of the same resin material P. FIG. In FIG. 15, the central portion (dotted line) of the resin material appears to be densely laminated, but in FIG. 14, a white portion is generated at this portion, and it can be seen that a gap is formed inside. . For example, even in a portion where the granular resin material P is thinly overlapped, the shadow of the resin material P makes it appear as if the resin material P is densely laminated when light is irradiated obliquely from above. Therefore, if an image is captured with illumination from above, even if the resin material P is not densely laminated, this may be erroneously recognized and may be recognized as being densely laminated. On the other hand, if light is irradiated from below the moving table 6 as in the present embodiment, it is possible to accurately detect a portion where the resin material P is not densely laminated, thereby preventing erroneous recognition. can.
 なお、このように光を樹脂材料Pの下側から照射すると、カメラでの検査にかかわらず、目視においても見やすいという利点がある。 It should be noted that irradiating light from the lower side of the resin material P in this way has the advantage that it is easy to see even with the naked eye, regardless of inspection with a camera.
 <5.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。例えば、以下の変更が可能である。また、以下の変形例の要旨は適宜組み合わせることができる。
<5. Variation>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the scope of the invention. For example, the following changes are possible. Also, the gist of the following modified examples can be combined as appropriate.
(1)移動テーブル6の構成は特には限定されず、樹脂材料Pの下方から光を照射できるのであれば、種々の態様が可能である。例えば、上記実施形態では、導光板62を用いて光を照射しているが、移動テーブル6上に透光性を有する材料を配置し、その下側に光源(照明部)を配置すれば、樹脂材料Pに下方から光を照射することができる。この場合の光源の種類は特には限定されず、LED以外に、例えば、有機EL、無機EL等を用いることができる。また、移動テーブル6上で透光性を有する材料の配置範囲は、枠状部材72の凹部71の大きさ、または撮像範囲に応じて適宜変更することができる。 (1) The configuration of the moving table 6 is not particularly limited, and various modes are possible as long as the resin material P can be irradiated with light from below. For example, in the above-described embodiment, the light guide plate 62 is used to irradiate light. The resin material P can be irradiated with light from below. In this case, the type of light source is not particularly limited, and for example, organic EL, inorganic EL, etc. can be used in addition to LED. Further, the arrangement range of the light-transmitting material on the moving table 6 can be appropriately changed according to the size of the concave portion 71 of the frame-shaped member 72 or the imaging range.
 また、使用される樹脂材料の種類に応じて、光源からの光の波長を変えてもよい。すなわち、樹脂材料の種類によっては光を吸収することがあるため、樹脂材料において密ではない箇所を光が十分に通過できるように、樹脂材料の種類に合わせて光の波長を選択することもできる。 Also, the wavelength of the light from the light source may be changed according to the type of resin material used. That is, since light may be absorbed depending on the type of resin material, the wavelength of light can be selected according to the type of resin material so that the light can sufficiently pass through areas where the resin material is not dense. .
(2)上記実施形態では、顆粒状の樹脂材料Pを用いているが、ペースト状等の液状の樹脂であっても、本発明を適用することができる。このような樹脂材料であっても、密に積層がされていない箇所は光が透過するため、これを識別することができる。 (2) In the above embodiment, the granular resin material P is used, but the present invention can also be applied to liquid resin such as paste. Even with such a resin material, light can pass through areas where the layers are not densely laminated, so these areas can be identified.
(3)本発明の樹脂成形部は、上記実施形態で示したモジュールBが該当するが、モジュールBの構成は一例であり、種々の態様が可能である。すなわち、移動テーブル6上に供給された樹脂材料を用いて樹脂成形を行うものであれば、その構成は特には限定されない。 (3) The resin molded portion of the present invention corresponds to the module B shown in the above embodiment, but the configuration of the module B is an example, and various modes are possible. That is, the configuration is not particularly limited as long as resin molding is performed using the resin material supplied on the moving table 6 .
(4)上記実施形態においては、樹脂材料Pの吐出が完了した後に、撮像部300による撮像が行なわれた。しかしながら、撮像部300による撮像タイミングはこれに限定されない。例えば、撮像部300が樹脂材料供給部8の吐出口付近に配置され、撮像部300は、樹脂材料供給部8による樹脂材料Pの供給中に凹部71の動画を常時撮像していてもよい。この場合に、第2制御部150は、撮像中の動画像データに基づいて凹部71の樹脂材料Pの状態に問題があるか否かの判定をリアルタイムで行ない、樹脂材料供給部8の制御内容をリアルタイムで変更してもよい。 (4) In the above embodiment, the imaging unit 300 performs imaging after the ejection of the resin material P is completed. However, the imaging timing by the imaging unit 300 is not limited to this. For example, the imaging unit 300 may be arranged near the ejection port of the resin material supply unit 8 and constantly capture a moving image of the concave portion 71 while the resin material P is being supplied by the resin material supply unit 8 . In this case, the second control unit 150 determines in real time whether or not there is a problem with the state of the resin material P in the concave portion 71 based on the moving image data being captured, and determines the control contents of the resin material supply unit 8. can be changed in real time.
(5)上記実施形態において、画像解析は、階調処理及び二値化処理を通じて行なわれた。しかしながら、画像解析に用いられる技術はこれに限定されない。例えば、凹部71の3D画像に基づく凹凸計測の結果に基づいて、凹部71において樹脂材料Pが不足している領域が検出されてもよいし、パターンマッチング、統計的手法又はAI(Artificial Intelligence)等を用いることによって、凹部71において樹脂材料Pが不足している領域が検出されてもよい。 (5) In the above embodiments, image analysis was performed through gradation processing and binarization processing. However, the technique used for image analysis is not limited to this. For example, based on the results of unevenness measurement based on a 3D image of the recess 71, a region in which the resin material P is insufficient in the recess 71 may be detected, pattern matching, a statistical method, AI (Artificial Intelligence), or the like. may be used to detect a region in which the resin material P is insufficient in the concave portion 71 .
(6)上記実施形態において、凹部71の樹脂材料Pの状態に問題があると判定されると(図9のステップS140においてNG)、第1制御部14は、次回から、樹脂材料Pの不足が発生していなかった領域に供給する樹脂材料Pの量を減少させ、樹脂材料Pの不足が発生していた領域に供給する樹脂材料Pの量を増加させることとした。しかしながら、次回からの第1制御部14による制御内容はこれに限定されない。例えば、第1制御部14は、解析データD1を参照して、「白」に分類された画素がより少ない領域に供給する樹脂材料Pの量をより多く減少させ、「白」に分類された画素がより多い領域に供給する樹脂材料Pの量をより多く増加させてもよい。 (6) In the above embodiment, when it is determined that there is a problem with the state of the resin material P in the concave portion 71 (NG in step S140 of FIG. 9), the first control unit 14 controls the shortage of the resin material P from the next time. The amount of the resin material P to be supplied to the area where the shortage of the resin material P has occurred is decreased, and the amount of the resin material P to be supplied to the area where the shortage of the resin material P has occurred is increased. However, the content of control by the first control unit 14 from the next time is not limited to this. For example, the first control unit 14 refers to the analysis data D1 to increase the amount of the resin material P to be supplied to an area with fewer pixels classified as "white", The amount of resin material P supplied to a region with more pixels may be increased.
(7)上記実施形態においては、樹脂成形装置100の制御が、第1制御部14と第2制御部150とによって行なわれている。しかしながら、第1制御部14と第2制御部150とによって行なわれた制御は、共通の制御部で構成してもよく、また例えば、1つのコンピュータによって実現されてもよいし、3つ以上のコンピュータによって実現されてもよい。 (7) In the above embodiment, the resin molding apparatus 100 is controlled by the first controller 14 and the second controller 150 . However, the control performed by the first control unit 14 and the second control unit 150 may be configured by a common control unit, or may be realized by, for example, one computer, or by three or more controllers. It may be implemented by a computer.
(8)、上記実施形態において、樹脂成形装置100は、HDD200を含むこととしている。しかしながら、樹脂成形装置100は、必ずしもHDD200を含む必要はない。HDD200は、例えば、クラウドサーバ上に存在してもよい。この場合には、第2制御部150が不図示の通信部を介してクラウドサーバにアクセスする。 (8) In the above embodiment, the resin molding apparatus 100 includes the HDD 200 . However, resin molding apparatus 100 does not necessarily need to include HDD 200 . The HDD 200 may exist on a cloud server, for example. In this case, the second control unit 150 accesses the cloud server via a communication unit (not shown).
6 移動テーブル:(テーブル)
63     :LEDモジュール(照明部)
73     :離型フィルム
9      :離型フィルム供給部
100    :樹脂成形装置
150    :第2制御部(制御部)
300    :撮像部
6 Moving table: (table)
63: LED module (illumination part)
73: release film 9: release film supply unit 100: resin molding device 150: second control unit (control unit)
300: imaging unit

Claims (8)

  1.  少なくとも一部が透光性を有するテーブルと、
     前記テーブルの下方から照明可能な照明部と、
     前記テーブル上に樹脂材料を供給する樹脂材料供給部と、
     前記テーブル上に供給された前記樹脂材料を上方から撮像可能な撮像部と、
     前記テーブル上に供給された樹脂材料を用いて樹脂成形を行う樹脂成形部と、
    を備えている、樹脂成形装置。
    a table at least partially translucent;
    a lighting unit capable of lighting from below the table;
    a resin material supply unit that supplies a resin material onto the table;
    an imaging unit capable of imaging the resin material supplied onto the table from above;
    a resin molding unit that performs resin molding using the resin material supplied on the table;
    A resin molding device.
  2.  前記テーブルには、透光性を有する導光板が設けられ、
     前記照明部は、前記導光板の側端面から光を照射するように構成されている、請求項1に記載の樹脂成形装置。
    The table is provided with a light guide plate having translucency,
    2. The resin molding apparatus according to claim 1, wherein said illumination unit is configured to irradiate light from a side end face of said light guide plate.
  3.  前記テーブル上に離型フィルムを供給する離型フィルム供給部をさらに備え、
     前記テーブル上に配置された前記離型フィルム上に、前記樹脂材料が供給されるように構成されている、請求項1または2に記載の樹脂成形装置。
    Further comprising a release film supply unit for supplying a release film onto the table,
    3. The resin molding apparatus according to claim 1, wherein said resin material is supplied onto said release film arranged on said table.
  4.  前記撮像部の撮像によって生成された画像データを解析し、解析結果に基づいて前記樹脂材料供給部を制御するように構成された制御部をさらに備えている、請求項1から3のいずれかに記載の樹脂成形装置。 4. The resin material supply unit according to any one of claims 1 to 3, further comprising a control unit configured to analyze image data generated by imaging by said imaging unit and control said resin material supply unit based on the analysis result. Resin molding apparatus as described.
  5.  前記制御部は、前記画像データに階調処理及び二値化処理を施すことを通じて、前記画像データを解析するように構成されている、請求項4に記載の樹脂成形装置。 5. The resin molding apparatus according to claim 4, wherein the control unit is configured to analyze the image data by applying gradation processing and binarization processing to the image data.
  6.  少なくとも一部が透光性を有するテーブル上に、樹脂材料を供給するステップと、
     前記テーブルの下方から照明を行った状態で、供給された樹脂材料を上方から撮像するステップと、
     前記テーブル上に供給された樹脂材料を用いて樹脂成形を行うステップと、
    を備えている、樹脂成形品の製造方法。
    supplying a resin material onto a table at least partially translucent;
    a step of capturing an image of the supplied resin material from above while the table is illuminated from below;
    a step of performing resin molding using the resin material supplied on the table;
    A method for manufacturing a resin molded product.
  7.  前記樹脂材料を供給するステップに先立って、前記テーブル上に離型フィルムを配置するステップをさらに備え、
     前記樹脂材料は、前記離型フィルム上に供給される、請求項6に記載の樹脂成形品の製造方法。
    Prior to the step of supplying the resin material, further comprising the step of placing a release film on the table,
    7. The method of manufacturing a resin molded product according to claim 6, wherein the resin material is supplied onto the release film.
  8.  前記撮像により生成された画像データを解析し、解析結果に基づいて前記樹脂材料の供給を制御するステップをさらに備えている、請求項5または6に記載の樹脂成形品の製造方法。 The method of manufacturing a resin molded product according to claim 5 or 6, further comprising the step of analyzing image data generated by said imaging, and controlling supply of said resin material based on the analysis result.
PCT/JP2021/048395 2021-04-15 2021-12-24 Resin-molding device and method for producing resin molded article WO2022219851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237026114A KR20230128088A (en) 2021-04-15 2021-12-24 Resin molding device and manufacturing method of resin molding
CN202180095712.4A CN116981554A (en) 2021-04-15 2021-12-24 Resin molding device and method for manufacturing resin molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-069371 2021-04-15
JP2021069371A JP7482824B2 (en) 2021-04-15 2021-04-15 Resin molding device and method for manufacturing resin molded product

Publications (1)

Publication Number Publication Date
WO2022219851A1 true WO2022219851A1 (en) 2022-10-20

Family

ID=83639548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048395 WO2022219851A1 (en) 2021-04-15 2021-12-24 Resin-molding device and method for producing resin molded article

Country Status (4)

Country Link
JP (1) JP7482824B2 (en)
KR (1) KR20230128088A (en)
CN (1) CN116981554A (en)
WO (1) WO2022219851A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024204028A1 (en) * 2023-03-27 2024-10-03 アピックヤマダ株式会社 Compression-molding device and compression-molding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115187A1 (en) * 2012-01-30 2013-08-08 旭硝子株式会社 Release film and method of manufacturing semiconductor device using same
JP2017209157A (en) * 2016-05-23 2017-11-30 富士フイルム株式会社 Mold, mold manufacturing method, and patterned sheet manufacturing method
CN110027217A (en) * 2019-05-06 2019-07-19 南京铖联激光科技有限公司 A kind of active monitor-type laser 3D printing device and monitoring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218891U (en) 1985-07-16 1987-02-04
JP6923503B2 (en) 2018-11-27 2021-08-18 Towa株式会社 Resin molding equipment and manufacturing method of resin molded products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115187A1 (en) * 2012-01-30 2013-08-08 旭硝子株式会社 Release film and method of manufacturing semiconductor device using same
JP2017209157A (en) * 2016-05-23 2017-11-30 富士フイルム株式会社 Mold, mold manufacturing method, and patterned sheet manufacturing method
CN110027217A (en) * 2019-05-06 2019-07-19 南京铖联激光科技有限公司 A kind of active monitor-type laser 3D printing device and monitoring method

Also Published As

Publication number Publication date
KR20230128088A (en) 2023-09-01
CN116981554A (en) 2023-10-31
JP2022164095A (en) 2022-10-27
TW202241688A (en) 2022-11-01
JP7482824B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
CN106920762B (en) Semiconductor manufacturing apparatus, semiconductor device manufacturing method, and chip mounter
CN108573901B (en) Bare chip bonding apparatus and method for manufacturing semiconductor device
WO2022219851A1 (en) Resin-molding device and method for producing resin molded article
JP2006292419A (en) Defect inspection device and ptp packaging machine
US7817263B2 (en) Mounting apparatus, inspecting apparatus, inspecting method, and mounting method
CN111981976B (en) Holding member, method of manufacturing the same, inspection mechanism, cutting device, and method of manufacturing holding object
CN112284285A (en) Inspection system, inspection method, cutting device, and resin molding device
TWI857292B (en) Resin molding device and method for manufacturing resin molded product
JP5145495B2 (en) Inspection device
KR102476597B1 (en) Resin molding equipment and manufacturing method of resin molded products
JP2020061417A (en) Substrate processing apparatus and inspection method
KR100854437B1 (en) Suction pad for semicondcutor transfer device
JPH10209227A (en) System and device for inspecting semiconductor integrated circuit, and method for inspecting semiconductor circuit
US20220059377A1 (en) Inspection device, resin molding apparatus, and method of manufacturing resin molded product
TWI808864B (en) Calibration method, and manufacturing method of electronic component
CN111609799A (en) Inspection apparatus and inspection method
WO2023037671A1 (en) Maintenance method and method for manufacturing electronic component
JP2023089883A (en) Resin molding device and method for manufacturing resin molded product
JP2019174319A (en) Inspection system and method for inspection
JP2008118013A (en) Resin sealed device
JP6596342B2 (en) Ultraviolet processing apparatus, bonding system, ultraviolet processing method, program, and computer storage medium
JP2023089748A (en) Component mounting machine
KR100990938B1 (en) Semiconductor package manufactruing apparatus
JP2021056039A (en) Inkjet printing apparatus, device manufactured using the same, uneven coating film formation detection method, and manufacturing method for device
JP2005285962A (en) Method and device for semiconductor component testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237026114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180095712.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202307810T

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 21937044

Country of ref document: EP

Kind code of ref document: A1