WO2022219838A1 - Method for producing optical laminate - Google Patents

Method for producing optical laminate Download PDF

Info

Publication number
WO2022219838A1
WO2022219838A1 PCT/JP2021/042914 JP2021042914W WO2022219838A1 WO 2022219838 A1 WO2022219838 A1 WO 2022219838A1 JP 2021042914 W JP2021042914 W JP 2021042914W WO 2022219838 A1 WO2022219838 A1 WO 2022219838A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
roller
bonding
polarizing plate
peeling
Prior art date
Application number
PCT/JP2021/042914
Other languages
French (fr)
Japanese (ja)
Inventor
颯矢 今泉
和也 秦
忍 出▲崎▼
展明 岩本
未来 白子
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237031827A priority Critical patent/KR20230173655A/en
Priority to CN202180096963.4A priority patent/CN117136320A/en
Publication of WO2022219838A1 publication Critical patent/WO2022219838A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • B32B37/1292Application of adhesive selectively, e.g. in stripes, in patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • B32B2041/04Detecting wrong registration, misalignment, deviation, failure

Definitions

  • the present invention relates to a method for manufacturing an optical laminate including at least a polarizing plate, a separator and a surface protective film.
  • the present invention relates to a method for manufacturing an optical layered body capable of suppressing curling.
  • the polarizing plate includes a polarizing film and a retardation film or the like depending on the application.
  • a polarizing film is composed of, for example, a polarizer dyed with a dichroic substance such as iodine and a protective film for protecting the polarizer.
  • a long belt-shaped polarizing film is produced by bonding a long belt-shaped protective film to at least one surface of a long belt-shaped polarizer.
  • a long belt-like retardation film or the like is attached to one side of the manufactured long belt-like polarizing film to manufacture a long belt-like polarizing plate.
  • a long strip-shaped separator (release film) is attached to one side of the produced long strip-shaped polarizing plate, and a long strip-shaped surface protective film is stuck to the other side to form a long A strip-shaped optical laminate is produced.
  • These long belt-like films are usually laminated by a roll-to-roll method or a roll-to-sheet method.
  • the manufactured long strip-shaped optical layered body is cut into a size and shape according to the application, and used for a liquid crystal display device or the like. When used in a liquid crystal display device or the like, the separator is peeled off and the remaining components of the optical layered body are attached to the liquid crystal display device or the like.
  • FIG. 8 is a flowchart showing a schematic process example of a conventional method for manufacturing an optical layered body.
  • the conventional method for manufacturing an optical laminate includes a polarizing film manufacturing process ST1′, a retardation film bonding process ST2′, a separator bonding process ST3′, an inspection process ST4′, and a surface protective film bonding. It includes step ST5'.
  • polarizing film manufacturing step ST1′ a long belt-shaped resin film is used as a raw film, and this raw film is immersed in various treatment baths while being transported in the longitudinal direction, and various treatments such as dyeing and stretching are performed. to produce a long band-shaped polarizer.
  • a long belt-shaped polarizing film is manufactured by bonding a long belt-shaped protective film to at least one surface of the long belt-shaped polarizer.
  • a long belt-like retardation film (such as a half-wave plate or a quarter-wave plate) is bonded to one side of a long belt-like polarizing film to form a long belt-like film.
  • an adhesive is applied while conveying the long belt-shaped separator in the longitudinal direction, and the applied adhesive is cured by heating and drying in an oven or the like to form an adhesive layer. do. Then, by laminating the adhesive layer side of the long strip-shaped separator (separator with adhesive layer) to one side of the long strip-shaped polarizing plate, a long strip in which the polarizing plate, the adhesive layer, and the separator are laminated is obtained. A strip-shaped intermediate is produced.
  • the polarizing plate is inspected by peeling off only the separator while leaving the adhesive layer interposed between the separator and the polarizing plate on the polarizing plate side.
  • inspection methods for the polarizing plate include transmission inspection, crossed Nicols inspection, reflection inspection, and the like.
  • the peeled separator is attached to the polarizing plate again to restore the original state of the intermediate.
  • a long belt-shaped surface protective film is bonded to the surface of the long belt-shaped polarizing plate opposite to the side where the separator is bonded.
  • Patent Document 1 proposes to use a specific material for the protective film that protects the polarizer as a method for suppressing curling of the polarizing film. , not generic. There is a demand for a method capable of suppressing curling without particularly changing the materials of constituent elements of conventionally used optical laminates.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a method for manufacturing an optical laminate capable of suppressing curling.
  • the inventors of the present invention conducted extensive studies and found that the formation of the pressure-sensitive adhesive layer on the separator in the separator bonding step (ST3′ in FIG. 8) of the conventional method for producing an optical layered body is It has been found that it may be one of the causes of body curling. Specifically, when the pressure-sensitive adhesive applied to the separator is heated and dried, the separator shrinks, and it is thought that unevenness occurs in the thickness direction. When the separator is bonded to the polarizing plate in the separator bonding step, or when the separator is bonded to the polarizing plate again in the inspection step (ST4′ in FIG. 8), unevenness generated on the separator due to heating is smoothed out.
  • the present invention provides a separator lamination step of laminating the separator to a long strip-shaped polarizing plate via an adhesive layer formed on the long strip-shaped separator, and the separator lamination step.
  • a surface protective film laminating step of laminating a long strip-shaped surface protective film to the polarizing plate After the step, a surface protective film laminating step of laminating a long strip-shaped surface protective film to the polarizing plate, and after the surface protective film laminating step, after peeling the long strip-shaped separator from the adhesive layer and a first separator peeling/bonding step of bonding a long belt-shaped separator to the polarizing plate via the pressure-sensitive adhesive layer.
  • the peeled separator and the separator to be bonded may be the same separator or different separators. That is, in the first separator peeling and bonding step of the present invention, the separator is peeled from the adhesive layer (only the separator is peeled while the adhesive layer remains on the polarizing plate), and then the same separator is peeled off the adhesive layer. It includes the case of re-bonding to the polarizing plate via. In addition, in the first separator peeling/bonding step, a new separator different from the peeled separator (that is, a separator that is less likely to have unevenness because it is not heated for forming the adhesive layer) is applied to the adhesive layer.
  • separator peeling and separator bonding are performed.
  • the separator to be bonded is the same as the separator to be peeled off, the separator is bonded to the polarizing plate in a state in which the unevenness of the separator is extended. Since the first separator peeling/bonding process is performed after the surface protective film bonding process, the separator having the unevenness extended is bonded to the highly rigid laminate, and the separator is in a contracted state. Curling can be suppressed even if a force that tries to return is applied.
  • the separator laminating step includes, for example, an adhesive layer forming step of applying an adhesive to a long belt-shaped separator and heating and curing the applied adhesive to form the adhesive layer.
  • the long strip-shaped separator is attached to the polarizing plate through the adhesive layer.
  • a second separator peeling/bonding step of bonding is included.
  • the separated separator and the separator to be bonded may be the same separator or different separators. good.
  • the separation of the separator and the lamination of the separator are performed not only after the step of attaching the surface protective film, but also before the step of attaching the surface protective film.
  • the separator to be bonded is the same as the separator to be peeled off, the separator is bonded to the polarizing plate in a state in which the unevenness of the separator is extended, so curling can be further suppressed. be.
  • the second separator peeling/bonding step also serves as an inspection step of inspecting the polarizing plate after peeling the long strip-shaped separator.
  • the manufacturing process since the second separator peeling/bonding step also serves as the inspection step for the polarizing plate, compared to the case where the second separator peeling/bonding step and the inspection step are provided separately, the manufacturing process has the advantage of being simple.
  • the time from peeling the long strip-shaped separator to sticking the long strip-shaped separator is one minute or less.
  • the time from peeling off the long strip separator to sticking the long strip separator in other words, the time for the adhesive layer to be exposed is short. Therefore, even if the humidity in the first separator peeling/bonding step changes due to, for example, seasonal effects or daytime or nighttime effects, the polarizing plate absorbs moisture in the atmosphere from the pressure-sensitive adhesive layer side. It is possible to suppress variations in curling that occur due to swelling due to pressure.
  • the present invention includes the second separator peeling/bonding step
  • the long strip-shaped separator is peeled off and then the long strip-shaped separator is similarly removed in the second separator peeling/bonding step. It is preferable that the time until bonding is within 1 minute.
  • a long belt-shaped separator and the polarizing plate are bonded together by a bonding roller, and the separator enters the bonding roller at an angle of less than 90°.
  • the angle of entry of the polarizing plate into the bonding roller is less than 90°.
  • the "advance angle of the separator to the laminating roller” is perpendicular to a straight line passing through the rotation center of a pair of opposing rollers constituting the laminating roller, and is directed toward the exit side of the laminating roller. It means the angle between the vector and the vector indicating the traveling direction of the separator until it contacts the laminating roller.
  • the "approaching angle of the polarizing plate to the bonding roller” is a vector perpendicular to a straight line passing through the rotation center of a pair of rollers constituting the bonding roller and directed to the output side of the bonding roller. It means the angle formed with the vector indicating the traveling direction of the polarizing plate until it comes into contact with the joining roller.
  • the present invention includes the second separator peeling/bonding step
  • the long strip-shaped separator and the polarizing plate are similarly bonded by a bonding roller in the second separator peeling/bonding step.
  • the angle at which the separator enters the bonding roller is less than 90°
  • the angle at which the polarizing plate enters the bonding roller is less than 90°.
  • the bonding roller includes a first roller that contacts the separator and a second roller that contacts the polarizing plate, and one of the first roller and the second roller has a resin surface. and the other surface is made of metal.
  • the interface between the separator and the polarizing plate (the interface between the separator and the adhesive layer) ) may generate air bubbles. If both the surface of the first roller and the surface of the second roller are made of resin, the separator may wrinkle.
  • one surface of the first roller and the second roller is made of resin and the other surface is made of metal, thereby suppressing the possibility of air bubbles or wrinkles.
  • the bonding roller is the first roller that contacts the separator, and It is preferable that one surface of the first roller and the second roller is made of resin and the other surface is made of metal.
  • the first roller has a metal surface
  • the second roller has a resin surface.
  • the surface of the second roller in contact with the polarizing plate is made of resin (not made of metal). Therefore, it is possible to suppress appearance defects such as scratches and dents on the polarizing plate.
  • the present invention includes the second separator peeling/bonding step
  • the surface of the first roller is made of metal
  • the second separator peeling/bonding step is also performed in the same manner. It is preferable that the surface of the roller is made of resin.
  • FIG. 1 is a flow diagram showing schematic steps of a method for manufacturing an optical layered body according to an embodiment of the present invention
  • FIG. FIG. 3 is a side view (viewed from a horizontal direction perpendicular to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs an inspection step ST4 shown in FIG. 2
  • FIG. 3 is a side view (viewed from a horizontal direction perpendicular to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs the first separator peeling/bonding step ST6 shown in FIG.
  • FIG. 2 is a flowchart showing an example of schematic steps of a conventional method for manufacturing an optical layered body.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an optical layered body manufactured by a manufacturing method according to this embodiment.
  • the optical laminate 100 of this embodiment includes a polarizing film 1, a retardation film 2, an adhesive layer 3, a separator 4, and a surface protective film 5.
  • a laminate of the polarizing film 1 and the retardation film 2 constitutes the polarizing plate 10 .
  • a laminate of the polarizing plate 10 and the adhesive layer 3 constitutes the first intermediate M1.
  • a laminate of the first intermediate M1 and the separator 4 constitutes the second intermediate M2.
  • a laminate of the first intermediate M1 and the surface protective film 5 constitutes the third intermediate M3.
  • Each component of the optical layered body 100 will be described below.
  • the polarizing film 1 is composed of a polarizer 11 and protective films 12 and 13 that protect the polarizer 11 .
  • the protective films 12 and 13 are laminated on both sides of the polarizer 11, but the present invention is not limited to this, and the protective film may be laminated on at least one side of the polarizer 11. FIG.
  • the polarizer 11 is typically composed of a resin film containing a dichroic substance. Any appropriate resin film that can be used as a polarizer can be adopted as the resin film.
  • the resin film is typically a polyvinyl alcohol-based resin (hereinafter referred to as "PVA-based resin”) film.
  • Any appropriate resin can be used as the PVA-based resin forming the PVA-based resin film.
  • examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • An ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1,000 to 10,000, preferably 1,200 to 4,500, more preferably 1,500 to 4,300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • Dichroic substances contained in resin films include, for example, iodine and organic dyes. These can be used alone or in combination of two or more. Iodine is preferably used.
  • the resin film may be a single-layer resin film or a laminate of two or more layers.
  • a specific example of a polarizer composed of a single-layer resin film is a PVA-based resin film that is dyed with iodine and stretched (typically, uniaxially stretched).
  • the dyeing treatment with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
  • the draw ratio for uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after dyeing, or may be performed while dyeing. Moreover, you may dye after extending
  • the polarizer composed of a laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin base material.
  • a polarizer composed of a laminate with a PVA-based resin layer formed by coating on a material can be mentioned.
  • a polarizer composed of a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material can be obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • the laminate is stretched and dyed to make the PVA-based resin layer into a polarizer.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • stretching may include stretching the laminate at a high temperature (eg, 95° C. or higher) in air before stretching in an aqueous boric acid solution, if necessary.
  • the obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), or the resin substrate may be removed from the resin substrate/polarizer laminate.
  • any appropriate protective layer may be laminated on the peeled surface according to the purpose. Details of a method for manufacturing such a polarizer are described, for example, in Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer 11 is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, even more preferably 3 ⁇ m to 10 ⁇ m, particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the polarizer 11 preferably exhibits absorption dichroism at any wavelength within the wavelength range of 380 nm to 780 nm.
  • the single transmittance of the polarizer 11 is preferably 40.0% to 45.0%, more preferably 41.5% to 43.5%.
  • the degree of polarization of the polarizer 11 is preferably 97.0% or higher, more preferably 99.0% or higher, still more preferably 99.9% or higher.
  • any appropriate resin film is used as the protective films 12 and 13 .
  • Materials for forming the resin film include, for example, (meth)acrylic resins, cellulose resins such as diacetyl cellulose and triacetyl cellulose, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, and polyethylene terephthalate resins. ester-based resins, polyamide-based resins, polycarbonate-based resins, copolymer resins thereof, and the like.
  • “(meth)acrylic resin” means an acrylic resin and/or a methacrylic resin.
  • the materials for forming the protective films 12 and 13 may be the same or different.
  • the thickness of the protective films 12 and 13 is typically 10 ⁇ m to 100 ⁇ m, preferably 20 ⁇ m to 40 ⁇ m.
  • the protective films 12 and 13 may have the same thickness or different thicknesses.
  • the surfaces of the protective films 12 and 13 opposite to the polarizer 11 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc., if necessary. Further/or, the surfaces of the protective films 12 and 13 opposite to the polarizer 11 are optionally treated to improve visibility when viewed through polarized sunglasses (typically, (elliptical) A treatment for imparting a circular polarization function, a treatment for imparting an ultra-high retardation) may be performed. In addition, when surface treatment is performed and a surface treatment layer is formed, the thickness of the protective films 12 and 13 is the thickness including the surface treatment layer.
  • the protective films 12 and 13 are laminated by bonding to the polarizer 11 via any appropriate adhesive layer (not shown).
  • the adhesive constituting the adhesive layer is typically a PVA-based adhesive or an activated energy ray-curable adhesive.
  • the retardation film 2 may be, for example, a compensator that provides a wide viewing angle, or a half-wave plate or quarter-wave plate that is used together with a polarizing film to generate circularly polarized light.
  • a retardation plate (circularly polarizing plate) may be used.
  • the thickness of the retardation film 2 is, for example, 1 to 200 ⁇ m.
  • the retardation film 2 is formed of, for example, a layer formed by polymerizing a polymerizable liquid crystal or a resin.
  • a polymerizable liquid crystal is a compound having a polymerizable group and liquid crystallinity.
  • a polymerizable group means a group that participates in a polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group means a group capable of participating in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the liquid crystallinity of the polymerizable liquid crystal may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order.
  • resins forming the retardation film 2 include polyarylates, polyamides, polyimides, polyesters, polyaryletherketones, polyamideimides, polyesterimides, polyvinyl alcohols, polyfumarates, polyethersulfones, polysulfones, and norbornenes. Resins, polycarbonate resins, cellulosic resins and polyurethanes may be mentioned. These resins may be used alone or in combination.
  • the retardation film 2 is attached and laminated to the polarizing film 1 (protective film 13) via any appropriate adhesive layer or adhesive layer (not shown).
  • the adhesive constituting the adhesive layer is typically a PVA-based adhesive or an activated energy ray-curable adhesive.
  • the adhesive layer 3 is formed by applying an adhesive to one side of the separator 4 and curing the applied adhesive by heating and drying it in an oven or the like.
  • the heating temperature of the adhesive is preferably set in the range of 100°C to 160°C, more preferably set in the range of 140°C to 160°C. At this heating temperature, heating is preferably performed for 20 seconds to 3 minutes, more preferably 1 minute to 3 minutes.
  • adhesives forming the adhesive layer 3 include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. Adhesives are mentioned. By adjusting the type, number, combination and compounding ratio of the monomers forming the base resin of the adhesive, the compounding amount of the cross-linking agent, the reaction temperature, the reaction time, etc., a pressure-sensitive adhesive having desired properties according to the purpose. can be prepared.
  • the base resin of the adhesive may be used alone or in combination of two or more.
  • Acrylic pressure-sensitive adhesives are preferred from the viewpoint of transparency, workability, durability, and the like. Details of the adhesive constituting the adhesive layer are described, for example, in JP-A-2014-115468, and the description of the publication is incorporated herein by reference.
  • the thickness of the adhesive layer can be, for example, 10 ⁇ m to 100 ⁇ m.
  • Separator 4 Any appropriate separator can be adopted as the separator 4 .
  • Specific examples include plastic films, non-woven fabrics or papers surface-coated with a release agent.
  • Specific examples of release agents include silicone-based release agents, fluorine-based release agents, and long-chain alkyl acrylate-based release agents.
  • Specific examples of plastic films include polyethylene terephthalate (PET) films, polyethylene films, and polypropylene films.
  • the thickness of the separator 4 can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the surface protective film 5 typically has a substrate and an adhesive layer.
  • the thickness of the surface protective film 5 is, for example, 30 ⁇ m or more.
  • the upper limit of the thickness of the surface protective film 5 is, for example, 150 ⁇ m.
  • the thickness of a surface protection film means the total thickness of a base material and an adhesive layer.
  • the base material can be composed of any suitable resin film.
  • Materials for forming the resin film include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. is mentioned. Ester-based resins (especially polyethylene terephthalate-based resins) are preferred.
  • any appropriate adhesive can be adopted as the adhesive that forms the adhesive layer.
  • base resins for adhesives include acrylic resins, styrene resins, silicone resins, urethane resins, and rubber resins.
  • FIG. 2 is a flowchart showing schematic steps of the method for manufacturing the optical layered body 100 according to this embodiment.
  • the manufacturing method according to the present embodiment includes a polarizing film manufacturing step ST1, a retardation film bonding step ST2, a separator bonding step ST3, and an inspection step (the second separator peeling of the present invention). (also serving as a bonding step) ST4, a surface protective film bonding step ST5, and a first separator peeling/bonding step ST6.
  • a polarizing film manufacturing step ST1 a retardation film bonding step ST2, a separator bonding step ST3, and an inspection step (the second separator peeling of the present invention).
  • ST4 also serving as a bonding step
  • ST5 a surface protective film bonding step
  • ST6 a first separator peeling/bonding step
  • polarizing film manufacturing process ST1 In the polarizing film manufacturing step ST1, a long belt-shaped resin film is used as a raw film, and this raw film is immersed in various treatment baths while being conveyed in the longitudinal direction (MD direction), and subjected to dyeing treatment, stretching treatment, etc. A long band-shaped polarizer 11 is manufactured by performing various treatments. Then, the long belt-shaped polarizing film 1 is manufactured by bonding the long belt-shaped protective films 12 and 13 to the long belt-shaped polarizer 11 .
  • the long belt-like polarizing plate 10 is manufactured by bonding the long belt-like retardation film 2 to one side (protective film 13) of the long belt-like polarizing film 1.
  • the retardation film bonding step ST2 is unnecessary.
  • Separator bonding step ST3 In the separator bonding step ST3, an adhesive is applied while conveying the long belt-shaped separator 4 in the longitudinal direction (MD direction), and the applied adhesive is dried by heating in an oven or the like to be cured and adhered. An adhesive layer forming step for forming the adhesive layer 3 is performed. Then, the separator 4 is attached to the long strip-shaped polarizing plate 10 via the adhesive layer 3 formed on the long strip-shaped separator 4 . Specifically, the adhesive layer 3 side of the long strip-shaped separator 4 (separator 4 with the adhesive layer 3 ) is attached to one side (retardation film 2 ) of the long strip-shaped polarizing plate 10 . Thereby, the second intermediate M2 in which the polarizing plate 10, the adhesive layer 3 and the separator 4 are laminated is manufactured.
  • Inspection process ST4 of this embodiment is performed before surface protective film bonding process ST5.
  • the inspection step ST4 the long belt-shaped separator 4 is peeled off from the adhesive layer 3 (while the adhesive layer 3 interposed between the separator 4 and the polarizing plate 10 remains on the polarizing plate 10 side, only the separator 4 is peeled off. ), the polarizing plate 10 is inspected. Then, after the polarizing plate 10 is inspected, the separated separator 4 is attached to the polarizing plate 10 again to restore the original state of the second intermediate M2.
  • FIG. 3 is a side view (viewed from the horizontal direction orthogonal to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs the inspection step ST4.
  • the arrows shown in FIG. 3 mean the transport direction of each film.
  • the second intermediate M2 manufactured in the separator bonding step ST3 as described above is wound around the feeding roller R1 shown in FIG. (most upstream side in the conveying direction). Then, the second intermediate M2 delivered from the delivery roller R1 is conveyed toward the separation roller R2.
  • the separation roller R2 separates the separator 4 from the second intermediate M2, and the separated separator 4 is conveyed toward the bonding roller R3.
  • the inspection apparatus 20 shown in FIG. 3 is an apparatus that performs transmission inspection, and includes a light source 20a, an imaging means 20b, and a calculation means (not shown).
  • the imaging means 20b of the inspection apparatus 20 receives the light emitted from the light source 20a and transmitted through the first intermediate M1 to form an image, and outputs an electric signal corresponding to the amount of light to the arithmetic means as an imaging signal.
  • the computing means generates a transmission image based on the input imaging signal.
  • the computing means applies known image processing such as binarization for extracting a pixel region having a luminance value (pixel value) different from that of other pixel regions to the generated transparent image, thereby obtaining the first Defects present in the intermediate M1 (polarizing plate 10) are detected.
  • the inspection performed in the inspection step ST4 is not limited to the transmission inspection described above.
  • a crossed Nicols image is generated by the light passing through the inspection polarizing filter and the first intermediate M1 arranged so as to be crossed Nicols with respect to the polarization axis of the polarizer 11 provided in the polarizing plate 10, and the crossed Nicols image is obtained.
  • the first intermediate M1 After being inspected by the inspection device 20, the first intermediate M1 is conveyed toward the bonding roller R3. Then, the separator 4 is again bonded to the first intermediate M1 by the bonding roller R3. That is, the separator 4 is attached to the polarizing plate 10 forming the first intermediate M1 via the adhesive layer 3 forming the first intermediate M1. Thereby, the second intermediate M2 is manufactured and wound up by the winding roller R4.
  • the separator 4 of the second intermediate M2 fed out from the feeding roller R1 and the separator 4 of the second intermediate M2 wound up by the winding roller R4 are the same separators 4 .
  • the surface protection film bonding step ST5 is performed before the first separator peeling/bonding step ST6.
  • the surface protection film bonding step ST5 the surface protection film 5 in a long belt shape is bonded to the second intermediate body M2 in a long belt shape.
  • a surface protective film 5 in the form of a long strip is attached to the surface of the polarizing plate 10 constituting the second intermediate M2 opposite to the side to which the separator 4 is attached.
  • the long strip-shaped optical layered body 100 is manufactured.
  • first separator peeling/bonding step ST6 In the first separator peeling/bonding step ST6, the long strip-shaped separator 4 is peeled from the adhesive layer 3 of the long strip-shaped optical layered body 100 (interposed between the separator 4 and the polarizing plate 10). After peeling off only the separator 4 while leaving the adhesive layer 3 on the polarizing plate 10 side, the long strip-shaped separator 4 is attached to the polarizing plate 10 via the adhesive layer 3, thereby restoring the original optical laminate. Return to body 100.
  • FIG. 4 is a side view (viewed from the horizontal direction orthogonal to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs the first separator peeling/bonding step ST6.
  • the arrows shown in FIG. 4 indicate the transport direction of each film.
  • the optical layered body 100 manufactured in the surface protective film bonding step ST5 as described above is wound around a delivery roller R5 shown in FIG. side (the most upstream side in the conveying direction of the optical layered body 100). Then, the optical layered body 100 delivered from the delivery roller R5 is conveyed toward the separation roller R6.
  • the separation roller R6 separates the separator 4 from the optical layered body 100, and the separated separator 4 is conveyed toward the bonding roller R7.
  • the third intermediate M3 which is a laminate of the surface protective film 5, the polarizing plate 10, and the adhesive layer 3 obtained by peeling the separator 4 from the optical laminate 100 by the peeling roller R6, was also applied. It is conveyed toward the joining roller R7. Then, the separator 4 is again bonded to the third intermediate M3 by the bonding roller R7. That is, the separator 4 is attached to the polarizing plate 10 forming the third intermediate M3 via the adhesive layer 3 forming the third intermediate M3.
  • the optical laminate 100 is manufactured and wound up by the winding roller R8.
  • the separator 4 of the optical layered body 100 delivered from the delivery roller R5 and the separator 4 of the optical layered body 100 taken up by the take-up roller R8 are the same separators 4 . Since the manufacturing method according to the present embodiment includes the first separator peeling/bonding step ST6, peeling of the separator 4 and bonding of the separator 4 are performed. In other words, even if the separator 4 to be bonded is the same as the separator 4 to be peeled off, the separator 4 is bonded to the polarizing plate 10 in a state in which the unevenness of the separator 4 is extended.
  • the manufacturing method according to the present embodiment includes the inspection step ST4 as the second separator peeling/bonding step, the inspection step ST4 is performed not only after the surface protective film bonding step ST5 but also after the surface protective film bonding step ST5. , separation of the separator 4 and bonding of the separator 4 are also performed. Therefore, it is possible to further suppress curling.
  • the time from peeling the long strip-shaped separator 4 to sticking the long strip-shaped separator 4 is within 1 minute, preferably within 45 seconds. , and more preferably within 30 seconds.
  • the transport speed is V
  • L/V ⁇ 1 minute The length L of the conveying path and the conveying speed V are set so that the time is preferably 45 seconds, more preferably 30 seconds.
  • the time from peeling off the separator 4 to bonding the separator 4 together in other words, the time during which the pressure-sensitive adhesive layer 3 is exposed is short.
  • the polarizing plate 10 absorbs moisture in the atmosphere from the adhesive layer 3 side and swells. It is possible to suppress variations in curls that occur.
  • FIG. 5 is an explanatory diagram illustrating bonding of the third intermediate M3 and the separator 4 by the bonding roller R7.
  • the bonding roller R7 is comprised from a pair of 1st roller R71 and 2nd roller R72 which oppose.
  • the 1st roller R71 is a roller which contacts the separator 4 and conveys the separator 4 between the 1st roller R71 and the 2nd roller R72.
  • the surface of the first roller R71 is made of metal (for example, iron).
  • the second roller R72 is a roller that contacts the third intermediate M3 and conveys the third intermediate M3 between the first roller R71 and the second roller R72.
  • the surface of the second roller R72 is made of resin (for example, rubber).
  • a straight line (virtual straight line) passing through the center of rotation C1 of the first roller R71 and the center of rotation C2 of the second roller R72 is defined as a straight line CL.
  • a vector (virtual vector) orthogonal to the straight line CL and directed to the output side of the bonding roller R7 (right side in FIG. 5) be a vector VC.
  • the entrance angle ⁇ of the separator 4 to the bonding roller R7 means the angle between the vector VC and the vector indicating the traveling direction of the separator 4 until it contacts the bonding roller R7.
  • the entrance angle of the third intermediate M3 to the bonding roller R7 (corresponding to the entrance angle of the polarizing plate 10 to the bonding roller R7) ⁇ is the vector VC and the third It means an angle formed with a vector indicating the traveling direction of the intermediate M3 (corresponding to the traveling direction of the polarizing plate 10).
  • both the approach angle ⁇ and the approach angle ⁇ are set to less than 90°.
  • the first separator peeling/bonding step ST6 the case where the separated separator 4 and the separator 4 to be bonded are the same separator 4 has been described as an example, but the present invention is not limited to this. It is not limited. In the first separator peeling/bonding step ST6, the separated separator 4 and the bonded separator 4 may be different separators 4 . A modification of the first separator peeling/bonding step ST6 in which the peeled separator 4 and the separator 4 to be bonded are different will be described below.
  • a new separator 4 different from the peeled separator 4 is bonded to the polarizing plate 10 with the adhesive layer 3 interposed therebetween.
  • the separator 4 to be peeled (separator 4 bonded in the inspection step ST4)
  • the new separator 4 bonded in the modified example of the first separator peeling and bonding step ST6 will be referred to as “separator 4b. ” to distinguish between the two.
  • FIG. 6 is a side view (viewed from the horizontal direction orthogonal to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs a modification of the first separator peeling/bonding step ST6. .
  • the arrows shown in FIG. 6 indicate the transport direction of each film.
  • the optical layered body 100 manufactured in the surface protection film bonding step ST5 as described above is wound around a delivery roller R9 shown in FIG. (the most upstream side in the conveying direction of the optical layered body 100). Then, the optical layered body 100 delivered from the delivery roller R9 is conveyed toward the separation roller R10.
  • the separation roller R10 separates the separator 4a from the optical layered body 100, and the separated separator 4a is taken up by the take-up roller R11.
  • a new separator 4b wound around the delivery roller R13 that is, a separator that is less likely to be uneven because it is not heated for forming the adhesive layer 3 is prepared.
  • the separator 4b is bonded to the third intermediate M3 by the bonding roller R12. That is, the separator 4b is attached to the polarizing plate 10 forming the third intermediate M3 via the adhesive layer 3 forming the third intermediate M3.
  • the optical layered body 100 is manufactured and wound up by the winding roller R14.
  • the separator 4 of the optical layered body 100 delivered from the delivery roller R9 is the separator 4a, but the separator 4 of the optical layered body 100 wound up by the take-up roller R14 is the separator 4b.
  • the elastic modulus (elastic modulus in the TD direction) of the new separator 4b bonded to the polarizing plate 10 in the modified example of the first separator peeling/bonding step ST6 is, for example, 6000 [N/mm 2 ].
  • the elastic modulus (elastic modulus in the TD direction) of the separator 4a after the pressure-sensitive adhesive layer forming step (that is, after heating) in the separator bonding step ST3 is, for example, less than 6000 [N/mm 2 ].
  • the elastic modulus of the separator 4b is higher than that of the separator 4a. If the elastic modulus of the separator 4b is higher than the elastic modulus of the separator 4a, the new separator 4b that is bonded (re-bonded) in the modified example of the first separator peeling/bonding step ST6 is difficult to shrink. Curling can be suppressed even more.
  • the upper limit of the elastic modulus (the elastic modulus in the TD direction) of the separator 4b is not particularly limited, it is, for example, 7000 [N/mm 2 ] or less, preferably 6500 [N/mm 2 ] or less.
  • the lower limit of the elastic modulus (the elastic modulus in the TD direction) of the separator 4a is not particularly limited, it is, for example, 5000 [N/mm 2 ] or more, preferably 5500 [N/mm 2 ] or more.
  • the elastic modulus can be measured using, for example, a tensile tester "Autograph" manufactured by Shimadzu Corporation.
  • a sample with a width (dimension in the MD direction) of 10 mm and a length (dimension in the TD direction) of 100 mm is cut out, and this sample is set in an autograph, and is measured in the TD direction.
  • the elastic modulus can be calculated based on the force [N] applied to stretch the sample by a predetermined amount by pulling it at a speed of 50 mm/min.
  • the separator 4a is peeled off by the peeling roller R10 in the same manner as the first separator peeling/bonding step ST6 described with reference to FIGS. 1 minute or less, preferably 45 seconds or less, and more preferably 30 seconds or less until the separator 4b is bonded by the bonding roller R12.
  • the roller that contacts the separator 4b and conveys the separator 4b between the pair of rollers The surface of is made of metal (eg, iron).
  • the surfaces of the rollers that come into contact with the third intermediate M3 and convey the third intermediate M3 between the pair of rollers are made of resin (eg, rubber). Furthermore, in the modified example of the first separator peeling/bonding step ST6, the approach angle ⁇ of the separator 4b to the bonding roller R12 and the approach angle ⁇ of the third intermediate M3 (polarizing plate 10) to the bonding roller R12 are set to less than 90°. As a result, curling can be further suppressed even in the modified example of the first separator peeling/bonding step ST6.
  • the entrance angle ⁇ of the separator 4b to the bonding roller R12 and the entrance angle ⁇ of the third intermediate M3 (polarizing plate 10) to the bonding roller R12 are preferably 10° ⁇ 80°, more preferably is 20° ⁇ 50°. Also, preferably 0° ⁇ 80°, more preferably 0° ⁇ 75°. By increasing the approach angle ⁇ , the transportability of the third intermediate M3 (polarizing plate 10) is improved.
  • the separator 4 is peeled off by the peel roller R2 in the same manner as in the first separator peeling/bonding step ST6 described with reference to FIGS. 1 minute or less, preferably 45 seconds or less, and more preferably 30 seconds or less until the separator 4 is bonded by the bonding roller R3. Also in the inspection step ST4, similarly to the first separator peeling/bonding step ST6, the separator 4 is brought into contact with the separator 4 of the pair of opposing rollers constituting the bonding roller R3, and the separator 4 is separated between the pair of rollers.
  • the surface of the roller that conveys is made of metal (for example, iron).
  • the surfaces of the rollers that come into contact with the first intermediate M1 and convey the first intermediate M1 between the pair of rollers are made of resin (for example, rubber).
  • the approach angle ⁇ of the separator 4 to the bonding roller R3 and the first intermediate M1 (polarizing plate 10) to the bonding roller R3 are set to less than 90°.
  • curling can be further suppressed even in the inspection step ST4.
  • a new separator 4 different from the peeled separator 4 is attached to the polarizing plate 10 after the inspection in the same manner as in the modification of the first separator peeling/bonding step ST6 described with reference to FIG.
  • the entrance angle ⁇ of the separator 4 to the bonding roller R3 and the entrance angle ⁇ of the first intermediate M1 (polarizing plate 10) to the bonding roller R3 are preferably 10° ⁇ 80°, more preferably is 20° ⁇ 50°. Also, preferably 0° ⁇ 80°, more preferably 0° ⁇ 75°. By increasing the approach angle ⁇ , the transportability of the first intermediate M1 (polarizing plate 10) is improved.
  • the inspection step ST4 also serves as the second separator peeling/bonding step, but the present invention is not limited to this, and the inspection step ST4 and the second separator peeling/bonding step have been described. It is also possible to perform the steps separately. Alternatively, it is also possible to employ a mode in which no inspection is performed in the inspection step ST4 (that is, a second separator peeling/bonding step of simply peeling and bonding the separator 4 is performed). Alternatively, it is possible to employ a mode in which the inspection step ST4 itself is not performed (that is, the separation and bonding of the separator 4 are performed only in the first separator peeling/bonding step ST6).
  • the polarizing plate 10 is a laminate of the polarizing film 1 and the retardation film 2 has been described as an example, but the present invention is not limited to this.
  • An aspect in which the polarizing plate 10 is a laminate of the polarizing film 1, the retardation film 2, and other components, or a configuration in which the polarizing plate 10 is a laminate of the polarizing film 1 and other components without the retardation film 2 present It is also possible to employ a mode in which the polarizing plate 10 is a laminate, or a mode in which only the polarizing film 1 is present in the polarizing plate 10 .
  • each of the optical laminates 100 manufactured in Examples and Comparative Examples has a structure in which layers are laminated in the following order.
  • FIG. 7 is an explanatory diagram for explaining a curl evaluation method.
  • a plurality of rectangular optical layered bodies 100S having a product size (148 mm long ⁇ 70 mm wide) were cut out along the TD direction of the long optical layered body 100.
  • three optical layered bodies 100S are shown in FIG. 7A for convenience, ten optical layered bodies 100S were actually cut from one optical layered body 100 along the TD direction. This was carried out for a plurality of optical layered bodies 100 to obtain a total of 500 optical layered bodies 100S. Then, 100 optical laminates 100S randomly selected from the 500 optical laminates 100S were evaluated for curl. As shown in FIG.
  • the MD direction of the optical layered body 100 (corresponding to the direction of the absorption axis of the polarizer 11) is the long side of the optical layered body 100S. and cut obliquely at 45° to the short side.
  • the optical layered body 100S when evaluating the curl, the lower side of the optical layered body 100S is convex (the four corners of the optical layered body 100S are warped upward in the vertical direction). ), the optical layered body 100S was placed on a flat mounting table 30, and the vertical distance H from the upper surface of the mounting table 30 to each of the four corners of the optical layered body 100S was measured. The distance H was measured by setting a vertically extending scale in the vicinity of the corner of the optical layered body 100S and visually reading the scale on the scale.
  • the side of the optical layered body 100S on which the separator 4 is positioned faces downward (the side on which the surface protective film 5 is positioned faces upward). was taken as a positive curl, and the measured distance H was directly calculated as the curl value.
  • the side of the optical layered body 100S on which the separator 4 is positioned faces upward (the side on which the surface protective film 5 is positioned faces downward).
  • the separator 4 was peeled off from the optical layered body 100S to form a third intermediate M3. Then, the curl values of the four corners of the third intermediate M3 were calculated in the same procedure as described above.
  • Table 1 shows the curl evaluation results of Examples and Comparative Examples. As shown in Table 1, in the comparative example, 44 out of 100 optical laminates passed (acceptance rate of 44%), whereas in the example, 95 out of 100 optical laminates was found to be acceptable (acceptance rate of 95%), and curling was suppressed.

Abstract

[Problem] To provide a method for producing an optical laminate, the method enabling curling to be suppressed. [Solution] The method for producing an optical laminate 100 according to the present invention includes: a separator affixation step ST3 for affixing a long, band-form separator 4 to a long, band-form polarizing plate 10 via an adhesive agent layer 3 formed on the separator 4; a surface-protective film affixation step ST5 after the separator affixation step, the surface-protective film affixation step involving affixing a long, band-form surface-protective film 5 to the polarizing plate; and a first separator detachment/affixation step ST6 after the surface-protective film affixation step, the first separator detachment/affixation step involving detaching the long, band-form separator from the adhesive agent layer and then affixing the long, band-form separator to the polarizing plate via the adhesive agent layer.

Description

光学積層体の製造方法Method for manufacturing optical laminate
 本発明は、少なくとも偏光板、セパレータ及び表面保護フィルムを備えた光学積層体の製造方法に関する。特に、本発明は、カールを抑制可能な光学積層体の製造方法に関する。 The present invention relates to a method for manufacturing an optical laminate including at least a polarizing plate, a separator and a surface protective film. In particular, the present invention relates to a method for manufacturing an optical layered body capable of suppressing curling.
 従来、液晶表示装置や有機EL表示装置等の構成材料として、偏光板が使用されている。偏光板は、偏光フィルムの他、用途に応じて位相差フィルム等を備える。偏光フィルムは、例えば、ヨウ素などの二色性物質で染色した偏光子とこの偏光子を保護する保護フィルムとから構成されている。長尺帯状の偏光フィルムは、長尺帯状の偏光子の少なくとも片面に長尺帯状の保護フィルムを貼り合わせて製造される。製造された長尺帯状の偏光フィルムの片面には、長尺帯状の位相差フィルム等が貼り合わせられて、長尺帯状の偏光板が製造される。製造された長尺帯状の偏光板の片面には、長尺帯状のセパレータ(離型フィルム)が貼り合わせられ、他方の面には、長尺帯状の表面保護フィルムが貼り合わせられて、長尺帯状の光学積層体が製造される。これら長尺帯状の各フィルムの貼り合わせは、通常、ロールツーロール方式やロールツーシート方式で行われる。製造された長尺帯状の光学積層体は、用途に応じたサイズや形状に切断され、液晶表示装置等に用いられる。なお、液晶表示装置等に用いられる際には、セパレータは剥離されて、光学積層体の残りの構成要素が液晶表示装置等に貼り付けられる。 Conventionally, polarizing plates have been used as constituent materials for liquid crystal display devices, organic EL display devices, and the like. The polarizing plate includes a polarizing film and a retardation film or the like depending on the application. A polarizing film is composed of, for example, a polarizer dyed with a dichroic substance such as iodine and a protective film for protecting the polarizer. A long belt-shaped polarizing film is produced by bonding a long belt-shaped protective film to at least one surface of a long belt-shaped polarizer. A long belt-like retardation film or the like is attached to one side of the manufactured long belt-like polarizing film to manufacture a long belt-like polarizing plate. A long strip-shaped separator (release film) is attached to one side of the produced long strip-shaped polarizing plate, and a long strip-shaped surface protective film is stuck to the other side to form a long A strip-shaped optical laminate is produced. These long belt-like films are usually laminated by a roll-to-roll method or a roll-to-sheet method. The manufactured long strip-shaped optical layered body is cut into a size and shape according to the application, and used for a liquid crystal display device or the like. When used in a liquid crystal display device or the like, the separator is peeled off and the remaining components of the optical layered body are attached to the liquid crystal display device or the like.
 図8は、従来の光学積層体の製造方法の概略工程例を示すフロー図である。図8に示すように、従来の光学積層体の製造方法は、偏光フィルム製造工程ST1’、位相差フィルム貼合工程ST2’、セパレータ貼合工程ST3’、検査工程ST4’及び表面保護フィルム貼合工程ST5’を含む。
 偏光フィルム製造工程ST1’では、長尺帯状の樹脂フィルムを原反フィルムとして、この原反フィルムを長手方向に搬送しながら各種の処理浴に浸漬させて、染色処理や延伸処理等の各種の処理を施すことによって、長尺帯状の偏光子を製造する。そして、長尺帯状の偏光子の少なくとも片面に長尺帯状の保護フィルムを貼り合わせることで、長尺帯状の偏光フィルムを製造する。
 位相差フィルム貼合工程ST2’では、長尺帯状の偏光フィルムの片面に長尺帯状の位相差フィルム(1/2波長板や1/4波長板など)を貼り合わせることで、長尺帯状の偏光板を製造する。
FIG. 8 is a flowchart showing a schematic process example of a conventional method for manufacturing an optical layered body. As shown in FIG. 8, the conventional method for manufacturing an optical laminate includes a polarizing film manufacturing process ST1′, a retardation film bonding process ST2′, a separator bonding process ST3′, an inspection process ST4′, and a surface protective film bonding. It includes step ST5'.
In the polarizing film manufacturing step ST1′, a long belt-shaped resin film is used as a raw film, and this raw film is immersed in various treatment baths while being transported in the longitudinal direction, and various treatments such as dyeing and stretching are performed. to produce a long band-shaped polarizer. Then, a long belt-shaped polarizing film is manufactured by bonding a long belt-shaped protective film to at least one surface of the long belt-shaped polarizer.
In the retardation film bonding step ST2′, a long belt-like retardation film (such as a half-wave plate or a quarter-wave plate) is bonded to one side of a long belt-like polarizing film to form a long belt-like film. Manufacture polarizing plates.
 セパレータ貼合工程ST3’では、長尺帯状のセパレータを長手方向に搬送しながら粘着剤を塗布し、この塗布した粘着剤をオーブン等で加熱して乾燥させることで硬化させ、粘着剤層を形成する。そして、この長尺帯状のセパレータ(粘着剤層付きセパレータ)の粘着剤層側を長尺帯状の偏光板の片面に貼り合わせることで、偏光板と粘着剤層とセパレータとが積層された長尺帯状の中間体を製造する。
 検査工程ST4’では、セパレータと偏光板との間に介在する粘着剤層を偏光板側に残したまま、セパレータのみを剥離して、偏光板を検査する。偏光板の検査方法としては、透過検査、クロスニコル検査、反射検査などが挙げられる。検査工程ST4’では、偏光板を検査した後、剥離したセパレータを再び偏光板に貼り合わせることで、元の中間体の状態に戻す。
In the separator bonding step ST3′, an adhesive is applied while conveying the long belt-shaped separator in the longitudinal direction, and the applied adhesive is cured by heating and drying in an oven or the like to form an adhesive layer. do. Then, by laminating the adhesive layer side of the long strip-shaped separator (separator with adhesive layer) to one side of the long strip-shaped polarizing plate, a long strip in which the polarizing plate, the adhesive layer, and the separator are laminated is obtained. A strip-shaped intermediate is produced.
In the inspection step ST4', the polarizing plate is inspected by peeling off only the separator while leaving the adhesive layer interposed between the separator and the polarizing plate on the polarizing plate side. Examples of inspection methods for the polarizing plate include transmission inspection, crossed Nicols inspection, reflection inspection, and the like. In the inspection step ST4′, after the polarizing plate is inspected, the peeled separator is attached to the polarizing plate again to restore the original state of the intermediate.
 表面保護フィルム貼合工程ST5’では、長尺帯状の偏光板のセパレータが貼り合わせられた側とは反対側の面に長尺帯状の表面保護フィルムが貼り合わせられる。
 以上に説明した偏光フィルム製造工程ST1’~表面保護フィルム貼合工程ST5’により、長尺帯状の光学積層体が製造される。
In the surface protective film bonding step ST5', a long belt-shaped surface protective film is bonded to the surface of the long belt-shaped polarizing plate opposite to the side where the separator is bonded.
Through the polarizing film manufacturing step ST1' to the surface protection film bonding step ST5' described above, a long strip-shaped optical layered body is manufactured.
 しかしながら、以上のようにして製造される光学積層体には、製品サイズに切断後の光学積層体に、使用上問題となるカール(端部の反り)が発生する場合がある。
 例えば、特許文献1には、偏光フィルムのカールを抑制する方法として、偏光子を保護する保護フィルムの材質を特定のものにすることが提案されているが、保護フィルムの材質が限定されるため、汎用的ではない。従来用いられている光学積層体の構成要素の材質を特に変えることなく、カールを抑制可能な方法が望まれている。
However, in the optical layered body manufactured as described above, the optical layered body after being cut into the product size may curl (warp at the edge), which poses a problem in use.
For example, Patent Document 1 proposes to use a specific material for the protective film that protects the polarizer as a method for suppressing curling of the polarizing film. , not generic. There is a demand for a method capable of suppressing curling without particularly changing the materials of constituent elements of conventionally used optical laminates.
特開2007-256568号公報JP 2007-256568 A
 本発明は、上記従来技術の問題点を解決するためになされたものであり、カールを抑制可能な光学積層体の製造方法を提供することを課題とする。 The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a method for manufacturing an optical laminate capable of suppressing curling.
 前記課題を解決するため、本発明者らは鋭意検討した結果、従来の光学積層体の製造方法のセパレータ貼合工程(図8のST3’)におけるセパレータへの粘着剤層の形成が、光学積層体のカール発生要因の一つになっている可能性があることを見出した。具体的には、セパレータに塗布した粘着剤を加熱して乾燥させる際に、セパレータが収縮して、その厚み方向に凹凸が生じると考えられる。セパレータ貼合工程でこのセパレータを偏光板に貼り合わせる際や、検査工程(図8のST4’)でセパレータを再び偏光板に貼り合わせる際には、加熱によってセパレータに生じていた凹凸が延ばされた状態で貼り合わされるものの、貼り合わせてから時間が経過すると、セパレータが収縮した状態に戻ろうとする力が作用し、これにより光学積層体にカールが発生すると考えられる。
 本発明者らは、上記の発生要因に着目して更に鋭意検討した結果、従来の検査工程のようにセパレータを剥離した後にセパレータを貼り合わせる工程を、表面保護フィルム貼合工程(図8のST5’)の後に行うことが、カールの発生を抑制するのに有効であることを見出した。すなわち、表面保護フィルムが貼り合わされている積層体は、表面保護フィルムが貼り合わされる前の積層体に比べて剛性が高くなるため、この剛性の高い積層体に凹凸が延ばされた状態のセパレータを貼り合わせれば、セパレータが収縮した状態に戻ろうとする力が作用してもカールが発生し難くなることを見出した。
 本発明は、本発明者らの上記知見に基づき完成したものである。
In order to solve the above-mentioned problems, the inventors of the present invention conducted extensive studies and found that the formation of the pressure-sensitive adhesive layer on the separator in the separator bonding step (ST3′ in FIG. 8) of the conventional method for producing an optical layered body is It has been found that it may be one of the causes of body curling. Specifically, when the pressure-sensitive adhesive applied to the separator is heated and dried, the separator shrinks, and it is thought that unevenness occurs in the thickness direction. When the separator is bonded to the polarizing plate in the separator bonding step, or when the separator is bonded to the polarizing plate again in the inspection step (ST4′ in FIG. 8), unevenness generated on the separator due to heating is smoothed out. It is thought that although the optical laminate is stuck together in a state of being stretched, a force tends to return the separator to the contracted state as time elapses after the adhesion, and this causes the optical laminate to curl.
The inventors of the present invention focused on the cause of the occurrence of the above and conducted further intensive studies. ') is effective in suppressing curling. That is, since the laminate to which the surface protective film is attached has higher rigidity than the laminate before the surface protective film is attached, the separator in which the unevenness is extended to the highly rigid laminate It has been found that if the separator is stuck together, curling is less likely to occur even if a force acts to return the separator to the contracted state.
The present invention has been completed based on the above findings of the present inventors.
 すなわち、前記課題を解決するため、本発明は、長尺帯状のセパレータに形成された粘着剤層を介して前記セパレータを長尺帯状の偏光板に貼り合わせるセパレータ貼合工程と、前記セパレータ貼合工程の後に、前記偏光板に長尺帯状の表面保護フィルムを貼り合わせる表面保護フィルム貼合工程と、前記表面保護フィルム貼合工程の後に、長尺帯状のセパレータを前記粘着剤層から剥離した後、長尺帯状のセパレータを前記粘着剤層を介して前記偏光板に貼り合わせる第1のセパレータ剥離・貼合工程と、を含む、光学積層体の製造方法を提供する。 That is, in order to solve the above problems, the present invention provides a separator lamination step of laminating the separator to a long strip-shaped polarizing plate via an adhesive layer formed on the long strip-shaped separator, and the separator lamination step. After the step, a surface protective film laminating step of laminating a long strip-shaped surface protective film to the polarizing plate, and after the surface protective film laminating step, after peeling the long strip-shaped separator from the adhesive layer and a first separator peeling/bonding step of bonding a long belt-shaped separator to the polarizing plate via the pressure-sensitive adhesive layer.
 本発明の第1のセパレータ剥離・貼合工程において、剥離したセパレータと貼り合わせるセパレータとは、同じセパレータであってもよいし、異なるセパレータであってもよい。すなわち、本発明の第1のセパレータ剥離・貼合工程には、セパレータを粘着剤層から剥離(粘着剤層を偏光板に残したままセパレータのみを剥離)した後、同じセパレータを粘着剤層を介して偏光板に再び貼り合わせる場合が含まれる。また、第1のセパレータ剥離・貼合工程には、剥離したセパレータと異なる新しいセパレータ(すなわち、粘着剤層を形成するための加熱を施していないために、凹凸の生じ難いセパレータ)を粘着剤層を介して偏光板に貼り合わせる(貼り替える)場合も含まれる。
 本発明によれば、第1のセパレータ剥離・貼合工程を含むことで、セパレータの剥離とセパレータの貼り合わせとが行なわれる。換言すれば、貼り合わせるセパレータが剥離されるセパレータと同じであったとしても、セパレータの凹凸が延ばされた状態での偏光板への貼り合わせが行なわれる。そして、第1のセパレータ剥離・貼合工程を表面保護フィルム貼合工程の後に行うため、剛性の高い積層体に凹凸が延ばされた状態のセパレータを貼り合わせることになり、セパレータが収縮した状態に戻ろうとする力が作用しても、カールを抑制可能である。
In the first separator peeling/bonding step of the present invention, the peeled separator and the separator to be bonded may be the same separator or different separators. That is, in the first separator peeling and bonding step of the present invention, the separator is peeled from the adhesive layer (only the separator is peeled while the adhesive layer remains on the polarizing plate), and then the same separator is peeled off the adhesive layer. It includes the case of re-bonding to the polarizing plate via. In addition, in the first separator peeling/bonding step, a new separator different from the peeled separator (that is, a separator that is less likely to have unevenness because it is not heated for forming the adhesive layer) is applied to the adhesive layer. It also includes the case of pasting (re-pasting) to the polarizing plate via.
According to the present invention, by including the first separator peeling/bonding step, separator peeling and separator bonding are performed. In other words, even if the separator to be bonded is the same as the separator to be peeled off, the separator is bonded to the polarizing plate in a state in which the unevenness of the separator is extended. Since the first separator peeling/bonding process is performed after the surface protective film bonding process, the separator having the unevenness extended is bonded to the highly rigid laminate, and the separator is in a contracted state. Curling can be suppressed even if a force that tries to return is applied.
 前記セパレータ貼合工程は、例えば、長尺帯状のセパレータに粘着剤を塗布し、前記塗布した粘着剤を加熱して硬化させて前記粘着剤層を形成する粘着剤層形成工程を含む。 The separator laminating step includes, for example, an adhesive layer forming step of applying an adhesive to a long belt-shaped separator and heating and curing the applied adhesive to form the adhesive layer.
 好ましくは、本発明は、前記表面保護フィルム貼合工程の前に、長尺帯状のセパレータを前記粘着剤層から剥離した後、長尺帯状のセパレータを前記粘着剤層を介して前記偏光板に貼り合わせる第2のセパレータ剥離・貼合工程を含む。
 第2のセパレータ剥離・貼合工程においても、第1のセパレータ剥離・貼合工程と同様に、剥離したセパレータと貼り合わせるセパレータとは、同じセパレータであってもよいし、異なるセパレータであってもよい。
 上記の好ましい方法によれば、表面保護フィルム貼合工程の後だけではなく、表面保護フィルム貼合工程の前にも、セパレータの剥離とセパレータの貼り合わせとが行なわれる。換言すれば、貼り合わせるセパレータが剥離されるセパレータと同じであったとしても、セパレータの凹凸が延ばされた状態での偏光板への貼り合わせが行なわれるため、より一層、カールを抑制可能である。
Preferably, in the present invention, after peeling a long strip-shaped separator from the adhesive layer before the step of bonding the surface protective film, the long strip-shaped separator is attached to the polarizing plate through the adhesive layer. A second separator peeling/bonding step of bonding is included.
In the second separator peeling/bonding step, as in the first separator peeling/bonding step, the separated separator and the separator to be bonded may be the same separator or different separators. good.
According to the preferred method described above, the separation of the separator and the lamination of the separator are performed not only after the step of attaching the surface protective film, but also before the step of attaching the surface protective film. In other words, even if the separator to be bonded is the same as the separator to be peeled off, the separator is bonded to the polarizing plate in a state in which the unevenness of the separator is extended, so curling can be further suppressed. be.
 好ましくは、前記第2のセパレータ剥離・貼合工程は、長尺帯状のセパレータを剥離した後に前記偏光板を検査する検査工程を兼ねる。
 上記の好ましい方法によれば、第2のセパレータ剥離・貼合工程が偏光板の検査工程を兼ねるため、第2のセパレータ剥離・貼合工程と検査工程を別個に設ける場合に比べて、製造工程が簡便になるという利点を有する。
Preferably, the second separator peeling/bonding step also serves as an inspection step of inspecting the polarizing plate after peeling the long strip-shaped separator.
According to the preferred method described above, since the second separator peeling/bonding step also serves as the inspection step for the polarizing plate, compared to the case where the second separator peeling/bonding step and the inspection step are provided separately, the manufacturing process has the advantage of being simple.
 好ましくは、前記第1のセパレータ剥離・貼合工程において、長尺帯状のセパレータを剥離してから長尺帯状のセパレータを貼り合わせるまでの時間が1分以内である。
 上記の好ましい方法によれば、長尺帯状のセパレータを剥離してから長尺帯状のセパレータを貼り合わせるまでの時間、換言すれば、粘着剤層が剥き出しになる時間が短い。そのため、例えば季節的な影響や日中又は夜間の影響で、前記第1のセパレータ剥離・貼合工程内の湿度が変化しても、偏光板が粘着剤層側から雰囲気中の水分を吸収して膨潤することに起因して発生するカールのばらつきを抑制可能である。
 なお、本発明が第2のセパレータ剥離・貼合工程を含む場合には、第2のセパレータ剥離・貼合工程についても同様に、長尺帯状のセパレータを剥離してから長尺帯状のセパレータを貼り合わせるまでの時間が1分以内であることが好ましい。
Preferably, in the first separator peeling/bonding step, the time from peeling the long strip-shaped separator to sticking the long strip-shaped separator is one minute or less.
According to the above preferable method, the time from peeling off the long strip separator to sticking the long strip separator, in other words, the time for the adhesive layer to be exposed is short. Therefore, even if the humidity in the first separator peeling/bonding step changes due to, for example, seasonal effects or daytime or nighttime effects, the polarizing plate absorbs moisture in the atmosphere from the pressure-sensitive adhesive layer side. It is possible to suppress variations in curling that occur due to swelling due to pressure.
In the case where the present invention includes the second separator peeling/bonding step, the long strip-shaped separator is peeled off and then the long strip-shaped separator is similarly removed in the second separator peeling/bonding step. It is preferable that the time until bonding is within 1 minute.
 好ましくは、前記第1のセパレータ剥離・貼合工程において、長尺帯状のセパレータと前記偏光板とを貼合ローラによって貼り合わせ、前記セパレータの前記貼合ローラへの進入角度が90°未満であり、前記偏光板の前記貼合ローラへの進入角度が90°未満である。 Preferably, in the first separator peeling/bonding step, a long belt-shaped separator and the polarizing plate are bonded together by a bonding roller, and the separator enters the bonding roller at an angle of less than 90°. , the angle of entry of the polarizing plate into the bonding roller is less than 90°.
 上記の好ましい方法において、「セパレータの貼合ローラへの進入角度」とは、貼合ローラを構成する対向する一対のローラの回転中心を通る直線に直交し、貼合ローラの出側に向いたベクトルと、貼合ローラに接触するまでのセパレータの進行方向を示すベクトルとの成す角度を意味する。同様に、「偏光板の貼合ローラへの進入角度」とは、貼合ローラを構成する一対のローラの回転中心を通る直線に直交し、貼合ローラの出側に向いたベクトルと、貼合ローラに接触するまでの偏光板の進行方向を示すベクトルとの成す角度を意味する。
 本発明者らの知見によれば、セパレータの貼合ローラへの進入角度が大きい(90°以上である)と、TD方向(長尺帯状の光学積層体の搬送方向(MD方向)に直交する方向)のカールで且つマイナスのカール(セパレータの位置する側が凹状になるカール)が大きくなり、偏光板の貼合ローラへの進入角度が大きい(90°以上である)と、TD方向のカールで且つプラスのカール(セパレータの位置する側が凸状になるカール)が大きくなる。
 上記の好ましい方法によれば、セパレータ及び偏光板の貼合ローラへの進入角度の双方を90°未満とすることで、カールをより一層抑制可能である。
 なお、本発明が第2のセパレータ剥離・貼合工程を含む場合には、第2のセパレータ剥離・貼合工程についても同様に、長尺帯状のセパレータと前記偏光板とを貼合ローラによって貼り合わせ、前記セパレータの前記貼合ローラへの進入角度が90°未満であり、前記偏光板の前記貼合ローラへの進入角度が90°未満であることが好ましい。
In the preferred method described above, the "advance angle of the separator to the laminating roller" is perpendicular to a straight line passing through the rotation center of a pair of opposing rollers constituting the laminating roller, and is directed toward the exit side of the laminating roller. It means the angle between the vector and the vector indicating the traveling direction of the separator until it contacts the laminating roller. Similarly, the "approaching angle of the polarizing plate to the bonding roller" is a vector perpendicular to a straight line passing through the rotation center of a pair of rollers constituting the bonding roller and directed to the output side of the bonding roller. It means the angle formed with the vector indicating the traveling direction of the polarizing plate until it comes into contact with the joining roller.
According to the findings of the present inventors, when the separator enters the bonding roller at a large angle (90° or more), the TD direction direction) and negative curl (curl that makes the side where the separator is positioned concave) increases, and the angle of entry of the polarizing plate into the laminating roller is large (90° or more), curl in the TD direction. In addition, plus curl (curl that becomes convex on the side where the separator is located) increases.
According to the preferred method described above, curling can be further suppressed by setting both the entrance angles of the separator and the polarizing plate to the bonding rollers to less than 90°.
When the present invention includes the second separator peeling/bonding step, the long strip-shaped separator and the polarizing plate are similarly bonded by a bonding roller in the second separator peeling/bonding step. In addition, it is preferable that the angle at which the separator enters the bonding roller is less than 90°, and the angle at which the polarizing plate enters the bonding roller is less than 90°.
 好ましくは、前記貼合ローラは、前記セパレータに接触する第1ローラと、前記偏光板に接触する第2ローラとから構成され、前記第1ローラ及び前記第2ローラのうち、一方の表面が樹脂から形成され、他方の表面が金属から形成されている。
 第1ローラの表面及び第2ローラの表面の双方が金属から形成されている場合には、セパレータと偏光板とを貼り合わせる際、セパレータと偏光板との界面(セパレータと粘着剤層との界面)に気泡が発生するおそれがある。第1ローラの表面及び第2ローラの表面の双方が樹脂から形成されている場合には、セパレータに皺が発生するおそれがある。
 上記の好ましい方法によれば、第1ローラ及び第2ローラのうち、一方の表面が樹脂から形成され、他方の表面が金属から形成されることで、気泡や皺が発生するおそれを抑制可能である。
 なお、本発明が第2のセパレータ剥離・貼合工程を含む場合には、第2のセパレータ剥離・貼合工程についても同様に、前記貼合ローラは、前記セパレータに接触する第1ローラと、前記偏光板に接触する第2ローラとから構成され、前記第1ローラ及び前記第2ローラのうち、一方の表面が樹脂から形成され、他方の表面が金属から形成されていることが好ましい。
Preferably, the bonding roller includes a first roller that contacts the separator and a second roller that contacts the polarizing plate, and one of the first roller and the second roller has a resin surface. and the other surface is made of metal.
When both the surface of the first roller and the surface of the second roller are made of metal, when the separator and the polarizing plate are bonded together, the interface between the separator and the polarizing plate (the interface between the separator and the adhesive layer) ) may generate air bubbles. If both the surface of the first roller and the surface of the second roller are made of resin, the separator may wrinkle.
According to the preferred method described above, one surface of the first roller and the second roller is made of resin and the other surface is made of metal, thereby suppressing the possibility of air bubbles or wrinkles. be.
In addition, when the present invention includes a second separator peeling/bonding step, the bonding roller is the first roller that contacts the separator, and It is preferable that one surface of the first roller and the second roller is made of resin and the other surface is made of metal.
 好ましくは、前記第1ローラは、表面が金属から形成され、前記第2ローラは、表面が樹脂から形成されている。
 上記の好ましい方法によれば、気泡や皺が発生するおそれを抑制可能であることに加えて、偏光板に接触する第2ローラの表面が樹脂から形成されているため(金属から形成されていないため)、偏光板に傷や打痕等の外観不良が生じることを抑制可能である。
 なお、本発明が第2のセパレータ剥離・貼合工程を含む場合には、第2のセパレータ剥離・貼合工程についても同様に、前記第1ローラは、表面が金属から形成され、前記第2ローラは、表面が樹脂から形成されていることが好ましい。
Preferably, the first roller has a metal surface, and the second roller has a resin surface.
According to the preferred method described above, in addition to being able to suppress the possibility of generating air bubbles and wrinkles, the surface of the second roller in contact with the polarizing plate is made of resin (not made of metal). Therefore, it is possible to suppress appearance defects such as scratches and dents on the polarizing plate.
When the present invention includes the second separator peeling/bonding step, the surface of the first roller is made of metal, and the second separator peeling/bonding step is also performed in the same manner. It is preferable that the surface of the roller is made of resin.
 本発明によれば、従来用いられている光学積層体の構成要素の材質を特に変えることなく、カールを効果的に抑制可能である。 According to the present invention, it is possible to effectively suppress curling without particularly changing the materials of the constituent elements of conventionally used optical laminates.
本発明の一実施形態に係る製造方法によって製造される光学積層体の概略構成を模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows typically schematic structure of the optical laminated body manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光学積層体の製造方法の概略工程を示すフロー図である。1 is a flow diagram showing schematic steps of a method for manufacturing an optical layered body according to an embodiment of the present invention; FIG. 図2に示す検査工程ST4を実行する装置の概略構成例を模式的に示す側面図(各フィルムの搬送方向に直交する水平方向から見た図)である。FIG. 3 is a side view (viewed from a horizontal direction perpendicular to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs an inspection step ST4 shown in FIG. 2 ; 図2に示す第1のセパレータ剥離・貼合工程ST6を実行する装置の概略構成例を模式的に示す側面図(各フィルムの搬送方向に直交する水平方向から見た図)である。FIG. 3 is a side view (viewed from a horizontal direction perpendicular to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs the first separator peeling/bonding step ST6 shown in FIG. 2 ; 図4に示す貼合ローラR7による第3中間体M3とセパレータ4bとの貼り合わせを説明する説明図である。It is explanatory drawing explaining bonding of the 3rd intermediate M3 and the separator 4b by the bonding roller R7 shown in FIG. 図2に示す第1のセパレータ剥離・貼合工程ST6の変形例を実行する装置の概略構成例を模式的に示す側面図(各フィルムの搬送方向に直交する水平方向から見た図)である。FIG. 3 is a side view (viewed from a horizontal direction perpendicular to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus for performing a modification of the first separator peeling/bonding step ST6 shown in FIG. . カールの評価方法を説明する説明図である。It is explanatory drawing explaining the curl evaluation method. 従来の光学積層体の製造方法の概略工程例を示すフロー図である。FIG. 2 is a flowchart showing an example of schematic steps of a conventional method for manufacturing an optical layered body.
 以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る光学積層体の製造方法について説明する。なお、各図は、参考的に表したものであり、各図に表された光学積層体や装置の構成要素の寸法、縮尺及び形状は、実際のものとは異なっている場合があることに留意されたい。 A method for manufacturing an optical layered body according to an embodiment of the present invention will be described below with reference to the accompanying drawings as appropriate. It should be noted that each drawing is for reference only, and that the dimensions, scales and shapes of the components of the optical layered body and device shown in each drawing may differ from the actual ones. Please note.
 <光学積層体の構成>
 最初に、本実施形態に係る製造方法によって製造される光学積層体の構成について説明する。
 図1は、本実施形態に係る製造方法によって製造される光学積層体の概略構成を模式的に示す断面図である。
 図1に示すように、本実施形態の光学積層体100は、偏光フィルム1と、位相差フィルム2と、粘着剤層3と、セパレータ4と、表面保護フィルム5と、を備える。偏光フィルム1と位相差フィルム2との積層体が偏光板10を構成している。偏光板10と粘着剤層3との積層体が第1中間体M1を構成している。第1中間体M1とセパレータ4との積層体が第2中間体M2を構成している。第1中間体M1と表面保護フィルム5との積層体が第3中間体M3を構成している。以下、光学積層体100の各構成要素について説明する。
<Structure of Optical Laminate>
First, the configuration of the optical layered body manufactured by the manufacturing method according to the present embodiment will be described.
FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an optical layered body manufactured by a manufacturing method according to this embodiment.
As shown in FIG. 1, the optical laminate 100 of this embodiment includes a polarizing film 1, a retardation film 2, an adhesive layer 3, a separator 4, and a surface protective film 5. A laminate of the polarizing film 1 and the retardation film 2 constitutes the polarizing plate 10 . A laminate of the polarizing plate 10 and the adhesive layer 3 constitutes the first intermediate M1. A laminate of the first intermediate M1 and the separator 4 constitutes the second intermediate M2. A laminate of the first intermediate M1 and the surface protective film 5 constitutes the third intermediate M3. Each component of the optical layered body 100 will be described below.
 [偏光フィルム1]
 偏光フィルム1は、偏光子11と、この偏光子11を保護する保護フィルム12、13とから構成されている。本実施形態では、偏光子11の両面に保護フィルム12、13が貼り合わせられているが、これに限るものではなく、偏光子11の少なくとも片面に保護フィルムが貼り合わせられていればよい。
[Polarizing film 1]
The polarizing film 1 is composed of a polarizer 11 and protective films 12 and 13 that protect the polarizer 11 . In this embodiment, the protective films 12 and 13 are laminated on both sides of the polarizer 11, but the present invention is not limited to this, and the protective film may be laminated on at least one side of the polarizer 11. FIG.
 (偏光子11)
 偏光子11は、代表的には、二色性物質を含む樹脂フィルムで構成される。
 樹脂フィルムとしては、偏光子として用いることができる任意の適切な樹脂フィルムを採用することができる。樹脂フィルムは、代表的には、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムである。
(Polarizer 11)
The polarizer 11 is typically composed of a resin film containing a dichroic substance.
Any appropriate resin film that can be used as a polarizer can be adopted as the resin film. The resin film is typically a polyvinyl alcohol-based resin (hereinafter referred to as "PVA-based resin") film.
 上記PVA系樹脂フィルムを形成するPVA系樹脂としては、任意の適切な樹脂を用いることができる。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。 Any appropriate resin can be used as the PVA-based resin forming the PVA-based resin film. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. An ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択することができる。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1,000 to 10,000, preferably 1,200 to 4,500, more preferably 1,500 to 4,300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 樹脂フィルムに含まれる二色性物質としては、例えば、ヨウ素、有機染料等が挙げられる。これらは、単独で、又は、二種以上を組み合わせて用いることができる。好ましくは、ヨウ素が用いられる。 Dichroic substances contained in resin films include, for example, iodine and organic dyes. These can be used alone or in combination of two or more. Iodine is preferably used.
 樹脂フィルムは、単層の樹脂フィルムであっても、二層以上の積層体であってもよい。 The resin film may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、PVA系樹脂フィルムにヨウ素による染色処理及び延伸処理(代表的には、一軸延伸処理)が施されたものが挙げられる。ヨウ素による染色処理は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することによって行われる。一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色後に行ってもよいし、染色しながら行ってもよい。また、延伸後に染色を行ってもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 A specific example of a polarizer composed of a single-layer resin film is a PVA-based resin film that is dyed with iodine and stretched (typically, uniaxially stretched). The dyeing treatment with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The draw ratio for uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after dyeing, or may be performed while dyeing. Moreover, you may dye after extending|stretching. If necessary, the PVA-based resin film is subjected to swelling treatment, cross-linking treatment, washing treatment, drying treatment, and the like.
 積層体から構成される偏光子の具体例としては、樹脂基材とこの樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、又は、樹脂基材とこの樹脂基材に塗布形成されたPVA系樹脂層との積層体から構成される偏光子が挙げられる。樹脂基材とこの樹脂基材に塗布形成されたPVA系樹脂層との積層体から構成される偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得た後、この積層体を延伸及び染色してPVA系樹脂層を偏光子とすることにより作製することができる。本実施形態において、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することを含んでもよい。得られた樹脂基材/偏光子の積層体は、そのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、この剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば、特開2012-73580号公報に記載されている。この公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer composed of a laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin base material. A polarizer composed of a laminate with a PVA-based resin layer formed by coating on a material can be mentioned. A polarizer composed of a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material can be obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material. After forming a PVA-based resin layer on the substrate to obtain a laminate of the resin substrate and the PVA-based resin layer, the laminate is stretched and dyed to make the PVA-based resin layer into a polarizer. can be done. In this embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, stretching may include stretching the laminate at a high temperature (eg, 95° C. or higher) in air before stretching in an aqueous boric acid solution, if necessary. The obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), or the resin substrate may be removed from the resin substrate/polarizer laminate. It may be peeled off, and any appropriate protective layer may be laminated on the peeled surface according to the purpose. Details of a method for manufacturing such a polarizer are described, for example, in Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子11の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~10μmであり、特に好ましくは3μm~8μmである。 The thickness of the polarizer 11 is preferably 15 μm or less, more preferably 1 μm to 12 μm, even more preferably 3 μm to 10 μm, particularly preferably 3 μm to 8 μm.
 偏光子11は、好ましくは、波長380nm~780nmの範囲内の何れかの波長で吸収二色性を示す。偏光子11の単体透過率は、好ましくは40.0%~45.0%であり、より好ましくは41.5%~43.5%である。偏光子11の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer 11 preferably exhibits absorption dichroism at any wavelength within the wavelength range of 380 nm to 780 nm. The single transmittance of the polarizer 11 is preferably 40.0% to 45.0%, more preferably 41.5% to 43.5%. The degree of polarization of the polarizer 11 is preferably 97.0% or higher, more preferably 99.0% or higher, still more preferably 99.9% or higher.
 (保護フィルム12、13)
 保護フィルム12、13としては、任意の適切な樹脂フィルムが用いられる。樹脂フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂及び/又はメタクリル系樹脂を意味する。保護フィルム12、13の形成材料は互いに同じであっても異なるものであってもよい。
(Protective films 12, 13)
Any appropriate resin film is used as the protective films 12 and 13 . Materials for forming the resin film include, for example, (meth)acrylic resins, cellulose resins such as diacetyl cellulose and triacetyl cellulose, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, and polyethylene terephthalate resins. ester-based resins, polyamide-based resins, polycarbonate-based resins, copolymer resins thereof, and the like. In addition, "(meth)acrylic resin" means an acrylic resin and/or a methacrylic resin. The materials for forming the protective films 12 and 13 may be the same or different.
 保護フィルム12、13の厚みは、代表的には10μm~100μmであり、好ましくは20μm~40μmである。保護フィルム12、13の厚みは互いに同じであっても異なるものであってもよい。 The thickness of the protective films 12 and 13 is typically 10 μm to 100 μm, preferably 20 μm to 40 μm. The protective films 12 and 13 may have the same thickness or different thicknesses.
 保護フィルム12、13の偏光子11と反対側の表面には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/又は、保護フィルム12、13の偏光子11と反対側の表面には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与する処理、超高位相差を付与する処理)が施されていてもよい。なお、表面処理が施されて表面処理層が形成される場合、保護フィルム12、13の厚みは、表面処理層を含めた厚みである。  The surfaces of the protective films 12 and 13 opposite to the polarizer 11 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc., if necessary. Further/or, the surfaces of the protective films 12 and 13 opposite to the polarizer 11 are optionally treated to improve visibility when viewed through polarized sunglasses (typically, (elliptical) A treatment for imparting a circular polarization function, a treatment for imparting an ultra-high retardation) may be performed. In addition, when surface treatment is performed and a surface treatment layer is formed, the thickness of the protective films 12 and 13 is the thickness including the surface treatment layer. 
 なお、保護フィルム12、13は、任意の適切な接着剤層(図示せず)を介して、それぞれ偏光子11に貼り合わせられて、積層されている。接着剤層を構成する接着剤として、代表的にはPVA系接着剤又は活性化エネルギー線硬化型接着剤が挙げられる。 In addition, the protective films 12 and 13 are laminated by bonding to the polarizer 11 via any appropriate adhesive layer (not shown). The adhesive constituting the adhesive layer is typically a PVA-based adhesive or an activated energy ray-curable adhesive.
 [位相差フィルム2]
 位相差フィルム2は、例えば、広視野角を付与する補償板であってもよいし、偏光膜と共に用いられて円偏光を生成するための1/2波長板や1/4波長板等の位相差板(円偏光板)であってもよい。位相差フィルム2の厚みは、例えば、1~200μmである。
[Retardation film 2]
The retardation film 2 may be, for example, a compensator that provides a wide viewing angle, or a half-wave plate or quarter-wave plate that is used together with a polarizing film to generate circularly polarized light. A retardation plate (circularly polarizing plate) may be used. The thickness of the retardation film 2 is, for example, 1 to 200 μm.
 位相差フィルム2は、例えば、重合性液晶を重合させることにより形成される層又は樹脂で形成される。重合性液晶とは、重合性基を有し、且つ、液晶性を有する化合物である。重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、光重合開始剤から発生した活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶が有する液晶性はサーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。
 また、位相差フィルム2を形成する樹脂としては、例えば、ポリアリレート、ポリアミド、ポリイミド、ポリエステル、ポリアリールエーテルケトン、ポリアミドイミド、ポリエステルイミド、ポリビニルアルコール、ポリフマル酸エステル、ポリエーテルサルフォン、ポリサルフォン、ノルボルネン樹脂、ポリカーボネート樹脂、セルロース樹脂及びポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。
The retardation film 2 is formed of, for example, a layer formed by polymerizing a polymerizable liquid crystal or a resin. A polymerizable liquid crystal is a compound having a polymerizable group and liquid crystallinity. A polymerizable group means a group that participates in a polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group means a group capable of participating in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred. The liquid crystallinity of the polymerizable liquid crystal may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order.
Examples of resins forming the retardation film 2 include polyarylates, polyamides, polyimides, polyesters, polyaryletherketones, polyamideimides, polyesterimides, polyvinyl alcohols, polyfumarates, polyethersulfones, polysulfones, and norbornenes. Resins, polycarbonate resins, cellulosic resins and polyurethanes may be mentioned. These resins may be used alone or in combination.
 なお、位相差フィルム2は、任意の適切な接着剤層又は粘着剤層(図示せず)を介して、偏光フィルム1(保護フィルム13)に貼り合わせられて、積層されている。接着剤層を構成する接着剤として、代表的にはPVA系接着剤又は活性化エネルギー線硬化型接着剤が挙げられる。 Note that the retardation film 2 is attached and laminated to the polarizing film 1 (protective film 13) via any appropriate adhesive layer or adhesive layer (not shown). The adhesive constituting the adhesive layer is typically a PVA-based adhesive or an activated energy ray-curable adhesive.
 [粘着剤層3]
 粘着剤層3は、セパレータ4の片面に粘着剤を塗布し、この塗布した粘着剤をオーブン等で加熱して乾燥させることで硬化して形成される。
 粘着剤の加熱温度は、100℃~160℃の範囲に設定することが好ましく、140℃~160℃の範囲に設定することがより好ましい。この加熱温度で、20秒~3分加熱することが好ましく、1分~3分加熱することがより好ましい。
[Adhesive layer 3]
The adhesive layer 3 is formed by applying an adhesive to one side of the separator 4 and curing the applied adhesive by heating and drying it in an oven or the like.
The heating temperature of the adhesive is preferably set in the range of 100°C to 160°C, more preferably set in the range of 140°C to 160°C. At this heating temperature, heating is preferably performed for 20 seconds to 3 minutes, more preferably 1 minute to 3 minutes.
 粘着剤層3を形成する粘着剤の具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、及び、ポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせ及び配合比、並びに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。透明性、加工性及び耐久性などの観点から、アクリル系粘着剤が好ましい。粘着剤層を構成する粘着剤の詳細は、例えば、特開2014-115468号公報に記載されており、当該公報の記載は本明細書に参考として援用されている。粘着剤層の厚みは、例えば10μm~100μmにすることができる。 Specific examples of adhesives forming the adhesive layer 3 include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. Adhesives are mentioned. By adjusting the type, number, combination and compounding ratio of the monomers forming the base resin of the adhesive, the compounding amount of the cross-linking agent, the reaction temperature, the reaction time, etc., a pressure-sensitive adhesive having desired properties according to the purpose. can be prepared. The base resin of the adhesive may be used alone or in combination of two or more. Acrylic pressure-sensitive adhesives are preferred from the viewpoint of transparency, workability, durability, and the like. Details of the adhesive constituting the adhesive layer are described, for example, in JP-A-2014-115468, and the description of the publication is incorporated herein by reference. The thickness of the adhesive layer can be, for example, 10 μm to 100 μm.
 [セパレータ4]
 セパレータ4としては、任意の適切なセパレータを採用することができる。具体例としては、剥離剤により表面コートされたプラスチックフィルム、不織布又は紙が挙げられる。剥離剤の具体例としては、シリコーン系剥離剤、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤が挙げられる。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルムが挙げられる。セパレータ4の厚みは、例えば10μm~100μmとすることができる。
[Separator 4]
Any appropriate separator can be adopted as the separator 4 . Specific examples include plastic films, non-woven fabrics or papers surface-coated with a release agent. Specific examples of release agents include silicone-based release agents, fluorine-based release agents, and long-chain alkyl acrylate-based release agents. Specific examples of plastic films include polyethylene terephthalate (PET) films, polyethylene films, and polypropylene films. The thickness of the separator 4 can be, for example, 10 μm to 100 μm.
 [表面保護フィルム5]
 表面保護フィルム5は、代表的には、基材と粘着剤層とを有する。本実施形態において、表面保護フィルム5の厚みは、例えば30μm以上である。表面保護フィルム5の厚みの上限は、例えば150μmである。なお、本明細書において、「表面保護フィルムの厚み」とは、基材と粘着剤層との合計厚みをいう。
[Surface protection film 5]
The surface protective film 5 typically has a substrate and an adhesive layer. In this embodiment, the thickness of the surface protective film 5 is, for example, 30 μm or more. The upper limit of the thickness of the surface protective film 5 is, for example, 150 μm. In addition, in this specification, "the thickness of a surface protection film" means the total thickness of a base material and an adhesive layer.
 基材は、任意の適切な樹脂フィルムで構成することができる。樹脂フィルムの形成材料としては、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。好ましくは、エステル系樹脂(特に、ポリエチレンテレフタレート系樹脂)である。 The base material can be composed of any suitable resin film. Materials for forming the resin film include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. is mentioned. Ester-based resins (especially polyethylene terephthalate-based resins) are preferred.
 粘着剤層を形成する粘着剤としては、任意の適切な粘着剤を採用することができる。粘着剤のベース樹脂としては、例えば、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂、ウレタン系樹脂、ゴム系樹脂が挙げられる。 Any appropriate adhesive can be adopted as the adhesive that forms the adhesive layer. Examples of base resins for adhesives include acrylic resins, styrene resins, silicone resins, urethane resins, and rubber resins.
 <本実施形態に係る製造方法>
 以上に説明した構成を有する光学積層体100を製造するための本実施形態に係る光学積層体100の製造方法について、以下に説明する。
 図2は、本実施形態に係る光学積層体100の製造方法の概略工程を示すフロー図である。
 図2に示すように、本実施形態に係る製造方法は、偏光フィルム製造工程ST1と、位相差フィルム貼合工程ST2と、セパレータ貼合工程ST3と、検査工程(本発明の第2のセパレータ剥離・貼合工程を兼ねる)ST4と、表面保護フィルム貼合工程ST5と、第1のセパレータ剥離・貼合工程ST6と、を含む。以下、各工程ST1~ST6について説明する。
<Manufacturing method according to the present embodiment>
A method for manufacturing the optical layered body 100 according to the present embodiment for manufacturing the optical layered body 100 having the configuration described above will be described below.
FIG. 2 is a flowchart showing schematic steps of the method for manufacturing the optical layered body 100 according to this embodiment.
As shown in FIG. 2, the manufacturing method according to the present embodiment includes a polarizing film manufacturing step ST1, a retardation film bonding step ST2, a separator bonding step ST3, and an inspection step (the second separator peeling of the present invention). (also serving as a bonding step) ST4, a surface protective film bonding step ST5, and a first separator peeling/bonding step ST6. Each step ST1 to ST6 will be described below.
 [偏光フィルム製造工程ST1]
 偏光フィルム製造工程ST1では、長尺帯状の樹脂フィルムを原反フィルムとして、この原反フィルムを長手方向(MD方向)に搬送しながら各種の処理浴に浸漬させて、染色処理や延伸処理等の各種の処理を施すことによって、長尺帯状の偏光子11を製造する。そして、長尺帯状の偏光子11に長尺帯状の保護フィルム12、13を貼り合わせることで、長尺帯状の偏光フィルム1を製造する。
[Polarizing film manufacturing process ST1]
In the polarizing film manufacturing step ST1, a long belt-shaped resin film is used as a raw film, and this raw film is immersed in various treatment baths while being conveyed in the longitudinal direction (MD direction), and subjected to dyeing treatment, stretching treatment, etc. A long band-shaped polarizer 11 is manufactured by performing various treatments. Then, the long belt-shaped polarizing film 1 is manufactured by bonding the long belt-shaped protective films 12 and 13 to the long belt-shaped polarizer 11 .
 [位相差フィルム貼合工程ST2]
 位相差フィルム貼合工程ST2では、長尺帯状の偏光フィルム1の片面(保護フィルム13)に長尺帯状の位相差フィルム2を貼り合わせることで、長尺帯状の偏光板10を製造する。
 なお、光学積層体100が位相差フィルム2を備えない(偏光板10が位相差フィルム2を備えない)場合には、位相差フィルム貼合工程ST2は不要である。
[Retardation film bonding step ST2]
In the retardation film bonding step ST2, the long belt-like polarizing plate 10 is manufactured by bonding the long belt-like retardation film 2 to one side (protective film 13) of the long belt-like polarizing film 1.
When the optical layered body 100 does not include the retardation film 2 (the polarizing plate 10 does not include the retardation film 2), the retardation film bonding step ST2 is unnecessary.
 [セパレータ貼合工程ST3]
 セパレータ貼合工程ST3では、長尺帯状のセパレータ4を長手方向(MD方向)に搬送しながら粘着剤を塗布し、この塗布した粘着剤をオーブン等で加熱して乾燥させることで硬化させ、粘着剤層3を形成する粘着剤層形成工程を実行する。そして、長尺帯状のセパレータ4に形成された粘着剤層3を介してセパレータ4を長尺帯状の偏光板10に貼り合わせる。具体的には、長尺帯状のセパレータ4(粘着剤層3付きセパレータ4)の粘着剤層3側を長尺帯状の偏光板10の片面(位相差フィルム2)に貼り合わせる。これにより、偏光板10と粘着剤層3とセパレータ4とが積層された第2中間体M2を製造する。
[Separator bonding step ST3]
In the separator bonding step ST3, an adhesive is applied while conveying the long belt-shaped separator 4 in the longitudinal direction (MD direction), and the applied adhesive is dried by heating in an oven or the like to be cured and adhered. An adhesive layer forming step for forming the adhesive layer 3 is performed. Then, the separator 4 is attached to the long strip-shaped polarizing plate 10 via the adhesive layer 3 formed on the long strip-shaped separator 4 . Specifically, the adhesive layer 3 side of the long strip-shaped separator 4 (separator 4 with the adhesive layer 3 ) is attached to one side (retardation film 2 ) of the long strip-shaped polarizing plate 10 . Thereby, the second intermediate M2 in which the polarizing plate 10, the adhesive layer 3 and the separator 4 are laminated is manufactured.
 [検査工程(第2のセパレータ剥離・貼合工程)ST4]
 本実施形態の検査工程ST4は、表面保護フィルム貼合工程ST5の前に実行される。検査工程ST4では、長尺帯状のセパレータ4を粘着剤層3から剥離(セパレータ4と偏光板10との間に介在する粘着剤層3を偏光板10側に残したまま、セパレータ4のみを剥離)した後、偏光板10を検査する。そして、偏光板10を検査した後、剥離したセパレータ4を再び偏光板10に貼り合わせることで、元の第2中間体M2の状態に戻す。
[Inspection step (second separator peeling/bonding step) ST4]
Inspection process ST4 of this embodiment is performed before surface protective film bonding process ST5. In the inspection step ST4, the long belt-shaped separator 4 is peeled off from the adhesive layer 3 (while the adhesive layer 3 interposed between the separator 4 and the polarizing plate 10 remains on the polarizing plate 10 side, only the separator 4 is peeled off. ), the polarizing plate 10 is inspected. Then, after the polarizing plate 10 is inspected, the separated separator 4 is attached to the polarizing plate 10 again to restore the original state of the second intermediate M2.
 図3は、検査工程ST4を実行する装置の概略構成例を模式的に示す側面図(各フィルムの搬送方向に直交する水平方向から見た図)である。図3に示す矢符は、各フィルムの搬送方向を意味する。
 検査工程ST4では、前述のようにセパレータ貼合工程ST3で製造された第2中間体M2が、図3に示す繰出ローラR1に巻回されて、装置の最上流側(第2中間体M2の搬送方向最上流側)に配置される。そして、繰出ローラR1から繰り出された第2中間体M2が剥離ローラR2に向けて搬送される。剥離ローラR2では、第2中間体M2からセパレータ4が剥離され、剥離されたセパレータ4は貼合ローラR3に向けて搬送される。
FIG. 3 is a side view (viewed from the horizontal direction orthogonal to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs the inspection step ST4. The arrows shown in FIG. 3 mean the transport direction of each film.
In the inspection step ST4, the second intermediate M2 manufactured in the separator bonding step ST3 as described above is wound around the feeding roller R1 shown in FIG. (most upstream side in the conveying direction). Then, the second intermediate M2 delivered from the delivery roller R1 is conveyed toward the separation roller R2. The separation roller R2 separates the separator 4 from the second intermediate M2, and the separated separator 4 is conveyed toward the bonding roller R3.
 一方、剥離ローラR2によって第2中間体M2からセパレータ4が剥離されることで得られた、偏光板10と粘着剤層3との積層体である第1中間体M1は、検査装置20によって検査される。
 図3に示す検査装置20は、透過検査を行う装置であり、光源20aと、撮像手段20bと、演算手段(図示せず)と、を備える。検査装置20の撮像手段20bが、光源20aから出射し、第1中間体M1を透過した光を受光して結像し、その光量に応じた電気信号を撮像信号として演算手段に出力する。演算手段は、この入力された撮像信号に基づき、透過画像を生成する。そして、演算手段は、生成された透過画像に対して、他の画素領域と輝度値(画素値)が異なる画素領域を抽出する2値化等の公知の画像処理を適用することで、第1中間体M1(偏光板10)に存在する欠点を検出する。
 なお、検査工程ST4で行われる検査は、上記の透過検査に限定されるものではない。偏光板10が備える偏光子11の偏光軸に対してクロスニコルになるように配置された検査用偏光フィルタ及び第1中間体M1を透過する光によってクロスニコル画像を生成し、このクロスニコル画像に基づき、第1中間体M1(偏光板10)に存在する欠点を検出するクロスニコル検査を採用することも可能である。また、第1中間体M1で反射する光によって反射画像を生成し、この反射画像に基づき、第1中間体M1(偏光板10)に存在する欠点を検出する反射検査を採用することも可能である。さらに、透過検査、クロスニコル検査及び反射検査のうちの任意の検査の組み合わせを実行することも可能である。
On the other hand, the first intermediate M1, which is a laminate of the polarizing plate 10 and the adhesive layer 3, obtained by peeling the separator 4 from the second intermediate M2 by the peeling roller R2, is inspected by the inspection device 20. be done.
The inspection apparatus 20 shown in FIG. 3 is an apparatus that performs transmission inspection, and includes a light source 20a, an imaging means 20b, and a calculation means (not shown). The imaging means 20b of the inspection apparatus 20 receives the light emitted from the light source 20a and transmitted through the first intermediate M1 to form an image, and outputs an electric signal corresponding to the amount of light to the arithmetic means as an imaging signal. The computing means generates a transmission image based on the input imaging signal. Then, the computing means applies known image processing such as binarization for extracting a pixel region having a luminance value (pixel value) different from that of other pixel regions to the generated transparent image, thereby obtaining the first Defects present in the intermediate M1 (polarizing plate 10) are detected.
The inspection performed in the inspection step ST4 is not limited to the transmission inspection described above. A crossed Nicols image is generated by the light passing through the inspection polarizing filter and the first intermediate M1 arranged so as to be crossed Nicols with respect to the polarization axis of the polarizer 11 provided in the polarizing plate 10, and the crossed Nicols image is obtained. Based on this, it is also possible to employ a crossed Nicols inspection for detecting defects present in the first intermediate M1 (polarizing plate 10). Further, it is also possible to adopt reflection inspection for generating a reflection image by light reflected by the first intermediate M1 and detecting defects present in the first intermediate M1 (polarizing plate 10) based on this reflection image. be. Furthermore, it is also possible to perform any combination of transmission, crossed Nicols and reflex inspections.
 検査装置20によって検査された後の第1中間体M1は、貼合ローラR3に向けて搬送される。そして、貼合ローラR3によって、セパレータ4が第1中間体M1に再び貼り合わされる。すなわち、第1中間体M1を構成する粘着剤層3を介して、セパレータ4が第1中間体M1を構成する偏光板10に貼り合わされる。これにより第2中間体M2が製造され、巻取ローラR4で巻き取られる。繰出ローラR1から繰り出された第2中間体M2のセパレータ4も、巻取ローラR4で巻き取られる第2中間体M2のセパレータ4も、同じセパレータ4である。 After being inspected by the inspection device 20, the first intermediate M1 is conveyed toward the bonding roller R3. Then, the separator 4 is again bonded to the first intermediate M1 by the bonding roller R3. That is, the separator 4 is attached to the polarizing plate 10 forming the first intermediate M1 via the adhesive layer 3 forming the first intermediate M1. Thereby, the second intermediate M2 is manufactured and wound up by the winding roller R4. The separator 4 of the second intermediate M2 fed out from the feeding roller R1 and the separator 4 of the second intermediate M2 wound up by the winding roller R4 are the same separators 4 .
 [表面保護フィルム貼合工程ST5]
 表面保護フィルム貼合工程ST5は、第1のセパレータ剥離・貼合工程ST6の前に実行される。表面保護フィルム貼合工程ST5では、長尺帯状の第2中間体M2に長尺帯状の表面保護フィルム5を貼り合わせる。具体的には、第2中間体M2を構成する偏光板10のセパレータ4が貼り合わせられた側とは反対側の面に、長尺帯状の表面保護フィルム5が貼り合わせられる。これにより、長尺帯状の光学積層体100が製造される。
[Surface protective film bonding step ST5]
The surface protection film bonding step ST5 is performed before the first separator peeling/bonding step ST6. In the surface protection film bonding step ST5, the surface protection film 5 in a long belt shape is bonded to the second intermediate body M2 in a long belt shape. Specifically, a surface protective film 5 in the form of a long strip is attached to the surface of the polarizing plate 10 constituting the second intermediate M2 opposite to the side to which the separator 4 is attached. As a result, the long strip-shaped optical layered body 100 is manufactured.
 [第1のセパレータ剥離・貼合工程ST6]
 第1のセパレータ剥離・貼合工程ST6では、長尺帯状の光学積層体100に対して、長尺帯状のセパレータ4を粘着剤層3から剥離(セパレータ4と偏光板10との間に介在する粘着剤層3を偏光板10側に残したまま、セパレータ4のみを剥離)した後、長尺帯状のセパレータ4を粘着剤層3を介して偏光板10に貼り合わせることで、元の光学積層体100の状態に戻す。
[First separator peeling/bonding step ST6]
In the first separator peeling/bonding step ST6, the long strip-shaped separator 4 is peeled from the adhesive layer 3 of the long strip-shaped optical layered body 100 (interposed between the separator 4 and the polarizing plate 10). After peeling off only the separator 4 while leaving the adhesive layer 3 on the polarizing plate 10 side, the long strip-shaped separator 4 is attached to the polarizing plate 10 via the adhesive layer 3, thereby restoring the original optical laminate. Return to body 100.
 図4は、第1のセパレータ剥離・貼合工程ST6を実行する装置の概略構成例を模式的に示す側面図(各フィルムの搬送方向に直交する水平方向から見た図)である。図4に示す矢符は、各フィルムの搬送方向を意味する。
 第1のセパレータ剥離・貼合工程ST6では、前述のように表面保護フィルム貼合工程ST5で製造された光学積層体100が、図4に示す繰出ローラR5に巻回されて、装置の最上流側(光学積層体100の搬送方向最上流側)に配置される。そして、繰出ローラR5から繰り出された光学積層体100が剥離ローラR6に向けて搬送される。剥離ローラR6では、光学積層体100からセパレータ4が剥離され、剥離されたセパレータ4は貼合ローラR7に向けて搬送される。
FIG. 4 is a side view (viewed from the horizontal direction orthogonal to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs the first separator peeling/bonding step ST6. The arrows shown in FIG. 4 indicate the transport direction of each film.
In the first separator peeling/bonding step ST6, the optical layered body 100 manufactured in the surface protective film bonding step ST5 as described above is wound around a delivery roller R5 shown in FIG. side (the most upstream side in the conveying direction of the optical layered body 100). Then, the optical layered body 100 delivered from the delivery roller R5 is conveyed toward the separation roller R6. The separation roller R6 separates the separator 4 from the optical layered body 100, and the separated separator 4 is conveyed toward the bonding roller R7.
 一方、剥離ローラR6によって光学積層体100からセパレータ4が剥離されることで得られた、表面保護フィルム5と偏光板10と粘着剤層3との積層体である第3中間体M3も、貼合ローラR7に向けて搬送される。そして、貼合ローラR7によって、セパレータ4が第3中間体M3に再び貼り合わされる。すなわち、第3中間体M3を構成する粘着剤層3を介して、セパレータ4が第3中間体M3を構成する偏光板10に貼り合わされる。これにより光学積層体100が製造され、巻取ローラR8で巻き取られる。繰出ローラR5から繰り出された光学積層体100のセパレータ4も、巻取ローラR8で巻き取られる光学積層体100のセパレータ4も、同じセパレータ4である。
 本実施形態に係る製造方法は、第1のセパレータ剥離・貼合工程ST6を含むことで、セパレータ4の剥離とセパレータ4の貼り合わせとが行なわれる。換言すれば、貼り合わせるセパレータ4が剥離されるセパレータ4と同じであったとしても、セパレータ4の凹凸が延ばされた状態での偏光板10への貼り合わせが行なわれる。そして、第1のセパレータ剥離・貼合工程ST6を表面保護フィルム貼合工程ST5の後に行うため、剛性の高い積層体(第3中間体M3)に凹凸が延ばされた状態のセパレータ4を貼り合わせることになり、セパレータ4が収縮した状態に戻ろうとする力が作用しても、カールを抑制可能である。
 また、本実施形態に係る製造方法は、第2のセパレータ剥離・貼合工程としての検査工程ST4を含むことで、表面保護フィルム貼合工程ST5の後だけではなく、表面保護フィルム貼合工程ST5の前にも、セパレータ4の剥離とセパレータ4の貼り合わせとが行なわれる。このため、より一層、カールを抑制可能である。
On the other hand, the third intermediate M3, which is a laminate of the surface protective film 5, the polarizing plate 10, and the adhesive layer 3 obtained by peeling the separator 4 from the optical laminate 100 by the peeling roller R6, was also applied. It is conveyed toward the joining roller R7. Then, the separator 4 is again bonded to the third intermediate M3 by the bonding roller R7. That is, the separator 4 is attached to the polarizing plate 10 forming the third intermediate M3 via the adhesive layer 3 forming the third intermediate M3. Thus, the optical laminate 100 is manufactured and wound up by the winding roller R8. The separator 4 of the optical layered body 100 delivered from the delivery roller R5 and the separator 4 of the optical layered body 100 taken up by the take-up roller R8 are the same separators 4 .
Since the manufacturing method according to the present embodiment includes the first separator peeling/bonding step ST6, peeling of the separator 4 and bonding of the separator 4 are performed. In other words, even if the separator 4 to be bonded is the same as the separator 4 to be peeled off, the separator 4 is bonded to the polarizing plate 10 in a state in which the unevenness of the separator 4 is extended. Since the first separator peeling/bonding step ST6 is performed after the surface protection film bonding step ST5, the separator 4 with the unevenness extended is attached to the highly rigid laminate (third intermediate M3). As a result, curling can be suppressed even if a force acts to return the separator 4 to the contracted state.
In addition, since the manufacturing method according to the present embodiment includes the inspection step ST4 as the second separator peeling/bonding step, the inspection step ST4 is performed not only after the surface protective film bonding step ST5 but also after the surface protective film bonding step ST5. , separation of the separator 4 and bonding of the separator 4 are also performed. Therefore, it is possible to further suppress curling.
 本実施形態では、第1のセパレータ剥離・貼合工程ST6において、長尺帯状のセパレータ4を剥離してから長尺帯状のセパレータ4を貼り合わせるまでの時間が1分以内、好ましくは45秒以内、より好ましくは30秒以内である。具体的には、図4に示すように、剥離ローラR6から貼合ローラR7までの光学積層体100の搬送経路の長さをLとし、搬送速度をVとすると、L/V≦1分(好ましくは45秒、より好ましくは30秒)となるように、搬送経路の長さLや搬送速度Vが設定されている。
 このように、本実施形態では、セパレータ4を剥離してからセパレータ4を貼り合わせるまでの時間、換言すれば、粘着剤層3が剥き出しになる時間が短いため、例えば季節的な影響や日中又は夜間の影響で、第1のセパレータ剥離・貼合工程ST6内の湿度が変化しても、偏光板10が粘着剤層3側から雰囲気中の水分を吸収して膨潤することに起因して発生するカールのばらつきを抑制可能である。
In the present embodiment, in the first separator peeling/bonding step ST6, the time from peeling the long strip-shaped separator 4 to sticking the long strip-shaped separator 4 is within 1 minute, preferably within 45 seconds. , and more preferably within 30 seconds. Specifically, as shown in FIG. 4, when the length of the transport path of the optical layered body 100 from the peeling roller R6 to the bonding roller R7 is L, and the transport speed is V, L/V≤1 minute ( The length L of the conveying path and the conveying speed V are set so that the time is preferably 45 seconds, more preferably 30 seconds.
Thus, in the present embodiment, the time from peeling off the separator 4 to bonding the separator 4 together, in other words, the time during which the pressure-sensitive adhesive layer 3 is exposed is short. Or, even if the humidity in the first separator peeling/bonding step ST6 changes due to the influence of nighttime, the polarizing plate 10 absorbs moisture in the atmosphere from the adhesive layer 3 side and swells. It is possible to suppress variations in curls that occur.
 以下、貼合ローラR7による第3中間体M3とセパレータ4との貼り合わせについて、より具体的に説明する。
 図5は、貼合ローラR7による第3中間体M3とセパレータ4との貼り合わせを説明する説明図である。図5に示すように、貼合ローラR7は、対向する一対の第1ローラR71と第2ローラR72とから構成されている。第1ローラR71は、セパレータ4に接触して、第1ローラR71と第2ローラR72との間にセパレータ4を搬送するローラである。第1ローラR71の表面は、金属(例えば、鉄)から形成されている。第2ローラR72は、第3中間体M3に接触して、第1ローラR71と第2ローラR72との間に第3中間体M3を搬送するローラである。第2ローラR72の表面は、樹脂(例えば、ゴム)から形成されている。
The lamination of the third intermediate M3 and the separator 4 by the lamination roller R7 will be described in more detail below.
FIG. 5 is an explanatory diagram illustrating bonding of the third intermediate M3 and the separator 4 by the bonding roller R7. As shown in FIG. 5, the bonding roller R7 is comprised from a pair of 1st roller R71 and 2nd roller R72 which oppose. The 1st roller R71 is a roller which contacts the separator 4 and conveys the separator 4 between the 1st roller R71 and the 2nd roller R72. The surface of the first roller R71 is made of metal (for example, iron). The second roller R72 is a roller that contacts the third intermediate M3 and conveys the third intermediate M3 between the first roller R71 and the second roller R72. The surface of the second roller R72 is made of resin (for example, rubber).
 図5に示すように、第1ローラR71の回転中心C1と第2ローラR72の回転中心C2とを通る直線(仮想直線)を直線CLとする。直線CLに直交し、貼合ローラR7の出側(図5の右側)に向いたベクトル(仮想ベクトル)をベクトルVCとする。このとき、セパレータ4の貼合ローラR7への進入角度αは、ベクトルVCと、貼合ローラR7に接触するまでのセパレータ4の進行方向を示すベクトルとの成す角度を意味する。また、第3中間体M3の貼合ローラR7への進入角度(偏光板10の貼合ローラR7への進入角度に相当)βは、ベクトルVCと、貼合ローラR7に接触するまでの第3中間体M3の進行方向(偏光板10の進行方向に相当)を示すベクトルとの成す角度を意味する。
 本実施形態では、進入角度α及び進入角度βの双方が90°未満に設定されている。図4では、便宜上、α=90°、β=0°で図示しているが、実際には、α<90°、β<90°であり、好ましくは、10°<α<80°であり、より好ましくは、20°<α<50°である。また、好ましくは、0°<β<80°であり、より好ましくは、0°<β<75°である。進入角度αを大きくすることで、第3中間体M3(偏光板10)の搬送性が向上する。
As shown in FIG. 5, a straight line (virtual straight line) passing through the center of rotation C1 of the first roller R71 and the center of rotation C2 of the second roller R72 is defined as a straight line CL. Let a vector (virtual vector) orthogonal to the straight line CL and directed to the output side of the bonding roller R7 (right side in FIG. 5) be a vector VC. At this time, the entrance angle α of the separator 4 to the bonding roller R7 means the angle between the vector VC and the vector indicating the traveling direction of the separator 4 until it contacts the bonding roller R7. Further, the entrance angle of the third intermediate M3 to the bonding roller R7 (corresponding to the entrance angle of the polarizing plate 10 to the bonding roller R7) β is the vector VC and the third It means an angle formed with a vector indicating the traveling direction of the intermediate M3 (corresponding to the traveling direction of the polarizing plate 10).
In this embodiment, both the approach angle α and the approach angle β are set to less than 90°. Although α=90° and β=0° are shown in FIG. 4 for convenience, in reality, α<90° and β<90°, preferably 10°<α<80°. , more preferably 20°<α<50°. Also, preferably 0°<β<80°, more preferably 0°<β<75°. By increasing the approach angle α, the transportability of the third intermediate M3 (polarizing plate 10) is improved.
 本発明者らの知見によれば、セパレータ4の貼合ローラR7への進入角度αが大きい(90°以上である)と、TD方向のカールで且つマイナスのカール(セパレータ4の位置する側が凹状になるカール)が大きくなり、第3中間体M3(偏光板10)の貼合ローラR7への進入角度βが大きい(90°以上である)と、TD方向のカールで且つプラスのカール(セパレータ4の位置する側が凸状になるカール)が大きくなる。
 したがって、上記のように、α<90°、β<90°とすることで、カールをより一層抑制可能である。
According to the findings of the present inventors, when the entrance angle α of the separator 4 to the bonding roller R7 is large (90° or more), the curl is in the TD direction and the curl is negative (the side on which the separator 4 is positioned is concave). When the angle β of the third intermediate M3 (polarizing plate 10) entering the bonding roller R7 is large (90° or more), the curl in the TD direction and the positive curl (separator The curl that becomes convex on the side where 4 is located increases.
Therefore, by setting α<90° and β<90° as described above, curling can be further suppressed.
 なお、本実施形態では、第1のセパレータ剥離・貼合工程ST6において、剥離したセパレータ4と貼り合わせるセパレータ4とが同じセパレータ4である場合を例に挙げて説明したが、本発明はこれに限定されるものではない。第1のセパレータ剥離・貼合工程ST6において、剥離したセパレータ4と貼り合わせるセパレータ4とが異なるセパレータ4であってもよい。以下、剥離したセパレータ4と貼り合わせるセパレータ4とが異なる第1のセパレータ剥離・貼合工程ST6の変形例について説明する。 In this embodiment, in the first separator peeling/bonding step ST6, the case where the separated separator 4 and the separator 4 to be bonded are the same separator 4 has been described as an example, but the present invention is not limited to this. It is not limited. In the first separator peeling/bonding step ST6, the separated separator 4 and the bonded separator 4 may be different separators 4 . A modification of the first separator peeling/bonding step ST6 in which the peeled separator 4 and the separator 4 to be bonded are different will be described below.
 第1のセパレータ剥離・貼合工程ST6の変形例では、剥離したセパレータ4と異なる新しいセパレータ4を粘着剤層3を介して偏光板10に貼り合わせる。以下、適宜、剥離するセパレータ4(検査工程ST4で貼り合わせたセパレータ4)を「セパレータ4a」と称し、第1のセパレータ剥離・貼合工程ST6の変形例で貼り合わせる新しいセパレータ4を「セパレータ4b」と称して、両者を区別する。 In the modified example of the first separator peeling/bonding step ST6, a new separator 4 different from the peeled separator 4 is bonded to the polarizing plate 10 with the adhesive layer 3 interposed therebetween. Hereinafter, the separator 4 to be peeled (separator 4 bonded in the inspection step ST4) will be referred to as “separator 4a”, and the new separator 4 bonded in the modified example of the first separator peeling and bonding step ST6 will be referred to as “separator 4b. ” to distinguish between the two.
 図6は、第1のセパレータ剥離・貼合工程ST6の変形例を実行する装置の概略構成例を模式的に示す側面図(各フィルムの搬送方向に直交する水平方向から見た図)である。図6に示す矢符は、各フィルムの搬送方向を意味する。
 第1のセパレータ剥離・貼合工程ST6の変形例では、前述のように表面保護フィルム貼合工程ST5で製造された光学積層体100が、図6に示す繰出ローラR9に巻回されて、装置の最上流側(光学積層体100の搬送方向最上流側)に配置される。そして、繰出ローラR9から繰り出された光学積層体100が剥離ローラR10に向けて搬送される。剥離ローラR10では、光学積層体100からセパレータ4aが剥離され、剥離されたセパレータ4aは巻取ローラR11で巻き取られる。
FIG. 6 is a side view (viewed from the horizontal direction orthogonal to the conveying direction of each film) schematically showing an example of the schematic configuration of an apparatus that performs a modification of the first separator peeling/bonding step ST6. . The arrows shown in FIG. 6 indicate the transport direction of each film.
In the modified example of the first separator peeling/bonding step ST6, the optical layered body 100 manufactured in the surface protection film bonding step ST5 as described above is wound around a delivery roller R9 shown in FIG. (the most upstream side in the conveying direction of the optical layered body 100). Then, the optical layered body 100 delivered from the delivery roller R9 is conveyed toward the separation roller R10. The separation roller R10 separates the separator 4a from the optical layered body 100, and the separated separator 4a is taken up by the take-up roller R11.
 一方、剥離ローラR10によって光学積層体100からセパレータ4aが剥離されることで得られた、表面保護フィルム5と偏光板10と粘着剤層3との積層体である第3中間体M3は、貼合ローラR12に向けて搬送される。また、繰出ローラR13に巻回された新しいセパレータ(すなわち、粘着剤層3を形成するための加熱を施していないために、凹凸の生じ難いセパレータ)4bが用意され、このセパレータ4bが繰出ローラR13から繰り出されて貼合ローラR12に向けて搬送される。そして、貼合ローラR12によって、セパレータ4bが第3中間体M3に貼り合わされる。すなわち、第3中間体M3を構成する粘着剤層3を介して、セパレータ4bが第3中間体M3を構成する偏光板10に貼り合わされる。これにより光学積層体100が製造され、巻取ローラR14で巻き取られる。繰出ローラR9から繰り出された光学積層体100のセパレータ4はセパレータ4aであるが、巻取ローラR14で巻き取られる光学積層体100のセパレータ4はセパレータ4bである。
 第1のセパレータ剥離・貼合工程ST6の変形例によれば、剥離したセパレータ4aと異なる新しいセパレータ4bを貼り合わせるため、より一層、カールを抑制可能である。
 なお、本変形例では、第1のセパレータ剥離・貼合工程ST6の変形例において偏光板10に貼り合わされる新しいセパレータ4bの弾性率(TD方向の弾性率)は、例えば6000[N/mm]以上である一方、セパレータ貼合工程ST3の粘着剤層形成工程後(すなわち、加熱後)のセパレータ4aの弾性率(TD方向の弾性率)は、例えば6000[N/mm]未満であり、セパレータ4bの弾性率の方が、セパレータ4aの弾性率よりも高い。セパレータ4bの弾性率の方が、セパレータ4aの弾性率よりも高ければ、第1のセパレータ剥離・貼合工程ST6の変形例で貼り合わせられる(貼り替えられる)新しいセパレータ4bは収縮し難いため、より一層、カールを抑制可能である。セパレータ4bの弾性率(TD方向の弾性率)の上限は特に限定されないが、例えば、7000[N/mm]以下であり、6500[N/mm]以下であることが好ましい。セパレータ4aの弾性率(TD方向の弾性率)の下限は特に限定されないが、例えば、5000[N/mm]以上であり、5500[N/mm]以上であることが好ましい。
 上記の弾性率は、例えば、島津製作所社製の引張試験機「オートグラフ」を用いて測定可能である。具体的には、セパレータ4a、4b単体から、それぞれ幅(MD方向の寸法)10mmで、長さ(TD方向の寸法)100mmのサンプルを切り出し、このサンプルをオートグラフにセットして、TD方向に50mm/minの速度で引っ張り、サンプルを所定量だけ伸ばすために掛けた力[N]に基づき、弾性率を算出することが可能である。
On the other hand, the third intermediate M3, which is a laminate of the surface protective film 5, the polarizing plate 10, and the adhesive layer 3, obtained by peeling the separator 4a from the optical layered body 100 by the peeling roller R10, It is conveyed toward the joining roller R12. In addition, a new separator 4b wound around the delivery roller R13 (that is, a separator that is less likely to be uneven because it is not heated for forming the adhesive layer 3) is prepared. , and conveyed toward the bonding roller R12. Then, the separator 4b is bonded to the third intermediate M3 by the bonding roller R12. That is, the separator 4b is attached to the polarizing plate 10 forming the third intermediate M3 via the adhesive layer 3 forming the third intermediate M3. Thus, the optical layered body 100 is manufactured and wound up by the winding roller R14. The separator 4 of the optical layered body 100 delivered from the delivery roller R9 is the separator 4a, but the separator 4 of the optical layered body 100 wound up by the take-up roller R14 is the separator 4b.
According to the modification of the first separator peeling/bonding step ST6, curling can be further suppressed because a new separator 4b different from the peeled separator 4a is bonded.
In this modified example, the elastic modulus (elastic modulus in the TD direction) of the new separator 4b bonded to the polarizing plate 10 in the modified example of the first separator peeling/bonding step ST6 is, for example, 6000 [N/mm 2 ]. ] On the other hand, the elastic modulus (elastic modulus in the TD direction) of the separator 4a after the pressure-sensitive adhesive layer forming step (that is, after heating) in the separator bonding step ST3 is, for example, less than 6000 [N/mm 2 ]. , the elastic modulus of the separator 4b is higher than that of the separator 4a. If the elastic modulus of the separator 4b is higher than the elastic modulus of the separator 4a, the new separator 4b that is bonded (re-bonded) in the modified example of the first separator peeling/bonding step ST6 is difficult to shrink. Curling can be suppressed even more. Although the upper limit of the elastic modulus (the elastic modulus in the TD direction) of the separator 4b is not particularly limited, it is, for example, 7000 [N/mm 2 ] or less, preferably 6500 [N/mm 2 ] or less. Although the lower limit of the elastic modulus (the elastic modulus in the TD direction) of the separator 4a is not particularly limited, it is, for example, 5000 [N/mm 2 ] or more, preferably 5500 [N/mm 2 ] or more.
The elastic modulus can be measured using, for example, a tensile tester "Autograph" manufactured by Shimadzu Corporation. Specifically, from the separators 4a and 4b alone, a sample with a width (dimension in the MD direction) of 10 mm and a length (dimension in the TD direction) of 100 mm is cut out, and this sample is set in an autograph, and is measured in the TD direction. The elastic modulus can be calculated based on the force [N] applied to stretch the sample by a predetermined amount by pulling it at a speed of 50 mm/min.
 第1のセパレータ剥離・貼合工程ST6の変形例でも、図4及び図5を参照して説明した第1のセパレータ剥離・貼合工程ST6と同様に、剥離ローラR10でセパレータ4aを剥離してから、貼合ローラR12でセパレータ4bを貼り合わせるまでの時間は1分以内、好ましくは45秒以内、より好ましくは30秒以内である。また、第1のセパレータ剥離・貼合工程ST6の変形例でも、貼合ローラR12を構成する一対の対向するローラのうち、セパレータ4bに接触して、一対のローラ間にセパレータ4bを搬送するローラの表面は、金属(例えば、鉄)から形成されている。第3中間体M3に接触して、一対のローラ間に第3中間体M3を搬送するローラの表面は、樹脂(例えば、ゴム)から形成されている。さらに、第1のセパレータ剥離・貼合工程ST6の変形例でも、セパレータ4bの貼合ローラR12への進入角度α及び第3中間体M3(偏光板10)の貼合ローラR12への進入角度βの双方が90°未満に設定されている。これらにより、第1のセパレータ剥離・貼合工程ST6の変形例でも、カールをより一層抑制可能である。セパレータ4bの貼合ローラR12への進入角度α及び第3中間体M3(偏光板10)の貼合ローラR12への進入角度βは、好ましくは、10°<α<80°であり、より好ましくは、20°<α<50°である。また、好ましくは、0°<β<80°であり、より好ましくは、0°<β<75°である。進入角度αを大きくすることで、第3中間体M3(偏光板10)の搬送性が向上する。 In the modified example of the first separator peeling/bonding step ST6, the separator 4a is peeled off by the peeling roller R10 in the same manner as the first separator peeling/bonding step ST6 described with reference to FIGS. 1 minute or less, preferably 45 seconds or less, and more preferably 30 seconds or less until the separator 4b is bonded by the bonding roller R12. Also in the modified example of the first separator peeling/bonding step ST6, of the pair of facing rollers constituting the bonding roller R12, the roller that contacts the separator 4b and conveys the separator 4b between the pair of rollers The surface of is made of metal (eg, iron). The surfaces of the rollers that come into contact with the third intermediate M3 and convey the third intermediate M3 between the pair of rollers are made of resin (eg, rubber). Furthermore, in the modified example of the first separator peeling/bonding step ST6, the approach angle α of the separator 4b to the bonding roller R12 and the approach angle β of the third intermediate M3 (polarizing plate 10) to the bonding roller R12 are set to less than 90°. As a result, curling can be further suppressed even in the modified example of the first separator peeling/bonding step ST6. The entrance angle α of the separator 4b to the bonding roller R12 and the entrance angle β of the third intermediate M3 (polarizing plate 10) to the bonding roller R12 are preferably 10°<α<80°, more preferably is 20°<α<50°. Also, preferably 0°<β<80°, more preferably 0°<β<75°. By increasing the approach angle α, the transportability of the third intermediate M3 (polarizing plate 10) is improved.
 また、図3を参照して説明した検査工程ST4でも、図4及び図5を参照して説明した第1のセパレータ剥離・貼合工程ST6と同様に、剥離ローラR2でセパレータ4を剥離してから、貼合ローラR3でセパレータ4を貼り合わせるまでの時間は1分以内、好ましくは45秒以内、より好ましくは30秒以内である。また、検査工程ST4でも、第1のセパレータ剥離・貼合工程ST6と同様に、貼合ローラR3を構成する一対の対向するローラのうち、セパレータ4に接触して、一対のローラ間にセパレータ4を搬送するローラの表面は、金属(例えば、鉄)から形成されている。第1中間体M1に接触して、一対のローラ間に第1中間体M1を搬送するローラの表面は、樹脂(例えば、ゴム)から形成されている。また、検査工程ST4でも、第1のセパレータ剥離・貼合工程ST6と同様に、セパレータ4の貼合ローラR3への進入角度α及び第1中間体M1(偏光板10)の貼合ローラR3への進入角度βの双方が90°未満に設定されている。これらにより、検査工程ST4でも、カールをより一層抑制可能である。さらに、検査工程ST4でも、図6を参照して説明した第1のセパレータ剥離・貼合工程ST6の変形例と同様に、剥離したセパレータ4と異なる新しいセパレータ4を検査後の偏光板10に貼り合わせる態様を採用することも可能である。セパレータ4の貼合ローラR3への進入角度α及び第1中間体M1(偏光板10)の貼合ローラR3への進入角度βは、好ましくは、10°<α<80°であり、より好ましくは、20°<α<50°である。また、好ましくは、0°<β<80°であり、より好ましくは、0°<β<75°である。進入角度αを大きくすることで、第1中間体M1(偏光板10)の搬送性が向上する。 Also in the inspection step ST4 described with reference to FIG. 3, the separator 4 is peeled off by the peel roller R2 in the same manner as in the first separator peeling/bonding step ST6 described with reference to FIGS. 1 minute or less, preferably 45 seconds or less, and more preferably 30 seconds or less until the separator 4 is bonded by the bonding roller R3. Also in the inspection step ST4, similarly to the first separator peeling/bonding step ST6, the separator 4 is brought into contact with the separator 4 of the pair of opposing rollers constituting the bonding roller R3, and the separator 4 is separated between the pair of rollers. The surface of the roller that conveys is made of metal (for example, iron). The surfaces of the rollers that come into contact with the first intermediate M1 and convey the first intermediate M1 between the pair of rollers are made of resin (for example, rubber). Also, in the inspection step ST4, as in the first separator peeling/bonding step ST6, the approach angle α of the separator 4 to the bonding roller R3 and the first intermediate M1 (polarizing plate 10) to the bonding roller R3 are set to less than 90°. As a result, curling can be further suppressed even in the inspection step ST4. Furthermore, in the inspection step ST4, a new separator 4 different from the peeled separator 4 is attached to the polarizing plate 10 after the inspection in the same manner as in the modification of the first separator peeling/bonding step ST6 described with reference to FIG. It is also possible to employ a mode of matching. The entrance angle α of the separator 4 to the bonding roller R3 and the entrance angle β of the first intermediate M1 (polarizing plate 10) to the bonding roller R3 are preferably 10°<α<80°, more preferably is 20°<α<50°. Also, preferably 0°<β<80°, more preferably 0°<β<75°. By increasing the approach angle α, the transportability of the first intermediate M1 (polarizing plate 10) is improved.
 以上に説明した本実施形態に係る製造方法によれば、従来用いられている光学積層体100の構成要素の材質を特に変えることなく、カールを効果的に抑制可能である。 According to the manufacturing method according to the present embodiment described above, curling can be effectively suppressed without particularly changing the materials of the constituent elements of the conventionally used optical layered body 100 .
 本実施形態では、検査工程ST4が第2のセパレータ剥離・貼合工程を兼ねる態様について説明したが、本発明はこれに限定されるものではなく、検査工程ST4と第2のセパレータ剥離・貼合工程とを別個に実行することも可能である。或いは、検査工程ST4において検査を行わない(すなわち、単にセパレータ4の剥離と貼り合わせを行う第2のセパレータ剥離・貼合工程にする)態様を採用することも可能である。或いは、検査工程ST4自体を実行しない(すなわち、セパレータ4の剥離と貼り合わせは、第1のセパレータ剥離・貼合工程ST6においてのみ実行する)態様を採用することも可能である。 In the present embodiment, the inspection step ST4 also serves as the second separator peeling/bonding step, but the present invention is not limited to this, and the inspection step ST4 and the second separator peeling/bonding step have been described. It is also possible to perform the steps separately. Alternatively, it is also possible to employ a mode in which no inspection is performed in the inspection step ST4 (that is, a second separator peeling/bonding step of simply peeling and bonding the separator 4 is performed). Alternatively, it is possible to employ a mode in which the inspection step ST4 itself is not performed (that is, the separation and bonding of the separator 4 are performed only in the first separator peeling/bonding step ST6).
 また、本実施形態では、偏光板10が偏光フィルム1と位相差フィルム2との積層体である態様を例に挙げて説明したが、本発明はこれに限定されるものではない。偏光板10が偏光フィルム1と位相差フィルム2と更に他の構成要素との積層体である態様や、位相差フィルム2が存在せずに偏光板10が偏光フィルム1と他の構成要素との積層体である態様や、偏光板10に偏光フィルム1のみが存在する態様などを採用することも可能である。 In addition, in the present embodiment, an aspect in which the polarizing plate 10 is a laminate of the polarizing film 1 and the retardation film 2 has been described as an example, but the present invention is not limited to this. An aspect in which the polarizing plate 10 is a laminate of the polarizing film 1, the retardation film 2, and other components, or a configuration in which the polarizing plate 10 is a laminate of the polarizing film 1 and other components without the retardation film 2 present It is also possible to employ a mode in which the polarizing plate 10 is a laminate, or a mode in which only the polarizing film 1 is present in the polarizing plate 10 .
 以下、図2に示す本実施形態に係る製造方法(実施例)で製造した光学積層体100のカールを評価した結果の一例と、図8に示す従来の製造方法(比較例)で製造した光学積層体のカールを評価した結果の一例と、について説明する。
 実施例及び比較例で製造した光学積層体100は、何れも以下の順に積層された構成を有する。
(1)表面保護フィルム5(基材:PET・厚み38μm、粘着剤層:アクリル系粘着剤・厚み10μm)
(2)ハードコート層(厚み7μm)付きシクロオレフィン系保護フィルム12(総厚み32μm)
(3)接着剤
(4)ポリビニルアルコール系偏光子11(厚み12μm)
(5)接着剤
(6)トリアセチルセルロース系保護フィルム13(厚み25μm)
(7)接着剤
(8)重合性液晶系1/2波長板2(厚み2.5μm)
(9)アクリル系粘着剤層3(厚み20μm)
(10)セパレータ4(PET・厚み38μm)
 なお、実施例で製造した光学積層体100は、第1のセパレータ剥離・貼合工程ST6及び検査工程ST4において、剥離したセパレータ4と同じセパレータ4を検査後の偏光板10に貼り合わせた(第1のセパレータ剥離・貼合工程ST6及び検査工程ST4において、セパレータ4の貼り替えは行なわなかった)ものである。
Hereinafter, an example of the results of evaluating the curl of the optical laminate 100 manufactured by the manufacturing method (example) according to the present embodiment shown in FIG. An example of the results of evaluating the curl of the laminate will be described.
Each of the optical laminates 100 manufactured in Examples and Comparative Examples has a structure in which layers are laminated in the following order.
(1) Surface protection film 5 (base material: PET/thickness 38 μm, adhesive layer: acrylic adhesive/thickness 10 μm)
(2) Cycloolefin-based protective film 12 (total thickness: 32 μm) with hard coat layer (thickness: 7 μm)
(3) Adhesive (4) Polyvinyl alcohol polarizer 11 (thickness 12 μm)
(5) Adhesive (6) Triacetyl cellulose protective film 13 (thickness 25 μm)
(7) Adhesive (8) Polymerizable liquid crystal half-wave plate 2 (thickness: 2.5 μm)
(9) Acrylic adhesive layer 3 (thickness 20 μm)
(10) Separator 4 (PET, thickness 38 μm)
In the optical layered body 100 produced in the example, in the first separator peeling/bonding step ST6 and the inspection step ST4, the same separator 4 as the peeled separator 4 was bonded to the polarizing plate 10 after the inspection (second In the separator peeling/bonding step ST6 and the inspection step ST4 of No. 1, the separator 4 was not replaced.
 図7は、カールの評価方法を説明する説明図である。
 図7(a)に示すように、実施例では、長尺の光学積層体100のTD方向に沿って、複数枚の製品サイズ(縦148mm×横70mm)の矩形の光学積層体100Sを切り出した。図7(a)では、便宜上、3枚の光学積層体100Sを図示しているが、実際には、1つの光学積層体100のTD方向に沿って10枚の光学積層体100Sを切り出した。これを複数の光学積層体100について実施し、計500枚の光学積層体100Sを得た。そして、500枚の光学積層体100Sの中からランダムに選択した100枚について、カールを評価した。なお、図7(b)に示すように、光学積層体100Sを切り出す際には、光学積層体100のMD方向(偏光子11の吸収軸の方向に相当)が、光学積層体100Sの長辺及び短辺に対して45°となるように、斜めに切り出した。
FIG. 7 is an explanatory diagram for explaining a curl evaluation method.
As shown in FIG. 7A, in the example, a plurality of rectangular optical layered bodies 100S having a product size (148 mm long×70 mm wide) were cut out along the TD direction of the long optical layered body 100. . Although three optical layered bodies 100S are shown in FIG. 7A for convenience, ten optical layered bodies 100S were actually cut from one optical layered body 100 along the TD direction. This was carried out for a plurality of optical layered bodies 100 to obtain a total of 500 optical layered bodies 100S. Then, 100 optical laminates 100S randomly selected from the 500 optical laminates 100S were evaluated for curl. As shown in FIG. 7B, when cutting out the optical layered body 100S, the MD direction of the optical layered body 100 (corresponding to the direction of the absorption axis of the polarizer 11) is the long side of the optical layered body 100S. and cut obliquely at 45° to the short side.
 図7(c)に示すように、カールを評価する際には、光学積層体100Sの下側が凸になるように(光学積層体100Sの4つの角部の反りが鉛直方向上方に向かうように)、光学積層体100Sを平坦な載置台30上に載置し、光学積層体100Sの4つの角部のそれぞれについて、載置台30の上面から角部までの鉛直方向の距離Hを測定した。距離Hは、光学積層体100Sの角部近傍に鉛直方向に延びるスケールを立て、このスケールの目盛りを目視で読み取ることで測定した。
 光学積層体100Sの下側が凸になるように載置台30上に載置した際、光学積層体100Sのセパレータ4の位置する側が下になる(表面保護フィルム5の位置する側が上になる)場合をプラスのカールとし、測定した距離Hをそのままカール値として算出した。一方、光学積層体100Sの下側が凸になるように載置台30上に載置した際、光学積層体100Sのセパレータ4の位置する側が上になる(表面保護フィルム5の位置する側が下になる)場合をマイナスのカールとし、測定した距離Hに-1を乗算した値をカール値として算出した。
As shown in FIG. 7C, when evaluating the curl, the lower side of the optical layered body 100S is convex (the four corners of the optical layered body 100S are warped upward in the vertical direction). ), the optical layered body 100S was placed on a flat mounting table 30, and the vertical distance H from the upper surface of the mounting table 30 to each of the four corners of the optical layered body 100S was measured. The distance H was measured by setting a vertically extending scale in the vicinity of the corner of the optical layered body 100S and visually reading the scale on the scale.
When the optical layered body 100S is placed on the mounting table 30 so that the lower side of the optical layered body 100S is convex, the side of the optical layered body 100S on which the separator 4 is positioned faces downward (the side on which the surface protective film 5 is positioned faces upward). was taken as a positive curl, and the measured distance H was directly calculated as the curl value. On the other hand, when the optical layered body 100S is placed on the mounting table 30 so that the lower side of the optical layered body 100S is convex, the side of the optical layered body 100S on which the separator 4 is positioned faces upward (the side on which the surface protective film 5 is positioned faces downward). ) was regarded as a negative curl, and the value obtained by multiplying the measured distance H by -1 was calculated as the curl value.
 次に、光学積層体100Sからセパレータ4を剥離して第3中間体M3の状態にした。そして、第3中間体M3についても、上記と同様の手順で、4つの角部のカール値を算出した。 Next, the separator 4 was peeled off from the optical layered body 100S to form a third intermediate M3. Then, the curl values of the four corners of the third intermediate M3 were calculated in the same procedure as described above.
 そして、光学積層体100Sの4つの角部のカール値と、第3中間体M3の4つの角部のカール値とが、全て-5mm≦カール値≦5mmの条件を満たす場合を合格とし、満たさない場合を不合格とした。
 比較例についても、以上に説明した実施例と同様の手順でカール値を算出し、合格か不合格かを判定した。
A case where the curl values of the four corners of the optical layered body 100S and the curl values of the four corners of the third intermediate M3 satisfy the condition of -5 mm ≤ curl value ≤ 5 mm is regarded as passed and satisfied. If not, it was regarded as unsatisfactory.
Also for the comparative example, the curl value was calculated in the same procedure as the example described above, and it was determined whether it passed or failed.
 表1は、実施例及び比較例のカールの評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例では、100枚の光学積層体のうち44枚が合格(合格率44%)であったのに対し、実施例では、100枚の光学積層体のうち95枚が合格(合格率95%)であり、カールが抑制されることが分かった。
Table 1 shows the curl evaluation results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, in the comparative example, 44 out of 100 optical laminates passed (acceptance rate of 44%), whereas in the example, 95 out of 100 optical laminates was found to be acceptable (acceptance rate of 95%), and curling was suppressed.
 1・・・偏光フィルム
 10・・・偏光板
 11・・・偏光子
 12、13・・・保護フィルム
 2・・・位相差フィルム
 3・・・粘着剤層
 4・・・セパレータ
 5・・・表面保護フィルム
 100、100S・・・光学積層体
 ST1・・・偏光フィルム製造工程
 ST2・・・位相差フィルム貼合工程
 ST3・・・セパレータ貼合工程
 ST4・・・検査工程(第2のセパレータ剥離・貼合工程)
 ST5・・・表面保護フィルム貼合工程
 ST6・・・第1のセパレータ剥離・貼合工程
DESCRIPTION OF SYMBOLS 1... Polarizing film 10... Polarizing plate 11... Polarizer 12, 13... Protective film 2... Retardation film 3... Adhesive layer 4... Separator 5... Surface Protective film 100, 100S Optical laminate ST1 Polarizing film manufacturing process ST2 Retardation film bonding process ST3 Separator bonding process ST4 Inspection process (second separator peeling/ bonding process)
ST5: Surface protection film bonding step ST6: First separator peeling/bonding step

Claims (8)

  1.  長尺帯状のセパレータに形成された粘着剤層を介して前記セパレータを長尺帯状の偏光板に貼り合わせるセパレータ貼合工程と、
     前記セパレータ貼合工程の後に、前記偏光板に長尺帯状の表面保護フィルムを貼り合わせる表面保護フィルム貼合工程と、
     前記表面保護フィルム貼合工程の後に、長尺帯状のセパレータを前記粘着剤層から剥離した後、長尺帯状のセパレータを前記粘着剤層を介して前記偏光板に貼り合わせる第1のセパレータ剥離・貼合工程と、を含む、
    光学積層体の製造方法。
    A separator bonding step of bonding the separator to a long strip-shaped polarizing plate via an adhesive layer formed on the long strip-shaped separator;
    After the separator bonding step, a surface protective film bonding step of bonding a long strip-shaped surface protective film to the polarizing plate;
    After the surface protective film lamination step, after peeling a long strip-shaped separator from the adhesive layer, a long strip-shaped separator is stuck to the polarizing plate via the adhesive layer. including a lamination step;
    A method for manufacturing an optical laminate.
  2.  前記セパレータ貼合工程は、長尺帯状のセパレータに粘着剤を塗布し、前記塗布した粘着剤を加熱して硬化させて前記粘着剤層を形成する粘着剤層形成工程を含む、
    請求項1に記載の光学積層体の製造方法。
    The separator lamination step includes an adhesive layer forming step of applying an adhesive to a long belt-shaped separator and heating and curing the applied adhesive to form the adhesive layer.
    The method for manufacturing the optical layered body according to claim 1 .
  3.  前記表面保護フィルム貼合工程の前に、長尺帯状のセパレータを前記粘着剤層から剥離した後、長尺帯状のセパレータを前記粘着剤層を介して前記偏光板に貼り合わせる第2のセパレータ剥離・貼合工程を含む、
    請求項1又は2に記載の光学積層体の製造方法。
    Before the surface protective film lamination step, after peeling the long strip-shaped separator from the adhesive layer, the long strip-shaped separator is stuck to the polarizing plate via the adhesive layer. Second separator peeling.・Including lamination process
    3. The method for producing the optical layered body according to claim 1 or 2.
  4.  前記第2のセパレータ剥離・貼合工程は、長尺帯状のセパレータを剥離した後に前記偏光板を検査する検査工程を兼ねる、
    請求項3に記載の光学積層体の製造方法。
    The second separator peeling/bonding step also serves as an inspection step of inspecting the polarizing plate after peeling the long strip-shaped separator.
    The method for manufacturing the optical laminate according to claim 3.
  5.  前記第1のセパレータ剥離・貼合工程において、長尺帯状のセパレータを剥離してから長尺帯状のセパレータを貼り合わせるまでの時間が1分以内である、
    請求項1から4の何れかに記載の光学積層体の製造方法。
    In the first separator peeling and bonding step, the time from peeling the long strip separator to bonding the long strip separator is within 1 minute.
    5. A method for manufacturing an optical layered body according to claim 1.
  6.  前記第1のセパレータ剥離・貼合工程において、長尺帯状のセパレータと前記偏光板とを貼合ローラによって貼り合わせ、
     前記セパレータの前記貼合ローラへの進入角度が90°未満であり、前記偏光板の前記貼合ローラへの進入角度が90°未満である、
    請求項1から5の何れかに記載の光学積層体の製造方法。
    In the first separator peeling and bonding step, a long belt-shaped separator and the polarizing plate are bonded together by a bonding roller,
    The entrance angle of the separator to the bonding roller is less than 90°, and the entrance angle of the polarizing plate to the bonding roller is less than 90°.
    The method for producing an optical layered body according to any one of claims 1 to 5.
  7.  前記貼合ローラは、前記セパレータに接触する第1ローラと、前記偏光板に接触する第2ローラとから構成され、
     前記第1ローラ及び前記第2ローラのうち、一方の表面が樹脂から形成され、他方の表面が金属から形成されている、
    請求項6に記載の記載の光学積層体の製造方法。
    The bonding roller is composed of a first roller that contacts the separator and a second roller that contacts the polarizing plate,
    One surface of the first roller and the second roller is made of resin and the other surface is made of metal,
    The method for producing an optical laminate according to claim 6.
  8.  前記第1ローラは、表面が金属から形成され、
     前記第2ローラは、表面が樹脂から形成されている、
    請求項7に記載の光学積層体の製造方法。
    The first roller has a surface formed of metal,
    The second roller has a surface formed of resin,
    The method for manufacturing the optical laminate according to claim 7.
PCT/JP2021/042914 2021-04-16 2021-11-24 Method for producing optical laminate WO2022219838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237031827A KR20230173655A (en) 2021-04-16 2021-11-24 Method for manufacturing optical laminates
CN202180096963.4A CN117136320A (en) 2021-04-16 2021-11-24 Method for producing optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069442A JP2022164139A (en) 2021-04-16 2021-04-16 Method for manufacturing optical laminate
JP2021-069442 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022219838A1 true WO2022219838A1 (en) 2022-10-20

Family

ID=83639524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042914 WO2022219838A1 (en) 2021-04-16 2021-11-24 Method for producing optical laminate

Country Status (5)

Country Link
JP (1) JP2022164139A (en)
KR (1) KR20230173655A (en)
CN (1) CN117136320A (en)
TW (1) TW202242456A (en)
WO (1) WO2022219838A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105204A (en) * 1987-07-03 1989-04-21 Unitika Ltd Polarization film and its manufacture
JP2012073576A (en) * 2010-09-03 2012-04-12 Nitto Denko Corp Method for producing laminate strip roll with polarizing film
JP2012073575A (en) * 2010-09-03 2012-04-12 Nitto Denko Corp Manufacturing method for laminate strip roll with polarizing film
WO2013047480A1 (en) * 2011-09-26 2013-04-04 住友化学株式会社 Method of manufacturing a polarising plate
WO2016140182A1 (en) * 2015-03-03 2016-09-09 住友化学株式会社 Method for manufacturing polarizing film equipped with protective film
US20200376804A1 (en) * 2016-09-19 2020-12-03 Essilor International TAC Primer Coating with Improved Adhesion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256568A (en) 2006-03-23 2007-10-04 Sumitomo Chemical Co Ltd Polarizing plate and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105204A (en) * 1987-07-03 1989-04-21 Unitika Ltd Polarization film and its manufacture
JP2012073576A (en) * 2010-09-03 2012-04-12 Nitto Denko Corp Method for producing laminate strip roll with polarizing film
JP2012073575A (en) * 2010-09-03 2012-04-12 Nitto Denko Corp Manufacturing method for laminate strip roll with polarizing film
WO2013047480A1 (en) * 2011-09-26 2013-04-04 住友化学株式会社 Method of manufacturing a polarising plate
WO2016140182A1 (en) * 2015-03-03 2016-09-09 住友化学株式会社 Method for manufacturing polarizing film equipped with protective film
US20200376804A1 (en) * 2016-09-19 2020-12-03 Essilor International TAC Primer Coating with Improved Adhesion

Also Published As

Publication number Publication date
KR20230173655A (en) 2023-12-27
TW202242456A (en) 2022-11-01
CN117136320A (en) 2023-11-28
JP2022164139A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
TWI783087B (en) Optical laminate and production method therefor
JP2007226035A (en) Method for manufacturing polarizer, polarizer, polarizing plate, optical film, image display device and cleaning device
JP2012014001A (en) Method for manufacturing polarizer, polarizer, polarizing plate, optical film and image display device
JP2014146035A (en) Method for manufacturing polarizer, polarizer, polarizing plate, optical film and image display device
CN108700695B (en) Method for manufacturing laminated optical film
KR102289797B1 (en) Method for producing multilayer optical film and method for manufacturing liquid crystal panel
TWI666474B (en) Method for producing a protection-film-attached optical film
WO2022219838A1 (en) Method for producing optical laminate
WO2022219839A1 (en) Method for producing optical laminate
JP7322090B2 (en) Method for manufacturing optical laminate
TWI793212B (en) Method for producing polarizing plate sheet with protective film
KR102662175B1 (en) Optical laminate and production method therefor
JP7309843B2 (en) Method for manufacturing optical film raw roll and method for manufacturing optical member sheet
KR102661253B1 (en) Laminated film
WO2024084805A1 (en) Method for producing optical laminate
WO2022181188A1 (en) Laminate and method for manufacturing image display panel
JP7036031B2 (en) Optical film manufacturing method, polarizing plate, and display device
CN111868580B (en) Method for producing laminated film
WO2022209791A1 (en) Manufacturing method for polarizing plate equipped with phase-difference layer and storage method for polarizing plate equipped with phase-difference layer
JP7203486B2 (en) Method for manufacturing optical film raw roll and method for manufacturing optical member sheet
JP2023117673A (en) Method of manufacturing polarizer
TW202231476A (en) Method for manufacturing laminate with surface protection film and laminate
TW202346918A (en) Method for producing polarizing plate with protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937031

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937031

Country of ref document: EP

Kind code of ref document: A1