WO2022218243A1 - 一种固态电池模组、电池包及电池包的设计方法 - Google Patents

一种固态电池模组、电池包及电池包的设计方法 Download PDF

Info

Publication number
WO2022218243A1
WO2022218243A1 PCT/CN2022/086045 CN2022086045W WO2022218243A1 WO 2022218243 A1 WO2022218243 A1 WO 2022218243A1 CN 2022086045 W CN2022086045 W CN 2022086045W WO 2022218243 A1 WO2022218243 A1 WO 2022218243A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
solid
plate
battery cells
battery module
Prior art date
Application number
PCT/CN2022/086045
Other languages
English (en)
French (fr)
Inventor
李阳
吴俊涛
王修远
吕宁
卢雨龙
翟喜民
姜涛
裴小娟
张占江
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022218243A1 publication Critical patent/WO2022218243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, for example, to a solid-state battery module, a battery pack, and a design method for a battery pack.
  • Lithium batteries have the characteristics of high energy density, large energy storage, long life, and wide operating temperature. They have been widely used in the field of electric vehicles, while solid-state batteries are safer to use because they have no electrolyte.
  • a metal frame is generally arranged in the lower box of the battery module to fix the cells.
  • Using a metal frame to fix the battery cells increases the weight of the solid-state battery module, increases the manufacturing cost, and complicates the installation process.
  • the present application provides a solid-state battery module, a battery pack, and a design method for a battery pack, so as to solve the technical problems in the related art that the solid-state battery module is heavy in weight, high in production cost, and complicated in installation procedures.
  • the present application provides a solid-state battery module, including:
  • a plurality of battery cells are arranged in sequence along the first direction to form a battery cell row, an elastic medium is arranged between two adjacent battery cells, and two opposite elastic media The side surfaces are respectively bonded to the respective adjacent battery cells;
  • liquid cooling plate the bottoms of the plurality of battery cells are bonded to the liquid cooling plate
  • one of the end plates is respectively provided at opposite ends of the battery core row perpendicular to the first direction;
  • the binding band is wound around the outer periphery of the battery core row and the end plate along the first direction, and the connecting piece can pass through the end plate and the liquid cooling plate in sequence and be fixed to the lower box of the battery pack .
  • the present application further provides a battery pack, which includes a lower case, and also includes the above-mentioned solid-state battery module, wherein the solid-state battery module is mounted on the lower case.
  • the present application also provides a method for designing a battery pack, which is used to design the above-mentioned battery pack, including:
  • the envelope space of the lower box and the length, width, height and series-parallel mode of the battery cells are used as design inputs;
  • the envelope space of the lower box and the width of the battery cells determine the number of the battery cells that can be accommodated in a single solid-state battery module
  • the electrical safety of the battery pack is checked.
  • FIG. 1 is a schematic structural diagram of a solid-state battery module provided by an embodiment of the present application.
  • FIG. 2 is an exploded view of a solid-state battery module provided by an embodiment of the present application.
  • Fig. 3 is the connection schematic diagram of the end plate, the liquid cooling plate and the lower box provided by the embodiment of the present application;
  • FIG. 4 is a schematic diagram of a battery cell row provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the cooperation between the elastic medium and the battery cell provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an end plate provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the clamping connection between the wire harness isolation plate and the support plate provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a segment of a wire harness isolation plate and a segment of a side cover provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of the clamping connection between the upper cover and the support plate provided by the embodiment of the present application.
  • FIG. 10 is a flowchart of step S5 in the method for designing a battery pack provided by an embodiment of the present application.
  • Harness isolation board 71. Segmentation of wiring harness isolation board; 72. Isolation board snap-on protrusion;
  • Supporting plate 81. Supporting plate clamping protrusion; 82. Upper cover clamping protrusion;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • this embodiment provides a battery pack, which includes a lower case 1 and a solid-state battery module, and the solid-state battery module is mounted on the lower case 1 .
  • the battery pack can ensure stable installation of the solid-state battery module, lower costs, and simple installation steps, and can ensure that the solid-state battery module has a stable structure and firm fixation throughout its life cycle.
  • the solid-state battery module includes a liquid cooling plate 4 , an end plate 5 , a strap 6 and a plurality of battery cells 2 .
  • a plurality of battery cells 2 are arranged in sequence along the first direction to form a battery cell row 20, an elastic medium 3 is provided between two adjacent battery cells 2, and two opposite sides of the elastic medium 3 are respectively The respective adjacent battery cells 2 are bonded; the bottoms of the plurality of battery cells 2 are bonded to the liquid cooling plate 4 ; the opposite ends of the battery row 20 that are perpendicular to and opposite to the first direction are respectively provided with an end plate 5 ;
  • the strap 6 is wound around the outer periphery of the battery row 20 and the end plate 5 along the first direction, and the connecting piece 41 can pass through the end plate 5 and the liquid cooling plate 4 in sequence and be fixed to the lower box 1 of the battery pack.
  • the adjacent battery cells 2 are first bonded with the elastic medium 3 to ensure the stability of the battery cell row 20; 20 are tied together, the bottom of the battery cell 2 is bonded to the liquid cooling plate 4, and finally the connecting piece 41 is used to pass through the end plate 5 and the liquid cooling plate 4 in turn to fix the battery cell 2 relative to the lower box 1, without the need for
  • the metal frame in the related art is used to fix the battery cells 2, so that the components of the solid-state battery module are reduced, the cost is reduced, and the installation steps are simple.
  • the liquid cooling plate 4 and the battery cells 2 are bonded with a thermally conductive structural glue, which not only ensures the stability of the bonding, but also ensures the heat transfer effect of the battery cells 2 .
  • the liquid cooling plate 4 is a water cooling plate.
  • the elastic medium 3 has a certain amount of compression, which can adapt to the expansion and deformation of the battery cells 2 ; at the same time, the elastic medium 3 has a heat insulation function to avoid heat transfer between the plurality of battery cells 2 .
  • two opposite sides of the elastic medium 3 are glued to bond with the battery cells 2 .
  • the end plate 5 is provided with a fixing hole 53 penetrating up and down, and the connecting member 41 is fixed to the lower case 1 through the fixing hole 53 and the liquid cooling plate 4 .
  • the connecting member 41 is a bolt.
  • the end plate 5 is provided with a strapping strap groove 51 .
  • the end plate 5 is provided with at least two strapping grooves 51 , and the at least two strapping grooves 51 are arranged at intervals.
  • the corner portion of the strap groove 51 is an arc transition to prevent the strap 6 from being damaged.
  • the solid-state battery module further includes a wire harness isolation plate 7 extending along the first direction, and a wire harness isolation plate 7 is respectively provided on opposite sides of the cell row 20 along the first direction.
  • the wire harness isolation plate 7 is provided to isolate the wire harness from the cell row 20 .
  • the solid-state battery module further includes a support plate 8, and the support plate 8 is sandwiched between the two battery cells 2 of the battery cell row 20, and the wire harness The isolation plate 7 is snap-connected to the support plate 8 .
  • the support plate 8 is sandwiched between the two battery cells 2 of the battery cell row 20 , and the binding tape 6 binds the battery cell row 20 . plate 7, to prevent the wire harness isolation plate 7 from collapsing when welding the cell tabs and the bus bar 21, resulting in poor welding.
  • the solid-state battery module includes a plurality of support plates 8 , and the plurality of support plates 8 are sandwiched in the battery cell row 20 at equal intervals.
  • the wire harness isolation plate 7 is provided with an isolation plate snap-on protrusion 72, and correspondingly, the support plate 8 is provided with an isolation board snap-fit groove matched with the snap-on protrusion 72; the support plate 8 is provided with a support plate clamping protrusion 81 , and correspondingly, the wire harness isolation plate 7 is provided with a supporting plate clamping groove matched with the supporting plate clamping protrusion 81 .
  • the end plate 5 is provided with a wire harness isolation plate limit groove 52, and the wire harness isolation plate limit groove 52 can limit the position of the wire harness isolation plate 7.
  • the wire harness isolation plate 7 is provided with a protruding structure matched with the limiting groove 52 of the harness isolation plate, and the protruding structure can be snapped into the limiting groove 52 of the harness isolation plate to prevent the wiring harness isolation plate 7 from being displaced.
  • the solid-state battery module further includes a side cover 9, the side cover 9 is provided on the side of the wiring harness isolation plate 7 away from the plurality of battery cells 2, and the side cover 9 is snapped with the wiring harness isolation plate 7 to ensure the side cover. 9 for connection stability.
  • the wire harness isolation plate 7 is provided with a side cover snap-fit groove
  • the side cover 9 is provided with a side cover snap-fit protrusion matched with the side cover snap-fit groove.
  • the side cover snap-on protrusion is provided with a guide slope to ensure that the side cover snap-on protrusion can be quickly snapped into the side cover snap-on groove.
  • both the wire harness isolation plate 7 and the side cover 9 are of a split structure, so that the lengths of the wire harness isolation plate 7 and the side cover 9 can be adjusted according to the number of battery cells 2 connected in series. Make settings.
  • the wire harness isolation plate 7 includes a plurality of wire harness isolation plate segments 71 ;
  • the side cover 9 includes a plurality of side cover segments 91 ;
  • the solid-state battery module further includes an upper cover 10 , and the upper cover 10 is snap-connected to the support plate 8 .
  • the support plate 8 is provided with an upper cover latching protrusion 82
  • the upper cover 10 is provided with a latching hole matched with the upper cover latching protrusion 82 .
  • the clamping hole is a blind hole
  • the upper cover clamping protrusion 82 is a cylindrical protrusion.
  • the end plate 5 , the side cover 9 and the upper cover 10 are all non-metallic materials, and the three together constitute the external protective structure of the solid-state battery module, and are connected by a snap connection, compared with the related art.
  • metal end plates and metal shells are used and connected by welding. This embodiment reduces the weight of the product and the difficulty of the process.
  • the wire harness isolation plate 7 is supported by the support plate 8 .
  • the plastic frame is provided outside the battery cell as the support structure, which has good integrity and reduces product weight and cost.
  • This embodiment also provides a method for designing a battery pack, which is used to design the above-mentioned battery pack, including the following steps:
  • the envelope space of the lower box 1 and the length, width, height and series-parallel mode of the battery cells 2 are used as design inputs.
  • S2 Determine the number of battery cells 2 that can be accommodated in a single solid-state battery module according to the envelope space of the lower box 1 and the width of the battery cells 2 .
  • the width dimension of the battery cell 2 is the thickness dimension of the battery cell 2, and in the envelope space of the lower case 1, the battery cell 2 is filled to the maximum extent according to the dimension in the thickness direction of the battery cell 2.
  • the number of battery cells 2 that can be accommodated in a single solid-state battery module to the maximum extent is determined by the battery cells 2 in a series or parallel manner.
  • the number of the support plate 8 , the wire harness isolation plate segment 71 and the side cover segment 91 also needs to be determined according to the series and parallel mode and the structural strength of the battery cells 2 .
  • a modular design method is adopted for the support plate 8 , the wire harness isolation plate segment 71 and the side cover segment 91 .
  • the number of the wire harness isolation plate segments 71 is determined according to the requirement that every two wire harness isolation plates 7 share a support plate 8, and the wire harness isolation plate segments 71 and 71 are completed. Modular design of side cover section 91.
  • step S3 for a group force less than 3 kN (kilonewton, kN), one strapping tape 6 is applied, and the thickness of the strapping tape 6 is less than 1mm; for a group force greater than 3kN and less than 3M (M ⁇ 2, M is an integer) kN, apply M straps 6, and the thickness of the straps 6 is ⁇ 1mm.
  • the expansion direction of the solid-state battery module is the thickness direction of the battery cells 2 .
  • step S5 the temperature of the battery cells 2 is collected by the temperature sensor, and the maximum value among the temperatures of the plurality of battery cells 2 is obtained by processing by the data processing module.
  • step S5 includes:
  • step S51 Obtain the maximum value of the temperatures of the plurality of battery cells 2, and determine whether the maximum value is greater than the first set temperature. If the maximum value is greater than the first set temperature, perform step S52; When the temperature is less than or equal to the first set temperature, the liquid cooling plate 4 does not work, and the water pump that provides the cooling liquid for the liquid cooling plate 4 does not work at this time.
  • step S52 the water pump is turned on and operates at 50% load, the temperature of the plurality of battery cells 2 is monitored in real time, the heating rate of the maximum temperature of the plurality of battery cells 2 is calculated, and step S53 is executed.
  • step S53 determine whether the maximum value of the temperature of the plurality of battery cells 2 has increased, and if the maximum value of the temperature of the plurality of battery cells 2 has not increased, perform step S56; When the maximum value of is increased, step S54 is executed.
  • step S54 Determine whether the temperature rise rate is greater than 1°C/min. In the case that the temperature rise rate is greater than 1°C/min, the water pump operates at 100% load and returns to step S53; when the temperature rise rate is less than or equal to 1°C/min , and step S55 is executed.
  • step S56 determine whether the maximum value is greater than the second set temperature, if the maximum value is greater than the second set temperature, the water pump operates at 50% load and returns to step S53; when the maximum value is less than or equal to the second set temperature In the case of the set temperature, turn off the water pump; the first set temperature is greater than the second set temperature.
  • step S5 the cooling operation process and cooling effect of the battery pack can be verified.
  • the design method of the battery pack is used to design the above-mentioned battery pack.
  • the designed battery pack has low cost and simple installation steps, and can give full play to the thermal safety characteristics of the solid-state battery module and reduce the energy consumption of the vehicle heat pump.
  • the adjacent battery cells are first bonded with an elastic medium to ensure the stability of the cell row; the elastic medium has a certain amount of compression, which can adapt to the expansion and deformation of the battery cells At the same time, the elastic medium has the function of heat insulation to avoid heat transfer between multiple battery cells; the end plate and the cell row are bound together by the strapping tape, and the bottom of the battery cell is bonded to the liquid cooling plate, and finally Connecting parts are used to pass through the end plate and the liquid cooling plate in turn to fix the battery cells relative to the lower box, without the need for a metal frame in the related art to fix the battery cells, so that the components of the solid-state battery module are reduced, and the cost is reduced. Installation steps Simple.
  • the battery pack proposed in the present application ensures stable installation of the above-mentioned solid-state battery module, reduced cost, simple installation steps, and can ensure that the solid-state battery module has a stable structure and firm fixation throughout its life cycle.
  • the battery pack design method proposed in the present application is used to design the above-mentioned battery pack.
  • the designed battery pack has low cost and simple installation steps, and can give full play to the thermal safety characteristics of the solid-state battery module and reduce the energy consumption of the vehicle heat pump. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种固态电池模组、电池包及电池包的设计方法,其属于电池技术领域,固态电池模组包括:多个电池电芯(2),多个所述电池电芯(2)沿第一方向依次排列形成电芯排(20),相邻的两个所述电池电芯(2)之间设置有弹性介质(3),所述弹性介质(3)的相对的两个侧面分别与各自相邻的所述电池电芯(2)粘接;液冷板(4),多个所述电池电芯(2)的底部粘接于所述液冷板(4)上;端板(5),所述电芯排(20)的与所述第一方向垂直且相对的两端分别设有一个所述端板(5);捆扎带(6),沿所述第一方向绕设于所述电芯排(20)和所述端板(5)的外周,连接件(41)能够依次穿过所述端板(5)、所述液冷板(4)并固定于电池包的下箱体(1)。

Description

一种固态电池模组、电池包及电池包的设计方法
本申请要求在2021年4月12日提交中国专利局、申请号为202110390209.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,例如涉及一种固态电池模组、电池包及电池包的设计方法。
背景技术
电池包的能量密度和成本一直都是车企关注的重要指标,前者影响续航里程,后者影响售价。锂电池具有能量密度高,储能多,寿命长,使用温度广等特点,在电动汽车领域中已经广泛使用,而固态电池因为没有电解液,使用上安全性更高。
相关技术中,为了保证固态电池模组中电芯的稳定性,电池模组的下箱体内一般都会设置金属框架来固定电芯。
采用金属框架来固定电芯,使得固态电池模组的重量增加,也使得生产制造成本增加,并导致安装工序复杂。
发明内容
本申请提供一种固态电池模组、电池包及电池包的设计方法,以解决相关技术中存在的固态电池模组的重量较大、生产成本较高、安装工序较复杂的技术问题。
第一方面,本申请提供一种固态电池模组,包括:
多个电池电芯,多个所述电池电芯沿第一方向依次排列形成电芯排,相邻的两个所述电池电芯之间设置有弹性介质,所述弹性介质的相对的两个侧面分别与各自相邻的所述电池电芯粘接;
液冷板,多个所述电池电芯的底部粘接于所述液冷板上;
端板,所述电芯排与所述第一方向垂直且相对的两端分别设有一个所述端板;
捆扎带,沿所述第一方向绕设于所述电芯排和所述端板的外周,连接件能够依次穿过所述端板、所述液冷板并固定于电池包的下箱体。
第二方面,本申请还提供一种电池包,包括下箱体,还包括上述的固态电池模组,所述固态电池模组安装于所述下箱体。
第三方面,本申请还提供一种电池包的设计方法,用于对上述的电池包进行设计,包括:
将下箱体的包络空间以及电池电芯的长度尺寸、宽度尺寸、高度尺寸和串并联方式作为设计输入;
按照所述下箱体的包络空间和所述电池电芯的宽度尺寸,确定单个固态电池模组内所能够容纳的所述电池电芯的数量;
根据电芯成组力确定捆扎带的尺寸和数量;
确定所述固态电池模组的膨胀方向,位于所述膨胀方向上的端板通过连接件固定在所述下箱体和液冷板上作为支撑结构;
采集多个所述电池电芯的温度,并根据多个所述电池电芯的温度中的最大值控制液冷板的工作;
对所述电池包的结构强度进行校核;
对所述电池包的电气安全性进行校核。
附图说明
图1是本申请实施例提供的固态电池模组的结构示意图;
图2是本申请实施例提供的固态电池模组的爆炸图;
图3是本申请实施例提供的端板、液冷板和下箱体的连接示意图;
图4是本申请实施例提供的电芯排的示意图;
图5是本申请实施例提供的弹性介质与电池电芯配合的示意图;
图6是本申请实施例提供的端板的结构示意图;
图7是本申请实施例提供的线束隔离板与支撑板的卡接示意图;
图8是本申请实施例提供的线束隔离板分段与侧盖分段的示意图;
图9是本申请实施例提供的上盖与支撑板的卡接示意图;
图10是本申请实施例提供的电池包的设计方法中步骤S5的流程图。
图中:
1、下箱体;
2、电池电芯;20、电芯排;21、汇流排;
3、弹性介质;
4、液冷板;41、连接件;
5、端板;51、捆扎带槽;52、线束隔离板限位槽;53、固定孔;
6、捆扎带;
7、线束隔离板;71、线束隔离板分段;72、隔离板卡接凸起;
8、支撑板;81、支撑板卡接凸起;82、上盖卡接凸起;
9、侧盖;91、侧盖分段;
10、上盖。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个 不同的位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
参见图1-图9,本实施例提供一种电池包,其包括下箱体1和固态电池模组,固态电池模组安装于下箱体1。
本实施例中,电池包能够保证固态电池模组的安装稳定,成本降低,安装步骤简单,并且可以确保固态电池模组在整个生命周期内结构稳定,固定牢靠。
参见图1-图5,固态电池模组包括液冷板4、端板5、捆扎带6和多个电池电芯2。
示例性地,多个电池电芯2沿第一方向依次排列形成电芯排20,相邻的两个电池电芯2之间设置有弹性介质3,弹性介质3的相对的两个侧面分别与各自相邻的电池电芯2粘接;多个电池电芯2的底部粘接于液冷板4上;电芯排20的与第一方向垂直且相对的两端分别设有一个端板5;捆扎带6沿第一方向绕设于电芯排20和端板5的外周,连接件41能够依次穿过端板5、液冷板4并固定于电池包的下箱体1。
本实施例提供的固态电池模组在安装时,先将相邻的电池电芯2采用弹性介质3粘接,保证电芯排20的稳定性;由捆扎带6将端板5和电芯排20绑扎在一起,将电池电芯2的底部粘接于液冷板4上,最后用连接件41依次穿过端板5、液冷板4使得电池电芯2相对下箱体1固定,无需相关技术中的金属框架来固定电池电芯2,使得固态电池模组的零部件减少,成本降低,安装步骤简单。
示例性地,液冷板4与电池电芯2采用导热结构胶水粘接,既保证粘接的稳定性,又能够保证电池电芯2的传热效果。
可选地,液冷板4为水冷板。
弹性介质3有一定的压缩量,能够适应电池电芯2的膨胀变形;同时弹性介质3具有隔热功能,避免多个电池电芯2之间发生热传递。示例性地,弹性介质3的相对的两个侧面附胶,以与电池电芯2粘接。
参见图6,示例性地,端板5上设置有上下贯通的固定孔53,连接件41穿过固定孔53和液冷板4固定于下箱体1上。可选地,本实施例中,连接件41为螺栓。
为了防止绑扎完成后捆扎带6发生移位导致捆扎不稳,可选地,本实施例中,端板5上设置有捆扎带槽51。示例性地,端板5上设置有至少两个捆扎带槽51,至少两个捆扎带槽51间隔设置。
可选地,捆扎带槽51的转角部分为圆弧过渡,防止损伤捆扎带6。
可选地,固态电池模组还包括线束隔离板7,线束隔离板7沿第一方向延伸,电芯排20的沿第一方向的相对的两侧分别设置有一个线束隔离板7。线束隔离板7设置为将线束与电芯排20隔离开。
可选地,为了保证线束隔离板7的稳定性,本实施例中,固态电池模组还包括支撑板8,支撑板8夹设于电芯排20的两个电池电芯2之间,线束隔离板7与支撑板8卡接。
支撑板8夹设于电芯排20的两个电池电芯2之间,捆扎带6捆扎电芯排20,并通过将线束隔离板7与支撑板8卡接,由支撑板8支撑线束隔离板7,防止电芯极耳与汇流排21焊接时,线束隔离板7塌陷导致焊接不良。
可选地,固态电池模组包括多个支撑板8,多个支撑板8等间隔夹设在电芯排20内。
示例性地,参见图7,线束隔离板7上设置有隔离板卡接凸起72,相应地,支撑板8上设置有与卡接凸起72相配合的隔离板卡接凹槽;支撑板8上设置有支撑板卡接凸起81,相应地,线束隔离板7上设置有与支撑板卡接凸起81相配合的支撑板卡接凹槽。
可选地,端板5上设置线束隔离板限位槽52,线束隔离板限位槽52能够对 线束隔离板7进行限位。示例性地,线束隔离板7上设置有与线束隔离板限位槽52配合的凸起结构,凸起结构能够卡接于线束隔离板限位槽52内,防止线束隔离板7发生移位。
可选地,固态电池模组还包括侧盖9,侧盖9设于线束隔离板7背离多个电池电芯2的一侧,且侧盖9与线束隔离板7卡接,以保证侧盖9的连接稳定性。
示例性地,线束隔离板7上设置有侧盖卡接槽,侧盖9上设置有与侧盖卡接槽配合的侧盖卡接凸起。可选地,侧盖卡接凸起上设置有导向斜面,以保证侧盖卡接凸起能够快速卡接于侧盖卡接槽内。
参见图8,可选地,本实施例中,线束隔离板7和侧盖9均为分体式结构,使得线束隔离板7和侧盖9的长度能够根据不同串并的电池电芯2的数目进行设置。示例性地,线束隔离板7包括多个线束隔离板分段71;侧盖9包括多个侧盖分段91;线束隔离板分段71与侧盖分段91一一对应卡接。
可选地,本实施例中,固态电池模组还包括上盖10,上盖10与支撑板8卡接。
参见图9,支撑板8上设置有上盖卡接凸起82,上盖10上设置有与上盖卡接凸起82相配合的卡接孔。示例性地,卡接孔为盲孔,上盖卡接凸起82为圆柱体凸起。
可选地,本实施例中,端板5、侧盖9和上盖10均为非金属材质,三者共同构成固态电池模组的外部防护结构,通过卡接方式连接,相比于相关技术中采用金属端板和金属外壳并通过焊接方式连接,本实施例使得产品重量和工艺难度均下降。
本实施例中,通过设置支撑板8来支撑线束隔离板7,相比于相关技术中在电池电芯外部设置塑料框架来作为支撑结构,整体性好,且降低了产品重量和成本。
本实施例还提供一种电池包的设计方法,用于对上述的电池包进行设计,包括以下步骤:
S1、将下箱体1的包络空间以及电池电芯2的长度尺寸、宽度尺寸、高度尺寸和串并联方式作为设计输入。
S2、按照下箱体1的包络空间和电池电芯2的宽度尺寸,确定单个固态电池模组内所能够容纳的电池电芯2的数量。
示例性地,在步骤S2中,电池电芯2的宽度尺寸即为电池电芯2的厚度尺寸,在下箱体1的包络空间内,按照电池电芯2厚度方向的尺寸最大限度地填充电池电芯2按照串、并联方式确定单个固态电池模组内所能够最大限度容纳的电池电芯2的数量。
S3、根据电芯成组力确定捆扎带6的尺寸和数量。
示例性地,在步骤S3之前,还需要根据电池电芯2的串、并联方式和结构强度确定支撑板8、线束隔离板分段71以及侧盖分段91的数量。可选地,支撑板8、线束隔离板分段71以及侧盖分段91采用模块化的设计方法。根据电池电芯2的串、并联方式,确定支撑板8的数量和布置位置,例如为:首先,根据布置空间确定支撑板8的数量和厚度,然后根据焊接压力确定支撑板8的材料,保证支撑板8所受的压应力低于材料的屈服强度,最后按照每两个线束隔离板7共用一个支撑板8的要求确定线束隔离板分段71的个数,完成线束隔离板分段71和侧盖分段91的模块化设计。
示例性地,在步骤S3中,对于成组力小于3千牛(kilonewton,kN),施加1根捆扎带6,捆扎带6的厚度小于1mm;对于成组力大于3kN且小于3M(M≥2,M为整数)kN,施加M根捆扎带6,捆扎带6的厚度≥1mm。
S4、确定固态电池模组的膨胀方向,位于膨胀方向上的端板5通过连接件41固定在下箱体1和液冷板4上作为支撑结构。
示例性地,本实施例中,固态电池模组的膨胀方向为电池电芯2的厚度方向。
S5、采集多个电池电芯2的温度,并根据多个电池电芯2的温度中的最大值控制液冷板4的工作。
示例性地,在步骤S5中,由温度传感器采集电池电芯2的温度,由数据处理模块处理得到多个电池电芯2的温度中的最大值。
参见图10,示例性地,步骤S5包括:
S51、得到多个电池电芯2的温度中的最大值,判断该最大值是否大于第一设定温度,在该最大值大于第一设定温度的情况下,执行步骤S52;在该最大值小于或等于第一设定温度的情况下,液冷板4不工作,此时为液冷板4提供冷却液的水泵也不工作。
S52、水泵开启并以50%的负荷运转,实时监测多个电池电芯2的温度,计算多个电池电芯2的温度的最大值的升温速率并执行步骤S53。
S53、判断多个电池电芯2的温度的最大值是否升高,在多个电池电芯2的温度的最大值没有升高的情况下,执行步骤S56;在多个电池电芯2的温度的最大值升高的情况下,执行步骤S54。
S54、判断升温速率是否大于1℃/min,在升温速率大于1℃/min的情况下,水泵以100%的负荷运转并返回执行步骤S53;在升温速率小于或等于1℃/min的情况下,执行步骤S55。
S55、判断升温速率是否大于0.5℃/min,在升温速率大于0.5℃/min的情况下,水泵以75%的负荷运转并返回执行步骤S53;在升温速率小于或等于0.5℃/min的情况下,水泵以50%的负荷运转并返回执行步骤S53。
S56、判断该最大值是否大于第二设定温度,在该最大值大于第二设定温度的情况下,水泵以50%的负荷运转并返回执行步骤S53;在该最大值小于或等于第二设定温度的情况下,关闭水泵;第一设定温度大于第二设定温度。
S6、对电池包的结构强度进行校核。
S7、对电池包的电气安全性进行校核。
通过执行步骤S5,能够对电池包的冷却作业过程和冷却效果进行校验。
本实施例中,电池包的设计方法用于设计上述的电池包,设计出的电池包成本低,安装步骤简单,并能够充分发挥固态电池模组的热安全特性,降低整 车热泵的能耗
本申请提出的固态电池模组在安装时,先将相邻的电池电芯采用弹性介质粘接,保证电芯排的稳定性;弹性介质有一定的压缩量,能够适应电池电芯的膨胀变形;同时弹性介质具有隔热功能,避免多个电池电芯之间发生热传递;由捆扎带将端板和电芯排绑扎在一起,将电池电芯的底部粘接于液冷板上,最后用连接件依次穿过端板、液冷板使得电池电芯相对下箱体固定,无需相关技术中的金属框架来固定电池电芯,使得固态电池模组的零部件减少,成本降低,安装步骤简单。
本申请提出的电池包,保证上述的固态电池模组安装稳定,成本降低,安装步骤简单,并且可以确保固态电池模组在整个生命周期内结构稳定,固定牢靠。
本申请提出的电池包的设计方法,用于设计上述的电池包,设计出的电池包成本低,安装步骤简单,并能够充分发挥固态电池模组的热安全特性,降低整车热泵的能耗。

Claims (10)

  1. 一种固态电池模组,包括:
    多个电池电芯(2),多个所述电池电芯(2)沿第一方向依次排列形成电芯排(20),相邻的两个所述电池电芯(2)之间设置有弹性介质(3),所述弹性介质(3)的相对的两个侧面分别与各自相邻的所述电池电芯(2)粘接;
    液冷板(4),多个所述电池电芯(2)的底部粘接于所述液冷板(4)上;
    端板(5),所述电芯排(20)与所述第一方向垂直且相对的两端分别设有一个所述端板(5);
    捆扎带(6),沿所述第一方向绕设于所述电芯排(20)和所述端板(5)的外周,连接件(41)能够依次穿过所述端板(5)、所述液冷板(4)并固定于电池包的下箱体(1)。
  2. 根据权利要求1所述的固态电池模组,还包括线束隔离板(7),所述线束隔离板(7)沿所述第一方向延伸,所述电芯排(20)的沿所述第一方向的相对的两侧分别设置有一个所述线束隔离板(7)。
  3. 根据权利要求2所述的固态电池模组,还包括支撑板(8),所述支撑板(8)夹设于所述电芯排(20)的两个所述电池电芯(2)之间,所述线束隔离板(7)与所述支撑板(8)卡接。
  4. 根据权利要求3所述的固态电池模组,还包括侧盖(9),所述侧盖(9)设于所述线束隔离板(7)背离多个所述电池电芯(2)的一侧,且所述侧盖(9)与所述线束隔离板(7)卡接。
  5. 根据权利要求3所述的固态电池模组,还包括上盖(10),所述上盖(10)与所述支撑板(8)卡接。
  6. 根据权利要求2-5任一项所述的固态电池模组,其中,所述线束隔离板(7)包括多个线束隔离板分段(71)。
  7. 根据权利要求1-5任一项所述的固态电池模组,其中,所述端板(5)上设置有捆扎带槽(51)。
  8. 根据权利要求2-5任一项所述的固态电池模组,其中,所述端板(5)上 设置线束隔离板限位槽(52)。
  9. 一种电池包,包括下箱体(1),以及如权利要求1-8任一项所述的固态电池模组,所述固态电池模组安装于所述下箱体(1)。
  10. 一种电池包的设计方法,用于对权利要求9所述的电池包进行设计,包括:
    将下箱体(1)的包络空间以及电池电芯(2)的长度尺寸、宽度尺寸、高度尺寸和串并联方式作为设计输入;
    按照所述下箱体(1)的包络空间和所述电池电芯(2)的宽度尺寸,确定单个固态电池模组内所能够容纳的所述电池电芯(2)的数量;
    根据电芯成组力确定捆扎带(6)的尺寸和数量;
    确定所述固态电池模组的膨胀方向,位于所述膨胀方向上的端板(5)通过连接件(41)固定在所述下箱体(1)和液冷板(4)上作为支撑结构;
    采集多个所述电池电芯(2)的温度,并根据多个所述电池电芯(2)的温度中的最大值控制液冷板(4)的工作;
    对所述电池包的结构强度进行校核;
    对所述电池包的电气安全性进行校核。
PCT/CN2022/086045 2021-04-12 2022-04-11 一种固态电池模组、电池包及电池包的设计方法 WO2022218243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110390209.3A CN113113708A (zh) 2021-04-12 2021-04-12 一种固态电池模组、电池包及电池包的设计方法
CN202110390209.3 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022218243A1 true WO2022218243A1 (zh) 2022-10-20

Family

ID=76715731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086045 WO2022218243A1 (zh) 2021-04-12 2022-04-11 一种固态电池模组、电池包及电池包的设计方法

Country Status (2)

Country Link
CN (1) CN113113708A (zh)
WO (1) WO2022218243A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113708A (zh) * 2021-04-12 2021-07-13 中国第一汽车股份有限公司 一种固态电池模组、电池包及电池包的设计方法
CN114284596A (zh) * 2021-11-08 2022-04-05 中国第一汽车股份有限公司 一种集成化电池总成、电动车辆及设计方法
CN114335795A (zh) * 2021-11-30 2022-04-12 中国第一汽车股份有限公司 一种双层模组的集成化电池总成、电动车辆及设计方法
CN216872173U (zh) * 2022-04-06 2022-07-01 宁德时代新能源科技股份有限公司 电池和用电设备
CN115911767B (zh) * 2022-12-21 2023-09-01 北京海泰微纳科技发展有限公司 一种动力电池堆及具其的机动车
CN116759703B (zh) * 2023-08-17 2024-01-23 深圳海辰储能控制技术有限公司 电池装置及其控制方法、储能设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277085A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd パック電池
CN106803608A (zh) * 2016-09-29 2017-06-06 蔚来汽车有限公司 电池模组和新能源汽车
CN108370075A (zh) * 2016-08-18 2018-08-03 株式会社Lg化学 电池模块
CN208753472U (zh) * 2018-05-18 2019-04-16 力神动力电池系统有限公司 液冷电池包
CN209709034U (zh) * 2019-05-31 2019-11-29 杭州捷能科技有限公司 一种轻质高强度的电池模组
CN212230488U (zh) * 2020-05-29 2020-12-25 比亚迪股份有限公司 电池模组和具有其的电池包、电动车
CN112133858A (zh) * 2020-09-29 2020-12-25 中国第一汽车股份有限公司 一种电芯模组、电池包及电池包的设计方法
CN113113708A (zh) * 2021-04-12 2021-07-13 中国第一汽车股份有限公司 一种固态电池模组、电池包及电池包的设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209001086U (zh) * 2018-11-15 2019-06-18 科力远混合动力技术有限公司 用于hev车型的风冷锂电池模组
CN210956799U (zh) * 2019-12-27 2020-07-07 芜湖天量电池系统有限公司 一种动力电池包箱体结构
CN112151910B (zh) * 2020-09-27 2022-02-18 中国第一汽车股份有限公司 一种液冷电池系统及液冷电池系统的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277085A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd パック電池
CN108370075A (zh) * 2016-08-18 2018-08-03 株式会社Lg化学 电池模块
CN106803608A (zh) * 2016-09-29 2017-06-06 蔚来汽车有限公司 电池模组和新能源汽车
CN208753472U (zh) * 2018-05-18 2019-04-16 力神动力电池系统有限公司 液冷电池包
CN209709034U (zh) * 2019-05-31 2019-11-29 杭州捷能科技有限公司 一种轻质高强度的电池模组
CN212230488U (zh) * 2020-05-29 2020-12-25 比亚迪股份有限公司 电池模组和具有其的电池包、电动车
CN112133858A (zh) * 2020-09-29 2020-12-25 中国第一汽车股份有限公司 一种电芯模组、电池包及电池包的设计方法
CN113113708A (zh) * 2021-04-12 2021-07-13 中国第一汽车股份有限公司 一种固态电池模组、电池包及电池包的设计方法

Also Published As

Publication number Publication date
CN113113708A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022218243A1 (zh) 一种固态电池模组、电池包及电池包的设计方法
KR100896131B1 (ko) 중대형 전지모듈
US20220118840A1 (en) Power battery pack and electric vehicle
KR101230954B1 (ko) 신규한 구조의 센싱부재를 포함하는 전지모듈
KR100870457B1 (ko) 전지모듈
KR101130046B1 (ko) 안전성이 향상된 중대형 전지모듈
KR20100109857A (ko) 전압 검출부재 및 이를 포함하는 전지모듈
KR20110132667A (ko) 신규한 구조의 전지모듈
KR100897179B1 (ko) 중대형 전지모듈 제조용 프레임 부재
JP2023501742A (ja) 電池パック及び電気自動車
JP2012190919A (ja) ノイズ低減装置およびバスバーモジュール
US20210320361A1 (en) Battery box and battery module
CN212136543U (zh) 一种高安全性电池模组
CN113594533A (zh) 一种电芯及其制备方法、系统和二次电池
CN210535716U (zh) 电池包的下壳体和电池包
CN210866268U (zh) 电芯模块和电池包
CN215184260U (zh) 一种电池模组的固定结构
CN211980688U (zh) 一种电池模组及车辆
CN218414944U (zh) 一种ctp电池模组
CN216720181U (zh) 一种电池模组的封装结构
CN218769841U (zh) 一种电池组及电池包
CN218975724U (zh) Ccs组件、电芯组件和电池包
CN218769820U (zh) 一种圆柱锂电池包
CN219067145U (zh) 一种电池模组及动力装置
CN214898685U (zh) 软包电芯组、电池模组及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787469

Country of ref document: EP

Kind code of ref document: A1