WO2022218137A1 - 压力传感器和电子设备 - Google Patents

压力传感器和电子设备 Download PDF

Info

Publication number
WO2022218137A1
WO2022218137A1 PCT/CN2022/083188 CN2022083188W WO2022218137A1 WO 2022218137 A1 WO2022218137 A1 WO 2022218137A1 CN 2022083188 W CN2022083188 W CN 2022083188W WO 2022218137 A1 WO2022218137 A1 WO 2022218137A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
emitting diode
pressure sensor
metal layer
contact
Prior art date
Application number
PCT/CN2022/083188
Other languages
English (en)
French (fr)
Inventor
安亚斌
贺海明
赵明远
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/022,382 priority Critical patent/US20230324245A1/en
Priority to EP22787366.8A priority patent/EP4187888A4/en
Publication of WO2022218137A1 publication Critical patent/WO2022218137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • G01L9/065Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices with temperature compensating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • the embodiments of the present application relate to the field of touch technology, and in particular, to a pressure sensor and an electronic device.
  • the electronic device can set a pressure sensor in the area where physical keys (also called physical keys) need to be set.
  • physical keys also called physical keys
  • Specific functions of physical buttons such as screenshots, photos, and volume adjustments.
  • keys that utilize the piezoresistive characteristics of piezoresistors to realize key functions may be called pressure-sensitive keys.
  • keys may be called virtual keys or the like.
  • the pressure sensor in the electronic device uses the varistor to detect the pressure.
  • the principle is: when the area where the varistor is arranged on the electronic device is squeezed by an external force, the external force is transmitted to the varistor through the shell of the electronic device, so that the varistor is deformed. Among them, the resistance value of the deformed varistor will change.
  • the pressure sensor outputs an electrical signal (for example, a current signal or a voltage signal), and the electronic device can detect the pressure according to the electrical signal.
  • the resistance of the varistor will not only change due to the deformation of the varistor, but also be affected by environmental conditions (such as temperature, humidity, etc.). Moreover, the effect of temperature on the resistance value of the varistor is particularly significant. In the above solution, the influence of temperature on the varistor is not considered, so that the detection accuracy of the pressure sensor is low.
  • Embodiments of the present application provide a pressure sensor and an electronic device for reducing the influence of temperature on the detection accuracy of the pressure sensor.
  • the present application provides a pressure sensor, comprising: a Wheatstone bridge and a heat emitting diode, the Wheatstone bridge includes a first resistor, a second resistor, a third resistor and a fourth resistor, the first resistor, the second resistor The resistor, the third resistor and the fourth resistor are coupled to form a loop, wherein the first resistor, the second resistor and the third resistor are fixed-value resistors, and the fourth resistor is a varistor.
  • the coupling point of the first resistor and the second resistor is used as the first input terminal of the Wheatstone bridge
  • the coupling point of the third resistor and the fourth resistor is used as the second input terminal of the Wheatstone bridge
  • the first input terminal and the second input terminal The terminal is used to input constant voltage or pulse voltage.
  • the coupling point of the second resistor and the fourth resistor is used as the first output terminal of the Wheatstone bridge to be coupled to the first terminal of the heat emitting diode
  • the coupling point of the first resistor and the third resistor is used as the second output of the Wheatstone bridge.
  • terminal, the second output terminal of the Wheatstone bridge and the second terminal of the heat emitting diode are used for outputting an electrical signal, and the electrical signal can be a current signal or a voltage signal.
  • the equivalent resistance value of the heat emitting diode decreases, and the resistance value of the fourth resistor increases; when the temperature decreases, the equivalent resistance value of the heat emitting diode increases, and the resistance value of the fourth resistor decreases; namely, The change trend of the equivalent resistance of the thermal emitting diode with temperature is opposite to that of the varistor with temperature, so as to compensate the change of the resistance of the varistor caused by the temperature change and improve the detection accuracy of the pressure sensor.
  • the heat emitting diode includes a low temperature polysilicon P-channel metal oxide semiconductor LTPS PMOS and a first metal layer disposed on the LTPS PMOS, and the LTPS PMOS and the first metal layer are dotted. Contact, LTPS PMOS leads to the first contact, and the first metal layer leads to the second contact.
  • the heat-emitting diode is a P-type heat-emitting diode.
  • the heat emitting diode includes indium gallium zinc oxide IGZO and a second metal layer disposed on the IGZO, the IGZO is in point contact with the second metal layer, and the second metal layer leads out The first contact, IGZO leads to the second contact.
  • the heat-emitting diode is an N-type heat-emitting diode.
  • the heat emitting diode includes LTPS PMOS, IGZO, a first metal layer disposed on the LTPS PMOS and a second metal layer disposed on the IGZO, the first metal layer and the first metal layer.
  • the two metal layers are coupled, the LTPS PMOS is in point contact with the first metal layer, IGZO is in point contact with the second metal layer, the LTPS PMOS leads out the first contact, and the IGZO leads out the second contact.
  • the heat-emitting diode is obtained by coupling the above-mentioned P-type heat-emitting diode and N-type heat-emitting diode.
  • the first contact is the first end of the heat emitting diode
  • the second contact is the second end of the heat emitting diode
  • the first contact is the heat emitting diode
  • the second end of the second contact is the first end of the heat emitting diode. That is, either one of both ends of the heat-emitting diode may be coupled with one output of the Wheatstone bridge.
  • the metal layer includes at least one of molybdenum, aluminum, and copper. That is, the metal layer can also be a molybdenum aluminum alloy, or a molybdenum copper alloy, or an aluminum copper alloy, or a molybdenum aluminum copper alloy.
  • the first output end of the Wheatstone bridge is further coupled to a capacitor.
  • the first input end and the second input end of the Wheatstone bridge may also be coupled to an AC signal generator, and the AC signal generator is used to output an AC signal to the pressure sensor, For example, sine wave, triangle wave, pulse, etc.
  • the AC signal generator is used to output an AC signal to the pressure sensor, For example, sine wave, triangle wave, pulse, etc. Because inputting a DC signal to the input end of the pressure sensor for a long time will increase power consumption on the one hand, and cause the device to age on the other hand, it is easy to reduce the detection accuracy. By inputting an AC signal to the input end of the pressure sensor, high frequency detection can be realized. Thereby, the above-mentioned problems can be avoided.
  • the first resistor, the second resistor or the third resistor are thin film resistors
  • the thin film resistors include semiconductor thin film resistors and high impedance metal thin film resistors.
  • the arms of the Wheatstone bridge are designed as thin film resistors for easy integration into the display.
  • the semiconductor thin film resistors include amorphous silicon thin film resistors, LTPS thin film resistors, and IGZO thin film resistors.
  • the high-impedance metal thin film resistor includes nickel, copper, manganese, and chromium.
  • the pressure sensor may be disposed in the interlayer dielectric layer of the organic light emitting diode OLED display screen.
  • the pressure sensor may also be disposed in other layers of the OLED display screen, which is not limited in this application.
  • the present application provides an electronic device, including an organic light-emitting diode (OLED) display screen and a processor, wherein the display screen includes the pressure sensor described in the first aspect and any design manner thereof, and the pressure sensor is used to send the processor to the processor.
  • OLED organic light-emitting diode
  • the electrical signal corresponding to the touch pressure of the OLED display screen is output, and the function of the pressure-sensitive button can be realized by pressing the area where the pressure sensor of the display screen is located.
  • FIG. 1 is a schematic appearance diagram of an electronic device including a pressure sensor provided by an embodiment of the present application
  • FIG. 2 is a schematic appearance diagram of another electronic device including a pressure sensor provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another electronic device including a pressure sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pressure sensor including a Wheatstone bridge according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a wire wound resistor provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another pressure sensor including a Wheatstone bridge provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a temperature variation curve of a varistor and a heat emitting diode provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another pressure sensor including a Wheatstone bridge provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an OLED display screen provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a heat emitting diode according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another heat emitting diode according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another heat emitting diode according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another pressure sensor including a Wheatstone bridge provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a driving circuit of an AM-LED or OLED provided by an embodiment of the present application.
  • the pressure sensor can be arranged on the electronic device, for example, it can be integrated in the display screen (for example, it can be integrated in the center or edge of the display screen), or it can be arranged on the frame (for example, the left frame, the right frame , the upper frame or the lower frame), or can be arranged on the front or back of the electronic device.
  • This application takes an application scenario where a pressure sensor is integrated in a display screen as an example, but it is not intended to be limited to this.
  • the pressure sensor When the pressure sensor is set on the display screen, the pressure sensor can be used as a pressure-sensitive button of the electronic device.
  • the pressure sensor can use the piezoresistive characteristics of the piezoresistor to detect the electrical signal generated by the pressing operation input by the user. It can realize the related functions of physical buttons such as screenshots, photos, and volume adjustment. In this way, the physical keys arranged on the surface of the electronic device can be reduced, the appearance of the electronic device is more beautiful, and the electronic device has a waterproof function.
  • this type of key may also be called a name such as a virtual key (virtual key), which is not limited in this embodiment of the present application.
  • the pressure sensor 100 may be disposed in the left edge, right edge, upper edge or lower edge of the display screen of the mobile phone, and the display screen may be flexible.
  • Curved screens such as organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screens, the user presses the edge of the display screen, and the display screen conducts pressure to the pressure sensor, thereby realizing pressure detection.
  • OLED Organic Light-Emitting Diode
  • the present application also does not limit the number of pressure sensors provided on the electronic device, which may be one or more. For example, as shown in FIG. 1 , multiple pressure sensors 100 may be provided on the left edge or the right edge of the display screen.
  • the above-mentioned pressure sensor is used as a pressure-sensitive button, and the position of the electronic device can be set with reference to the position of the physical button (such as the "volume +" button, "volume -” button, camera button or screen lock button) on the electronic device.
  • the pressure sensor provided on the electronic device is located inside the electronic device, so that the pressure-sensitive button is invisible to the user.
  • a logo visible to the user of the pressure sensor may be set on the mobile phone.
  • the virtual key 200 may be displayed on the display screen where the pressure sensor 100 is located.
  • the unit of the pressing pressure may be Newton, which is referred to as Newton for short, and the unit symbol is N.
  • G is gravity
  • m is mass
  • g is constant
  • g is about 9.8N/kg. That is, gravity is proportional to mass
  • the unit of mass m may also be used as the unit of pressing pressure and pressure threshold.
  • the unit of mass m is kilogram (unit symbol is kg) or gram (unit symbol is g).
  • the unit of the pressing pressure may be grams, and the unit symbol is g.
  • the compression pressure may be in kilopascals (kPa).
  • kPa is the unit of pressure.
  • kPa can be converted into engineering mechanics unit: kilogram force (kgf) or kilogram force/square centimeter (kgf/cm ⁇ 2), that is, the pressure generated by a 1 kilogram object pressing on an area of 1 square centimeter is approximately equal to the pressure of one atmosphere.
  • kilogram force is generally used to express pressure.
  • the unit of pressing pressure may be Newtons per square meter (N/m2).
  • the electronic devices in the embodiments of the present application may be mobile phones, tablet computers, desktops, laptops, handheld computers, notebook computers, ultra-mobile personal computers (UMPCs), netbooks, as well as cellular phones, personal digital Assistant (personal digital assistant, PDA), augmented reality (augmented reality, AR) device, virtual reality (virtual reality, VR) device, smart bracelet, smart watch, earphone, smart speakers and other devices provided with pressure sensors, this application
  • PDA personal digital assistant
  • augmented reality augmented reality, AR
  • VR virtual reality
  • smart bracelet smart watch
  • earphone smart speakers and other devices provided with pressure sensors
  • an embodiment of the present application provides an electronic device 300 , and the electronic device 300 may be the mobile phone shown in FIG. 1 and FIG. 2 .
  • the electronic device 300 may include a processor 310, a pressure sensor 100, an external memory interface 320, an internal memory 321, a universal serial bus (USB) interface 330, a power management module 340, a battery 341, a wireless charging coil 342, Antenna 1, Antenna 2, Mobile Communication Module 350, Wireless Communication Module 360, Audio Module 370, Speaker 370A, Receiver 370B, Microphone 370C, Headphone Interface 370D, Sensor Module 380, Key 390, Motor 391, Indicator 392, Camera 393, Display screen 394 and subscriber identification module (subscriber identification module, SIM) card interface 395 and the like.
  • subscriber identification module subscriber identification module
  • the sensor module 380 may include a pressure sensor 100, a gyro sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, and the like.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 300 .
  • the electronic device 300 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 310 may include one or more processing units, for example, the processor 310 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor and neural network processor (neural-network processing unit, NPU) and so on. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the processor 310 may be an application processor AP.
  • the above-mentioned processor 310 may be integrated in a system on chip (system on chip, SOC).
  • the above-mentioned processor 310 may be integrated in an IC chip.
  • the processor 310 may include an analog front end (AFE) and a microcontroller unit (MCU) in an IC chip.
  • AFE analog front end
  • MCU microcontroller unit
  • the controller may be the nerve center and command center of the electronic device 300 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 310 for storing instructions and data.
  • the memory in processor 310 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 310 . If the processor 310 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided, and the waiting time of the processor 310 is reduced, thereby increasing the efficiency of the system.
  • processor 310 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or USB interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit sound
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 300 .
  • the electronic device 300 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the power management module 340 is used to receive charging input from the charger.
  • the charger may be a wireless charger (eg, a wireless charging base of the electronic device 300 or other devices that can charge the electronic device 300 wirelessly), or a wired charger.
  • the power management module 340 may receive charging input from a wired charger through the USB interface 330 .
  • the power management module 340 may receive wireless charging input through the wireless charging coil 342 of the electronic device.
  • the power management module 340 can also supply power to the electronic device while charging the battery 341 .
  • the power management module 340 receives the input of the battery 341 and supplies power to the processor 310 , the pressure sensor 100 , the internal memory 321 , the external memory interface 320 , the display screen 394 , the camera 393 and the wireless communication module 360 .
  • the power management module 340 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance) of the battery 341 .
  • the power management module 340 may also be provided in the processor 310 .
  • the power management module 340 may provide a constant voltage source (eg, a constant voltage of 5 volts (V)) or a constant current source for the pressure sensor 100 .
  • the wireless communication function of the electronic device 300 may be implemented by the antenna 1, the antenna 2, the mobile communication module 350, the wireless communication module 360, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 300 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 350 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the electronic device 300 .
  • the wireless communication module 360 can provide applications on the electronic device 300 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT wireless fidelity
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the antenna 1 of the electronic device 300 is coupled with the mobile communication module 350
  • the antenna 2 is coupled with the wireless communication module 360, so that the electronic device 300 can communicate with the network and other devices through wireless communication technology.
  • the electronic device 300 implements a display function through a GPU, a display screen 394, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 394 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 310 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 394 is used to display images, videos, and the like.
  • Display screen 394 includes a display panel.
  • the electronic device 300 may include 1 or N display screens 394 , where N is a positive integer greater than 1.
  • the electronic device 300 may implement a shooting function through an ISP, a camera 393, a video codec, a GPU, a display screen 394, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 393 .
  • the ISP may be located in the camera 393 .
  • Camera 393 is used to capture still images or video.
  • the electronic device 300 may include 1 or N cameras 393 , where N is a positive integer greater than 1.
  • the external memory interface 320 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 300.
  • the external memory card communicates with the processor 310 through the external memory interface 320 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 321 may be used to store computer executable program code, which includes instructions.
  • the processor 310 executes various functional applications and data processing of the electronic device 300 by executing the instructions stored in the internal memory 321 .
  • the internal memory 321 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device 300 may implement audio functions through an audio module 370, a speaker 370A, a receiver 370B, a microphone 370C, an earphone interface 370D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 370 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal.
  • the audio module 370 may be provided in the processor 310 , or some functional modules of the audio module 370 may be provided in the processor 310 .
  • Speaker 370A also referred to as "horn” is used to convert audio electrical signals into sound signals.
  • the receiver 370B also referred to as “earpiece”, is used to convert audio electrical signals into sound signals.
  • the microphone 370C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the electronic device 300 may be provided with at least one microphone 370C.
  • the headphone jack 370D is used to connect wired headphones.
  • the earphone interface 370D can be a USB interface 330, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • the keys 390 include a power-on key, a volume key, and the like. Keys 390 may be mechanical keys. It can also be a touch key.
  • the electronic device 300 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 300 .
  • Motor 391 can generate vibrating cues. The motor 391 can be used for incoming call vibration alerts, and can also be used for touch vibration feedback.
  • the indicator 392 may be an indicator light, which may be used to indicate charging status, battery changes, and may also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 395 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the electronic device 300 by inserting into the SIM card interface 395 or pulling out from the SIM card interface 395 .
  • the electronic device 300 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on.
  • the electronic device 300 employs an eSIM, ie: an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 300 and cannot be separated from the electronic device 300 .
  • the pressure sensor 100 is used to detect a user's pressing operation on the pressure sensor, output an electrical signal to the processor 310, and the processor 310 processes the electrical signal to obtain a pressure value.
  • the pressure sensor 100 includes a Wheatstone bridge 101.
  • the Wheatstone bridge 101 includes four bridge arms, and each bridge arm includes a resistor R1 and a resistor R2 respectively.
  • Resistor R3 and Resistor Rx Resistor Rx is a varistor
  • Resistor R1, Resistor R2 and Resistor R3 are fixed-value resistors (fixed-value resistors).
  • the resistor R2, the resistor R1, the resistor R3 and the resistor Rx are coupled (for example, connected in series) to form a loop, the coupling point of the resistor R1 and the resistor R2 is used as the first input terminal of the Wheatstone bridge 101, and the coupling point of the resistor R3 and the resistor Rx is used as the first input terminal of the Wheatstone bridge 101.
  • the second input terminal of the Wheatstone bridge 101, the coupling point of the resistor R2 and the resistor Rx is used as the first output terminal of the Wheatstone bridge 101, and the coupling point of the resistor R1 and the resistor R3 is used as the second output terminal of the Wheatstone bridge 101 .
  • the first input terminal and the second input terminal of the Wheatstone bridge 101 are coupled to a voltage source U, which can be a constant voltage source (outputting a constant voltage) or a pulsed voltage source (outputting a pulsed voltage).
  • the Wheatstone bridge 101 The first output terminal and the second output terminal (represented collectively by the symbol A) for outputting electrical signals (such as current signals or voltage signals) can be coupled to a detector, which can measure the electrical output of the pressure sensor 100. signal (eg current signal or voltage signal).
  • each resistor of the Wheatstone bridge 101 can be designed as a wire-wound resistor.
  • a structure of a wire-wound resistor is shown.
  • M, N It is the two ends of the winding resistance, and the thick solid line is the winding resistance.
  • a structure of a pressure sensor including a Wheatstone bridge 101 is shown in FIG. 6 .
  • the temperature of the varistor Rx changes, and the resistance of the varistor Rx also changes, which destroys the equilibrium state of the Wheatstone bridge 101 .
  • the resistance value of the varistor Rx increases (the current flowing through it decreases)
  • the resistance value of the varistor Rx decreases.
  • the resistance value will decrease (the current flowing through it will increase).
  • the electrical signal output by the pressure sensor 100 has changed. For example, when the pressure sensor 100 starts to output a current signal, the electronic device will misjudge that the pressure sensor 100 is pressed, reducing the accuracy of the pressure sensor 100 detection. sex.
  • the embodiment of the present application provides a pressure sensor, one output end of the Wheatstone bridge 101 is coupled to a heat emitting diode, and in the circuit connection relationship, the varistor Rx and the heat emitting diode are coupled (for example, connected in series) .
  • the conduction current of the heat emitting diode will increase, which is equivalent to a decrease in the resistance value; when the temperature decreases, the conduction current of the heat emitting diode will decrease, which is equivalent to an increase in the resistance value.
  • the change trend of the equivalent resistance of the thermal emitting diode with temperature is opposite to that of the varistor with temperature, so as to compensate the change of the resistance of the varistor due to the temperature change and improve the detection accuracy of the pressure sensor.
  • the embodiment of the present application provides another pressure sensor 100 , which includes a Wheatstone bridge 101 and a heat emitting diode 102 .
  • One output end (eg, the first output end) of the Wheatstone bridge 101 is coupled to The first end of the heat emitting diode 102, the second end of the heat emitting diode 102, and the other output end (eg, the second output end) of the Wheatstone bridge 101 serve as the two output ends of the pressure sensor 100 (represented by the symbol A). ) for outputting electrical signals (eg, current signals or voltage signals), which may be coupled to the processor 310 in FIG. 3 .
  • electrical signals eg, current signals or voltage signals
  • the pressure sensor 100 can be integrated in an OLED display screen. As shown in FIG. 9 , the OLED display screen includes a glass layer 91 , a buffer layer 92 , an interlevel dielectric (ILD) layer 93 , and a plain (PLN) layer 94 , an anode 95 and a cathode 96 .
  • the pressure sensor 100 may be disposed in the ILD layer 93 of the OLED display screen or in other layers. At this time, the pressure sensor 100 may output an electrical signal corresponding to the touch pressure on the OLED display screen to the processor 310, so that the processor 310 processes the electrical signal to obtain a pressure value.
  • the resistors (resistor R1, resistor R2, resistor R3 and resistor Rx) in the Wheatstone bridge 101 can be designed as thin-film resistors, for example, semiconductor thin-film resistors, high-impedance metal Thin film resistors, etc.
  • Semiconductor thin film resistors may include amorphous silicon (a-Si) thin film resistors, low temperature polysilicon (LTPS) thin film resistors, indium gallium zinc oxide (indium gallium zinc oxide, IGZO) thin film resistors, and the like.
  • High-impedance metal film resistors may include high-impedance metals such as nickel, copper, manganese, and chromium.
  • the materials used for the respective resistors of the Wheatstone bridge 101 may be the same or different, and the resistance values may be the same or different, as long as the Wheatstone bridge 101 maintains a balanced state at normal temperature.
  • the heat-emitting diode 102 includes a channel (P-channel or N-channel) and a metal layer, the channel and the metal layer form a heat-emitting interface, and when the temperature increases, the conduction current and conduction between the channel and the metal layer The voltage decreases linearly, which is equivalent to the increase of the resistance of the heat-emitting diode; when the temperature decreases, the on-current and the on-voltage between the channel and the metal layer increase linearly, which is equivalent to the decrease of the resistance of the heat-emitting diode.
  • the varistor in the Wheatstone bridge is coupled with the heat emitting diode.
  • the conduction current of the heat emitting diode will increase, which is equivalent to a decrease in resistance value;
  • the conduction current of the heat emitting diode will decrease, which is equivalent to an increase in the resistance value, that is, the change trend of the equivalent resistance value of the heat emitting diode with temperature is opposite to the change trend of the resistance value of the varistor with temperature, thereby compensating for the temperature change due to temperature.
  • the change leads to the change of the resistance value of the varistor, which improves the detection accuracy of the pressure sensor.
  • the heat emitting diode 102 may include a substrate 1021, an LTPS P-channel metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS) 1022 disposed on the substrate 1021, and a first metal layer 1023 disposed on the LTPS PMOS 1022.
  • LTPS P-channel metal oxide semiconductor positive channel metal oxide semiconductor, PMOS
  • the layer 1023 may be a metal such as molybdenum (MO), aluminum (AL), copper (Cu), or an alloy material of the above metals, that is, it may include at least one of molybdenum (MO), aluminum (AL), and copper (Cu).
  • the heat emitting diode 102 may further include an insulating layer 1024, and the insulating layer 1024 is used to fill the remaining space of the heat emitting diode 102 to realize the insulation of the LTPS PMOS 1022 and the first metal layer 1023 from the outside.
  • the LTPS PMOS 1022 is used as a high-potential pole (for example, can be called an anode) in the heat-emitting diode 102 to lead out a first contact (can be called an anode contact) S1, and the first metal layer 1023 is used as a low-potential pole in the heat-emitting diode 102.
  • the pole (which may be referred to as a cathode, for example) leads to a second contact (which may be referred to as a cathode contact) S2.
  • the first contact S1 can be used as the first end of the heat emitting diode 102 described above, the second contact S2 can be used as the second end of the heat emitting diode 102, or the first contact S1 can be used as the heat emitting diode 102.
  • the second terminal, the second contact may serve as the first terminal of the heat emitting diode 102 .
  • the LTPS PMOS 1022 is in point contact with the first metal layer 1023 instead of in surface contact, preventing the LTPS PMOS 1022 and the first metal layer 1023 from being directly connected (ie, the voltage drop is zero) due to the boundary effect caused by the surface contact, that is, the LTPS
  • the PMOS 1022 and the first metal layer 1023 form a heat emission interface through point contact to eliminate the boundary effect, and electrons are emitted from the first metal layer 1023 to the LTPS PMOS 1022.
  • the electrons emitted from the first metal layer 1023 to the LTPS PMOS 1022 increase, and the on-voltage between the LTPS PMOS 1022 and the first metal layer 1023 decreases linearly, which is equivalent to a decrease in the resistance of the heat emitting diode 102.
  • the temperature decreases the electrons emitted from the first metal layer 1023 to the LTPS PMOS 1022 decrease, and the on-voltage between the LTPS PMOS 1022 and the first metal layer 1023 increases linearly, which is equivalent to an increase in the resistance of the heat emitting diode 102.
  • the heat emitting diode 102 may include a substrate 1021, an IGZO 1025 disposed on the substrate 1021, and a second metal layer 1026 disposed on the IGZO 1025.
  • the second metal layer 1026 may be molybdenum (MO), aluminum (AL), copper ( Metals such as Cu) or alloy materials of the above metals, that is, may include at least one of molybdenum (MO), aluminum (AL), and copper (Cu).
  • the heat emitting diode 102 may further include an insulating layer 1024 for filling the remaining space of the heat emitting diode 102 to achieve insulation of the IGZO 1025 and the second metal layer 1026 from the outside.
  • the second metal layer 1026 is used as a pole with a high potential (for example, it can be called an anode) in the heat emitting diode 102 to lead out a first contact (can be called an anode contact) S1, and the IGZO 1025 is used as a pole with a low potential in the heat emitting diode 102.
  • the pole (which may be referred to as a cathode, for example) leads to a second contact (which may be referred to as a cathode contact) S2.
  • the first contact S1 can be used as the first end of the heat emitting diode 102 described above, the second contact S2 can be used as the second end of the heat emitting diode 102, or the first contact S1 can be used as the heat emitting diode 102.
  • the second terminal, the second contact may serve as the first terminal of the heat emitting diode 102 .
  • the IGZO 1025 is in point contact with the second metal layer 1026 instead of surface contact, which prevents the IGZO 1025 and the second metal layer 1026 from being directly connected (ie, the voltage drop is zero) due to the boundary effect caused by the surface contact. That is, the IGZO 1025 and The second metal layer 1026 forms a thermal emission interface through point contact to eliminate the boundary effect, and electrons are emitted from the IGZO 1025 to the second metal layer 1026 .
  • the heat emitting diode 102 may include a substrate 1021, an LTPS PMOS 1022 disposed on the substrate 1021, a first metal layer 1023 disposed on the LTPS PMOS 1022, an IGZO 1025, and a second metal layer disposed on the IGZO 1025.
  • the metal layer 1026 , the first metal layer 1023 and the second metal layer 1026 are coupled (eg, connected in series) through a bridge line 1027 .
  • the first metal layer 1023 or the second metal layer 1026 may be a metal such as molybdenum (MO), aluminum (AL), copper (Cu), or an alloy material of the above metals, that is, it may include molybdenum (MO), aluminum (AL), copper at least one of (Cu).
  • the heat emitting diode 102 may further include an insulating layer 1024 for filling the remaining space of the heat emitting diode 102 to achieve the LTPS PMOS 1022, the first metal layer 1023, the IGZO 1025 and the second metal layer 1026 to be insulated from the outside.
  • the LTPS PMOS 1022 is used as a high-potential pole (for example, it can be called an anode) in the heat-emitting diode 102 to lead out the first contact (can be called an anode contact) S1, and the IGZO 1025 is used as a low-potential pole in the heat-emitting diode 102 (for example, an anode contact). May be called cathode) leads out a second contact (may be called cathode contact) S2.
  • the first contact S1 can be used as the first end of the heat emitting diode 102 described above, the second contact S2 can be used as the second end of the heat emitting diode 102, or the first contact S1 can be used as the heat emitting diode 102.
  • the second terminal, the second contact may serve as the first terminal of the heat emitting diode 102 .
  • the heat-emitting diode 102 is equivalent to the P-type heat-emitting diode in FIG. 10 and the N-type heat-emitting diode in FIG. 11 that are coupled (eg, connected in series) through a bridge line 1027 , so its working principle and technical effect refer to FIG. 10 and FIG. 11 The related description will not be repeated here.
  • the first output terminal of the Wheatstone bridge 101 shown in FIG. 8 can also be coupled to the high frequency capacitor 103 , and the first input terminal and the second input terminal of the Wheatstone bridge 101 can also be The AC signal generator is coupled, and the AC signal generator is used for outputting an AC signal (eg sine wave, triangle wave, pulse, etc.) to the pressure sensor.
  • an AC signal eg sine wave, triangle wave, pulse, etc.
  • the source of the MOS transistor T2 is coupled to one end of the capacitor C and the gate of the transistor T1, and the drain of the MOS transistor T2 inputs the signal voltage Vdata, the other end of the capacitor C and the drain of the MOS transistor T1 input the power supply voltage Vdd, the source of the MOS transistor T1 is coupled to the anode of the AM-LED or OLED, and the anode of the AM-LED or OLED inputs the voltage Vss.
  • a voltage is applied to the gate of the MOS transistor T2 to turn on the MOS transistor T2, and the signal voltage Vdata is applied to the gate of the MOS transistor T1 through the transistor T2, so that the MOS transistor T1 is turned on and the power supply voltage Vdd passes through the MOS transistor.
  • T1 is applied to the anode of the AM-LED or OLED, causing the AM-LED or OLED to emit light.
  • the equivalent resistance of the AM-LED or OLED increases, resulting in a smaller driving current of the AM-LED or OLED and a lower luminous intensity of the AM-LED or OLED.
  • the AM-LED or OLED can be coupled with the aforementioned heat emitting diode 102.
  • the AM-LED or OLED is equivalent to the aforementioned varistor.
  • the conduction current of the heat emitting diode will increase, which is equivalent to a decrease in the resistance value; when the temperature decreases, the conduction current of the heat emitting diode will decrease, which is equivalent to an increase in the resistance value, that is, the resistance value of the heat emitting diode decreases.
  • the variation trend of effective resistance with temperature is opposite to that of AM-LED or OLED, to compensate for the equivalent resistance increase of AM-LED or OLED due to heat generation, without reducing the luminous intensity of AM-LED or OLED .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Fluid Pressure (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种压力传感器和电子设备,涉及触控技术领域,用于减小温度对压力传感器检测准确性的影响。压力传感器,包括:惠斯通电桥和热发射二极管,惠斯通电桥包括第一电阻、第二电阻、第三电阻和第四电阻,第一电阻、第二电阻、第三电阻和第四电阻耦接形成环路,其中,第一电阻、第二电阻和第三电阻为定值电阻,第四电阻为压敏电阻。惠斯通电桥的第一输出端耦接至热发射二极管的第一端,惠斯通电桥的第二输出端以及热发射二极管的第二端用于输出电信号;在温度升高时,热发射二极管的等效阻值降低,第四电阻的阻值升高;在温度降低时,热发射二极管的等效阻值升高,第四电阻的阻值降低。

Description

压力传感器和电子设备
本申请要求于2021年4月16日提交国家知识产权局、申请号为202110414419.1、发明名称为“压力传感器和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及触控技术领域,尤其涉及一种压力传感器和电子设备。
背景技术
随着移动设备技术的发展,一体化将成为一种趋势,这在防水、用户体验方面的优势很大。为了实现移动终端的一体化,电子设备可以在需要设置物理按键(也称为实体按键)的区域设置压力传感器,该压力传感器可以利用压敏电阻的压阻特性检测用户输入的按压操作,从而实现截屏、拍照、调整音量等物理按键的特定功能。其中,利用压敏电阻的压阻特性实现按键功能的这类按键可以称为压感按键。或者,也可以因为此类按键在电子设备的外观不可见,故可将这类按键称为虚拟按键(virtual key)等。
电子设备中的压力传感器利用压敏电阻进行压力检测原理为:当电子设备上设置有压敏电阻的区域受到外力的挤压时,外力通过电子设备的外壳传递至压敏电阻,使得压敏电阻发生形变。其中,形变的压敏电阻的阻值会发生变化。此时,压力传感器输出电信号(例如电流信号或电压信号),电子设备可以根据该电信号来检测压力大小。
压敏电阻的阻值不仅会因为压敏电阻的形变而发生变化,也会受到环境条件(如温度、湿度等)的影响。并且,温度对压敏电阻的阻值的影响尤为显著。而上述方案中,并未考虑温度对压敏电阻的影响,使得压力传感器检测的准确性较低。
发明内容
本申请实施例提供一种压力传感器和电子设备,用于减小温度对压力传感器检测准确性的影响。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种压力传感器,包括:惠斯通电桥和热发射二极管,惠斯通电桥包括第一电阻、第二电阻、第三电阻和第四电阻,第一电阻、第二电阻、第三电阻和第四电阻耦接形成环路,其中,第一电阻、第二电阻和第三电阻为定值电阻,第四电阻为压敏电阻。
第一电阻和第二电阻的耦接点作为惠斯通电桥的第一输入端,第三电阻和第四电阻的耦接点作为惠斯通电桥的第二输入端,第一输入端和第二输入端用于输入恒定电压或脉冲电压。第二电阻和第四电阻的耦接点作为惠斯通电桥的第一输出端耦接至热发射二极管的第一端,第一电阻和第三电阻的耦接点作为惠斯通电桥的第二输出端,惠斯通电桥的第二输出端以及热发射二极管的第二端用于输出电信号,该电信号可以为电流信号或电压信号。
在温度升高时,热发射二极管的等效阻值降低,第四电阻的阻值升高;在温度降低时,热发射二极管的等效阻值升高,第四电阻的阻值降低;即热发射二极管的等效阻值随温度变化趋势与压敏电阻的阻值随温度变化趋势相反,从而补偿由于温度变化导致压敏电阻的阻值的变化,提高压力传感器检测的准确性。
结合第一方面,在一种可能的设计方式中,热发射二极管包括低温多晶硅P沟道金属氧化物半导体LTPS PMOS以及设置在LTPS PMOS上的第一金属层,LTPS PMOS与第一金属层点状接触,LTPS PMOS引出第一触点,第一金属层引出第二触点。该热发射二极管为P型热发射二极管。
结合第一方面,在一种可能的设计方式中,热发射二极管包括铟镓锌氧化物IGZO以及设置在IGZO上的第二金属层,IGZO与第二金属层点状接触,第二金属层引出第一触点,IGZO引出第二触点。该热发射二极管为N型热发射二极管。
结合第一方面,在一种可能的设计方式中,热发射二极管包括LTPS PMOS、IGZO、设置在LTPS PMOS上的第一金属层以及设置在IGZO上的第二金属层,第一金属层和第二金属层相耦接,LTPS PMOS与第一金属层点状接触,IGZO与第二金属层点状接触,LTPS PMOS引出第一触点,IGZO引出第二触点。该热发射二极管为上述P型热发射二极管和N型热发射二极管耦接得到。
结合第一方面,在一种可能的设计方式中,第一触点为热发射二极管的第一端,第二触点为热发射二极管的第二端,或者,第一触点为热发射二极管的第二端,第二触点为热发射二极管的第一端。也就是说,热发射二极管的两端中的任意一端可以与惠斯通电桥的一个输出端耦接。
结合第一方面,在一种可能的设计方式中,金属层包括钼、铝、铜中的至少一种。也就是说,金属层也可以是钼铝合金,或者,钼铜合金,或者,铝铜合金,或者,钼铝铜合金。
结合第一方面,在一种可能的设计方式中,惠斯通电桥的第一输出端还耦接电容。
结合第一方面,在一种可能的设计方式中,惠斯通电桥的第一输入端和第二输入端还可以耦接交流信号发生器,该交流信号发生器用于向压力传感器输出交流信号,例如正弦波、三角波、脉冲等。因为长时间在压力传感器的输入端输入直流信号,一方面增加功耗,另一方面会造成器件老化,容易使检测准确性降低,通过向压力传感器的输入端输入交流信号可以实现高频检测,从而可以避免上述问题。
结合第一方面,在一种可能的设计方式中,第一电阻、第二电阻或第三电阻为薄膜电阻,薄膜电阻包括半导体薄膜电阻、高阻抗的金属薄膜电阻。将惠斯通电桥的桥臂设计为薄膜电阻,便于集成在显示屏中。
结合第一方面,在一种可能的设计方式中,半导体薄膜电阻包括无定形硅薄膜电阻、LTPS薄膜电阻、IGZO薄膜电阻。
结合第一方面,在一种可能的设计方式中,高阻抗的金属薄膜电阻包括镍、铜、猛、铬。
结合第一方面,在一种可能的设计方式中,压力传感器可以设置于有机发光二极管OLED显示屏的层间电介质层中。当然,压力传感器还可以设置于OLED显示屏的其他层中,本申请不作限定。
第二方面,本申请提供一种电子设备,包括有机发光二极管OLED显示屏和处理器,显示屏中包括如第一方面及其任一设计方式所述的压力传感器,压力传感器用于向处理器输出与OLED显示屏的触摸压力相对应的电信号,通过对显示屏的压力传感器所在区域进行按压,即可以实现压感按键的功能。
附图说明
图1为本申请实施例提供的一种包括压力传感器的电子设备的外观示意图;
图2为本申请实施例提供的另一种包括压力传感器的电子设备的外观示意图;
图3为本申请实施例提供的另一种包括压力传感器的电子设备的结构示意图;
图4为本申请实施例提供的一种包括惠斯通电桥的压力传感器的结构示意图;
图5为本申请实施例提供的一种绕线电阻的结构示意图;
图6为本申请实施例提供的另一种包括惠斯通电桥的压力传感器的结构示意图;
图7为本申请实施例提供的一种压敏电阻和热发射二极管的温变曲线的示意图;
图8为本申请实施例提供的又一种包括惠斯通电桥的压力传感器的结构示意图;
图9为本申请实施例提供的一种OLED显示屏的结构示意图;
图10为本申请实施例提供的一种热发射二极管的结构示意图;
图11为本申请实施例提供的另一种热发射二极管的结构示意图;
图12为本申请实施例提供的又一种热发射二极管的结构示意图;
图13为本申请实施例提供的又一种包括惠斯通电桥的压力传感器的结构示意图;
图14为本申请实施例提供的一种AM-LED或OLED的驱动电路的示意图。
具体实施方式
如前文所述的,压力传感器可以设置在电子设备上,例如可以集成在显示屏中(例如可以集成在显示屏的中央或边缘),或者,可以设置在边框(例如左侧边框、右侧边框、上边框或者下边框)上,或者,可以设置在电子设备的正面或背面。本申请以压力传感器集成在显示屏中的应用场景为例,但并不意在限定于此。
当压力传感器设置在显示屏时,压力传感器可以作为电子设备的压感按键,该压力传感器可以利用压敏电阻的压阻特性检测用户输入的按压操作而产生的电信号,电子设备根据该电信号可以实现截屏、拍照、调整音量等物理按键的相关功能。这样,可以减少电子设备表面设置的物理按键,使电子设备的外观更加美观,还具有防水的功能。在另一些实施例中,也可以将这类按键称为虚拟按键(virtual key)等名称,本申请实施例对此不作限制。
示例性的,如图1中所示,以上述电子设备是手机为例,压力传感器100可以设置在手机的显示屏的左边缘、右边缘、上边缘或者下边缘中,该显示屏可以为柔性曲面屏,例如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏,用户按压显示屏边缘,显示屏将压力传导至压力传感器,从而实现压力检测。本申请也不限定在电子设备上设置压力传感器的数量,可以为一个或多个,例如,如图1所示,可以在显示屏的左边缘或右边缘设置多个压力传感器100。另外,上述压力传感器作为压感按键,在电子设备的位置可以参考物理按键(如“音量+”键、“音量-”键、拍照键或锁屏键)在电子设备上的位置来设置。
一般而言,与物理按键不同的是,设置在电子设备上的压力传感器位于电子设备 内部,使得压感按键对用户不可见。为了方便用户使用,可以在手机上设置压力传感器对用户可见的标识。示例性的,如图2所示,可以在用户触摸显示屏的边缘时,在显示屏中压力传感器100所在位置处显示虚拟按键200。
本申请实施例中,按压压力的单位可以为牛顿,简称牛,单位符号为N。在物理学中,用公式G=mg求物体的重力。其中,G为重力,m为质量,g为常数,g约为9.8N/kg。即重力与质量成正比,因此本实施例中也可以采用质量m的单位作为按压压力和压力门限的单位。其中,质量m的单位为千克(单位符号为kg)或者克(单位符号为g)。例如,本实施例中,按压压力的单位可以为克,单位符号为g。
或者,按压压力的单位可以为千帕(kPa)。其中,kPa为压强单位。kPa可以换算成工程力学单位:公斤力(kgf)或者公斤力/平方厘米(kgf/cm^2),即1公斤重的物体压在1平方厘米面积上产生的压强,约等于一个大气压强。工程上一般使用公斤力来表示压力。换算关系如下:1kgf=100000帕(Pa)=100kPa=0.1兆帕(MPa)。或者,按压压力的单位可以为牛/平方米(N/m2)。
本申请实施例中的电子设备可以是手机、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、智能手环、智能手表、耳机、智能音箱等设置有压力传感器的设备,本申请实施例对该电子设备的具体形态不作特殊限制。
如图3所示,本申请实施例提供了一种电子设备300,该电子设备300可以是图1和图2所示的手机。该电子设备300可以包括处理器310、压力传感器100、外部存储器接口320、内部存储器321、通用串行总线(universal serial bus,USB)接口330、电源管理模块340、电池341、无线充电线圈342、天线1、天线2、移动通信模块350、无线通信模块360、音频模块370、扬声器370A、受话器370B、麦克风370C、耳机接口370D、传感器模块380、按键390、马达391、指示器392、摄像头393、显示屏394以及用户标识模块(subscriber identification module,SIM)卡接口395等。
其中,传感器模块380可以包括压力传感器100、陀螺仪传感器、气压传感器、磁传感器、加速度传感器、距离传感器、接近光传感器、指纹传感器、温度传感器、触摸传感器、环境光传感器、骨传导传感器等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备300的具体限定。在本申请另一些实施例中,电子设备300可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、存储器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器以及神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。例如,处理器310可以是应用处理器AP。 或者,上述处理器310可以集成在片上系统(system on Chip,SOC)中。或者,上述处理器310可以集成在IC芯片中。该处理器310可以包括IC芯片中的模拟前端(analog front end,AFE)和微处理单元(microcontroller unit,MCU)。
其中,控制器可以是电子设备300的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器310中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器310中的存储器为高速缓冲存储器。该存储器可以保存处理器310刚用过或循环使用的指令或数据。如果处理器310需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器310的等待时间,因而提高了系统的效率。
在一些实施例中,处理器310可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或USB接口等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备300的结构限定。在本申请另一些实施例中,电子设备300也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
电源管理模块340用于从充电器接收充电输入。其中,充电器可以是无线充电器(如电子设备300的无线充电底座或者其他可以为电子设备300无线充电的设备),也可以是有线充电器。例如,电源管理模块340可以通过USB接口330接收有线充电器的充电输入。电源管理模块340可以通过电子设备的无线充电线圈342接收无线充电输入。
其中,电源管理模块340为电池341充电的同时,还可以为电子设备供电。电源管理模块340接收电池341的输入,为处理器310、压力传感器100、内部存储器321、外部存储器接口320、显示屏394、摄像头393和无线通信模块360等供电。电源管理模块340还可以用于监测电池341的电池容量、电池循环次数、电池健康状态(漏电、阻抗)等参数。在其他一些实施例中,电源管理模块340也可以设置于处理器310中。例如,在本申请实施例中,电源管理模块340可以为压力传感器100提供恒压源(如5伏(V)的恒压)或者恒流源。
电子设备300的无线通信功能可以通过天线1、天线2、移动通信模块350、无线通信模块360、调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备300中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块350可以提供应用在电子设备300上的包括2G/3G/4G/5G等无线通信的解决方案。无线通信模块360可以提供应用在电子设备300上的包括无线局域网 (wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络)、蓝牙(bluetooth,BT)、全球导航卫星系统(global navigation satellite system,GNSS)、调频(frequency modulation,FM)、近距离无线通信技术(near field communication,NFC)、红外技术(infrared,IR)等无线通信的解决方案。在一些实施例中,电子设备300的天线1和移动通信模块350耦合,天线2和无线通信模块360耦合,使得电子设备300可以通过无线通信技术与网络以及其他设备通信。
电子设备300通过GPU、显示屏394以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏394和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器310可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏394用于显示图像,视频等。显示屏394包括显示面板。在一些实施例中,电子设备300可以包括1个或N个显示屏394,N为大于1的正整数。
电子设备300可以通过ISP、摄像头393、视频编解码器、GPU、显示屏394以及应用处理器等实现拍摄功能。ISP用于处理摄像头393反馈的数据。在一些实施例中,ISP可以设置在摄像头393中。摄像头393用于捕获静态图像或视频。在一些实施例中,电子设备300可以包括1个或N个摄像头393,N为大于1的正整数。
外部存储器接口320可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备300的存储能力。外部存储卡通过外部存储器接口320与处理器310通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器321可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器310通过运行存储在内部存储器321的指令,从而执行电子设备300的各种功能应用以及数据处理。此外,内部存储器321可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备300可以通过音频模块370、扬声器370A、受话器370B、麦克风370C、耳机接口370D以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块370用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。在一些实施例中,音频模块370可以设置于处理器310中,或将音频模块370的部分功能模块设置于处理器310中。扬声器370A,也称“喇叭”,用于将音频电信号转换为声音信号。受话器370B,也称“听筒”,用于将音频电信号转换成声音信号。麦克风370C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。电子设备300可以设置至少一个麦克风370C。耳机接口370D用于连接有线耳机。耳机接口370D可以是USB接口330,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
按键390包括开机键、音量键等。按键390可以是机械按键。也可以是触摸式按键。电子设备300可以接收按键输入,产生与电子设备300的用户设置以及功能控制有关的键信号输入。马达391可以产生振动提示。马达391可以用于来电振动提示,也可以用于触摸振动反馈。指示器392可以是指示灯,可以用于指示充电状态,电量 变化,也可以用于指示消息,未接来电,通知等。SIM卡接口395用于连接SIM卡。SIM卡可以通过插入SIM卡接口395,或从SIM卡接口395拔出,实现和电子设备300的接触和分离。电子设备300可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡、Micro SIM卡、SIM卡等。在一些实施例中,电子设备300采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备300中,不能和电子设备300分离。
压力传感器100用于检测用户对压力传感器的按压操作,向处理器310输出电信号,由处理器310对电信号进行处理得到压力值。
如图4所示,示出了压力传感器100的一种结构,该压力传感器100包括惠斯通电桥101,该惠斯通电桥101包括四个桥臂,各个桥臂分别包括电阻R1、电阻R2、电阻R3和电阻Rx,电阻Rx为压敏电阻,电阻R1、电阻R2和电阻R3为定值电阻(固定阻值的电阻)。电阻R2、电阻R1、电阻R3和电阻Rx耦接(例如串联)形成环路,电阻R1和电阻R2的耦接点作为惠斯通电桥101的第一输入端,电阻R3和电阻Rx的耦接点作为惠斯通电桥101的第二输入端,电阻R2和电阻Rx的耦接点作为惠斯通电桥101的第一输出端,电阻R1和电阻R3的耦接点作为惠斯通电桥101的第二输出端。
惠斯通电桥101的第一输入端和第二输入端耦合至电压源U,该电压源U可以为恒压源(输出恒定电压)或脉冲电压源(输出脉冲电压),惠斯通电桥101的第一输出端和第二输出端(统一用符号A表示)用于输出的电信号(例如电流信号或电压信号),可以耦接至探测器,该探测器可以测量压力传感器100输出的电信号(例如电流信号或电压信号)。
以压力传感器100输出电流信号为例,假设在平衡状态下压力传感器100输出的电流Ia为零,则有I1*R1=I2*R2,I3*R3=Ix*Rx,I1=I3,I2=Ix,其中,I1为流过电阻R1的电流,I2为流过电阻R2的电流,I3为流过电阻R3的电流,Ix为流过电阻Rx的电流,从而得到Rx/R2=R3/R1,也就是说,可以根据惠斯通电桥101的平衡状态来设置常温状态下Rx的阻值为R2*R3/R1。
为了实现压力传感器100的小型化,惠斯通电桥101的各个电阻可以设计为绕线电阻,示例性的,如图5所示,示出了一种绕线电阻的结构,图中M、N即为绕线电阻的两端,粗实线即为绕线电阻。则一种包括惠斯通电桥101的压力传感器的结构如图6所示。
当环境温度改变或者用户触摸压感按键时,压敏电阻Rx的温度发生改变,压敏电阻Rx的阻值也会发生变化,破坏了惠斯通电桥101的平衡状态。示例性的,如图7所示,当压敏电阻Rx的温度升高时,压敏电阻Rx的阻值会变大(流过的电流减小),当电阻Rx的温度降低时,电阻Rx的阻值会减小(流过的电流增大)。这样即使用户还未真实按压压感按键,压力传感器100输出的电信号已经发生改变,例如压力传感器100开始输出电流信号,电子设备会误判压力传感器100被按压,降低了压力传感器100检测的准确性。
为此本申请实施例提供了一种压力传感器,将惠斯通电桥101的一个输出端耦接热发射二极管,在电路连接关系上,压敏电阻Rx和热发射二极管相耦接(例如串联)。 如图7所示,在温度升高时热发射二极管导通的电流会升高,等效于阻值降低;在温度降低时热发射二极管导通的电流会降低,等效于阻值升高,即热发射二极管的等效阻值随温度变化趋势与压敏电阻的阻值随温度变化趋势相反,从而补偿由于温度变化导致压敏电阻的阻值的变化,提高压力传感器检测的准确性。
如图8所示,本申请实施例提供了另一种压力传感器100,包括惠斯通电桥101和热发射二极管102,惠斯通电桥101的一个输出端(例如第一输出端)耦接至热发射二极管102的第一端,热发射二极管102的第二端以及惠斯通电桥101的另一个输出端(例如第二输出端)作为压力传感器100的两个输出端(统一用符号A表示)用于输出电信号(例如电流信号或电压信号),可以耦接至图3中的处理器310。
该压力传感器100可以集成在OLED显示屏中,如图9所示,OLED显示屏包括玻璃层91、缓冲层92、层间电介质(interlevel dielectric,ILD)层93、平坦(plain,PLN)层94、阳极(anode)95以及阴极(cathode)96。压力传感器100可以设置于OLED显示屏的ILD层93中或者其他层中。此时,压力传感器100可以向处理器310输出与OLED显示屏的触摸压力相对应的电信号,使得处理器310对电信号进行处理得到压力值。
为了将压力传感器100集成到OLED显示屏中,可以将惠斯通电桥101中的电阻(电阻R1、电阻R2、电阻R3和电阻Rx)设计为薄膜电阻,例如,半导体薄膜电阻、高阻抗的金属薄膜电阻等。半导体薄膜电阻可以包括无定形硅(a-Si)薄膜电阻、低温多晶硅(low temperature poly-silicon,LTPS)薄膜电阻、铟镓锌氧化物(indium gallium zinc oxide,IGZO)薄膜电阻等。高阻抗的金属薄膜电阻可以包括镍、铜、猛、铬等高阻抗的金属。惠斯通电桥101的各个电阻所采用的材料可以相同或不同,阻值可以相同或不同,只要在常温下惠斯通电桥101保持平衡状态即可。
热发射二极管102包括沟道(P沟道或N沟道)和金属层,沟道与金属层形成热发射界面,在温度升高时,沟道与金属层之间的导通电流和导通电压线性下降,等效于热发射二极管的电阻增大;在温度降低时,沟道与金属层之间的导通电流和导通电压线性上升,等效于热发射二极管的电阻减小。
本申请实施例提供的压力传感器,惠斯通电桥中的压敏电阻和热发射二极管相耦合,在温度升高时热发射二极管导通的电流会升高,等效于阻值降低;在温度降低时热发射二极管导通的电流会降低,等效于阻值升高,即热发射二极管的等效阻值随温度变化趋势与压敏电阻的阻值随温度变化趋势相反,从而补偿由于温度变化导致压敏电阻的阻值的变化,提高压力传感器检测的准确性。
示例性的,在一种可能的实施方式中,如图10所示,示出了一种P型的热发射二极管102的俯视图(图10中A)和剖面图(图10中B),该热发射二极管102可以包括基底1021、设置在基底1021上的LTPS P沟道金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)1022以及设置在LTPS PMOS 1022上的第一金属层1023,第一金属层1023可以为钼(MO)、铝(AL)、铜(Cu)等金属或者上述金属的合金材料,即可以包括钼(MO)、铝(AL)、铜(Cu)中的至少一种。该热发射二极管102还可以包括绝缘层1024,绝缘层1024用于填充热发射二极管102的剩余空间以实现LTPS PMOS 1022和第一金属层1023与外部绝缘。
LTPS PMOS 1022作为热发射二极管102中高电势的一极(例如可以称为阳极)引出第一触点(可以称为阳极触点)S1,第一金属层1023作为热发射二极管102中低电势的一极(例如可以称为阴极)引出第二触点(可以称为阴极触点)S2。第一触点S1可以作为前文所述的热发射二极管102的第一端,第二触点S2可以作为热发射二极管102的第二端,或者,第一触点S1可以作为热发射二极管102的第二端,第二触点可以作为热发射二极管102的第一端。
由于LTPS PMOS 1022与第一金属层1023之间存在电势差(内在电势)。当热发射二极管102的第一触点S1输入高电压,热发射二极管102的第二触点S2输入低电压时,外接电势与内在电势方向一致,使得该热发射二极管102导通,当热发射二极管102的第一触点S1输入低电压,热发射二极管102的第二触点S2输入高电压时,外接电势与内在电势方向相反,使得该热发射二极管102处于漏流状态。
LTPS PMOS 1022与第一金属层1023点状接触而非面接触,防止LTPS PMOS 1022与第一金属层1023由于面接触产生边界效应而直接导通(即压降为零),也就是说,LTPS PMOS 1022与第一金属层1023通过点状接触形成热发射界面以消除边界效应,电子从第一金属层1023向LTPS PMOS 1022发射。在温度升高时,从第一金属层1023向LTPS PMOS 1022发射的电子增加,LTPS PMOS 1022与第一金属层1023之间的导通电压线性下降,等效于热发射二极管102的电阻下降。在温度降低时,从第一金属层1023向LTPS PMOS 1022发射的电子减少,LTPS PMOS 1022与第一金属层1023之间的导通电压线性上升,等效于热发射二极管102的电阻上升。
示例性的,在另一种可能的实施方式中,如图11所示,示出了一种N型的热发射二极管102的俯视图(图11中A)和剖面图(图11中B),该热发射二极管102可以包括基底1021、设置在基底1021上的IGZO 1025以及设置在IGZO 1025上的第二金属层1026,第二金属层1026可以为钼(MO)、铝(AL)、铜(Cu)等金属或者上述金属的合金材料,即可以包括钼(MO)、铝(AL)、铜(Cu)中的至少一种。该热发射二极管102还可以包括绝缘层1024,绝缘层1024用于填充热发射二极管102的剩余空间以实现IGZO 1025和第二金属层1026与外部绝缘。
第二金属层1026作为热发射二极管102中电势高的一极(例如可以称为阳极)引出第一触点(可以称为阳极触点)S1,IGZO 1025作为热发射二极管102中电势低的一极(例如可以称为阴极)引出第二触点(可以称为阴极触点)S2。第一触点S1可以作为前文所述的热发射二极管102的第一端,第二触点S2可以作为热发射二极管102的第二端,或者,第一触点S1可以作为热发射二极管102的第二端,第二触点可以作为热发射二极管102的第一端。
由于IGZO 1025与第二金属层1026之间存在电势差(内在电势)。当热发射二极管102的第一触点S1输入高电压,热发射二极管102的第二触点S2输入低电压时,外接电势与内在电势方向一致,使得该热发射二极管102导通,当热发射二极管102的第一触点S1输入低电压,热发射二极管102的第二触点S2输入高电压时,外接电势与内在电势方向相反,使得该热发射二极管102处于漏流状态。
IGZO 1025与第二金属层1026点状接触而非面接触,防止IGZO 1025与第二金属层1026由于面接触产生边界效应而直接导通(即压降为零),也就是说,IGZO 1025 与第二金属层1026通过点状接触形成热发射界面以消除边界效应,电子从IGZO 1025向第二金属层1026发射。在温度升高时,从IGZO 1025向第二金属层1026发射的电子增加,IGZO 1025与第二金属层1026之间的导通电压线性下降,等效于热发射二极管102的电阻下降。在温度降低时,从IGZO 1025向第二金属层1026发射的电子减少,IGZO 1025与第二金属层1026之间的导通电压线性上升,等效于热发射二极管102的电阻上升。
示例性的,在又一种可能的实施方式中,如图12所示,示出了一种复合(P型加N型)的热发射二极管102的俯视图(图12中A)和剖面图(图12中B),该热发射二极管102可以包括基底1021、设置在基底1021上的LTPS PMOS 1022、设置在LTPS PMOS 1022上的第一金属层1023、IGZO 1025以及设置在IGZO 1025上的第二金属层1026,第一金属层1023和第二金属层1026通过桥线1027相耦接(例如串联)。第一金属层1023或第二金属层1026可以为钼(MO)、铝(AL)、铜(Cu)等金属或者上述金属的合金材料,即可以包括钼(MO)、铝(AL)、铜(Cu)中的至少一种。该热发射二极管102还可以包括绝缘层1024,绝缘层1024用于填充热发射二极管102的剩余空间以实现LTPS PMOS 1022、第一金属层1023、IGZO 1025以及第二金属层1026与外部绝缘。
LTPS PMOS 1022作为热发射二极管102中高电势的一极(例如可以称为阳极)引出第一触点(可以称为阳极触点)S1,IGZO 1025作为热发射二极管102中低电势的一极(例如可以称为阴极)引出第二触点(可以称为阴极触点)S2。第一触点S1可以作为前文所述的热发射二极管102的第一端,第二触点S2可以作为热发射二极管102的第二端,或者,第一触点S1可以作为热发射二极管102的第二端,第二触点可以作为热发射二极管102的第一端。
该热发射二极管102相当于图10中的P型热发射二极管和图11中的N型热发射二极管通过桥线1027相耦接(例如串联),因此其工作原理及技术效果参照图10和图11相关描述,在此不再重复。
另外,如图13所示,还可以将图8所示的惠斯通电桥101的第一输出端耦接高频电容103,惠斯通电桥101的第一输入端和第二输入端还可以耦接交流信号发生器,该交流信号发生器用于向压力传感器输出交流信号(例如正弦波、三角波、脉冲等)。因为长时间在压力传感器100的输入端输入直流信号,一方面增加功耗,另一方面会造成器件老化,容易使压力传感器100检测准确性降低,而通过向压力传感器100的输入端输入交流信号可以实现高频检测,从而可以避免上述问题。
另外,如图14中A所示,示出了AM-LED或OLED的驱动电路,MOS管T2的源极耦接电容C的一端以及晶体管T1的栅极,MOS管T2的漏极输入信号电压Vdata,电容C的另一端以及MOS管T1的漏极输入电源电压Vdd,MOS管T1的源极耦接AM-LED或OLED的阳极,AM-LED或OLED的阳极输入电压Vss。在工作时,向MOS管T2的栅极施加电压使MOS管T2导通,信号电压Vdata通过晶体管T2被施加至MOS管T1的栅极,使得MOS管T1导通并将电源电压Vdd通过MOS管T1施加至AM-LED或OLED的阳极,从而令AM-LED或OLED发光。但是由于AM-LED或OLED在发光过程中会发热,使得AM-LED或OLED等效的电阻增大,导致AM-LED 或OLED的驱动电流变小,AM-LED或OLED发光强度变低。
为此,如图14中B所示,可以将AM-LED或OLED与前文所述的热发射二极管102相耦接,此时,AM-LED或OLED相当于前文所述的压敏电阻,在温度升高时热发射二极管导通的电流会升高,等效于阻值降低;在温度降低时热发射二极管导通的电流会降低,等效于阻值升高,即热发射二极管的等效阻值随温度变化趋势与AM-LED或OLED的阻值随温度变化趋势相反,以补偿AM-LED或OLED由于发热导致的等效的电阻增大,不会降低AM-LED或OLED发光强度。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种压力传感器,其特征在于,包括:惠斯通电桥和热发射二极管,所述惠斯通电桥包括第一电阻、第二电阻、第三电阻和第四电阻,所述第一电阻、所述第二电阻、所述第三电阻和所述第四电阻耦接形成环路,所述第一电阻和所述第二电阻的耦接点作为所述惠斯通电桥的第一输入端,所述第三电阻和所述第四电阻的耦接点作为所述惠斯通电桥的第二输入端,所述第二电阻和所述第四电阻的耦接点作为所述惠斯通电桥的第一输出端耦接至所述热发射二极管的第一端,所述第一电阻和所述第三电阻的耦接点作为所述惠斯通电桥的第二输出端;
    其中,所述第一电阻、所述第二电阻和所述第三电阻为定值电阻,所述第四电阻为压敏电阻;在温度升高时,所述热发射二极管的等效阻值降低,所述第四电阻的阻值升高;在温度降低时,所述热发射二极管的等效阻值升高,所述第四电阻的阻值降低;所述第一输入端和所述第二输入端用于输入恒定电压或脉冲电压,所述惠斯通电桥的第二输出端以及所述热发射二极管的第二端用于输出电信号。
  2. 根据权利要求1所述的压力传感器,其特征在于,所述热发射二极管包括低温多晶硅P沟道金属氧化物半导体LTPS PMOS以及设置在所述LTPS PMOS上的第一金属层,所述LTPS PMOS与所述第一金属层点状接触,所述LTPS PMOS引出第一触点,所述第一金属层引出第二触点。
  3. 根据权利要求1所述的压力传感器,其特征在于,所述热发射二极管包括铟镓锌氧化物IGZO以及设置在所述IGZO上的第二金属层,所述IGZO与所述第二金属层点状接触,所述第二金属层引出第一触点,所述IGZO引出第二触点。
  4. 根据权利要求1所述的压力传感器,其特征在于,所述热发射二极管包括LTPS PMOS、IGZO、设置在所述LTPS PMOS上的第一金属层以及设置在所述IGZO上的第二金属层,所述第一金属层和所述第二金属层相耦接,所述LTPS PMOS与所述第一金属层点状接触,所述IGZO与所述第二金属层点状接触,所述LTPS PMOS引出第一触点,所述IGZO引出第二触点。
  5. 根据权利要求2-4任一项所述的压力传感器,其特征在于,所述第一触点为所述热发射二极管的第一端,所述第二触点为所述热发射二极管的第二端,或者,所述第一触点为所述热发射二极管的第二端,所述第二触点为所述热发射二极管的第一端。
  6. 根据权利要求2-5任一项所述的压力传感器,其特征在于,所述金属层包括钼、铝、铜中的至少一种。
  7. 根据权利要求1-6任一项所述的压力传感器,其特征在于,所述惠斯通电桥的第一输出端还耦接电容。
  8. 根据权利要求7任一项所述的压力传感器,其特征在于,所述惠斯通电桥的第一输入端和第二输入端还耦接交流信号发生器。
  9. 根据权利要求1-8任一项所述的压力传感器,其特征在于,所述第一电阻、所述第二电阻或所述第三电阻为薄膜电阻,所述薄膜电阻包括半导体薄膜电阻、高阻抗的金属薄膜电阻。
  10. 根据权利要求9所述的压力传感器,其特征在于,所述半导体薄膜电阻包括无定形硅薄膜电阻、LTPS薄膜电阻、IGZO薄膜电阻。
  11. 根据权利要求9所述的压力传感器,其特征在于,所述高阻抗的金属薄膜电阻包括镍、铜、猛、铬。
  12. 根据权利要求1-11任一项所述的压力传感器,其特征在于,所述压力传感器设置于有机发光二极管OLED显示屏的层间电介质层中。
  13. 一种电子设备,其特征在于,包括有机发光二极管OLED显示屏和处理器,所述显示屏中包括如权利要求1-12任一项所述的压力传感器,所述压力传感器用于向所述处理器输出与所述OLED显示屏的触摸压力相对应的电信号。
PCT/CN2022/083188 2021-04-16 2022-03-25 压力传感器和电子设备 WO2022218137A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/022,382 US20230324245A1 (en) 2021-04-16 2022-03-25 Pressure sensor and electronic device
EP22787366.8A EP4187888A4 (en) 2021-04-16 2022-03-25 PRESSURE SENSOR AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414419.1 2021-04-16
CN202110414419.1A CN113301190B (zh) 2021-04-16 2021-04-16 压力传感器和电子设备

Publications (1)

Publication Number Publication Date
WO2022218137A1 true WO2022218137A1 (zh) 2022-10-20

Family

ID=77318801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083188 WO2022218137A1 (zh) 2021-04-16 2022-03-25 压力传感器和电子设备

Country Status (4)

Country Link
US (1) US20230324245A1 (zh)
EP (1) EP4187888A4 (zh)
CN (1) CN113301190B (zh)
WO (1) WO2022218137A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301190B (zh) * 2021-04-16 2022-08-05 荣耀终端有限公司 压力传感器和电子设备
CN113865757A (zh) * 2021-09-16 2021-12-31 歌尔微电子股份有限公司 压阻式压力传感器的检测电路、检测方法和电子设备
CN115019353B (zh) * 2021-10-28 2023-05-09 荣耀终端有限公司 集成光学传感器的模组、显示面板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201069402Y (zh) * 2007-07-30 2008-06-04 伊玛精密电子(苏州)有限公司 智能型压力传感器
US20100123468A1 (en) * 2008-11-20 2010-05-20 Samsung Electronics Co., Ltd. Method and apparatus for optimizing wheatstone bridge robust in change in temperature
CN108874271A (zh) * 2017-05-12 2018-11-23 三星电子株式会社 包括多个输入设备的电子设备及其控制方法
BR102019026566A2 (pt) * 2019-08-09 2021-02-09 Rosemount Aerospace Inc. Sensor de pressão micromecânico, e, método para usar um sensor de pressão micromecânico
CN113301190A (zh) * 2021-04-16 2021-08-24 荣耀终端有限公司 压力传感器和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224129B (zh) * 2015-09-01 2018-06-22 宸鸿科技(厦门)有限公司 一种压力感测输入装置
CN207964135U (zh) * 2018-01-05 2018-10-12 台州辉腾泵业有限公司 压力传感器温度补偿电路
CN209372289U (zh) * 2019-02-26 2019-09-10 厦门乃尔电子有限公司 一种硅压阻式压力传感器的高精度温度补偿电路
CN110767652B (zh) * 2019-11-06 2022-02-18 中北大学 具有自散热功能的惠斯通电桥结构及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201069402Y (zh) * 2007-07-30 2008-06-04 伊玛精密电子(苏州)有限公司 智能型压力传感器
US20100123468A1 (en) * 2008-11-20 2010-05-20 Samsung Electronics Co., Ltd. Method and apparatus for optimizing wheatstone bridge robust in change in temperature
CN108874271A (zh) * 2017-05-12 2018-11-23 三星电子株式会社 包括多个输入设备的电子设备及其控制方法
BR102019026566A2 (pt) * 2019-08-09 2021-02-09 Rosemount Aerospace Inc. Sensor de pressão micromecânico, e, método para usar um sensor de pressão micromecânico
CN113301190A (zh) * 2021-04-16 2021-08-24 荣耀终端有限公司 压力传感器和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187888A4

Also Published As

Publication number Publication date
EP4187888A4 (en) 2024-03-13
US20230324245A1 (en) 2023-10-12
CN113301190B (zh) 2022-08-05
EP4187888A1 (en) 2023-05-31
CN113301190A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022218137A1 (zh) 压力传感器和电子设备
US9710022B2 (en) Cover device and electronic device including the same
KR102181156B1 (ko) 무선 충전을 위한 커버 부재와 전자 장치 및 방법
EP3930138B1 (en) Charging control circuit, terminal device and control method
US11861775B2 (en) Picture rendering method, apparatus, electronic device, and storage medium
KR20150099216A (ko) 저전력 구동 방법과 이를 수행하는 전자 장치
WO2021197124A1 (zh) 电子设备及压力按键操作方法
WO2019206225A1 (zh) 补光的方法和移动终端
WO2021083122A1 (zh) 电子设备和控制件控制方法
WO2021169729A1 (zh) 一种电路控制装置及方法
US20230025705A1 (en) Display method and electronic device
KR20210040424A (ko) 음성 제어 명령 생성 방법 및 단말
WO2019233302A1 (zh) 触摸屏、触控压力检测方法及终端
CN108289270A (zh) 一种扬声器及移动终端
WO2019076376A1 (zh) 信息显示方法及移动终端
US10200084B2 (en) Electronic device and cable and method of driving the same
TWI715818B (zh) 電子裝置的殼體組件及電子裝置
WO2015141974A1 (en) Input device for detecting external input
WO2021175073A1 (zh) 一种电子设备
WO2021036888A1 (zh) 一种触控方法及电子设备
WO2020238370A1 (zh) 连接处理方法、终端及电子设备
CN109980724B (zh) 对双屏移动终端充电的方法、装置、移动终端及存储介质
CN113674702A (zh) 像素驱动电路以及移动终端
TWI710302B (zh) 電子裝置的殼體組件及具有其的電子裝置、手機
JP6218910B1 (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022787366

Country of ref document: EP

Effective date: 20230222

NENP Non-entry into the national phase

Ref country code: DE