WO2022218089A1 - 钙钛矿太阳能电池及其制备方法、用电设备 - Google Patents

钙钛矿太阳能电池及其制备方法、用电设备 Download PDF

Info

Publication number
WO2022218089A1
WO2022218089A1 PCT/CN2022/081265 CN2022081265W WO2022218089A1 WO 2022218089 A1 WO2022218089 A1 WO 2022218089A1 CN 2022081265 W CN2022081265 W CN 2022081265W WO 2022218089 A1 WO2022218089 A1 WO 2022218089A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
perovskite solar
cell device
perovskite
sealant
Prior art date
Application number
PCT/CN2022/081265
Other languages
English (en)
French (fr)
Inventor
苏硕剑
郭永胜
欧阳楚英
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22787318.9A priority Critical patent/EP4243103A4/en
Publication of WO2022218089A1 publication Critical patent/WO2022218089A1/zh
Priority to US18/330,624 priority patent/US20230320110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of battery technology, in particular to a perovskite solar cell, a preparation method thereof, and electrical equipment.
  • Perovskite materials have poor stability and are easily decomposed under the action of light, heat, water and oxygen, resulting in a decrease in the photoelectric conversion efficiency of perovskite solar cells. Therefore, it is necessary to ensure the better sealing performance of the perovskite battery device when preparing the perovskite battery device.
  • the purpose of the embodiments of the present application is to provide a perovskite solar cell, a preparation method thereof, and electrical equipment, which are intended to improve the service life of the perovskite solar cell.
  • a first aspect of the present application provides a perovskite solar cell, comprising:
  • a transparent substrate and a sealed cavity is formed between the transparent substrate and the backplane;
  • the perovskite solar cell device is located in a sealed cavity;
  • the sealed cavity contains ammonia gas with a volume fraction of 10%-100% and the balance of inert gas.
  • the chemical formula of the perovskite material in the perovskite solar cell device is ABX 3 , wherein A includes an organic amine cation, and B is a metal cation, X is a halogen anion or SCN - .
  • 10%-100% of ammonia gas and the balance of inert gas are contained in the perovskite battery structure containing organic amine cations, which can effectively inhibit the migration and decomposition of organic amine cations in the perovskite material, improve calcium Thermal stability of titanite solar cell devices, thereby improving the light conversion efficiency and service life of perovskite solar cells.
  • A comprises at least one of CH3NH3 + and HC( NH2 ) 2+ .
  • B is at least one of Pb 2+ , Sn 2+ and Ge 2+ .
  • a in ABX 3 further includes at least one of Cs + , Rb + and K + .
  • the inert gas includes at least one of nitrogen, argon, helium, and neon.
  • the volume fraction of ammonia gas in the sealed cavity is 30%-90%.
  • the volume fraction of ammonia gas in the sealed cavity is 50%-70%.
  • the volume fraction of ammonia gas in the sealed cavity is controlled to be within the above range, which can take into account the advantages of production cost, light conversion efficiency of solar cells, and operational safety.
  • the perovskite solar cell further includes a sealing element connecting the transparent substrate and the back sheet to form a sealing cavity.
  • the sealing element is a sealant.
  • the sealant is located around the perovskite solar cell device, and the back sheet and the perovskite solar cell device are fixed by the sealant;
  • the sealant is also located on at least part of the surface or the entire surface of the side of the back sheet facing the perovskite solar cell device.
  • the material of the transparent substrate is glass or polyethylene terephthalate.
  • the material of the back plate is glass or polyethylene terephthalate.
  • a second aspect of the present application provides a method for preparing a perovskite solar cell, comprising:
  • the perovskite solar cell device is encapsulated between the transparent substrate and the backsheet; wherein,
  • the preset atmosphere contains ammonia gas with a volume fraction of 10%-100% and the balance of inert gas.
  • the chemical formula of the perovskite material in the perovskite solar cell device is ABX 3 , wherein A includes an organic amine cation, and B is a metal cation, X is a halogen anion or SCN - .
  • the perovskite solar cell device is encapsulated in a preset atmosphere consisting of ammonia gas with a volume fraction of 10%-100% and the balance of inert gas, so that the solar cell device is located in the preset atmosphere; the preset atmosphere can suppress the The migration and decomposition of organic amine cations in perovskite materials containing organic amine cations can effectively improve the stability of perovskite materials.
  • A in ABX 3 , includes at least one of CH 3 NH 3 + and HC(NH 2 ) 2 + .
  • B is at least one of Pb 2+ , Sn 2+ and Ge 2+ .
  • a in ABX 3 further includes at least one of Cs + , Rb + and K + .
  • the inert gas includes at least one of nitrogen, argon, helium, and neon.
  • the volume fraction of ammonia gas in the preset atmosphere is 30%-90%.
  • the volume fraction of ammonia gas in the preset atmosphere is 50%-70%.
  • Encapsulation under the above-mentioned preset atmosphere can enable the above-mentioned preset atmosphere to be encapsulated inside the perovskite solar cell device, thereby increasing the efficiency and service life of the battery and reducing the cost in the manufacturing process.
  • a sealing element is used for encapsulation
  • the sealing element is a sealant.
  • the sealant covers the periphery of the perovskite solar cell device, and the back sheet and the perovskite solar cell device are fixed by the sealant.
  • the sealant also covers at least part of the surface or the entire surface of the side of the back sheet facing the perovskite solar cell device.
  • a third aspect of the present application provides an electrical device, and the electrical device includes the perovskite solar cell provided in the first aspect; the perovskite solar cell is used as a power source or an energy storage unit of the electrical device.
  • FIG. 1 shows a schematic cross-sectional view of a perovskite solar cell provided in an embodiment of the present application.
  • FIG. 2 shows a schematic cross-sectional view of yet another perovskite solar cell provided in the embodiment of the present application.
  • FIG. 3 shows a schematic diagram of the internal structure of the perovskite solar cell device provided in the embodiment of the present application.
  • Icon 100-perovskite solar cell; 101-sealed cavity; 110-back plate; 120-transparent substrate; 121-positive terminal; 122-negative terminal; 130-perovskite solar cell device; 131-transparent conductive electrode; 132-hole transport layer; 133-perovskite layer; 134-electron transport layer; 135-metal conductive layer; 140-sealing element.
  • FIG. 1 shows a schematic cross-sectional view of a perovskite solar cell 100 provided by an embodiment of the present application. Please refer to FIG. 1 .
  • This embodiment provides a perovskite solar cell 100 .
  • the perovskite solar cell 100 mainly includes a back Plate 110 , transparent substrate 120 , and perovskite solar cell device 130 .
  • a sealed cavity 101 is formed between the back plate 110 and the transparent substrate 120 , and the perovskite solar cell device 130 is located in the sealed cavity 101 .
  • the perovskite solar cell 100 further includes a sealing element 140, the sealing element 140 is located between the back sheet 110 and the transparent substrate 120, and the back sheet 110, the transparent substrate 120 and the sealing element are jointly enclosed to form a seal Cavity 101.
  • one side of the transparent substrate 120 is provided with a positive terminal 121 and a negative terminal 122; the front side of the perovskite solar cell device 130 is connected to the transparent substrate 120; the positive electrode and the positive terminal of the perovskite solar cell device 130 are led out
  • the terminal 121 is electrically connected, and the negative electrode of the perovskite solar cell device 130 is connected to the negative terminal 122;
  • the sealing element 140 enables the perovskite solar cell device 130 to be sealed.
  • the material of the transparent substrate 120 is glass, and in other embodiments, the material of the transparent substrate 120 may be other transparent materials such as polyethylene terephthalate.
  • the material of the back plate 110 is polyethylene terephthalate, and in other embodiments, the material of the back plate 110 may also be glass or the like.
  • the sealing element 140 is a sealant; as an example, the sealant can seal the perovskite solar cell device 130 in the following manner:
  • sealant is applied on the entire surface of the perovskite solar cell device 130 away from the transparent substrate 120 and around the perovskite solar cell device 130 , and the back sheet 110 is adhered to the sealant to seal the perovskite solar energy battery device 130; alternatively, a sealant is applied on the surface of the back sheet 110 facing the perovskite solar cell device 130, and the back sheet 110 and the sealant are bonded to seal the perovskite solar cell device 130; There is a sealed cavity 101 between the solar cell devices 130 .
  • the number of the sealing chambers 101 may be one or more, and the plurality of sealing chambers 101 may be communicated with each other or not communicated with each other.
  • Covering the entire surface of the perovskite solar cell device 130 away from the transparent substrate 120 by the sealant is beneficial to improve the mechanical properties of the perovskite solar cell 100 and increase the firmness and stability of the packaging structure of the perovskite solar cell 100 .
  • FIG. 2 shows a schematic cross-sectional view of another perovskite solar cell 100 provided in the embodiment of the present application. Please refer to FIG. 2 .
  • the sealant is located around the perovskite solar cell device 130 and the perovskite solar cell device 130
  • the mine solar cell device 130 faces away from a part of the surface of the transparent substrate 120 .
  • the sealant can seal the perovskite solar cell device 130 by:
  • a sealant is applied around the perovskite solar cell device 130 , and the back sheet 110 is adhered to the sealant to seal the perovskite solar cell device 130 .
  • a sealant is applied around the back sheet 110 facing the sealing perovskite solar cell device 130 , and the back sheet 110 is attached to the sealant to seal the perovskite solar cell device 130 .
  • sealing cavity 101 between the perovskite solar cell device 130 and the back sheet 110 There is a sealing cavity 101 between the perovskite solar cell device 130 and the back sheet 110; or, in some embodiments, due to the uneven surface of the perovskite solar cell device 130 and other reasons, the perovskite solar cell device 130 and the sealant There may also be at least one sealed cavity 101 in between.
  • the sealant can seal the perovskite solar cell device 130 in other ways.
  • the back sheet 110 is coated with sealant facing the surrounding of the sealed perovskite solar cell device 130 and the entire surface of the back sheet 110, and the back sheet 110 is laminated with the sealant to seal the perovskite solar cell device 130.
  • the formed sealing cavity 101 may be located between the sealant and the perovskite solar cell device 130; may be located between the perovskite solar cell device 130 and the back sheet 110; or both the above-mentioned positions have the sealing cavity 101,
  • the present application does not limit the shape and quantity of the sealed cavities 101, and whether the plurality of sealed cavities 101 are connected to each other.
  • the sealed cavity 101 accounts for a larger volume of the entire perovskite solar cell 100 , just to be able to better identify the sealed cavity 101 in the figures; it does not refer to the proportion of the sealed cavity 101
  • the volume of the entire perovskite solar cell 100 is shown in FIG. 1 or FIG. 2 ; it should be noted that the embodiment of the present application does not limit the volume of the sealed cavity 101 accounting for the entire perovskite solar cell 100 .
  • the sealed cavity 101 may be a cavity formed intentionally during the packaging process, or may be a cavity inevitably formed during the packaging process; or may include the above two situations.
  • the sealant is selected from epoxy-based encapsulant, silicone-based encapsulant, polyurethane encapsulant, ultraviolet light-curable encapsulant, ethylene-vinyl acetate copolymer, polyvinyl butyral, and ethylene octene copolymer , at least one of polyisobutylene and polyolefin encapsulant.
  • the sealant is an epoxy type encapsulant; for example, the mass ratio of A glue to B glue is 2: (0.5-1.5) epoxy AB glue, the mass ratio of A glue to B glue can be 2:0.5, 2 :0.8, 2:1, 2:1.2, or 2:1.5, etc.
  • the sealing element 140 may not be limited to the sealant; for example, other sealing components are used to seal the perovskite solar cell device 130; or the sealing element 140 is not used to seal the perovskite solar cell device 130, and the transparent The substrate 120 and the backsheet 110 encapsulate the perovskite solar cell device 130 .
  • the sealed cavity 101 contains ammonia gas with a volume fraction of 10%-100% and the balance of inert gas; in other words, the gas in the sealed cavity 101 includes ammonia gas with a volume fraction of 10%-100% and the balance amount of inert gas.
  • the volume fraction of ammonia gas in the sealed cavity 101 may be 50%-90%, 30%-70%, 60%-80%, and so on.
  • the volume fraction of ammonia in the sealed chamber 101 may be 10%, 16%, 21%, 30%, 34%, 50%, 60%, 67%, 75%, 80%, 98% or 100%, etc. .
  • the inert gas may be at least one of nitrogen, argon, helium, and neon.
  • the inert gas is nitrogen.
  • the 10%-100% ammonia gas and the balance of the inert gas do not only refer to the above two types of components in an absolute sense, and the sealed cavity 101 may also include trace impurities that are unavoidable in the actual production process. Gas (usually, the volume fraction of trace impurity gas is less than 1%).
  • FIG. 3 shows a schematic diagram of the internal structure of the perovskite solar cell device 130 provided in the embodiment of the present application. Please refer to FIG. 3 .
  • the perovskite solar cell device 130 includes a transparent conductive electrode 131 and a hole transport layer that are stacked in sequence. 132 , a perovskite layer 133 , an electron transport layer 134 and a metal conductive layer 135 .
  • the position of the hole transport layer 132 shown in FIG. 3 may be the electron transport layer 134 , and the position of the electron transport layer 134 is the hole transport layer 132 .
  • the material of the transparent conductive electrode 131 is selected from at least one of indium tin oxide and fluorine-doped tin dioxide.
  • the material of the hole transport layer 132 is selected from poly3,4-ethylenedioxythiophene, polystyrene sulfonate, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] , CuSCN, NiOx, CuI, MoOx, 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, WO 3 , At least one of polyethoxyethyleneimine, polyethyleneimine, ZnO, TiO 2 , [6,6]-phenyl-C61-butyric acid isomethyl ester and SnO 2 .
  • the material of the electron transport layer 134 is selected from poly3,4-ethylenedioxythiophene, polystyrene sulfonate, polytriarylamine, CuSCN, NiOx, CuI, MoOx, 2,2',7,7'-tetra[N ,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, WO 3 , polyethoxyethylene imine, polyethylene imine, ZnO, TiO 2 , [6,6 ]-phenyl-C61-butyric acid isomethyl ester and at least one of SnO 2 .
  • the material of the metal conductive layer 135 is selected from at least one of Au, Ag, Cu, Al, Ni, Cr, Bi, Pt, Mg and alloys thereof.
  • the chemical formula of the perovskite material in the perovskite layer 133 is ABX 3 ; wherein, A includes an organic amine cation, B is a metal cation, and X is a halogen anion or SCN ⁇ .
  • a in ABX 3 may include at least one of CH 3 NH 3 + and HC(NH 2 ) 2 + ; in other words, A may be CH 3 NH 3 + , HC(NH 2 ) 2 + or both Proportionally mixed mixture. It is understood that A may also include metal ions, such as at least one of Cs + , Rb + and K + .
  • B in ABX 3 can be at least one of Pb 2+ , Sn 2+ and Ge 2+ .
  • ABX3 can be CH3NH3PbI3 ; CH3NH3SnI3 ; CH3NH3PbI2Cl ; CH3NH3PbI2Br ; CH3NH3Pb ( I1 - xBrx ) 3 (where 0 ⁇ x ⁇ 1);
  • CH 3 NH 3 + is abbreviated as MA + ; HC(NH 2 ) 2 + is abbreviated as FA + ; ABX 3 can also be:
  • the inventor found after research that containing ammonia gas with a volume fraction of 10%-100% and the balance of inert gas in the sealed cavity 101 can effectively inhibit the migration and decomposition of organic amine cations in the perovskite material, and improve the The structural stability of the perovskite material improves the thermal stability of the perovskite solar cell 100 , thereby helping to improve the light conversion efficiency and prolong the service life of the perovskite solar cell 100 .
  • the volume fraction of ammonia in the sealed cavity 101 is closely related to the effect of improving the structural stability of the perovskite material. Under the condition of satisfying a certain degree of inhibition of decomposition, based on cost and safety considerations, the integral fraction of ammonia in the sealed cavity 101 The proportion can be in an appropriate range, such as 50%-70% and so on.
  • the present application also shows a preparation method of the above-mentioned perovskite solar cell.
  • the preparation method mainly includes the following steps:
  • S1 Fabrication of perovskite solar cell devices on transparent substrates.
  • it mainly includes:
  • a transparent conductive electrode, one of a hole transport layer and an electron transport layer, a perovskite layer, the other of a hole transport layer and an electron transport layer, and a metal conductive layer are sequentially prepared on a transparent substrate.
  • the material of the transparent conductive electrode is selected from at least one of indium tin oxide and fluorine-doped tin dioxide.
  • the material of the hole transport layer and the material of the electron transport layer are independently selected from poly3,4-ethylenedioxythiophene, polystyrene sulfonate, poly[bisulfite] (4-phenyl)(2,4,6-trimethylphenyl)amine], CuSCN, NiOx, CuI, MoOx, 2,2',7,7'-tetra[N,N-bis(4- Methoxyphenyl)amino]-9,9'-spirobifluorene, WO 3 , polyethoxyethylene imine, polyethylene imine, ZnO, TiO 2 , [6,6]-phenyl-C61- At least one of isomethyl butyrate and SnO 2 .
  • the material of the perovskite layer can be selected as ABX 3 ; wherein, A includes an organic amine cation, B is a metal cation, and X is a halogen anion or SCN ⁇ .
  • ABX3 can be CH3NH3PnI3 ; CH3NH3SnI3 ; CH3NH3PbI2Cl ; CH3NH3PbI2Br ;
  • CH 3 NH 3 + is abbreviated as MA + ; HC(NH 2 ) 2 + is abbreviated as FA + ; ABX 3 can also be:
  • the material is selected from at least one of Au, Ag, Cu, Al, Ni, Cr, Bi, Pt, Mg and alloys thereof.
  • step S1 may be as follows:
  • Part of the transparent substrate is etched away with Zn powder and 1mol/L-2mol/L hydrochloric acid, washed and dried.
  • Spin-coat TiO precursor solution at 4000rpm-6500rpm under N2 atmosphere, incubate at 120°C-150°C for 20min-25min, then heat up to 400°C-450°C, hold for 40min-45min, and then anneal to 120°C-150°C °C.
  • the perovskite solar cell device In a preset atmosphere, the perovskite solar cell device is packaged with a back sheet; the preset atmosphere contains ammonia gas with a volume fraction of 10%-100% and the balance of inert gas.
  • encapsulating includes: encapsulating the perovskite solar cell device with a sealing material and a back sheet.
  • the method of encapsulating the perovskite solar cell device can be: coating the sealing material around the perovskite solar cell device and the entire reverse side, and attaching the back sheet to the reverse side of the perovskite solar cell device to achieve sealing .
  • the method of encapsulating the perovskite solar cell device may be: coating the sealing material around the perovskite solar cell device, and attaching the back sheet to the reverse side of the perovskite solar cell device to achieve sealing.
  • the encapsulant can be applied to the backsheet, which is then bonded to the reverse side of the perovskite solar cell device.
  • the sealing material can be a sealant
  • the sealant can be an epoxy encapsulant, such as epoxy AB glue. Curing at least one of encapsulant, ethylene-vinyl acetate copolymer, polyvinyl butyral, ethylene octene copolymer, polyisobutylene and polyolefin encapsulant.
  • the sealing material can also be other materials that can seal the perovskite solar cell device.
  • the sealing material may not be used to seal it.
  • the preset atmosphere includes ammonia gas with a volume fraction of 10%-100% and the balance of inert gas and unavoidable trace impurity gas.
  • the volume fraction of ammonia gas in the preset atmosphere can be 10%, 16%, 21%, 30%, 34%, 50%, 60%, 67%, 75%, 80%, 98% or 100%, etc.
  • the inert gas may be at least one of nitrogen, argon, helium, and neon.
  • the inert gas is nitrogen.
  • step S2 may be as follows:
  • a layer of encapsulant is applied around and on the surface of the perovskite solar cell device, and the back plate is pressed and attached to the encapsulant to cure the encapsulant.
  • Encapsulation is performed in a preset atmosphere consisting of ammonia gas with a volume fraction of 10%-100% and the balance of inert gas, so that the sealed cavity after encapsulation contains ammonia gas with a volume fraction of 10%-100%.
  • the above settings It can effectively inhibit the migration and decomposition of organic amine cations in the perovskite material, improve the thermal stability of the perovskite cell device, and thereby improve the light conversion efficiency and service life of the perovskite solar cell.
  • the embodiment of the present application also provides an electrical equipment, the electrical equipment includes the above-mentioned perovskite solar cell 100, and the perovskite solar cell 100 is used as the power source of the electrical equipment to supply power; or, the perovskite solar cell 100 It can be used as an energy storage unit for the above-mentioned electrical equipment.
  • the electrical equipment may be a lighting element, a display element or a car, and the like.
  • This embodiment provides a perovskite solar cell, which is mainly prepared through the following steps:
  • FTO Take a group of FTO conductive glass with a size of 1.5cm ⁇ 1.5cm, protect 2/3 of the conductive layer area of the conductive glass sheet with M3 waterproof tape, and etch away 1/3 of the conductive layer with Zn powder and 1mol/L hydrochloric acid.
  • FTO Wash the corroded FTO conductive glass sheets with acetone and isopropanol for several times, and finally immerse them in deionized water for 10 minutes;
  • step 2) Take the FTO conductive glass sheet processed in step 1), dry it in a blast drying oven, spin-coat the TiO 2 precursor solution in a glove box at 4000 rpm, then immediately take it out from the glove box and keep it at 120 °C for 20 min. When the temperature is raised to 450°C for 40min and then annealed to 120°C, the culture dish is put back into the glove box; wherein, the glove box contains 100% N 2 ;
  • step 3 Take the spin-coated TiO 2 conductive glass sheet obtained in step 2), continue to spin-coat the precursor solution of CH 3 NH 3 PbI 3 at 4000 rpm, then heat it at 110° C. for 30 min on a glove box hot stage, and anneal it to room temperature, A perovskite layer containing CH 3 NH 3 PbI 3 is obtained;
  • step 4) Take the conductive glass sheet coated with the perovskite layer obtained in step 3) and continue to spin-coat 2,2',7,7'-tetra[N,N-bis(4-methoxyl) in the glove box at 4000 rpm phenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD) layer, and then placed in the glove box for about 8 hours to cure, take out the glove box, and put it into a drying tower with a humidity of 10% to oxidize for 12 hours;
  • step 5 take the oxidized conductive glass sheet obtained in step 4), put it into an evaporation machine, and evaporate an Ag electrode with a thickness of 100 nm; obtain a perovskite solar cell device;
  • a perovskite solar cell is obtained.
  • Examples 2-28 and Comparative Examples 1-6 respectively provide a perovskite solar cell, the preparation method of which refers to Example 1, and the difference from Example 1 lies in the active material in the perovskite layer in step 3) or step 6 ) in the glove box, see Table 1 for details.
  • the inventor speculates that this may be because the perovskite active material is thermally decomposed due to the migration of organic cations in an environment of 85 °C and 85% relative humidity.
  • the thermal decomposition reaction of the perovskite material is effectively suppressed, so the thermal stability is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请实施例提供一种钙钛矿太阳能电池及其制备方法、用电设备。钙钛矿太阳能电池包括背板、透明基板,透明基板与背板之间形成有密封腔;以及钙钛矿太阳能电池器件,钙钛矿太阳能电池器件位于密封腔内;其中,密封腔内含有体积分数为10%-100%的氨气以及余量的惰性气体。10%-100%的氨气能够提高钙钛矿材料的化学稳定性能,从而提高钙钛矿太阳能电池器件的热稳定性,进一步提高钙钛矿太阳能电池的效率和使用寿命。

Description

钙钛矿太阳能电池及其制备方法、用电设备
相关申请的交叉引用
本申请要求享有于2021年04月13日提交的名称为“钙钛矿太阳能电池及其制备方法、用电设备”的中国专利申请2021103977691的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种钙钛矿太阳能电池及其制备方法、用电设备。
背景技术
钙钛矿材料稳定性较差,在光、热、水氧的作用下极易发生分解,造成钙钛矿太阳能电池光电转换效率的下降。因此,在制备钙钛矿电池器件时需要保证钙钛矿电池器件较佳的密封性能。
但是,在封装过程中,仅确保钙钛矿电池器件较佳的密封性能对钙钛矿太阳能电池的使用寿命的提高作用有限。
发明内容
本申请实施例的目的在于提供一种钙钛矿太阳能电池及其制备方法、用电设备,其旨在提高钙钛矿太阳能电池的使用寿命。
本申请第一方面提供一种钙钛矿太阳能电池,包括:
背板;
透明基板,透明基板与背板之间形成有密封腔;
以及钙钛矿太阳能电池器件,钙钛矿太阳能电池器件位于密封腔内;其中,
密封腔内含有体积分数为10%-100%的氨气以及余量的惰性气体,钙钛矿太阳能电池器件中钙钛矿材料的化学式为ABX 3,其中,A包括有机胺阳离子,B为金属阳离子,X为卤素阴离子或SCN -
本申请中,在含有有机胺阳离子的钙钛矿电池结构中含10%-100%的氨气及余量的惰性气体,能够有效抑制钙钛矿材料中有机胺阳离子的迁移及分解,提高钙钛矿太阳能电池器件的热稳定性,从而提高钙钛矿太阳能电池的光转换效率和使用寿命。
在本申请第一方面的一些实施例中,A包括CH 3NH 3 +和HC(NH 2) 2 +中的至少一种。
可选地,ABX 3中,B为Pb 2+、Sn 2+和Ge 2+中至少一种。
在本申请第一方面的一些实施例中,ABX 3中A还包括Cs +、Rb +和K +中至少一种。
在本申请第一方面的一些实施例中,惰性气体包括氮气、氩气、氦气以及氖气中的至少一种。
可选地,密封腔内氨气的体积分数为30%-90%。
可选地,密封腔内氨气的体积分数为50%-70%。
本申请中,在密封腔内控制氨气的体积分数占比在上述范围内,可以兼顾生产成本、太阳能电池的光转换效率和操作安全等多个方面的优点。
在本申请第一方面的一些实施例中,钙钛矿太阳能电池还包括密封元件,密封元件连接透明基板与背板以形成密封腔。
可选地,密封元件为密封胶。
可选地,密封胶位于钙钛矿太阳能电池器件的四周,背板与钙钛矿太阳能电池器件通过密封胶固定;
可选地,密封胶还位于背板面向钙钛矿太阳能电池器件一侧的至少部分表面或者整个表面。
在本申请第一方面的一些实施例中,透明基板的材料为玻璃或者聚对苯二甲酸乙二醇酯。
可选地,背板的材料为玻璃或者聚对苯二甲酸乙二醇酯。
本申请第二方面提供一种钙钛矿太阳能电池的制备方法,包括:
提供透明基板和背板;
在预设气氛中,将钙钛矿太阳能电池器件封装在透明基板和背板之间;其中,
预设气氛含有体积分数为10%-100%的氨气以及余量的惰性气体,钙钛矿太阳能电池器件中钙钛矿材料的化学式为ABX 3,其中,A包括有机胺阳离子,B为金属阳离子,X为卤素阴离子或SCN -
在由体积分数为10%-100%的氨气以及余量的惰性气体组成的预设气氛中封装钙钛矿太阳能电池器件,使太阳能电池器件位于上述预设气氛中;该预设气氛能够抑制含有机胺阳离子的钙钛矿材料中有机胺阳离子的迁移和分解,有效提高钙钛矿材料的稳定性能。
在本申请第二方面的一些实施例中,ABX 3中,A包括CH 3NH 3 +和HC(NH 2) 2 +中的至少一种。
可选地,ABX 3中,B为Pb 2+、Sn 2+和Ge 2+中至少一种。
可选地,ABX 3中A还包括Cs +、Rb +和K +中至少一种。
在本申请第二方面的一些实施例中,惰性气体包括氮气、氩气、氦气以及氖气中的至少一种。
可选地,预设气氛中氨气的体积分数为30%-90%。
可选地,预设气氛中氨气的体积分数为50%-70%。
在上述预设气氛下进行封装,可以使上述预设气氛被封装在钙钛矿太阳能电池器件内部,在增加电池效率和使用寿命的同时,降低制作过程中的成本。
在本申请第二方面的一些实施例中,将钙钛矿太阳能电池器件封装在透明基板和背板之间的过程中,采用密封元件进行封装;
可选地,密封元件为密封胶。
可选地,将密封胶覆盖钙钛矿太阳能电池器件的四周,背板与钙钛矿太阳能电池器件通过密封胶固定。
可选地,密封胶还覆盖背板面向钙钛矿太阳能电池器件一侧的至少部分表面或者整个表面。
本申请第三方面提供一种用电设备,用电设备包括第一方面提供的钙钛矿太阳能电池;钙钛矿太阳能电池作为用电设备的电源或能量存储单元。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了本申请实施例提供的一种钙钛矿太阳能电池的截面示意图。
图2示出了本申请实施例提供的又一种钙钛矿太阳能电池的截面示意图。
图3示出了本申请实施例提供的钙钛矿太阳能电池器件的内部结构示意图。
图标:100-钙钛矿太阳能电池;101-密封腔;110-背板;120-透明基板;121-正极引出端;122-负极引出端;130-钙钛矿太阳能电池器件;131-透明导电电极;132-空穴传输层;133-钙钛矿层;134-电子传输层;135-金属导电层;140-密封元件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
图1示出了本申请实施例提供的一种钙钛矿太阳能电池100的截面示意图,请参阅图1,本实施例提供一种钙钛矿太阳能电池100,钙钛矿太阳能电池100主要包括背板110、透明基板120以及钙钛矿太阳能电池器件130。
背板110与透明基板120之间形成有密封腔101,钙钛矿太阳能电池器件130位于密封腔101内。
在本申请的一些实施例中,钙钛矿太阳能电池100还包括密封元件140,密封元件140位于背板110和透明基板120之间,背板110、透明基板120和密封元件共同围设成密封腔101。
作为示例性地,透明基板120的一面设置有正极引出端121和负极引出端 122;钙钛矿太阳能电池器件130的正面与透明基板120连接;钙钛矿太阳能电池器件130的正电极与正极引出端121电连接,钙钛矿太阳能电池器件130的负电极与负极引出端122连接;钙钛矿太阳能电池器件130的反面和背板110连接,密封元件140位于钙钛矿太阳能电池器件130的反面和背板110之间,密封元件140使钙钛矿太阳能电池器件130被密封。
作为示例性地,在本实施例中,透明基板120的材料为玻璃,在其他实施例中,透明基板120的材料可以为聚对苯二甲酸乙二醇酯等其他透明材料。
作为示例性地,在本实施例中,背板110的材料为聚对苯二甲酸乙二醇酯,在其他实施例中,背板110的材料也可以为玻璃等。
在本实施例中,密封元件140为密封胶;作为示例性地,密封胶可以通过如下实施方式密封钙钛矿太阳能电池器件130:
请参阅图1,在钙钛矿太阳能电池器件130背离透明基板120的整个表面和钙钛矿太阳能电池器件130的四周均涂设密封胶,背板110与密封胶贴合以密封钙钛矿太阳能电池器件130;或者,在背板110面向钙钛矿太阳能电池器件130的表面涂设密封胶,背板110与密封胶贴合以密封钙钛矿太阳能电池器件130;在密封胶与钙钛矿太阳能电池器件130之间具有密封腔101。
需要说明的是,密封腔101的数量可以为一个,也可以为多个,多个密封腔101可以相互连通或者相互不连通。
密封胶覆盖整个钙钛矿太阳能电池器件130背离透明基板120的表面有利于提高钙钛矿太阳能电池100的力学性能,增加钙钛矿太阳能电池100封装结构的牢固性和稳定性。
图2示出了本申请实施例提供的又一种钙钛矿太阳能电池100的截面示意图,请参阅图2,在图2中,密封胶位于钙钛矿太阳能电池器件130的四周、以及钙钛矿太阳能电池器件130背离透明基板120的部分表面。密封胶可以通过下列方式密封钙钛矿太阳能电池器件130:
在钙钛矿太阳能电池器件130的四周涂设密封胶,背板110与密封胶贴合以密封钙钛矿太阳能电池器件130。或者,在背板110面向密封钙钛矿太阳能电池器件130的四周涂设密封胶,背板110与密封胶贴合以密封钙钛矿太阳能电池器件130。
钙钛矿太阳能电池器件130与背板110之间具有密封腔101;或者,在一些实 施例中,由于钙钛矿太阳能电池器件130表面不平整等原因,钙钛矿太阳能电池器件130与密封胶之间可能也会存在至少一个密封腔101。
本申请实施例就密封胶密封钙钛矿太阳能电池器件130做出上述两个示例,需要说明的是,在本申请的其他实施例中,密封胶可以通过其他方式密封钙钛矿太阳能电池器件130;例如,背板110面向密封钙钛矿太阳能电池器件130的四周和背板110的整个表面均涂设密封胶,背板110与密封胶贴合以密封钙钛矿太阳能电池器件130。
相应地,形成的密封腔101可能位于密封胶与钙钛矿太阳能电池器件130之间;可能位于钙钛矿太阳能电池器件130与背板110之间;或者上述两个位置均有密封腔101,本申请不对密封腔101的形状、数量、多个密封腔101相互连通与否的情况进行限定。
此外,在图1和图2中,密封腔101占比整个钙钛矿太阳能电池100的体积较大,仅仅是为了能够较好地在图中识别密封腔101;并非指代密封腔101占比整个钙钛矿太阳能电池100的体积如图1或图2所示;需要说明的是,本申请实施例不对密封腔101占比整个钙钛矿太阳能电池100的体积进行限定。在实际生产过程中,密封腔101可以为封装过程中刻意为之所形成的腔体,也可以是因为在封装过程中不可避免所形成的腔体;或者可以包括上述两种情况。
作为示例性地,密封胶选自环氧类封装胶、有机硅类封装胶、聚氨酯封装胶、紫外线光固化封装胶、乙烯-醋酸乙烯共聚物、聚乙烯醇缩丁醛、乙烯辛烯共聚物、聚异丁烯以及聚烯烃类封装胶中的至少一种。
例如,密封胶为环氧类封装胶;例如A胶与B胶的质量比为2:(0.5-1.5)的环氧AB胶,A胶与B胶的质量比例如可以为2:0.5、2:0.8、2:1、2:1.2或者2:1.5等等。
在本申请的其他实施例中,密封元件140可以不限于密封胶;例如采用其他密封部件密封钙钛矿太阳能电池器件130;或者不采用密封元件140密封钙钛矿太阳能电池器件130,直接通过透明基板120和背板110密封钙钛矿太阳能电池器件130。
在本申请中,密封腔101内含有体积分数为10%-100%的氨气以及余量的惰性气体;换言之,密封腔101内的气体包括体积分数为10%-100%的氨气和余量的惰性气体。
作为示例性地,密封腔101内氨气的体积分数可以为50%-90%、30%-70%、 60%-80%等等。
例如,密封腔101内氨气的体积分数可以为10%、16%、21%、30%、34%、50%、60%、67%、75%、80%、98%或者100%等等。
作为示例性地,惰性气体可以为氮气、氩气、氦气以及氖气中的至少一种,例如,在本实施例中,惰性气体为氮气。
应当理解的是,10%-100%的氨气和余量的惰性气体,并非仅仅指代绝对意义上的上述两类成分,密封腔101内还可以包括在实际生产过程中不可避免的微量杂质气体(通常,微量杂质气体的体积分数占比低于1%)。
图3示出了本申请实施例提供的钙钛矿太阳能电池器件130的内部结构示意图,请参阅图3,钙钛矿太阳能电池器件130包括依次叠层设置的透明导电电极131、空穴传输层132、钙钛矿层133、电子传输层134以及金属导电层135。
可以理解的是,在本申请的其他实施例中,图3中所示的空穴传输层132所在的位置可以为电子传输层134,电子传输层134所在的位置为空穴传输层132。
作为示例性地,透明导电电极131的材料选自氧化铟锡以及氟掺杂二氧化锡中的至少一种。
空穴传输层132的材料选自聚3,4-乙烯二氧噻吩、聚苯乙烯磺酸盐、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、CuSCN、NiOx、CuI、MoOx、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、WO 3、聚乙氧基乙烯亚胺、聚乙烯亚胺、ZnO、TiO 2、[6,6]-苯基-C61-丁酸异甲酯以及SnO 2中的至少一种。
电子传输层134的材料选自聚3,4-乙烯二氧噻吩、聚苯乙烯磺酸盐、聚三芳胺、CuSCN、NiOx、CuI、MoOx、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、WO 3、聚乙氧基乙烯亚胺、聚乙烯亚胺、ZnO、TiO 2、[6,6]-苯基-C61-丁酸异甲酯以及SnO 2中的至少一种。
金属导电层135的材料选自Au、Ag、Cu、Al、Ni、Cr、Bi、Pt、Mg及其合金中的至少一种。
钙钛矿层133中钙钛矿材料的化学式为ABX 3;其中,A包括有机胺阳离子,B为金属阳离子,X为卤素阴离子或SCN -
例如:ABX 3中A可以包括CH 3NH 3 +和HC(NH 2) 2 +中的至少一种;换言之,A可以为CH 3NH 3 +、HC(NH 2) 2 +或者两者以任意比例混合的混合物。可以理解的是,A还可以包括金属离子,例如Cs +、Rb +和K +中至少一种。
例如:ABX 3中B可以为Pb 2+、Sn 2+和Ge 2+中至少一种。
例如,ABX 3可以为CH 3NH 3PbI 3;CH 3NH 3SnI 3;CH 3NH 3PbI 2Cl;CH 3NH 3PbI 2Br;CH 3NH 3Pb(I 1-xBr x) 3(其中0<x<1);
CH 3NH 3 +缩写为MA +;HC(NH 2) 2 +缩写为FA +;ABX 3还可以为:
MA xFA 1-xPbI 3(其中0<x<1);
(MA PbBr 3) x(FA PbI 3) 1-x(其中0<x<1);
Cs 0.05(FA 0.15MA 0.85) 0.95Pb(I 1-xBr x) 3(其中0<x<1);
Rb 0.02FA 0.8MA 0.18Pb(I 1-xBr x) 3(其中0<x<1);
K 0.03FA 0.8MA 0.17Pb(I 1-xBr x) 3(其中0<x<1)等等。
本申请中,发明人研究后发现在密封腔101内含有体积分数为10%-100%的氨气以及余量的惰性气体,能够有效抑制钙钛矿材料中有机胺阳离子的迁移和分解,提高钙钛矿材料的结构稳定性,提高钙钛矿太阳能电池100的热稳定性,从而有利于提高钙钛矿太阳能电池100的光转换效率和延长其使用寿命。
密封腔101内氨气的体积分数占比与改善钙钛矿材料结构稳定性的效果密切相关,在满足一定抑制分解的情况下,基于成本和安全性考虑,密封腔101内的氨气体积分数占比可以在适当范围内,例如50%-70%等等。
作为示例性地,本申请还示出了上述钙钛矿太阳能电池的一种制备方法。
制备方法主要包括以下步骤:
S1:在透明基板上制备钙钛矿太阳能电池器件。作为示例性地,主要包括:
在透明基板上依次制备透明导电电极、空穴传输层和电子传输层中的一种、钙钛矿层、空穴传输层和电子传输层中的另一种、金属导电层。
承上所述,制备透明导电电极的过程中,透明导电电极的材料选自氧化铟锡以及氟掺杂二氧化锡中的至少一种。
制备空穴传输层或者电子传输层的过程中,空穴传输层的材料和电子传输层的材料各自独立地选自聚3,4-乙烯二氧噻吩、聚苯乙烯磺酸盐、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、CuSCN、NiOx、CuI、MoOx、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、WO 3、聚乙氧基乙烯亚胺、聚乙烯亚胺、ZnO、TiO 2、[6,6]-苯基-C61-丁酸异甲酯以及SnO 2中的至少一种。
制备钙钛矿层的过程中,钙钛矿层的材料可以选用式为ABX 3;其中,A包括有机胺阳离子,B为金属阳离子,X为卤素阴离子或SCN -。例如,ABX 3可以为CH 3NH 3PnI 3;CH 3NH 3SnI 3;CH 3NH 3PbI 2Cl;CH 3NH 3PbI 2Br;
CH 3NH 3 +缩写为MA +;HC(NH 2) 2 +缩写为FA +;ABX 3还可以为:
MA xFA 1-xPbI 3(其中0<x<1);
(MA PbBr 3) x(FA PbI 3) 1-x(其中0<x<1);
Cs 0.05(FA 0.15MA 0.85) 0.95Pb(I 1-xBr x) 3(其中0<x<1);
Rb 0.02FA 0.8MA 0.18Pb(I 1-xBr x) 3(其中0<x<1);
K 0.03FA 0.8MA 0.17Pb(I 1-xBr x) 3(其中0<x<1)等等。
制备金属导电层的过程中,材料选自Au、Ag、Cu、Al、Ni、Cr、Bi、Pt、Mg及其合金中的至少一种。
作为示例性地,步骤S1的工艺参数可以如下:
用Zn粉和1mol/L-2mol/L的盐酸刻蚀掉部分透明基板,清洗后进行干燥。在N 2氛围下以4000rpm-6500rpm旋涂TiO 2前躯体溶液,在120℃-150℃下保温20min-25min,然后升温至400℃-450℃,保温40min-45min,然后退火至120℃-150℃。
在N 2氛围下以3000rpm-4500rpm旋涂钙钛矿层(例如可以为CH 3NH 3PnI 3),固化8h-10h后在低湿度干燥塔中氧化12h-13h。
然后蒸镀一层电极完成钙钛矿太阳能电池器件的制备。
S2:在预设气氛中,用背板对钙钛矿太阳能电池器件进行封装;预设气氛含有体积分数为10%-100%的氨气以及余量的惰性气体。
作为示例性地,进行封装包括:采用密封材料和背板对所述钙钛矿太阳能电池器件进行封装。
请再次参阅图1,封装钙钛矿太阳能电池器件的方法可以为:在钙钛矿太阳能电池器件的四周和整个反面涂密封材料,将背板与钙钛矿太阳能电池器件反面贴合以实现密封。相应地,也可以为在背板上涂密封材料然后再与钙钛矿太阳能电池器件反面贴合使密封材料覆盖整个钙钛矿太阳能电池器件反面。
或者,请再次参阅图2,封装钙钛矿太阳能电池器件的方法可以为:在钙钛矿太阳能电池器件的四周涂密封材料,将背板与钙钛矿太阳能电池器件反面贴合以实现密封。或者,可以将密封材料涂设于背板,然后将其与钙钛矿太阳能电池器件反面贴合。
作为示例性地,密封材料可以为密封胶,密封胶可以为环氧封装胶,例如环氧AB胶等,可以理解的是,密封胶也可以选用有机硅类封装胶、聚氨酯封装胶、紫外线光固化封装胶、乙烯-醋酸乙烯共聚物、聚乙烯醇缩丁醛、乙烯辛烯共聚物、聚异丁烯以及聚烯烃类封装胶中的至少一种。
可以理解的是,在本申请的其他实施例中,密封材料也可以为其他可以封闭钙钛矿太阳能电池器件的材料。或者,在一些实施例中,在满足背板可以密封钙钛矿太阳能电池器件的前提下,可以不采用密封材料对其进行密封。
作为示例性地,预设气氛包括体积分数为10%-100%的氨气和余量的惰性气体以及不可避免的微量杂质气体。
例如,预设气氛中氨气的体积分数可以为10%、16%、21%、30%、34%、50%、60%、67%、75%、80%、98%或者100%等等。惰性气体可以为氮气、氩气、氦气以及氖气中的至少一种,例如,在本实施例中,惰性气体为氮气。
作为示例性地,步骤S2的工艺可以如下:
在预设气氛中,在钙钛矿太阳能电池器件四周及表面涂一层封装胶,背板加压贴合于封装胶上,固化封装胶。
本申请实施例提供的钙钛矿太阳能电池的制备方法至少具有以下优点:
在由体积分数为10%-100%的氨气和余量的惰性气体组成的预设气氛中进行封装,使得封装后的密封腔中含有体积分数为10%-100%的氨气,上述 设置能够有效抑制钙钛矿材料中有机胺阳离子的迁移和分解,提高钙钛矿电池器件的热稳定性,从而提高钙钛矿太阳能电池的光转换效率及使用寿命。
本申请的实施例还提供一种用电设备,用电设备包括上述钙钛矿太阳能电池100,钙钛矿太阳能电池100作为上述用电设备的电源为其供电;或者,钙钛矿太阳能电池100可以作为上述用电设备的能量储存单元。作为示例性地,用电设备可以为照明元件、显示元件或者汽车等。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种钙钛矿太阳能电池,主要通过以下步骤制得:
1)取一组规格为1.5cm×1.5cm的FTO导电玻璃,通过M3防水胶带保护导电玻璃片导电层面积的2/3部分,用Zn粉和1mol/L的盐酸刻蚀掉1/3的FTO;用丙酮、异丙醇依次清洗腐蚀后的FTO导电玻璃片数次,最后浸入去离子水中超声10min;
2)取经步骤1)处理得到的FTO导电玻璃片,在鼓风干燥箱中干燥,在手套箱中以4000rpm旋涂TiO 2前躯体溶液,之后立刻从手套箱取出在120℃下保温20min,后升温到450℃保温40min再退火至120℃时,放回培养皿,放回手套箱;其中,手套箱内含有100%的N 2
3)取步骤2)得到的旋涂TiO 2的导电玻璃片,继续以4000rpm旋涂CH 3NH 3PbI 3的前驱体溶液,之后随即在手套箱热台110℃下加热30min,退火至室温,得到含组分为CH 3NH 3PbI 3的钙钛矿层;
4)取步骤3)所得的涂敷有钙钛矿层的导电玻璃片,在手套箱中以4000rpm继续旋涂2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)层,之后在手套箱中放置8h左右固化,拿出手套箱,放进湿度10%的干燥塔中氧化12h;
5)取步骤4)所得的经过氧化处理的导电玻璃片,放入蒸镀机,蒸镀厚度为100nm的Ag电极;得到钙钛矿太阳能电池器件;
6)在含有10vol%氨气、90vol%氮气的手套箱氛围中,在钙钛矿太阳能电池器件四周及背面涂一层封装胶,在封装胶上覆盖玻璃背板层加压贴合,静止2h,固化封装胶;
其中,封装胶采用无色透明的环氧树脂AB胶,按质量比A:B=2:1的比例配置,A为环氧树脂主剂,B为固化剂;
得到钙钛矿太阳能电池。
实施例2-28及对比例1-6
实施例2-28、对比例1-6分别提供一种钙钛矿太阳能电池,其制备方法参照实施例1,与实施例1的区别在于步骤3)中钙钛矿层中的活性物质或者步骤6)中手套箱内的气氛,详见表1。
对各个实施例、各个对比例提供的钙钛矿太阳能电池的高温高湿环境下存储后的光转换效率进行测试,具体测试方法如下:
将各个钙钛矿太阳能电池在85℃,85%相对湿度的条件下存储不同的天数后,在标准模拟太阳光(AM 1.5G,100mW/cm 2)照射下使用I-V测试系统测试电池的光转换效率。测试电压范围-0.2V-1.2V,扫描速率50mV/s。电池第n天的归一化效率=第n天测试的效率/第0天测试的效率×100%。测试结果如表1所示。
表1
Figure PCTCN2022081265-appb-000001
Figure PCTCN2022081265-appb-000002
Figure PCTCN2022081265-appb-000003
从表1可以看出:与密封腔内含100%的氮气相比,当钙钛矿太阳能电池的密封腔内含体积分数为10%以上的氨气时,在高温高湿环境存储后,电池的光转换效率衰减速率减缓,电池的热稳定性得到有效提升。钙钛矿太阳能电池的密封腔内即使含有少量干燥空气(例如2vol%),也会导致电池的热稳定性显著下降。通过上述实验可以发现:对于密封腔内含10vol%以及以上的氨气且余量气体为惰性气体的实施例而言,钙钛矿太阳能电池的热稳定性均有提升,其作用机理虽不明确,但发明人猜测这可能是因为在85℃、85%相对湿度的环境下,钙钛矿活性材料由于有机阳离子的迁移而发生热分解,当高温高湿环境中存在一定量的氨气时,钙钛矿材料的热分解反应被有效的抑制,因此热稳定性得到提升。
综上,在本申请中,居于成本、安全性以及稳定性能等多个因素的考虑,选定密封腔内含有的10vol%以上的氨气及余量气体为惰性气体可以有效提升钙钛矿电池的光转换效率及使用寿命,并且进一步地,当钙钛矿电池的密封腔中含有50vol%-70vol%的氨气为较优的方案。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种钙钛矿太阳能电池,包括:
    背板;
    透明基板,所述透明基板与所述背板之间形成有密封腔;以及
    钙钛矿太阳能电池器件,所述钙钛矿太阳能电池器件位于所述密封腔内,其中,
    所述密封腔内含有体积分数为10%-100%的氨气以及余量的惰性气体,
    所述钙钛矿太阳能电池器件中钙钛矿材料的化学式为ABX 3,其中,A包括有机胺阳离子,B为金属阳离子,X为卤素阴离子或SCN -
  2. 根据权利要求1所述的钙钛矿太阳能电池,其中,ABX 3中,A包括CH 3NH 3 +和HC(NH 2) 2 +中的至少一种,B包括Pb 2+、Sn 2+和Ge 2+中至少一种。
  3. 根据权利要求2所述的钙钛矿太阳能电池,其中,ABX 3中,ABX 3中A还包括Cs +、Rb +和K +中至少一种。
  4. 根据权利要求1-3任一项所述的钙钛矿太阳能电池,其中,
    所述密封腔内氨气的体积分数为30%-90%;
    可选地,所述密封腔内氨气的体积分数为50%-70%。
  5. 根据权利要求1-4任一项所述的钙钛矿太阳能电池,其中,所述钙钛矿太阳能电池还包括密封元件,所述密封元件连接所述透明基板与所述背板以形成所述密封腔;
    可选地,所述密封元件为密封胶;
    可选地,所述密封胶位于所述钙钛矿太阳能电池器件的四周,所述背板与所述钙钛矿太阳能电池器件通过所述密封胶固定;
    可选地,所述密封胶还位于所述背板面向所述钙钛矿太阳能电池器件一侧的至少部分表面或者整个表面。
  6. 根据权利要求1-5任一项所述的钙钛矿太阳能电池,其中,
    所述惰性气体选自氮气、氩气、氦气以及氖气中的至少一种。
  7. 一种钙钛矿太阳能电池的制备方法,包括:
    提供透明基板和背板;
    在预设气氛中,将钙钛矿太阳能电池器件封装在所述透明基板和所述背板之间;其中,
    所述预设气氛含有体积分数为10%-100%的氨气以及余量的惰性气体,所述钙钛矿 太阳能电池器件中钙钛矿材料的化学式为ABX 3,其中,A包括有机胺阳离子,B为金属阳离子,X为卤素阴离子或SCN -
  8. 根据权利要求7所述的钙钛矿太阳能电池的制备方法,其中,
    ABX 3中,A包括CH 3NH 3 +和HC(NH 2) 2 +中的至少一种,B包括Pb 2+、Sn 2+和Ge 2+中至少一种;
    可选地,ABX 3中A还包括Cs +、Rb +和K +中至少一种。
  9. 根据权利要求7或8所述的钙钛矿太阳能电池的制备方法,其中,
    所述预设气氛中氨气的体积分数为30%-90%;;
    可选地,所述预设气氛中氨气的体积分数为50%-70%。
  10. 根据权利要求7-9任一项所述的钙钛矿太阳能电池的制备方法,其中,
    所述将钙钛矿太阳能电池器件封装在所述透明基板和所述背板之间的过程中,采用密封元件进行封装;
    可选地,所述密封元件为密封胶;
    可选地,将所述密封胶覆盖所述钙钛矿太阳能电池器件的四周,所述背板与所述钙钛矿太阳能电池器件通过所述密封胶固定;
    可选地,所述密封胶还覆盖所述背板面向所述钙钛矿太阳能电池器件一侧的至少部分表面或者整个表面。
  11. 一种用电设备,所述用电设备包括权利要求1-6任一项所述的钙钛矿太阳能电池,所述钙钛矿太阳能电池作为所述用电设备的电源或能量存储单元。
PCT/CN2022/081265 2021-04-13 2022-03-16 钙钛矿太阳能电池及其制备方法、用电设备 WO2022218089A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22787318.9A EP4243103A4 (en) 2021-04-13 2022-03-16 PEROVSKITE SOLAR CELL AND PRODUCTION METHOD THEREFOR AND ELECTRICAL DEVICE
US18/330,624 US20230320110A1 (en) 2021-04-13 2023-06-07 Perovskite solar cell, preparation method thereof, and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110397769.1A CN115207219B (zh) 2021-04-13 2021-04-13 钙钛矿太阳能电池及其制备方法、用电设备
CN202110397769.1 2021-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/330,624 Continuation US20230320110A1 (en) 2021-04-13 2023-06-07 Perovskite solar cell, preparation method thereof, and electric device

Publications (1)

Publication Number Publication Date
WO2022218089A1 true WO2022218089A1 (zh) 2022-10-20

Family

ID=83570965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081265 WO2022218089A1 (zh) 2021-04-13 2022-03-16 钙钛矿太阳能电池及其制备方法、用电设备

Country Status (4)

Country Link
US (1) US20230320110A1 (zh)
EP (1) EP4243103A4 (zh)
CN (1) CN115207219B (zh)
WO (1) WO2022218089A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876586A (zh) * 2015-11-24 2017-06-20 松下电器产业株式会社 太阳能电池
WO2019230534A1 (ja) * 2018-06-01 2019-12-05 コニカミノルタ株式会社 太陽電池及びその製造方法
CN112242490A (zh) * 2019-07-16 2021-01-19 中国科学院青岛生物能源与过程研究所 一种甲脒基钙钛矿薄膜的后修复方法
KR20210007213A (ko) * 2019-07-10 2021-01-20 주식회사 유니테스트 페로브스카이트 태양전지 모듈 및 이의 Encapsulation 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555586A (en) * 1984-08-06 1985-11-26 Energy Conversion Devices, Inc. Photovoltiac device having long term energy conversion stability and method of producing same
JP3940601B2 (ja) * 2001-12-28 2007-07-04 医療法人 エヌアール日本生体咬合研究所 咬合補助装置
JP2014143077A (ja) * 2013-01-24 2014-08-07 Rohm Co Ltd 色素増感太陽電池およびその製造方法および電子機器
US12046425B2 (en) * 2017-04-14 2024-07-23 Cubicpv Inc. Photovoltaic device encapsulation
KR20200048037A (ko) * 2018-10-29 2020-05-08 한국전력공사 페로브스카이트 태양전지 및 그 제조방법
CN109411611B (zh) * 2018-11-28 2024-07-02 中国华能集团有限公司 一种钙钛矿太阳能电池封装结构及封装方法
CN208923201U (zh) * 2018-11-28 2019-05-31 中国华能集团有限公司 一种钙钛矿太阳能电池封装结构
FR3109019A1 (fr) * 2020-04-06 2021-10-08 Elixens Module photovoltaïque et procede de fabrication d’un tel module
CN112582549B (zh) * 2020-12-28 2024-08-27 厦门大学 一种薄型无溶剂钙钛矿太阳能电池封装方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876586A (zh) * 2015-11-24 2017-06-20 松下电器产业株式会社 太阳能电池
WO2019230534A1 (ja) * 2018-06-01 2019-12-05 コニカミノルタ株式会社 太陽電池及びその製造方法
KR20210007213A (ko) * 2019-07-10 2021-01-20 주식회사 유니테스트 페로브스카이트 태양전지 모듈 및 이의 Encapsulation 방법
CN112242490A (zh) * 2019-07-16 2021-01-19 中国科学院青岛生物能源与过程研究所 一种甲脒基钙钛矿薄膜的后修复方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243103A4 *

Also Published As

Publication number Publication date
US20230320110A1 (en) 2023-10-05
EP4243103A4 (en) 2024-06-12
CN115207219B (zh) 2023-10-03
CN115207219A (zh) 2022-10-18
EP4243103A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
Ma et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells
Emery et al. Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure
CN109411611B (zh) 一种钙钛矿太阳能电池封装结构及封装方法
Raman et al. Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present
JP2021099997A (ja) 透明電極、およびその製造方法、ならびにその透明電極を用いた電子デバイス
CN110660918A (zh) 钙钛矿太阳能电池封装方法
WO2019006507A1 (en) THIN FILM PHOTOVOLTAIC DEVICE AND ITS ENCAPSULATION METHOD
CN216597635U (zh) 钙钛矿电池组件的封装结构
CN111628088A (zh) 一种简易的钙钛矿太阳电池封装结构及其制造方法
JP2013501382A (ja) バリアがコートされた薄膜光電池
Cho et al. Ultra-thin thermally grown silicon dioxide nanomembrane for waterproof perovskite solar cells
CN102779904A (zh) 防止晶硅太阳能模块的有害极化和黑线现象发生的方法
WO2022218089A1 (zh) 钙钛矿太阳能电池及其制备方法、用电设备
US20230083628A1 (en) Solar cell module
CN110660919B (zh) 钙钛矿太阳能电池的封装方法
JP4651346B2 (ja) 光電変換装置およびそれを用いた光発電装置
CN115425154A (zh) 一种钙钛矿太阳能电池组件的制备方法
CN112701227B (zh) 一种钙钛矿太阳能电池器件及其封装方法
US20140076393A1 (en) Flexible solar cell and manufacturing method thereof
TWI784672B (zh) 用於軟性有機太陽電池模組的封裝結構及其封裝方法
CN219917183U (zh) 光伏电池封装结构
US20230197870A1 (en) Photovoltaic module provided with a h2o gas permeation barrier layer
EP4303936A1 (en) Transparent electrode, method for producing same, and electronic device using transparent electrode
CN115084386A (zh) 一种钙钛矿太阳能电池封装结构、封装方法及电池组件
CN117751699A (zh) 一种钙钛矿太阳能电池、其封装方法及包含其的光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022787318

Country of ref document: EP

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE