WO2022217809A1 - 摄像机、拍摄方法、系统及装置 - Google Patents

摄像机、拍摄方法、系统及装置 Download PDF

Info

Publication number
WO2022217809A1
WO2022217809A1 PCT/CN2021/114775 CN2021114775W WO2022217809A1 WO 2022217809 A1 WO2022217809 A1 WO 2022217809A1 CN 2021114775 W CN2021114775 W CN 2021114775W WO 2022217809 A1 WO2022217809 A1 WO 2022217809A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
camera
radar
shooting
control instruction
Prior art date
Application number
PCT/CN2021/114775
Other languages
English (en)
French (fr)
Inventor
张励扬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022217809A1 publication Critical patent/WO2022217809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the present invention requires the priority of the Chinese patent application with the application number 202110394999.2 and the invention titled “Radar to Camera Scheduling Method” filed on April 13, 2021 and the application number 202110873060.4 filed on July 30, 2021, the invention The priority of the Chinese patent application entitled “Camera, Shooting Method, System and Device", the entire contents of which are incorporated herein by reference.
  • the present invention relates to the technical field of video surveillance, and in particular, to a camera, a shooting method, a system and a device.
  • defense zones are set up in many monitoring scenarios. Once there is a target intrusion in the defense zone, the monitoring system will be triggered to give an alarm.
  • the one-to-one linkage between radar and dome camera is used to monitor the defense area and shoot the targets appearing in the defense area.
  • the radar uses electromagnetic waves for target detection, and can obtain the speed, orientation and other information of the target, and the radar is not easily affected by the environment when working, and has high stability;
  • the dome camera uses its intelligence, strong recognition ability and anti-interference. It has the characteristics of strong ability, tracking the target based on the information detected by the radar, and alarming to achieve the purpose of security.
  • the detection area of the radar and the shooting area of the dome camera are the same area, which results in a limited monitoring area and low shooting efficiency.
  • the invention provides a camera, a shooting method, a system and a device, which can effectively eliminate the monitoring blind area and improve the shooting efficiency and shooting accuracy.
  • the technical solution is as follows:
  • a camera in a first aspect, includes an interface and a camera body, wherein:
  • the interface is used to receive a first control command sent by the first radar from outside the camera, and send the first control command to the camera body, where the first control command is used to instruct the camera to take pictures of the images detected by the first radar. the first goal;
  • the camera body for receiving the first control instruction from the interface; in response to the first control instruction, photographing the first target;
  • the interface is also used to receive a second control command sent by the second radar from outside the camera, and send the second control command to the camera body, where the second control command is used to instruct the camera to take pictures and the second radar detects , the second radar is different from the first radar;
  • the camera body is further configured to receive the second control instruction from the interface; in response to the second control instruction, shoot the second target.
  • the camera provided by the implementation mode of the present invention can accept the control of multiple radars to shoot the target detected by the radar in the shooting area.
  • This method makes full use of the shooting area of the camera and the detection area of the radar, effectively covering the monitoring and control area. Blind area, thus greatly improving the equipment utilization rate and effectively improving the shooting efficiency.
  • the camera provided by the present invention can not only shoot the first target detected by the first radar under the control of the first radar, but also can shoot the second target detected by the second radar under the control of the second radar, that is, it can shoot the second target detected by the second radar. Photograph the detection area of multiple radars.
  • a camera can only be controlled by one radar, and the detection area of the radar and the shooting area of the camera are the same area, which greatly wastes the detection area of the radar and the shooting area of the camera, resulting in Shooting efficiency is low.
  • the first control instruction is a tracking shooting instruction
  • the camera body is used for: identifying the first target, and tracking and shooting the first target.
  • the camera recognizes the target and then tracks the shooting target.
  • the tracking shooting can be performed on the premise that the target is an effective target, thereby reducing waste of resources and improving shooting efficiency and shooting accuracy.
  • the camera body is further used for: rotating to the first shooting position before shooting the first target.
  • the first control instruction carries the information of the first shooting position.
  • the camera body is also used to:
  • a second registration request sent by the second radar is received, and the second radar is registered.
  • the camera By registering the first radar and the second radar, the camera is bound to the first radar and the second radar respectively, so that the registration information of the first radar and the second radar is stored in the registration form of the camera, so that the camera can receive the registration information of the first radar and the second radar.
  • the control command of the radar it is judged whether the current control command is sent by the radar bound to it, so as to avoid interference from other radars and affect the shooting efficiency. It also provides security.
  • the camera body is further configured to: verify the first radar to determine that the first radar has been registered before photographing the first target.
  • the camera responds to the control commands of the radar bound to it, so as to avoid interference from other radars and affect the shooting efficiency. It also provides security.
  • the camera body is further configured to: send a first event notification, where the first event notification indicates that the first target appears in the shooting area of the camera.
  • the relevant information about the target is automatically reported, which not only improves the shooting efficiency, but also reduces the workload of the personnel, so that the relevant personnel can be informed of the target in the shooting area of the camera in time, so that the personnel can be arranged to deal with or propose solutions as soon as possible.
  • the camera body is also used to:
  • the camera rotates to the default shooting position.
  • the camera when the camera rotates to the default shooting position, it indicates that the camera is in the initial state, which can also be understood as an idle state.
  • the camera when the camera does not receive a control command from any radar within a certain period of time, it will immediately resume from the tracking shooting state. Standby to the initial state, thereby improving the shooting efficiency.
  • the camera body after responding to the second control instruction, is further used for:
  • a third control command sent by a radar other than the second radar wherein the third control command is used to instruct the camera to shoot the third target detected by the radar other than the second radar; when the camera body is shooting the third target The second target, and the duration of shooting the second target is within the validity period, keep shooting the second target without performing the shooting of the third target; when the camera body is shooting the second target, and shoot the second target The duration of the second target has expired, and the third target is photographed in response to the third control instruction.
  • the camera when the camera receives a control command from a radar other than the second radar, it will judge whether the duration of the camera shooting the second target is within the validity period, so as to decide whether to keep shooting the second target or discard the second target. It turns to shoot the third target.
  • the camera can respond to the new control command in time when the duration of shooting the current target has expired, thereby improving the shooting efficiency. Further, through this method, the camera continues to keep shooting the current target when the duration of shooting the current target is within the validity period. The inevitable response to the new command is avoided, thereby avoiding the frequent rotation of the camera due to the execution of the control command when the camera frequently receives multiple control commands, thereby effectively improving the shooting accuracy.
  • the camera body after responding to the second control instruction, is further used for:
  • the camera body When the camera body is shooting the second target, receive a fourth control command from the interface from a radar other than the second radar, where the fourth control command is used to instruct the camera to shoot a radar detection other than the second radar Recognize the validity of the fourth target; when the fourth target is not a valid target, keep shooting the second target without executing the shooting of the fourth target; when the fourth target is valid
  • the target in response to the fourth control instruction, shoots the fourth target.
  • the camera when the camera receives a control command from a radar other than the second radar, it will judge whether the fourth target is a valid target, so as to decide whether to keep shooting the second target, or discard the second target and turn to shooting
  • the fourth objective through this method, enables the camera to respond to the new control instruction when the target corresponding to the new control instruction is an effective target, thereby improving the shooting efficiency. Further, through this method, the camera continues to shoot the current target when the target corresponding to the new control command is not a valid target, which not only avoids shooting invalid targets, achieves the purpose of saving resources, but also prevents the camera from shooting at the current target.
  • the camera rotates frequently due to the execution of the control commands, thereby improving the shooting accuracy.
  • photographing the second target includes: when the target rotation angle corresponding to the second control instruction is smaller than a first threshold, identifying the second target, and photographing the identified second target .
  • the shooting efficiency is improved on the premise of ensuring the shooting accuracy.
  • the camera body is also used to:
  • a fifth control command sent by the second radar is received from the interface, wherein the fifth control command is used to instruct the camera to shoot the second target, and the fifth control command is a tracking shooting command; when the fifth control command corresponds to The rotation angle of the target is not less than the first threshold, and the second target is photographed without performing identification of the second target; when the camera body is photographing the second target, and after receiving the fifth control instruction from the interface, from the interface
  • the interface receives the sixth control command sent by the second radar, identifies the second target, and shoots the identified second target, wherein the sixth control command is used to instruct the camera to shoot the second target , the sixth control instruction is a tracking shooting instruction.
  • the camera when the fifth control instruction is a tracking shooting instruction, the camera needs to identify the second target before tracking shooting, and when the camera receives the fifth control instruction, the camera rotates at the target rotation angle corresponding to the fifth control instruction In the larger case, it indicates that the camera needs to rotate from the first shooting position to the shooting position corresponding to the fifth control instruction according to the fifth control instruction, and the rotation angle is larger, which takes a long time.
  • the camera rotates according to the fifth control instruction When turning to the corresponding shooting position, the second target may have deviated from the original position and is not in the shooting area of the camera. Therefore, the second target will not be identified first, but the second target will be photographed directly. Wait until When the sixth control command sent by the second radar is received again, the second target is identified again.
  • This method of first shooting and then identifying ensures that when the camera performs the steps of identifying the target's effectiveness, the target is likely to appear in the target area. In the shooting area of the camera, the accuracy of target recognition is improved, and the shooting efficiency is also improved
  • the camera and the first radar are mounted on the same mounting rod, and the camera and the second radar are mounted on different mounting rods.
  • the first radar and the second radar are oriented in the same direction.
  • one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, the blind area can be effectively covered, and the utilization rate of the camera can be improved and the equipment cost can be saved.
  • the detection areas of multiple radars can be overlapped to improve the detection coverage of the radars and avoid missing targets, thereby effectively improving the shooting efficiency and shooting accuracy.
  • multiple cameras and a larger number of radars are set up in this way, multiple cameras can be monitored in the detection area of one radar, and the detection coverage rate of the radar can be further improved, thereby greatly improving the detection efficiency of the radar.
  • Shooting efficiency and shooting accuracy when multiple cameras and a larger number of radars are set up in this way, multiple cameras can be monitored in the detection area of one radar, and the detection coverage rate of the radar can be further improved, thereby greatly improving the detection efficiency of the radar. Shooting efficiency and shooting accuracy.
  • the camera, the first radar, and the second radar are mounted on the same mounting pole.
  • the first radar and the second radar face oppositely.
  • one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, the blind area can be effectively covered, and the utilization rate of the camera can be improved and the equipment cost can be saved. On the basis of, further improve the shooting efficiency and shooting accuracy.
  • multiple cameras and a larger number of radars are set up in this way, there can be multiple cameras in the detection area of one radar for monitoring, thereby greatly improving the shooting efficiency and shooting accuracy.
  • the camera, the first radar, and the second radar are each mounted on different mounting bars.
  • the first radar and the second radar face opposite.
  • one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, the blind area can be effectively covered, and the utilization rate of the camera can be improved and the equipment cost can be saved.
  • the detection areas of multiple radars can be overlapped to improve the detection coverage of the radars and avoid missing targets, thereby effectively improving the shooting efficiency and shooting accuracy.
  • the detection coverage of the radars can be further improved, thereby greatly improving the shooting efficiency and shooting accuracy.
  • a shooting method comprising:
  • the first camera receives a first control instruction sent by the first radar, the first control instruction is used to instruct the first camera to photograph the first target detected by the first radar; the first camera responds to the first control instruction, photographing the first target; the first camera receives a second control instruction sent by the second radar, the second control instruction is used to instruct the first camera to photograph the second target detected by the second radar, and the second control instruction is used to instruct the first camera to photograph the second target detected by the second radar.
  • the radar is different from the first radar; the first camera responds to the second control command to photograph the second target.
  • the first control instruction is a tracking shooting instruction
  • shooting the first target includes: the first camera identifying the first target, and tracking and shooting the first target.
  • the method before photographing the first target, the method further includes: rotating the first camera to a first photographing position.
  • the first control instruction carries the information of the first shooting position.
  • the method further includes:
  • the first camera receives the first registration request sent by the first radar, and registers the first radar;
  • the first camera receives a second registration request sent by the second radar, and registers the second radar.
  • the method before photographing the first target, the method further includes: verifying, by the first camera, the first radar to determine that the first radar has been registered.
  • the method further includes: the first camera sending a first event notification, the first event notification indicating that the first target appears in the shooting area of the first camera.
  • the method further includes:
  • the first camera When the first camera does not receive a control command from any radar within a first period of time after receiving the second control command, the first camera rotates to the default shooting position; and/or
  • the first camera When the first camera does not receive a control command from any radar within a second time period after the first camera starts to shoot the second target, the first camera rotates to the default shooting position.
  • the method further includes:
  • the first camera receives a third control instruction sent by a radar other than the second radar, wherein the third control instruction is used to instruct the first camera to photograph a third target detected by a radar other than the second radar;
  • a camera is shooting the second target, and the duration of shooting the second target is within the validity period, the first camera keeps shooting the second target and does not perform the shooting of the third target; when the first camera The second target is being photographed, and the duration of photographing the second target has expired, and the first camera responds to the third control instruction to photograph the third target.
  • the method further includes:
  • the first camera When the first camera is shooting the second target, the first camera receives a fourth control instruction sent by a radar other than the second radar, wherein the fourth control instruction is used to instruct the first camera to shoot the second radar A fourth target detected by a radar other than the first camera; the first camera recognizes the validity of the fourth target; when the fourth target is not a valid target, the first camera keeps shooting the second target without executing the fourth target. Shooting of four targets; when the fourth target is an effective target, the first camera responds to the fourth control instruction to shoot the fourth target.
  • the shooting of the second target includes: when the target rotation angle corresponding to the second control instruction is smaller than a first threshold, the first camera identifies the second target, and the identified The second target is shot.
  • the method further includes:
  • the first camera receives a fifth control command sent by the second radar, wherein the fifth control command is used to instruct the first camera to shoot the second target, and the fifth control command is a tracking shooting command;
  • the rotation angle of the target corresponding to the control instruction is not less than the first threshold, and the first camera shoots the second target without performing identification of the second target; when the first camera is shooting the second target, and the After receiving the fifth control command, the first camera receives the sixth control command sent by the second radar, identifies the second target, and shoots the identified second target, wherein the sixth control command uses For instructing the first camera to shoot the second target, the sixth control command is a tracking shooting command.
  • the first camera and the first radar are mounted on the same mounting rod, and the first camera and the second radar are mounted on different mounting rods.
  • the first radar and the second radar are oriented in the same direction.
  • the first camera, the first radar, and the second radar are mounted on the same mounting rod.
  • the first radar and the second radar face oppositely.
  • the first camera, the first radar, and the second radar are mounted on different mounting bars, respectively.
  • the first radar and the second radar face opposite.
  • the method further includes:
  • the second camera receives a seventh control instruction sent by the first radar, where the seventh control instruction is used to instruct the second camera to photograph the fifth target detected by the first radar;
  • the second camera shoots the fifth target in response to the seventh control instruction.
  • one camera can be controlled by multiple radars to shoot the targets detected by the radar in the shooting area.
  • This method makes full use of the shooting area of the camera and the detection area of the radar, effectively covering the monitoring area. Blind area, thus greatly improving the utilization rate of equipment, effectively improving the shooting efficiency and shooting accuracy.
  • a shooting system in a third aspect, includes a camera, a first radar and a second radar, wherein,
  • the first radar is used to send a first control instruction to the camera, where the first control instruction is used to instruct the camera to photograph the first target detected by the first radar;
  • the camera configured to receive the first control instruction, and in response to the first control instruction, shoot the first target;
  • the second radar for sending a second control instruction to the camera, where the second control instruction is used for instructing the camera to photograph a second target detected by the second radar, the second radar being different from the first radar;
  • the camera is further configured to receive the second control instruction, and in response to the second control instruction, shoot the second target.
  • the first control instruction is a tracking shooting instruction
  • the camera is used to: identify the first target, and track and shoot the first target.
  • the camera is further configured to rotate to the first shooting position before shooting the first target.
  • the first control instruction carries the information of the first shooting position.
  • the camera is further configured to: receive a first registration request sent by the first radar, and register the first radar; receive a second registration request sent by the second radar, and perform registration on the second radar. register.
  • the camera is further configured to: verify the first radar to determine that the first radar has been registered before photographing the first target.
  • the camera is further configured to: send a first event notification, where the first event notification indicates that the first target appears in the shooting area of the camera.
  • the camera is also used to:
  • the camera When the camera does not receive a control command from any radar within a second period of time after the camera starts to shoot the second target, it rotates to the default shooting position.
  • the camera is also used to:
  • a third control command sent by a radar other than the second radar wherein the third control command is used to instruct the camera to shoot the third target detected by the radar other than the second radar; when the camera is shooting the second target , and the duration of shooting the second target is within the validity period, keep shooting the second target without performing the shooting of the third target; when the camera is shooting the second target, and shooting the second target The duration has expired, and in response to the third control instruction, the third target is photographed.
  • the camera is also used to:
  • the camera When the camera is shooting the second target, it receives a fourth control instruction sent by a radar other than the second radar, wherein the fourth control instruction is used to instruct the camera to shoot the fourth control instruction detected by the radar other than the second radar target; identify the validity of the fourth target; when the fourth target is not a valid target, keep shooting the second target without performing the shooting of the fourth target; when the fourth target is a valid target, respond to The fourth control instruction shoots the fourth target.
  • the shooting of the second target includes: when the rotation angle of the target corresponding to the second control instruction is smaller than a first threshold, the camera identifies the second target, and the identified second target is target to shoot.
  • the camera is also used to:
  • the sixth control command sent by the second radar identifies the second target and shoots the identified second target, wherein the sixth control command is used to instruct the camera to shoot the second target, and the sixth control command is used to instruct the camera to shoot the second target.
  • the command is a tracking shot command.
  • the camera and the first radar are mounted on the same mounting rod, and the camera and the second radar are mounted on different mounting rods.
  • the first radar and the second radar are oriented in the same direction.
  • the camera, the first radar, and the second radar are mounted on the same mounting pole.
  • the first radar and the second radar face oppositely.
  • the camera, the first radar, and the second radar are each mounted on different mounting bars.
  • the first radar and the second radar face opposite.
  • a photographing device comprising:
  • a receiving module configured to receive a first control command sent by the first radar, where the first control command is used to instruct to photograph the first target detected by the first radar;
  • a photographing module configured to photograph the first target in response to the first control instruction
  • the receiving module is further configured to receive a second control command sent by a second radar, where the second control command is used to instruct to photograph a second target detected by the second radar, and the second radar is different from the first radar;
  • the photographing module is further configured to photograph the second target in response to the second control instruction.
  • the first control instruction is a tracking shooting instruction
  • the shooting module is configured to: identify the first target, and track and shoot the first target.
  • the photographing module is further configured to rotate to the first photographing position before photographing the first target.
  • the first control instruction carries the information of the first shooting position.
  • the apparatus further includes a registration module for:
  • a second registration request sent by the second radar is received, and the second radar is registered.
  • the apparatus further includes:
  • a verification module configured to verify the first radar to determine that the first radar has been registered before photographing the first target.
  • the apparatus further includes:
  • the sending module is configured to send a first event notification, where the first event notification indicates that the first target appears in the shooting area.
  • the shooting module is also used for:
  • the camera rotates to the default shooting position.
  • the receiving module is further configured to receive a third control instruction sent by a radar other than the second radar, wherein the third control instruction is used to instruct to photograph the third control instruction detected by the radar other than the second radar target; the shooting module is also used to keep the shooting of the second target without performing the shooting of the third target when the shooting module is shooting the second target and the duration of shooting the second target is within the validity period Shooting; when the shooting module is shooting the second target and the duration of shooting the second target has expired, in response to the third control instruction, shooting the third target.
  • the receiving module is further configured to receive a fourth control instruction sent by a radar other than the second radar when the photographing module is photographing the second target, wherein the fourth control instruction is used to instruct photographing A fourth target detected by a radar other than the second radar; the shooting module is also used to identify the validity of the fourth target; when the fourth target is not a valid target, keep shooting the second target without executing Photographing the fourth target; when the fourth target is an effective target, photographing the fourth target in response to the fourth control instruction.
  • the photographing module is configured to: when the rotation angle of the target corresponding to the second control instruction is smaller than the first threshold, identify the second target, and photograph the identified second target.
  • the receiving module is further configured to receive a fifth control instruction sent by the second radar, wherein the fifth control instruction is used to instruct to shoot the second target, and the fifth control instruction is a tracking shooting instruction
  • This shooting module is also used for when the target rotation angle corresponding to the fifth control instruction is not less than the first threshold, the second target is photographed without performing the identification of the second target; when the shooting module is shooting The second target, after receiving the fifth control command, receives the sixth control command sent by the second radar, identifies the second target, and photographs the identified second target, wherein the sixth The control instruction is used to instruct to shoot the second target, and the sixth control instruction is a tracking shooting instruction.
  • a program product in a fifth aspect, includes at least one piece of program code, and the camera runs the at least one piece of program code to execute the shooting method provided in the second aspect or any optional manner of the second aspect.
  • a readable storage medium is provided, the readable storage medium is used to store at least one piece of program code, and the camera runs the at least one piece of program code to execute the second aspect or any one of the optional manners of the second aspect. provided shooting methods.
  • FIG. 1 is a schematic diagram of an application scenario of a shooting method provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a shooting system provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a camera according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a radar according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • FIG. 16 is a flowchart of a photographing method provided by an embodiment of the present invention.
  • FIG. 17 is a flowchart of a shooting method provided by an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a photographing method provided by an embodiment of the present invention.
  • FIG. 19 is a flowchart of a shooting method provided by an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a shooting method provided by an embodiment of the present invention.
  • 21 is a flowchart of a shooting method provided by an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a photographing apparatus provided by an embodiment of the present invention.
  • the PTZ is a supporting device for installing and fixing the camera, which can support and control the camera to rotate in any direction within the mechanical activity range.
  • a camera is an electronic device that converts optical image signals into electrical signals for storage or transmission, and is used to capture images (or videos, for example, images later) of the shooting area to obtain images corresponding to the shooting area.
  • a PTZ camera is a camera supported and controlled by a PTZ, which can freely rotate in the horizontal and vertical directions.
  • P(pan) represents the rotation angle of the camera in the horizontal direction
  • T(tilt) represents the rotation angle of the camera in the vertical direction
  • Z(zoom) represents the zoom information of the lens of the camera.
  • the PTZ camera adjusts the PTZ coordinates so that the target is at an appropriate position of the shooting picture, so as to realize the tracking and shooting of the target.
  • the PTZ camera is introduced by taking a spherical camera (ball camera) as an example.
  • Radar is an electronic device that uses electromagnetic waves to detect targets, and has the characteristics of working all day and all day. By irradiating the target by transmitting electromagnetic waves and receiving its echoes, information such as the distance, distance change rate (radial velocity), azimuth, and altitude from the detected target to the electromagnetic wave emission point can be obtained.
  • the radar is a lidar, which is an electronic device that uses a laser beam to detect a target. The embodiment of the present invention does not limit the type of the radar.
  • Thunderball linkage is a monitoring method that realizes the monitoring purpose by combining radar and ball machine.
  • the dome camera is driven to rotate to a corresponding shooting position by sending a control command to the dome camera, so that the dome camera can track and photograph the suspected target.
  • the defense zone refers to the area where the target is prohibited from entering. It usually needs to be monitored by monitoring equipment (such as radar and cameras). Once it is determined that a target enters the defense zone, the alarm can be triggered, or the movement route of the target can be monitored.
  • the type of the target prohibited from entering the defense zone can also be set, that is, the alarm is triggered only when a target enters the defense zone and the type of the target belongs to the set type, and the type of the target prohibited from entering the defense zone can be set according to requirements. For example, it may be a vehicle, an animal, etc., which is not limited in this embodiment of the present invention.
  • the photographing method provided by the embodiment of the present invention can be applied to scenarios such as railway monitoring and highway monitoring, which require real-time monitoring of whether a target appears in a defense zone.
  • scenarios to which the shooting method provided by the embodiment of the present invention can be applied include but are not limited to:
  • Scene 1 Railway monitoring scene.
  • FIG. 1 is a schematic diagram of an application scenario of a shooting method provided by an embodiment of the present invention. As shown in FIG.
  • installation rods are erected at certain intervals along the railway line, and installation rods are installed on the installation rods.
  • the radar and the camera monitor the railway defense area through the linkage method between the radar and the camera (when the camera is a ball camera, this linkage method is called lightning ball linkage) to monitor the railway defense area.
  • this linkage method is called lightning ball linkage
  • the radar detects that there is a target invading the perimeter of the line and enters the railway defense area , calculate the position of the target, and control the camera to track and shoot the target, and report it to the police, so that the railway staff can know the railway operation status in time and ensure the safety of railway operation.
  • cameras are often installed on both sides of the highway or above the highway to monitor the defense area of the expressway, and track and shoot objects such as animals or non-motor vehicles that break into the defense area, so as to realize the highway cycle.
  • World intrusion alarm for example, erecting rods at certain intervals along both sides of the expressway, installing radar and cameras on the rods, and linking the radar and the camera (when the camera is a ball camera, use this linkage method It is called lightning ball linkage) to monitor the highway defense area.
  • the radar When the radar detects that there is a target invading the perimeter of the highway and entering the defense area, it calculates the location of the target, and controls the camera to track the target and report it to the police so that the highway The staff is informed of the real-time road conditions of the road in time to ensure the safety of vehicles.
  • the shooting methods provided by the embodiments of the present invention can be applied to various monitoring scenarios that need to monitor the defense zone and shoot the targets entering the defense zone.
  • the shooting method can be applied to monitoring scenes of long and narrow terrain such as roads along the river.
  • the photographing method may be applied to a monitoring scene in a sparsely populated area such as an island, a reservoir, or a nature reserve, etc.
  • the embodiment of the present invention does not limit the application scene of the photographing method.
  • FIG. 2 is a schematic structural diagram of a photographing system provided by an embodiment of the present invention.
  • the photographing system 100 includes a camera 110 , a first radar 120 and a second radar 130 . Each part of the photographing system 100 will be introduced below.
  • the first radar 120 is configured to send a first control instruction to the camera 110 after detecting the target, where the first control instruction is used to instruct the camera 110 to photograph the first target detected by the first radar 120.
  • the camera 110 is configured to receive a first control instruction from the first radar 120, and in response to the first control instruction, photograph the first target.
  • the second radar 130 is configured to send a second control instruction to the camera 110 after detecting the target, where the second control instruction is used to instruct the camera 110 to photograph the second target detected by the second radar 130 , the second radar is different on the first radar.
  • the camera 110 is further configured to receive a second control instruction of the second radar 130, and to photograph the second target in response to the second control instruction.
  • the camera 110 is a dome camera.
  • the camera 110 supports 360° rotation in the horizontal direction, that is to say, the shooting area of the camera 110 can be understood as taking R as the radius (R>0 ), the camera 110 is a circular area with a center of the circle, which is not limited in this embodiment of the present invention.
  • the first control instruction is a tracking shooting instruction
  • the camera 110 is used to: identify the first target (for example, identify whether the moving object is a motor vehicle or an animal), and track and shoot the first target;
  • the second control instruction is a tracking shooting instruction, and the camera 110 is used for: identifying the second target (for example, identifying whether the moving object is a motor vehicle or an animal), and tracking and shooting the second target.
  • the camera 110 is further used for: rotating to the first shooting position before shooting the first target; the camera 110 is further used for: rotating to the second shooting position before shooting the second target Location.
  • the first control instruction carries the information of the first shooting position; the second control instruction carries the information of the second shooting position.
  • the camera 110 is further configured to: receive a first registration request sent by the first radar 120, and register the first radar 120; receive a second registration request sent by the second radar 130, and register the first radar 120.
  • the second radar 130 is registered.
  • the camera 110 is further used for: verifying the first radar 120 to determine that the first radar 120 has been registered before photographing the first target; the camera 110 is further used for: before photographing the first target Before the two targets are photographed, the second radar 130 is verified to confirm that the second radar 130 has been registered.
  • the camera 110 is further configured to: send a first event notification, the first event notification indicates that the first target appears in the shooting area of the camera 110; send a second event notification, the second event notification indicates The second target appears in the shooting area of the camera 110 .
  • the camera 110 is also used to:
  • the camera 110 When the camera 110 does not receive a control command from any radar within a first period of time after receiving the second control command, the camera 110 rotates to the default shooting position; and/or
  • the camera 110 When the camera 110 does not receive a control command from any radar within a second time period after the camera 110 starts to photograph the second target, it rotates to the default photographing position.
  • the camera 110 is also used to:
  • a third control instruction sent by a radar other than the second radar wherein the third control instruction is used to instruct the camera 110 to photograph a third target detected by a radar other than the second radar 130; when the camera 110 is photographing the third target The second target, and the duration of shooting the second target is within the validity period, the camera 110 keeps shooting the second target without shooting the third target; when the camera 110 is shooting the second target, And the duration of photographing the second target has expired, and the camera 110 responds to the third control instruction to photograph the third target.
  • the camera 110 is also used to:
  • the camera 110 When the camera 110 is photographing the second target, it receives a fourth control instruction sent by a radar other than the second radar, wherein the fourth control instruction is used to instruct the camera 110 to photograph the object detected by the radar other than the second radar 130 .
  • the fourth target identify the validity of the fourth target; when the fourth target is not a valid target, keep shooting the second target without performing the shooting of the fourth target; when the fourth target is a valid target, The fourth target is shot.
  • the identifying the second target includes: when the target rotation angle corresponding to the second control instruction is smaller than the first threshold, identifying the second target, and photographing the identified second target.
  • the camera 110 is also used to:
  • the fifth control command is used to instruct the camera 110 to shoot the second target, and the fifth control command is a tracking shooting command; when the fifth control command corresponds to If the rotation angle of the target is not less than the first threshold, the second target is photographed without recognizing the second target; when the camera 110 is photographing the second target, and the camera 110 receives the fifth control instruction, it receives the To the sixth control instruction sent by the second radar 130, identify the second target, and photograph the identified second target, wherein the sixth control instruction is used to instruct the camera 110 to photograph the second target , the sixth control instruction is a tracking shooting instruction.
  • the camera 110 and the first radar 120 are mounted on the same mounting rod, and the camera 110 and the second radar 130 are mounted on different mounting rods. In some embodiments, the first radar 120 and the second radar 130 are oriented in the same direction.
  • the camera 110, the first radar 120 and the second radar 130 are mounted on the same mounting pole. In some embodiments, the first radar 120 and the second radar 130 face away from each other.
  • the camera 110, the first radar 120 and the second radar 130 are mounted on different mounting poles, respectively.
  • the first radar 120 faces and the second radar 130 faces opposite.
  • the shooting system 100 further includes a server 140 , the server 140 is configured to receive the first event notification sent by the camera 110 ; the server 140 is further configured to receive the second event notification sent by the camera 110 .
  • the camera 110 is connected to the first radar 120 and the second radar 130 through a wireless network or a wired network, respectively.
  • the camera 110 is communicatively connected to the server 140 via a wireless network or a wired network.
  • the server 140 is communicatively connected to the first radar 120 and the second radar 130 through a wireless network or a wired network, respectively.
  • the aforementioned wireless network or wired network uses standard communication technologies and/or protocols.
  • the network is usually the Internet, but can be any network, including but not limited to a local area network (LAN), a metropolitan area network (MAN), a wide area network (WAN), mobile, wired or wireless Any combination of network, private network, or virtual private network.
  • data exchanged over a network is represented using technologies and/or formats including hypertext markup language (HTML), extensible markup language (XML), and the like.
  • HTTP hypertext markup language
  • XML extensible markup language
  • SSL secure socket layer
  • TLS transport layer security
  • VPN virtual private network
  • IPsec internet protocol security
  • custom and/or dedicated data communication techniques can also be used in place of or in addition to the data communication techniques described above.
  • FIG. 3 is a schematic structural diagram of a camera according to an embodiment of the present invention.
  • the camera 300 may vary greatly due to different configurations or performances, including the interface 301 and the camera body 302 .
  • the interface 301 is used to receive the first control command from the first radar from outside the camera 300, and send the first control command to the camera body 302, where the first control command is used to instruct the camera 300 to shoot the first radar The first target detected.
  • the camera body 302 is used for receiving the first control instruction from the interface 301; in response to the first control instruction, the first target is photographed.
  • the interface 301 is further configured to receive a second control command from the second radar from outside the camera 300, and send the second control command to the camera body 302, where the second control command is used to instruct the camera 300 to shoot the first A second target detected by a second radar, the second radar being different from the first radar.
  • the camera body 302 is also used for receiving the second control instruction from the interface 301; in response to the second control instruction, the second target is photographed.
  • the interface 301 is a wired network port or a wireless network port, which is not limited in this embodiment of the present invention.
  • the camera body 302 includes components such as a processor and a photographing component, the photographing component includes but is not limited to components such as a lens, an image sensor, and a focusing motor, and is used for photographing the first target.
  • the photographing component is used to receive the camera's
  • the light in the shooting area is photoelectrically converted by an image sensor to generate a RAW image, which includes the first target, which is not limited in this embodiment of the present invention.
  • the camera 300 further includes one or more memories 303, the memory 303 stores at least one piece of program code, the at least one piece of program code is loaded and executed by the camera body 302 (eg, a processor) to achieve The operations performed by the camera in the following method embodiments.
  • the camera body 302 eg, a processor
  • the camera 300 can also have other components for realizing device functions, which will not be repeated here.
  • the first control instruction is a tracking shooting instruction
  • the camera body 302 is used to: identify the first target, and track and shoot the first target.
  • the camera body 302 before shooting the first target, is further configured to: rotate to the first shooting position.
  • the first control instruction carries the information of the first shooting position.
  • the camera body 302 is also used to:
  • a second registration request sent by the second radar is received, and the second radar is registered.
  • the camera body 302 is further configured to: verify the first radar to determine that the first radar has been registered before photographing the first target.
  • the camera body 302 is further configured to: send a first event notification, where the first event notification indicates that the first target appears in the shooting area of the camera 300 .
  • the camera body 302 is also used to:
  • the camera rotates to the default shooting position.
  • the camera body 302 is also used to:
  • a third control command sent by a radar other than the second radar is received from the interface 301, wherein the third control command is used to instruct the camera 300 to photograph the third target detected by the radar other than the second radar; when the camera body 302 The second target is being photographed, and the duration of photographing the second target is within the validity period, and the shooting of the second target is maintained without performing the photographing of the third target; when the camera body 302 is photographing the second target , and the duration of photographing the second target has expired, and the third target is photographed in response to the third control instruction.
  • the camera body 302 is also used to:
  • the camera body 302 When the camera body 302 is photographing the second target, it receives a fourth control instruction from the interface 301 from a radar other than the second radar, wherein the fourth control instruction is used to instruct the camera 300 to photograph objects other than the second radar
  • the fourth target detected by the radar; the validity of identifying the fourth target; when the fourth target is not a valid target, keep the shooting of the second target without performing the shooting of the fourth target; when the fourth target is not a valid target
  • the fourth target is photographed in response to the fourth control instruction.
  • photographing the second target includes: when the target rotation angle corresponding to the second control instruction is smaller than a first threshold, identifying the second target, and photographing the identified second target .
  • the shooting efficiency is improved on the premise of ensuring the shooting accuracy.
  • the camera body 302 is also used to:
  • a fifth control command sent by the second radar is received from the interface 301, wherein the fifth control command is used to instruct the camera 300 to shoot the second target, and the fifth control command is a tracking shooting command; when the fifth control command When the corresponding target rotation angle is not less than the first threshold, the second target is photographed without performing the identification of the second target; when the camera body 302 is photographing the second target, and the fifth control instruction is received from the interface
  • the sixth control instruction sent by the second radar is received from the interface, the second target is identified, and the identified second target is photographed, wherein the sixth control instruction is used to instruct the camera 300 to photograph
  • the second target and the sixth control instruction are tracking shooting instructions.
  • FIG. 4 is a schematic structural diagram of a radar according to an embodiment of the present invention.
  • the radar 400 may vary greatly due to different configurations or performances, and includes one or more processors 401 , interfaces 402 and detection components 403 , wherein , the interface 402 is used to send control instructions to the camera 300; the processor 401 is used to perform the operations performed by the radar in the following method embodiments; the detection component 403 includes components such as electromagnetic wave transmitters/receivers, which are used to detect the area. Probe to find the target.
  • the radar 400 can also have other components for realizing device functions, which will not be repeated here.
  • the following describes the erection scheme of the shooting system 100 , including but not limited to the following situations.
  • Case 1 The camera and the first radar are mounted on the same mounting rod, and the camera and the second radar are mounted on different mounting rods.
  • the detection area of the first radar covers at least part of the shooting area of the camera
  • the detection area of the second radar covers at least part of the shooting area of the camera.
  • the first radar and the second radar are oriented in the same direction.
  • FIG. 5 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • the camera and the first radar are mounted on the same mounting rod
  • the camera and the second radar are mounted on different mounting rods
  • the first radar and the second radar face the same direction (the direction of the arrow in Figure 5 depicts the first and second radars, respectively
  • the orientation of the radar, the orientation of the radar is related to the detection direction).
  • the shooting area of the camera covers at least the area from point a to point c
  • the detection area of the first radar covers at least the area from point b to point c
  • the detection area of the second radar covers at least the area from point a to point b.
  • the camera can accept the control of the first radar and the second radar, and shoot the target appearing in the shooting area of the camera.
  • the first radar detects that a target (such as a larger moving object) appears in the area where points b to c are located, it sends a control command to the camera; if the second radar detects point a When a target appears in the area where point b is located (which may be different from the target detected by the first radar), a control command is sent to the camera.
  • a target such as a larger moving object
  • FIG. 5 is only a first infrastructure erection solution corresponding to the first case.
  • multiple cameras and multiple first radars may be erected according to the erection scheme shown in FIG. 6 below. and a plurality of second radars (which can also be understood as the first variant of the first basic erection solution). This optional erection scheme is described below.
  • FIG. 6 is a schematic diagram of an erection scheme of a shooting system provided by an embodiment of the present invention, taking the shooting system for monitoring railway lines and the camera as an example of a ball camera, as shown in FIG. 6 (Fig.
  • the direction of the arrow in 6 describes the orientation of the radar, the orientation of the radar is related to the detection direction), a mounting pole is erected every 200 meters along the railway line, and a camera and a radar are installed on each mounting pole.
  • the monitoring of each camera The radius is 100 meters, and the length of the detection area of each radar is 200 meters.
  • the camera B is regarded as the camera shown in the first case, and the radar B' installed on the same mounting rod as the camera B is the first radar shown in the first case.
  • Radar B' is directed towards the identical radar A', ie the second radar shown in case one.
  • the monitoring radius of camera A and camera B are both 100 meters, and the distance between the corresponding installation poles of the two cameras is 200 meters, there is no overlapping area between the shooting areas of camera A and camera B. , which just covers the monitoring area between the two installation poles, and the detection area of the radar A' is 200 meters, which also just covers the monitoring area between the two installation poles.
  • the radar installed on the same mounting rod as the camera can be called “same rod radar”, and the camera is mounted on a different mounting rod with the camera
  • the radar can be called “different pole radar”, for the same reason, for any radar, the camera installed on the same pole with the radar can be called “same pole camera”, which is different from the radar installed on the same pole.
  • the camera mounted on the pole may be called a “different pole camera”, which is not limited in this embodiment of the present invention.
  • any camera can receive the control commands of two radars, namely the same-rod radar and the different-rod radar that can detect the camera (or the detection area covers the part of the camera).
  • Different pole radar in the shooting area for example, take the camera B in FIG. 6 as an example, the camera B is used to receive the control commands of the radar B' and the radar A'.
  • any radar can send control commands to two cameras, which are the camera on the same pole and the nearest camera with different poles in its detection area.
  • the radar B' in Figure 6 the radar B' uses It is used to send control commands to camera B and camera C.
  • the monitoring radius of the camera, the erection interval of the installation rod, and the length of the detection area of the radar are all schematic.
  • the shooting system can be erected according to the actual situation. For example, a mounting pole is erected at intervals of 300 meters along the railway line, each mounting pole is installed with a camera and a radar, the monitoring radius of each camera is 150 meters, and the length of the detection area of each radar is 300 meters , etc., which are not limited in this embodiment of the present invention.
  • the shooting areas of each camera may overlap to reduce monitoring blind spots and improve shooting reliability.
  • a mounting pole can be installed every 50 meters.
  • a camera and a radar are installed on each installation pole, etc., which are not limited in the embodiment of the present invention.
  • the multiple mounting rods when erecting multiple mounting rods, can be arranged and erected in various ways. For example, taking the railway monitoring scenario as an example, multiple mounting poles can be lined up on the same side along the railway line, and can also be lined up in a manner of inserting space on both sides along the railway line, and so on, as long as the radar can detect It suffices that the target appearing in the defense area and the camera can photograph the target appearing in the defense area, which is not limited in this embodiment of the present invention.
  • the camera and radar may also be mounted on other media.
  • cameras and radars can be installed on the walls on both sides of the railway line, or on the piers of the flyover crossing the railway, etc., as long as the radar can detect It is only required that the target and the camera can capture the target appearing in the defense zone, which is not limited in this embodiment of the present invention.
  • the shooting system is set up according to the erection scheme shown in the above situation 1, so that one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, and the shooting area of the camera can be effectively covered.
  • Blind area on the basis of improving the utilization rate of the camera and saving the cost of the equipment, it further improves the shooting efficiency and shooting accuracy.
  • the detection areas of multiple radars can be overlapped to improve the detection coverage of the radars and avoid missing targets, thereby effectively improving the shooting efficiency and shooting accuracy.
  • the shooting system is set up according to the deformation scheme shown in the above situation 1, there can be multiple cameras in the detection area of one radar for monitoring, and the detection coverage rate of the radar can be further improved, thereby greatly improving the shooting efficiency. and shooting accuracy.
  • Case 2 The camera, the first radar and the second radar are mounted on the same mounting rod.
  • the area formed by the detection areas of the first radar and the second radar covers the entire shooting area of the camera.
  • the first radar and the second radar face oppositely.
  • the first radar and the second radar are facing oppositely, which means that the first radar and the second radar are erected in a back-to-back manner, the detection direction of the first radar is opposite to the detection direction of the second radar, and the detection area of the first radar is opposite to that of the second radar. There is no overlapping area between the detection areas of the second radar.
  • FIG. 7 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • the camera, the first radar and the second radar are mounted on the same mounting rod, and the first radar and the second radar face oppositely (the directions of the arrows in Figure 7 describe the directions of the first and second radars respectively, the orientation and detection direction).
  • the shooting area of the camera covers at least the area from point d to point f, the detection area of the first radar covers at least the area from point d to point e, and the detection area of the second radar covers at least the area from point e to point f, that is Yes, the sum of the detection areas of the first radar and the second radar covers the entire shooting area of the camera.
  • the camera can accept the control of the first radar and the second radar, and shoot the target appearing in the shooting area of the camera.
  • the first radar detects that a target (such as a larger moving object) appears in the area where points d to e are located, it sends a control command to the camera; A target (which may be different from the target detected by the first radar) appears in the area where point f is located, and a control command is sent to the camera.
  • a target such as a larger moving object
  • FIG. 7 is only a second infrastructure erection solution corresponding to the second case.
  • multiple cameras, multiple first radars, and multiple cameras can be erected according to the erection scheme shown in FIG.
  • the second radar (which can also be understood as a second variant of the second basic erection solution). This optional erection scheme is described below.
  • FIG. 8 is a schematic diagram of an erection scheme of a shooting system provided by an embodiment of the present invention.
  • the shooting system for monitoring railway lines and the camera as an example of a ball camera, as shown in FIG. 8 (Fig.
  • the direction of the arrow in 8 describes the orientation of the radar, the orientation of the radar is related to the detection direction)
  • a mounting pole is erected every 200 meters along the railway line, and a camera and two radars are installed on each mounting pole.
  • the monitoring radius is 100 meters, and the length of the detection area of each radar is 200 meters.
  • the camera D is also the camera shown in the second case, and the radar D 1 installed on the same installation pole with the camera D is also the one shown in the second situation.
  • the first radar shown, the radar D 2 installed on the same mounting pole with the camera D is the second radar shown in the second case, and the radar D 1 and the radar D 2 are facing opposite to each other.
  • the monitoring radius of the camera D and the camera E are both 100 meters, and the distance between the installation poles corresponding to the two cameras is 200 meters, there is no overlapping area between the shooting areas of the camera D and the camera E. , which just covers the monitoring area between the two mounting poles.
  • any camera can also receive the two adjacent radars.
  • Control commands for the radar mounted on the pole For example, taking the camera E in FIG. 8 as an example, the camera E is used to receive the control instructions of the radar E 1 and the radar E 2 , and the camera E is also used to receive the control instructions of the radar D 2 and the radar F 1 .
  • any radar can send control commands to two (or more) cameras, which are the camera on the same pole and the nearest different camera in its detection area.
  • the radar E 1 is used to send control commands to the camera E and the camera D. That is to say, for any radar, as long as the detection area of the radar covers part of the shooting area of a certain camera, the radar can control the camera to shoot the target.
  • the shooting system can be erected according to the actual situation, as long as the radar can detect the target appearing in the defense zone and the camera can take pictures.
  • the target that appears in the defense zone is sufficient (for details, please refer to the above-mentioned situation 1), and the present invention will not repeat them here.
  • the shooting system is set up according to the set-up scheme shown in the above situation 2, so that one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, and the shooting area of the camera can be effectively covered.
  • Blind area on the basis of improving the utilization rate of the camera and saving the cost of the equipment, it further improves the shooting efficiency and shooting accuracy.
  • the shooting system is set up according to the deformation scheme shown in the above-mentioned second case, which further enables multiple cameras to monitor in the detection area of one radar, thereby effectively improving the shooting efficiency and shooting accuracy.
  • Case 3 The camera, the first radar and the second radar are respectively installed on different installation poles.
  • the detection area of the first radar covers at least part of the shooting area of the camera
  • the detection area of the second radar covers at least part of the shooting area of the camera.
  • the first radar and the second radar face oppositely.
  • FIG. 9 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • the camera, the first radar and the second radar are respectively mounted on different mounting rods, the first radar and the second radar are facing opposite, it can also be understood that the first radar is facing the second radar, the first radar is facing the second radar, the The two radars face the first radar (the directions of the arrows in FIG. 9 respectively describe the orientations of the first and second radars, and the orientations of the radars are related to the detection direction).
  • the shooting area of the camera covers at least the area from point g to point i
  • the detection area of the first radar covers at least the area from point g to point h
  • the detection area of the second radar covers at least the area from point h to point i.
  • the camera can accept the control of the first radar and the second radar, and shoot the target appearing in the shooting area of the camera.
  • the first radar detects that a target (such as a larger moving object) appears in the area from point g to point h, it sends a control command to the camera; if the second radar detects point h When a target (which may be different from the target detected by the first radar) appears in the area where point i is located, a control command is sent to the camera.
  • a target such as a larger moving object
  • FIG. 9 is only a third infrastructure erection solution corresponding to the third case.
  • multiple cameras, multiple first radars and multiple cameras can be set up according to the set-up scheme shown in FIG. 10 below
  • the second radar (which can also be understood as the third variant of the third basic erection solution). This optional erection scheme is described below.
  • FIG. 10 is a schematic diagram of an erection scheme of a shooting system provided by an embodiment of the present invention, taking the shooting system for monitoring along the railway line and the camera as an example, as shown in FIG. 10 (
  • the direction of the arrow in Figure 10 describes the orientation of the radar, the orientation of the radar is related to the detection direction), a mounting pole is erected every 100 meters along the railway line, the monitoring radius of each camera is 100 meters, and the length of the detection area of each radar is For 200 meters, one radar is mounted on the first pole, one camera is mounted on the second pole, two radars are mounted on the third pole with opposite orientations, and so on.
  • the camera H is also the camera shown in the third case, and the radar G on the installation pole behind the camera H is the first radar shown in the third situation.
  • the radar I 1 on the installation pole in front of the camera H is the second radar shown in the third case.
  • the monitoring radius of camera H is 100 meters, and the distance between the installation pole where radar G and radar I 1 are located is 200 meters, the shooting area of camera H just covers the installation where radar G and radar I 1 are located. Monitoring area between poles.
  • the shooting system can be erected according to the actual situation, as long as the radar can detect the target appearing in the defense area and The camera only needs to be able to photograph the target appearing in the defense zone (for details, please refer to the above-mentioned situation 1), and the present invention will not repeat them here.
  • the shooting system is set up according to the erection scheme shown in the above situation 3, so that one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, and the shooting area of the camera can be effectively covered.
  • Blind area on the basis of improving the utilization rate of the camera and saving the cost of the equipment, it further improves the shooting efficiency and shooting accuracy.
  • the detection areas of multiple radars can be overlapped to improve the detection coverage of the radars and avoid missing targets, thereby effectively improving the shooting efficiency and shooting accuracy.
  • the shooting system is set up according to the deformation scheme shown in the above-mentioned situation 3, the detection coverage rate of the radar can be further improved, the missed target can be avoided, and the shooting efficiency and shooting accuracy rate can be greatly improved.
  • the above cases 1 to 3 give several optional erection schemes for the shooting system.
  • the basis of the basic erection schemes in these cases is composed of a camera and two radars.
  • the basic erection plan is introduced.
  • the basic erection plan in this case consists of two cameras and two radars.
  • Case 4 The first camera, the first radar and the second radar are mounted on the same first mounting rod, the first radar and the second radar face opposite to each other, and the second camera is mounted on the second mounting rod adjacent to the first mounting rod on the mounting rod.
  • the area formed by the detection areas of the first radar and the second radar covers the entire shooting area of the first camera, and the detection area of the second radar covers at least part of the shooting area of the second camera.
  • FIG. 11 is a schematic diagram of an erection scheme of a photographing system provided by an embodiment of the present invention.
  • the first camera, the first radar and the second radar are mounted on the same mounting rod, and the first radar and the second radar are facing oppositely (the directions of the arrows in Figure 11 describe the directions of the first and second radars respectively, the radar The orientation of the camera is related to the detection direction), and the second camera is mounted on the second mounting rod adjacent to the first mounting rod.
  • the shooting area of the first camera covers at least the area from point j to point l
  • the detection area of the first radar covers at least the area from point j to point k
  • the detection area of the second radar covers at least the area from point k to point l
  • the detection area of the second radar covers at least the area where points 1 to m are located (that is, the area where the second camera is located). part of the shooting area).
  • the first camera can be controlled by the first radar and the second radar to photograph the targets appearing in the shooting area of the first camera, and the second camera can receive the control of the second radar , to shoot the target appearing in part of the shooting area of the second camera.
  • the first radar detects that a target (such as a larger moving object) appears in the area where points j to k are located, it sends a control command to the first camera; if the second radar detects If a target (which may be different from the target detected by the first radar) appears in the area from point k to l, a control command is sent to the first camera.
  • the second radar detects a target in the area from point l to point m (which may be different from the target detected by the first radar or the target in the area from point k to point l detected by the second radar), then The second camera sends a control command.
  • FIG. 11 is only a fourth infrastructure erection solution corresponding to the fourth case.
  • multiple first cameras, multiple first radars, Multiple second radars and multiple second cameras which can also be understood as a fourth variant of the fourth infrastructure solution. This optional erection scheme is described below.
  • FIG. 12 is a schematic diagram of an erection scheme of a shooting system provided by an embodiment of the present invention.
  • the shooting system for monitoring along a railway line and the first camera being a ball camera as an example, as shown in FIG. 12 .
  • the direction of the arrow in Figure 12 describes the orientation of the radar, the orientation of the radar is related to the detection direction
  • a mounting pole is erected every 200 meters along the railway line
  • the monitoring radius of each camera is 100 meters
  • the detection area of each radar is 200 meters long, with one camera on the first pole, one camera on the second pole and two radars facing in opposite directions, and so on.
  • the camera K is the first camera shown in the fourth case, and the radar K1 installed on the same mounting rod as the camera K is the first camera shown in the fourth case.
  • Radar the radar K 2 installed on the same mounting pole with the camera K is the second radar shown in the fourth case, the radar K 1 and the radar K 2 are facing opposite, and the camera L is also the second radar shown in the fourth case. the second camera shown.
  • the monitoring radii of camera J and camera K are both 100 meters, and the distance between the corresponding installation poles of these two cameras is 200 meters, there is no overlapping area between the shooting areas of camera J and camera K.
  • the detection area of the radar K 1 is 200 meters, which also just covers the monitoring area between the two installation poles. Assume that the distance between the target detected by the radar K 1 and the installation pole where it is located is less than 100 meters, and send a control command to the camera K, assuming that the distance between the target detected by the radar K 1 and the installation pole where it is located is greater than 100 meters , then send control commands to camera J.
  • any radar can send control commands to the cameras of different poles in its detection area in addition to sending control commands to the cameras on the same pole.
  • the radar can control the camera to shoot the target.
  • the shooting system is set up according to the erection scheme shown in the above situation 4, so that one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, and the shooting area of the camera can be effectively covered.
  • Blind area on the basis of improving the utilization rate of the camera and saving the cost of the equipment, it further improves the shooting efficiency and shooting accuracy.
  • the shooting system is set up according to the deformation scheme shown in the above situation 4, which further enables multiple cameras to monitor in the detection area of one radar, thereby effectively improving the shooting efficiency and shooting accuracy.
  • a new erection scheme may be formed by deformation or combination of the above-mentioned erection schemes according to the actual situation. Any erection scheme in which a camera can accept the control of multiple radars and shoot the targets appearing in the shooting area is within the protection scope of the present invention.
  • FIG. 13 is a schematic diagram of a photographing system provided by an embodiment of the present invention.
  • the monitoring radius of the camera is 100 meters
  • the length of the detection area of the radar is 200 meters
  • the monitoring area is a railway defense area with a length of 600 meters.
  • Figure 13 (a) is a schematic diagram of the erection scheme of the shooting system for monitoring the railway defense zone in the related art, as shown in Figure 13 (a), the related art considers that the monitoring radius of the camera is only 100 meters, and the radar One-to-one binding with cameras, therefore, in the 600-meter railway defense zone, a mounting pole is erected every 100 meters, and each mounting pole is installed with a camera and a radar, a total of 7 mounting poles, 7 Radar and 7 cameras.
  • Figure 13 (b) is a schematic diagram of the erection scheme of the shooting system in the above-mentioned case 1, which is the same as that of Figure 6.
  • each camera can be controlled by multiple radars.
  • Each radar can control multiple cameras. Therefore, in the 600-meter railway defense zone, a mounting pole is erected every 200 meters, and each mounting pole is installed with a camera and a radar. A total of 4 mounting poles, 4 Radar and 4 cameras.
  • Figure 13 (c) is a schematic diagram of the erection scheme of the shooting system in the above-mentioned case 2, which is the same as that of Figure 8.
  • each camera can be controlled by multiple radars.
  • Each radar can control multiple cameras. Therefore, in the railway defense zone of 600 meters, a mounting pole is erected every 200 meters. Each mounting pole is installed with a camera and two radars facing oppositely. A total of 4 installations are required. pole, 8 radars and 4 cameras.
  • Figure 13 (d) is a schematic diagram of the erection scheme of the shooting system in the above-mentioned third case, which is the same as that of Figure 10.
  • each camera can be controlled by multiple radars, so , in the 600-meter railway zone, erect a mounting pole every 100 meters, the first mounting pole is mounted with a radar, the radar is facing the second mounting pole, the second mounting pole is mounted with a camera, the third Two radars facing oppositely are installed on the mounting rod, and so on, a total of 7 mounting rods, 6 radars and 3 cameras are required to be erected.
  • FIG 13 (e) is a schematic diagram of the erection scheme of the shooting system in the above-mentioned case 4, which is the same as that of Figure 12.
  • each camera can be controlled by multiple radars.
  • Each radar can control multiple cameras, therefore, in a 600-meter railway zone, a mounting pole is erected at intervals of 200 meters, one camera is mounted on the first mounting pole, and one camera and two are mounted on the second mounting pole. There are two radars facing the opposite direction, a camera is installed on the third pole, a camera and two radars are installed on the fourth pole, and a total of 4 poles, 4 radars and 4 cameras are required to be erected.
  • the shooting system when the shooting system is set up according to the shooting system provided by the embodiment of the present invention, compared with the erection scheme in the related art, the detection area of the radar and the shooting area of the camera are fully utilized, the waste of resources is reduced, and the equipment is greatly saved
  • the cost of erection, and one camera can be controlled by multiple radars to shoot the targets appearing in the shooting area, so that the shooting area of the camera can be fully utilized, and the blind area can be effectively covered, which can improve the utilization rate of the camera and save the equipment cost. On the basis of, further improve the shooting efficiency and shooting accuracy.
  • the camera in the shooting system will register the first radar and the second radar, and the first radar and the second radar The camera will also be registered in the same way. This registration process is described below, including the following two registration processes.
  • the first is the process of the camera registering the first radar and the second radar.
  • the process of registering the first radar by the camera includes: the camera receives a first registration request sent by the first radar, and registers the first radar.
  • the registration process of the camera to the first radar specifically includes: the camera receives a first registration request sent by the first radar, where the first registration request carries the first registration information sent by the first radar, and the camera is based on the first registration information sent by the first radar.
  • a registration request is made, the first registration information is added to the registration form of the camera, and the registration of the first radar is completed.
  • the first registration information includes the network address, radar number, account password, etc. of the first radar, which is not limited in this embodiment of the present invention. It should be noted that the registration process of the camera to the second radar is the same as the registration process of the camera to the first radar, and details are not repeated here.
  • the camera after the camera registers with the first radar, the camera sends a third registration request to the first radar, the third registration request carries the third registration information of the camera, and when the first radar receives the third registration After the request, based on the third registration request, the third registration information of the camera is added to the registration form of the first radar to complete the registration of the camera.
  • the third registration information includes the shooting range information of the camera (for example, if the camera is a dome camera, the shooting range information may be the monitoring radius), network address, camera number, account password, etc., which are not made in this embodiment of the present invention. limited. In this way, two-way registration is completed between the camera and the first radar, enabling mutual communication. It should be understood that, when the photographing system 100 includes multiple radars and multiple cameras, for any group of cameras and radars, bidirectional registration can be accomplished through the above method to implement mutual communication, and details are not described herein again in this embodiment of the present invention.
  • the second, the first radar and the second radar register the process of the camera.
  • the process of registering the camera by the first radar includes: receiving a third registration request from the camera, and registering the camera.
  • the process of registering the camera by the first radar specifically includes: the first radar receives a third registration request sent by the camera, the third registration request carries the third registration information of the camera, and the first radar is based on the third registration request.
  • a registration request is made, and the third registration information of the camera is added to the registration form of the first radar to complete the registration of the camera.
  • the third registration information includes the shooting range information of the camera (for example, if the camera is a dome camera, the shooting range information may be the monitoring radius), network address, camera number, account password, etc., which are not made in this embodiment of the present invention. limited.
  • the first radar first sends a registration request to the camera, and after the camera registers the first radar, the first radar registers the camera.
  • the camera first sends a registration request to the first radar, and after the first radar registers the camera, the camera registers the first radar.
  • the first radar and the camera send a registration request to each other at the same time to complete the two-way registration.
  • the embodiments of the present invention do not limit the registration sequence between the radar and the camera.
  • the camera is bound to the radar by registering the radar, so that the registration information of the first radar and the second radar is stored in the registry of the camera, so that when the camera receives the control command of the radar, it is convenient to judge whether the current control command is It is sent by the radar bound to it, so as to avoid interference from other radars and affect the shooting efficiency. It also provides security.
  • one camera can be controlled by multiple radars. Therefore, for the camera, the camera needs to coordinate the control commands received from multiple radars to respond stably as much as possible.
  • the signal of a certain radar makes the movement of the camera rotate as little as possible to avoid confusion caused by frequent or simultaneous response to the commands of two radars.
  • one radar can control multiple cameras. Therefore, for the radar, the radar needs to select from the multiple cameras that can be controlled that can capture the The camera of the target is controlled, and the camera is controlled to shoot the target, so as to ensure the shooting efficiency and shooting accuracy.
  • the shooting methods provided by the embodiments of the present invention will be introduced in terms of the angle of the camera, the angle of the radar, and the angle of interaction between the camera and the radar through the following embodiments.
  • FIG. 14 is a flowchart of a shooting method provided by an embodiment of the present invention.
  • the shooting method provided by the embodiment of the present invention is introduced from the perspective of a camera.
  • the photographing method is applied to the photographing system shown in FIG. 2 above.
  • the application to the camera 110 shown in FIG. 2 is taken as an example for description, and the shooting method includes the following steps.
  • the camera receives a first control instruction sent by the first radar, where the first control instruction is used to instruct the camera to photograph the first target detected by the first radar.
  • the first radar is a radar after the camera is registered in the shooting system.
  • the first target is a target detected by the first radar and present in the first target area.
  • the first target area refers to the area where the target is prohibited from entering, which can also be understood as a defense zone.
  • the first target area is a monitoring area, which is not limited in this embodiment of the present invention.
  • the first control instruction refers to an instruction that the radar controls the camera to shoot. In other words, if the camera receives other types of instructions sent by the radar, it is not included in this list.
  • the instructions involved in the above embodiments are also instructions for the radar to control the camera to shoot, which will not be repeated in the following.
  • the first target is a vehicle or an animal, which is not limited in this embodiment of the present invention.
  • the first target is a preset target of a specified type. For example, in a railway monitoring scenario, if animals are prohibited from entering the railway defense zone, the animals are preset as designated targets, which is not limited in this embodiment of the present invention.
  • the camera shoots the first target.
  • the camera shooting the first target means that the camera adjusts the shooting position of the camera to shoot the first target according to the first control instruction.
  • the shooting of the first target by the camera refers to that the camera adjusts its shooting position according to the first control instruction and then shoots. That is to say, the camera does not need to judge whether the first target actually appears in the shooting area of the camera after adjusting the shooting position.
  • the first control instruction carries the information of the first shooting position.
  • the camera rotates to the first shooting position based on the information of the first shooting position, the first target is likely to appear in the shooting area of the camera.
  • this step 1402 includes: in response to the first control instruction, the camera is rotated to the first shooting position based on the information of the first shooting position carried by the first control instruction to shoot the first target.
  • the camera is a dome camera, and the information of the first shooting position is the first PTZ coordinate.
  • the information of the first shooting position is the coordinate information of the first target, which is the embodiment of the present invention. Not limited.
  • the first control instruction is a tracking shooting instruction
  • the camera shooting the first target includes: the camera identifying the first target, and tracking shooting the first target.
  • the camera has an identification function.
  • the first control command is a tracking shooting command
  • the first target is an effective target
  • the first target is tracked and photographed. It should be noted that the fact that the first target is an effective target means that the first target is a target that needs to be tracked and photographed by the camera. Since the target detected by the radar is not necessarily the target that the camera needs to track and shoot, the camera needs to be effective in identifying the target.
  • the first radar detects a human being in the first target area, so the first radar sends a control command to the camera, but the human detected by the first radar is a railway maintenance personnel, and a camera is not required
  • the first camera invokes the perimeter algorithm to perform image recognition on the captured first target. If the first target is identified as a valid target, the first target is tracked and photographed. If it is identified that the first target is not valid target, then give up tracking to shoot the first target.
  • the perimeter algorithm is an image recognition algorithm based on deep learning, which is not limited in this embodiment of the present invention.
  • the tracking shooting can be carried out on the premise that the target is an effective target, thereby reducing the waste of resources and improving the shooting efficiency and shooting accuracy.
  • the camera verifies the first radar to determine that the first radar is registered.
  • the first control instruction carries the network address of the first radar.
  • the camera receives the first control command sent by the first radar, it verifies the network address of the first radar. If the registration form of the camera includes the network address of the first radar, the camera responds to the first control command, Make sure that the first radar is registered, and shoot the first target.
  • the first control instruction carries the radar number of the first radar. When the camera receives the first control command sent by the first radar, it verifies the radar number of the first radar.
  • the camera responds to the first control command, The first target emitted by the first radar is photographed.
  • the foregoing optional embodiment is also a process of verifying the first radar by the camera. It should be understood that, in some embodiments, the camera may also verify the first radar in other ways, which is not limited in this embodiment of the present invention. It should be noted that, by verifying the first radar, the camera ensures that the camera only responds to the control commands of the radar bound to it, thereby avoiding interference from other radars and affecting the shooting efficiency.
  • the first control instruction carries the first identity of the first target.
  • the first identity identifier in the first control instruction, when the camera receives the next control instruction sent by the first radar for instructing to shoot the first target, it is convenient to determine two control instructions according to the first identity identifier for instructing to shoot Whether the target is the same target, so as to improve the shooting efficiency.
  • the first control instruction carries a confidence level of the first target.
  • the camera can determine whether the first target is a valid target according to the confidence of the first target, which is not limited in this embodiment of the present invention.
  • step 1402 further includes: after the camera detects the first target, sending a first event notification, where the first event notification indicates that the first target appears in the shooting area of the camera.
  • the camera detects the captured image or video after capturing the first target, and sends a first event notification after detecting the first target.
  • the photographing system further includes a server, and after detecting the first target, the camera sends a first event notification to the server.
  • the relevant information about the target is automatically reported, which improves the shooting efficiency and reduces the workload of the personnel, so that the relevant personnel can be informed of the target in the shooting area of the camera in time, so as to arrange the personnel to deal with or propose solutions as soon as possible, such as It is not limited in the present invention to drive away animals that have entered the expressway by mistake.
  • the first event notification carries information such as the first identity identifier of the first target, the camera number of the camera, and the area identifier where the first target is located, which is not limited in this embodiment of the present invention.
  • the server can obtain information such as the identity and location of the first target in time, thereby improving the shooting efficiency.
  • the server and the terminal are connected through wired network or wireless network communication, and after receiving the first event notification, the server sends the first event notification to the terminal, and the terminal displays the first event notification.
  • the server sends the first event notification to the terminal, and the terminal displays the first event notification, so that the railway staff can know the shooting area of the camera in time
  • the first target appears in the system, so that the relevant personnel are arranged to deal with or the train operation is scheduled in time, which is not limited in the embodiment of the present invention.
  • the camera receives a second control instruction sent by the second radar, where the second control instruction is used to instruct the camera to photograph a second target detected by the second radar, where the second radar is different from the first radar.
  • the second radar is a radar other than the first radar in the shooting system and after the camera is registered.
  • the second target is a target detected by the second radar and present in the second target area.
  • the second target area refers to an area where the target is prohibited from entering, which can also be understood as a defense area.
  • step 1401 for the relevant introduction about the second target, refer to the above-mentioned step 1401, which is the same as the relevant introduction about the first target, so it is not repeated here.
  • the camera shoots the second target.
  • the camera shoots the second target means that the camera shoots the second target by adjusting the shooting position of the camera according to the second control instruction.
  • the shooting of the second target by the camera refers to shooting after the camera adjusts its shooting position according to the first control instruction. That is to say, the camera does not need to judge whether the second target actually appears in the shooting area of the camera after adjusting the shooting position.
  • the second control instruction carries information of the second shooting position.
  • the camera rotates to the second shooting position according to the second shooting position information, the second target is likely to appear in the shooting area of the camera.
  • this step 1404 includes: in response to the second control instruction, the camera is rotated to the second shooting position based on the information of the second shooting position carried by the second control instruction to shoot the second target.
  • the camera is a dome camera, and the information of the second shooting position is the second PTZ coordinate.
  • the information of the second shooting position is the coordinate information of the second target, which is the embodiment of the present invention. Not limited.
  • photographing the second target by the camera includes: the camera identifying the second target, and tracking and photographing the second target.
  • step 1402 which is the same as the process of identifying the first target by the camera, so it is not repeated here.
  • this step 1404 includes: in response to the second control instruction, the camera recognizes the second target when the rotation angle of the target corresponding to the second control instruction is smaller than the first threshold.
  • the target rotation angle corresponding to the second control instruction refers to the angle required to rotate the camera from the first shooting position to the second shooting position, and the first threshold is a preset threshold.
  • the camera is a dome camera
  • the target rotation angle corresponding to the second control instruction refers to the rotation angle of the camera in the horizontal direction.
  • the first threshold may be 90°, which is not limited in this embodiment of the present invention.
  • the target rotation angle corresponding to the second control command is smaller than the first threshold, indicating that the camera needs to rotate from the first shooting position to the second shooting position according to the second control command.
  • the second target is likely to be in the shooting area of the camera.
  • the camera when the rotation angle of the target corresponding to the second control command does not meet the requirements, the camera will wait for the second radar to send the next control command instructing to shoot the second target, and then recognize the validity of the second target. to ensure the camera's shooting accuracy, stability and efficiency.
  • This optional implementation manner will be introduced in the subsequent photographing method shown in FIG. 16 , and will not be repeated here.
  • the camera authenticates the second radar to determine that the second radar is registered.
  • the second control instruction carries the network address of the second radar.
  • the camera receives the second control command sent by the second radar, it verifies the network address of the second radar. If the camera's registry includes the network address of the second radar, the camera responds to the second control command, Make sure that the second radar is registered and take pictures of the second target. It should be noted that, for other optional methods of the verification process of the camera to the second radar, refer to the above step 1402, which is the same as the verification process of the camera to the first radar, and will not be repeated here.
  • the second control instruction carries the second identity of the second target.
  • the second identity identifier in the second control instruction, when the camera receives the next control instruction sent by the second radar for instructing to shoot the second target, it is convenient to determine two control instructions for instructing to shoot according to the second identifier. Whether the target is the same target, so as to improve the shooting efficiency.
  • the second control instruction also carries the confidence of the second target.
  • the camera can determine whether the second target is a valid target according to the confidence of the second target, which is not limited in this embodiment of the present invention.
  • step 1404 further includes: after the camera detects the second target, sending a second event notification, where the second event notification indicates that the second target appears in the shooting area of the camera.
  • the camera detects the captured image or video after capturing the second target, and sends a second event notification after detecting the second target.
  • the shooting system further includes a server, and after detecting the second target, the camera sends a second event notification to the server.
  • the relevant information about the target is automatically reported, which improves the shooting efficiency and reduces the workload of the personnel, so that the relevant personnel can be informed of the target in the shooting area of the camera in time, so as to arrange the personnel to deal with or propose solutions as soon as possible, such as It is not limited in the present invention to drive away animals that have entered the expressway by mistake.
  • the second event notification carries information such as the second identity identifier of the second target, the camera number of the camera, and the area identifier where the second target is located, which is not limited in this embodiment of the present invention.
  • the server can obtain information such as the identity and location of the second target in time, thereby improving the shooting efficiency.
  • the server and the terminal are connected through wired network or wireless network communication, and after receiving the second event notification, the server sends the second event notification to the terminal, and the terminal displays the second event notification.
  • the server sends the second event notification to the terminal, and the terminal displays the second event notification.
  • the camera is configured with a time-out homing mechanism.
  • the camera receives the second control command, or after the camera shoots the second target, if the camera does not receive any radar transmission within a certain period of time , the camera will rotate to the default shooting position and stand by, thus improving the shooting efficiency.
  • the default shooting position refers to the initial shooting position when the camera is started.
  • the default shooting position refers to a pre-specified preset shooting position. This embodiment of the present invention does not limit the default shooting position.
  • the following describes the process of how the camera rotates to the default shooting position according to the timeout reset mechanism when the camera receives the second control instruction in step 1404 .
  • the process includes the following two cases.
  • Case 1 The camera does not receive a control command from any radar within the first time period after receiving the second control command, and rotates to the default shooting position.
  • the first duration is a preset duration.
  • the first duration is set to 30 seconds, which is not limited in this embodiment of the present invention.
  • any radar here refers to any radar including the second radar in the photographing system. In this scenario, after receiving the second control command, if the camera does not receive any control command within the first period of time, it immediately returns to the initial state from the tracking state to stand by, thereby improving the shooting efficiency.
  • the second duration is a preset duration.
  • the second duration is set to 30 seconds, which is not limited in this embodiment of the present invention. In this scenario, after the camera starts to shoot the second target, if it does not receive a control command from any radar within the second time period, it immediately returns from the tracking state to the initial state on standby, thereby improving the shooting efficiency.
  • the camera can also start the time-out homing mechanism at other timings, for example, when the camera continues to shoot the second target for more than 5 minutes.
  • the time-out homing mechanism is activated, and the initial state is restored to stand by, so as to reduce the number of shots of the camera and prolong the service life of the camera, which is not limited in this embodiment of the present invention.
  • the camera after the camera responds to the second control instruction, if it receives a new control instruction, it will adopt some decision-making methods to determine whether to keep shooting the second target. When the camera adopts these decision-making methods When it is determined that it is necessary to keep shooting the second target, the camera keeps shooting the second target.
  • This decision-making process can also be understood as the camera needs to coordinate the control commands received from multiple radars, respond to the signal of a certain radar as stably as possible, make the movement of the camera as smooth as possible, and avoid responding to the commands of two radars at the same time.
  • FIG. 15 is a flowchart of a photographing method provided by an embodiment of the present invention. As shown in FIG. 15 , the photographing method includes the following steps.
  • the camera After the camera responds to the second control instruction, it receives a control instruction of any radar.
  • any radar is the radar after the camera is registered in the shooting system.
  • the camera determines whether any of the radars is the second radar. If the any of the radars is the second radar, the camera performs the following step 1503; if the any of the radars is a radar other than the second radar, the camera performs the following steps: Step 1504.
  • the camera determines whether any radar is the second radar according to information such as the radar number or network address of the radar, which is not limited in the embodiment of the present invention.
  • the camera determines whether the target corresponding to the control command of any radar and the second target are the same target. If the target corresponding to the control command of any radar and the second target are the same target, the camera responds to the any radar. the control command to keep shooting the second target.
  • the camera determines whether the targets corresponding to the two control instructions are the same target according to the second identity of the second target. For details, please refer to the above description of the identity, which will not be repeated here.
  • step 1503 when the camera receives multiple control commands from the same radar, it can timely determine whether the target to be photographed is the same target, respond stably to the control commands from the same radar for the same target as much as possible, and improve the shooting stability and performance. Accuracy.
  • the camera responds to the control command of any radar to identify the validity of the target corresponding to the control command of any radar , when the target corresponding to the control command of any radar is a valid target, the camera responds to the control command of any radar and shoots the target corresponding to the control command of any radar; when the control command of any radar corresponds to If the target is not a valid target, the camera does not respond to the control command of any radar, but waits for the next control command, which is not limited in the embodiment of the present invention.
  • the camera can timely determine whether the new target is an effective target when receiving the control commands from the same radar for different targets, thereby improving the shooting efficiency.
  • the camera determines whether the duration of shooting the second target is within the validity period. If the duration of shooting the second target is within the validity period, the camera keeps shooting the second target and does not respond to the control command of any radar.
  • the duration for which the camera shoots the second target is within the validity period means that the duration for the camera to shoot the second target does not exceed the target duration.
  • the camera sets the target duration for the second target corresponding to the second control instruction, if the duration of the camera shooting the second target is greater than or equal to the target duration, and no Other control commands sent by the second radar to instruct to shoot the second target, then the time for the camera to shoot the second target has expired, and the camera responds to the control command of any radar to shoot the target corresponding to the control command of any radar.
  • the setting of the target duration is not limited, for example, it may be set to 1 second, and so on.
  • the process of the camera judging whether the duration of shooting the second target has expired can also be understood as the process of the camera judging whether the second control command has expired. This is not limited.
  • the camera after the camera responds to the second control command, it receives a control command from any radar, and the control command is called a third control command, wherein the third control command is used to instruct the camera to shoot the first control command.
  • the camera For a third target detected by a radar other than the second radar, when the camera is shooting the second target and the duration of shooting the second target is within the validity period, the camera keeps shooting the second target without executing the first target. Shooting with three targets.
  • the camera when the camera is photographing the second target and the time period for photographing the second target has expired, the camera responds to the third control instruction to photograph the third target.
  • the camera when the camera receives a control command from a radar other than the second radar, it will judge whether the duration of the camera shooting the second target is within the validity period, and then decide whether to keep shooting the second target or discard it.
  • the second target is turned to shoot the third target.
  • This method enables the camera to respond to new control commands in time when the duration of shooting the current target has expired, thereby improving the shooting efficiency. Further, through this method, the camera continues to keep shooting the current target when the duration of shooting the current target is within the validity period. The inevitable response to the new command is avoided, thereby avoiding the frequent rotation of the camera due to the execution of the control command when the camera frequently receives multiple control commands, thereby effectively improving the shooting accuracy.
  • the camera determines whether to keep shooting the second object by judging whether the duration of shooting the second object is within the validity period. In some embodiments, the camera may also determine whether to keep shooting the second target through the following optional implementation manners, which are described below.
  • Mode 1 The camera determines whether the target corresponding to the control command of any radar is a valid target. If the target corresponding to the control command of any radar is not a valid target, the camera keeps shooting the second target and does not respond to any one of the targets. Radar control commands.
  • the camera After the camera responds to the second control command, that is, when the camera is shooting the second target, it receives a control command from any radar, and the control command is called the fourth control instruction, wherein the fourth control instruction is used to instruct the camera to shoot the fourth target detected by the radar other than the second radar, the camera recognizes the validity of the fourth target, and when the fourth target is not a valid target, the camera keeps the second target of shooting without performing the shooting of the fourth target. In some embodiments, when the fourth target is a valid target, the camera shoots the fourth target.
  • the camera when the camera receives a control command from a radar other than the second radar, it will judge whether the fourth target is a valid target, so as to decide whether to keep shooting the second target, or discard the second target and turn to shooting
  • the fourth objective through this method, enables the camera to respond to the new control instruction when the target corresponding to the new control instruction is an effective target, thereby improving the shooting efficiency. Further, through this method, the camera continues to shoot the current target when the target corresponding to the new control command is not a valid target, which not only avoids shooting invalid targets, achieves the purpose of saving resources, but also prevents the camera from shooting at the current target.
  • the camera rotates frequently due to the execution of the control commands, thereby improving the shooting accuracy.
  • Mode 2 When the target corresponding to the control command of any radar is a valid target, the camera determines whether the duration of shooting the second target is within the validity period. The shooting of the target does not respond to the control commands of either radar.
  • the camera first determines whether the target corresponding to the control command of any radar is a valid target, and if the target is a valid target, it determines whether the duration of shooting the second target is within the validity period. Within the validity period, the camera keeps shooting the second target and does not respond to the control command of any radar.
  • the camera photographs the target corresponding to the control instruction of any one of the radars.
  • This method enables the camera to respond to the new control command when the target corresponding to the new control command is an effective target and the duration of shooting the current target has expired, thereby avoiding shooting invalid targets and saving resources. , and avoids the frequent rotation of the camera due to the execution of control commands when receiving multiple control commands frequently, so as to achieve the purpose of improving the shooting accuracy, and also ensures that the current target shooting time has expired.
  • the control command improves the stability and accuracy of shooting.
  • Mode 3 The camera determines the shooting priority of the target corresponding to the control command of any radar and the shooting priority of the second target. If the shooting priority of the second target is higher than the target corresponding to the control command of any radar, the camera will keep the second target. The shooting of the target does not respond to the control commands of either radar.
  • the camera preferentially responds to the control instructions of targets with higher shooting priorities.
  • the types of targets include non-motor vehicles and animals
  • the priority of non-motor vehicles is higher than that of animals
  • the type of the second target corresponding to the second control command is non-motor vehicles
  • the control command of any radar corresponds to If the type of the target is an animal, the camera responds to the second control command and, when receiving a control command from any radar, keeps shooting the second target without responding to the control command from any radar, which is the embodiment of the present invention. Not limited. In this way, it is ensured that the camera shoots the high-priority target first, which satisfies the individual needs of shooting.
  • Mode 4 The camera determines whether the target rotation angle corresponding to the control command of any radar is greater than the second threshold. If the target rotation angle corresponding to the control command of any radar is greater than the second threshold, the camera keeps shooting the second target. instead of responding to the control commands of either radar.
  • the second threshold is a preset threshold, for example, the second threshold is 180°, which is not limited in this embodiment of the present invention.
  • the camera responds to the second control command, and keeps shooting the second target without responding to the second control command when receiving the control command of any radar.
  • Radar control commands For example, if the target rotation angle corresponding to the control command of any radar is greater than 180°, the camera discards (or does not process) the control command of any radar, but continues to keep shooting the second target.
  • the target rotation angle corresponding to the control command of any radar refers to the angle required to rotate the camera from the second shooting position to the shooting position corresponding to the control command of any radar. In this way, the large-angle rotation of the camera is avoided, thereby reducing the internal wear of the camera and prolonging the service life of the camera.
  • the camera can respond to the signal of a certain radar as stably as possible, and the movement of the camera is ensured as smoothly as possible to avoid When the camera frequently receives multiple control commands, it rotates frequently due to the execution of the control commands, thereby improving the shooting stability, accuracy and efficiency.
  • the introduction of the above-mentioned different optional methods is described by taking the camera receiving a new control command as an example when performing step 1404. In some embodiments, when the camera receives any information sent by any radar When a control command is issued, different methods may be adopted according to the current state of the camera to improve the shooting accuracy and efficiency, which is not limited in this embodiment of the present invention.
  • the basic flow of the shooting method provided by the embodiment of the present invention is briefly introduced from the perspective of the camera. It should be understood that the above steps are described by taking two radars as an example. In some embodiments, when the camera can be controlled by a larger number of radars, the camera can also receive signals other than the first radar and the second radar. The control instructions of other radars are not limited in this embodiment of the present invention.
  • one camera can be controlled by multiple radars to shoot the target detected by the radar in the shooting area.
  • This method makes full use of the shooting area and the shooting area of the camera.
  • the detection area of the radar effectively covers the monitoring blind area, which greatly improves the utilization rate of equipment, and effectively improves the shooting efficiency and shooting accuracy.
  • an optional implementation is introduced, that is, when the camera receives the second control command, it will judge the target rotation angle corresponding to the second control command.
  • the target rotation angle corresponding to the second control instruction meets the requirements, the validity of the second target is identified in time, and the second target is photographed.
  • the camera will wait for the second radar to send the next control command to instruct to shoot the second target, and then recognize the valid effect of the second target. to ensure the camera's shooting accuracy, stability and efficiency. This optional implementation is described below with reference to FIG. 16 .
  • FIG. 16 is a flowchart of a photographing method provided by an embodiment of the present invention.
  • another shooting method provided by the embodiment of the present invention is introduced from the perspective of a camera.
  • the photographing method is applied to the photographing system shown in FIG. 2 above.
  • the application to the camera 110 shown in FIG. 2 is taken as an example for description, and the shooting method includes the following steps.
  • the camera receives a first control instruction sent by the first radar, where the first control instruction is used to instruct the camera to photograph the first target detected by the first radar.
  • step 1601 is the same as step 1401 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • the camera in response to the first control instruction, shoots the first target.
  • step 1602 is the same as step 1402 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • the camera receives a fifth control instruction sent by the second radar, where the fifth control instruction is used to instruct the camera to shoot the second target detected by the second radar, and the fifth control instruction is a tracking shooting instruction.
  • step 1603 is the same as step 1403 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • the camera shoots the second target without performing identification of the second target.
  • the target rotation angle corresponding to the fifth control instruction is not less than the first threshold.
  • the first threshold here is the same as the first threshold mentioned in the above step 1404, and details are not repeated here.
  • the target rotation angle corresponding to the fifth control instruction is not less than the first threshold, indicating that the camera needs to rotate from the first shooting position to the shooting position corresponding to the fifth control instruction according to the fifth control instruction, and the rotation angle is relatively large and takes a long time.
  • the second target may have deviated from the original position and is not in the shooting area of the camera. Therefore, in this step 1604, the camera does not execute Identification of the second target.
  • the camera When the camera is shooting the second target and after receiving the fifth control command, it receives the sixth control command sent by the second radar, identifies the second target, and shoots the identified second target, wherein , the sixth control instruction is used to instruct the camera to shoot the second target detected by the second radar, and the sixth control instruction is a tracking shooting instruction.
  • step 1604 when the camera responds to the fifth control instruction sent by the second radar, when the camera shoots the second target, since the validity of the target is not recognized, even if the camera detects the second target, It does not send an event notification, but when the camera receives the sixth control command sent by the second radar again, it recognizes the second target, and when shooting the recognized second target, after detecting the second target , and then send the event notification.
  • the frequency of sending control commands is relatively high, for example, a control command is sent every 0.1 seconds. Therefore, even if the camera does not send an event notification when the second target is photographed according to the fifth control command, the It will not affect the shooting accuracy. Through this method, data interaction is reduced to a certain extent, and computing resources are saved.
  • the camera when the camera receives the first control command sent by the first radar, if the target rotation angle corresponding to the first control command is not less than the first threshold (for example, the first control command is the camera If it is received at the default shooting position, the target rotation angle corresponding to the first control command refers to the angle required to rotate the camera from the default shooting position to the first shooting position).
  • the camera can shoot the first target first but not To identify the validity of the first target, it is to wait for the next control command sent by the first radar to instruct to capture the first target, and then to identify the validity of the target, which is not repeated in the present invention.
  • the shooting system includes multiple cameras and multiple For radar, one camera can be controlled by multiple radars, and one radar can control multiple cameras, for example, as shown in Figure 6, Figure 8, Figure 11 and Figure 12.
  • another photographing method provided by an embodiment of the present invention will be introduced with reference to FIG. 17 .
  • FIG. 17 is a flowchart of a photographing method provided by an embodiment of the present invention. As shown in FIG. 17 , the photographing method is applied to a photographing system, and the photographing system includes a first camera, a second camera, a first radar, and a second radar. Illustratively, the photographing method includes the following steps.
  • the first camera receives a first control instruction sent by the first radar, where the first control instruction is used to instruct the first camera to photograph the first target detected by the first radar.
  • the first radar is the radar after the first camera and the second camera are registered in the shooting system, that is, the detection area of the first radar covers at least part of the shooting area of the first camera and part of the shooting area of the second camera .
  • the specific implementation of step 1701 is the same as that of step 1401 in the above-mentioned shooting method shown in FIG. 14 , and details are not repeated here.
  • the first camera responds to the first control instruction to photograph the first target.
  • step 1702 is the same as step 1402 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • the first camera receives a second control instruction sent by the second radar, where the second control instruction is used to instruct the first camera to photograph a second target detected by the second radar, where the second radar is different from the first radar.
  • step 1703 is the same as step 1403 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • the first camera responds to the second control instruction to photograph the second target.
  • step 1704 is the same as step 1404 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • the second camera receives a seventh control instruction sent by the first radar, where the seventh control instruction is used to instruct the second camera to photograph the fifth target detected by the first radar.
  • the fifth target is a target detected by the first radar and appearing in the third target area.
  • the third target area refers to the area where the target is prohibited from entering, which can also be understood as a defense zone.
  • the third target area is a monitoring area, which is not limited in this embodiment of the present invention. It should be noted that the specific implementation of step 1705 is the same as that of step 1401 or 1403 in the above-mentioned shooting method shown in FIG. 14 , and details are not repeated here.
  • the second camera responds to the seventh control instruction to photograph the fifth target.
  • step 1706 is the same as step 1404 in the above-mentioned photographing method shown in FIG. 14 , and will not be repeated here.
  • one camera can be controlled by multiple radars to shoot the target detected by the radar in the shooting area.
  • This method makes full use of the shooting area and the shooting area of the camera.
  • the detection area of the radar effectively covers the monitoring blind area, which greatly improves the utilization rate of equipment, and effectively improves the shooting efficiency and shooting accuracy.
  • there can be multiple cameras in the detection area of a radar for monitoring which can further improve the detection coverage of the radar, thereby greatly improving the shooting efficiency and shooting accuracy.
  • FIG. 18 on the basis of the above-mentioned shooting methods shown in FIGS. 14 to 17 , the flow of the shooting method provided by the embodiment of the present invention is illustrated from the perspective of a camera.
  • FIG. 18 is a schematic diagram of a photographing method provided by an embodiment of the present invention. As shown in FIG. 18, this shooting method is applied to a camera. Illustratively, after the camera is started, it will first wait for the control command sent by the radar at the default shooting position.
  • the camera When the camera receives a control command from the radar, if the camera is in an idle state, it will rotate to the corresponding shooting position according to the control command to shoot the target (for details, please refer to the above steps 1401 and 1402, or refer to step 1403 and step 1404, which will not be repeated here). Among them, if the rotation angle corresponding to this control command is too large, the event notification will not be sent this time, but after turning to the corresponding shooting position, wait for the next control command (for details of this process, please refer to the above Figure 16, here No longer).
  • the camera When the camera receives a control command from a radar, if the camera is not in an idle state, it will judge whether the control command and the previous control command are from the same radar, including the following two situations:
  • control command and the previous control command are from the same radar, and the camera determines whether the target instructed by the control command is the same target as the target instructed by the previous control command. If it is the same target, it will respond to the Control commands, shoot targets, and send event notifications. If it is not the same target, then identify the validity of the target shot indicated by the control instruction, and if the target is a valid target, shoot the target in response to the control instruction, and send an event notification (this process may specifically be Referring to the above-mentioned FIG. 15, details are not repeated here).
  • Case 2 The control command and the previous control command are from different radars, and the camera determines whether the duration of shooting the target corresponding to the previous control command is within the validity period. If the shooting duration has expired, it will respond to the control command and rotate to the corresponding If the shooting time is within the validity period, the control command is abandoned and the next control command is waited (for details of this process, please refer to the above Figure 15, which will not be repeated here).
  • the same target will only be recognized once in the entire life cycle. If a target has been recognized as a valid target and the shooting duration for this target is within the validity period, the camera will only receive The control instructions for this target will all be rotated to a corresponding shooting position to perform tracking shooting and send an event notification, which is not limited in this embodiment of the present invention.
  • FIG. 14 to FIG. 18 are used to introduce the shooting methods of the embodiments of the present invention from the perspective of the camera.
  • one radar can control multiple cameras to photograph the target (eg, see FIGS. 6 , 8 , 11 , 12 , and 17 ). Therefore, for the radar, the radar needs to determine the camera that can shoot the target from multiple cameras, and control the camera to shoot the target to ensure the shooting efficiency and shooting accuracy.
  • FIG. 19 is a flowchart of a photographing method provided by an embodiment of the present invention.
  • the photographing method provided by the embodiment of the present invention is introduced from the perspective of the first radar.
  • the photographing method is applied to the photographing system shown in FIG. 2 above.
  • the application to the first radar shown in FIG. 2 is taken as an example for description, and the photographing method includes the following steps.
  • the first radar detects the first target.
  • the first radar determines whether the suspected target is a target that needs to be tracked and photographed, If yes, the first radar determines that the suspected target is the first target; if not, the first radar abandons the suspected target and continues to send electromagnetic waves to the first target area until the first target is detected.
  • the first radar is a lidar.
  • a laser beam is sent to the first target area to detect suspected targets appearing in the first target area, which is not limited in this embodiment of the present invention.
  • the first radar generates a confidence level of the suspected target based on the detected suspected target, and when the confidence level is greater than or equal to a third threshold, the suspected target is determined as the first target.
  • the third threshold is 80%, and when the confidence level of the suspected target is greater than or equal to 80%, the suspected target is determined as the first target, which is not limited in this embodiment of the present invention.
  • the first radar when the first radar detects the first target and the first radar is already in a tracking state, the first radar needs to determine whether the first target and the target being tracked are the same target.
  • the tracking state of the radar means that the first radar has detected a target before detecting the first target, and is continuously calculating the position of the target. If the first radar determines that the two targets are the same target, the first radar performs steps 1902 and 1903 described below. If it is not the same target, the first radar determines whether the target being tracked has failed. If the target being tracked has failed, the first radar continues to perform the following steps 1902 and 1903. If the target being tracked has not failed, the first radar A radar discards the first target and continues to track the target currently being tracked.
  • the following describes how the first radar determines whether the first target and the target being tracked are the same target.
  • the first radar obtains the position of the target being tracked by the first radar at the previous moment; if the distance between the target being tracked and the first target is less than or equal to the fourth threshold, the first target and the target being tracked are determined to be The goal is the same goal.
  • This process can also be understood as the first radar determines whether the two targets are the same target by obtaining the distance between the two targets. In this way, in the case where it is determined that the first target and the target being tracked are the same target, the first target is tracked, which ensures the accuracy and stability of the subsequent shooting by the camera.
  • the first radar determines whether the target being tracked is invalid.
  • the first radar obtains the first time difference between the first time when the first target is detected and the second time when the tracked target is detected; if the first time difference is greater than the fifth threshold, the first radar determines that the The tracked target has expired.
  • This process can also be understood as the first radar determines whether the target being tracked fails by acquiring the time difference between the two targets. In this way, when it is determined that the target being tracked has failed, the first target is tracked, which ensures the integrity of the shooting of the target being tracked and improves the shooting efficiency.
  • the first radar determines, from a plurality of cameras, a target camera capable of photographing the first target.
  • the multiple cameras refer to the cameras for which the first radar has completed the registration, that is, the registration information of the multiple cameras is included in the registration form of the first radar (the process of registering the cameras by the first radar has been described in the foregoing embodiment). , and will not be repeated here).
  • the first radar determines the target camera according to the location of the first target and the shooting range information of each camera in the plurality of cameras stored by the first radar.
  • the multiple cameras are all dome cameras, and the shooting range information of the cameras indicates the monitoring radius of the cameras.
  • this step 1902 includes: the first radar calculates the position of the first target based on the detected first target, based on the position of the first target and the monitoring radius of the plurality of cameras, from the plurality of cameras. A target camera capable of photographing the first target is determined in the .
  • the first radar sequentially obtains multiple first distances between the first target and multiple cameras in the order of the targets.
  • the first distance is less than or equal to the monitoring radius of the corresponding camera, and the camera corresponding to the first distance is determined as the target camera.
  • the target sequence may be determined according to the distance between the multiple cameras and the first radar.
  • the radar B′ first obtains the first distance between the first target and the camera B. If the first distance corresponding to the camera B is less than or equal to the monitoring radius of the camera B, the radar B' determines the camera B as the target camera. Further, if the first distance corresponding to the camera B is greater than the monitoring radius of the camera B, the radar B' continues to obtain the first distance between the first target and the camera C, if the first distance corresponding to the camera C is less than or equal to The monitoring radius of the camera B, the radar B' determines the camera C as the target camera.
  • this process can also be understood as: the first radar first judges whether the first target is within the monitoring range of the camera on the same rod, if so, the camera on the same rod is determined as the target camera; Whether the target is within the monitoring range of the different-pole camera, if so, the different-pole camera is determined as the target camera.
  • the first radar can sequentially determine whether the first target is monitored by these cameras in the order of the targets. within the range. Through this sequential determination, when a target is within the monitoring range of multiple cameras at the same time, subsequent repeated sending of control instructions and waste of resources are avoided.
  • the first radar needs to send corresponding control instructions to other cameras among the plurality of cameras except the target camera.
  • the target camera and the first radar are mounted on the same mounting rod, the target camera and the second radar are mounted on different mounting rods, and the first radar and the second radar are oriented in the same direction (that is, as shown in the above 5 and FIG. 6 ) The erection plan of the shooting system).
  • the first radar detects the fifth target, and the target camera that can capture the fifth target is determined from multiple cameras. If the target camera fails, a seventh control instruction is sent to the second camera.
  • the seventh control instruction It is used to instruct the second camera to shoot the fifth target, and the second camera and the second radar are mounted on the same mounting rod.
  • the radar B′ detects the fifth target, and it is determined from multiple cameras that the fifth target can be captured.
  • the target camera of the target is the camera B. If the camera B fails, the radar B' sends the seventh control instruction to the camera C (the second camera). In the same way, radar B' detects the fifth target, and it is determined from multiple cameras that the target camera that can capture the fifth target is camera C. If camera C fails, radar B' sends the second camera to camera B (second camera). Seven control commands.
  • the first radar sends a first control instruction to the target camera to make the target camera photograph the first target, where the first control instruction is used to instruct the target camera to photograph the first target detected by the first radar.
  • the first radar obtains the information of the first shooting position based on the position of the first target and the position of the target camera, and sends the first control instruction to the target camera.
  • the information of the first shooting position is the first PTZ coordinate
  • the first radar calculates the first PTZ coordinate based on the position of the first target and the position of the target camera, which is not limited in this embodiment of the present invention.
  • the first control instruction also carries a confidence level of the first target. By carrying the confidence in the first control instruction, the target camera can determine whether the first target is a valid target according to the confidence of the first target, which is not limited in this embodiment of the present invention.
  • the basic flow of the shooting method provided by the embodiment of the present invention is introduced.
  • the first radar is used as an example in the above steps.
  • the manner in which any radar in the photographing system determines the target camera and sends a control command to the target camera is the same as the above steps, and will not be repeated here.
  • the above method makes full use of the shooting area of the camera and the detection area of the radar, effectively covering the monitoring blind area, thereby greatly improving the utilization rate of equipment, and effectively improving the shooting efficiency and shooting accuracy.
  • the flow of the photographing method provided by the embodiment of the present invention is illustrated by taking the perspective of the first radar.
  • FIG. 20 is a schematic diagram of a photographing method provided by an embodiment of the present invention.
  • the shooting method is applied to the first radar, and the multiple cameras include cameras with the same pole and cameras with different poles (it should be understood that only two cameras are used as an example for introduction, which does not constitute a limitation of the present invention) .
  • information such as the monitoring radius of the camera on the same pole and the camera on a different pole and the network addresses of the two cameras will be loaded from the configuration file, and then the target area will be scanned.
  • the first radar determines a target camera that can photograph the first target from the plurality of cameras. Specifically, it may include: the first radar first determines whether the first target is within the monitoring range of the camera on the same pole, if so, the camera on the same pole is determined as the target camera, and a control command is sent to the camera on the same pole, if not, the first target The radar determines whether the first target is within the monitoring range of the different-rod camera. If it is, it determines the different-rod camera as the target camera, and sends a control command to the different-rod camera. If it is not, the first radar continues to detect until it detects (For details of this process, refer to the above-mentioned step 1902, which will not be repeated here).
  • the first radar When the first radar detects the first target, if the first radar is in a tracking state, the first radar determines whether the first target and the target being tracked are the same target, and if so, the first radar executes the tracking from multiple cameras In the step of determining the target camera that can photograph the first target, if not, the first radar judges whether the target being tracked has failed, and if the target being tracked has failed, the first radar executes a determination from multiple cameras that can In the step of photographing the target camera of the first target, if the target being tracked has not yet expired, the first radar discards the first target and continues to track the target being tracked (for details of this process, refer to the above step 1901, which is not described here. repeat).
  • the first radar is only responsible for detecting the target, calculating the position of the detected target and sending control instructions, and is not responsible for tracking or sending event notification, nor does it aggregate the information of the target.
  • the first radar sends the control command it does not care whether the camera receiving the control command executes the command.
  • the camera may be tracking and photographing other targets, so the control command sent by the first radar may be rejected, which is not limited in this embodiment of the present invention.
  • FIGS. 14 to 18 describe the shooting methods of the embodiments of the present invention from the perspective of the camera. Further, the above-mentioned photographing methods shown in FIG. 19 and FIG. 20 describe the photographing method of the embodiment of the present invention from the perspective of the first radar.
  • FIG. 21 is a flowchart of a photographing method provided by an embodiment of the present invention. As shown in FIG. 21 , the shooting method is applied to the shooting system shown in FIG. 2 . Schematically, in the embodiment shown in FIG. 21 , it is applied to the camera 110 and the first radar 120 shown in FIG. 2 . Taking the second radar 130 as an example to illustrate, the photographing method includes the following steps.
  • the first radar sends a first control instruction to the camera, where the first control instruction is used to instruct the camera to photograph the first target detected by the first radar.
  • step 2101 is the same as the above-mentioned steps 1901 to 1903, and will not be repeated here.
  • the camera receives the first control instruction, and in response to the first control instruction, shoots the first target.
  • step 2102 is the same as the above-mentioned steps 1401 and 1402, and will not be repeated here.
  • the second radar sends a second control instruction to the camera, where the second control instruction is used to instruct the camera to photograph a second target detected by the second radar, where the second radar is different from the first radar.
  • step 2103 is the same as the above-mentioned steps 1901 to 1903, and will not be repeated here.
  • the camera receives the second control instruction, and in response to the second control instruction, shoots the second target.
  • step 2104 is the same as the above-mentioned steps 1403 and 1404, and will not be repeated here.
  • one camera can be controlled by multiple radars to shoot the target detected by the radar in the shooting area.
  • This method makes full use of the shooting area of the camera and the detection of the radar. It effectively covers the monitoring blind area, thus greatly improving the utilization rate of equipment, and effectively improving the shooting efficiency and shooting accuracy.
  • FIG. 22 is a schematic structural diagram of a photographing apparatus provided by an embodiment of the present invention. As shown in FIG. 22 , the photographing apparatus 2200 is configured to execute the steps performed by the camera in the above photographing method. Illustratively, the photographing device 2200 includes, but is not limited to, a receiving module 2201 and a photographing module 2202 .
  • a receiving module 2201 configured to receive a first control command sent by a first radar, where the first control command is used to instruct to photograph a first target detected by the first radar;
  • a photographing module 2202 configured to photograph the first target in response to the first control instruction
  • This receiving module 2201 is also used to receive the second control command sent by the second radar, and the second control command is used to instruct to photograph the second target detected by the second radar, and the second radar is different from the first radar;
  • the photographing module 2202 is further configured to photograph the second target in response to the second control instruction.
  • the first control instruction is a tracking shooting instruction
  • the shooting module 2202 is configured to: identify the first target, and track and shoot the first target.
  • the photographing module 2202 is further configured to rotate to the first photographing position before photographing the first target.
  • the first control instruction carries the information of the first shooting position.
  • the apparatus further includes a registration module for:
  • a second registration request sent by the second radar is received, and the second radar is registered.
  • the apparatus further includes:
  • a verification module configured to verify the first radar to determine that the first radar has been registered before photographing the first target.
  • the apparatus further includes:
  • the sending module is configured to send a first event notification, where the first event notification indicates that the first target appears in the shooting area.
  • the photographing module 2202 is also used for:
  • the camera rotates to the default shooting position.
  • the receiving module 2201 is further configured to receive a third control instruction sent by a radar other than the second radar, wherein the third control instruction is used to instruct to photograph the first radar detected by the radar other than the second radar.
  • the shooting module 2202 is also used to keep shooting the second target without executing the second target when the shooting module 2202 is shooting the second target and the duration of shooting the second target is within the validity period Shooting of three targets; when the shooting module 2202 is shooting the second target and the duration of shooting the second target has expired, the shooting module 2202 shoots the third target in response to the third control instruction.
  • the receiving module 2201 is further configured to receive a fourth control instruction sent by a radar other than the second radar when the photographing module 2202 is photographing the second target, wherein the fourth control instruction is used for Instruct to photograph the fourth target detected by radars other than the second radar; the photographing module 2202 is also used to identify the validity of the fourth target; when the fourth target is not an effective target, keep photographing the second target The fourth target is not photographed; when the fourth target is an effective target, the fourth target is photographed in response to the fourth control instruction.
  • the photographing module 2202 is configured to: when the rotation angle of the target corresponding to the second control instruction is smaller than the first threshold, identify the second target, and photograph the identified second target.
  • the receiving module 2201 is further configured to receive a fifth control instruction sent by the second radar, wherein the fifth control instruction is used to instruct to shoot the second target, and the fifth control instruction is tracking shooting instruction; the shooting module 2202 is also used to shoot the second target without performing the identification of the second target when the target rotation angle corresponding to the fifth control instruction is not less than the first threshold; when the shooting module The second target is being photographed, and after receiving the fifth control command, the sixth control command sent by the second radar is received, the second target is identified, and the identified second target is photographed, wherein the The sixth control instruction is used to instruct to shoot the second target, and the sixth control instruction is a tracking shooting instruction.
  • the photographing device is software running in a camera, and the receiving module 2201 and the photographing module 2202 are software modules with corresponding functions.
  • the photographing device is hardware with a photographing function, for example, the photographing device is a camera, the receiving module 2201 is a hardware interface (such as a wired network port, a wireless network port), and the photographing module 2202 is a camera body (including lens, sensor and processor, etc.).
  • the camera is a processor (eg, a system on chip (SoC)) or a combination of processors (eg, an image signal process (ISP) chip, an encoding chip, a motor control) in a camera The combination of chips), wherein: the receiving module 2201 is an external interface of the processor, the shooting module 2202 is a processor, and schematically, photographing the first target includes: performing image processing on the image generated by the image sensor, the The image includes the first target, which is not limited in this embodiment of the present invention.
  • SoC system on chip
  • ISP image signal process
  • the photographing device provided by the above-mentioned embodiment only takes the division of the above-mentioned functional modules as an example when photographing a target
  • the above-mentioned functions can be allocated to different functional modules according to the needs.
  • the internal structure is divided into different functional modules to complete all or part of the functions described above.
  • the photographing apparatus and the photographing method embodiments provided by the above embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.
  • first and second are used to distinguish the same or similar items with basically the same function and function, and it should be understood that between “first”, “second” and “nth” There are no logical or timing dependencies, and no restrictions on the number and execution order. It will also be understood that, although the following description uses the terms first, second, etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another.
  • a first camera may be referred to as a second camera, and similarly, a second camera may be referred to as a first camera, without departing from the scope of various described examples. Both the first camera and the second camera may be cameras, and in some cases, may be separate and distinct cameras.
  • the meaning of the term "at least one" in the present invention refers to one or more, the meaning of the term “plurality” in the present invention refers to two or more, for example, a plurality of cameras refers to two or more camera.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a program product.
  • the program product includes one or more program instructions.
  • the program instructions are loaded and executed on the camera (eg, the camera's processor), the procedures or functions in accordance with the embodiments of the present invention are generated in whole or in part.
  • the instructions may be stored in a readable storage medium of the camera. Either stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the program instructions may be transmitted from a website site, computer, server or data center via wired or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media such as digital video discs (DVDs), or semiconductor media (eg, solid state drives), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种拍摄技术,属于视频监控技术领域。在该拍摄技术中,一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的雷达探测到的目标进行拍摄,这种方式充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,有效提高了拍摄效率和拍摄准确率。

Description

摄像机、拍摄方法、系统及装置
本发明要求于2021年04月13日提交的申请号为202110394999.2、发明名称为“雷达对摄像机调度方法”的中国专利申请的优先权和于2021年07月30日提交的申请号为202110873060.4、发明名称为“摄像机、拍摄方法、系统及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及视频监控技术领域,特别涉及一种摄像机、拍摄方法、系统及装置。
背景技术
目前,在许多监控场景中会设置防区,一旦防区内有目标入侵,则会触发监控系统进行报警。
相关技术中,采用雷达与球型摄像机(球机)一对一联动的方式,来对防区进行监控,对防区内出现的目标进行拍摄。其中,雷达利用电磁波进行目标探测,能够得到目标的速度、方位等信息,并且雷达在工作时不易受环境影响,具有较高的稳定性;球机则利用其智能化、识别能力强以及抗干扰能力强等特点,基于雷达探测到的信息对目标进行跟踪,并进行报警,以实现安防目的。
然而,上述方法中,雷达的探测区域和球机的拍摄区域为同一区域,导致监控区域受限,使得拍摄效率较低。
发明内容
本发明提供了一种摄像机、拍摄方法、系统及装置,能够有效消除监控盲区,提高拍摄效率和拍摄准确率。该技术方案如下:
第一方面,提供了一种摄像机,该摄像机包括接口和摄像机本体,其中:
该接口,用于从该摄像机外部接收第一雷达发出的第一控制指令,将该第一控制指令发送给该摄像机本体,该第一控制指令用于指示该摄像机拍摄该第一雷达探测到的第一目标;
该摄像机本体,用于从该接口接收该第一控制指令;响应于该第一控制指令,对该第一目标进行拍摄;
该接口,还用于从该摄像机外部接收第二雷达发出的第二控制指令,将该第二控制指令发送给该摄像机本体,该第二控制指令用于指示该摄像机拍摄该第二雷达探测到的第二目标,该第二雷达不同于该第一雷达;
该摄像机本体,还用于从该接口接收该第二控制指令;响应于该第二控制指令,对该第二目标进行拍摄。
本发明实现方式提供的摄像机可以接受多个雷达的控制,来对拍摄区域内出现的雷达探测到的目标进行拍摄,这种方式充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,有效提高了拍摄效率。换言之,本发明提供的摄 像机不但可以在第一雷达的控制下拍摄第一雷达探测到的第一目标,还可以在第二雷达的控制下拍摄第二雷达探测到的第二目标,也即可以拍摄多个雷达的探测区域。反观雷达与摄像机一一绑定的方案,一个摄像机只能接受一个雷达的控制,且雷达的探测区域与摄像机的拍摄区域为同一区域,极大浪费了雷达的探测区域和摄像机的拍摄区域,导致拍摄效率较低。
在一些实现方式中,该第一控制指令为跟踪拍摄指令,该摄像机本体用于:对该第一目标进行识别,跟踪拍摄该第一目标。
其中,当第一控制指令为跟踪拍摄指令时,摄像机对目标进行识别后再跟踪拍摄目标,可以在目标为有效目标的前提下再进行跟踪拍摄,减少资源浪费,提高拍摄效率和拍摄准确率。
在一些实现方式中,该摄像机本体还用于:在对该第一目标进行拍摄之前,转动至第一拍摄位置。
在一些实现方式中,该第一控制指令携带该第一拍摄位置的信息。
在一些实现方式中,该摄像机本体还用于:
接收该第一雷达发出的第一注册请求,对该第一雷达进行注册;
接收该第二雷达发出的第二注册请求,对该第二雷达进行注册。
通过对第一雷达和第二雷达进行注册,摄像机分别与第一雷达和第二雷达进行绑定,使得摄像机的注册表中存有第一雷达和第二雷达的注册信息,便于摄像机在接收到雷达的控制指令时,判断当前控制指令是否是与其绑定的雷达发送的,从而避免受到其他雷达的干扰,影响拍摄效率。同时还可以提供安全性。
在一些实现方式中,该摄像机本体还用于:在对该第一目标进行拍摄之前,对该第一雷达进行验证以确定该第一雷达已经注册。
通过对第一雷达进行验证,确保了摄像机响应与其绑定的雷达的控制指令,从而避免受到其他雷达的干扰,影响拍摄效率。同时还可以提供安全性。
在一些实现方式中,该摄像机本体还用于:发送第一事件通知,该第一事件通知指示该摄像机的拍摄区域内出现该第一目标。
通过发送事件通知,自动上报有关目标的相关信息,在提高拍摄效率的同时,降低了人员工作量,便于相关人员及时获知摄像机的拍摄区域内出现目标,从而尽快安排人员处理或提出解决方案。
在一些实现方式中,该摄像机本体还用于:
当接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
当开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至该默认拍摄位置。
其中,当摄像机转动至默认拍摄位置时,表明摄像机处于初始状态,也可以理解为空闲状态,通过上述方式,当摄像机在一定时长内未接收到任一雷达的控制指令,随即从跟踪拍摄状态恢复到初始状态待命,从而提高了拍摄效率。
在一些实现方式中,响应于该第二控制指令之后,该摄像机本体还用于:
从接口接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示该摄像机拍摄该第二雷达以外的雷达探测到的第三目标;当该摄像机本体正在拍摄该第二目 标,并且拍摄该第二目标的持续时长在有效期内,保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该摄像机本体正在拍摄该第二目标,并且拍摄该第二目标的持续时长已过期,响应于该第三控制指令,对该第三目标进行拍摄。
其中,当摄像机接收到第二雷达以外的雷达发出的控制指令时,会判断摄像机拍摄第二目标的持续时长是否在有效期内,从而决定是继续保持对第二目标的拍摄还是丢弃第二目标,转而去拍摄第三目标,通过这种方法,使得摄像机在拍摄当前目标的时长已过期的情况下,及时响应新的控制指令,从而提高拍摄效率。进一步地,通过这种方法,使得摄像机在拍摄当前目标的时长在有效期内的情况下,继续保持对当前目标进行拍摄。避免了对新指令的必然响应,从而避免摄像机在频繁收到多个控制指令时,因为执行控制指令而频繁转动,从而有效提高了拍摄准确率。
在一些实现方式中,响应于该第二控制指令之后,该摄像机本体还用于:
当该摄像机本体正在拍摄该第二目标时,从接口接收第二雷达以外的雷达发出的接收第四控制指令,其中,该第四控制指令用于指示该摄像机拍摄该第二雷达以外的雷达探测到的第四目标;识别该第四目标的有效性;当该第四目标不是有效目标,保持对该第二目标的拍摄而不执行对该第四目标的拍摄;当该第四目标为有效目标,响应于该第四控制指令,对该第四目标进行拍摄。
其中,当摄像机接收到第二雷达以外的雷达发出的控制指令时,会判断第四目标是否是有效目标,从而决定是继续保持对第二目标的拍摄,还是丢弃第二目标,转而去拍摄第四目标,通过这种方法,使得摄像机在新的控制指令对应的目标为有效目标的情况下,响应新的控制指令,从而提高拍摄效率。进一步地,通过这种方法,使得摄像机在新的控制指令对应的目标不是有效目标的情况下,继续对当前目标进行拍摄,既避免了拍摄无效目标,达到节约资源的目的,又避免了摄像机在频繁收到多个控制指令时,因为执行控制指令而频繁转动,从而提高了拍摄准确率。
在一些实现方式中,对该第二目标进行拍摄,包括:当该第二控制指令对应的目标转动角度小于第一阈值,对该第二目标进行识别,对识别到的该第二目标进行拍摄。
通过及时识别目标的有效性,在确保拍摄准确率的前提下,提高了拍摄效率。
在一些实现方式中,该摄像机本体还用于:
从接口接收该第二雷达发出的第五控制指令,其中,该第五控制指令用于指示该摄像机拍摄该第二目标,该第五控制指令为跟踪拍摄指令;当该第五控制指令对应的目标转动角度不小于该第一阈值,对该第二目标进行拍摄而不执行对该第二目标的识别;当该摄像机本体正在拍摄该第二目标,并且从接口接收第五控制指令之后,从接口接收到该第二雷达发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示该摄像机拍摄该第二目标,该第六控制指令为跟踪拍摄指令。
其中,当第五控制指令为跟踪拍摄指令时,摄像机需要对第二目标进行识别后,再跟踪拍摄,而摄像机在接收到该第五控制指令时,在该第五控制指令对应的目标转动角度较大的情况下,表明摄像机根据该第五控制指令从第一拍摄位置转动至第五控制指令对应的拍摄位置所需转动的角度较大,耗时较长,当摄像机根据该第五控制指令转动至对应的拍摄位置时,第二目标有很大可能已经偏离了原来的位置,并不在摄像机的拍摄区域中,因此先不识别该第二目标,而是直接对第二目标进行拍摄,等到再次接收到第二雷达发送的第六控制指令时, 再识别该第二目标,通过这种先拍摄再识别的方法,确保了摄像机在执行识别目标有效性的步骤时,目标很大可能出现在摄像机的拍摄区域中,从而提高了目标识别的准确率,也提高了拍摄效率。
在一些实现方式中,该摄像机与该第一雷达安装于同一安装杆,该摄像机与该第二雷达安装于不同安装杆。
在一些实现方式中,该第一雷达和该第二雷达朝向一致。
通过上述方法,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,多个雷达的探测区域能够通过重叠的方式来提高雷达的探测覆盖率,避免遗漏目标,从而有效提高了拍摄效率和拍摄准确率。进一步地,当按照这种方式架设多个摄像机以及更多数量的雷达时,使得一个雷达的探测区域内可以有多个摄像机实施监控,而且能够进一步提高雷达的探测覆盖率,从而极大提高了拍摄效率和拍摄准确率。
在一些实现方式中,该摄像机、该第一雷达和该第二雷达安装于同一安装杆。
在一些实现方式中,该第一雷达和该第二雷达朝向相背。
通过上述方法,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,当按照这种方式架设多个摄像机以及更多数量的雷达时,使得一个雷达的探测区域内可以有多个摄像机实施监控,从而极大提高了拍摄效率和拍摄准确率。
在一些实现方式中,该摄像机、该第一雷达和该第二雷达分别安装于不同安装杆。
在一些实现方式中,该第一雷达与该第二雷达朝向相对。
通过上述方法,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,多个雷达的探测区域能够通过重叠的方式来提高雷达的探测覆盖率,避免遗漏目标,从而有效提高了拍摄效率和拍摄准确率。进一步地,当按照这种方式架设多个摄像机以及更多数量的雷达时,能够进一步提高雷达的探测覆盖率,从而极大提高了拍摄效率和拍摄准确率。
第二方面,提供了一种拍摄方法,该方法包括:
第一摄像机接收第一雷达发出的第一控制指令,该第一控制指令用于指示该第一摄像机拍摄该第一雷达探测到的第一目标;该第一摄像机响应于该第一控制指令,对该第一目标进行拍摄;该第一摄像机接收第二雷达发出的第二控制指令,该第二控制指令用于指示该第一摄像机拍摄该第二雷达探测到的第二目标,该第二雷达不同于第一雷达;该第一摄像机响应于该第二控制指令,对该第二目标进行拍摄。
在一些实现方式中,该第一控制指令为跟踪拍摄指令,对该第一目标进行拍摄,包括:该第一摄像机对该第一目标进行识别,跟踪拍摄该第一目标。
在一些实现方式中,对该第一目标进行拍摄之前,该方法还包括:该第一摄像机转动至第一拍摄位置。
在一些实现方式中,该第一控制指令携带该第一拍摄位置的信息。
在一些实现方式中,该方法还包括:
该第一摄像机接收该第一雷达发出的第一注册请求,对该第一雷达进行注册;
该第一摄像机接收该第二雷达发出的第二注册请求,对该第二雷达进行注册。
在一些实现方式中,对该第一目标进行拍摄之前,该方法还包括:该第一摄像机对该第一雷达进行验证以确定该第一雷达已经注册。
在一些实现方式中,该方法还包括:该第一摄像机发送第一事件通知,该第一事件通知指示该第一摄像机的拍摄区域内出现该第一目标。
在一些实现方式中,该方法还包括:
当该第一摄像机接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,该第一摄像机转动至默认拍摄位置;和/或
当该第一摄像机开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,该第一摄像机转动至该默认拍摄位置。
在一些实现方式中,该第一摄像机响应于该第二控制指令之后,该方法还包括:
该第一摄像机接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示该第一摄像机拍摄该第二雷达以外的雷达探测到的第三目标;当该第一摄像机正在拍摄该第二目标,并且拍摄该第二目标的持续时长在有效期内,该第一摄像机保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该第一摄像机正在拍摄该第二目标,并且拍摄该第二目标的持续时长已过期,该第一摄像机响应于该第三控制指令,对该第三目标进行拍摄。
在一些实现方式中,该第一摄像机响应于该第二控制指令之后,该方法还包括:
当该第一摄像机正在拍摄该第二目标时,该第一摄像机接收第二雷达以外的雷达发出的第四控制指令,其中,该第四控制指令用于指示该第一摄像机拍摄该第二雷达以外的雷达探测到的第四目标;该第一摄像机识别该第四目标的有效性;当该第四目标不是有效目标,该第一摄像机保持对该第二目标的拍摄而不执行对该第四目标的拍摄;当该第四目标为有效目标,该第一摄像机响应于该第四控制指令,对该第四目标进行拍摄。
在一些实现方式中,该对该第二目标进行拍摄,包括:当该第二控制指令对应的目标转动角度小于第一阈值,该第一摄像机对该第二目标进行识别,对识别到的该第二目标进行拍摄。
在一些实现方式中,该方法还包括:
该第一摄像机接收该第二雷达发出的第五控制指令,其中,该第五控制指令用于指示该第一摄像机拍摄该第二目标,该第五控制指令为跟踪拍摄指令;当该第五控制指令对应的目标转动角度不小于该第一阈值,该第一摄像机对该第二目标进行拍摄而不执行对该第二目标的识别;当该第一摄像机正在拍摄该第二目标,并且该第一摄像机接收第五控制指令之后,接收到该第二雷达发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示该第一摄像机拍摄该第二目标,该第六控制指令为跟踪拍摄指令。
在一些实现方式中,该第一摄像机与该第一雷达安装于同一安装杆,该第一摄像机与该第二雷达安装于不同安装杆。
在一些实现方式中,该第一雷达和该第二雷达朝向一致。
在一些实现方式中,该第一摄像机、该第一雷达和该第二雷达安装于同一安装杆。
在一些实现方式中,该第一雷达和该第二雷达朝向相背。
在一些实现方式中,该第一摄像机、该第一雷达和该第二雷达分别安装于不同安装杆。
在一些实现方式中,该第一雷达与该第二雷达朝向相对。
在一些实现方式中,该方法还包括:
第二摄像机接收该第一雷达发出的第七控制指令,该第七控制指令用于指示该第二摄像机拍摄该第一雷达探测到的第五目标;
该第二摄像机响应于该第七控制指令,对该第五目标进行拍摄。
在上述方法中,一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的雷达探测到的目标进行拍摄,这种方式充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,有效提高了拍摄效率和拍摄准确率。进一步地,一个雷达的探测区域内可以有多个摄像机实施监控,能够进一步提高雷达的探测覆盖率,从而极大提高了拍摄效率和拍摄准确率。
第三方面,提供了一种拍摄系统,该系统包括摄像机、第一雷达和第二雷达,其中,
该第一雷达,用于向该摄像机发送第一控制指令,该第一控制指令用于指示该摄像机拍摄该第一雷达探测到的第一目标;
该摄像机,用于接收该第一控制指令,响应于该第一控制指令,对该第一目标进行拍摄;
该第二雷达,用于向该摄像机发送第二控制指令,该第二控制指令用于指示该摄像机拍摄该第二雷达探测到的第二目标,该第二雷达不同于第一雷达;
该摄像机,还用于接收该第二控制指令,响应于该第二控制指令,对该第二目标进行拍摄。
在一些实现方式中,该第一控制指令为跟踪拍摄指令,该摄像机用于:对该第一目标进行识别,跟踪拍摄该第一目标。
在一些实现方式中,该摄像机还用于:在对该第一目标进行拍摄之前,转动至第一拍摄位置。
在一些实现方式中,该第一控制指令携带该第一拍摄位置的信息。
在一些实现方式中,该摄像机还用于:接收该第一雷达发出的第一注册请求,对该第一雷达进行注册;接收该第二雷达发出的第二注册请求,对该第二雷达进行注册。
在一些实现方式中,该摄像机还用于:在对该第一目标进行拍摄之前,对该第一雷达进行验证以确定该第一雷达已经注册。
在一些实现方式中,该摄像机还用于:发送第一事件通知,该第一事件通知指示该摄像机的拍摄区域内出现该第一目标。
在一些实现方式中,该摄像机还用于:
当该摄像机接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
当该摄像机开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至该默认拍摄位置。
在一些实现方式中,该摄像机还用于:
接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示该摄像机拍摄该第二雷达以外的雷达探测到的第三目标;当该摄像机正在拍摄该第二目标,并且拍 摄该第二目标的持续时长在有效期内,保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该摄像机正在拍摄该第二目标,并且拍摄该第二目标的持续时长已过期,响应于该第三控制指令,对该第三目标进行拍摄。
在一些实现方式中,该摄像机还用于:
当该摄像机正在拍摄该第二目标时,接收第二雷达以外的雷达发出的第四控制指令,其中,该第四控制指令用于指示该摄像机拍摄该第二雷达以外的雷达探测到的第四目标;识别该第四目标的有效性;当该第四目标不是有效目标,保持对该第二目标的拍摄而不执行对该第四目标的拍摄;当该第四目标为有效目标,响应于该第四控制指令,对该第四目标进行拍摄。
在一些实现方式中,该对该第二目标进行拍摄,包括:当该第二控制指令对应的目标转动角度小于第一阈值,该摄像机对该第二目标进行识别,对识别到的该第二目标进行拍摄。
在一些实现方式中,该摄像机还用于:
接收该第二雷达发出的第五控制指令,其中,该第五控制指令用于指示该摄像机拍摄该第二目标,该第五控制指令为跟踪拍摄指令;当该第五控制指令对应的目标转动角度不小于该第一阈值,对该第二目标进行拍摄而不执行对该第二目标的识别;当该摄像机正在拍摄该第二目标,并且该摄像机接收第五控制指令之后,接收到该第二雷达发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示该摄像机拍摄该第二目标,该第六控制指令为跟踪拍摄指令。
在一些实现方式中,该摄像机与该第一雷达安装于同一安装杆,该摄像机与该第二雷达安装于不同安装杆。
在一些实现方式中,该第一雷达和该第二雷达朝向一致。
在一些实现方式中,该摄像机、该第一雷达和该第二雷达安装于同一安装杆。
在一些实现方式中,该第一雷达和该第二雷达朝向相背。
在一些实现方式中,该摄像机、该第一雷达和该第二雷达分别安装于不同安装杆。
在一些实现方式中,该第一雷达与该第二雷达朝向相对。
第四方面,提供了一种拍摄装置,该装置包括:
接收模块,用于接收第一雷达发出的第一控制指令,该第一控制指令用于指示拍摄该第一雷达探测到的第一目标;
拍摄模块,用于响应于该第一控制指令,对该第一目标进行拍摄;
该接收模块,还用于接收第二雷达发出的第二控制指令,该第二控制指令用于指示拍摄该第二雷达探测到的第二目标,该第二雷达不同于该第一雷达;
该拍摄模块,还用于响应于该第二控制指令,对该第二目标进行拍摄。
在一些实现方式中,该第一控制指令为跟踪拍摄指令,该拍摄模块用于:对该第一目标进行识别,跟踪拍摄该第一目标。
在一些实现方式中,该拍摄模块还用于:在对该第一目标进行拍摄之前,转动至第一拍摄位置。
在一些实现方式中,该第一控制指令携带该第一拍摄位置的信息。
在一些实现方式中,该装置还包括注册模块,该注册模块用于:
接收该第一雷达发出的第一注册请求,对该第一雷达进行注册;
接收该第二雷达发出的第二注册请求,对该第二雷达进行注册。
在一些实现方式中,该装置还包括:
验证模块,用于在对该第一目标进行拍摄之前,对该第一雷达进行验证以确定该第一雷达已经注册。
在一些实现方式中,该装置还包括:
发送模块,用于发送第一事件通知,该第一事件通知指示拍摄区域内出现该第一目标。
在一些实现方式中,该拍摄模块还用于:
当接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
当开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至该默认拍摄位置。
在一些实现方式中,该接收模块,还用于接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示拍摄该第二雷达以外的雷达探测到的第三目标;该拍摄模块,还用于当该拍摄模块正在拍摄该第二目标,并且拍摄该第二目标的持续时长在有效期内,保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该拍摄模块正在拍摄该第二目标,并且拍摄该第二目标的持续时长已过期,响应于该第三控制指令,对该第三目标进行拍摄。
在一些实现方式中,该接收模块,还用于当该拍摄模块正在拍摄该第二目标时,接收第二雷达以外的雷达发出的第四控制指令,其中,该第四控制指令用于指示拍摄该第二雷达以外的雷达探测到的第四目标;该拍摄模块,还用于识别该第四目标的有效性;当该第四目标不是有效目标,保持对该第二目标的拍摄而不执行对该第四目标的拍摄;当该第四目标为有效目标,响应于该第四控制指令,对该第四目标进行拍摄。
在一些实现方式中,该拍摄模块用于:当该第二控制指令对应的目标转动角度小于第一阈值,对该第二目标进行识别,对识别到的该第二目标进行拍摄。
在一些实现方式中,该接收模块,还用于接收该第二雷达发出的第五控制指令,其中,该第五控制指令用于指示拍摄该第二目标,该第五控制指令为跟踪拍摄指令;该拍摄模块,还用于当该第五控制指令对应的目标转动角度不小于该第一阈值,对该第二目标进行拍摄而不执行对该第二目标的识别;当该拍摄模块正在拍摄该第二目标,并且接收第五控制指令之后,接收到该第二雷达发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示拍摄该第二目标,该第六控制指令为跟踪拍摄指令。
第五方面,提供了一种程序产品,该程序产品包括至少一段程序代码,摄像机运行该至少一段程序代码执行如上述第二方面或第二方面中任一种可选方式所提供的拍摄方法。
第六方面,提供了一种可读存储介质,该可读存储介质用于存储至少一段程序代码,摄像机运行该至少一段程序代码执行如上述第二方面或第二方面中任一种可选方式所提供的拍摄方法。
附图说明
图1是本发明实施例提供的一种拍摄方法的应用场景的示意图;
图2是本发明实施例提供的一种拍摄系统的结构示意图;
图3是本发明实施例提供的一种摄像机的结构示意图;
图4是本发明实施例提供的一种雷达的结构示意图;
图5是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图6是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图7是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图8是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图9是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图10是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图11是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图12是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图13是本发明实施例提供的一种拍摄系统的架设方案的示意图;
图14是本发明实施例提供的一种拍摄方法的流程图;
图15是本发明实施例提供的一种拍摄方法的流程图;
图16是本发明实施例提供的一种拍摄方法的流程图;
图17是本发明实施例提供的一种拍摄方法的流程图;
图18是本发明实施例提供的一种拍摄方法的示意图;
图19是本发明实施例提供的一种拍摄方法的流程图;
图20是本发明实施例提供的一种拍摄方法的示意图;
图21是本发明实施例提供的一种拍摄方法的流程图;
图22是本发明实施例提供的一种拍摄装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在介绍本发明实施例提供的技术方案之前,下面先对本发明涉及的关键术语进行说明。
云台,是一种安装、固定摄像机的支撑设备,能够支撑和控制摄像机在机械活动范围内向任意方向转动。
摄像机,是一种把光学图像信号转变为电信号,以便于存储或者传输的电子设备,用于对拍摄区域进行图像(或者视频,后续以图像举例)采集,得到拍摄区域对应的图像。其中,PTZ摄像机是一种由云台支撑和控制的摄像机,能够实现在水平方向和垂直方向上的自由转动。其中,P(pan)表示摄像机在水平方向上的转动角度,T(tilt)表示摄像机在垂直方向上的转动角度,Z(zoom)表示摄像机的镜头的变倍信息。在一些实施例中,为了实现对某个目标的跟踪,PTZ摄像机通过调整PTZ坐标,使目标处于拍摄画面的合适位置,从而实现对该目标的跟踪拍摄。在本发明实施例中,PTZ摄像机以球型摄像机(球机)为例进行介绍。
雷达,是一种利用电磁波探测目标的电子设备,具有全天候全天时工作的特点。通过发射电磁波对目标进行照射并接收其回波,由此获得探测到的目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。在一些实施例中,雷达为激光雷达,是一种利用激光束探测目标的电子设备,本发明实施例对于雷达的类型不作限定。
雷球联动,是一种通过联合雷达和球机来实现监控目的的监控方法。在一些实施例中, 当雷达探测到疑似目标时,通过向球机发送控制指令来驱动球机转动至对应的拍摄位置,使得球机对疑似目标进行跟踪拍摄。
防区,是指禁止目标进入的区域,通常需要通过监控设备(如雷达和摄像机)来重点监控,一旦确定有目标进入防区则可以触发报警,或者监控目标的移动路线。在一些实施例中,还可以设置禁止进入防区的目标的类型,即当有目标进入防区且该目标的类型属于设置的类型时才触发报警,禁止进入防区的目标的类型可以根据需求进行设定,比如,可以是车辆、动物等,本发明实施例对此不作限定。
下面对本发明提供的拍摄方法的应用场景进行简要介绍。
本发明实施例提供的拍摄方法能够应用在铁路监控和高速公路监控等需要实时监控防区内是否出现目标的场景中。示意性地,本发明实施例提供的拍摄方法能够应用的场景包括但不限于:
场景一、铁路监控场景。
铁路线路周界是铁路线路安全保障的重要组成。近年来,铁路线路周界被目标入侵时,由于没有得到及时告警,已经导致多次事故,严重影响了列车的正常运营,带来了巨大的损失。铁路线路情况复杂且环境相对恶劣,是需要重点关注和防护的场景。为保障铁路线路的运营安全,通常会在铁路线路的沿线安装摄像机,用于监控铁路防区,对闯入铁路防区的动物或者非机动车辆等目标进行跟踪拍摄,实现线路周界入侵告警。示意性地,参考图1,图1是本发明实施例提供的一种拍摄方法的应用场景的示意图,如图1所示,在铁路线路的沿线按照一定间隔架设安装杆,在安装杆上安装雷达和摄像机,通过雷达和摄像机联动的方式(当摄像机为球机时,将这种联动方式称为雷球联动),来监控铁路防区,当雷达探测到有目标入侵线路周界进入铁路防区时,计算目标所处的位置,并控制摄像机对该目标进行跟踪拍摄,上报告警,以便铁路工作人员及时获知铁路运营状况,保障铁路运营安全。
场景二、高速公路监控场景。
为保障高速公路车辆行驶安全,往往会在高速公路两侧或高速公路上方安装摄像机,用于监控高速公路的防区,对闯入防区的动物或者非机动车辆等目标进行跟踪拍摄,实现高速公路周界入侵告警。在这种场景下,例如,在高速公路两侧沿线按照一定间隔架设安装杆,在安装杆上安装雷达和摄像机,通过雷达和摄像机联动的方式(当摄像机为球机时,将这种联动方式称为雷球联动),来监控高速公路防区,当雷达探测到有目标入侵公路周界进入防区时,计算目标所处的位置,并控制摄像机对该目标进行跟踪拍摄,上报告警,以便公路工作人员及时获知公路实时路况,保障车辆行驶安全。
需要说明的是,上述场景仅为示例性的描述,本发明实施例提供的拍摄方法能够应用于多种需要对防区进行监控并对进入防区内的目标进行拍摄的监控场景中。例如,该拍摄方法可以应用于沿江道路等狭长地形的监控场景中。又例如,该拍摄方法可以应用于海岛、水库或自然保护区等人烟稀少地区的监控场景中,等等,本发明实施例对于拍摄方法的应用场景不作限定。
下面对本发明实施例提供的拍摄方法所涉及的系统架构进行介绍。
图2是本发明实施例提供的一种拍摄系统的结构示意图。如图2所示,该拍摄系统100包括摄像机110、第一雷达120和第二雷达130。下面对拍摄系统100中各个部分进行介绍。
第一雷达120,用于在探测到目标后,向摄像机110发送第一控制指令,该第一控制指 令用于指示摄像机110拍摄该第一雷达120探测到的第一目标。
摄像机110,用于接收第一雷达120的第一控制指令,响应于该第一控制指令,对该第一目标进行拍摄。
第二雷达130,用于在探测到目标后,向摄像机110发送第二控制指令,该第二控制指令用于指示摄像机110拍摄该第二雷达130探测到的第二目标,该第二雷达不同于第一雷达。
摄像机110,还用于接收第二雷达130的第二控制指令,响应于该第二控制指令,对该第二目标进行拍摄。
在一些实施例中,该摄像机110为球机,示意性地,该摄像机110在水平方向上支持360°转动,也即是说,摄像机110的拍摄区域可以理解为以R为半径(R>0)、摄像机110为圆心的圆形区域,本发明实施例对此不作限定。
在一些实施例中,该第一控制指令为跟踪拍摄指令,该摄像机110用于:对该第一目标进行识别(例如:识别出移动物体是机动车还是动物),跟踪拍摄该第一目标;该第二控制指令为跟踪拍摄指令,该摄像机110用于:对该第二目标进行识别(例如:识别出移动物体是机动车还是动物),跟踪拍摄该第二目标。
在一些实施例中,该摄像机110还用于:在对第一目标进行拍摄之前,转动至第一拍摄位置;该摄像机110还用于:在对第二目标进行拍摄之前,转动至第二拍摄位置。
在一些实施例中,该第一控制指令携带第一拍摄位置的信息;该第二控制指令携带第二拍摄位置的信息。
在一些实施例中,该摄像机110还用于:接收该第一雷达120发出的第一注册请求,对该第一雷达120进行注册;接收该第二雷达130发出的第二注册请求,对该第二雷达130进行注册。
在一些实施例中,该摄像机110还用于:在对第一目标进行拍摄之前,对该第一雷达120进行验证以确定该第一雷达120已经注册;该摄像机110还用于:在对第二目标进行拍摄之前,对该第二雷达130进行验证以确定该第二雷达130已经注册。
在一些实施例中,该摄像机110还用于:发送第一事件通知,该第一事件通知指示该摄像机110的拍摄区域内出现该第一目标;发送第二事件通知,该第二事件通知指示该摄像机110的拍摄区域内出现该第二目标。
在一些实施例中,该摄像机110还用于:
当摄像机110接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
当摄像机110开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至该默认拍摄位置。
在一些实施例中,该摄像机110还用于:
接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示该摄像机110拍摄该第二雷达130以外的雷达探测到的第三目标;当该摄像机110正在拍摄该第二目标,并且拍摄该第二目标的持续时长在有效期内,该摄像机110保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该摄像机110正在拍摄该第二目标,并且拍摄该第二目标的持续时长已过期,该摄像机110响应于该第三控制指令,对该第三目标进行拍摄。
在一些实施例中,该摄像机110还用于:
当该摄像机110正在拍摄该第二目标时,接收第二雷达以外的雷达发出的第四控制指令,其中,该第四控制指令用于指示该摄像机110拍摄第二雷达130以外的雷达探测到的第四目标;识别该第四目标的有效性;当该第四目标不是有效目标,保持对第二目标的拍摄而不执行对第四目标的拍摄;当该第四目标为有效目标,对该第四目标进行拍摄。
在一些实施例中,该对该第二目标进行识别,包括:当第二控制指令对应的目标转动角度小于第一阈值,对第二目标进行识别,对识别到的第二目标进行拍摄。
在一些实施例中,该摄像机110还用于:
接收该第二雷达130发出的第五控制指令,其中,该第五控制指令用于指示该摄像机110拍摄该第二目标,该第五控制指令为跟踪拍摄指令;当该第五控制指令对应的目标转动角度不小于该第一阈值,对该第二目标进行拍摄而不执行对第二目标的识别;当该摄像机110正在拍摄该第二目标,并且该摄像机110接收第五控制指令之后,接收到该第二雷达130发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示该摄像机110拍摄该第二目标,该第六控制指令为跟踪拍摄指令。
在一些实施例中,该摄像机110与该第一雷达120安装于同一安装杆,该摄像机110与该第二雷达130安装于不同安装杆。在一些实施例中,该第一雷达120和该第二雷达130朝向一致。
在一些实施例中,该摄像机110、该第一雷达120和该第二雷达130安装于同一安装杆。在一些实施例中,该第一雷达120和该第二雷达130朝向相背。
在一些实施例中,该摄像机110、该第一雷达120和该第二雷达130分别安装于不同安装杆。在一些实施例中,该第一雷达120朝向和该第二雷达130朝向相对。
在一些实施例中,该拍摄系统100还包括服务器140,该服务器140用于接收摄像机110发送的第一事件通知;该服务器140还用于接收摄像机110发送的第二事件通知。
在上述拍摄系统100中,摄像机110分别与第一雷达120和第二雷达130通过无线网络或有线网络通信连接。在一些实施例中,摄像机110与服务器140通过无线网络或有线网络通信连接。在一些实施例中,服务器140分别与第一雷达120和第二雷达130通过无线网络或有线网络通信连接。可选地,上述的无线网络或有线网络使用标准通信技术和/或协议。网络通常为因特网、但也能够是任何网络,包括但不限于局域网(local area network,LAN)、城域网(metropolitan area network,MAN)、广域网(wide area network,WAN)、移动、有线或者无线网络、专用网络或者虚拟专用网络的任何组合。在一些实施例中,使用包括超级文本标记语言(hyper text markup language,HTML)、可扩展标记语言(extensible markup language,XML)等的技术和/或格式来代表通过网络交换的数据。此外还能够使用诸如安全套接字层(secure socket layer,SSL)、传输层安全(transport layer security,TLS)、虚拟专用网络(virtual private network,VPN)、网际协议安全(internet protocol security,IPsec)等常规加密技术来加密所有或者一些链路。在另一些实施例中,还能够使用定制和/或专用数据通信技术取代或者补充上述数据通信技术。
下面对本发明实施例提供的拍摄系统100中摄像机和雷达的结构进行介绍。
图3是本发明实施例提供的一种摄像机的结构示意图。该摄像机300可因配置或性能不同而产生比较大的差异,包括接口301和摄像机本体302。
该接口301,用于从该摄像机300外部接收第一雷达发出的第一控制指令,将该第一控 制指令发送给摄像机本体302,该第一控制指令用于指示该摄像机300拍摄该第一雷达探测到的第一目标。
该摄像机本体302,用于从接口301接收该第一控制指令;响应于该第一控制指令,对该第一目标进行拍摄。
该接口301,还用于从该摄像机300外部接收第二雷达发出的第二控制指令,将该第二控制指令发送给该摄像机本体302,该第二控制指令用于指示该摄像机300拍摄该第二雷达探测到的第二目标,该第二雷达不同于第一雷达。
该摄像机本体302,还用于接收从接口301该第二控制指令;响应于该第二控制指令,对该第二目标进行拍摄。
其中,该接口301为有线网口或无线网口,本发明实施例对此不作限定。该摄像机本体302包括处理器和拍摄组件等部件,该拍摄组件包括但不限于镜头、图像传感器以及聚焦电机等部件,用于实现对第一目标进行拍摄,例如,该拍摄组件用于接收摄像机的拍摄区域的光线,并通过图像传感器进行光电转换,生成RAW图像,该图像中包括该第一目标,本发明实施例对此不作限定。在一些实施例中,该摄像机300还包括一个或一个以上的存储器303,该存储器303中存储有至少一条程序代码,该至少一条程序代码由该摄像机本体302(例如处理器)加载并执行以实现下述方法实施例中摄像机所执行的操作。当然,该摄像机300还能够具有其他用于实现设备功能的部件,在此不做赘述。
在一些实施例中,该第一控制指令为跟踪拍摄指令,该摄像机本体302用于:对该第一目标进行识别,跟踪拍摄该第一目标。
在一些实施例中,对该第一目标进行拍摄之前,该摄像机本体302还用于:转动至第一拍摄位置。
在一些实施例中,该第一控制指令携带该第一拍摄位置的信息。
在一些实施例中,该摄像机本体302还用于:
接收该第一雷达发出的第一注册请求,对该第一雷达进行注册;
接收该第二雷达发出的第二注册请求,对该第二雷达进行注册。
在一些实施例中,该摄像机本体302还用于:在对该第一目标进行拍摄之前,对该第一雷达进行验证以确定该第一雷达已经注册。
在一些实施例中,该摄像机本体302还用于:发送第一事件通知,该第一事件通知指示该摄像机300的拍摄区域内出现该第一目标。
在一些实施例中,该摄像机本体302还用于:
当接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
当开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至该默认拍摄位置。
在一些实施例中,该摄像机本体302还用于:
从接口301接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示该摄像机300拍摄该第二雷达以外的雷达探测到的第三目标;当该摄像机本体302正在拍摄该第二目标,并且拍摄该第二目标的持续时长在有效期内,保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该摄像机本体302正在拍摄该第二目标,并且拍摄该第二目 标的持续时长已过期,响应于该第三控制指令,对该第三目标进行拍摄。
在一些实施例中,该摄像机本体302还用于:
当该摄像机本体302正在拍摄该第二目标时,从接口301接收第二雷达以外的雷达发出的第四控制指令,其中,该第四控制指令用于指示该摄像机300拍摄该第二雷达以外的雷达探测到的第四目标;识别该第四目标的有效性;当该第四目标不是有效目标,保持对该第二目标的拍摄而不执行对该第四目标的拍摄;当该第四目标为有效目标,响应于该第四控制指令,对该第四目标进行拍摄。
在一些实施例中,对该第二目标进行拍摄,包括:当该第二控制指令对应的目标转动角度小于第一阈值,对该第二目标进行识别,对识别到的该第二目标进行拍摄。
通过及时识别目标的有效性,在确保拍摄准确率的前提下,提高了拍摄效率。
在一些实施例中,该摄像机本体302还用于:
从接口301接收该第二雷达发出的第五控制指令,其中,该第五控制指令用于指示该摄像机300拍摄该第二目标,该第五控制指令为跟踪拍摄指令;当该第五控制指令对应的目标转动角度不小于该第一阈值,对该第二目标进行拍摄而不执行对该第二目标的识别;当该摄像机本体302正在拍摄该第二目标,并且从接口接收第五控制指令之后,从接口接收到该第二雷达发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示该摄像机300拍摄该第二目标,该第六控制指令为跟踪拍摄指令。
图4是本发明实施例提供的一种雷达的结构示意图,该雷达400可因配置或性能不同而产生比较大的差异,包括一个或一个以上的处理器401、接口402以及探测组件403,其中,该接口402用于向摄像机300发送控制指令;该处理器401用于执行下述方法实施例中雷达所执行的操作;该探测组件403包括电磁波发射/接收器等部件,用于对探测区域进行探测,以发现目标。当然,该雷达400还能够具有其他用于实现设备功能的部件,在此不做赘述。
在介绍了上述图2所示的拍摄系统100、图3所示的摄像机以及图4所示的雷达之后,下面对拍摄系统100的架设方案进行介绍,包括但不限于下述几种情况。
情况一、摄像机与第一雷达安装于同一安装杆,摄像机与第二雷达安装于不同安装杆。
其中,第一雷达的探测区域至少覆盖摄像机的部分拍摄区域,第二雷达的探测区域至少覆盖摄像机的部分拍摄区域。在一些实施例中,该第一雷达和该第二雷达朝向一致。
下面参考图5,以摄像机为球机为例,对情况一所示的架设方案进行示例性介绍。图5是本发明实施例提供的一种拍摄系统的架设方案的示意图。如图5所示,摄像机与第一雷达安装于同一安装杆,摄像机与第二雷达安装于不同安装杆,第一雷达和第二雷达朝向一致(图5中箭头方向分别描述第一、第二雷达的朝向,雷达的朝向和探测方向相关)。其中,摄像机的拍摄区域至少覆盖a点至c点所在区域,第一雷达的探测区域至少覆盖b点到c点所在区域,第二雷达的探测区域至少覆盖a点到b点所在区域。在图5所示的架设方案下,摄像机能够接受第一雷达和第二雷达的控制,对摄像机的拍摄区域内出现的目标进行拍摄。示意性地,根据这种架设方案,若第一雷达探测到b点到c点所在区域内出现目标(例如较大型的移动物体),则向摄像机发送控制指令;若第二雷达探测到a点到b点所在区域出现目标(和第一雷达探测到的目标可以不同),则向摄像机发送控制指令。
需要说明的是,上述图5所示的仅为情况一对应的一种第一基础架设方案。在一些实施 例中,当拍摄系统需要对更大范围的区域进行监控来对所探测的目标进行拍摄时,可以根据下述图6所示的架设方案,架设多个摄像机、多个第一雷达和多个第二雷达(也可以理解为第一基础架设方案的第一变形方案)。下面对这种可选架设方案进行介绍。
示意性地,参考图6,图6是本发明实施例提供的一种拍摄系统的架设方案的示意图,以拍摄系统用于监控铁路线路、摄像机为球机为例,如图6所示(图6中箭头方向描述雷达的朝向,雷达的朝向和探测方向相关),在铁路线路沿线每间隔200米架设一个安装杆,每个安装杆上都安装有一个摄像机和一个雷达,每个摄像机的监控半径为100米,每个雷达的探测区域的长度为200米。其中,对于摄像机B来说,该摄像机B视作情况一中所示的摄像机,与该摄像机B安装于同一个安装杆上的雷达B′也即是情况一中所示的第一雷达,与雷达B′朝向一致的雷达A′也即是情况一中所示的第二雷达。示意性地,由于摄像机A和摄像机B的监控半径均为100米,且这两个摄像机对应的安装杆之间的距离为200米,因此,摄像机A和摄像机B的拍摄区域不存在重叠的区域,刚好覆盖两个安装杆之间的监控区域,雷达A′的探测区域为200米,同样刚好覆盖两个安装杆之间的监控区域。假设雷达A′探测到的目标与自己所在的安装杆之间的距离小于100米,向摄像机A发送控制指令,假设雷达A′探测到的目标与自己所在的安装杆之间的距离大于100米,则向摄像机B发送控制指令。
在这种图6所示的架设方案下,对于任一个摄像机来说,与该摄像机安装于同一个安装杆上的雷达可以被称为“同杆雷达”,与该摄像机安装于不同安装杆上的雷达可以被称为“异杆雷达”,同理,对于任一个雷达来说,与该雷达安装于同一个安装杆上的摄像机可以被称为“同杆摄像机”,与该雷达安装于不同安装杆上的摄像机可以被称为“异杆摄像机”,本发明实施例对此不作限定。
应理解,在图6所示的架设方案下,任一个摄像机能够接收两个雷达的控制指令,分别是同杆雷达和能够探测到该摄像机的异杆雷达(或者说探测区域覆盖该摄像机的部分拍摄区域的异杆雷达),例如,以图6中的摄像机B为例,该摄像机B用于接收雷达B′和雷达A′的控制指令。同时,任一个雷达能够向两个摄像机发送控制指令,分别为同杆摄像机和自己的探测区域内的最近一个异杆摄像机,例如,以图6中的雷达B′为例,该雷达B′用于向摄像机B和摄像机C发送控制指令。
另外,上述图6所示的架设方案中,摄像机的监控半径、安装杆的架设间隔以及雷达的探测区域的长度均为示意性地,在一些实施例中,可以按照实际情况来架设拍摄系统,例如,在铁路线路沿线每间隔300米架设一个安装杆,每个安装杆上都安装有一个摄像机和一个雷达,每个摄像机的监控半径为150米,每个雷达的探测区域的长度为300米,等等,本发明实施例对此不作限定。
需要说明的是,在图6所示的架设方案中,各个摄像机的拍摄区域不存在重叠的区域。例如,对于摄像机A和摄像机B来说,当目标处于摄像机A的监控范围内时,由摄像机A对目标进行拍摄,当目标处于摄像机B的监控范围内时,由摄像机B对目标进行拍摄,目标不会既在摄像机A的监控范围又在摄像机B的监控范围。这种方式能够最大化利用雷达的探测区域和摄像机的拍摄区域。而在一些实施例中,摄像机的拍摄区域可以重叠,以减小监控盲区,提升拍摄可靠性,例如,继续以图6为例,在铁路线路拐弯的区域,可以每间隔50米安装一个安装杆,每个安装杆上都安装有一个摄像机和一个雷达,等等,本发明实施例对此不作限定。
在一些实施例中,在架设多个安装杆时,多个安装杆可以按照多种方式排列架设。例如,以铁路监控场景为例,多个安装杆可以沿铁路线路沿线在同侧一字排开,还可以沿铁路沿线在两侧以插空的方式排开,等等,只要雷达能探测到防区内出现的目标且摄像机能拍摄到防区内出现的目标即可,本发明实施例对此不作限定。
在一些实施例中,摄像机与雷达也可以安装在其他介质上。例如,以铁路监控场景为例,可以将摄像机和雷达安装在铁路线路沿线两侧的墙上,或者,安装在横穿铁路的天桥的桥墩上,等等,只要雷达能探测到防区内出现的目标且摄像机能拍摄到防区内出现的目标即可,本发明实施例对此不作限定。
因此,按照上述情况一所示的架设方案来架设拍摄系统,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,多个雷达的探测区域能够通过重叠的方式来提高雷达的探测覆盖率,避免遗漏目标,从而有效提高了拍摄效率和拍摄准确率。进一步地,当按照上述情况一所示的变形方案来架设拍摄系统,使得一个雷达的探测区域内可以有多个摄像机实施监控,而且能够进一步提高雷达的探测覆盖率,从而极大提高了拍摄效率和拍摄准确率。
情况二、摄像机、第一雷达和第二雷达安装于同一安装杆。
其中,第一雷达和第二雷达的探测区域所形成的区域覆盖摄像机的全部拍摄区域。在一些实施例中,该第一雷达和该第二雷达朝向相背。其中,第一雷达与第二雷达朝向相背是指第一雷达和第二雷达以背靠背的形式架设,第一雷达的探测方向与第二雷达的探测方向相反,且第一雷达的探测区域与第二雷达的探测区域之间不存在重叠的区域。
下面参考图7,以摄像机为球机为例,对情况二所示的架设方案进行示例性介绍。图7是本发明实施例提供的一种拍摄系统的架设方案的示意图。如图7所示,摄像机、第一雷达以及第二雷达安装于同一安装杆,第一雷达和第二雷达朝向相背(图7中箭头方向分别描述第一、第二雷达的朝向,雷达的朝向和探测方向相关)。其中,摄像机的拍摄区域至少覆盖d点至f点所在区域,第一雷达的探测区域至少覆盖d点到e点所在区域,第二雷达的探测区域至少覆盖e点到f点所在区域,也即是,第一雷达和第二雷达的探测区域的总和覆盖摄像机的全部拍摄区域。在图7所示的架设方案下,摄像机能够接受第一雷达和第二雷达的控制,对摄像机的拍摄区域内出现的目标进行拍摄。示意性地,根据这种架设方案,若第一雷达探测到d点到e点所在区域内出现目标(例如较大型的移动物体),向摄像机发送控制指令;若第二雷达探测到e点到f点所在区域内出现目标(和第一雷达探测到的目标可以不同),向摄像机发送控制指令。
需要说明的是,上述图7所示的仅为情况二对应的一种第二基础架设方案。在一些实施例中,当拍摄系统需要对更大范围的区域进行监控以对目标进行拍摄时,可以根据下述图8所示的架设方案,架设多个摄像机、多个第一雷达和多个第二雷达(也可以理解为第二基础架设方案的第二变形方案)。下面对这种可选架设方案进行介绍。
示意性地,参考图8,图8是本发明实施例提供的一种拍摄系统的架设方案的示意图,以拍摄系统用于监控铁路线路、摄像机为球机为例,如图8所示(图8中箭头方向描述雷达的朝向,雷达的朝向和探测方向相关),在铁路线路沿线每间隔200米架设一个安装杆,每个安装杆上都安装有一个摄像机和两个雷达,每个摄像机的监控半径为100米,每个雷达的探 测区域的长度为200米。其中,对于任一安装杆上的摄像机D来说,该摄像机D也即是情况二中所示的摄像机,与该摄像机D安装于同一个安装杆上的雷达D 1也即是情况二中所示的第一雷达,与该摄像机D安装于同一个安装杆上的雷达D 2也即是情况二中所示的第二雷达,雷达D 1与雷达D 2朝向相背。示意性地,由于摄像机D和摄像机E的监控半径均为100米,且这两个摄像机对应的安装杆之间的距离为200米,因此,摄像机D和摄像机E的拍摄区域不存在重叠的区域,刚好覆盖两个安装杆之间的监控区域。假设雷达D 2探测到的目标与自己所在的安装杆之间的距离小于100米,向摄像机D发送控制指令,假设雷达D 2探测到的目标与自己所在的安装杆之间的距离大于100米,则向摄像机E发送控制指令。
应理解,在图8所示的架设方案下,任一个摄像机除了能接收与自己安装在同一个安装架上的两个雷达的控制指令之外,该摄像机还能够接收与自己相邻的两个安装杆上的雷达的控制指令。例如,以图8中的摄像机E为例,该摄像机E用于接收雷达E 1与雷达E 2的控制指令,该摄像机E还用于接收雷达D 2和雷达F 1的控制指令。同时,任一个雷达能够向两个(或者更多个)摄像机发送控制指令,分别为同杆摄像机和自己的探测区域内的最近一个异杆摄像机,例如,以图8中的雷达E 1为例,该雷达E 1用于向摄像机E和摄像机D发送控制指令。也即是说,对于任一雷达来说,只要该雷达的探测区域覆盖了某一摄像机的部分拍摄区域,该雷达即可控制该摄像机对目标进行拍摄。
与上述情况一同理,上述图8所示的架设方案仅为示意性地,在一些实施例中,可以按照实际情况来架设拍摄系统,只要雷达能探测到防区内出现的目标且摄像机能拍摄到防区内出现的目标即可(具体可参考上述情况一),本发明在此不再赘述。
因此,按照上述情况二所示的架设方案来架设拍摄系统,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,按照上述情况二所示的变形方案来架设拍摄系统,进一步使得一个雷达的探测区域内可以有多个摄像机实施监控,从而有效提高了拍摄效率和拍摄准确率。
情况三、摄像机、第一雷达和第二雷达分别安装于不同安装杆。
其中,第一雷达的探测区域至少覆盖摄像机的部分拍摄区域,第二雷达的探测区域至少覆盖摄像机的部分拍摄区域。在一些实施例中,该第一雷达和该第二雷达朝向相对。
下面参考图9,以摄像机为球机为例,对情况三所示的架设方案进行示例性介绍。图9是本发明实施例提供的一种拍摄系统的架设方案的示意图。如图9所示,摄像机、第一雷达和第二雷达分别安装于不同安装杆,该第一雷达和该第二雷达朝向相对,也可以理解为该第一雷达朝向该第二雷达,该第二雷达朝向该第一雷达(图9中箭头方向分别描述第一、第二雷达的朝向,雷达的朝向和探测方向相关)。其中,摄像机的拍摄区域至少覆盖g点至i点所在区域,第一雷达的探测区域至少覆盖g点到h点所在区域,第二雷达的探测区域至少覆盖h点到i点所在区域。在图9所示的架设方案下,摄像机能够接受第一雷达和第二雷达的控制,对摄像机的拍摄区域内出现的目标进行拍摄。示意性地,根据这种架设方案,若第一雷达探测到g点到h点所在区域内出现目标(例如较大型的移动物体),则向摄像机发送控制指令;若第二雷达探测到h点到i点所在区域内出现目标(和第一雷达探测到的目标可以不同),则向摄像机发送控制指令。
需要说明的是,上述图9所示的仅为情况三对应的一种第三基础架设方案。在一些实施 例中,当拍摄系统需要对更大范围的区域进行监控以对目标进行拍摄时,可以根据下述图10所示的架设方案,架设多个摄像机、多个第一雷达和多个第二雷达(也可以理解为第三基础架设方案的第三变形方案)。下面对这种可选架设方案进行介绍。
示意性地,参考图10,图10是本发明实施例提供的一种拍摄系统的架设方案的示意图,以拍摄系统用于监控铁路线路沿线、摄像机为球机为例,如图10所示(图10中箭头方向描述雷达的朝向,雷达的朝向和探测方向相关),在铁路线路沿线每间隔100米架设一个安装杆,每个摄像机的监控半径为100米,每个雷达的探测区域的长度为200米,第一个安装杆上安装一个雷达,第二个安装杆上安装一个摄像机,第三个安装杆上安装两个雷达且朝向相反,以此类推。其中,对于任一安装杆上的摄像机H来说,该摄像机H也即是情况三中所示的摄像机,该摄像机H背后的安装杆上的雷达G即为情况三中所示的第一雷达,该摄像机H前方的安装杆上的雷达I 1即为情况三中所示的第二雷达。示意性地,由于摄像机H的监控半径为100米,雷达G和雷达I 1所在的安装杆之间的距离为200米,因此,摄像机H的拍摄区域刚好覆盖雷达G和雷达I 1所在的安装杆之间的监控区域。假设雷达G探测到的目标与自己所在的安装杆之间的距离小于200米,向摄像机H发送控制指令,假设雷达I 1探测到的目标与自己所在的安装杆之间的距离小于200米,则向摄像机H发送控制指令。
与上述情况一和情况二同理,上述图10所示的架设方案仅为示意性地,在一些实施例中,可以按照实际情况来架设拍摄系统,只要雷达能探测到防区内出现的目标且摄像机能拍摄到防区内出现的目标即可(具体可参考上述情况一),本发明在此不再赘述。
因此,按照上述情况三所示的架设方案来架设拍摄系统,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,多个雷达的探测区域能够通过重叠的方式来提高雷达的探测覆盖率,避免遗漏目标,从而有效提高了拍摄效率和拍摄准确率。进一步地,当按照上述情况三所示的变形方案来架设拍摄系统,能够进一步提高雷达的探测覆盖率,避免遗漏目标,从而极大提高了拍摄效率和拍摄准确率。
上述情况一至情况三给出了拍摄系统的几种可选架设方案,这几种情况下的基础架设方案的基础均由一个摄像机和两个雷达构成,下面基于情况四,对一种变形后的基础架设方案进行介绍,该情况下的基础架设方案由两个摄像机和两个雷达构成。
情况四、第一摄像机、第一雷达和第二雷达安装于同一第一安装杆,该第一雷达和该第二雷达朝向相背,第二摄像机安装于与第一安装杆相邻的第二安装杆上。
其中,第一雷达和第二雷达的探测区域所形成的区域覆盖第一摄像机的全部拍摄区域,第二雷达的探测区域至少覆盖第二摄像机的部分拍摄区域。
下面参考图11,以第一摄像机为球机为例,对情况四所示的架设方案进行示例性介绍。图11本发明实施例提供的一种拍摄系统的架设方案的示意图。如图11所示,第一摄像机、第一雷达以及第二雷达安装于同一安装杆,第一雷达和第二雷达朝向相反(图11中箭头方向分别描述第一、第二雷达的朝向,雷达的朝向和探测方向相关),第二摄像机安装于与第一安装杆相邻的第二安装杆上。其中,第一摄像机的拍摄区域至少覆盖j点至l点所在区域,第一雷达的探测区域至少覆盖j点到k点所在区域,第二雷达的探测区域至少覆盖k点到l点所在区域,也即是,第一雷达和第二雷达的探测区域的总和覆盖第一摄像机的全部拍摄区域,同 时,第二雷达的探测区域至少覆盖l点到m点所在区域(也即是第二摄像机的部分拍摄区域)。在图11所示的架设方案下,第一摄像机能够接受第一雷达和第二雷达的控制,对第一摄像机的拍摄区域内出现的目标进行拍摄,且第二摄像机能够接收第二雷达的控制,对第二摄像机的部分拍摄区域内出现的目标进行拍摄。示意性地,根据这种架设方案,若第一雷达探测到j点到k点所在区域内出现目标(例如较大型的移动物体),则向第一摄像机发送控制指令;若第二雷达探测到k点到l所在区域内出现目标(和第一雷达探测到的目标可以不同),则向第一摄像机发送控制指令。进一步地,若第二雷达探测到l点到m点所在区域内出现目标(和第一雷达探测到的目标或第二雷达探测到的k点到l所在区域内的目标可以不同),则向第二摄像机发送控制指令。
需要说明的是,上述图11所示的仅为情况四对应的一种第四基础架设方案。在一些实施例中,当拍摄系统需要对更大范围的区域进行监控以对目标进行拍摄时,可以根据下述图12所示的架设方案,架设多个第一摄像机、多个第一雷达、多个第二雷达以及多个第二摄像机(也可以理解为第四基础架设方案的第四变形方案)。下面对这种可选架设方案进行介绍。
示意性地,参考图12,图12是本发明实施例提供的一种拍摄系统的架设方案的示意图,以拍摄系统用于监控铁路线路沿线、第一摄像机为球机为例,如图12所示(图12中箭头方向描述雷达的朝向,雷达的朝向和探测方向相关),在铁路线路沿线每间隔200米架设一个安装杆,每个摄像机的监控半径为100米,每个雷达的探测区域的长度为200米,第一个安装杆上安装一个摄像机,第二个安装杆上安装一个摄像机和两个朝向相反的雷达,以此类推。其中,对于摄像机K来说,该摄像机K也即是情况四中所示的第一摄像机,与该摄像机K安装于同一个安装杆上的雷达K 1也即是情况四中所示的第一雷达,与该摄像机K安装于同一个安装杆上的雷达K 2也即是情况四中所示的第二雷达,雷达K 1与雷达K 2朝向相背,摄像机L也即是情况四中所示的第二摄像机。示意性地,由于摄像机J和摄像机K的监控半径均为100米,且这两个摄像机对应的安装杆之间的距离为200米,因此,摄像机J和摄像机K的拍摄区域不存在重叠的区域,刚好覆盖两个安装杆之间的监控区域,雷达K 1的探测区域为200米,同样刚好覆盖两个安装杆之间的监控区域。假设雷达K 1探测到的目标与自己所在的安装杆之间的距离小于100米,向摄像机K发送控制指令,假设雷达K 1探测到的目标与自己所在的安装杆之间的距离大于100米,则向摄像机J发送控制指令。
应理解,在图12所示的架设方案下,任一个雷达除了能够向同杆摄像机发送控制指令以外,还能够向自己的探测区域内的异杆摄像机发送控制指令,也即是说,对于任一雷达来说,只要该雷达的探测区域覆盖了某一摄像机的部分拍摄区域,该雷达即可控制该摄像机对目标进行拍摄。
与上述几种情况同理,上述图12所示的架设方案仅为示意性地,在一些实施例中,可以按照实际情况来架设拍摄系统,只要雷达能探测到防区内出现的目标且摄像机能拍摄到防区内出现的目标即可(具体可参考上述情况一),本发明在此不再赘述。
因此,按照上述情况四所示的架设方案来架设拍摄系统,使得一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。同时,按照上述情况四所示的变形方案来架设拍摄系统,进一步使得一个雷达的探测区域内可以有多个摄像机实施监控,从而有效提高了拍摄效率和拍摄准确率。
需要说明的是,上述几种拍摄系统的架设方案仅为示意性地,在一些实施例中,可以根据实际情况对上述所示的几种架设方案通过变形或组合等方式形成新的架设方案,凡是一个摄像机可以接受多个雷达的控制,对拍摄区域内出现的目标进行拍摄的架设方案,均在本发明的保护范围之内。
下面基于上述几种情况,对相关技术中架设拍摄系统的方案以及本发明实施例提供的架设方案进行对比说明。
示意性地,参考图13,图13是本发明实施例提供的一种拍摄系统的示意图。如图13所示,以铁路监控场景为例,摄像机的监控半径均为100米,雷达的探测区域的长度均为200米(此处关于摄像机的监控半径以及雷达的探测区域的具体数值仅为举例说明,并不构成对本发明的限定),监控区域为长度为600米的铁路防区。下面对图13给出的五种情况进行说明。
图13中(a)图为相关技术中为监控铁路防区,拍摄系统的架设方案的示意图,如图13中(a)图所示,相关技术中考虑到摄像机的监控半径只有100米,且雷达与摄像机一对一绑定,因此,在600米的铁路防区内,每间隔100米架设一个安装杆,每个安装杆上安装有一个摄像机和一个雷达,总共需要架设7个安装杆、7个雷达以及7个摄像机。
图13中(b)图为上述情况一中与图6同理的拍摄系统的架设方案的示意图,如图13中(b)图所示,考虑到每个摄像机可以被多个雷达控制,每个雷达可以控制多个摄像机,因此,在600米的铁路防区内,每间隔200米架设一个安装杆,每个安装杆上安装有一个摄像机和一个雷达,总共需要架设4个安装杆、4个雷达以及4个摄像机。
图13中(c)图为上述情况二中与图8同理的拍摄系统的架设方案的示意图,如图13中(c)图所示,考虑到每个摄像机可以被多个雷达控制,每个雷达可以控制多个摄像机,因此,在600米的铁路防区内,每间隔200米架设一个安装杆,每个安装杆上安装有一个摄像机和朝向相反的两个雷达,总共需要架设4个安装杆、8个雷达以及4个摄像机。
图13中(d)图为上述情况三中与图10同理的拍摄系统的架设方案的示意图,如图13中(d)图所示,考虑到每个摄像机可以被多个雷达控制,因此,在600米的铁路防区内,每间隔100米架设一个安装杆,第一个安装杆上安装一个雷达,该雷达朝向第二个安装杆,第二个安装杆上安装一个摄像机,第三个安装杆上安装两个朝向相反的雷达,以此类推,总共需要架设7个安装杆、6个雷达以及3个摄像机。
图13中(e)图为上述情况四中与图12同理的拍摄系统的架设方案的示意图,如图13中(d)图所示,考虑到每个摄像机可以被多个雷达控制,每个雷达可以控制多个摄像机,因此,在600米的铁路防区内,每间隔200米架设一个安装杆,第一个安装杆上安装有一个摄像机,第二个安装杆上安装有一个摄像机和两个朝向相反的雷达,第三个安装杆上安装有一个摄像机,第四个安装杆上安装有一个摄像机和两个雷达,总共需要架设4个安装杆、4个雷达以及4个摄像机。
综上,在按照本发明实施例提供的拍摄系统架设拍摄系统时,相比于相关技术中的架设方案,充分利用了雷达的探测区域和摄像机的拍摄区域,减少了资源浪费,大大节约了设备架设成本,而且,一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的目标进行拍摄,从而可以充分利用摄像机的拍摄区域,可以有效覆盖盲区,在提高摄像机的利用率和节约设备成本的基础上,进一步提高拍摄效率和拍摄准确率。
需要说明的是,在一些实施例中,当按照本发明实施例提供的拍摄系统架设拍摄系统时,拍摄系统中的摄像机会对第一雷达和第二雷达进行注册,第一雷达和第二雷达同理也会对摄像机进行注册。下面对这种注册过程进行介绍,包括以下两种注册过程。
第一种、摄像机对第一雷达和第二雷达进行注册的过程。
其中,以第一雷达为例,摄像机对第一雷达进行注册的过程包括:摄像机接收该第一雷达发出的第一注册请求,对该第一雷达进行注册。
在一些实施例中,摄像机对第一雷达的注册过程具体包括:摄像机接收第一雷达发出的第一注册请求,该第一注册请求携带第一雷达发出的第一注册信息,摄像机基于该第一注册请求,将该第一注册信息添加到摄像机的注册表中,完成对第一雷达的注册。可选地,该第一注册信息包括第一雷达的网络地址、雷达编号以及账号密码等,本发明实施例对此不作限定。需要说明的是,摄像机对第二雷达的注册过程与摄像机对第一雷达的注册过程同理,此处不再赘述。
在一些实施例中,当摄像机对第一雷达进行注册后,摄像机向第一雷达发送第三注册请求,该第三注册请求携带摄像机的第三注册信息,当第一雷达接收到该第三注册请求后,基于该第三注册请求,将摄像机的第三注册信息添加到该第一雷达的注册表中,完成对摄像机的注册。可选地,该第三注册信息包括摄像机的拍摄范围信息(例如,摄像机为球机,则拍摄范围信息可以是监控半径)、网络地址、摄像机编号以及账号密码等,本发明实施例对此不作限定。这样,摄像机与第一雷达之间完成了双向注册,能够实现互相通信。应理解,当拍摄系统100包括多个雷达和多个摄像机时,对于任意一组摄像机和雷达,均可以通过上述方法完成双向注册以实现互相通信,本发明实施例在此不再赘述。
第二种、第一雷达和第二雷达对摄像机进行注册的过程。
其中,继续以第一雷达为例,第一雷达对摄像机进行注册的过程包括:接收摄像机的第三注册请求,对摄像机进行注册。
在一些实施例中,第一雷达对摄像机进行注册的过程具体包括:第一雷达接收摄像机发出的第三注册请求,该第三注册请求携带摄像机的第三注册信息,第一雷达基于该第三注册请求,将摄像机的第三注册信息添加到该第一雷达的注册表中,完成对摄像机的注册。可选地,该第三注册信息包括摄像机的拍摄范围信息(例如,摄像机为球机,则拍摄范围信息可以是监控半径)、网络地址、摄像机编号以及账号密码等,本发明实施例对此不作限定。
需要说明的是,在上述摄像机与雷达之间的注册过程中,第一雷达先向摄像机发送注册请求,由摄像机对第一雷达进行注册后,再由第一雷达对摄像机进行注册。在一些实施例中,摄像机先向第一雷达发送注册请求,由第一雷达对摄像机进行注册后,再由摄像机对第一雷达进行注册。在另一些实施例中,第一雷达与摄像机同时向对方发送注册请求,完成双向注册,本发明实施例对于雷达与摄像机之间的注册顺序不作限定。
另外,摄像机通过对雷达进行注册,与雷达进行绑定,使得摄像机的注册表中存有第一雷达和第二雷达的注册信息,便于摄像机在接收到雷达的控制指令时,判断当前控制指令是否是与其绑定的雷达发送的,从而避免受到其他雷达的干扰,影响拍摄效率。同时还可以提供安全性。
在介绍了本发明实施例提供的拍摄方法的系统架构的基础上,下面将对本发明实施例提供的拍摄方法进行示例性的说明。
根据上述对拍摄系统的介绍可知,在本发明实施例中,一个摄像机可以接受多个雷达的控制,因此,对于摄像机来说,摄像机需要协调接收到的多个雷达的控制指令,尽可能稳定响应某一个雷达的信号,使得摄像机的运动尽可能少转动,避免频繁或者同时响应两个雷达的指令而造成混乱。在一些实施例中,在一个摄像机能够接受多个雷达的控制的基础上,一个雷达能够控制多个摄像机,因此,对于雷达来说,雷达需要从能够控制的多个摄像机中挑选出能够拍摄到目标的摄像机,并控制该摄像机对目标进行拍摄,以确保拍摄效率和拍摄准确率。
下面将通过下述几个实施例,分别以摄像机的角度、雷达的角度以及摄像机与雷达交互的角度,对本发明实施例提供的拍摄方法进行介绍。
图14是本发明实施例提供的一种拍摄方法的流程图,在图14所示的实施例中,以摄像机的角度,对本发明实施例提供的拍摄方法进行介绍。该拍摄方法应用于上述图2所示的拍摄系统。示意性地,在图14所示的实施例中,以应用于如图2所示的摄像机110为例进行说明,该拍摄方法包括如下几个步骤。
1401、摄像机接收第一雷达发出的第一控制指令,该第一控制指令用于指示摄像机拍摄第一雷达探测到的第一目标。
在本发明实施例中,第一雷达为拍摄系统中对摄像机进行注册后的雷达。第一目标为第一雷达探测到的出现在第一目标区域内的目标。例如,第一目标区域是指禁止目标进入的区域,也可以理解为防区。又例如,第一目标区域为监控区域,本发明实施例对此不作限定。需要说明的是,在本发明实施例中,该第一控制指令是专指雷达控制摄像机进行拍摄的指令,换言之,如果摄像机接收到雷达发出的其他类型的指令,不在此列,同理,下述实施例中涉及的指令也均为雷达控制摄像机进行拍摄的指令,后续不再赘述。
在一些实施例中,该第一目标为车辆或动物等,本发明实施例对此不作限定。在另一些实施例中,第一目标为预先设置的指定类型的目标。例如,在铁路监控场景下,铁路防区内禁止动物进入,则将动物预先设置为指定目标,本发明实施例对此不作限定。
1402、摄像机响应于该第一控制指令,对该第一目标进行拍摄。
在本发明实施例中,摄像机对该第一目标进行拍摄是指,摄像机根据第一控制指令,通过调整摄像机的拍摄位置,对第一目标进行拍摄。
需要说明的是,摄像机对该第一目标进行拍摄是指,摄像机按照第一控制指令调整自身的拍摄位置之后进行拍摄即可。也就是说,摄像机可以不用判断在调整完拍摄位置之后,该第一目标是否真实出现在摄像机的拍摄区域中。
在一些实施例中,第一控制指令携带第一拍摄位置的信息,当摄像机基于该第一拍摄位置的信息转动至第一拍摄位置时,第一目标很大可能会出现在摄像机的拍摄区域中。可选地,本步骤1402包括:摄像机响应于该第一控制指令,基于第一控制指令携带的第一拍摄位置的信息,转动至第一拍摄位置,对第一目标进行拍摄。在一些实施例中,摄像机为球机,该第一拍摄位置的信息为第一PTZ坐标,在其他实施例中,第一拍摄位置的信息为第一目标的坐标信息,本发明实施例对此不作限定。
在一些实施例中,该第一控制指令为跟踪拍摄指令,摄像机对该第一目标进行拍摄,包括:摄像机对第一目标进行识别,跟踪拍摄该第一目标。其中,摄像机具有识别功能,当第一控制指令为跟踪拍摄指令时,表明摄像机需要对第一目标进行识别后再跟踪拍摄,因此, 摄像机在接收到第一控制指令后,识别第一目标的有效性,当该第一目标为有效目标,跟踪拍摄该第一目标。需要说明的是,第一目标为有效目标是指第一目标为摄像机需要跟踪拍摄的目标。由于雷达探测到的目标不一定是摄像机需要跟踪拍摄的目标,因此摄像机需要识别目标的有效性。例如,以铁路监控场景为例,假设第一雷达探测到第一目标区域中出现人类,于是第一雷达向摄像机发送控制指令,但是第一雷达探测到的人类为铁路维修人员,并不需要摄像机跟踪拍摄,也即是第一雷达探测到的目标不属于有效目标,则摄像机识别后放弃跟踪拍摄该目标。示意性地,第一摄像机调用周界算法,对拍摄到的第一目标进行图像识别,若识别出第一目标为有效目标,则跟踪拍摄该第一目标,若识别出该第一目标不是有效目标,则放弃跟踪拍摄该第一目标。例如,该周界算法为基于深度学习的图像识别算法,本发明实施例对此不作限定。通过对目标进行识别后再跟踪拍摄目标,可以在目标为有效目标的前提下再进行跟踪拍摄,减少资源浪费,提高拍摄效率和拍摄准确率。
在一些实施例中,摄像机对第一目标进行拍摄之前,摄像机对第一雷达进行验证以确定第一雷达已经注册。可选地,第一控制指令携带第一雷达的网络地址。摄像机在接收到第一雷达发出的第一控制指令时,对第一雷达的网络地址进行验证,若摄像机的注册表中包括该第一雷达的网络地址,则摄像机响应于该第一控制指令,确定第一雷达已经注册,对第一目标进行拍摄。可选地,第一控制指令携带第一雷达的雷达编号。摄像机在接收到第一雷达发出的第一控制指令时,对第一雷达的雷达编号进行验证,若摄像机的注册表中包括该第一雷达的雷达编号,则摄像机响应于该第一控制指令,对第一雷达发出的第一目标进行拍摄。上述可选实施例也即是摄像机对第一雷达进行验证的过程,应理解,在一些实施例中,摄像机还可以通过其他方式对第一雷达进行验证,本发明实施例对此不作限定。需要说明的是,摄像机通过对第一雷达进行验证,确保了摄像机仅响应与其绑定的雷达的控制指令,从而避免受到其他雷达的干扰,影响拍摄效率。
在一些实施例中,第一控制指令携带有第一目标的第一身份标识。通过在第一控制指令中携带第一身份标识,便于摄像机在接收到第一雷达发送的下一条指示拍摄第一目标的控制指令时,根据第一身份标识来确定两次控制指令用于指示拍摄的目标是否为同一目标,从而提高拍摄效率。
在一些实施例中,该第一控制指令携带有第一目标的置信度。通过在第一控制指令中携带置信度,使得摄像机能够根据第一目标的置信度来判定第一目标是否为有效目标,本发明实施例对此不作限定。
在一些实施例中,步骤1402还包括:摄像机在检测到第一目标后,发送第一事件通知,该第一事件通知指示该摄像机的拍摄区域内出现该第一目标。下面对这种可选实施方式进行介绍。
其中,摄像机在对第一目标进行拍摄后,对拍摄到的图像或视频进行检测,在检测到第一目标后,发送第一事件通知。在一些实施例中,拍摄系统还包括服务器,摄像机在检测到第一目标后,向服务器发送第一事件通知。通过发送事件通知,自动上报有关目标的相关信息,在提高拍摄效率的同时,降低了人员工作量,便于相关人员及时获知摄像机的拍摄区域内出现目标,从而尽快安排人员处理或提出解决方案,例如对误入高速公路的动物进行驱赶等,本发明对此不作限定。
在一些实施例中,该第一事件通知携带第一目标的第一身份标识、摄像机的摄像机编号 以及第一目标所处的区域标识等信息,本发明实施例对此不作限定。通过在第一事件通知中携带上述信息,使得服务器接收到第一事件通知后,能够及时获知第一目标的身份和所处位置等信息,提高拍摄效率。
在一些实施例中,服务器与终端通过有线网络或无线网络通信连接,服务器在接收到第一事件通知后,将第一事件通知发送给终端,由终端显示该第一事件通知。例如,以铁路线路监控场景为例,当摄像机向服务器发送第一事件通知后,服务器将第一事件通知发送给终端,由终端显示该第一事件通知,以便铁路工作人员及时获知摄像机的拍摄区域内出现第一目标,从而及时安排相关人员处理或者调度列车运行等,本发明实施例对此不作限定。
1403、摄像机接收第二雷达发出的第二控制指令,该第二控制指令用于指示摄像机拍摄第二雷达探测到的第二目标,该第二雷达不同于该第一雷达。
在本发明实施例中,第二雷达为拍摄系统中第一雷达以外的,且对摄像机进行注册后的雷达。第二目标为第二雷达探测到的出现在第二目标区域内的目标。例如,该第二目标区域是指禁止目标进入的区域,同样也可以理解为防区。
需要说明的是,关于第二目标的相关介绍参考上述步骤1401,与第一目标的相关介绍同理,故在此不再赘述。
1404、摄像机响应于该第二控制指令,对该第二目标进行拍摄。
在本发明实施例中,摄像机对第二目标进行拍摄是指,摄像机根据第二控制指令,通过调整摄像机的拍摄位置,对第二目标进行拍摄。
需要说明的是,摄像机对该第二目标进行拍摄是指,摄像机按照第一控制指令调整自身的拍摄位置之后进行拍摄即可。也就是说,摄像机可以不用判断在调整完拍摄位置之后,该第二目标是否真实出现在摄像机的拍摄区域中。
在一些实施例中,第二控制指令携带第二拍摄位置的信息,当摄像机按照该第二拍摄位置信息转动至第二拍摄位置时,第二目标很大可能会出现在摄像机的拍摄区域中。可选地,本步骤1404包括:摄像机响应于该第二控制指令,基于第二控制指令携带的第二拍摄位置的信息,转动至第二拍摄位置,对第二目标进行拍摄。在一些实施例中,摄像机为球机,该第二拍摄位置的信息为第二PTZ坐标,在其他实施例中,第二拍摄位置的信息为第二目标的坐标信息,本发明实施例对此不作限定。
在一些实施例中,摄像机对该第二目标进行拍摄,包括:摄像机对第二目标进行识别,跟踪拍摄该第二目标。其中,这一过程参考上述步骤1402,与摄像机对第一目标进行识别的过程同理,故在此不再赘述。
在一些实施例中,摄像机在接收到第二控制指令时,会对第二控制指令对应的目标转动角度进行判断,当第二控制指令对应的目标转动角度符合要求时,及时识别第二目标的有效性,并对第二目标进行拍摄。可选地,本步骤1404包括:摄像机响应于第二控制指令,当第二控制指令对应的目标转动角度小于第一阈值,对第二目标进行识别。其中,第二控制指令对应的目标转动角度是指,摄像机从第一拍摄位置转动到第二拍摄位置所需转动的角度,第一阈值为预先设置的阈值。可选地,摄像机为球机,第二控制指令对应的目标转动角度是指摄像机在水平方向上的转动角度。例如,第一阈值可以为90°,本发明实施例对此不作限定。需要说明的是,第二控制指令对应的目标转动角度小于第一阈值,表明摄像机根据该第二控制指令从第一拍摄位置转动至第二拍摄位置所需转动的角度较小,耗时较短,当摄像机根据 该第二控制指令转动至第二拍摄位置时,第二目标很大可能在摄像机的拍摄区域中。通过及时识别目标的有效性,在确保拍摄准确率的前提下,提高了拍摄效率。在另一些实施例中,当第二控制指令对应的目标转动角度不符合要求时,摄像机会等待第二雷达发来下一条指示拍摄第二目标的控制指令,此时再识别第二目标的有效性,从而确保摄像机的拍摄准确率、稳定性以及效率。这一可选实施方式将在后续图16所示的拍摄方法中进行介绍,在此不再赘述。
在一些实施例中,摄像机对第二目标进行拍摄之前,摄像机对第二雷达进行验证以确定第二雷达已经注册。可选地,第二控制指令携带第二雷达的网络地址。摄像机在接收到第二雷达发出的第二控制指令时,对第二雷达的网络地址进行验证,若摄像机的注册表中包括该第二雷达的网络地址,则摄像机响应于该第二控制指令,确定第二雷达已经注册,对第二目标进行拍摄。需要说明的是,关于摄像机对第二雷达的验证过程的其他可选方式参考上述步骤1402,与摄像机对第一雷达的验证过程同理,在此不再赘述。
在一些实施例中,第二控制指令携带有第二目标的第二身份标识。通过在第二控制指令中携带第二身份标识,便于摄像机在接收到第二雷达发送的下一条指示拍摄第二目标的控制指令时,根据第二身份标识来确定两次控制指令用于指示拍摄的目标是否为同一目标,从而提高拍摄效率。
在一些实施例中,该第二控制指令还携带有第二目标的置信度。通过在第二控制指令中携带置信度,使得摄像机能够根据第二目标的置信度来判定第二目标是否为有效目标,本发明实施例对此不作限定。
在一些实施例中,步骤1404还包括:摄像机在检测到第二目标后,发送第二事件通知,该第二事件通知指示该摄像机的拍摄区域内出现该第二目标。下面对这种可选实施方式进行介绍。
其中,摄像机在对第二目标进行拍摄后,对拍摄到的图像或视频进行检测,在检测到第二目标后,发送第二事件通知。在一些实施例中,拍摄系统还包括服务器,摄像机在检测到第二目标后,向服务器发送第二事件通知。通过发送事件通知,自动上报有关目标的相关信息,在提高拍摄效率的同时,降低了人员工作量,便于相关人员及时获知摄像机的拍摄区域内出现目标,从而尽快安排人员处理或提出解决方案,例如对误入高速公路的动物进行驱赶等,本发明对此不作限定。
在一些实施例中,该第二事件通知携带第二目标的第二身份标识、摄像机的摄像机编号以及第二目标所处的区域标识等信息,本发明实施例对此不作限定。通过在第二事件通知中携带上述信息,使得服务器接收到第二事件通知后,能够及时获知第二目标的身份和所处位置等信息,提高拍摄效率。
在一些实施例中,服务器与终端通过有线网络或无线网络通信连接,服务器在接收到第二事件通知后,将第二事件通知发送给终端,由终端显示该第二事件通知。具体可参考上述步骤1402,与步骤1402同理,在此不再赘述。
在一些实施例中,摄像机中配置有超时归位机制,摄像机在接收到第二控制指令时,或者,摄像机在对第二目标进行拍摄之后,如果摄像机在一定时长内没有接收到任一雷达发送的控制指令,则摄像机会转动至默认拍摄位置待命,从而提高拍摄效率。在一些实施例中,默认拍摄位置是指摄像机启动时的初始拍摄位置,在另一些实施例中,默认拍摄位置是指预 先指定的预置拍摄位置,本发明实施例对于默认拍摄位置不作限定。下面以本步骤1404中,摄像机接收到第二控制指令时,如何根据超时归位机制转动至默认拍摄位置待命的过程进行介绍。示意性地,该过程包括以下两种情况。
情况一、摄像机在接收到第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置。
其中,第一时长为预先设置的时长。例如,将第一时长设置为30秒,本发明实施例对此不作限定。另外,此处的任一雷达是指拍摄系统中包括第二雷达的任一雷达。在该场景下,摄像机在接收到第二控制指令之后,如果在第一时长内未接收到任一控制指令,随即从跟踪状态恢复到初始状态待命,从而提高拍摄效率。
情况二、摄像机在开始对第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置。
其中,第二时长为预先设置的时长。例如,将第二时长设置为30秒,本发明实施例对此不作限定。在该场景下,摄像机在开始对第二目标进行拍摄之后,如果在第二时长内未接收到任一雷达的控制指令,随即从跟踪状态恢复到初始状态待命,从而提高拍摄效率。
上述两种情况介绍了摄像机的超时归位机制的两种可选方式,在一些实施例中,摄像机还可以在其他时机启动超时归位机制,例如,在摄像机持续拍摄第二目标已经超过5分钟的情况下,启动超时归位机制,恢复到初始状态待命,以减少摄像机的拍摄次数,延长摄像机使用寿命,本发明实施例对此不作限定。
在一些实施例中,摄像机在响应于该第二控制指令之后,如果又接收到新的控制指令,则会采用一些决策方式来确定是否需要保持对第二目标的拍摄,当摄像机通过这些决策方式确定需要保持对第二目标的拍摄时,摄像机保持对第二目标的拍摄。这一决策过程也可以理解为摄像机需要协调接收到的多个雷达的控制指令,尽可能稳定响应某一个雷达的信号,使得摄像机的运动尽可能平稳,避免同时响应两个雷达的指令。下面结合图15对这种可选实施方式进行介绍,图15为本发明实施例提供的一种拍摄方法的流程图。如图15所示,该拍摄方法包括下述几个步骤。
1501、摄像机响应于第二控制指令之后,接收到任一雷达的控制指令。
其中,任一雷达为拍摄系统中对摄像机进行注册后的雷达。
1502、摄像机判断该任一雷达是否为第二雷达,若该任一雷达为第二雷达,则摄像机执行下述步骤1503;若该任一雷达为第二雷达以外的雷达,则摄像机执行下述步骤1504。
其中,摄像机根据该任一雷达的雷达编号或者网络地址等信息,判断该任一雷达是否为第二雷达,本发明实施例对此不作限定。
1503、摄像机判断该任一雷达的控制指令对应的目标与第二目标是否为同一目标,若该任一雷达的控制指令对应的目标与第二目标为同一目标,则摄像机响应于该任一雷达的控制指令,保持对第二目标的拍摄。
其中,摄像机根据第二目标的第二身份标识来判断两个控制指令对应的目标是否为同一目标,具体参考上述有关身份标识的介绍,此处不再赘述。
通过步骤1503,使得摄像机在接收到来自同一雷达的多个控制指令时,及时判断每次需要拍摄的目标是否为同一目标,尽可能稳定响应同一雷达针对同一目标的控制指令,提高拍摄稳定性和准确率。
在一些实施例中,若该任一雷达的控制指令对应的目标与第二目标不是同一目标,则摄像机响应该任一雷达的控制指令,识别该任一雷达的控制指令对应的目标的有效性,当该任一雷达的控制指令对应的目标为有效目标,则摄像机响应该任一雷达的控制指令,对该任一雷达的控制指令对应的目标进行拍摄;当该任一雷达的控制指令对应的目标不是有效目标,则摄像机不响应该任一雷达的控制指令,而是等待下一条控制指令,本发明实施例对此不作限定。通过这种方法,使得摄像机在接收到来自同一雷达针对不同目标的控制指令时,及时判断新的目标是否是有效目标,从而提高拍摄效率。
1504、摄像机判断拍摄第二目标的持续时长是否在有效期内,若摄像机拍摄第二目标的持续时长在有效期内,则摄像机保持对第二目标的拍摄而不响应该任一雷达的控制指令。
其中,摄像机拍摄第二目标的持续时长在有效期内是指摄像机拍摄第二目标的时长未超过目标时长。示意性地,摄像机响应于第二控制指令,为第二控制指令对应的第二目标设置目标时长,若摄像机拍摄第二目标的持续时长大于或等于目标时长,且在目标时长内未接收到第二雷达发来的指示拍摄第二目标的其他控制指令,则摄像机拍摄第二目标的时长已过期,摄像机响应于该任一雷达的控制指令,对该任一雷达的控制指令对应的目标进行拍摄。需要说明的是,本发明实施例对于目标时长的设置不作限定,例如,可以设置为1秒,等等。
另外,由于第二控制指令用于指示摄像机拍摄第二目标,因此,摄像机判断拍摄第二目标的时长是否过期这一过程也可以理解成是摄像机判断第二控制指令是否过期的过程,本发明对此不作限定。
在上述过程中,摄像机在响应了第二控制指令后,又接收到了任一雷达的控制指令,将该控制指令称为第三控制指令,其中,该第三控制指令用于指示摄像机拍摄该第二雷达以外的雷达探测到的第三目标,当该摄像机正在拍摄该第二目标,并且拍摄该第二目标的时长在有效期内,该摄像机保持对该第二目标的拍摄而不执行对该第三目标的拍摄。在一些实施例中,当该摄像机正在拍摄该第二目标,并且拍摄该第二目标的时长已过期,该摄像机响应于该第三控制指令,对该第三目标进行拍摄。在这一过程中,当摄像机接收到第二雷达以外的雷达发出的控制指令时,会判断摄像机拍摄第二目标的持续时长是否在有效期内,从而决定是继续保持对第二目标的拍摄还是丢弃第二目标,转而去拍摄第三目标,通过这种方法,使得摄像机在拍摄当前目标的时长已过期的情况下,及时响应新的控制指令,从而提高拍摄效率。进一步地,通过这种方法,使得摄像机在拍摄当前目标的时长在有效期内的情况下,继续保持对当前目标进行拍摄。避免了对新指令的必然响应,从而避免摄像机在频繁收到多个控制指令时,因为执行控制指令而频繁转动,从而有效提高了拍摄准确率。
在上述步骤1504中,摄像机通过判断拍摄第二目标的时长是否在有效期内的方式来确定是否保持对第二目标的拍摄。在一些实施例中,摄像机还可以通过下述几种可选实施方式来确定是否需要保持对第二目标的拍摄,下面对这些可选实施方式进行介绍。
方式一、摄像机判断该任一雷达的控制指令对应的目标是否为有效目标,若该任一雷达的控制指令对应的目标不是有效目标,则摄像机保持对第二目标的拍摄而不响应该任一雷达的控制指令。
其中,摄像机识别该任一雷达的控制指令对应的目标的有效性的具体方式与上述摄像机识别第二目标的有效性的方式同理,在此不再赘述。
在上述方式一所涉及的拍摄过程中,摄像机在响应了第二控制指令后,也即摄像机正在 拍摄第二目标时,又接收到任一雷达的控制指令,将该控制指令称为第四控制指令,其中,该第四控制指令用于指示摄像机拍摄第二雷达以外的雷达探测到的第四目标,摄像机识别第四目标的有效性,当第四目标不是有效目标,摄像机保持对第二目标的拍摄而不执行对第四目标的拍摄。在一些实施例中,当第四目标为有效目标,摄像机对第四目标进行拍摄。
其中,当摄像机接收到第二雷达以外的雷达发出的控制指令时,会判断第四目标是否是有效目标,从而决定是继续保持对第二目标的拍摄,还是丢弃第二目标,转而去拍摄第四目标,通过这种方法,使得摄像机在新的控制指令对应的目标为有效目标的情况下,响应新的控制指令,从而提高拍摄效率。进一步地,通过这种方法,使得摄像机在新的控制指令对应的目标不是有效目标的情况下,继续对当前目标进行拍摄,既避免了拍摄无效目标,达到节约资源的目的,又避免了摄像机在频繁收到多个控制指令时,因为执行控制指令而频繁转动,从而提高了拍摄准确率。
方式二、摄像机在任一雷达的控制指令对应的目标为有效目标的情况下,判断拍摄第二目标的时长是否在有效期内,若摄像机拍摄第二目标的时长在有效期内,则摄像机保持对第二目标的拍摄而不响应该任一雷达的控制指令。
其中,摄像机先判断任一雷达的控制指令对应的目标是否为有效目标,在该目标为有效目标的情况下,判断拍摄第二目标的时长是否在有效期内,若摄像机拍摄第二目标的时长在有效期内,则摄像机保持对第二目标的拍摄而不响应该任一雷达的控制指令。
在一些实施例中,摄像机在拍摄第二目标的时长已过期的情况下,对该任一雷达的控制指令对应的目标进行拍摄。
通过这种方法,使得摄像机在新的控制指令对应的目标为有效目标,且拍摄当前目标的时长已过期的情况下,响应新的控制指令,从而既避免了拍摄无效目标,达到节约资源的目的,又避免了摄像机在频繁收到多个控制指令时,因为执行控制指令而频繁转动,达到提高拍摄准确率的目的,还保证了是在拍摄当前目标的时长已经过期的情况下才响应新的控制指令,提高了拍摄的稳定性和准确率。
方式三、摄像机判断该任一雷达的控制指令对应的目标和第二目标的拍摄优先级,若第二目标的拍摄优先级高于任一雷达的控制指令对应的目标,则摄像机保持对第二目标的拍摄而不响应该任一雷达的控制指令。
其中,对于不同类型的目标,其拍摄优先级不同,摄像机优先响应拍摄优先级更高的目标的控制指令。例如,假设目标的类型包括非机动车辆和动物,非机动车辆的优先级高于动物的优先级,第二控制指令对应的第二目标的类型为非机动车辆,任一雷达的控制指令对应的目标的类型为动物,则摄像机响应于第二控制指令,在接收到任一雷达的控制指令时,保持对第二目标的拍摄而不响应该任一雷达的控制指令,本发明实施例对此不作限定。通过这种方式,确保了摄像机先对高优先级的目标进行拍摄,满足了拍摄的个性化需求。
方式四、摄像机判断该任一雷达的控制指令对应的目标转动角度是否大于第二阈值,若该任一雷达的控制指令对应的目标转动角度大于第二阈值,则摄像机保持对第二目标的拍摄而不响应该任一雷达的控制指令。
其中,第二阈值为预先设置的阈值,例如,第二阈值为180°,本发明实施例对此不作限定。当任一雷达的控制指令对应的目标转动角度大于第二阈值,则摄像机响应于第二控制指令,在接收到任一雷达的控制指令时,保持对第二目标的拍摄而不响应该任一雷达的控制指 令。例如,任一雷达的控制指令对应的目标转动角度大于180°,则摄像机丢弃(或者不处理)该任一雷达的控制指令,而是继续保持对第二目标的拍摄。需要说明的是,任一雷达的控制指令对应的目标转动角度是指,摄像机从第二拍摄位置转动到任一雷达的控制指令对应的拍摄位置所需转动的角度。通过这种方式,避免了摄像机的大角度转动,从而减少摄像机的内部磨损,延长摄像机的使用寿命。
通过上述图15所示的可选实施例,介绍了摄像机在响应于第二控制指令之后,如果接收到任一雷达的控制指令时,如何确定是否需要保持对第二目标的拍摄。这一过程也可以理解为摄像机如何协调接收到的多个雷达的控制指令的过程,通过上述可选实施方式,使得摄像机尽可能稳定响应某一个雷达的信号,确保摄像机的运动尽可能平稳,避免摄像机在频繁收到多个控制指令时,因为执行控制指令而频繁转动,从而提高了拍摄稳定性、准确率和效率。需要说明的是,上述这些不同可选方式的介绍是以摄像机执行步骤1404时又接收到新的控制指令为例来进行介绍的,在一些实施例中,当摄像机接收到任一雷达发送的任一控制指令时,均可以根据摄像机当前的状态采取不同的方式来提高拍摄准确率和效率,本发明实施例对此不作限定。
经过上述步骤图14和图15所示的拍摄方法,从摄像机的角度,对本发明实施例提供的拍摄方法的基本流程进行了简要介绍。应理解,上述步骤中是以两个雷达为例进行介绍的,在一些实施例中,当摄像机能够被更多数量的雷达的控制时,摄像机还能够接收除第一雷达和第二雷达以外的其他雷达的控制指令,本发明实施例对此不作限定。
综上,在本发明实施例提供的拍摄方法中,一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的雷达探测到的目标进行拍摄,这种方式充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,有效提高了拍摄效率和拍摄准确率。
在上述图14和图15所示的拍摄方法中,介绍了一种可选实施方式,即,摄像机在接收到第二控制指令时,会对第二控制指令对应的目标转动角度进行判断,当第二控制指令对应的目标转动角度符合要求时,及时识别第二目标的有效性,并对第二目标进行拍摄。在另一些实施例中,当第二控制指令对应的目标转动角度不符合要求时,摄像机会等待第二雷达发来下一条指示拍摄第二目标的控制指令,此时再识别第二目标的有效性,从而确保摄像机的拍摄准确率、稳定性以及效率。下面结合图16,对这种可选实施方式进行介绍。
图16是本发明实施例提供的一种拍摄方法的流程图。在本发明实施例中,以摄像机的角度,对本发明实施例提供的另一种拍摄方法进行介绍。该拍摄方法应用于上述图2所示的拍摄系统。示意性地,在图16所示的实施例中,以应用于如图2所示的摄像机110为例进行说明,该拍摄方法包括如下几个步骤。
1601、摄像机接收第一雷达发出的第一控制指令,该第一控制指令用于指示摄像机拍摄第一雷达探测到的第一目标。
其中,步骤1601与上述图14所示的拍摄方法中的步骤1401同理,此处不再赘述。
1602、摄像机响应于该第一控制指令,对该第一目标进行拍摄。
其中,步骤1602与上述图14所示的拍摄方法中的步骤1402同理,此处不再赘述。
1603、摄像机接收第二雷达发出的第五控制指令,其中,该第五控制指令用于指示该摄 像机拍摄第二雷达探测到的第二目标,该第五控制指令为跟踪拍摄指令。
其中,步骤1603与上述图14所示的拍摄方法中的步骤1403同理,此处不再赘述。
1604、摄像机响应于该第五控制指令,对第二目标进行拍摄而不执行对第二目标的识别。
其中,第五控制指令对应的目标转动角度不小于第一阈值。需要说明的是,此处的第一阈值与上述步骤1404中提及的第一阈值同理,此处不再赘述。第五控制指令对应的目标转动角度不小于第一阈值,表明摄像机根据该第五控制指令从第一拍摄位置转动至第五控制指令对应的拍摄位置所需转动的角度较大,耗时较长,当摄像机根据该第五控制指令转动至对应的拍摄位置时,第二目标有很大可能已经偏离了原来的位置,并不在摄像机的拍摄区域中,因此,在本步骤1604中,摄像机不执行对第二目标的识别。
1605、当摄像机正在拍摄该第二目标,并且接收该第五控制指令之后,接收到第二雷达发送的第六控制指令,对第二目标进行识别,对识别到的第二目标进行拍摄,其中,该第六控制指令用于指示摄像机拍摄第二雷达探测到的第二目标,该第六控制指令为跟踪拍摄指令。
在一些实施例中,在上述步骤1604中,摄像机响应于第二雷达发出的第五控制指令,对第二目标进行拍摄时,由于未识别目标的有效性,因此摄像机即使检测到第二目标,也不发送事件通知,而是当摄像机接收到第二雷达再次发送的第六控制指令后,再对第二目标进行识别,对识别到的第二目标进行拍摄时,在检测到第二目标后,再发送事件通知。由于雷达一旦探测到目标,其发送控制指令的频率较高,例如,每间隔0.1秒发送一条控制指令,因此,摄像机即使在根据第五控制指令对第二目标进行拍摄时未发送事件通知,也不会影响拍摄准确率。通过这种方法,一定程度上减少了数据交互,节约了计算资源。
通过这种先拍摄再识别的拍摄方法,确保了摄像机在执行识别目标有效性的步骤时,目标很大可能出现在摄像机的拍摄区域中,从而提高了目标识别的准确率,也提高了拍摄效率。
需要说明的是,在一些实施例中,摄像机在接收到第一雷达发送的第一控制指令时,若第一控制指令对应的目标转动角度不小于第一阈值(例如,第一控制指令是摄像机处于默认拍摄位置时接收到的,则第一控制指令对应的目标转动角度是指摄像机从默认拍摄位置转动至第一拍摄位置所需转动的角度),摄像机同理可以先拍摄第一目标但不识别第一目标的有效性,而是等待第一雷达发送的下一条指示拍摄第一目标的控制指令时,再识别目标的有效性,本发明在此不再赘述。
上述图14至图16所示的拍摄方法以摄像机接收两个不同雷达的控制指令的角度,对本发明实施例的拍摄方法进行了介绍,在一些实施例中,拍摄系统包括多个摄像机和多个雷达,一个摄像机可以接受多个雷达的控制,一个雷达可以控制多个摄像机,例如上述图6、图8、图11和图12所示。下面结合图17,对本发明实施例提供的另一种拍摄方法进行介绍。
图17是本发明实施例提供的一种拍摄方法的流程图。如图17所示,该拍摄方法应用于拍摄系统,该拍摄系统包括第一摄像机、第二摄像机、第一雷达以及第二雷达。示意性地,该拍摄方法包括下述几个步骤。
1701、第一摄像机接收第一雷达发出的第一控制指令,该第一控制指令用于指示第一摄像机拍摄第一雷达探测到的第一目标。
其中,第一雷达为拍摄系统中对第一摄像机和第二摄像机进行注册后的雷达,也即是,第一雷达的探测区域至少覆盖第一摄像机的部分拍摄区域以及第二摄像机的部分拍摄区域。 需要说明的是,步骤1701的具体实施方式与上述图14所示的拍摄方法中的步骤1401同理,此处不再赘述。
1702、第一摄像机响应于第一控制指令,对第一目标进行拍摄。
其中,步骤1702与上述图14所示的拍摄方法中的步骤1402同理,此处不再赘述。
1703、第一摄像机接收第二雷达发出的第二控制指令,该第二控制指令用于指示第一摄像机拍摄第二雷达探测到的第二目标,该第二雷达不同于该第一雷达。
其中,步骤1703与上述图14所示的拍摄方法中的步骤1403同理,此处不再赘述。
1704、第一摄像机响应于第二控制指令,对第二目标进行拍摄。
其中,步骤1704与上述图14所示的拍摄方法中的步骤1404同理,此处不再赘述。
1705、第二摄像机接收第一雷达发出的第七控制指令,第七控制指令用于指示第二摄像机拍摄第一雷达探测到的第五目标。
其中,第五目标为第一雷达探测到的出现在第三目标区域内的目标。例如,第三目标区域是指禁止目标进入的区域,也可以理解为防区。又例如,第三目标区域为监控区域,本发明实施例对此不作限定。需要说明的是,步骤1705的具体实施方式与上述图14所示的拍摄方法中的步骤1401或1403同理,此处不再赘述。
1706、第二摄像机响应于第七控制指令,对第五目标进行拍摄。
其中,步骤1706与上述图14所示的拍摄方法中的步骤1404同理,此处不再赘述。
在上述步骤1701至步骤1706所示的拍摄方法中,一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的雷达探测到的目标进行拍摄,这种方式充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,有效提高了拍摄效率和拍摄准确率。进一步地,一个雷达的探测区域内可以有多个摄像机实施监控,能够进一步提高雷达的探测覆盖率,从而极大提高了拍摄效率和拍摄准确率。
下面参考图18,在上述图14至图17所示的拍摄方法的基础上,以摄像机的角度,对本发明实施例提供的拍摄方法的流程进行举例说明。
图18是本发明实施例提供的一种拍摄方法的示意图。如图18所示,该拍摄方法应用于摄像机。示意性地,摄像机启动之后,首先会在默认拍摄位置等待雷达发送的控制指令。
当摄像机接收到一条雷达的控制指令时,如果摄像机处于空闲状态,则根据该控制指令,转动到对应的拍摄位置,对目标进行拍摄(具体可参考上述步骤1401和步骤1402,或者,参考步骤1403和步骤1404,在此不再赘述)。其中,若本次控制指令对应的转动角度过大,则本次不发送事件通知,而是转动到对应的拍摄位置后,等待下一条控制指令(这一过程具体可参考上述图16,在此不再赘述)。
当摄像机接收到一条雷达的控制指令时,如果摄像机不是空闲状态,则判断该控制指令与上一条控制指令是否来自同一雷达,包括下述两种情况:
情况一、该控制指令与上一条控制指令来自同一雷达,则摄像机判断该控制指令所指示拍摄的目标与上一条控制指令所指示拍摄的目标是否为同一目标,如果是同一目标,则响应于该控制指令,对目标进行拍摄,并发送事件通知。如果不是同一目标,则识别该控制指令所指示拍摄的目标的有效性,在该目标为有效目标的情况下,响应于该控制指令,对目标进行拍摄,并发送事件通知(这一过程具体可参考上述图15,在此不再赘述)。
情况二、该控制指令与上一条控制指令来自不同雷达,则摄像机判断拍摄上一条控制指令对应的目标的持续时长是否在有效期内,如果拍摄时长已过期,则响应于该控制指令,转动至对应的拍摄位置,对目标进行拍摄,如果拍摄时长在有效期内,则放弃该控制指令,等待下一条控制指令(这一过程具体可参考上述图15,在此不再赘述)。
需要说明的是,在一些实施例中,同一个目标在整个生命周期内只会被识别一次,如果一个目标已经被识别为有效目标且针对这个目标的拍摄时长在有效期内,那么摄像机只要收到针对这个目标的控制指令,都会转动至对应的拍摄位置,进行跟踪拍摄并发送事件通知,本发明实施例对此不作限定。
上述图14至图18所示的拍摄方法是以摄像机的角度,对本发明实施例的拍摄方法进行介绍的。在一些实施例中,一个雷达可以控制多个摄像机对目标进行拍摄(例如,参考图6、图8、图11、图12以及图17)。因此,对于雷达来说,雷达需要从多个摄像机中确定出能够拍摄到目标的摄像机,并控制该摄像机对目标进行拍摄,以确保拍摄效率和拍摄准确率。
下面参考图19,以第一雷达的角度,对本发明实施例提供的拍摄方法进行介绍。图19是本发明实施例提供的一种拍摄方法的流程图,在本发明实施例中,以第一雷达的角度,对本发明实施例提供的拍摄方法进行介绍。该拍摄方法应用于上述图2所示的拍摄系统。示意性地,在图19所示的实施例中,以应用于如图2所示的第一雷达为例进行说明,该拍摄方法包括如下几个步骤。
1901、第一雷达探测到第一目标。
其中,第一雷达启动后,向第一目标区域发送电磁波,当基于所发送的电磁波探测到第一目标区域内出现疑似目标时,第一雷达判断该疑似目标是否为需要进行跟踪拍摄的目标,如果是,则第一雷达确定该疑似目标为第一目标,如果不是,则第一雷达放弃该疑似目标,继续向第一目标区域发送电磁波,直到探测到第一目标为止。
在一些实施例中,第一雷达为激光雷达。示意性地,第一雷达启动后,向第一目标区域发送激光束,探测第一目标区域内出现的疑似目标,本发明实施例对此不作限定。
在一些实施例中,第一雷达基于探测到的疑似目标,生成该疑似目标的置信度,当置信度大于或等于第三阈值时,将该疑似目标确定为第一目标。例如,第三阈值为80%,当疑似目标的置信度大于或等于80%时,将该疑似目标确定为第一目标,本发明实施例对此不作限定。
在一些实施例中,当第一雷达探测到第一目标时,第一雷达已经处于跟踪状态,则第一雷达需要判断第一目标与正在跟踪的目标是否为同一目标。其中,雷达的跟踪状态是指第一雷达在探测到第一目标之前,已经探测到一个目标,且正在持续计算该目标的位置。如果第一雷达确定两个目标是同一目标,则第一雷达执行下述步骤1902和步骤1903。如果不是同一目标,则第一雷达判断正在跟踪的目标是否失效,如果正在跟踪的目标已经失效,则第一雷达继续执行下述步骤1902和步骤1903,如果正在跟踪的目标还未失效,则第一雷达丢弃第一目标,继续跟踪当前正在跟踪的目标。
下面对第一雷达判断第一目标与正在跟踪的目标是否为同一目标的方式进行介绍。其中,第一雷达获取第一雷达正在跟踪的目标在前一时刻的位置;若该正在跟踪的目标和第一目标之间的距离小于或等于第四阈值,则确定第一目标与正在跟踪的目标为同一目标。这一过程 也可以理解为第一雷达通过获取两个目标之间的距离来判断两个目标是否为同一目标。通过这种方式,在确定第一目标与正在跟踪的目标为同一目标的情况下,对第一目标进行跟踪,确保了后续摄像机进行拍摄时的准确率和稳定性。
下面对第一雷达判断正在跟踪的目标是否失效的方式进行介绍。其中,第一雷达获取探测到第一目标时的第一时刻与探测到正在跟踪的目标的第二时刻之间的第一时间差;若该第一时间差大于第五阈值,则第一雷达确定正在跟踪的目标已经失效。这一过程也可以理解为第一雷达通过获取两个目标之间的时间差来判断正在跟踪的目标是否失效。通过这种方式,在确定正在跟踪的目标已经失效的情况下,对第一目标进行跟踪,确保了对正在跟踪的目标的拍摄的完整性,提高拍摄效率。
1902、第一雷达基于探测到的第一目标,从多个摄像机中确定能够拍摄到该第一目标的目标摄像机。
其中,多个摄像机是指第一雷达已经对其完成注册的摄像机,也即是第一雷达的注册表中包括多个摄像机的注册信息(第一雷达对摄像机进行注册的过程已在前述实施例中介绍,在此不再赘述)。
在一些实施例中,第一雷达根据第一目标所在的位置和该第一雷达存储的多个摄像机中每一个摄像机的拍摄范围信息,确定目标摄像机。可选地,该多个摄像机均为球机,摄像机的拍摄范围信息指示摄像机的监控半径。示意性地,该步骤1902包括:第一雷达基于探测到的第一目标,计算该第一目标所处的位置,基于第一目标所处的位置和多个摄像机的监控半径,从多个摄像机中确定能够拍摄到第一目标的目标摄像机。
在一些实施例中,以摄像机的拍摄范围信息指示摄像机的监控半径为例,第一雷达按照目标顺序,依次获取第一目标与多个摄像机之间的多个第一距离,若获取到任一第一距离小于或等于对应摄像机的监控半径,将该第一距离对应的摄像机确定为目标摄像机。其中,目标顺序可以根据多个摄像机与第一雷达之间的距离大小来确定。
例如,参考上述图6所示的拍摄系统的架设方案,以第一雷达为图6中的雷达B′为例,雷达B′先获取第一目标与摄像机B之间的第一距离,若该摄像机B对应的第一距离小于或等于摄像机B的监控半径,则雷达B′将该摄像机B确定为目标摄像机。进一步地,若该摄像机B对应的第一距离大于摄像机B的监控半径,则雷达B′继续获取第一目标与摄像机C之间的第一距离,若该摄像机C对应的第一距离小于或等于摄像机B的监控半径,则雷达B′将该摄像机C确定为目标摄像机。示意性地,这一过程也可以理解为,第一雷达先判断第一目标是否在同杆摄像机的监控范围内,若在,则将同杆摄像机确定为目标摄像机,若不在,则判断第一目标是否在异杆摄像机的监控范围内,若在,则将异杆摄像机确定为目标摄像机。
应理解,上述以图6为例的说明仅为示意性地,在一些实施例中,当摄像机的数量大于2时,第一雷达可以按照目标顺序,依次判断第一目标是否在这些摄像机的监控范围内。通过这种依次确定的方式,当一个目标同时处于多个摄像机的监控范围内时,避免了后续重复发送控制指令,造成资源浪费。
在一些实施例中,第一雷达从多个摄像机中确定目标摄像机后,若目标摄像机故障,则第一雷达需要向多个摄像机中目标摄像机以外的其他摄像机发送相应的控制指令。在一些实施例中,目标摄像机与第一雷达安装于同一安装杆,目标摄像机与第二雷达安装于不同安装杆,第一雷达和第二雷达朝向一致(也即是上述5和图6所示的拍摄系统的架设方案)。在这 种情况下,第一雷达探测到第五目标,从多个摄像机中确定能够拍摄到第五目标的目标摄像机,若目标摄像机故障,向第二摄像机发送第七控制指令,第七控制指令用于指示第二摄像机拍摄第五目标,第二摄像机与第二雷达安装于同一安装杆。
例如,参考上述图6所示的拍摄系统的架设方案,以第一雷达为图6中的雷达B′为例,雷达B′探测到第五目标,从多个摄像机中确定能够拍摄到第五目标的目标摄像机为摄像机B,若摄像机B故障,则雷达B′向摄像机C(第二摄像机)发送第七控制指令。同理,雷达B′探测到第五目标,从多个摄像机中确定能够拍摄到第五目标的目标摄像机为摄像机C,若摄像机C故障,则雷达B′向摄像机B(第二摄像机)发送第七控制指令。
通过上述可选实施方式,在目标摄像机故障的情况下,及时向第二摄像机发送相应的控制指令,提高了拍摄效率。
1903、第一雷达向目标摄像机发送第一控制指令以使目标摄像机对第一目标进行拍摄,该第一控制指令用于指示目标摄像机拍摄第一雷达探测到的第一目标。
其中,第一雷达基于第一目标所处的位置以及目标摄像机的位置,得到第一拍摄位置的信息,向目标摄像机发送第一控制指令。可选地,第一拍摄位置的信息为第一PTZ坐标,则第一雷达基于第一目标所处的位置以及目标摄像机的位置,计算第一PTZ坐标,本发明实施例对此不作限定。在一些实施例中,该第一控制指令还携带有第一目标的置信度。通过在第一控制指令中携带置信度,使得目标摄像机能够根据第一目标的置信度来判定第一目标是否为有效目标,本发明实施例对此不作限定。
经过上述步骤1901至步骤1903,从第一雷达的角度,对本发明实施例提供的拍摄方法的基本流程进行了介绍,应理解,上述步骤中是以第一雷达为例进行介绍的,第二雷达或者拍摄系统中的任一雷达确定目标摄像机并向目标摄像机发送控制指令的方式,与上述步骤同理,在此不再赘述。上述方法充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,且有效提高了拍摄效率和拍摄准确率。
下面参考图20,在图19所示的拍摄方法的基础上,以第一雷达的角度,对本发明实施例提供的拍摄方法的流程进行举例说明。
图20是本发明实施例提供的一种拍摄方法的示意图。如图20所示,该拍摄方法应用于第一雷达,多个摄像机包括同杆摄像机和异杆摄像机(应理解,此处仅以两个摄像机为例进行介绍,并不构成对本发明的限定)。示意性地,第一雷达启动之后,首先会从配置文件中载入同杆摄像机和异杆摄像机的监控半径以及这两个摄像机的网络地址等信息,然后扫描目标区域。
当第一雷达探测到第一目标时,如果第一雷达处于空闲状态,则第一雷达从多个摄像机中确定能够拍摄到该第一目标的目标摄像机。具体可以包括:第一雷达先判断第一目标是否在同杆摄像机的监控范围内,如果在,则将同杆摄像机确定为目标摄像机,向该同杆摄像机发送控制指令,如果不在,则第一雷达判断第一目标是否在异杆摄像机的监控范围内,如果在,则将异杆摄像机确定为目标摄像机,向该异杆摄像机发送控制指令,如果不在,则第一雷达继续探测,直到探测到目标为止(这一过程具体可参考上述步骤1902,在此不再赘述)。
当第一雷达探测到第一目标时,如果第一雷达处于跟踪状态,则第一雷达判断第一目标与正在跟踪的目标是否为同一个目标,如果是,则第一雷达执行从多个摄像机中确定能够拍 摄到该第一目标的目标摄像机的步骤,如果不是,则第一雷达判断正在跟踪的目标是否失效,如果正在跟踪的目标已经失效,则第一雷达执行从多个摄像机中确定能够拍摄到该第一目标的目标摄像机的步骤,如果正在跟踪的目标还未失效,则第一雷达丢弃第一目标,继续跟踪正在跟踪的目标(这一过程具体可参考上述步骤1901,在此不再赘述)。
需要说明的是,在一些实施例中,第一雷达只负责探测目标,计算所探测到的目标的位置并发送控制指令,并不负责跟踪或发送事件通知,也不对目标的信息进行汇总。同时,第一雷达在发送控制指令时,并不关心接收控制指令的摄像机是否执行了指令。在一些实施例中,第一雷达发送控制指令时,摄像机有可能正在跟踪拍摄其他的目标,因此第一雷达发来的控制指令可能会被拒绝,本发明实施例对此不作限定。
上述图14至图18所示的拍摄方法,以摄像机的角度,对本发明实施例的拍摄方法进行了介绍。进一步地,上述图19和图20所示的拍摄方法,以第一雷达的角度,对本发明实施例的拍摄方法进行了介绍。
下面参考图21,以摄像机与雷达之间交互的角度,对本发明实施例提供的拍摄方法进行举例说明。图21是本发明实施例提供的一种拍摄方法的流程图。如图21所示,该拍摄方法应用于上述图2所示的拍摄系统,示意性地,在图21所示的实施例中,以应用于如图2所示的摄像机110、第一雷达120和第二雷达130为例进行说明,该拍摄方法包括如下几个步骤。
2101、第一雷达向摄像机发送第一控制指令,该第一控制指令用于指示摄像机拍摄第一雷达探测到的第一目标。
其中,步骤2101与上述步骤1901至步骤1903同理,在此不再赘述。
2102、摄像机接收第一控制指令,响应于该第一控制指令,对第一目标进行拍摄。
其中,步骤2102与上述步骤1401和步骤1402同理,在此不再赘述。
2103、第二雷达向摄像机发送第二控制指令,该第二控制指令用于指示摄像机拍摄第二雷达探测到的第二目标,该第二雷达不同于该第一雷达。
其中,步骤2103与上述步骤1901至步骤1903同理,在此不再赘述。
2104、摄像机接收第二控制指令,响应于该第二控制指令,对第二目标进行拍摄。
其中,步骤2104与上述步骤1403和步骤1404同理,在此不再赘述。
在本发明实施例提供的拍摄方法中,一个摄像机可以接受多个雷达的控制,来对拍摄区域内出现的雷达探测到的目标进行拍摄,这种方式充分利用了摄像机的拍摄区域和雷达的探测区域,有效覆盖了监控盲区,从而极大提高了设备利用率,且有效提高了拍摄效率和拍摄准确率。
图22是本发明实施例提供的一种拍摄装置的结构示意图。如图22所示,该拍摄装置2200用于执行上述拍摄方法中摄像机执行的步骤。示意性地,该拍摄装置2200包括但不限于:接收模块2201和拍摄模块2202。
接收模块2201,用于接收第一雷达发出的第一控制指令,该第一控制指令用于指示拍摄该第一雷达探测到的第一目标;
拍摄模块2202,用于响应于该第一控制指令,对该第一目标进行拍摄;
该接收模块2201,还用于接收第二雷达发出的第二控制指令,该第二控制指令用于指示 拍摄该第二雷达探测到的第二目标,该第二雷达不同于该第一雷达;
该拍摄模块2202,还用于响应于该第二控制指令,对该第二目标进行拍摄。
在一些实施例中,该第一控制指令为跟踪拍摄指令,该拍摄模块2202用于:对该第一目标进行识别,跟踪拍摄该第一目标。
在一些实施例中,该拍摄模块2202还用于:在对该第一目标进行拍摄之前,转动至第一拍摄位置。
在一些实施例中,该第一控制指令携带该第一拍摄位置的信息。
在一些实施例中,该装置还包括注册模块,该注册模块用于:
接收该第一雷达发出的第一注册请求,对该第一雷达进行注册;
接收该第二雷达发出的第二注册请求,对该第二雷达进行注册。
在一些实施例中,该装置还包括:
验证模块,用于在对该第一目标进行拍摄之前,对该第一雷达进行验证以确定该第一雷达已经注册。
在一些实施例中,该装置还包括:
发送模块,用于发送第一事件通知,该第一事件通知指示拍摄区域内出现该第一目标。
在一些实施例中,该拍摄模块2202还用于:
当接收到该第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
当开始对该第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至该默认拍摄位置。
在一些实施例中,该接收模块2201,还用于接收第二雷达以外的雷达发出的第三控制指令,其中,该第三控制指令用于指示拍摄该第二雷达以外的雷达探测到的第三目标;该拍摄模块2202,还用于当该拍摄模块2202正在拍摄该第二目标,并且拍摄该第二目标的持续时长在有效期内,保持对该第二目标的拍摄而不执行对该第三目标的拍摄;当该拍摄模块2202正在拍摄该第二目标,并且拍摄该第二目标的持续时长已过期,响应于该第三控制指令,对该第三目标进行拍摄。
在一些实施例中,该接收模块2201,还用于当该拍摄模块2202正在拍摄该第二目标时,接收第二雷达以外的雷达发出的第四控制指令,其中,该第四控制指令用于指示拍摄该第二雷达以外的雷达探测到的第四目标;该拍摄模块2202,还用于识别该第四目标的有效性;当该第四目标不是有效目标,保持对该第二目标的拍摄而不执行对该第四目标的拍摄;当该第四目标为有效目标,响应于该第四控制指令,对该第四目标进行拍摄。
在一些实施例中,该拍摄模块2202用于:当该第二控制指令对应的目标转动角度小于第一阈值,对该第二目标进行识别,对识别到的该第二目标进行拍摄。
在一些实施例中,该接收模块2201,还用于接收该第二雷达发出的第五控制指令,其中,该第五控制指令用于指示拍摄该第二目标,该第五控制指令为跟踪拍摄指令;该拍摄模块2202,还用于当该第五控制指令对应的目标转动角度不小于该第一阈值,对该第二目标进行拍摄而不执行对该第二目标的识别;当该拍摄模块正在拍摄该第二目标,并且接收第五控制指令之后,接收到该第二雷达发送的第六控制指令,对该第二目标进行识别,对识别到的该第二目标进行拍摄,其中,该第六控制指令用于指示拍摄该第二目标,该第六控制指令为跟踪拍摄 指令。
在一些实施例中,该拍摄装置是运行在摄像机中的软件,该接收模块2201和该拍摄模块2202是拥有相应功能的软件模块。在一些实施例中,该拍摄装置是拥有拍摄功能的硬件,例如该拍摄装置为摄像机,该接收模块2201是硬件接口(例如有线网口、无线网口),该拍摄模块2202是摄像机本体(包括镜头、传感器和处理器等)。在一些实施例中,该拍摄装置是摄像机中的处理器(例如片上系统(system on chip,SoC))或者处理器组合(例如图像信号处理(image signal process,ISP)芯片、编码芯片、电机控制芯片的组合),其中:该接收模块2201是处理器的对外接口,该拍摄模块2202是处理器,示意性地,对第一目标进行拍摄,包括:对图像传感器生成的图像进行图像处理,该图像中包括该第一目标,本发明实施例对此不作限定。
需要说明的是:上述实施例提供的拍摄装置在拍摄目标时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的拍摄装置与拍摄方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本发明中术语“第一”“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,应理解,“第一”、“第二”、“第n”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。还应理解,尽管以下描述使用术语第一、第二等来描述各种元素,但这些元素不应受术语的限制。这些术语只是用于将一元素与另一元素区别分开。例如,在不脱离各种所述示例的范围的情况下,第一摄像机可以被称为第二摄像机,并且类似地,第二摄像机可以被称为第一摄像机。第一摄像机和第二摄像机都可以是摄像机,并且在某些情况下,可以是单独且不同的摄像机。
本发明中术语“至少一个”的含义是指一个或多个,本发明中术语“多个”的含义是指两个或两个以上,例如,多个摄像机是指两个或两个以上的摄像机。
以上描述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以程序产品的形式实现。该程序产品包括一个或多个程序指令。在摄像机(例如摄像机的处理器)上加载和执行该程序指令时,全部或部分地产生按照本发明实施例中的流程或功能。
该指令可以存储在摄像机的可读存储介质中。或者存储在计算机的可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质例如,数字视频光盘(digital video disc,DVD)、 或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (42)

  1. 一种摄像机,其特征在于,所述摄像机包括接口和摄像机本体,其中:
    所述接口,用于从所述摄像机外部接收第一雷达发出的第一控制指令,将所述第一控制指令发送给所述摄像机本体,所述第一控制指令用于指示所述摄像机拍摄所述第一雷达探测到的第一目标;
    所述摄像机本体,用于从所述接口接收所述第一控制指令;响应于所述第一控制指令,对所述第一目标进行拍摄;
    所述接口,还用于从所述摄像机外部接收第二雷达发出的第二控制指令,将所述第二控制指令发送给所述摄像机本体,所述第二控制指令用于指示所述摄像机拍摄所述第二雷达探测到的第二目标,所述第二雷达不同于所述第一雷达;
    所述摄像机本体,还用于从所述接口接收所述第二控制指令;响应于所述第二控制指令,对所述第二目标进行拍摄。
  2. 根据权利要求1所述的摄像机,其特征在于,所述第一控制指令为跟踪拍摄指令,所述摄像机本体用于:对所述第一目标进行识别,跟踪拍摄所述第一目标。
  3. 根据权利要求1或2所述的摄像机,其特征在于,所述摄像机本体还用于:
    在对所述第一目标进行拍摄之前,转动至第一拍摄位置。
  4. 根据权利要求3所述的摄像机,其特征在于,
    所述第一控制指令携带所述第一拍摄位置的信息。
  5. 根据权利要求1至4任一项所述的摄像机,其特征在于,所述摄像机本体还用于:
    接收所述第一雷达发出的第一注册请求,对所述第一雷达进行注册;
    接收所述第二雷达发出的第二注册请求,对所述第二雷达进行注册。
  6. 根据权利要求5所述的摄像机,其特征在于,所述摄像机本体还用于:
    在对所述第一目标进行拍摄之前,对所述第一雷达进行验证以确定所述第一雷达已经注册。
  7. 根据权利要求1至6任一项所述的摄像机,其特征在于,所述摄像机本体还用于:
    发送第一事件通知,所述第一事件通知指示所述摄像机的拍摄区域内出现所述第一目标。
  8. 根据权利要求1至7任一项所述的摄像机,其特征在于,所述摄像机本体还用于:
    当接收到所述第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
    当开始对所述第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令, 转动至所述默认拍摄位置。
  9. 根据权利要求1至8任一项所述的摄像机,其特征在于,所述摄像机本体还用于:
    从所述接口接收所述第二雷达以外的雷达发出的第三控制指令,其中,所述第三控制指令用于指示所述摄像机拍摄所述第二雷达以外的雷达探测到的第三目标;
    当所述摄像机本体正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长在有效期内,保持对所述第二目标的拍摄而不执行对所述第三目标的拍摄;
    当所述摄像机本体正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长已过期,响应于所述第三控制指令,对所述第三目标进行拍摄。
  10. 根据权利要求1至8任一项所述的摄像机,其特征在于,所述摄像机本体还用于:
    当所述摄像机本体正在拍摄所述第二目标时,从所述接口接收所述第二雷达以外的雷达发出的第四控制指令,其中,所述第四控制指令用于指示所述摄像机拍摄所述第二雷达以外的雷达探测到的第四目标;
    识别所述第四目标的有效性;
    当所述第四目标不是有效目标,保持对所述第二目标的拍摄而不执行对所述第四目标的拍摄;
    当所述第四目标为有效目标,响应于所述第四控制指令,对所述第四目标进行拍摄。
  11. 根据权利要求1至10任一项所述的摄像机,其特征在于,
    所述对所述第二目标进行拍摄,包括:当所述第二控制指令对应的目标转动角度小于第一阈值,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄。
  12. 根据权利要求1至11任一项所述的摄像机,其特征在于,所述摄像机本体还用于:
    从所述接口接收所述第二雷达发出的第五控制指令,其中,所述第五控制指令用于指示所述摄像机拍摄所述第二目标,所述第五控制指令为跟踪拍摄指令;
    当所述第五控制指令对应的目标转动角度不小于所述第一阈值,对所述第二目标进行拍摄而不执行对所述第二目标的识别;
    当所述摄像机本体正在拍摄所述第二目标,并且从所述接口接收所述第五控制指令之后,从所述接口接收到所述第二雷达发出的第六控制指令,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄,其中,所述第六控制指令用于指示所述摄像机拍摄所述第二目标,所述第六控制指令为跟踪拍摄指令。
  13. 根据权利要求1至12任一项所述的摄像机,其特征在于,所述摄像机与所述第一雷达安装于同一安装杆,所述摄像机与所述第二雷达安装于不同安装杆。
  14. 根据权利要求13所述的摄像机,其特征在于,所述第一雷达和所述第二雷达朝向一致。
  15. 根据权利要求1至12任一项所述的摄像机,其特征在于,所述摄像机、所述第一雷达和所述第二雷达安装于同一安装杆。
  16. 根据权利要求15所述的摄像机,其特征在于,所述第一雷达和所述第二雷达朝向相背。
  17. 根据权利要求1至12任一项所述的摄像机,其特征在于,所述摄像机、所述第一雷达和所述第二雷达分别安装于不同安装杆。
  18. 根据权利要求17所述的摄像机,其特征在于,所述第一雷达和所述第二雷达朝向相对。
  19. 一种拍摄方法,其特征在于,所述方法包括:
    第一摄像机接收第一雷达发出的第一控制指令,所述第一控制指令用于指示所述第一摄像机拍摄所述第一雷达探测到的第一目标;
    所述第一摄像机响应于所述第一控制指令,对所述第一目标进行拍摄;
    所述第一摄像机接收第二雷达发出的第二控制指令,所述第二控制指令用于指示所述第一摄像机拍摄所述第二雷达探测到的第二目标,所述第二雷达不同于所述第一雷达;
    所述第一摄像机响应于所述第二控制指令,对所述第二目标进行拍摄。
  20. 根据权利要求19所述的方法,其特征在于,所述第一控制指令为跟踪拍摄指令,所述对所述第一目标进行拍摄,包括:所述第一摄像机对所述第一目标进行识别,跟踪拍摄所述第一目标。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    当所述第一摄像机接收到所述第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,所述第一摄像机转动至默认拍摄位置;和/或
    当所述第一摄像机开始对所述第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,所述第一摄像机转动至所述默认拍摄位置。
  22. 根据权利要求19至21任一项所述的方法,其特征在于,所述第一摄像机响应于所述第二控制指令之后,所述方法还包括:
    所述第一摄像机接收所述第二雷达以外的雷达发出的第三控制指令,其中,所述第三控制指令用于指示所述第一摄像机拍摄所述第二雷达以外的雷达探测到的第三目标;
    当所述第一摄像机正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长在有效期内,所述第一摄像机保持对所述第二目标的拍摄而不执行对所述第三目标的拍摄;
    当所述第一摄像机正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长已过期,所述第一摄像机响应于所述第三控制指令,对所述第三目标进行拍摄。
  23. 根据权利要求19至21任一项所述的方法,其特征在于,所述第一摄像机响应于所述第二控制指令之后,所述方法还包括:
    当所述第一摄像机正在拍摄所述第二目标时,所述第一摄像机接收所述第二雷达以外的雷达发出的第四控制指令,其中,所述第四控制指令用于指示所述第一摄像机拍摄所述第二雷达以外的雷达探测到的第四目标;
    所述第一摄像机识别所述第四目标的有效性;
    当所述第四目标不是有效目标,所述第一摄像机保持对所述第二目标的拍摄而不执行对所述第四目标的拍摄;
    当所述第四目标为有效目标,所述第一摄像机响应于所述第四控制指令,对所述第四目标进行拍摄。
  24. 根据权利要求19至23任一项所述的方法,其特征在于,
    所述对所述第二目标进行拍摄,包括:当所述第二控制指令对应的目标转动角度小于第一阈值,所述第一摄像机对所述第二目标进行识别,对识别到的所述第二目标进行拍摄。
  25. 根据权利要求19至24任一项所述的方法,其特征在于,所述方法还包括:
    所述第一摄像机接收所述第二雷达发出的第五控制指令,其中,所述第五控制指令用于指示所述第一摄像机拍摄所述第二目标,所述第五控制指令为跟踪拍摄指令;
    当所述第五控制指令对应的目标转动角度不小于所述第一阈值,所述第一摄像机对所述第二目标进行拍摄而不执行对所述第二目标的识别;
    当所述第一摄像机正在拍摄所述第二目标,并且所述第一摄像机接收所述第五控制指令之后,接收到所述第二雷达发出的第六控制指令,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄,其中,所述第六控制指令用于指示所述第一摄像机拍摄所述第二目标,所述第六控制指令为跟踪拍摄指令。
  26. 根据权利要求19至25任一项所述的方法,其特征在于,所述方法还包括:
    第二摄像机接收所述第一雷达发出的第七控制指令,所述第七控制指令用于指示所述第二摄像机拍摄所述第一雷达探测到的第五目标;
    所述第二摄像机响应于所述第七控制指令,对所述第五目标进行拍摄。
  27. 一种拍摄系统,其特征在于,所述系统包括摄像机、第一雷达和第二雷达,其中,
    所述第一雷达,用于向所述摄像机发送第一控制指令,所述第一控制指令用于指示所述摄像机拍摄所述第一雷达探测到的第一目标;
    所述摄像机,用于接收所述第一控制指令,响应于所述第一控制指令,对所述第一目标进行拍摄;
    所述第二雷达,用于向所述摄像机发送第二控制指令,所述第二控制指令用于指示所述摄像机拍摄所述第二雷达探测到的第二目标,所述第二雷达不同于所述第一雷达;
    所述摄像机,还用于接收所述第二控制指令,响应于所述第二控制指令,对所述第二目标进行拍摄。
  28. 根据权利要求27所述的系统,其特征在于,所述第一控制指令为跟踪拍摄指令,所述对所述第一目标进行拍摄,包括:对所述第一目标进行识别,跟踪拍摄所述第一目标。
  29. 根据权利要求27或28所述的系统,其特征在于,所述摄像机还用于:
    当所述摄像机接收到所述第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
    当所述摄像机开始对所述第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至所述默认拍摄位置。
  30. 根据权利要求27至29任一项所述的系统,其特征在于,所述摄像机还用于:
    接收所述第二雷达以外的雷达发出的第三控制指令,其中,所述第三控制指令用于指示所述摄像机拍摄所述第二雷达以外的雷达探测到的第三目标;
    当所述摄像机正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长在有效期内,保持对所述第二目标的拍摄而不执行对所述第三目标的拍摄;
    当所述摄像机正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长已过期,响应于所述第三控制指令,对所述第三目标进行拍摄。
  31. 根据权利要求27至29任一项所述的系统,其特征在于,所述摄像机还用于:
    当所述摄像机正在拍摄所述第二目标时,接收所述第二雷达以外的雷达发出的第四控制指令,其中,所述第四控制指令用于指示所述摄像机拍摄所述第二雷达以外的雷达探测到的第四目标;
    识别所述第四目标的有效性;
    当所述第四目标不是有效目标,保持对所述第二目标的拍摄而不执行对所述第四目标的拍摄;
    当所述第四目标为有效目标,响应于所述第四控制指令,对所述第四目标进行拍摄。
  32. 根据权利要求27至31任一项所述的系统,其特征在于,
    所述对所述第二目标进行拍摄,包括:当所述第二控制指令对应的目标转动角度小于第一阈值,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄。
  33. 根据权利要求27至32任一项所述的系统,其特征在于,所述摄像机还用于:
    接收所述第二雷达发出的第五控制指令,其中,所述第五控制指令用于指示所述摄像机拍摄所述第二目标,所述第五控制指令为跟踪拍摄指令;
    当所述第五控制指令对应的目标转动角度不小于所述第一阈值,对所述第二目标进行拍摄而不执行对所述第二目标的识别;
    当所述摄像机正在拍摄所述第二目标,并且所述摄像机接收所述第五控制指令之后,接收到所述第二雷达发出的第六控制指令,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄,其中,所述第六控制指令用于指示所述摄像机拍摄所述第二目标,所述第六控 制指令为跟踪拍摄指令。
  34. 一种拍摄装置,其特征在于,所述装置包括:
    接收模块,用于接收第一雷达发出的第一控制指令,所述第一控制指令用于指示拍摄所述第一雷达探测到的第一目标;
    拍摄模块,用于响应于所述第一控制指令,对所述第一目标进行拍摄;
    所述接收模块,还用于接收第二雷达发出的第二控制指令,所述第二控制指令用于指示拍摄所述第二雷达探测到的第二目标,所述第二雷达不同于所述第一雷达;
    所述拍摄模块,还用于响应于所述第二控制指令,对所述第二目标进行拍摄。
  35. 根据权利要求34所述的装置,其特征在于,所述第一控制指令为跟踪拍摄指令,
    所述拍摄模块用于:对所述第一目标进行识别,跟踪拍摄所述第一目标。
  36. 根据权利要求34或35所述的装置,其特征在于,所述拍摄模块还用于:
    当接收到所述第二控制指令之后的第一时长内未接收到来自任一雷达的控制指令,转动至默认拍摄位置;和/或
    当开始对所述第二目标进行拍摄之后的第二时长内未接收到来自任一雷达的控制指令,转动至所述默认拍摄位置。
  37. 根据权利要求34至36任一项所述的装置,其特征在于,
    所述接收模块,还用于接收所述第二雷达以外的雷达发出的第三控制指令,其中,所述第三控制指令用于指示拍摄所述第二雷达以外的雷达探测到的第三目标;
    所述拍摄模块,还用于:当所述拍摄模块正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长在有效期内,保持对所述第二目标的拍摄而不执行对所述第三目标的拍摄;当所述拍摄模块正在拍摄所述第二目标,并且拍摄所述第二目标的持续时长已过期,响应于所述第三控制指令,对所述第三目标进行拍摄。
  38. 根据权利要求34至36任一项所述的装置,其特征在于,
    所述接收模块,还用于当所述拍摄模块正在拍摄所述第二目标时,接收所述第二雷达以外的雷达发出的第四控制指令,其中,所述第四控制指令用于指示拍摄所述第二雷达以外的雷达探测到的第四目标;
    所述拍摄模块,还用于识别所述第四目标的有效性;当所述第四目标不是有效目标,保持对所述第二目标的拍摄而不执行对所述第四目标的拍摄;当所述第四目标为有效目标,响应于所述第四控制指令,对所述第四目标进行拍摄。
  39. 根据权利要求34至38任一项所述的装置,其特征在于,
    所述拍摄模块,还用于当所述第二控制指令对应的目标转动角度小于第一阈值,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄。
  40. 根据权利要求34至39任一项所述的装置,其特征在于,
    所述接收模块,还用于接收所述第二雷达发出的第五控制指令,其中,所述第五控制指令用于指示拍摄所述第二目标,所述第五控制指令为跟踪拍摄指令;
    所述拍摄模块,还用于当所述第五控制指令对应的目标转动角度不小于所述第一阈值,对所述第二目标进行拍摄而不执行对所述第二目标的识别;当所述拍摄模块正在拍摄所述第二目标,并且接收所述第五控制指令之后,接收到所述第二雷达发送的第六控制指令,对所述第二目标进行识别,对识别到的所述第二目标进行拍摄,其中,所述第六控制指令用于指示拍摄所述第二目标,所述第六控制指令为跟踪拍摄指令。
  41. 一种程序产品,其特征在于,所述程序产品包括至少一段程序代码,摄像机运行所述至少一段程序代码执行如权利要求19至权利要求26中任一项所述的拍摄方法。
  42. 一种可读存储介质,其特征在于,所述可读存储介质用于存储至少一段程序代码,摄像机运行所述至少一段程序代码执行如权利要求19至权利要求26中任一项所述的拍摄方法。
PCT/CN2021/114775 2021-04-13 2021-08-26 摄像机、拍摄方法、系统及装置 WO2022217809A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110394999 2021-04-13
CN202110394999.2 2021-04-13
CN202110873060.4A CN115209038A (zh) 2021-04-13 2021-07-30 摄像机、拍摄方法、系统及装置
CN202110873060.4 2021-07-30

Publications (1)

Publication Number Publication Date
WO2022217809A1 true WO2022217809A1 (zh) 2022-10-20

Family

ID=83573860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114775 WO2022217809A1 (zh) 2021-04-13 2021-08-26 摄像机、拍摄方法、系统及装置

Country Status (2)

Country Link
CN (2) CN115209039A (zh)
WO (1) WO2022217809A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184251A (ja) * 2015-03-26 2016-10-20 株式会社Jvcケンウッド 車両監視システム、車両監視方法、及び、車両監視プログラム
CN108965809A (zh) * 2018-07-20 2018-12-07 长安大学 雷达引导的视频联动监控系统及控制方法
CN109982043A (zh) * 2019-04-02 2019-07-05 西安华腾微波有限责任公司 一种智能监控的信息处理方法及装置
WO2020188697A1 (ja) * 2019-03-18 2020-09-24 株式会社日立国際電気 監視システム及び監視方法
CN212781222U (zh) * 2020-05-20 2021-03-23 科大讯飞股份有限公司 车辆损伤监控系统
CN112738394A (zh) * 2020-12-25 2021-04-30 浙江大华技术股份有限公司 雷达与摄相机设备的联动方法和装置、存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184251A (ja) * 2015-03-26 2016-10-20 株式会社Jvcケンウッド 車両監視システム、車両監視方法、及び、車両監視プログラム
CN108965809A (zh) * 2018-07-20 2018-12-07 长安大学 雷达引导的视频联动监控系统及控制方法
WO2020188697A1 (ja) * 2019-03-18 2020-09-24 株式会社日立国際電気 監視システム及び監視方法
CN109982043A (zh) * 2019-04-02 2019-07-05 西安华腾微波有限责任公司 一种智能监控的信息处理方法及装置
CN212781222U (zh) * 2020-05-20 2021-03-23 科大讯飞股份有限公司 车辆损伤监控系统
CN112738394A (zh) * 2020-12-25 2021-04-30 浙江大华技术股份有限公司 雷达与摄相机设备的联动方法和装置、存储介质

Also Published As

Publication number Publication date
CN115209039A (zh) 2022-10-18
CN115209038A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
KR100918837B1 (ko) 하이브리드 방식의 차량 검지시스템 및 그 검지방법
JP4617269B2 (ja) 監視システム
JP6815262B2 (ja) 交通違反検知装置、システム、交通違反検知方法およびプログラム
KR100973930B1 (ko) 감시카메라, 전광판 및 방송장치를 포함하는 다기능 무인단속 시스템
KR101275297B1 (ko) 이동객체 추적 카메라 장치
CN101902620B (zh) 一种监控系统、方法及装置
JP7464281B2 (ja) 光ファイバセンシングシステム、監視装置、監視方法、及びプログラム
JP7505609B2 (ja) 光ファイバセンシングシステム及び行動特定方法
KR101852058B1 (ko) 듀얼 카메라를 이용한 돌발 상황 감지방법
CN103929592A (zh) 全方位智能监控设备及方法
CN107360394A (zh) 应用于边防视频监控系统的多预置点动态智能监测方法
KR101290782B1 (ko) 지능적 다중 객체 추적 알고리즘 기반의 다중 ptz 카메라 제어 시스템 및 방법
KR102162130B1 (ko) 단일카메라를 이용한 불법주정차 단속시스템
Fawzi et al. Embedded real-time video surveillance system based on multi-sensor and visual tracking
WO2022217809A1 (zh) 摄像机、拍摄方法、系统及装置
KR102347026B1 (ko) 복수의 고정 카메라로 구성된 다중 카메라를 이용한 영상 분석 장치
CN111432187A (zh) 一种异动目标跟踪方法、系统及装置
CN114627409A (zh) 一种车辆异常变道的检测方法及装置
CN112601049B (zh) 视频的监控方法、装置、计算机设备及存储介质
WO2021232826A1 (zh) 基于无线定位技术的摄像机动态跟踪路面目标的控制方法和装置
KR101168129B1 (ko) 반사체를 이용한 보안구역의 경보시스템
WO2022257505A1 (zh) 目标跟踪方法、系统、设备及存储介质
CN105323540A (zh) 多摄像机智能控制四轴飞行器
CN111739305A (zh) 基于多类型相机的违停管理方法及系统
KR102356651B1 (ko) 레이더 보안 카메라를 이용한 지능형 관제 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936681

Country of ref document: EP

Kind code of ref document: A1