WO2022217742A1 - 一种海底电缆的地磁探测方法 - Google Patents

一种海底电缆的地磁探测方法 Download PDF

Info

Publication number
WO2022217742A1
WO2022217742A1 PCT/CN2021/101473 CN2021101473W WO2022217742A1 WO 2022217742 A1 WO2022217742 A1 WO 2022217742A1 CN 2021101473 W CN2021101473 W CN 2021101473W WO 2022217742 A1 WO2022217742 A1 WO 2022217742A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater robot
cable
preliminary
detection
underwater
Prior art date
Application number
PCT/CN2021/101473
Other languages
English (en)
French (fr)
Inventor
章雪挺
王芳
田晓庆
刘敬彪
朱泽飞
Original Assignee
杭州电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州电子科技大学 filed Critical 杭州电子科技大学
Publication of WO2022217742A1 publication Critical patent/WO2022217742A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/40Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth

Definitions

  • the invention belongs to the technical field of submarine detection, and in particular relates to a geomagnetic detection method for submarine cables.
  • the detection, identification and positioning of submarine cables is a recognized technical problem in the field of marine engineering.
  • the traditional method is mainly based on manual observation by divers.
  • the technical method of automatic inspection through underwater robots equipped with various loads of sound, light and magnetic is attracting attention.
  • submarine cables are mostly laid below the surface of the seabed, optical methods, as well as most acoustic methods, do not work well.
  • Shallow profiling an acoustic method that can detect subsurface, is limited by the acoustic detection resolution due to the limited diameter of the cable.
  • the method based on the inversion of the geomagnetic anomaly field is the most potential method at present to detect the submarine buried cable.
  • the signal is still interfered by the complex background field in practical applications. , the reliability of the suspected anomaly is low and other defects.
  • Invention patent application CN201711262447.6 discloses a submarine cable detection underwater robot and an operation method, and specifically discloses: when the underwater robot is in the AUV mode, the underwater robot is in a cableless state at this time, and can escape from the limitation of the surface mother ship.
  • the digital radio and composite antenna receive instructions, and can independently set operating tasks and travel routes outside the communication range to complete the routing survey and daily inspection of submarine cables.
  • the underwater robot is in ROV mode, the underwater robot is in a cabled state at this time, and communicates with the remote control platform through the umbilical cable. It can upload video images or other sensor information in real time, and receive electrical energy from the surface mother ship to charge to complete the seabed. Cable fault detection and pinpointing jobs.
  • the invention adopts the underwater robot in the cableless AUV mode and the cabled ROV mode for detection, and needs to switch different working modes during the detection process.
  • the location and type of submarine cable faults are mainly judged by video images and other sensor information.
  • the present invention proposes a geomagnetic detection method for submarine cables with high reliability of fault detection results.
  • a geomagnetic detection method for a submarine cable, applied to a detection control terminal includes:
  • Step S01 controlling an underwater robot equipped with a proton magnetometer to perform preliminary detection, and then determining preliminary cable direction and preliminary position information based on preliminary detection information;
  • the preliminary detection information includes underwater positioning data and total geomagnetic field;
  • Step S02 according to the preliminary position information, control the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers to launch into the water to perform route detection; then, based on the total geomagnetic field measured by the proton magnetometer during the route detection, control The underwater robot drives to the top of the cable and determines the specific position information of the cable; then, based on the X-axis component gradient values obtained by the two fluxgate magnetometers, the heading of the underwater robot is controlled to move along the preliminary cable trend ;
  • Step S03 control the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers to launch into the water to perform patrol inspection; then, based on the Z-axis components measured by the two fluxgate magnetometers value and the underwater depth data of the underwater robot to judge whether there is a fault in the submarine cable and the location of the fault point;
  • the proton magnetometer is installed in front of the underwater robot, and the two fluxgate magnetometers are installed on both sides of the underwater robot.
  • the invention can correct the position information of the cable in real time based on the geomagnetic information, so that the detection process is always carried out along the direction of the cable, the detection is accurate, and the realization is simple.
  • the direction of the cable is constantly being corrected during the detection process.
  • the step S01 includes:
  • Step S11 based on the detection range of the submarine cable, determine the comb-shaped path covering the entire detection range as the preliminary detection path of the underwater robot equipped with the proton magnetometer;
  • Step S12 controlling the underwater robot to perform preliminary detection according to the preliminary detection path under a certain launching depth, and record the preliminary detection information
  • step S13 after the preliminary detection of the underwater robot is completed, the preliminary cable direction and preliminary position information are determined based on the preliminary detection information.
  • the determining of the preliminary cable direction and preliminary position information based on the preliminary detection information includes: forming a two-dimensional contour map based on the preliminary detection information, and associating dense regions with extremely high geomagnetic values or local extremely low geomagnetic values, Then, the preliminary cable direction and preliminary position information are judged.
  • the detection range of the submarine cable is a rectangular detection range determined based on historical data of the submarine cable.
  • the step S02 includes:
  • Step S21 determine the launching position of the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers;
  • Step S22 controlling the underwater robot to launch at the launching position, and controlling the underwater robot to drive to hover right above the cable;
  • Step S23 control the underwater robot to translate along the preliminary cable direction according to the preliminary cable direction, and adjust the translation direction of the underwater robot according to the change of the total geomagnetic field measured by the proton magnetometer; The position just above the cable of the field peak and hovering here, and determine the specific position information of the cable;
  • Step S24 the underwater robot is controlled to travel, and the heading of the underwater robot is controlled based on the X-axis component gradient values obtained by the two fluxgate magnetometers during the driving process to move along the preliminary cable direction.
  • the step S02 further includes the step of determining the direction of the specific cable: after the step S23 and before the step S24, the underwater robot is controlled to perform multiple clockwise and counterclockwise 360-degree rotations at the hovering position, based on the fact that after each rotation The obtained X-axis maximum value and Y-axis maximum value determine the azimuth angle of the cable, and then determine the specific cable direction; the step S24 controls the heading of the underwater robot to move along the specific cable direction.
  • the specific process of controlling the heading of the underwater robot includes:
  • the X-axis component gradient value is the difference between the X-axis component values measured by the two fluxgate magnetometers.
  • the step S03 includes:
  • Step S31 determine the launching position of the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers;
  • Step S32 controlling the underwater robot to launch at the launching position, and controlling the underwater robot to perform patrol inspection and detection along the cable direction under a certain launching depth;
  • Step S33 based on the Z-axis component values measured by the two fluxgate magnetometers and the underwater depth data of the underwater robot, determine whether there is a fault in the submarine cable and the location of the fault point.
  • the step S33 specifically includes: when it is judged that the absolute value of the Z-axis component of the two fluxgate magnetometers exceeds the Z-axis component threshold, and the absolute value of the change of the underwater depth data of the underwater robot in the same period is less than the threshold of the change of the water depth data When , it is judged that the current position of the underwater robot has a fault, and the position is the fault point.
  • two fluxgate magnetometers are installed on both sides of the front of the underwater robot, respectively.
  • a geomagnetic detection method for submarine cables is applied in marine engineering fields such as ocean power transmission, island development, offshore wind power, offshore oil and gas platforms, coastal zone surveys, rescue and salvage, etc.
  • the invention adopts a geomagnetic detection method based on an underwater cableless autonomous robot to identify and locate known or unknown submarine cables.
  • Fig. 1 is the flow chart of the geomagnetic detection method of a kind of submarine cable of the present invention
  • Figure 2 is a schematic structural diagram of an underwater robot carrying a magnetometer
  • FIG. 3 is a schematic diagram of a preliminary detection path of an underwater robot
  • Fig. 4 is a flow chart of controlling the heading of the underwater robot in step S24 in a method for geomagnetic detection of a submarine cable of the present invention
  • FIG. 5 is a flowchart of step S33 in a method for geomagnetic detection of a submarine cable according to the present invention
  • a geomagnetic detection method for submarine cables applied to the detection control terminal, includes:
  • Step S01 controlling an underwater robot equipped with a proton magnetometer to perform preliminary detection, and then determining preliminary cable direction and preliminary position information based on preliminary detection information;
  • the preliminary detection information includes underwater positioning data and total geomagnetic field;
  • Step S02 according to the preliminary position information, control the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers to launch into the water to perform route detection; then, based on the total geomagnetic field measured by the proton magnetometer during the route detection, control The underwater robot drives to the top of the cable and determines the specific position information of the cable; then, based on the X-axis component gradient values obtained by the two fluxgate magnetometers, the heading of the underwater robot is controlled to move along the preliminary cable trend ;
  • Step S03 control the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers to launch into the water to perform patrol inspection; then, based on the Z-axis components measured by the two fluxgate magnetometers value and the underwater depth data of the underwater robot to judge whether there is a fault in the submarine cable and the location of the fault point;
  • the proton magnetometer is installed in front of the underwater robot, and the two fluxgate magnetometers are installed on both sides of the underwater robot.
  • the invention solves the search, routing and fault identification of submarine buried cables by comprehensively using the detection data of two kinds of magnetometers equipped with underwater robots, and using the dynamic real-time analysis of the total abnormal field and the three-component gradient field.
  • the two types of magnetometers are the proton magnetometer and the fluxgate magnetometer.
  • Proton magnetometer can use seaspy2 magnetometer or sniffer4 magnetometer;
  • fluxgate magnetometer can use mag13 magnetometer or sniffer3 magnetometer;
  • underwater robot uses autonomous underwater vehicle (hereinafter referred to as AUV).
  • the detection process of the method of the present invention is divided into three stages, namely the submarine cable search stage in step S01, the submarine cable routing stage in step S02, and the submarine cable fault identification stage in step S03.
  • the underwater robot is only equipped with a proton magnetometer, which is fixed in front of the underwater robot.
  • the underwater robot is equipped with a proton magnetometer and two fluxgate magnetometers.
  • the proton magnetometer is fixedly installed in front of the underwater robot, and the two fluxgate magnetometers are fixedly installed on the underwater robot. on both sides.
  • two fluxgate magnetometers are installed on both sides of the front of the underwater robot (as shown in Figure 2), wherein X1, Y1, Z1 are the X-axis, Y-axis, Z-axis of the first fluxgate magnetometer
  • the axis components, X2, Y2, and Z2 are the X-axis, Y-axis, and Z-axis components of the second fluxgate magnetometer.
  • the X-axis component is the projection value of the total geomagnetic field in the X-axis direction, that is, B*cos ⁇ , ⁇ is the angle between the geomagnetic field vector and the positive direction of the X-axis (0 ⁇ 180°), and the value range of the X-axis component is -B ⁇ Bx ⁇ B;
  • the Y-axis component is the projection value of the total geomagnetic field in the Y-axis direction, and the Z-axis component is the projection value of the geomagnetic total field in the Z-axis direction.
  • the calculation of the Y-axis component and the Z-axis component refers to the calculation of the X-axis component. way to obtain.
  • B is the total geomagnetic field measured by the proton magnetometer.
  • the step S01 specifically includes:
  • Step S11 based on the detection range of the submarine cable, determine the comb-shaped path covering the entire detection range as the preliminary detection path of the underwater robot equipped with the proton magnetometer;
  • Step S12 controlling the underwater robot to perform preliminary detection according to the preliminary detection path under a certain launching depth, and record the preliminary detection information
  • step S13 after the preliminary detection of the underwater robot is completed, the preliminary cable direction and preliminary position information are determined based on the preliminary detection information.
  • the detection range of the submarine cable is a rectangular detection range determined based on historical data of the submarine cable.
  • the detection range is a rectangular detection range of 1km*5km, in which the 1km wide side is perpendicular to the direction of the suspected cable, and the 5km long side is parallel to the direction of the suspected cable.
  • the path of the underwater robot is planned as a comb-shaped path covering the entire detection range, the survey line is parallel to the broad side, and the distance between the survey lines is 200m.
  • step S12 controls the underwater robot to drive in the suspected area of the submarine cable at a certain launching depth (for example, 50 meters of launching depth), and reciprocate the inspection with a comb-shaped path perpendicular to the suspected cable direction. And during the inspection process, the preliminary detection information is recorded synchronously.
  • Each frame of preliminary detection information specifically includes Greenwich time information, the position information of the underwater robot, and the total geomagnetic field.
  • Each frame of data has a total of 64 bytes.
  • the data frame is defined as frame header + date and time + latitude and longitude data + total geomagnetic field. data + end of frame.
  • a frame of data is @#DD210308 TT0647538 E122.743251 N29.821433 D0048.1 B34050.240, which means: March 8, 21, GMT, 6:47:53.8, East longitude 122.743251 degrees, north latitude 29.821433 degrees, water depth 48.1 meters, total geomagnetic field 34050.24nT .
  • the preliminary detection information includes multiple frames of data.
  • the preliminary position of the cable and the preliminary cable direction can be determined in step S13 based on the preliminary detection information in step S12.
  • the determining of the preliminary cable direction and preliminary position information based on the preliminary detection information includes: forming a two-dimensional contour map based on the preliminary detection information, associating dense regions with extremely high geomagnetic values or local extremely low geomagnetic values, and then judging. Preliminary cable routing and preliminary location information.
  • the preliminary detection information includes multiple total geomagnetic fields. Based on pipeline construction drawings and previous engineering experience, the dense areas with abnormal values of the total geomagnetic field (locally extremely high geomagnetic values and local extremely low geomagnetic values) are associated.
  • the control terminal (pipeline construction drawings and previous engineering experience are stored in the detection control terminal in the form of a big data model) or manual judgment to determine the preliminary cable direction and preliminary position information. For example, when a geomagnetic local extremely high-value dense area is displayed on the two-dimensional contour map, the direction of the geomagnetic local extremely high-value dense area is the cable strike.
  • the step S02 specifically includes:
  • Step S21 determine the launching position of the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers;
  • Step S22 controlling the underwater robot to launch at the launching position, and controlling the underwater robot to drive to hover right above the cable;
  • Step S23 control the underwater robot to translate along the preliminary cable direction, and adjust the translation direction of the underwater robot according to the change of the total geomagnetic field measured by the proton magnetometer; The position just above the cable of the peak of the total geomagnetic field and hover here, and determine the specific position of the cable;
  • Step S24 the underwater robot is controlled to travel, and the heading of the underwater robot is controlled based on the X-axis component gradient values obtained by the two fluxgate magnetometers during the driving process to move along the preliminary cable direction.
  • step S21 according to the preliminary position information, the launching point of the underwater robot is set to be within a certain range, such as within 100 meters, of the sea surface vertically above the cable.
  • step S22 the underwater robot is controlled to launch at the launching position, and the underwater robot is controlled to drive to just above the cable, such as 5 meters above the cable, and hover.
  • step S23 is performed to ensure that the underwater robot hovers right above the cable. Specifically, control the underwater robot to translate along the preliminary cable direction, such as slow translation along a certain direction of the preliminary cable direction, the total geomagnetic field measured by the proton magnetometer will change with the movement of the underwater robot.
  • the moving direction of the underwater robot needs to be adjusted, that is, it slowly translates in the opposite direction of the initial cable direction;
  • the moving direction of the underwater robot adjusts the moving direction of the underwater robot again, and the underwater robot translates in the opposite direction again, and repeats the same way for many times, such as three times, to find the peak value of the total geomagnetic field (the maximum value of the total geomagnetic field) position, and control the underwater robot to hover at this position, and determine the specific position information of the cable.
  • step S24 is executed to control the underwater robot to travel along the preliminary cable direction from the current position.
  • the underwater robot In order to ensure that the underwater robot always moves along the preliminary cable direction during the driving process, it is necessary to adjust the heading of the underwater robot in real time based on the X-axis component gradient values obtained by the two fluxgate magnetometers. Specifically (see Figure 4), when it is judged that the X-axis component gradient value is greater than the X-axis positive gradient threshold ⁇ x, and the change value - ⁇ B of the total geomagnetic field is greater than the change threshold ⁇ B of the total geomagnetic field, the heading direction of the underwater robot is controlled.
  • the heading of the underwater robot is controlled to translate to the left; when it is judged When the X-axis component gradient value is less than the X-axis negative gradient threshold - ⁇ x, and the change value of the total geomagnetic field - ⁇ B is greater than the total geomagnetic field change threshold ⁇ B, the heading of the underwater robot is controlled to turn to the right; when the X-axis component gradient is judged When the value is less than the X-axis negative gradient threshold - ⁇ x, and the change value of the total geomagnetic field - ⁇ B is not greater than the change threshold of the total geomagnetic field ⁇ B, the heading direction of the underwater robot is controlled to translate to the right; among them, the X-axis component gradient value is
  • the difference between the X-axis component values measured by the fluxgate magnetometers that is, X1-X2.
  • X1-X2 The difference between the X-axis component values measured by the fluxgate magnetometers, that is, X1-X2.
  • the change value of the total geomagnetic field is the difference between the current total geomagnetic field detected in real time and the total geomagnetic field detected last time.
  • the change threshold of the total geomagnetic field is a preset constant, such as 50nT.
  • the X-axis gradient threshold is a preset constant, such as 10nT, that is, the X-axis positive gradient threshold is 10nT, and the X-axis negative gradient threshold is -10nT.
  • the specific cable direction is determined.
  • the specific cable routing determined in this process is more accurate than the preliminary cable routing determined in step S01.
  • the underwater robot is controlled to perform multiple 360-degree clockwise and counterclockwise rotations at the hovering position, and based on the X-axis maximum value and the Y-axis maximum value obtained after each rotation, the azimuth angle of the cable is determined, and then the azimuth angle of the cable is determined.
  • specific cable direction For example, rotate 360 degrees clockwise and counterclockwise three times in situ, a total of 24 extreme values are obtained, and all extreme values are averaged to obtain the azimuth angle of the cable, and then determine the exact direction of the cable.
  • step S24 is: control the underwater robot to travel, and control the heading of the underwater robot based on the X-axis component gradient values obtained by the two fluxgate magnetometers to make it move along the specific cable direction during the driving process.
  • the step S03 specifically includes:
  • Step S31 determine the launching position of the underwater robot equipped with the proton magnetometer and the two fluxgate magnetometers;
  • Step S32 controlling the underwater robot to launch at the launching position, and controlling the underwater robot to perform patrol inspection and detection along the cable direction under a certain launching depth;
  • Step S33 based on the Z-axis component values measured by the two fluxgate magnetometers and the underwater depth data of the underwater robot, determine whether there is a fault in the submarine cable and the location of the fault point.
  • step S31 the launching point of the underwater robot is set according to the specific location information.
  • step S32 the underwater robot is controlled to launch at the launching position, and the underwater robot is controlled to drive at a certain water depth, such as a 50-meter water depth, or a water depth of 5 meters directly above the cable.
  • the cable direction in the step S32 may be a preliminary cable direction (when the specific cable direction determination step is not performed), or a specific cable direction.
  • the cable direction in step S32 is a specific cable direction, accurate inspection and detection can be realized.
  • the step S33 specifically includes: when it is determined that the absolute values of the Z-axis components of the two fluxgate magnetometers both exceed the Z-axis component thresholds (
  • the absolute value of the change of the launching depth data of the launching robot in the same period is less than the threshold of the launching depth data change (
  • the detection control terminal When it is judged that the conditions
  • the detection control terminal is a remote control platform, which is connected to the underwater robot in communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)

Abstract

一种海底电缆的地磁探测方法,包括:步骤S01,控制安装有质子磁力仪的水下机器人进行初步探测,并确定初步电缆走向和初步位置信息;步骤S02,根据初步位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水,基于地磁总场,控制水下机器人驶向电缆上方,并确定电缆的具体位置信息;基于磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向沿着初步电缆走向运动;步骤S03,根据具体位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水;基于地磁总场的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置。

Description

一种海底电缆的地磁探测方法 技术领域
本发明属于海底探测技术领域,尤其涉及一种海底电缆的地磁探测方法。
背景技术
海底电缆的探测识别与定位是海洋工程领域公认的技术难题。传统主要以潜水员人工观察为主,近年来随着水下机器人技术的飞速发展,通过搭载声、光、磁各类载荷的水下机器人进行自动巡检的技术方法正在引起重视。然而,由于海底电缆大多敷设于海床表面之下,光学方法及大多数声学方法很难起到作用。浅剖这一声学方法可以探测到地表以下,但由于电缆直径有限而受到声学探测分辨率的限制。基于地磁异常场反演的方法来探测海底掩埋电缆是目前最有潜力的方法,但由于对其探测流程、探测方法的研究尚不够深入,因此目前在实际应用中仍存在信号受到复杂背景场干扰,疑似异常的可信度不高等缺陷。
发明专利申请CN201711262447.6公开了一种海底电缆探测水下机器人及作业方法,并具体公开了:水下机器人处于AUV模式时,此时水下机器人为无缆状态,可脱离水面母船限制,通过数传电台和复合天线接收指令,并可在通讯范围以外自主设定作业任务和行进路线,以完成对海底电缆路由勘测和日常巡检作业。水下机器人处于ROV模式时,此时水下机器人为有缆状态,与远程控制平台通过脐带电缆进行通讯,可实时上传视频图像或其他传感器信息,并接收水面母船的电能充电,以完成对海底电缆故障探测和精确定位作业。该发明采用无缆AUV模式和有缆ROV模式的水下机器人进行探测,在探测过程中需要切换不同的工作模式。在有缆ROV模式的探测过程中,海底电缆故障位置和类型主要通过视频图像和其他传感器信息进行判断。
技术问题
本发明针对现有技术存在的问题,提出了一种故障探测结果可信度高的海底电缆的地磁探测方法。
技术解决方案
本发明是通过以下技术方案得以实现的:
一种海底电缆的地磁探测方法,应用于探测控制端,包括:
步骤S01,控制安装有质子磁力仪的水下机器人进行初步探测,之后基于初步探测信息确定初步电缆走向和初步位置信息;所述初步探测信息包括水下定位数据与地磁总场;
步骤S02,根据所述初步位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水进行路由探测;接着,基于路由探测期间质子磁力仪测得的地磁总场,控制水下机器人驶向电缆上方,并确定电缆的具体位置信息;然后,基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着初步电缆走向运动;
步骤S03,根据所述具体位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水进行巡检探测;接着,基于两个磁通门磁力仪测得的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置;
其中,质子磁力仪安装在水下机器人的正前方,两个磁通门磁力仪分别安装在水下机器人的两侧。
本发明能基于地磁信息实时修正电缆位置信息,使得探测过程一直沿着电缆走向进行,探测准确,且实现简单。所述电缆走向在探测过程也在不停修正。
作为优选,所述步骤S01包括:
步骤S11,基于海底电缆的探测范围,确定覆盖整个探测范围的梳状路径为安装有质子磁力仪的水下机器人的初步探测路径;
步骤S12,控制水下机器人在一定下水深度下,依据初步探测路径进行初步探测,并记录初步探测信息;
步骤S13,在水下机器人初步探测结束后,基于初步探测信息确定初步电缆走向和初步位置信息。
作为优选,所述基于初步探测信息确定初步电缆走向和初步位置信息包括:基于初步探测信息形成二维等值线图,将地磁局域极高值或地磁局部极低值的密集区域相关联,进而判断出初步电缆走向与初步位置信息 。
作为优选,所述海底电缆的探测范围为基于海底电缆的历史资料确定的矩形探测范围。
作为优选,所述步骤S02包括:
步骤S21,根据所述初步位置信息,确定安装有质子磁力仪和两个磁通门磁力仪的水下机器人的下水位置;
步骤S22,控制水下机器人于下水位置下水,并控制水下机器人行驶至电缆正上方悬停;
步骤S23,根据初步电缆走向,控制水下机器人沿初步电缆走向平移,并根据质子磁力仪测得的地磁总场的变化情况调整水下机器人平移方向;多次平移方向调整后,确定处于地磁总场峰值的电缆正上方位置并悬停于此,并确定电缆的具体位置信息;
步骤S24,控制水下机器人行驶,行驶过程中基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着初步电缆走向运动。
作为优选,所述步骤S02还包括具体电缆走向确定步骤:在步骤S23之后且在步骤S24之前,控制水下机器人在悬停处进行多次顺时针和逆时针360度旋转,基于每次旋转后获得的X轴极大值和Y轴极大值,确定电缆的方位角,继而确定具体电缆走向;所述步骤S24控制水下机器人的艏向,使其沿着具体电缆走向运动。
作为优选,所述行驶过程中基于两个磁通门磁力仪测得的X轴分量梯度值,控制水下机器人的艏向的具体过程包括:
当判断X轴分量梯度值大于X轴正梯度阈值,且地磁总场的变化值 大于地磁总场变化阈值时,控制水下机器人的艏向向左转向;
当判断X轴分量梯度值大于X轴正梯度阈值且地磁总场的变化值不大于地磁总场变化阈值时,控制水下机器人的艏向向左平移;
当判断X轴分量梯度值小于X轴负梯度阈值,且地磁总场的变化值大于地磁总场变化阈值时,控制水下机器人的艏向向右转向;
当判断X轴分量梯度值小于X轴负梯度阈值,且地磁总场的变化值不大于地磁总场变化阈值时,控制水下机器人的艏向向右平移;
其中,X轴分量梯度值为两个磁通门磁力仪测得的X轴分量值的差值。
作为优选,所述步骤S03包括:
步骤S31,根据所述具体位置信息,确定安装有质子磁力仪和两个磁通门磁力仪的水下机器人的下水位置;
步骤S32,控制水下机器人于下水位置下水,并控制水下机器人在一定下水深度下,沿电缆走向进行巡检探测;
步骤S33,基于两个磁通门磁力仪测得的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置。
作为优选,所述步骤S33具体包括:当判断两个磁通门磁力仪的Z轴分量绝对值均超过Z轴分量阈值,且水下机器人同期的下水深度数据变化绝对值小于下水深度数据变化阈值时,则判断水下机器人当前位置存在故障,且当且位置为故障点位置。
作为优选,两个磁通门磁力仪分别安装在水下机器人的前部两侧。
有益效果
一种海底电缆的地磁探测方法,应用在海洋输电、海岛开发、海上风电、海上油气平台、海岸带调查、救助打捞等海洋工程领域,主要针对海底电缆的查找、路由、寻障等应用需求。本发明采用一种基于水下无缆自主机器人的地磁探测方法,对已知或未知海底电缆进行识别与定位。
附图说明
图1为本发明一种海底电缆的地磁探测方法的流程图;
图2为水下机器人搭载磁力仪的结构示意图;
图3为水下机器人初步探测路径的示意图;
图4为本发明一种海底电缆的地磁探测方法中步骤S24的控制水下机器人艏向的流程图;
图5为本发明一种海底电缆的地磁探测方法中步骤S33的流程图
本发明的实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
如图1,一种海底电缆的地磁探测方法,应用于探测控制端,包括:
步骤S01,控制安装有质子磁力仪的水下机器人进行初步探测,之后基于初步探测信息确定初步电缆走向和初步位置信息;所述初步探测信息包括水下定位数据与地磁总场;
步骤S02,根据所述初步位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水进行路由探测;接着,基于路由探测期间质子磁力仪测得的地磁总场,控制水下机器人驶向电缆上方,并确定电缆的具体位置信息;然后,基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着初步电缆走向运动;
步骤S03,根据所述具体位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水进行巡检探测;接着,基于两个磁通门磁力仪测得的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置;
其中,质子磁力仪安装在水下机器人的正前方,两个磁通门磁力仪分别安装在水下机器人的两侧。
本发明通过综合运用搭载水下机器人的两种磁力仪探测数据,利用其总场异常场以及三分量梯度场的动态实时分析,解决海底掩埋电缆的查找、路由与故障识别。两种磁力仪分别为质子磁力仪和磁通门磁力仪。质子磁力仪可采用seaspy2磁力仪或sniffer4磁力仪;磁通门磁力仪可采用mag13磁力仪或sniffer3磁力仪;水下机器人采用自主水下潜航器(以下简称AUV)。
本发明方法探测过程分为三个阶段,即步骤S01的海底电缆寻找阶段、步骤S02的海底电缆路由阶段、步骤S03的海底电缆故障识别阶段。第一阶段中水下机器人仅搭载质子磁力仪,且固定安装在水下机器人的正前方。第二阶段和第三阶段中水下机器人搭载质子磁力仪和两个磁通门磁力仪,质子磁力仪固定安装在水下机器人的正前方,两个磁通门磁力仪固定安装在水下机器人的两侧。优选地,两个磁通门磁力仪安装在水下机器人的前部两侧(如图2所示),其中X1、Y1、Z1为第一磁通门磁力仪的X轴、Y轴、Z轴分量,X2、Y2、Z2为第二磁通门磁力仪的X轴、Y轴、Z轴分量。X轴分量为地磁总场在X轴方向的投影值,即B*cosθ,θ为地磁场矢量与X轴正方向的夹角(0≤θ≤180°),X轴分量的取值范围是-B≤Bx≤B;Y轴分量为地磁总场在Y轴方向的投影值,Z轴分量为地磁总场在Z轴方向的投影值,Y轴分量、Z轴分量计算参照X轴分量计算方式获得。B为由质子磁力仪测得的地磁总场。
所述步骤S01具体包括:
步骤S11,基于海底电缆的探测范围,确定覆盖整个探测范围的梳状路径为安装有质子磁力仪的水下机器人的初步探测路径;
步骤S12,控制水下机器人在一定下水深度下,依据初步探测路径进行初步探测,并记录初步探测信息;
步骤S13,在水下机器人初步探测结束后,基于初步探测信息确定初步电缆走向和初步位置信息。
在步骤S11中,所述海底电缆的探测范围为基于海底电缆的历史资料确定的矩形探测范围。例如图3所示,探测范围为1km*5km的矩形探测范围,其中1km宽边与疑似电缆的走向垂直,5km长边与疑似电缆的走向平行。将水下机器人的路径规划为覆盖整个探测范围的梳状路径,测线与宽边平行,测线间距200m。
在确定初步探测路径后,步骤S12控制水下机器人在一定下水深度(例如,50米下水深度)下行驶在海底电缆疑似区域,以垂直于电缆疑似走向的梳状路径往复巡检。并在巡检过程中,同步记录初步探测信息。初步探测信息的每一帧数据具体包含格林尼治时间信息、水下机器人的位置信息、地磁总场,每一帧数据总共64字节,数据帧定义为帧头+日期时间+经纬度数据+地磁总场数据+帧尾。例如,一帧数据为@#DD210308 TT0647538 E122.743251 N29.821433 D0048.1 B34050.240,意指:格林尼治时间21年3月8日、6时47分53.8秒、东经122.743251度、北纬29.821433度、水深48.1米、地磁总场34050.24nT。
在往复巡检过程中,初步探测信息包含多帧数据。在巡检完毕后,步骤S13基于步骤S12的初步探测信息可确定电缆的初步位置,以及初步电缆走向。
所述基于初步探测信息确定初步电缆走向和初步位置信息包括:基于初步探测信息形成二维等值线图,将地磁局域极高值或地磁局部极低值的密集区域相关联,进而判断出初步电缆走向与初步位置信息。具体地,初步探测信息包含多个地磁总场,基于管线施工图纸与以往工程经验,将地磁总场异常值(地磁局域极高值、地磁局部极低值)的密集区域相关联,通过探测控制端(管线施工图纸与以往工程经验以大数据模型形式存储在探测控制端内)或人工进行判断,判断出初步电缆走向与初步位置信息。例如,当二维等值线图上显示了地磁局域极高值密集区时,该地磁局域极高值密集区的走向为电缆走向。
所述步骤S02具体包括:
步骤S21,根据所述初步位置信息,确定安装有质子磁力仪和两个磁通门磁力仪的水下机器人的下水位置;
步骤S22,控制水下机器人于下水位置下水,并控制水下机器人行驶至电缆正上方悬停;
步骤S23,根据所述初步电缆走向,控制水下机器人沿初步电缆走向平移,并根据质子磁力仪测得的地磁总场的变化情况调整水下机器人平移方向;多次平移方向调整后,确定处于地磁总场峰值的电缆正上方位置并悬停于此,并确定电缆的具体位置;
步骤S24,控制水下机器人行驶,行驶过程中基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着初步电缆走向运动。
在步骤S21中,根据所述初步位置信息,将水下机器人的下水点设定为电缆垂上方海面的一定范围内,如100米范围内。
在步骤S22中,控制水下机器人于下水位置下水,并控制水下机器人行驶至电缆正上方,如电缆正上方5米处,悬停。
之后,执行步骤S23,确保水下机器人悬停在电缆正上方。具体地,控制水下机器人沿初步电缆走向平移,如沿初步电缆走向中的某一个方向缓慢平移,质子磁力仪测得的地磁总场会随水下机器人移动而发生变化,若探测控制端在一定时间(可根据需要设定,如设定为10秒)内判定地磁总场变弱,则需调整水下机器人的移动方向,即沿初步电缆走向中的另一个相反方向缓慢平移;当再次发生地磁总场变弱的情况时,则再次调整水下机器人的移动方向,水下机器人再次反方向平移,照此往复多次,如三次,找出地磁总场峰值(地磁总场最大值)所在位置,并控制水下机器人在此位置悬停,并确定电缆的具体位置信息。
之后,执行步骤S24,控制水下机器人自当前位置沿着初步电缆走向行驶。为了确保水下机器人在行驶过程中一直沿着初步电缆走向运动,需要基于两个磁通门磁力仪获得的X轴分量梯度值,进行实时调整水下机器人的艏向。具体地(参见图4),当判断X轴分量梯度值大于X轴正梯度阈值δx,且地磁总场的变化值-△B大于地磁总场变化阈值δB时,控制水下机器人的艏向向左转向;当判断X轴分量梯度值大于X轴正梯度阈值δx且地磁总场的变化值-△B不大于地磁总场变化阈值δB时,控制水下机器人的艏向向左平移;当判断X轴分量梯度值小于X轴负梯度阈值-δx,且地磁总场的变化值-△B大于地磁总场变化阈值δB时,控制水下机器人的艏向向右转向;当判断X轴分量梯度值小于X轴负梯度阈值-δx,且地磁总场的变化值-△B不大于地磁总场变化阈值δB时,控制水下机器人的艏向向右平移;其中,X轴分量梯度值为两个磁通门磁力仪测得的X轴分量值的差值,即X1-X2。图4中,当判断X轴分量梯度值不大于X轴正梯度阈值δx,且X轴分量梯度值不小于X轴负梯度阈值-δx时,则需要对水下机器人进行状态安全侦测,之后再次进入前述判断流程,调整艏向。所述地磁总场的变化值为当前实时检测得到的地磁总场与上次检测得到的地磁总场的差值。地磁总场变化阈值为预先设定的一个常量,如50nT。X轴梯度阈值为预先设定的一个常量,如10nT,即X轴正梯度阈值为10nT,X轴负梯度阈值为-10nT。
进一步提高艏向控制的准确性,在步骤S23之后且在步骤S24之前,确定具体电缆走向。此过程确定的具体电缆走向比步骤S01确定的初步电缆走向更准确。具体地,控制水下机器人在悬停处进行多次顺时针和逆时针360度旋转,基于每次旋转后获得的X轴极大值和Y轴极大值,确定电缆的方位角,继而确定具体电缆走向。例如,在原地沿顺时针、逆时针旋转360度各三次,总共获得24个极值,对所有极值进行均值处理,继而获得电缆的方位角,进而确定电缆的准确走向。当确定具体电缆走向后,步骤S24中关于控制水下机器人行驶时的艏向时,需要依据确定的具体电缆走向来调整艏向。即,步骤S24为:制水下机器人行驶,行驶过程中基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着具体电缆走向运动。
所述步骤S03具体包括:
步骤S31,根据所述具体位置信息,确定安装有质子磁力仪和两个磁通门磁力仪的水下机器人的下水位置;
步骤S32,控制水下机器人于下水位置下水,并控制水下机器人在一定下水深度下,沿电缆走向进行巡检探测;
步骤S33,基于两个磁通门磁力仪测得的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置。
在步骤S31中,根据所述具体位置信息,设置水下机器人的下水点。
在步骤S32中,控制水下机器人于下水位置下水,并控制水下机器人在一定水深度下,如50米水深,或者,在电缆正上方5米处的水深处行驶。所述步骤S32的电缆走向可以为初步电缆走向(在不进行具体电缆走向确定步骤时),也可以为具体电缆走向。当步骤S32的电缆走向为具体电缆走向时,能实现精准地巡检探测。
参见图5,所述步骤S33具体包括:当判断两个磁通门磁力仪的Z轴分量绝对值均超过Z轴分量阈值(|Z 1|>δz且|Z 2|>δz),且水下机器人同期的下水深度数据变化绝对值小于下水深度数据变化阈值(|△depth<δd|)时,则判断水下机器人当前位置存在故障(即疑似故障点),且当且位置为故障点位置。当判断不满足|Z 1|>δz且|Z 2|>δz条件,且不满足|△depth<δd|条件时,则探测控制端对水下机器人进行状态安全侦测,之后再次进行上述故障判断。所述Z轴分量阈值为预先设定的一个常量,如δz=50nT。所述下水深度数据变化阈值为预先设定的一个常量,如δd=0.5米。
所述探测控制端为远程控制平台,与水下机器人通讯连接。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (10)

  1. 一种海底电缆的地磁探测方法,应用于探测控制端,其特征在于,包括:
    步骤S01,控制安装有质子磁力仪的水下机器人进行初步探测,之后基于初步探测信息确定初步电缆走向和初步位置;所述初步探测信息包括水下定位数据与地磁总场;
    步骤S02,根据所述初步位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水进行路由探测;接着,基于路由探测期间质子磁力仪测得的地磁总场,控制水下机器人驶向电缆上方,并确定电缆的具体位置信息;然后,基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着初步电缆走向运动;
    步骤S03,根据所述具体位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水进行巡检探测;接着,基于两个磁通门磁力仪测得的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置;
    其中,质子磁力仪安装在水下机器人的正前方,两个磁通门磁力仪分别安装在水下机器人的两侧。
  2. 根据权利要求1所述的一种海底电缆的地磁探测方法,其特征在于,所述步骤S01包括:
    步骤S11,基于海底电缆的探测范围,确定覆盖整个探测范围的梳状路径为安装有质子磁力仪的水下机器人的初步探测路径;
    步骤S12,控制水下机器人在一定下水深度下,依据初步探测路径进行初步探测,并记录初步探测信息;
    步骤S13,在水下机器人初步探测结束后,基于初步探测信息确定初步电缆走向和初步位置信息。
  3. 根据权利要求2所述的一种海底电缆的地磁探测方法,其特征在于,所述基于初步探测信息确定电缆初步走向和初步位置信息包括:基于初步探测信息形成二维等值线图,将地磁局域极高值或地磁局部极低值的密集区域相关联,进而判断出电缆初步走向与初步位置信息。
  4. 根据权利要求2所述的一种海底电缆的地磁探测方法,其特征在于,所述海底电缆的探测范围为基于海底电缆的历史资料确定的矩形探测范围。
  5. 根据权利要求1所述的一种海底电缆的地磁探测方法,其特征在于,所述步骤S02包括:
    步骤S21,根据初步位置信息,确定安装有质子磁力仪和两个磁通门磁力仪的水下机器人的下水位置;
    步骤S22,控制水下机器人于下水位置下水,并控制水下机器人行驶至电缆正上方悬停;
    步骤S23,根据初步电缆走向,控制水下机器人沿初步电缆走向平移,并根据质子磁力仪测得的地磁总场的变化情况调整水下机器人平移方向;多次平移方向调整后,确定处于地磁总场峰值的电缆正上方位置并悬停于此,并确定电缆的具体位置信息;
    步骤S24,控制水下机器人行驶,行驶过程中基于两个磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向,使其沿着初步电缆走向运动。
  6. 根据权利要求5所述的一种海底电缆的地磁探测方法,其特征在于,所述步骤S02还包括具体电缆走向确定步骤:在步骤S23之后且在步骤S24之前,控制水下机器人在悬停处进行多次顺时针和逆时针360度旋转,基于每次旋转后获得的X轴极大值和Y轴极大值,确定电缆的方位角,继而确定具体电缆走向;所述步骤S24控制水下机器人的艏向,使其沿着具体电缆走向运动。
  7. 根据权利要求5所述的一种海底电缆的地磁探测方法,其特征在于,所述行驶过程中基于两个磁通门磁力仪测得的X轴分量梯度值,控制水下机器人的艏向的具体过程包括:
    当判断X轴分量梯度值大于X轴正梯度阈值,且地磁总场的变化值大于地磁总场变化阈值时,控制水下机器人的艏向向左转向;
    当判断X轴分量梯度值大于X轴正梯度阈值且地磁总场的变化值不大于地磁总场变化阈值时,控制水下机器人的艏向向左平移;
    当判断X轴分量梯度值小于X轴负梯度阈值,且地磁总场的变化值大于地磁总场变化阈值时,控制水下机器人的艏向向右转向;
    当判断X轴分量梯度值小于X轴负梯度阈值,且地磁总场的变化值不大于地磁总场变化阈值时,控制水下机器人的艏向向右平移;
    其中,X轴分量梯度值为两个磁通门磁力仪测得的X轴分量值的差值。
  8. 根据权利要求1或6所述的一种海底电缆的地磁探测方法,其特征在于,所述步骤S03包括:
    步骤S31,根据所述具体位置信息,确定安装有质子磁力仪和两个磁通门磁力仪的水下机器人的下水位置;
    步骤S32,控制水下机器人于下水位置下水,并控制水下机器人在一定下水深度下,沿电缆走向进行巡检探测;
    步骤S33,基于两个磁通门磁力仪测得的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置。
  9. 根据权利要求8所述的一种海底电缆的地磁探测方法,其特征在于,所述步骤S33具体包括:当判断两个磁通门磁力仪的Z轴分量绝对值均超过Z轴分量阈值,且水下机器人同期的下水深度数据变化绝对值小于下水深度数据变化阈值时,则判断水下机器人当前位置存在故障,且当且位置为故障点位置。
  10. 根据权利要求1所述的一种海底电缆的地磁探测方法,其特征在于,两个磁通门磁力仪分别安装在水下机器人的前部两侧。
PCT/CN2021/101473 2021-04-14 2021-06-22 一种海底电缆的地磁探测方法 WO2022217742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110397860.3 2021-04-14
CN202110397860.3A CN113064209B (zh) 2021-04-14 2021-04-14 一种海底电缆的地磁探测方法

Publications (1)

Publication Number Publication Date
WO2022217742A1 true WO2022217742A1 (zh) 2022-10-20

Family

ID=76566743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101473 WO2022217742A1 (zh) 2021-04-14 2021-06-22 一种海底电缆的地磁探测方法

Country Status (2)

Country Link
CN (1) CN113064209B (zh)
WO (1) WO2022217742A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438401A (en) * 1979-07-31 1984-03-20 Kokusai Denshin Denwa Co., Ltd. System for detecting a cable buried under the seabed
JP2009229137A (ja) * 2008-03-19 2009-10-08 Shimadzu Corp 目標体探査装置
CN106405662A (zh) * 2016-08-19 2017-02-15 广东科诺勘测工程有限公司 一种基于水下机器人的水下管线探测仪
CN108045530A (zh) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 一种海底电缆探测水下机器人及作业方法
CN110927801A (zh) * 2019-11-29 2020-03-27 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆路由自导航巡线方法及导航探测仪
CN110941017A (zh) * 2019-11-29 2020-03-31 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆三维路由测量方法及测量仪
CN112558006A (zh) * 2020-11-30 2021-03-26 华中科技大学 一种用于海底缆线的双三轴电磁探测及路由定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438401A (en) * 1979-07-31 1984-03-20 Kokusai Denshin Denwa Co., Ltd. System for detecting a cable buried under the seabed
JP2009229137A (ja) * 2008-03-19 2009-10-08 Shimadzu Corp 目標体探査装置
CN106405662A (zh) * 2016-08-19 2017-02-15 广东科诺勘测工程有限公司 一种基于水下机器人的水下管线探测仪
CN108045530A (zh) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 一种海底电缆探测水下机器人及作业方法
CN110927801A (zh) * 2019-11-29 2020-03-27 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆路由自导航巡线方法及导航探测仪
CN110941017A (zh) * 2019-11-29 2020-03-31 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆三维路由测量方法及测量仪
CN112558006A (zh) * 2020-11-30 2021-03-26 华中科技大学 一种用于海底缆线的双三轴电磁探测及路由定位方法

Also Published As

Publication number Publication date
CN113064209B (zh) 2021-11-26
CN113064209A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Wu et al. Survey of underwater robot positioning navigation
CN105823480B (zh) 基于单信标的水下移动目标定位算法
WO2021103697A1 (zh) 基于磁矢量数据的海缆三维路由测量方法及测量仪
CN112558006B (zh) 一种用于海底缆线的双三轴电磁探测及路由定位方法
CN102288170B (zh) 一种水下航行器内电子罗盘的校正方法
JP2016540233A (ja) 自立型水中航行機の地図作成探査のための磁気データの補償
CN110057365A (zh) 一种大潜深auv下潜定位方法
CN106679662A (zh) 一种基于tma技术的水下机器人单信标组合导航方法
Menna et al. Towards real-time underwater photogrammetry for subsea metrology applications
CN102928884B (zh) 一种磁传感器定位方法
US11614331B2 (en) Position tracking inside metallic environments using magneto-electric quasistatic fields
CN115560759A (zh) 一种基于海底油气管道检测的水下多源导航定位方法
CN105651264A (zh) 一种海底电缆探测系统
CN110806760B (zh) 一种无人水下航行器的目标跟踪控制方法
US11977201B2 (en) Integrated detection method of electromagnetic searching, locating and tracking for subsea cables
WO2022217742A1 (zh) 一种海底电缆的地磁探测方法
CN109398615B (zh) 一种浮标用沉块的深海布放方法
CN111427009A (zh) 一种遥控无人潜航器水下定位方法及系统
US20170254915A1 (en) Earth surveying with two or more marine vehicles for improved drilling applications
JPH10299020A (ja) 水中構造物の据付・沈設方法及び装置
Gao et al. Increased autonomy and situation awareness for rov operations
KR20140064292A (ko) 원격제어 무인 잠수정의 정밀 수중 위치추적 시스템
Gao et al. Research on Submarine Buried Oil and Gas Pipeline Autonomous Inspection System of USV
CN215639485U (zh) 一种海底电缆路由定位装置
Hu et al. Research on Ocean Magnetic Exploration Technology Based on Acoustics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17790095

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936614

Country of ref document: EP

Kind code of ref document: A1