WO2021103697A1 - 基于磁矢量数据的海缆三维路由测量方法及测量仪 - Google Patents

基于磁矢量数据的海缆三维路由测量方法及测量仪 Download PDF

Info

Publication number
WO2021103697A1
WO2021103697A1 PCT/CN2020/111554 CN2020111554W WO2021103697A1 WO 2021103697 A1 WO2021103697 A1 WO 2021103697A1 CN 2020111554 W CN2020111554 W CN 2020111554W WO 2021103697 A1 WO2021103697 A1 WO 2021103697A1
Authority
WO
WIPO (PCT)
Prior art keywords
submarine cable
data
lat
dimensional
cable
Prior art date
Application number
PCT/CN2020/111554
Other languages
English (en)
French (fr)
Inventor
郑新龙
陈国志
张磊
何旭涛
韩幸军
孙璐
卢正通
陶诗洁
梁尚清
杨国卿
Original Assignee
国网浙江省电力有限公司舟山供电公司
浙江舟山海洋输电研究院有限公司
杭州量泓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网浙江省电力有限公司舟山供电公司, 浙江舟山海洋输电研究院有限公司, 杭州量泓科技有限公司 filed Critical 国网浙江省电力有限公司舟山供电公司
Publication of WO2021103697A1 publication Critical patent/WO2021103697A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the field of submarine cable operation and maintenance of the present invention relates to a submarine cable three-dimensional routing measurement method and measuring instrument based on magnetic vector data, which are used for accurately measuring the three-dimensional position information of the submarine cable on the seabed.
  • Submarine cables are wires wrapped with insulating materials and laid on the seabed for power and information transmission. According to the purpose, it can be divided into power cable, photoelectric composite cable, communication optical cable and so on.
  • photoelectric composite submarine power cables (referred to as photoelectric composite submarine cables) have gradually become popular in the fields of power transmission and data communication.
  • This new type of submarine cable combines cables and optical cables to transmit power and data at the same time, which saves costs and reduces the number of cable laying constructions. It is favored in applications such as cross-sea power transmission and communication between shallow sea islands.
  • Submarine cable routing detection is an important link in submarine cable operation and maintenance.
  • the precise routing information of the submarine cable will help shorten the fault location time when the submarine cable fails, improve the efficiency of fault detection, and provide a certain reference value for daily submarine cable maintenance.
  • submarine cable routing detection mainly uses two-dimensional planar routing detection.
  • an atomic magnetometer is used as a detection device to provide the longitude and latitude coordinates of the submarine cable.
  • the buried depth parameter for the evaluation of the anti-anchor loss ability of the submarine cable the buried depth measurement is required.
  • the detection by the instrument is not reflected in the two-dimensional plane routing information, which greatly reduces the value of the submarine cable routing information. Therefore, the three-dimensional route detection of the submarine cable has a high reference value in the operation and maintenance of the submarine cable, and the relevant detection equipment has a strong practical value.
  • the purpose of the present invention is to solve the problem that the buried depth parameter that reflects the evaluation of the anti-anchor loss ability of the submarine cable in the prior art cannot be reflected in the two-dimensional plane routing information of the submarine cable route detection, and proposes a submarine cable based on magnetic vector data Three-dimensional routing measuring instrument and measuring method to detect the longitude and latitude coordinates and buried depth of the submarine cable.
  • a submarine cable three-dimensional routing measurement method based on magnetic vector data includes the following steps:
  • the surface tow body is towed by a measuring ship, and the surface tow body includes an atomic magnetometer, a three-axis fluxgate magnetometer, an attitude meter, a navigation positioning instrument, an altimeter, and a lower computer, an atomic magnetometer, and a three-axis magnetometer.
  • Tongmen magnetometer, attitude indicator, navigation locator, and altimeter are all connected to the lower computer in communication;
  • step 2) The specific steps of step 2) include:
  • the three-axis fluxgate magnetometer measures the three components of the alternating magnetic field, and the attitude meter converts the three components of the alternating magnetic field according to the attitude data of the surface tow body to obtain the three-component geomagnetic data B x (t), B y (t), B z (t), the atomic magnetometer measures the total geomagnetic field data B 0 , the navigation locator measures the longitude coordinates lon 1 (t 1 ) and the latitude coordinates lat 1 (t 1 ) of the water surface towing body, and the altimeter measures the distance of the water surface towing body The real-time vertical height H 0 (t 1 ) of the seabed, the measured data is transmitted to the shipboard upper computer through the lower computer and the watertight cable;
  • the shipboard host computer Based on the total magnetic field data B 0 , the shipboard host computer corrects the three-component geomagnetic data to obtain the corrected three-component geomagnetic data B x1 (t 1 ), B y1 (t 1 ), B z1 (t 1 );
  • the ship-borne host computer performs Fourier transform on the corrected three-component geomagnetic data, and takes the amplitudes A x1 (t 1 ), A y1 (t 1 ), A z1 (t 1) at the frequency of ⁇ respectively. );
  • the shipborne host computer calculates the horizontal distance L, the direction angle ⁇ and the vertical distance H 1 ( t 1 );
  • the shipborne host computer calculates the buried depth d(t 1 ) of the submarine cable on the seabed according to the vertical distance H 1 (t 1 ) of the surface tow body from the submarine cable and the real-time vertical height H 0 (t 1) of the surface tow body from the seabed );
  • the calculation method for the ship-borne host computer to correct the three-component geomagnetic data B x (t), B y (t), and B z (t) is:
  • the calculation method of the horizontal distance L between the surface tow body and the submarine cable is:
  • ⁇ 0 is the vacuum permeability
  • the calculation method of the direction angle ⁇ between the surface tow body and the submarine cable is:
  • the calculation method of the vertical distance H 1 (t 1 ) between the surface tow body and the submarine cable is:
  • ⁇ 0 is the vacuum permeability
  • the calculation method for calculating the buried depth d(t 1) of the submarine cable on the seabed :
  • ⁇ 0 is the vacuum permeability
  • the calculation method of the longitude coordinate lon 2 (t 1 ) and the latitude coordinate lat 2 (t 1) of the submarine cable is:
  • lat 2 (t 1 ) arcsin(sin(lat 1 (t 1 )) ⁇ cos(L/R)+cos(lat 1 (t 1 )) ⁇ sin(L/R) ⁇ cos( ⁇ ));
  • R is the radius of the earth.
  • the present invention also relates to a submarine cable three-dimensional route measuring instrument based on magnetic vector data, which is characterized in that it includes a surface tow body, a ship-mounted upper computer and a measuring ship, and the ship-mounted upper computer is installed on the measuring ship;
  • the surface tow body is towed by a measuring vessel.
  • the surface tow body includes an atomic magnetometer, a three-axis fluxgate magnetometer, an attitude meter, a navigation locator, an altimeter and a lower position machine, an atomic magnetometer, a three-axis fluxgate magnetometer, and an attitude
  • the instrument, the navigation locator, and the altimeter are all communicatively connected with the lower computer, and the lower computer is communicatively connected with the shipboard upper computer.
  • the surface tow body further includes a non-metal watertight cabin, and the outer wall of the non-metal watertight cabin is provided with watertight connectors, an atomic magnetometer, a three-axis fluxgate magnetometer, an attitude indicator, a navigation locator, an altimeter and a lower position
  • the machines are fixed in the non-metallic watertight cabin by means of rigid connections, the lower machine is connected with the watertight connector through a cable, and the watertight connector is connected with the shipboard upper computer through the watertight cable.
  • the non-metallic watertight cabin is used to protect the atomic magnetometer, the three-axis fluxgate magnetometer, the attitude indicator, the navigation locator, the altimeter, and the lower-level computer, and prevent damage caused by water immersion;
  • the watertight cable is used for the measurement ship tow the surface tow At the same time, it is used to transmit the data from the lower computer to the upper computer on the ship to realize further calculations.
  • the present invention measures the total geomagnetic field data B 0 through the atomic magnetometer, and simultaneously measures the three-component geomagnetic data B x (t), B y (t), B z (t) through the three-axis fluxgate magnetometer and the attitude meter.
  • the real-time vertical height H 0 (t 1 ) of the surface tow body from the seabed is measured by an altimeter, and after a series of calculations, the longitude coordinates lon 2 (t 1 ) of the submarine cable, latitude coordinates lat 2 (t 1 ) and the sea
  • the present invention increases the detection of the buried depth of the submarine cable and improves the route of the submarine cable.
  • the reference value of information improves the efficiency of submarine cable three-dimensional routing measurement.
  • Figure 1 is a frame diagram of a submarine cable three-dimensional route measuring instrument based on magnetic vector data
  • Figure 2 is a frame diagram of the internal structure of the surface trailer
  • Figure 3 is a framework diagram of the working principle of a submarine cable three-dimensional routing measuring instrument based on magnetic vector data.
  • Marking description 1- surface tow body, 2- watertight cable, 3- shipborne host computer, 4- atom magnetometer, 5- three-axis fluxgate magnetometer, 6-attitude meter, 7-navigation locator, 8- Altimeter, 9-lower machine, 10-non-metallic watertight cabin.
  • the submarine cable three-dimensional routing measurement instrument based on magnetic vector data includes a surface tow body 1, a ship-mounted upper computer 3, and a survey ship (not shown in the figure).
  • the shipborne upper computer 3 is installed on the survey ship.
  • the surface tow body 1 includes an atomic magnetometer 4, a three-axis fluxgate magnetometer 5, an attitude meter 6, a navigation locator 7, an altimeter 8, a lower position machine 9 and a non-metallic watertight cabin 10, and a non-metallic watertight cabin 10
  • the outer wall is equipped with watertight connectors.
  • the atomic magnetometer 4, the three-axis fluxgate magnetometer 5, the attitude indicator 6, the navigation locator 7, the altimeter 8 and the lower computer 9 are all fixed in the non-metallic watertight cabin 10 by rigid connection.
  • the lower computer 9 is connected to the watertight connector through a cable, and the watertight connector is connected to the shipborne upper computer 3 through the watertight cable 2 to realize the communication connection between the lower computer 9 and the shipborne upper computer 3.
  • the measuring vessel uses the watertight cable 2 to tow the surface tow body 1 so that the surface tow body 1 is always located near the submarine cable and can move along the direction of the submarine cable arrangement.
  • the above-mentioned atomic magnetometer 4 adopts the model CS-3 high-precision cesium optical pump magnetometer produced by Canada Scintrex, which is used to measure the total field data B 0 of the geomagnetic field;
  • the three-axis fluxgate magnetometer 5 adopts the model produced by British Bartington Company The Mag-13 three-axis fluxgate is used to measure the three components of the AC magnetic field of the sinusoidal current signal;
  • the attitude meter 6 adopts a three-dimensional attitude meter, which converts the three components of the AC magnetic field into the three components of the geomagnetic field in geographic coordinates by means of attitude conversion Data B x (t), B y (t), B z (t);
  • the navigation locator 7 adopts the R330 navigation locator produced by Hemisphere, Canada, which is used to measure the longitude coordinate lon 1 (t 1 ) of the surface tow body 1 And the latitude coordinate lat 1 (t 1 );
  • the altimeter 8 uses the VA500 altimeter produced by Val
  • the above-mentioned measuring instrument is used to carry out a submarine cable three-dimensional routing measurement method based on magnetic vector data.
  • the principle of the method is shown in Figure 3.
  • the measurement method includes the following steps:
  • the surface tow body 1 and the ship-borne host computer 3 Connect the surface tow body 1 and the ship-borne host computer 3 through a watertight cable 2, and place the surface tow body 1 in the water, and place the ship-based host computer 3 on the measuring vessel.
  • the measurement ship starts from the submarine cable end to tow the surface tow body. 1 Move, adjust and maintain the course of the measuring ship, so that the surface tow body 1 is always near the submarine cable and moves along the submarine cable.
  • the three-axis fluxgate magnetometer 5 tests the alternating magnetic field signal with a frequency of 50 Hz. .
  • the three-axis fluxgate magnetometer 5 measures the three components of the alternating magnetic field, and the attitude meter 6 transforms the three components of the alternating magnetic field according to the attitude data of the surface trailer 1 to obtain the geomagnetic three-component data B x (t), B y ( t), B z (t), where B x (t) represents the magnetic field component in the true east direction, B y (t) represents the magnetic field component in the north direction, and B z (t) represents the magnetic field component in the vertical direction;
  • Atomic magnetometer 4 Measure the total geomagnetic field data B 0
  • the navigation locator 7 measures the longitude coordinate lon 1 (t 1 ) and the latitude coordinate lat 1 (t 1 ) of the surface tow 1
  • the altimeter 8 measures the real-time vertical height of the surface tow 1 from the seabed H 0 (t 1 ), the measured data are transmitted to the shipborne upper computer through the lower computer 9 and the watertight cable 2.
  • the shipborne host computer 3 Based on the total magnetic field data B 0 , the shipborne host computer 3 corrects the data of the three geomagnetic components B x (t), B y (t), and B z (t) to obtain the corrected three-component geomagnetic data B x1 (t 1 ), B y1 (t 1 ), B z1 (t 1 ), the correction of the three-component geomagnetic data is calculated by the following method:
  • the ship-borne host computer 3 performs Fourier transform on the corrected three-component geomagnetic data B x1 (t 1 ), B y1 (t 1 ), and B z1 (t 1 ), and respectively takes the 50Hz frequency point Amplitude A x1 (t 1 ), A y1 (t 1 ), A z1 (t 1 ).
  • the shipborne host computer 3 calculates the horizontal distance L, the direction angle ⁇ , and the vertical distance H from the submarine cable to the surface tow body 1 1 (t 1 ), where
  • the calculation method of the horizontal distance L between the surface tow body 1 and the submarine cable is:
  • the calculation method of the direction angle ⁇ between the surface tow body 1 and the submarine cable is:
  • ⁇ 0 is the vacuum permeability
  • lat 2 (t 1 ) arcsin(sin(lat 1 (t 1 )) ⁇ cos(L/R)+cos(lat 1 (t 1 )) ⁇ sin(L/R) ⁇ cos( ⁇ ));
  • R is the radius of the earth.
  • the working principle of the present invention is: the three components of the 50Hz AC magnetic field generated by the 50Hz alternating current signal in the submarine cable will be detected by the atomic magnetometer 4 and the triaxial fluxgate magnetometer 5, wherein the atomic magnetometer 4 To measure the total geomagnetic field, the three-axis fluxgate magnetometer 5 measures the three components of geomagnetism.
  • the three-component AC magnetic field is converted to the three-component magnetic field under geographic coordinates through the attitude data provided by the attitude instrument 6.
  • the vertical height information of the measuring point from the seabed is measured by the altimeter 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

基于磁矢量数据的海缆三维路由测量方法,包括以下步骤:1)测量船从海缆一端出发拖曳水面拖体(1),调节并保持测量船的航线,使水面拖体(1)位于海缆附近,直至t 1时刻,三轴磁通门磁力仪(5)测试到海缆工频电流产生的交变磁场信号;2)基于水面拖体(1)测量的地磁场总场数据B 0、地磁三分量数据B x(t)、B y(t)、B z(t)、水面拖体(1)的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1)、以及水面拖体(1)距离海底的实时垂直高度H 0(t 1),计算海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)和埋深数据d(t 1);3)根据海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)和埋深数据d(t 1),在三维坐标图上进行海缆三维路由绘制。该方法增加了对海缆埋深的探测,提高了海缆路由信息的参考价值,提高了海缆三维路由测量的效率。基于磁矢量数据的海缆三维路由测量仪。

Description

基于磁矢量数据的海缆三维路由测量方法及测量仪 技术领域
本发明海缆运行与维护领域,涉及一种基于磁矢量数据的海缆三维路由测量方法及测量仪,用于精确测量海缆在海底的三维位置信息。
背景技术
海底电缆是用绝缘材料包裹的导线,铺设在海底,用于电力和信息传输。根据用途可分为电力电缆、光电复合缆、通信光缆等。近年来,光电复合海底电力电缆(简称光电复合海缆)在电力传输及数据通信领域逐渐普及。这种新型海缆把电缆和光缆复合在一起,同时输送电能和传输数据,既节约成本,又降低敷缆施工次数,在诸如浅海岛屿间跨海输电和通信应用中备受青睐。
海缆路由探测是海缆运行与维护中的一个重要环节。精确的海缆的路由信息有助于在海缆发生故障时缩短故障定位时间,提高故障检测效率,同时对日常海缆维护提供一定的参考价值。目前,海缆路由探测主要采用二维平面路由探测的方式,一般采用原子磁力仪作为探测设备,提供海缆的经纬度坐标信息,而作为海缆抗锚损能力评估的埋深参数需要埋深测量仪进行探测,并没有体现在二维平面路由信息里,这大大降低了海缆路由信息的价值。因此,海缆的三维路由探测在海缆运维中具有较高的参考价值,相关探测设备具有较强的实用价值。
发明内容
本发明的目的在于针对现有技术中体现海缆抗锚损能力评估的埋深参数未能体现在海缆路由探测的二维平面路由信息里的问题,提出一种基于磁矢量数据的海缆三维路由测量仪及测量方法,以探测海缆的经纬度坐标和埋深。
为了达到目的,本发明提供的技术方案为:
一种基于磁矢量数据的海缆三维路由测量方法,包括以下步骤:
1)测量船从海缆一端出发拖曳水面拖体,调节并保持测量船的航线,使水面拖体位于海缆附近,直至t 1时刻,三轴磁通门磁力仪测试到海缆工频电流产生的交变磁场信号;
2)基于水面拖体测量的地磁场总场数据B 0、地磁三分量数据B x(t)、B y(t)、B z(t)、水面拖体的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1)、以及水面拖体距离海底的实时垂直高度H 0(t 1),计算海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)和埋深数据 d(t 1);
3)根据海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)和埋深数据d(t 1),在三维坐标图上进行海缆三维路由绘制。
优选地,所述的水面拖体通过测量船拖拽,水面拖体包括原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机,原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计均与下位机通信连接;
所述步骤2)的具体步骤包括:
2.1)三轴磁通门磁力仪测量交变磁场三分量,姿态仪根据水面拖体的姿态数据对交变磁场三分量进行转化得到地磁三分量数据B x(t)、B y(t)、B z(t),原子磁力仪测量地磁场总场数据B 0,导航定位仪测量水面拖体的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1),高度计测量水面拖体距离海底的实时垂直高度H 0(t 1),测得的数据通过下位机以及水密电缆传输给船载上位机;
2.2)船载上位机根据磁场总场数据B 0,对地磁三分量数据进行修正得到修正后的地磁三分量数据B x1(t 1)、B y1(t 1)、B z1(t 1);
2.3)船载上位机分别对修正后的地磁三分量数据进行傅里叶变换,并分别取ω频率点上的幅值A x1(t 1)、A y1(t 1)、A z1(t 1);
2.4)船载上位机根据幅值A x1(t 1)、A y1(t 1)、A z1(t 1)计算水面拖体距离海缆的水平距离L、方向角θ和垂直距离H 1(t 1);
2.5)船载上位机根据水面拖体距离海缆的垂直距离H 1(t 1)以及水面拖体距离海底的实时垂直高度H 0(t 1)计算海缆在海底的埋深d(t 1);
2.6)根据t 1时刻经度坐标lon 1(t 1)和纬度坐标lat 1(t 1)以及计算得到的水面拖体距离海缆的水平距离L与方向角θ,计算海缆的经度坐标lon 2(t 1)和纬度坐标lat 2(t 1);
优选地,所述的船载上位机对地磁三分量数据B x(t)、B y(t)、B z(t)进行修正的计算方式为:
Figure PCTCN2020111554-appb-000001
Figure PCTCN2020111554-appb-000002
Figure PCTCN2020111554-appb-000003
优选地,水面拖体距离海缆的水平距离L的计算方式为:
Figure PCTCN2020111554-appb-000004
其中μ 0为真空磁导率。
优选地,水面拖体与海缆的方向角θ的计算方式为:
当B x1(t 1)与B z1(t 1)反相位时,θ=-arctan(A x1(t 1)/A y1(t 1));
当B x1(t 1)与B z1(t 1)同相位时,θ=arctan(A x1(t 1)/A y1(t 1))。
优选地,水面拖体距离海缆的垂直距离H 1(t 1)的计算方式为:
Figure PCTCN2020111554-appb-000005
其中μ 0为真空磁导率。
优选地,计算海缆在海底的埋深d(t 1)的计算方法:
Figure PCTCN2020111554-appb-000006
其中μ 0为真空磁导率。
优选地,海缆的经度坐标lon 2(t 1)和纬度坐标lat 2(t 1)的计算方式为:
lat 2(t 1)=arcsin(sin(lat 1(t 1))×cos(L/R)+cos(lat 1(t 1))×sin(L/R)×cos(θ));
Figure PCTCN2020111554-appb-000007
其中,R为地球半径。
本发明还涉及种基于磁矢量数据的海缆三维路由测量仪,其特征在于:其包括水面拖体、船载上位机和测量船,所述的船载上位机安装在测量船上;所述的水面拖体通过测量船拖拽,水面拖体包括原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机,原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计均与下位机通信连接,下位机与船载上位机通信连接。
优选地,所述的水面拖体还包括非金属水密舱,非金属水密舱的外壁设有水密接插件,原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机均通过刚性连接的方式固定在非金属水密舱内,下位机通过电缆与水密接插件连接,水密接插件通过水密电缆与船载上位机连接。非金属水密舱用于保护原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机,防止浸水造成的损坏;所述的水密电缆用于测量船拖拽水面拖体,于此同时,用于将下位机的数据传输给船载上位机,进而实现进一步的计算。
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
本发明通过原子磁力仪测量地磁场总场数据B 0,通过三轴磁通门磁力仪配合姿态仪测量地磁三分量数据B x(t)、B y(t)、B z(t)的同时,还通过高度计测量水面拖体距离海底的实时垂直高度H 0(t 1),进经过一系列的计算得到海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)以及海缆在海底的埋深d(t 1),进而在三维坐标图上进行海缆三维路由绘制,相比与二维路由探测,本发明增加了对海缆埋深的探测,提高了海缆路由信息的参考价值,提高了海缆三维路由测量的效率。
附图说明
图1是基于磁矢量数据的海缆三维路由测量仪的框架图;
图2是水面拖体的内部结构框架图;
图3是基于磁矢量数据的海缆三维路由测量仪工作原理框架图。
标注说明:1-水面拖体,2-水密电缆,3-船载上位机,4-原子磁力仪,5-三轴磁通门磁力仪,6-姿态仪,7-导航定位仪,8-高度计,9-下位机,10-非金属水密舱。
具体实施方式
为了加深对本发明的理解,对本发明的实施例作详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述的实施例。
实施例一
结合附图1和2所示,本发明涉及的基于磁矢量数据的海缆三维路由测量仪包括水面拖体1、船载上位机3和测量船(图中未画出)。所述的船载上位机3安装在测量船上。所述的水面拖体1包括原子磁力仪4、三轴磁通门磁力仪5、姿态仪6、 导航定位仪7、高度计8、下位机9和非金属水密舱10,非金属水密舱10的外壁设有水密接插件,原子磁力仪4、三轴磁通门磁力仪5、姿态仪6、导航定位仪7、高度计8和下位机9均通过刚性连接的方式固定在非金属水密舱10内,下位机9通过电缆与水密接插件连接,水密接插件通过水密电缆2与船载上位机3连接,进而实现下位机9和船载上位机3的通信连接。测量船通过水密电缆2对水面拖体1进行拖拽作业,进而使水面拖体1始终位于海缆附近且可以沿着海缆布置方向移动。
上述原子磁力仪4采用加拿大Scintrex公司生产的型号为CS-3高精度铯光泵磁力仪,用于测量地磁场总场数据B 0;三轴磁通门磁力仪5采用英国Bartington公司生产的型号为Mag-13三轴磁通门,用于测量正弦电流信号的交流磁场三分量;姿态仪6采用三维姿态仪,其通过姿态转换的方式将交流磁场三分量转化为地理坐标下的地磁三分量数据B x(t)、B y(t)、B z(t);导航定位仪7采用加拿大Hemisphere生产的R330型导航定位仪,用于测量水面拖体1的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1);高度计8采用英国Valeport公司生产的VA500型高度计,用于测量水面拖体1距离海底的实时垂直高度H 0(t 1);非金属水密舱10采用碳纤维材料构成,水密电缆2采用多芯凯夫拉缆;下位机9用于接收原子磁力仪4、三轴磁通门磁力仪5、姿态仪6、导航定位仪7和高度计8测量的数据,并通过水密电缆2将数据传输给船载上位机3;船载上位机3用于接收下位机9传输的数据并计算海缆的坐标和埋深。
实施例二
采用上述测量仪器进行基于磁矢量数据的海缆三维路由测量方法,该方法的原理如如图3所示,该测量方法包括以下步骤:
1)将水面拖体1与船载上位机3通过水密电缆2连接,并将水面拖体1置于水中,船载上位机3放置在测量船上,测量船从海缆一端出发拖曳水面拖体1运动,调节并保持测量船的航线,使水面拖体1始终位于海缆附近且沿着海缆移动,直至t 1时刻,三轴磁通门磁力5仪测试到频率50Hz的交变磁场信号。
2.1)三轴磁通门磁力仪5测量交变磁场三分量,姿态仪6根据水面拖体1的姿态数据对交变磁场三分量进行转化得到地磁三分量数据B x(t)、B y(t)、B z(t),其中,B x(t)代表正东方向磁场分量、B y(t)代表正北方向磁场分量、B z(t)代表垂直方向磁场分量;原子磁力仪4测量地磁场总场数据B 0,导航定位仪7测量水面拖体1的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1),高度计8测量水面拖体1距离海底的实时垂直高 度H 0(t 1),测得的数据均通过下位机9以及水密电缆2传输给船载上位机。
2.2)船载上位机3根据磁场总场数据B 0,对地磁三分量B x(t)、B y(t)、B z(t)的数据进行修正,得到修正后的地磁三分量数据B x1(t 1)、B y1(t 1)、B z1(t 1),地磁三分量数据的修正通过以下方法计算:
Figure PCTCN2020111554-appb-000008
Figure PCTCN2020111554-appb-000009
Figure PCTCN2020111554-appb-000010
2.3)船载上位机3分别对修正后的地磁三分量数据B x1(t 1)、B y1(t 1)、B z1(t 1)进行傅里叶变换,并分别取50Hz频率点上的幅值A x1(t 1)、A y1(t 1)、A z1(t 1)。
2.4)船载上位机3根据幅值A x1(t 1)、A y1(t 1)、A z1(t 1)计算水面拖体1距离海缆的水平距离L、方向角θ和垂直距离H 1(t 1),其中,
水面拖体1距离海缆的水平距离L的计算方式为:
Figure PCTCN2020111554-appb-000011
水面拖体1与海缆的方向角θ的计算方式为:
当B x1(t 1)与B z1(t 1)反相位时,θ=-arctan(A x1(t 1)/A y1(t 1));
当B x1(t 1)与B z1(t 1)同相位时,θ=arctan(A x1(t 1)/A y1(t 1));
水面拖体1距离海缆的垂直距离H 1(t 1)的计算方式为:
Figure PCTCN2020111554-appb-000012
其中,μ 0为真空磁导率。
2.5)根据水面拖体1距离海缆的垂直距离H 1(t 1)以及水面拖体1距离海底的实时垂直高度H 0(t 1)计算海缆在海底的埋深d(t 1),
海缆在海底的埋深d(t 1)的计算方法:
Figure PCTCN2020111554-appb-000013
2.6)根据t 1时刻经度坐标lon 1(t 1)和纬度坐标lat 1(t 1)以及计算得到的水面拖体1距离海缆的水平距离L与方向角θ,计算海缆的经度坐标lon 2(t 1)和纬度坐标lat 2(t 1),海缆的经度坐标lon 2(t 1)和纬度坐标lat 2(t 1)的计算方式为:
lat 2(t 1)=arcsin(sin(lat 1(t 1))×cos(L/R)+cos(lat 1(t 1))×sin(L/R)×cos(θ));
Figure PCTCN2020111554-appb-000014
其中,R为地球半径。
3)根据得到的海缆1经纬度坐标lon 2(t 1)、lon 2(t 1)和埋深数据d(t 1),在三维坐标图上进行海缆三维路由绘制。
结合附图3所示,本发明的工作原理为:海缆中50Hz交变电流信号产生的50Hz交流磁场三分量将由原子磁力仪4和三轴磁通门磁力仪5探测,其中原子磁力仪4测量地磁场总场,三轴磁通门磁力仪5测量地磁三分量。通过姿态仪6提供的姿态数据将交流磁场三分量转换到地理坐标下的磁场三分量。通过高度计8测量测量点距离海底的垂直高度信息。结合长直导线上电流产生磁场的模型,通过地理坐标下的磁场三分量和测量设备的地理坐标,计算探测点与海缆的平面相对位置关系与垂直距离,进而计算离探测点最近的海缆平面二维路由位置数据和海缆的埋深数据,得到海缆的三维路由信息。
以上结合实施例对本发明进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍属于本发明的专利涵盖范围之内。

Claims (10)

  1. 一种基于磁矢量数据的海缆三维路由测量方法,其特征在于:其包括以下步骤:
    1)测量船从海缆一端出发拖曳水面拖体,调节并保持测量船的航线,使水面拖体位于海缆附近,直至t 1时刻,三轴磁通门磁力仪测试到海缆工频电流产生的交变磁场信号;
    2)基于水面拖体测量的地磁场总场数据B 0、地磁三分量数据B x(t)、B y(t)、B z(t)、水面拖体的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1)、以及水面拖体距离海底的实时垂直高度H 0(t 1),计算海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)和埋深数据d(t 1);
    3)根据海缆的经度坐标lon 2(t 1)、纬度坐标lat 2(t 1)和埋深数据d(t 1),在三维坐标图上进行海缆三维路由绘制。
  2. 根据权利要求1所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:所述的水面拖体通过测量船拖拽,水面拖体包括原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机,原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计均与下位机通信连接;
    所述步骤2)的具体步骤包括:
    2.1)三轴磁通门磁力仪测量交变磁场三分量,姿态仪根据水面拖体的姿态数据对交变磁场三分量进行转化得到地磁三分量数据B x(t)、B y(t)、B z(t),原子磁力仪测量地磁场总场数据B 0,导航定位仪测量水面拖体的经度坐标lon 1(t 1)和纬度坐标lat 1(t 1),高度计测量水面拖体距离海底的实时垂直高度H 0(t 1),测得的数据通过下位机以及水密电缆传输给船载上位机;
    2.2)船载上位机根据磁场总场数据B 0,对地磁三分量数据进行修正得到修正后的地磁三分量数据B x1(t 1)、B y1(t 1)、B z1(t 1);
    2.3)船载上位机分别对修正后的地磁三分量数据进行傅里叶变换,并分别取ω频率点上的幅值A x1(t 1)、A y1(t 1)、A z1(t 1);
    2.4)船载上位机根据幅值A x1(t 1)、A y1(t 1)、A z1(t 1)计算水面拖体距离海缆的水平距离L、方向角θ和垂直距离H 1(t 1);
    2.5)船载上位机根据水面拖体距离海缆的垂直距离H 1(t 1)以及水面拖体距离海底的实时垂直高度H 0(t 1)计算海缆在海底的埋深d(t 1);
    2.6)船载上位机根据t 1时刻经度坐标lon 1(t 1)和纬度坐标lat 1(t 1)以及计算得到的水 面拖体距离海缆的水平距离L与方向角θ,计算海缆的经度坐标lon 2(t 1)和纬度坐标lat 2(t 1);
  3. 根据权利要求2所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:所述的船载上位机对地磁三分量数据B x(t)、B y(t)、B z(t)进行修正的计算方式为:
    Figure PCTCN2020111554-appb-100001
    Figure PCTCN2020111554-appb-100002
    Figure PCTCN2020111554-appb-100003
  4. 根据权利要求2所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:水面拖体距离海缆的水平距离L的计算方式为:
    Figure PCTCN2020111554-appb-100004
    其中μ 0为真空磁导率。
  5. 根据权利要求2所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:水面拖体与海缆的方向角θ的计算方式为:
    当B x1(t 1)与B z1(t 1)反相位时,θ=-arctan(A x1(t 1)/A y1(t 1));
    当B x1(t 1)与B z1(t 1)同相位时,θ=arctan(A x1(t 1)/A y1(t 1))。
  6. 根据权利要求2所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:水面拖体距离海缆的垂直距离H 1(t 1)的计算方式为:
    Figure PCTCN2020111554-appb-100005
    其中μ 0为真空磁导率。
  7. 根据权利要求2所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:计算海缆在海底的埋深d(t 1)的计算方法:
    Figure PCTCN2020111554-appb-100006
    其中μ 0为真空磁导率。
  8. 根据权利要求2所述的基于磁矢量数据的海缆三维路由测量方法,其特征在于:海缆的经度坐标lon 2(t 1)和纬度坐标lat 2(t 1)的计算方式为:
    lat 2(t 1)=arcsin(sin(lat 1(t 1))×cos(L/R)+cos(lat 1(t 1))×sin(L/R)×cos(θ));
    Figure PCTCN2020111554-appb-100007
    其中,R为地球半径。
  9. 一种基于磁矢量数据的海缆三维路由测量仪,其特征在于:其包括水面拖体、船载上位机和测量船,所述的船载上位机安装在测量船上;所述的水面拖体通过测量船拖拽,水面拖体包括原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机,原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计均与下位机通信连接,下位机与船载上位机通信连接。
  10. 根据权利要求1所述的基于磁矢量数据的海缆三维路由测量仪,其特征在于:所述的水面拖体还包括非金属水密舱,非金属水密舱的外壁设有水密接插件,原子磁力仪、三轴磁通门磁力仪、姿态仪、导航定位仪、高度计和下位机均通过刚性连接的方式固定在非金属水密舱内,下位机通过电缆与水密接插件连接,水密接插件通过水密电缆与船载上位机连接。
PCT/CN2020/111554 2019-11-29 2020-08-27 基于磁矢量数据的海缆三维路由测量方法及测量仪 WO2021103697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911207567.5 2019-11-29
CN201911207567.5A CN110941017B (zh) 2019-11-29 2019-11-29 基于磁矢量数据的海缆三维路由测量方法及测量仪

Publications (1)

Publication Number Publication Date
WO2021103697A1 true WO2021103697A1 (zh) 2021-06-03

Family

ID=69908622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111554 WO2021103697A1 (zh) 2019-11-29 2020-08-27 基于磁矢量数据的海缆三维路由测量方法及测量仪

Country Status (2)

Country Link
CN (1) CN110941017B (zh)
WO (1) WO2021103697A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264299A (zh) * 2021-12-29 2022-04-01 杭州电子科技大学 一种基于标量磁场数据的交流输电海缆路由定位方法
CN114543791A (zh) * 2022-01-20 2022-05-27 长安大学 基于地磁特征量的高精度实时导航定位方法
CN114577218A (zh) * 2022-05-07 2022-06-03 中国人民解放军海军工程大学 基于磁力仪和深度计的水下运载体姿态测量方法及系统
CN115236746A (zh) * 2022-06-02 2022-10-25 吉林大学 一种潜航器搭载式水下多参量磁测系统及磁测定位方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941017B (zh) * 2019-11-29 2021-11-09 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆三维路由测量方法及测量仪
CN113569435A (zh) * 2020-04-29 2021-10-29 上海安馨信息科技有限公司 光电复合海缆埋深监测方法
CN111708093B (zh) * 2020-05-22 2022-09-20 国网浙江省电力有限公司舟山供电公司 一种多模式海缆埋深探测方法及探测系统
CN112558006B (zh) * 2020-11-30 2022-09-06 华中科技大学 一种用于海底缆线的双三轴电磁探测及路由定位方法
CN113064209B (zh) * 2021-04-14 2021-11-26 杭州电子科技大学 一种海底电缆的地磁探测方法
CN113433594A (zh) * 2021-05-18 2021-09-24 杭州电子科技大学 一种基于磁力仪的水下auv寻缆系统
CN113589390B (zh) * 2021-08-18 2024-04-19 国网福建省电力有限公司莆田供电公司 一种基于弱磁信号的海缆路由坐标定位方法
CN114325849A (zh) * 2021-12-30 2022-04-12 上海中车艾森迪海洋装备有限公司 一种海底金属设备的定位方法、系统、设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357573A (en) * 1979-02-01 1982-11-02 Societe D'etudes Contre La Corrosion (Secco) Method of surveying sub-sea pipeline
US5210498A (en) * 1989-04-25 1993-05-11 Tipteck Oy Detector for locating underground cables and faults therein using high-powered electromagnet
JPH10339632A (ja) * 1997-06-06 1998-12-22 Kokusai Cable Ship Kk 海底ケーブル埋設深度測定方法および海底ケーブルの障害点検出方法およびそれに用いる交流磁気センサ装置
CN106405662A (zh) * 2016-08-19 2017-02-15 广东科诺勘测工程有限公司 一种基于水下机器人的水下管线探测仪
RU2656283C1 (ru) * 2017-08-23 2018-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ) Способ определения трассы прокладки и локализации места повреждения кабеля
CN110927802A (zh) * 2019-11-29 2020-03-27 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆故障精确定位方法及定位仪
CN110927801A (zh) * 2019-11-29 2020-03-27 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆路由自导航巡线方法及导航探测仪
CN110941017A (zh) * 2019-11-29 2020-03-31 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆三维路由测量方法及测量仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481611A (en) * 1980-01-25 1984-11-06 Shell Oil Company Seismic cable compass system
CN103852796A (zh) * 2014-02-18 2014-06-11 中国人民解放军92859部队 一种水下小目标的磁异常强度测量方法
CN104199123A (zh) * 2014-08-07 2014-12-10 上海瑞洋船舶科技有限公司 海底电缆铺设质量检测系统
CN110260044B (zh) * 2019-06-06 2020-12-04 天津大学 一种海底管道定位方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357573A (en) * 1979-02-01 1982-11-02 Societe D'etudes Contre La Corrosion (Secco) Method of surveying sub-sea pipeline
US5210498A (en) * 1989-04-25 1993-05-11 Tipteck Oy Detector for locating underground cables and faults therein using high-powered electromagnet
JPH10339632A (ja) * 1997-06-06 1998-12-22 Kokusai Cable Ship Kk 海底ケーブル埋設深度測定方法および海底ケーブルの障害点検出方法およびそれに用いる交流磁気センサ装置
CN106405662A (zh) * 2016-08-19 2017-02-15 广东科诺勘测工程有限公司 一种基于水下机器人的水下管线探测仪
RU2656283C1 (ru) * 2017-08-23 2018-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ) Способ определения трассы прокладки и локализации места повреждения кабеля
CN110927802A (zh) * 2019-11-29 2020-03-27 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆故障精确定位方法及定位仪
CN110927801A (zh) * 2019-11-29 2020-03-27 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆路由自导航巡线方法及导航探测仪
CN110941017A (zh) * 2019-11-29 2020-03-31 国网浙江省电力有限公司舟山供电公司 基于磁矢量数据的海缆三维路由测量方法及测量仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIAN, PEIWANG ET AL.: "Comparison of Two Marine Geophysical Methods in Submarine Pipeline Detection", JOURNAL OF GUANGDONG OCEAN UNIVERSITY, vol. 38, no. 6, 15 December 2018 (2018-12-15), pages 61 - 68, XP055816662, ISSN: 1673-9159 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264299A (zh) * 2021-12-29 2022-04-01 杭州电子科技大学 一种基于标量磁场数据的交流输电海缆路由定位方法
CN114264299B (zh) * 2021-12-29 2023-11-24 杭州电子科技大学 一种基于标量磁场数据的交流输电海缆路由定位方法
CN114543791A (zh) * 2022-01-20 2022-05-27 长安大学 基于地磁特征量的高精度实时导航定位方法
CN114543791B (zh) * 2022-01-20 2023-05-26 长安大学 基于地磁特征量的高精度实时导航定位方法
CN114577218A (zh) * 2022-05-07 2022-06-03 中国人民解放军海军工程大学 基于磁力仪和深度计的水下运载体姿态测量方法及系统
CN114577218B (zh) * 2022-05-07 2022-08-05 中国人民解放军海军工程大学 基于磁力仪和深度计的水下运载体姿态测量方法及系统
CN115236746A (zh) * 2022-06-02 2022-10-25 吉林大学 一种潜航器搭载式水下多参量磁测系统及磁测定位方法

Also Published As

Publication number Publication date
CN110941017B (zh) 2021-11-09
CN110941017A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021103697A1 (zh) 基于磁矢量数据的海缆三维路由测量方法及测量仪
CN110927802B (zh) 基于磁矢量数据的海缆故障精确定位方法及定位仪
CN112558006B (zh) 一种用于海底缆线的双三轴电磁探测及路由定位方法
CA1208428A (en) Method for determining the position of a marine seismic receiver cable
CN108828471B (zh) 一种多分量海底磁场测量方法及装置
CN110927801B (zh) 基于磁矢量数据的海缆路由自导航巡线方法及导航探测仪
Guan et al. An effective method for submarine buried pipeline detection via multi-sensor data fusion
CN106405662A (zh) 一种基于水下机器人的水下管线探测仪
CN111123173B (zh) 一种基于浮标的深远海磁力异常探测系统及探测方法
WO2018058736A1 (zh) 一种海洋磁力探测方法及装置
CN108535751A (zh) 水下定位装置及定位方法
CN110737029A (zh) 一种水下电缆电磁探测装置及定位方法
CN110488334A (zh) 一种水下物体定位装置、定位系统及其定位方法
CN206057595U (zh) 一种基于水下机器人的水下管线探测仪
CN104730588A (zh) 一种深海拖曳式的质子旋进磁力测量系统
CN107664758A (zh) 基于长基线或超短基线组网的深海导航定位系统及方法
CN114264299B (zh) 一种基于标量磁场数据的交流输电海缆路由定位方法
CN207164267U (zh) 一种浅海区海底高精度重力测量系统
CN111708093B (zh) 一种多模式海缆埋深探测方法及探测系统
CN112987112A (zh) 基于磁感应线圈十字组合模式的海缆搜索与定位方法
CN116930868A (zh) 一种基于水声通信的单矢量水听器潜标定位方法及潜标
CN105651264A (zh) 一种海底电缆探测系统
US4808923A (en) System for calculating the path of a naval vessel
CN108761470A (zh) 一种基于拖缆形态方程解析的目标定位方法
CN102252674A (zh) 水下地磁定位导航装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894046

Country of ref document: EP

Kind code of ref document: A1