WO2022217636A1 - 一种真空芯轴旋转式超低温介质内喷式电主轴 - Google Patents

一种真空芯轴旋转式超低温介质内喷式电主轴 Download PDF

Info

Publication number
WO2022217636A1
WO2022217636A1 PCT/CN2021/089103 CN2021089103W WO2022217636A1 WO 2022217636 A1 WO2022217636 A1 WO 2022217636A1 CN 2021089103 W CN2021089103 W CN 2021089103W WO 2022217636 A1 WO2022217636 A1 WO 2022217636A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
low temperature
ultra
spindle
mandrel
Prior art date
Application number
PCT/CN2021/089103
Other languages
English (en)
French (fr)
Inventor
王永青
赵地
刘阔
韩灵生
刘海波
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2022217636A1 publication Critical patent/WO2022217636A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools

Definitions

  • the invention belongs to the technical field of numerically controlled machine tools, and in particular relates to a vacuum mandrel rotary ultra-low temperature medium internal spray type electric spindle.
  • Ultra-low temperature machining is a green machining process, which can achieve extremely low cooling temperature ⁇ -153°C during the machining process.
  • the internal spray cooling method has the advantages of precise cooling and high cooling efficiency, and the development of its related processing equipment is of great significance.
  • the ultra-low temperature internal spray electric spindle is an important component for the high-quality and efficient operation of the ultra-low temperature machining machine.
  • the ultra-low temperature medium is directly sprayed from the position of the tool tip through the inner pipeline of the spindle, the hollow tool holder, and the hollow tool, and the workpiece is directly cooled.
  • the ultra-low temperature medium liquid represented by liquid nitrogen -196°C has strong cooling ability, which can greatly reduce the cutting temperature, improve the processing quality, and prolong the tool life, but it is very easy to be vaporized by heat, which has higher requirements for the transmission process.
  • the traditional inner-cooled motorized spindle has weak internal heat insulation capacity, and heat transfer is very likely to occur during the medium transmission process, resulting in severe cold shrinkage or even freezing of the spindle structure, and internal motors, bearings and other components are also prone to coordination failure and lubrication failure. And other issues. Therefore, the above problems put forward higher requirements for the design of the internal heat insulation and sealing mechanism of the ultra-low temperature medium internal spray type electric spindle suitable for high-speed operation.
  • Tao Lu, 5ME, USA presented an article on Cryogenic Machining at the 15th Sustainable Manufacturing Global Conference through the Spindle and Tool for Improved Machining Process Performance and Sustainability introduces a liquid nitrogen internal spray spindle, which transports liquid nitrogen to the processing area through the adiabatic fluid channel through the spindle and the tool holder to realize ultra-low temperature cooling processing.
  • the adiabatic fluid passage of the spindle is a hose, which has a small radial dimension and low strength, and cannot bear the pulling force and thrust of the automatic broach release, so the spindle can only be manually loaded and unloaded.
  • the main shaft is a mechanical transmission main shaft, which does not involve the related structural design of the internal motor stator, rotor and automatic tool change.
  • the present invention proposes a vacuum mandrel rotary ultra-low temperature medium internal spray type electric main shaft, which realizes the reliable transportation of ultra-low temperature medium inside the main shaft, and avoids the heat inside the main shaft caused by the ultra-low temperature medium.
  • the transmission causes the main shaft structure to shrink and freeze, as well as the failure of coordination and lubrication of components such as motors and bearings.
  • a vacuum mandrel rotary ultra-low temperature medium internal spray type electric spindle including a main spindle structure, ultra-low temperature medium supply and heat insulation conveying structure; Motor rotor magnetic pole 1.8, hollow shaft motor stator core and winding 1.9, hollow annular hydraulic cylinder 1.12; ultra-low temperature medium supply and heat insulation conveying structure including vacuum heat insulation mandrel 1.2 and ultra-low temperature rotary joint 1.6;
  • the hollow main shaft 1.1 is the main structure for the main shaft to rotate.
  • the hollow channel machined inside provides installation space for the vacuum insulation mandrel 1.2;
  • the front bearing set 1.14 and the rear bearing set 1.15 play a role in supporting the rotation of the hollow spindle 1.1 and its internal components;
  • the outer conical surface of the hollow tool holder 1.3 fits with the inner conical surface 2.3 at the front end of the hollow spindle, which plays a role in supporting the rotation of the hollow spindle 1.1 and its internal components;
  • the vacuum insulation mandrel 1.2 is the conveying channel of the ultra-low temperature medium, which is used to prevent the heat exchange between the ultra-low temperature medium and the main shaft material and internal parts;
  • the outer wall surface 2.5 of the front end of the vacuum insulation mandrel and the rear outer wall surface 2.8 of the vacuum insulation mandrel are the positioning surfaces of the vacuum insulation mandrel 1.2, and the surface of the outer end surface 2.6 of the middle part of the vacuum insulation mandrel
  • the keyway is processed to realize the fixation with the disc spring 1.7;
  • the hollow tool holder 1.3 has a hollow channel inside, so that the vacuum insulation mandrel 1.2 passes through the inside and goes straight to the front end of the tool holder, so as to avoid the leakage of the ultra-low temperature medium inside the hollow tool holder 1.3, and it is processed inside the hollow tool holder 1.3
  • the inner arc surface 2.4 of the hollow handle is the limit surface after the opening of the pulling claw 1.10;
  • the pulling claw 1.10 and the broach ejector mechanism 1.11 are installed along the front end of the vacuum insulation mandrel 1.2 in an interference manner; the disc spring 1.7 is inserted from the hollow spindle 1.1 Install vertically at the opening at the tail; install the vacuum insulation mandrel 1.2 from the opening at the tail of the hollow main shaft 1.1 until the outer wall surface 2.5 of the front end of the vacuum insulation mandrel is in close contact with the broach ejector mechanism 1.11; remove the end cover 1.5 from the main shaft The tail is inserted along the vacuum insulation mandrel 1.2 until the outer wall surface 2.5 of the front end of the vacuum insulation mandrel is in contact with the rightmost end of the broach ejector mechanism 1.11; the end cover 1.5 is installed along the tail of the vacuum insulation mandrel 1.2 until it is connected with the hollow spindle Fit the outer wall surface 2.7 of the tail, and use a torque wrench to
  • the hollow tool shank 1.3 is loaded into the vacuum spindle 1.1 from the front end of the spindle to ensure that the outer conical surface of the tool shank is in contact with the inner conical surface 2.3 of the front end of the hollow spindle; open
  • the external spindle control device makes the spindle start to rotate, keeping the speed at 5000rpm, and then turns on the external ultra-low temperature supply system.
  • the ultra-low temperature medium is forcedly input to the ultra-low temperature rotary joint 1.6 from the outside, and is transported by the vacuum insulation mandrel 1.2 to the hollow tool holder 1.3
  • the front end keep the main shaft rotating and the ultra-low temperature medium spraying for 10-12min to complete the overall debugging and pre-cooling.
  • the beneficial effect of the invention is that when the electric spindle is running at a high speed, by using the inner vacuum heat insulation conveying mandrel composed of vacuum multi-layer heat insulation materials, the whole structure will not shrink or even freeze during the transmission of the ultra-low temperature medium inside the spindle. Avoid all kinds of low temperature failures of internal motors, bearings and other components.
  • Fig. 1 is a schematic diagram of the structure of the ultra-low temperature medium internal spray type electric spindle
  • Fig. 2 is the hollow main shaft structure of assembling vacuum insulation mandrel
  • liquid nitrogen is used as the cooling medium
  • the vacuum insulation mandrel 1.2 is based on special stainless steel metal material, and the diameter of the thinnest end is 14mm;
  • the cavity surface is added with thermal insulation material;
  • the ultra-low temperature rotary joint 1.6 is equipped with ultra-low temperature bearings, which are made of high nitrogen stainless steel and can operate normally at -196 °C.
  • the first step is to install the pulling claw 1.10 and the broach ejector mechanism 1.11 on the vacuum insulation mandrel 1.2 in an interference manner
  • the outer wall surface 2.5 of the front end of the shaft is in contact with the rear end surface of the broach ejector mechanism 1.11; the end cover 1.5 is inserted into the tail of the vacuum insulation mandrel 1.2 until the left end surface of the shaft is in contact with the rear outer wall surface 2.7 of the hollow spindle; use torque Screw the four bolts into the threaded holes 1.a with a wrench of 15N•m;
  • a groove with an angle of 60 degrees and a depth of 15mm is machined on the outer wall of the hollow spindle, and the rotor magnetic pole of the hollow shaft motor is placed in a heating box and heated to 180°C-200°C.
  • the prime minister When the ultra-low temperature medium internal spray type electric spindle is working, the prime minister will install the hollow tool holder 1.3 from the front end of the spindle into the hollow spindle 1.1 to ensure that the outer cone surface of the tool holder is in contact with the inner cone surface 2.3 of the front end of the hollow spindle; supply the external liquid nitrogen with The ultra-low temperature rotary joint 1.5 at the end of the spindle is connected; open the spindle control device to start the spindle to rotate, and keep the speed at 5000rpm.
  • the hollow spindle 1.1, the vacuum insulation mandrel 1.2, the hollow tool shank 1.3, and the ultra-low temperature rotary joint 1.5 are in a synchronous rotation state; open External liquid nitrogen supply switch, and the liquid nitrogen is input through the ultra-low temperature rotary joint 1.5, transported from the vacuum insulation mandrel 1.2 to the front end of the hollow tool holder 1.3, and pre-cooled for 10min-12min to ensure that the liquid nitrogen jet state reaches the temperature state.
  • the spindle shaft stops rotating, and the tail hydraulic cylinder 1.12 is compressed to the limit position.
  • the end cover 1.5 under the action of hydraulic pressure drives the vacuum insulation liquid nitrogen conveying mandrel 1.2 and the broach ejector mechanism 1.11 along the The axis moves to the front end of the spindle, at this time the disc spring 1.7 is in a compressed state, until the claw 1.10 moves to the inner arc surface 2.4 of the hollow tool handle, the mandrel pulling claw automatically opens, and the tool handle and the spindle are in a separated state at this time.
  • the tool holder can be automatically replaced by the external tool magazine; when the automatic broaching action is performed, after the external tool magazine installs the tool holder on the spindle tool holder position, the hydraulic cylinder 1.12 returns to the original position before compression, and the vacuum insulation mandrel 1.2 And the broach ejector mechanism 1.11 is acted by the pulling force of the disc spring 1.7, and moves to the end of the main shaft in the axial direction until the pulling claw 1.10 moves to the limit position. At this time, the tool handle and the main shaft are in a tensioned state.
  • the present invention ensures that the main shaft material, internal motors, bearings and other components will not suffer from cold deformation and failure when the ultra-low temperature medium is transmitted inside the main shaft, and at the same time, the liquid nitrogen medium is greatly reduced.
  • the loss rate conveyed inside the spindle lays the foundation for the reliable operation of the ultra-low temperature internal jet high-speed machining equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种真空芯轴旋转式超低温介质内喷式电主轴,包括主轴主体结构、超低温介质供给及隔热输送结构;主轴主体结构包括中空主轴、中空刀柄、主轴外壳体、空心轴电机转子磁极、空心轴电机定子铁芯及绕组、液压缸;超低温介质供给及隔热输送结构包括真空绝热芯轴、超低温旋转接头;中空主轴为旋转主体结构,同时内部中空通道为真空绝热芯轴提供安装位置;真空绝热芯轴为超低温介质输送提供通路,同时起到承接碟簧拉刀力及液压缸松刀力的作用;真空绝热芯轴通过中空刀柄内部直通刀具冷却通道,避免了在刀柄内部的超低温介质泄漏及向主轴内部的介质扩散,起到更好的隔热效果。整体结构相对简单,易于装配、保养与维修,且可靠性与精度保持性较高

Description

一种真空芯轴旋转式超低温介质内喷式电主轴 技术领域
本发明属于数控机床技术领域,具体涉及一种真空芯轴旋转式超低温介质内喷式电主轴。
背景技术
超低温加工是一种绿色加工工艺,在加工过程中能够实现极低的冷却温度<-153℃,对钛合金、高温合金、钴铬合金等难加工金属材料的加工有着不可比拟的优势。其中,内喷式冷却方式具有冷却精准、冷却效率高的优点,其相关加工装备的研制有重要的意义。
超低温内喷式电主轴是超低温加工机床高质、高效运行的重要组成部件。在工作过程中,超低温介质经由主轴内部管路、中空刀柄、中空刀具,直接从刀具刀尖位置喷射并对工件直接进行冷却。以液氮-196℃为代表的超低温介质液冷却能力较强,可大幅降低切削温度、提高加工质量、延长刀具寿命,但极易受热汽化,对传输过程有着更高的要求。传统内冷式电主轴内部隔热能力较弱,在介质传输过程中极易发生热量传递,从而导致主轴结构严重冷缩甚至冻结,内部电机、轴承等零部件也极易发生配合失效、润滑失效等问题。因此,上述问题对适用于高速运转的超低温介质内喷式电主轴内部隔热、密封机构设计提出了更高的要求。
目前,国内外机构研制出了多种超低温内喷式电主轴结构。2012年,美国克雷雷有限公司在发明专利CN102427912A中公开了“用于通过机床向主轴输送低温流体的装置”,该装置将低温流体沿主轴内部旋转轴线上的真空隔热管路输送到刀具刀尖处,实现低温流体内喷式冷却。但位于主轴中后部用于实现自动换刀的驱动力的致动结构轴向尺寸较大,集成性较差且相对复杂,故障率相对较高且维修成本较大。美国5ME公司Tao Lu在第十五届可持续制造全球会议上发表了文章Cryogenic Machining through the Spindle and Tool for Improved Machining Process Performance and Sustainability,介绍了一种液氮内喷式主轴,将液氮通过绝热流体通道经由主轴及刀柄输送至加工区域,实现超低温冷却加工。但该主轴的绝热流体通道为软管,径向尺寸较小且强度较低,无法承载自动松拉刀的拉力和推力,因此该主轴只能通过手动装卸刀具。大连理工大学在专利201410182721.9中公开了“液氮内喷式数控钻铣床主轴装置”,该装置通过主轴内部液氮绝热管组件,保证液氮介质在主轴内部的低损传输。但该装置在绝热管件与刀柄拉钉连接处易发生液氮的泄露及扩散。同时,该主轴为机械传动主轴,未涉及内部电机定子、转子及自动换刀等相关结构设计。
技术问题
本发明针对现有技术的以上缺陷或改进需求,提出了一种真空芯轴旋转式超低温介质内喷式电主轴,实现了超低温介质在主轴内部的可靠输送,避免了因超低温介质在主轴内部热量传递导致的主轴结构冷缩冻结,以及电机、轴承等零部件发生配合失效、润滑失效等问题。
技术解决方案
一种真空芯轴旋转式超低温介质内喷式电主轴,包括主轴主体结构、超低温介质供给及隔热输送结构;主轴主体结构主要由中空主轴1.1、中空刀柄1.3、主轴外壳体1.4、空心轴电机转子磁极1.8、空心轴电机定子铁芯及绕组1.9、中空环形液压缸1.12组成;超低温介质供给及隔热输送结构包括真空绝热芯轴1.2与超低温旋转接头1.6;
所述中空主轴1.1,为主轴旋转的主体结构,在内部加工出的中空通道为真空绝热芯轴1.2提供安装空间;中空主轴前部外端面2.1及中空主轴尾部外端面2.2为中空主轴1.1的定位面;前部轴承组1.14与后部轴承组1.15起到支撑中空主轴1.1及其内部零部件旋转的作用;中空刀柄1.3的外锥面与中空主轴前端内锥面2.3相贴合,起到定位及夹紧的作用;
所述真空绝热芯轴1.2,是超低温介质的输送通道,用于遏止超低温介质与主轴材料及内部零部件的热量交换;真空绝热芯轴1.2同时承受碟簧1.7拉力与液压缸1.12推力,实现自动换刀时真空绝热芯轴1.2的轴向移动;真空绝热芯轴前端外壁面2.5与真空绝热芯轴后部外壁面2.8为真空绝热芯轴1.2的定位面,真空绝热芯轴中部外端面2.6表面加工出键槽,实现与碟簧1.7的固定;
所述中空刀柄1.3,在内部加工出中空通道,使真空绝热芯轴1.2通过其内部并直通至刀柄最前端,避免超低温介质在中空刀柄1.3内部的泄漏,在中空刀柄1.3内部加工出的中空刀柄内弧面2.4为拉爪1.10张开后的限位面;
所述真空芯轴旋转式超低温介质内喷式电主轴在装配时,将拉爪1.10及拉刀顶杆机构1.11以过盈方式顺真空绝热芯轴1.2前端装入;将碟簧1.7从中空主轴1.1尾部开口处垂直装入;将真空绝热芯轴1.2从中空主轴1.1尾部开口处装入,直至真空绝热芯轴前端外壁面2.5与拉刀顶杆机构1.11紧密贴合;将端盖1.5从主轴尾部顺真空绝热芯轴1.2套入,直至真空绝热芯轴前端外壁面2.5与拉刀顶杆机构1.11最右端相贴合;将端盖1.5顺真空绝热芯轴1.2尾部装入,直至与中空主轴尾部外壁面2.7相贴合,并用力矩扳手向中空主轴及端盖螺纹孔1.a中拧入螺栓并紧固;将空心轴电机转子磁极1.8从真空主轴1.1尾部套入中空主轴中部外端面2.9并完全贴合;将空心轴电机定子铁芯及绕组1.9套入中空主轴1.1中并保证两者同心;将中空环形液压缸1.12顺真空绝热芯轴1.2尾部套入,直至其与端盖1.5相贴合;将尾盖1.13顺真空绝热芯轴1.2尾部套入,直至与中空环形液压缸1.12右端面相贴合,并用力矩扳手向外壳体及尾盖螺纹孔1.c拧入螺栓紧固;将前部轴承组1.14顺中空主轴前部外端面2.1装入并用力贴紧;将后部轴承组1.15顺中空主轴后部外端面2.2装入并用力贴紧;将装配好轴承组及内部结构的中空主轴1.1从主轴外壳体1.4前端装入,并在外壳体前部螺纹孔1.b中拧入螺栓;最后,将超低温旋转接头1.6与真空绝热芯轴1.2尾部接头相连接;
所述真空芯轴旋转式超低温介质内喷式电主轴工作时,将中空刀柄1.3从主轴前端装入真空主轴1.1,保证刀柄外锥面与中空主轴前端内锥面2.3相贴合;打开外部的主轴调控装置使主轴开始旋转,保持转速在5000rpm,再将外部超低温供给系统开启,此时超低温介质从外部强制输入至超低温旋转接头1.6,并由真空绝热芯轴1.2输送到中空刀柄1.3最前端;保持主轴旋转及超低温介质喷射10-12min,完成整体调试及预冷。
有益效果
本发明的有益效果是当电主轴高速运转时,通过采用真空多层绝热材料组成的内部真空绝热输送芯轴,使超低温介质在主轴内部传输的过程中,整体结构不会发生冷缩甚至冻结,避免内部电机、轴承等零部件发生各类低温失效的问题。
附图说明
图1为超低温介质内喷式电主轴结构示意图;
图2为装配真空绝热芯轴的中空主轴结构;
图中:1.1-中空主轴;1.2-真空绝热芯轴;1.3-中空刀柄;1.4-主轴外壳体;1.5-端盖;1.6-超低温旋转接头;1.7-碟簧;1.8-空心轴电机转子磁极;1.9-空心轴电机定子铁芯及绕组;1.10-拉爪;1.11-拉刀顶杆机构;1.12-中空环形液压缸;1.13-尾盖;1.14-前部轴承组;1.15-后部轴承组;1.a-中空主轴及端盖螺纹孔;1.b-外壳体前部螺纹孔;1.c-外壳体及尾盖螺纹孔;2.1-中空主轴前部外端面;2.2-中空主轴尾部外端面;2.3-中空主轴前端内锥面;2.4-中空刀柄内弧面;2.5-真空绝热芯轴前端外壁面;2.6-真空绝热芯轴中部外端面;2.7-中空主轴后部外壁面;2.8-真空绝热芯轴后部外壁面;2.9-中空主轴中部外端面。
本发明的实施方式
下面结合附图和技术方案详细说明本发明的具体实施方式。
在本实施例中,液氮为冷却介质,真空绝热芯轴1.2以特种不锈钢金属材料为基础,最细端直径为14mm;中空刀柄1.3采用HSK-A100型号定制化加工中空通道,并在内腔面添加隔热材料;超低温旋转接头1.6内部装配超低温轴承,采用高氮不锈钢材料,在-196℃下可正常运转。
超低温介质内喷式电主轴的装配与安装过程如下:如附图1、2、所示,第一步,将拉爪1.10与拉刀顶杆机构1.11以过盈方式安装在真空绝热芯轴1.2前端并保证贴合;将拉爪1.10用扎线带扎紧并确保拉爪处于闭合状态;将真空绝热芯轴1.2较细一端顺中空主轴1.1结构后部开口处平行装入,直至真空绝热芯轴前端外壁面2.5与拉刀顶杆机构1.11尾部端面相贴合;将端盖1.5顺真空绝热芯轴1.2尾部套入,直至其左端面与中空主轴后部外壁面2.7相贴合;用力矩扳手以15N•m将四颗螺栓拧入螺纹孔1.a中;
第二步,在中空主轴外壁加工出角度为60度,深度为15mm的沟槽,并将空心轴电机转子磁极放入加热箱加热至180℃-200℃,取出后以过盈方式将其垂直装入中空主轴中部外端面2.9上的沟槽处完全贴合;将空心轴电机定子铁芯及绕组1.9套入装配好的中空主轴中,保证两者同心;将轴承组1.14、轴承组1.15在油中加热到75℃,将轴承组1.14顺中空主轴前部外端面2.1装入并用力贴紧,将轴承组1.21顺中空主轴后部外端面2.2装入并用力贴紧;将装配好轴承组及内部结构的中空主轴1.1从主轴外壳体1.4前端装入,用力矩扳以18N•m的力矩拧入外壳体前部螺纹孔1.b中;将中空环形液压缸1.12顺真空绝热芯轴1.2尾部装入,并将四颗螺栓依次拧入到外壳体尾部螺纹孔1.c中,采用力矩扳手以18N•m的力矩拧紧;
超低温介质内喷式电主轴工作时,首相将中空刀柄1.3从主轴前端装入中空主轴1.1,保证刀柄外锥面与中空主轴前端内锥面2.3相贴合;将外部的液氮供给与主轴尾部超低温旋转接头1.5相连接;打开主轴调控装置使主轴开始旋转,保持转速在5000rpm,此时中空主轴1.1、真空绝热芯轴1.2、中空刀柄1.3、超低温旋转接头1.5处于同步旋转状态;打开外部液氮供给开关,并将液氮经超低温旋转接头1.5输入,由真空绝热芯轴1.2输送至中空刀柄1.3最前端,并进行10min-12min的预冷,保证液氮射流状态达到温度状态。当执行自动松刀动作时,主轴轴停止旋转,尾部液压缸1.12压缩至极限位置,此时受液压力的作用的端盖1.5带动真空绝热液氮输送芯轴1.2及拉刀顶杆机构1.11沿轴向向主轴前端移动,此时碟簧1.7处于压缩状态,直至拉爪1.10运动至中空刀柄内弧面2.4,芯轴拉爪自动张开,此时刀柄与主轴处于分离状态,此时刀柄可被外部刀库自动换下;当执行自动拉刀动作时,在外部刀库将刀柄安装在主轴刀柄位置后,液压缸1.12恢复到压缩前的初始位置,真空绝热芯轴1.2及拉刀顶杆机构1.11受碟簧1.7拉力作用,沿轴向向主轴尾部移动,直至拉爪1.10移动至限位位置,此时刀柄与主轴处于拉紧状态。
本发明通过有效的隔热结构设计及材料选择,保证了超低温介质在主轴内部传输时主轴材料及内部电机、轴承等零部件不会发生受冷变形及失效等问题,同时大幅降低了液氮介质在主轴内部输送的损耗率,为超低温内喷式高速加工装备可靠运行奠定了基础。本发明描述较为具体和详细,但不应理解为对本发明专利的范围限制,在不脱离本发明构思的前提下做出的若干变形和改进,这些显而易见的替换形式均属于本发明的保护范围。

Claims (1)

  1. 一种真空芯轴旋转式超低温介质内喷式电主轴,其特征在于,该真空芯轴旋转式超低温介质内喷式电主轴包括主轴主体结构、超低温介质供给及隔热输送结构;主轴主体结构主要由中空主轴(1.1)、中空刀柄(1.3)、主轴外壳体(1.4)、空心轴电机转子磁极(1.8)、空心轴电机定子铁芯及绕组(1.9)、中空环形液压缸(1.12)组成;超低温介质供给及隔热输送结构包括真空绝热芯轴(1.2)与超低温旋转接头(1.6);
    所述中空主轴(1.1),为主轴旋转的主体结构,在内部加工出的中空通道为真空绝热芯轴(1.2)提供安装空间;中空主轴前部外端面(2.1)及中空主轴尾部外端面(2.2)为中空主轴(1.1)的定位面;前部轴承组(1.14)与后部轴承组(1.15)起到支撑中空主轴(1.1)及其内部零部件旋转的作用;中空刀柄(1.3)的外锥面与中空主轴前端内锥面(2.3)相贴合,起到定位及夹紧的作用;
    所述真空绝热芯轴(1.2),是超低温介质的输送通道,用于遏止超低温介质与主轴材料及内部零部件的热量交换;真空绝热芯轴(1.2)同时承受碟簧(1.7)拉力与液压缸(1.12)推力,实现自动换刀时真空绝热芯轴(1.2)的轴向移动;真空绝热芯轴前端外壁面(2.5)与真空绝热芯轴后部外壁面(2.8)为真空绝热芯轴(1.2)的定位面,真空绝热芯轴中部外端面(2.6)表面加工出键槽,实现与碟簧(1.7)的固定;
    所述中空刀柄(1.3),在内部加工出中空通道,使真空绝热芯轴(1.2)通过其内部并直通至刀柄最前端,避免超低温介质在中空刀柄(1.3)内部的泄漏,在中空刀柄(1.3)内部加工出的中空刀柄内弧面(2.4)为拉爪(1.10)张开后的限位面;
    所述真空芯轴旋转式超低温介质内喷式电主轴在装配时,将拉爪(1.10)及拉刀顶杆机构(1.11)以过盈方式顺真空绝热芯轴(1.2)前端装入;将碟簧(1.7)从中空主轴(1.1)尾部开口处垂直装入;将真空绝热芯轴(1.2)从中空主轴(1.1)尾部开口处装入,直至真空绝热芯轴前端外壁面(2.5)与拉刀顶杆机构(1.11)紧密贴合;将端盖(1.5)顺真空绝热芯轴(1.2)尾部装入,直至与中空主轴尾部外壁面(2.7)相贴合,并用力矩扳手向中空主轴及端盖螺纹孔(1.a)中拧入螺栓并紧固;将空心轴电机转子磁极(1.8)从真空主轴(1.1)尾部套入中空主轴中部外端面(2.9)并完全贴合;将空心轴电机定子铁芯及绕组(1.9)套入中空主轴(1.1)中并保证两者同心;将中空环形液压缸(1.12)顺真空绝热芯轴(1.2)尾部套入,直至其与端盖(1.5)相贴合;将尾盖(1.13)顺真空绝热芯轴(1.2)尾部套入,直至与中空环形液压缸(1.12)右端面相贴合,并用力矩扳手向外壳体及尾盖螺纹孔(1.c)拧入螺栓紧固;将前部轴承组(1.14)顺中空主轴前部外端面(2.1)装入并用力贴紧;将后部轴承组(1.15)顺中空主轴后部外端面(2.2)装入并用力贴紧;将装配好轴承组及内部结构的中空主轴(1.1)从主轴外壳体(1.4)前端装入,并在外壳体前部螺纹孔(1.b)中拧入螺栓;最后,将超低温旋转接头(1.6)与真空绝热芯轴(1.2)尾部接头相连接;
    所述真空芯轴旋转式超低温介质内喷式电主轴工作时,将中空刀柄(1.3)从主轴前端装入真空主轴(1.1),保证刀柄外锥面与中空主轴前端内锥面(2.3)相贴合;打开外部的主轴调控装置使主轴开始旋转,保持转速在5000rpm,再将外部超低温供给系统开启,此时超低温介质从外部强制输入至超低温旋转接头(1.6),并由真空绝热芯轴(1.2)输送到中空刀柄(1.3)最前端;保持主轴旋转及超低温介质喷射10-12min,完成整体调试及预冷。
PCT/CN2021/089103 2021-04-12 2021-04-23 一种真空芯轴旋转式超低温介质内喷式电主轴 WO2022217636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110398606.5A CN112975459A (zh) 2021-04-12 2021-04-12 一种真空芯轴旋转式超低温介质内喷式电主轴
CN202110398606.5 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022217636A1 true WO2022217636A1 (zh) 2022-10-20

Family

ID=76338357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089103 WO2022217636A1 (zh) 2021-04-12 2021-04-23 一种真空芯轴旋转式超低温介质内喷式电主轴

Country Status (2)

Country Link
CN (1) CN112975459A (zh)
WO (1) WO2022217636A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962584A (zh) * 2014-04-30 2014-08-06 大连理工大学 液氮内喷式数控钻铣床主轴装置
CN106964828A (zh) * 2017-03-01 2017-07-21 大连理工大学 一种超低温介质主轴直连传输式中空刀柄
CN108799206A (zh) * 2018-06-25 2018-11-13 杭州新亚低温科技有限公司 一种超低温高速泵的微漏绝热结构
KR101997083B1 (ko) * 2018-01-16 2019-07-05 한국정밀기계(주) 극저온 냉매용 스핀들조립체
CN110026811A (zh) * 2019-04-19 2019-07-19 沈阳理工大学 一种液氮内喷式数控钻铣床气体调节系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962766A (zh) * 2012-12-03 2013-03-13 东南大学 一种用于磨削小直径深孔的超高速精密电主轴结构
DE102013215057A1 (de) * 2013-07-31 2015-02-05 Mag Ias Gmbh Werkzeugspindel zum Bearbeiten von Werkstücken und zugehöriges Bearbeitungswerkzeug sowie Bearbeitungsvorrichtung mit einer derartigen Werkzeugspindel und Verfahren zum Bearbeiten von Werkstücken
CN107282950A (zh) * 2017-06-30 2017-10-24 广州市昊志机电股份有限公司 一种高速永磁同步钻攻中心电主轴
CN110666529A (zh) * 2019-11-11 2020-01-10 安阳德一机床附件制造有限公司 中孔通水自动换刀高速电主轴
CN111360285A (zh) * 2020-05-14 2020-07-03 深圳市兴旺达科技有限公司 高速电主轴
CN111408744A (zh) * 2020-05-15 2020-07-14 东莞市显隆电机有限公司 一种刀柄式气浮高速电主轴
CN112059680A (zh) * 2020-09-16 2020-12-11 清远市天一数控设备有限公司 一种拉爪能自锁增力的新型高速主轴拉刀机构
CN214162598U (zh) * 2020-12-28 2021-09-10 濮阳丸松精密机械有限公司 一种hsk-a100的立式电主轴

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962584A (zh) * 2014-04-30 2014-08-06 大连理工大学 液氮内喷式数控钻铣床主轴装置
CN106964828A (zh) * 2017-03-01 2017-07-21 大连理工大学 一种超低温介质主轴直连传输式中空刀柄
KR101997083B1 (ko) * 2018-01-16 2019-07-05 한국정밀기계(주) 극저온 냉매용 스핀들조립체
CN108799206A (zh) * 2018-06-25 2018-11-13 杭州新亚低温科技有限公司 一种超低温高速泵的微漏绝热结构
CN110026811A (zh) * 2019-04-19 2019-07-19 沈阳理工大学 一种液氮内喷式数控钻铣床气体调节系统

Also Published As

Publication number Publication date
CN112975459A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
US20210347000A1 (en) Tool Holder Suitable for Hybrid Cryogenic Minimum Quantity Lubrication
CN110344890B (zh) 一种高可靠性涡轮发电系统转子结构与制造工艺
CN106602765B (zh) 高速永磁电机直驱离心机转子的冷却方法及冷却系统
US20170237318A1 (en) Device And Method For Cooling An Energy Conversion Apparatus Having A Rotor And At Least One Turbine
WO2022217636A1 (zh) 一种真空芯轴旋转式超低温介质内喷式电主轴
CN108500333B (zh) 一种自动降温与调速的室内钻孔机
CN110561162A (zh) 一种超低温介质内喷式主轴适配的刀柄
CN102513778A (zh) 一种取出螺栓而无损螺栓孔的方法
WO2021109341A1 (zh) 一种用于液氮中空输送的蜂窝密封结构刀柄
JP5505660B2 (ja) 低温用ロータリージョイント
CN205165898U (zh) 一种气封双冷电主轴
WO2021046786A1 (zh) 一种超低温介质内喷式主轴适配的刀柄
CN114147516A (zh) 一种复叠式制冷冰冻装夹装置
CN102442406A (zh) 一种定位准确锁紧牢固的船舶主机的固定方法
CN108788240B (zh) 一种建筑室内装修用的钻孔机
CN112935852A (zh) 一种双层回转支承结构的超低温介质内喷式电主轴
CN105945318B (zh) 膨胀芯轴
CN211288081U (zh) 一种应用稀土电机的集成空压机
CN101752915A (zh) 离心式冷媒压缩机马达线圈冷却结构
CN112719386A (zh) 一种高冷却效能的超低温介质中空传输式内冷铣刀
JP2590568B2 (ja) 金属管内外面加工装置
CN104874824B (zh) 超声振动辅助枪钻加工的专用旋转夹具
CN217966116U (zh) 一种用于钻铣加工中心的高压中心出水专用的旋转接头连接机构
CN113118481B (zh) 一种超低温冷却介质内喷式机械主轴
CN109268473A (zh) 盘轴连接结构及盘轴连接结构的加工装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936510

Country of ref document: EP

Kind code of ref document: A1