WO2022217400A1 - 天线结构及电子设备 - Google Patents

天线结构及电子设备 Download PDF

Info

Publication number
WO2022217400A1
WO2022217400A1 PCT/CN2021/086406 CN2021086406W WO2022217400A1 WO 2022217400 A1 WO2022217400 A1 WO 2022217400A1 CN 2021086406 W CN2021086406 W CN 2021086406W WO 2022217400 A1 WO2022217400 A1 WO 2022217400A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna structure
dielectric substrate
radiation
central axis
column
Prior art date
Application number
PCT/CN2021/086406
Other languages
English (en)
French (fr)
Inventor
王亚丽
曲峰
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/086406 priority Critical patent/WO2022217400A1/zh
Priority to CN202180000753.0A priority patent/CN115474445A/zh
Priority to US17/629,417 priority patent/US20230318185A1/en
Publication of WO2022217400A1 publication Critical patent/WO2022217400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • This article relates to, but is not limited to, the field of communication technology, especially an antenna structure and an electronic device.
  • Embodiments of the present disclosure provide an antenna structure and an electronic device.
  • an embodiment of the present disclosure provides an antenna structure, including: a dielectric substrate, a ground layer and a radiation layer on opposite sides of the dielectric substrate.
  • the ground layer has two first slots, and the two first slots are symmetrical with respect to the central axis of the antenna structure in the first direction, so as to introduce a radiation null point.
  • the radiation layer has two second slits, the two second slits are symmetrical about the central axis, and in the second direction, the edges of the two second slits are aligned with the edges of the radiation layer to introduce another radiation null.
  • the second direction is perpendicular to the first direction.
  • the orthographic projection of the second slit on the dielectric substrate is located on a side close to the central axis of the orthographic projection of the first slit on the dielectric substrate.
  • the two first slits and the two second slits both extend along the second direction, and the length of the first slit along the second direction is greater than the second slit the length of the slit along the second direction.
  • the antenna structure further includes: at least one first shorting column and at least one second shorting column, the first shorting column and the second shorting column are connected to the ground layer and the radiation layer.
  • the first short-circuit column and the second short-circuit column are symmetrical about the central axis.
  • the orthographic projections of the first short-circuit column and the second short-circuit column on the dielectric substrate are located at a side away from the central axis of the orthographic projection of the first gap on the dielectric substrate.
  • the number of the first shorting column and the number of the second shorting column is three.
  • the ground layer is connected to the outer conductor of the coaxial conductive column
  • the radiation layer is connected to the inner conductor of the coaxial conductive column.
  • the orthographic projection of the coaxial conductive column on the dielectric substrate is located between the orthographic projections of the two second slits on the dielectric substrate.
  • the coaxial conductive post is connected to a radio frequency connector, and the radio frequency connector is located on a side of the ground layer away from the dielectric substrate.
  • the first ends of the two second slits communicate with each other and are flush with the edge of the radiation layer.
  • the first ends of the two second slits communicate and are flush with the edge of the radiation layer, and the second ends of the two second slits are also Connected and flush with the edge of the radiant layer.
  • the first end and the second end are located on opposite sides of the central axis of the antenna structure in the second direction.
  • an embodiment of the present disclosure provides an electronic device including the above-mentioned antenna structure.
  • 1A is a schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • FIG. 1B is a schematic partial cross-sectional view of the antenna structure shown in FIG. 1A along the P-P direction;
  • FIG. 1C is a schematic diagram of a simulation result of the S11 curve of the antenna structure shown in FIG. 1A;
  • FIG. 1D is a schematic diagram of a simulation result of the gain curve of the antenna structure shown in FIG. 1A;
  • 1E(a) to 1E(c) are surface current vector distribution diagrams of the radiating layer of the antenna structure shown in FIG. 1A;
  • 1F(a) to 1F(c) are surface current vector distribution diagrams of the ground layer of the antenna structure shown in FIG. 1A;
  • FIG. 2A is another schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • FIG. 2B is a schematic diagram of a simulation result of the S11 curve of the antenna structure shown in FIG. 2A;
  • FIG. 2C is a schematic diagram of a simulation result of the gain curve of the antenna structure shown in FIG. 2A;
  • 3A is another schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • 3B is a schematic diagram of a simulation result of the S11 curve of the antenna structure shown in FIG. 3A;
  • 3C is a schematic diagram of a simulation result of the gain curve of the antenna structure shown in FIG. 3A;
  • FIG. 4A is another schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • 4B is a schematic diagram of a simulation result of the S11 curve of the antenna structure shown in FIG. 4A;
  • 4C is a schematic diagram of a simulation result of the gain curve of the antenna structure shown in FIG. 4A;
  • FIG. 5 is a schematic diagram of an electronic device according to at least one embodiment of the disclosure.
  • ordinal numbers such as “first”, “second”, and “third” are set to avoid confusion of constituent elements, rather than to limit the quantity.
  • "Plurality” in this disclosure means a quantity of two or more.
  • the terms “installed”, “connected” and “connected” should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • installed should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • electrically connected includes the case where constituent elements are connected together by elements having some electrical function.
  • the "element having a certain electrical effect” is not particularly limited as long as it can transmit electrical signals between the connected constituent elements.
  • Examples of “elements having some electrical function” include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, other elements having one or more functions, and the like.
  • parallel refers to a state in which the angle formed by two straight lines is -10° or more and 10° or less, and thus can include a state in which the angle is -5° or more and 5° or less.
  • perpendicular refers to a state in which the angle formed by two straight lines is 80° or more and 100° or less, and therefore can include a state in which an angle of 85° or more and 95° or less is included.
  • At least one embodiment of the present disclosure provides an antenna structure including: a dielectric substrate, radiation patches located on opposite sides of the dielectric substrate, and a ground layer.
  • the ground layer has two first slots, and the two first slots are symmetrical with respect to the central axis of the antenna structure in the first direction, so as to introduce a radiation null point.
  • the radiating layer has two second slits, the two second slits are symmetrical about the central axis, and in the second direction, the edges of the two second slits are aligned with the edges of the radiating layer to introduce another radiation null.
  • the second direction is perpendicular to the first direction.
  • a radiation null point is introduced at high frequencies, and two symmetrical second slots are introduced in the radiation patch to achieve a radiation null point at low frequencies, so that the Radiation zeros are introduced on the left and right sides of the resonance frequency to realize filtering characteristics.
  • the antenna structure of this embodiment can be applied to the 5G frequency band.
  • the film layer structure of the antenna structure is simple and has a low profile, so that the filtering function can be realized without introducing additional discrete devices and avoiding large insertion loss.
  • the orthographic projection of the second slit on the dielectric substrate is located on a side close to the central axis of the orthographic projection of the first slit on the dielectric substrate.
  • the two first slits and the two second slits both extend in the second direction, and the length of the first slit in the second direction is greater than the length of the second slit in the second direction.
  • the antenna structure further includes: at least one first shorting column and at least one second shorting column.
  • the first short-circuit column and the second short-circuit column are connected to the ground layer and the radiation layer; the first short-circuit column and the second short-circuit column are symmetrical about the central axis; the orthographic projection of the first short-circuit column and the second short-circuit column on the dielectric substrate is located in the first gap The orthographic projection on the dielectric substrate is away from the side of the central axis.
  • the out-of-band suppression characteristic of the gain passband can be improved by introducing the symmetrical first short-circuit column and the second short-circuit column.
  • the number of the first shorting column and the number of the second shorting column are both three. However, this embodiment does not limit this.
  • the ground layer is connected to the outer conductor of the coaxial conductive post
  • the radiation layer is connected to the inner conductor of the coaxial conductive post.
  • the orthographic projection of the coaxial conductive column on the dielectric substrate is located between the orthographic projections of the two second slits on the dielectric substrate.
  • the radiating layer is fed by a coaxial feeding method.
  • the coaxial conductive post is connected to a radio frequency connector (SMA), and the radio frequency connector is located on the side of the ground layer away from the dielectric substrate.
  • SAM is used to connect external RF signals.
  • the first ends of the two second slits communicate and are flush with the edge of the radiating layer.
  • the two second slits are strip-shaped, and the connected two second slits may be Y-shaped.
  • this embodiment does not limit this.
  • the first ends of the two second slits communicate with and are flush with the edge of the radiating layer, and the second ends of the two second slits also communicate with and are flush with the edge of the radiating layer. Edges are flush.
  • the first end and the second end are located on opposite sides of the central axis of the antenna structure in the second direction.
  • this embodiment does not limit this.
  • the antenna structure of this embodiment is described below by using a plurality of examples.
  • FIG. 1A is a schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • FIG. 1B is a schematic partial cross-sectional view along the P-P direction in FIG. 1A .
  • the antenna structure of this exemplary embodiment includes: a dielectric substrate 10 , a radiation layer 12 and a ground layer 13 on opposite sides of the dielectric substrate 10 .
  • the ground layer 13 has two first slits 131a and 131b.
  • the two first slots 131a and 131b are symmetrical about the central axis OO' of the antenna structure in the first direction D1. Both of the two first slits 131a and 131b extend in the second direction D2.
  • the first direction D1 is perpendicular to the second direction D2.
  • the length of the first slits 131a and 131b in the second direction D2 is smaller than the length of the ground layer 13 in the second direction D2.
  • the orthographic projections of the first slits 131 a and 131 b on the dielectric substrate 10 may both be rectangular. However, this embodiment does not limit this.
  • the radiating layer 12 has two second slits 121 a and 121 b , which are symmetrical about the central axis OO′ and in the second direction On D2 , the edges of the two second slits 121 a and 121 b are aligned with the edges of the radiation layer 12 . Both of the two second slits 121a and 121b extend in the second direction D2. The length of the second slit 121a in the second direction D2 is smaller than the length of the first slit 131a in the second direction D2.
  • the length of the second slit 121a in the second direction D2 is approximately equal to the length of the radiation layer 12 in the second direction D2.
  • the orthographic projections of the second slits 121 a and 121 b on the dielectric substrate 10 may both be rectangular. However, this embodiment does not limit this.
  • two second slits 121a and 121b divide the radiation layer 12 into a first radiation portion 12a, a second radiation portion 12b and a third radiation portion 12c, and the second slit 121a Located between the first radiation part 12a and the second radiation part 12b, the second slit 121b is located between the second radiation part 12b and the third radiation part 12c.
  • the first radiation portion 12a, the second radiation portion 12b, and the third radiation portion 12c may all be rectangular. However, this embodiment does not limit this.
  • the orthographic projection of the second slit 121 a on the dielectric substrate 10 is located on the side close to the central axis OO′ of the orthographic projection of the first slit 131 a on the dielectric substrate 10 .
  • the orthographic projection of the slit 121b on the dielectric substrate 10 is located on the side close to the central axis OO' of the orthographic projection of the first slit 131b on the dielectric substrate 10 .
  • a radiation null point can be introduced at high frequency; by introducing in the radiation layer 12 about the central axis OO' 'The two symmetrical second slots 121a and 121b can introduce a radiation null point at low frequency, thereby realizing the antenna filtering characteristic.
  • the first radiation portion 12a of the radiation layer 12 is connected to the ground layer 13 through a first shorting column 141a, and the third radiation portion 12c is connected through a second shorting column 141b is connected to the ground layer 13 .
  • Orthographic projections of the first shorting column 141a and the second shorting column 141b on the dielectric substrate 10 may be circular. However, this embodiment does not limit this.
  • the orthographic projection of the first shorting column 141 a on the dielectric substrate 10 is located on a side away from the central axis OO′ of the orthographic projection of the first slit 131 a on the dielectric substrate 10
  • the second shorting column 141 b is on the dielectric substrate 10
  • the orthographic projection of is located on the side of the orthographic projection of the first slit 131b on the dielectric substrate 10 away from the central axis OO'.
  • the first short-circuit column 141a and the second short-circuit column 141b are symmetrical with respect to the central axis OO'.
  • the first shorting pillar 141a is adjacent to the first slit 131a, and the second shorting pillar 141b is adjacent to the second slit 131b.
  • the present exemplary embodiment can improve the out-of-band suppression characteristic of the passband by introducing two symmetrical short-circuit pillars outside the first slot.
  • the antenna structure has a central axis QQ' in the second direction D2.
  • the radiation layer 12 is symmetrical about the central axis QQ'
  • the ground layer 13 is symmetrical about the central axis QQ'
  • the first short-circuit column 141a and the second short-circuit column 141b may be located on the central axis QQ'.
  • this embodiment does not limit this.
  • the second radiation portion 12 b of the radiation layer 12 is connected to the inner conductor 20 a of the coaxial conductive column 20
  • the ground layer 13 is connected to the outer conductor of the coaxial conductive column 20 .
  • 20b connection An insulating layer is provided between the inner conductor 20a and the outer conductor 20b of the coaxial conductive column 20 .
  • the orthographic projections of the inner conductor 20a and the outer conductor 20b on the dielectric substrate 10 may be concentric circles, and the radius of the orthographic projection of the outer conductor 20b is larger than the radius of the orthographic projection of the inner conductor 20a.
  • the coaxial conductive post 20 is also connected to a radio frequency connector 21, and the radio frequency connector 21 is configured to connect an external radio frequency signal.
  • the radio frequency connector 21 may be located on the side of the ground layer 13 away from the dielectric substrate 10 .
  • the outer conductor 20b of the coaxial conductive column 20 passes through the ground layer 13 from the side of the ground layer 13 away from the radiation layer 12 , wherein the outer conductor 20b is connected to the ground layer 13 , and the inner conductor 20a is connected to the radiation layer 12 through the dielectric substrate 10 .
  • the orthographic projection of the coaxial conductive column 20 on the dielectric substrate 10 is located on the central axis OO'.
  • the orthographic projection of the coaxial conductive column 20 on the dielectric substrate 10 is located on one side of the central axis QQ'.
  • the radiating layer is fed with a coaxial feed.
  • the radiation layer 12 and the ground layer 13 may be formed on the dielectric substrate 10 through a circuit board fabrication process.
  • the materials of the radiation layer 12 and the ground layer 13 may be metal (Cu) or silver (Ag). However, this embodiment does not limit this.
  • FIG. 1C is a simulation result diagram of the S11 curve of the antenna structure shown in FIG. 1A .
  • FIG. 1D is a simulation result diagram of the gain curve of the antenna structure shown in FIG. 1A .
  • the plane dimension is expressed as first length*second length, the first length is the length along the first direction D1, and the second length is the length along the second direction D2.
  • the thickness is the length in the direction perpendicular to the plane in which the first direction D1 and the second direction D2 lie.
  • the dielectric constant dk/dielectric loss df of the dielectric substrate 10 is about 3.6/0.003, and the thickness of the dielectric substrate 10 is about 1.5 mm.
  • the thickness of the radiation layer 12 and the ground layer 13 may be about 17 microns, and the material may be metal (Cu).
  • the center frequency f0 of the antenna simulation is about 3GHz, and the corresponding vacuum wavelength is ⁇ 0.
  • the overall thickness of the antenna is about 0.015 ⁇ 0.
  • the planar dimension of the dielectric substrate 10 is approximately 55mm*35mm.
  • the plane size of the radiation layer 12 is about 51mm*20mm.
  • the plane dimensions of the two second slits 121 a and 121 b of the radiation layer 12 are both about 0.2 mm*20 mm, and the center-to-center distance of the two second slits 121 a and 121 b in the first direction D1 is about 3.2 mm.
  • the plane size of the ground layer 13 is about 55mm*35mm.
  • the plane dimensions of the two first slits 131 a and 131 b of the ground layer 13 are both about 0.3 mm*22.0 mm, and the center-to-center distance of the two first slits 131 a and 131 b in the first direction D1 is about 22.5 mm.
  • the radii of the first shorting column 141a and the second shorting column 141b are both about 0.6 mm, the vertical distance between the center of the first shorting column 141a and the edge of the first gap 131a near the first shorting column 141a is about 0.95 mm, the second The vertical distance between the center of the shorting column 141b and the edge of the side of the first gap 131b close to the first shorting column 141b is about 0.95 mm.
  • the radius of the coaxial conductive column 20 is about 1.4 mm, and the radius of the inner conductor 20a is about 0.6 mm.
  • the center of the coaxial conductive column 20 is located on the central axis OO'.
  • the impedance bandwidth of the antenna structure at -6 dB is approximately 3.56 GHz to 3.76 GHz.
  • the gain bandwidth of the antenna structure at 0dBi is about 3.31GHz to 4.02GHz, of which the maximum gain is about 7.4dBi, the corresponding resonance frequency is about 3.66GHz, and the high and low frequency radiation null points are 4.49GHz and 4.02GHz, respectively. 2.76GHz, the high and low frequency out-of-band rejection is -23dBi and -19dBi respectively.
  • FIG. 1E(a) to 1E(c) are surface current vector distribution diagrams of the radiating layer of the antenna structure shown in FIG. 1A .
  • Fig. 1E(a) is the surface current vector distribution diagram of the antenna structure shown in Fig. 1A at the gain peak point, and the corresponding frequency point is about 3.66 GHz
  • Fig. 1E(b) is the low-frequency radiation of the antenna structure shown in Fig. 1A.
  • the surface current vector distribution diagram of the null point corresponds to a frequency of about 2.76 GHz
  • Figure 1E(c) is the surface current vector distribution diagram of the antenna structure shown in Figure 1A at the high-frequency radiation null point, and the corresponding frequency point is about 4.49 GHz.
  • the current directions on both sides of the radiating layer of the antenna structure are opposite to each other and cancel each other to form a low-frequency radiation null.
  • FIG. 1F(a) to 1F(c) are surface current vector distribution diagrams of the ground layer of the antenna structure shown in FIG. 1A.
  • Fig. 1F(a) is the surface current vector distribution diagram of the antenna structure shown in Fig. 1A at the gain peak point, and the corresponding frequency point is about 3.66 GHz
  • Fig. 1F(b) is the low-frequency radiation of the antenna structure shown in Fig. 1A.
  • the surface current vector distribution diagram of the null point, the corresponding frequency point is about 2.76GHz
  • Figure 1F(c) is the surface current vector distribution diagram of the antenna structure shown in Figure 1A at the high frequency radiation null point, the corresponding frequency point is about 4.49GHz.
  • Figure 1F(a) to Figure 1F(c) at 4.49 GHz, the current directions on both sides of the ground layer of the antenna structure are opposite to each other and cancel each other to form a high-frequency radiation null.
  • the antenna structure can completely cover the n78 frequency band at a gain bandwidth of 0 dBi, and the overall out-of-band suppression characteristic of the antenna is good and the profile is low, which can meet the requirements of mobile terminal equipment for thin and light antennas.
  • FIG. 2A is another schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • FIG. 2B is a simulation result diagram of the S11 curve of the antenna structure shown in FIG. 2A .
  • FIG. 2C is a simulation result diagram of the gain curve of the antenna structure shown in FIG. 2A .
  • the number of the first shorting column 141 a and the number of the second shorting column 141 b is three.
  • the three first short-circuit columns 141a are arranged in sequence along the second direction D2
  • the three second short-circuit columns 141b are arranged in sequence along the second direction D2.
  • the three first shorting pillars 141a and the three second shorting pillars 141b have the same size.
  • the three first short-circuit columns 141a and the three second short-circuit columns 141b are symmetrical about the central axis OO', the three first short-circuit columns 141a are symmetrical about the central axis QQ', and the three second short-circuit columns 141b are symmetrical about the central axis OO'.
  • the radius of the first shorting column 141a is about 0.2 mm, and the center-to-center spacing between adjacent first shorting columns is about 1.0 mm to 3.0 mm, eg, 1.0 mm.
  • the vertical distance between the center of the first shorting column 141a and the edge of one side of the first gap 131a close to the first shorting column 141a is about 0.5 mm to 2.4 mm, for example, 0.5 mm.
  • the number of the first shorting column and the second shorting column is not limited.
  • the impedance bandwidth of the antenna structure at -6 dB is approximately 3.58 GHz to 3.78 GHz.
  • the gain bandwidth of the antenna structure at 0dBi is about 3.33GHz to 4.05GHz, wherein the maximum gain is about 7.5dBi, the corresponding resonance frequency is about 3.69GHz, and the high and low frequency radiation null points are 4.53GHz and 4.53GHz, respectively. 2.77GHz, high and low frequency out-of-band rejection is -25dBi and -18dBi respectively.
  • the antenna structure completely covers the n78 frequency band at a gain bandwidth of 0 dBi, and the overall antenna has good out-of-band suppression characteristics and a low profile, which can meet the requirements of mobile terminal equipment for thinner antennas.
  • FIG. 3A is another schematic plan view of an antenna structure according to at least one embodiment of the disclosure.
  • FIG. 3B is a simulation result diagram of the S11 curve of the antenna structure shown in FIG. 3A .
  • FIG. 3C is a simulation result diagram of the gain curve of the antenna structure shown in FIG. 3A .
  • the first ends of the two second slits 121a and 121b of the radiation layer 12 are communicated and are flush with the edge of the radiation layer 12, the first end away from the coaxial conductive post.
  • the second slot 121a of the radiation layer 12 includes a first extension part 1211 , a second extension part 1212 and a third extension part 1213 which are connected in sequence.
  • the second slit 121b includes a first extension part 1221 , a second extension part 1222 and a third extension part 1213 which are connected in sequence.
  • the first extension portion 1211 of the second slit 121a and the first extension portion 1221 of the second slit 121b are symmetrical with respect to the central axis OO′, and the second extension portion 1212 of the second slit 121a and the second extension portion 1222 of the second slit 121b are about
  • the central axis OO' is symmetrical, and the third extending portions 1213 of the second slit 121a and the second slit 121b overlap and are located on the central axis OO'.
  • the first extension parts 1211 and 1221 extend in the second direction D2
  • the second extension parts 1212 and 1222 extend in the first direction D1
  • the third extension part 1213 extends in the second direction D2.
  • the two second slits 121a and 121b are in an inverted Y shape after being connected.
  • the planar dimensions of the first extending parts 1211 and 1221 are about 0.2mm*19.0 mm
  • the planar dimensions of the second extending parts 1212 and 1222 are about 1.60 mm*0.2 mm
  • the planar dimensions of the third extending parts 1213 are about It is 0.2mm*1.0mm.
  • the impedance bandwidth of the antenna structure at -6 dB is approximately 3.56 GHz to 3.72 GHz.
  • the gain bandwidth of the antenna structure at 0dBi is about 3.33GHz to 3.98GHz, wherein the maximum gain is about 7.2dBi, the corresponding resonance frequency is about 3.65GHz, and the high and low frequency radiation null points are 4.53GHz and 2.77GHz, respectively.
  • GHz, high and low out-of-band rejection are -21dBi and -18dBi, respectively.
  • the antenna structure completely covers the n78 frequency band at a gain bandwidth of 0 dBi, and the overall antenna has good out-of-band suppression characteristics and a low profile, which can meet the requirements of mobile terminal equipment for thinner antennas.
  • the second length of the first extension between 16 mm and 19 mm has no significant effect on the antenna performance.
  • FIG. 4A is a schematic structural diagram of an antenna structure according to at least one embodiment of the disclosure.
  • FIG. 4B is a simulation result diagram of the S11 curve of the antenna structure shown in FIG. 4A .
  • FIG. 4C is a simulation result diagram of the gain curve of the antenna structure shown in FIG. 4A .
  • the first ends of the two second slits 121a and 121b of the radiation layer 12 communicate with each other, the second ends are also communicated, and the first ends and The second ends are both flush with the edge of the radiation layer 12 .
  • the second slits 121a and 121b are symmetrical about the central axis OO', the second slit 121a is symmetrical about the central axis QQ', and the second slit 121b is symmetrical about the central axis QQ'.
  • the second slot 121a includes a third extension part 1213, a second extension part 1212, a first extension part 1211, a fourth extension part 1214 and a fifth extension part 1215 connected in sequence;
  • the second slot 121b includes a third extension part connected in sequence 1213 , a second extension 1222 , a first extension 1221 , a fourth extension 1224 and a fifth extension 1215 .
  • the third extending portions 1213 of the two second slits 121a and 121b are coincident and located on the central axis OO', and the fifth extending portions 1215 of the two second slits 121a and 121b are coincident and located on the central axis OO'.
  • the first extension portion 1211 of the first slit 121a and the first extension portion 1221 of the second slit 121b are symmetrical with respect to the central axis OO′, and the second extension portion 1212 of the first slit 121a and the second extension portion 1222 of the second slit 121b are about
  • the central axis OO' is symmetrical, and the fourth extending portion 1214 of the first slit 121a and the fourth extending portion 1224 of the second slit 121b are symmetrical about the central axis OO'.
  • the first extension parts 1211 and 1221 extend in the second direction D2, the second extension parts 1212 and 1222, the fourth extension parts 1214 and 1224 extend in the first direction D1, the third extension part 1213 and the fifth extension part 1215 extend in the second direction D1
  • the direction D2 extends.
  • the planar dimensions of the first extensions 1211 and 1221 are about 0.2mm*18.0mm; the planar dimensions of the second extensions 1212 and 1222 and the fourth extensions 1214 and 1224 are about 0.2mm*1.6mm;
  • the plane dimensions of the third extension portion 1213 and the fifth extension portion 1215 are about 0.2 mm*1.0 mm.
  • the impedance bandwidth of the antenna structure at -6 dB is approximately 3.56 GHz to 3.71 GHz.
  • the gain bandwidth of the antenna structure at 0dBi is about 3.33GHz to 3.96GHz, wherein the maximum gain is about 7.10dBi, the corresponding resonance frequency is about 3.64GHz, and the high and low frequency radiation null points are at 4.56GHz and 2.75GHz, respectively.
  • GHz, high and low out-of-band rejection are -21dBi and -18dBi, respectively.
  • the antenna structure completely covers the n78 frequency band at a gain bandwidth of 0 dBi, and the overall antenna has good out-of-band suppression characteristics and a low profile, which can meet the requirements of mobile terminal equipment for thinner antennas.
  • the second length of the first extension between 16 mm and 19 mm has no significant effect on the antenna performance.
  • the antenna structure provided by this exemplary embodiment has the advantages of simple structure and low profile, and the surface current distribution of the radiation layer and the ground layer is changed through the planar structure design, thereby realizing the filtering function.
  • FIG. 5 is a schematic diagram of an electronic device according to at least one embodiment of the disclosure.
  • this embodiment provides an electronic device 91 , including: an antenna structure 910 .
  • the electronic device 91 can be any product or component with communication functions, such as a mobile phone, a navigation device, a game console, a television (TV), a car audio, a tablet computer, a personal multimedia player (PMP), and a personal digital assistant (PDA).
  • TV television
  • PMP personal multimedia player
  • PDA personal digital assistant

Abstract

一种天线结构,包括:介质基板、位于介质基板相对两侧的接地层和辐射层。接地层具有两个第一缝隙,两个第一缝隙关于天线结构在第一方向上的中轴线对称,以引入一个辐射零点。辐射层具有两个第二缝隙,两个第二缝隙关于中轴线对称,且在第二方向上,两个第二缝隙的边缘与辐射层的边缘对齐,以引入另一个辐射零点。第二方向与第一方向垂直。

Description

天线结构及电子设备 技术领域
本文涉及但不限于通信技术领域,尤指一种天线结构及电子设备。
背景技术
天线作为移动通信的重要组成部分,其研究与设计对移动通信起着至关重要的作用。而第五代移动通信技术(5G)带来的最大改变就是用户体验的革新,在终端设备中信号质量的优劣直接影响着用户体验,所以,5G终端天线的设计必将成为5G部署的重要环节之一。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种天线结构及电子设备。
一方面,本公开实施例提供一种天线结构,包括:介质基板、位于介质基板相对两侧的接地层和辐射层。接地层具有两个第一缝隙,两个第一缝隙关于天线结构在第一方向上的中轴线对称,以引入一个辐射零点。辐射层具有两个第二缝隙,两个第二缝隙关于中轴线对称,且在第二方向上,两个第二缝隙的边缘与辐射层的边缘对齐,以引入另一个辐射零点。第二方向与第一方向垂直。
在一些示例性实施方式中,所述第二缝隙在所述介质基板上的正投影位于所述第一缝隙在所述介质基板上的正投影靠近所述中轴线的一侧。
在一些示例性实施方式中,所所述两个第一缝隙和两个第二缝隙均沿所述第二方向延伸,且所述第一缝隙沿所述第二方向的长度大于所述第二缝隙沿所述第二方向的长度。
在一些示例性实施方式中,天线结构还包括:至少一个第一短路柱和至少一个第二短路柱,所述第一短路柱和第二短路柱连接所述接地层和辐射层。 所述第一短路柱和第二短路柱关于所述中轴线对称。所述第一短路柱和第二短路柱在所述介质基板上的正投影位于所述第一缝隙在所述介质基板上的正投影远离所述中轴线的一侧。
在一些示例性实施方式中,所述第一短路柱和第二短路柱的数目均为三个。
在一些示例性实施方式中,所述接地层与同轴导电柱的外侧导体连接,所述辐射层与所述同轴导电柱的内侧导体连接。所述同轴导电柱在所述介质基板上的正投影位于所述两个第二缝隙在所述介质基板上的正投影之间。
在一些示例性实施方式中,所述同轴导电柱与射频连接器连接,所述射频连接器位于所述接地层远离所述介质基板的一侧。
在一些示例性实施方式中,在所述第二方向上,所述两个第二缝隙的第一端连通,并与辐射层的边缘齐平。
在一些示例性实施方式中,在所述第二方向上,所述两个第二缝隙的第一端连通并与辐射层的边缘齐平,且所述两个第二缝隙的第二端也连通并与辐射层的边缘齐平。所述第一端和第二端位于所述天线结构在所述第二方向上的中轴线的相对两侧。
另一方面,本公开实施例提供一种电子设备,包括如上所述的天线结构。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中一个或多个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1A为本公开至少一实施例的天线结构的平面示意图;
图1B为图1A所示的天线结构沿P-P方向的局部剖面示意图;
图1C为图1A所示的天线结构的S11曲线的仿真结果示意图;
图1D为图1A所示的天线结构的增益曲线的仿真结果示意图;
图1E(a)至图1E(c)为图1A所示的天线结构的辐射层的表面电流矢量分布图;
图1F(a)至图1F(c)为图1A所示的天线结构的接地层的表面电流矢量分布图;
图2A为本公开至少一实施例的天线结构的另一平面示意图;
图2B为图2A所示的天线结构的S11曲线的仿真结果示意图;
图2C为图2A所示的天线结构的增益曲线的仿真结果示意图;
图3A为本公开至少一实施例的天线结构的另一平面示意图;
图3B为图3A所示的天线结构的S11曲线的仿真结果示意图;
图3C为图3A所示的天线结构的增益曲线的仿真结果示意图;
图4A为本公开至少一实施例的天线结构的另一平面示意图;
图4B为图4A所示的天线结构的S11曲线的仿真结果示意图;
图4C为图4A所示的天线结构的增益曲线的仿真结果示意图;
图5为本公开至少一实施例的电子设备的示意图。
具体实施方式
下面将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为一种或多种形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了一个或多个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中多个部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。本公开中的“多个”表示两个或两个以上的数量。
在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本公开中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的传输,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有一种或多种功能的元件等。
在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,可以包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,可以包括85°以上且95°以下的角度的状态。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
本公开至少一实施例提供一种天线结构,包括:介质基板、位于介质基板相对两侧的辐射贴片和接地层。接地层具有两个第一缝隙,两个第一缝隙关于天线结构在第一方向上的中轴线对称,以引入一个辐射零点。辐射层具 有两个第二缝隙,两个第二缝隙关于中轴线对称,且在第二方向上,两个第二缝隙的边缘与辐射层的边缘对齐,以引入另一个辐射零点。第二方向与第一方向垂直。
本实施例通过在接地层引入两个对称的第一缝隙,实现在高频引入一个辐射零点,在辐射贴片引入两个对称的第二缝隙,实现在低频引入一个辐射零点,从而在天线的谐振频点左右两侧分别引入辐射零点以实现滤波特性。本实施例的天线结构可以应用于5G频段,天线结构的膜层结构简单且具有较低的剖面,即可实现滤波功能,无需引入额外的分立器件并避免带来较大插损。
在一些示例性实施方式中,第二缝隙在介质基板上的正投影位于第一缝隙在介质基板上的正投影靠近中轴线的一侧。
在一些示例性实施方式中,两个第一缝隙和两个第二缝隙均沿第二方向延伸,且第一缝隙沿第二方向的长度大于第二缝隙沿第二方向的长度。
在一些示例性实施方式中,天线结构还包括:至少一个第一短路柱和至少一个第二短路柱。第一短路柱和第二短路柱连接接地层和辐射层;第一短路柱和第二短路柱关于中轴线对称;第一短路柱和第二短路柱在介质基板上的正投影位于第一缝隙在介质基板上的正投影远离中轴线的一侧。本示例性实施方式中,通过引入对称的第一短路柱和第二短路柱,可以提高增益通带的带外抑制特性。
在一些示例性实施方式中,第一短路柱和第二短路柱的数目均为三个。然而,本实施例对此并不限定。
在一些示例性实施方式中,接地层与同轴导电柱的外侧导体连接,辐射层与同轴导电柱的内侧导体连接。同轴导电柱在介质基板上的正投影位于两个第二缝隙在介质基板上的正投影之间。本示例中,采用同轴馈电方式对辐射层进行馈电。
在一些示例性实施方式中,同轴导电柱与射频连接器(SMA)连接,射频连接器位于接地层远离介质基板的一侧。SAM用于连接外部射频信号。
在一些示例性实施方式中,在第二方向上,两个第二缝隙的第一端连通 并与辐射层的边缘齐平。例如,两个第二缝隙呈条状,连通后的两个第二缝隙可以呈Y型。然而,本实施例对此并不限定。
在一些示例性实施方式中,在第二方向上,两个第二缝隙的第一端连通并与辐射层的边缘齐平,且两个第二缝隙的第二端也连通并与辐射层的边缘齐平。第一端和第二端位于天线结构在第二方向上的中轴线的相对两侧。然而,本实施例对此并不限定。
下面通过多个示例对本实施例的天线结构进行举例说明。
图1A为本公开至少一实施例的天线结构的平面示意图。图1B为图1A中沿P-P方向的局部剖面示意图。在一些示例性实施方式中,如图1A和图1B所示,本示例性实施例的天线结构包括:介质基板10、位于介质基板10相对两侧的辐射层12和接地层13。接地层13具有两个第一缝隙131a和131b。两个第一缝隙131a和131b关于天线结构在第一方向D1上的中轴线OO’对称。两个第一缝隙131a和131b均沿第二方向D2延伸。第一方向D1垂直于第二方向D2。第一缝隙131a和131b沿第二方向D2的长度小于接地层13沿第二方向D2的长度。第一缝隙131a和131b在介质基板10上的正投影可以均为矩形。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图1A和图1B所示,辐射层12具有两个第二缝隙121a和121b,两个第二缝隙121a和121b关于中轴线OO’对称,且在第二方向D2上,两个第二缝隙121a和121b的边缘与辐射层12的边缘对齐。两个第二缝隙121a和121b均沿第二方向D2延伸。第二缝隙121a在第二方向D2上的长度小于第一缝隙131a在第二方向D2上的长度。第二缝隙121a在第二方向D2上的长度约等于辐射层12在第二方向D2上的长度。第二缝隙121a和121b在介质基板10上的正投影可以均为矩形。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图1A所示,两个第二缝隙121a和121b将辐射层12分割为第一辐射部分12a、第二辐射部分12b和第三辐射部分12c,第二缝隙121a位于第一辐射部分12a和第二辐射部分12b之间,第二缝隙121b位于第二辐射部分12b和第三辐射部分12c之间。在本示例中,第一辐射部分12a、第二辐射部分12b和第三辐射部分12c可以均为矩形。然而, 本实施例对此并不限定。
在一些示例性实施方式中,如图1A所示,第二缝隙121a在介质基板10上的正投影位于第一缝隙131a在介质基板10上的正投影靠近中轴线OO’的一侧,第二缝隙121b在介质基板10上的正投影位于第一缝隙131b在介质基板10上的正投影靠近中轴线OO’的一侧。
在本示例性实施方式中,通过在接地层13引入关于中轴线OO’对称的两个第一缝隙131a和131b,可以实现在高频引入一个辐射零点;通过在辐射层12引入关于中轴线OO’对称的两个第二缝隙121a和121b,可以实现在低频引入一个辐射零点,从而实现天线滤波特性。
在一些示例性实施方式中,如图1A和图1B所示,辐射层12的第一辐射部分12a通过一个第一短路柱141a与接地层13连接,第三辐射部分12c通过一个第二短路柱141b与接地层13连接。第一短路柱141a和第二短路柱141b在介质基板10上的正投影可以为圆形。然而,本实施例对此并不限定。在一些示例中,第一短路柱141a在介质基板10上的正投影位于第一缝隙131a在介质基板10上的正投影远离中轴线OO’的一侧,第二短路柱141b在介质基板10上的正投影位于第一缝隙131b在介质基板10上的正投影远离中轴线OO’的一侧。第一短路柱141a和第二短路柱141b关于中轴线OO’对称。第一短路柱141a与第一缝隙131a邻近,第二短路柱141b与第二缝隙131b邻近。本示例性实施方式通过在第一缝隙的外侧引入两个对称的短路柱,可以提高通带的带外抑制特性。
在一些示例性实施方式中,如图1A所示,天线结构在第二方向D2具有中轴线QQ’。辐射层12关于中轴线QQ’对称,接地层13关于中轴线QQ’对称,第一短路柱141a和第二短路柱141b可以位于中轴线QQ’上。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图1A和图1B所示,辐射层12的第二辐射部分12b与同轴导电柱20的内侧导体20a连接,接地层13与同轴导电柱20的外侧导体20b连接。同轴导电柱20的内侧导体20a和外侧导体20b之间设置有绝缘层。内侧导体20a和外侧导体20b在介质基板10上的正投影可以为同心圆,且外侧导体20b的正投影的半径大于内侧导体20a的正投影的 半径。同轴导电柱20还与射频连接器21连接,射频连接器21配置为连接外部射频信号。射频连接器21可以位于接地层13远离介质基板10的一侧。同轴导电柱20的外侧导体20b从接地层13远离辐射层12的一侧穿过接地层13,其中外侧导体20b与接地层13连接,内侧导体20a穿过介质基板10与辐射层12连接。在本示例中,同轴导电柱20在介质基板10上的正投影位于中轴线OO’上。同轴导电柱20在介质基板10上的正投影位于中轴线QQ’的一侧。本示例中,采用同轴馈电形式给辐射层馈电。
在一些示例性实施方式中,辐射层12和接地层13可以通过电路板制备工艺形成在介质基板10上。例如,辐射层12和接地层13的材料可以为金属(Cu)或者银(Ag)。然而,本实施例对此并不限定。
图1C为图1A所示的天线结构的S11曲线的仿真结果图。图1D为图1A所示的天线结构的增益曲线的仿真结果图。在本公开中,平面尺寸表示为第一长度*第二长度,第一长度为沿第一方向D1的长度,第二长度为沿第二方向D2的长度。厚度为在垂直于第一方向D1和第二方向D2所在平面的方向上的长度。
在一些示例性实施方式中,介质基板10的介电常数dk/介质损耗df约为3.6/0.003,介质基板10的厚度约为1.5mm。辐射层12和接地层13的厚度可以约为17微米,且材料可以为金属(Cu)。天线仿真的中心频点f0约为3GHz,对应的真空波长为λ0。天线整体厚度约为0.015λ0。
在一些示例性实施方式中,如图1A所示,介质基板10的平面尺寸约为55mm*35mm。辐射层12的平面尺寸约为51mm*20mm。辐射层12的两个第二缝隙121a和121b的平面尺寸均约为0.2mm*20mm,两个第二缝隙121a和121b在第一方向D1上的中心间距约为3.2mm。接地层13的平面尺寸约为55mm*35mm。接地层13的两个第一缝隙131a和131b的平面尺寸均约为0.3mm*22.0mm,两个第一缝隙131a和131b在第一方向D1上的中心间距约为22.5mm。第一短路柱141a和第二短路柱141b的半径均约为0.6mm,第一短路柱141a的中心与第一缝隙131a靠近第一短路柱141a一侧边缘的垂直距离约为0.95mm,第二短路柱141b的中心与第一缝隙131b靠近第一短路柱141b一侧边缘的垂直距离约为0.95mm。同轴导电柱20的半径约为1.4mm, 内侧导体20a的半径约为0.6mm。同轴导电柱20的圆心位于中轴线OO’上。
在一些示例性实施方式中,如图1C所示,天线结构在-6dB的阻抗带宽约为3.56GHz至3.76GHz。如图1D所示,天线结构在0dBi的增益带宽约为3.31GHz至4.02GHz,其中,最大增益约为7.4dBi,其对应的谐振频点约为3.66GHz,高低频辐射零点分别为4.49GHz和2.76GHz,高低频带外抑制分别为-23dBi和-19dBi。
图1E(a)至图1E(c)为图1A所示的天线结构的辐射层的表面电流矢量分布图。其中,图1E(a)为图1A所示的天线结构在增益峰值点的表面电流矢量分布图,对应频点约为3.66GHz;图1E(b)为图1A所示的天线结构在低频辐射零点的表面电流矢量分布图,对应频点约为2.76GHz;图1E(c)为图1A所示的天线结构在高频辐射零点的表面电流矢量分布图,对应频点约为4.49GHz。如图1E(a)至图1E(c)可见,在2.76GHz,天线结构的辐射层的两侧表面电流方向相反互相抵消可以形成低频辐射零点。
图1F(a)至图1F(c)为图1A所示的天线结构的接地层的表面电流矢量分布图。其中,图1F(a)为图1A所示的天线结构在增益峰值点的表面电流矢量分布图,对应频点约为3.66GHz;图1F(b)为图1A所示的天线结构在低频辐射零点的表面电流矢量分布图,对应频点约为2.76GHz;图1F(c)为图1A所示的天线结构在高频辐射零点的表面电流矢量分布图,对应频点约为4.49GHz。如图1F(a)至图1F(c)可见,在4.49GHz,天线结构的接地层的两侧表面电流方向相反互相抵消可以形成高频辐射零点。
本示例性实施例中,天线结构在0dBi的增益带宽可以完全覆盖n78频段,而且天线整体带外抑制特性好,剖面低,可以满足移动终端设备对天线轻薄化的需求。
图2A为本公开至少一实施例的天线结构的另一平面示意图。图2B为图2A所示的天线结构的S11曲线的仿真结果图。图2C为图2A所示的天线结构的增益曲线的仿真结果图。
在一些示例性实施方式中,如图2A所示,第一短路柱141a和第二短路柱141b的数量均为三个。三个第一短路柱141a沿第二方向D2依次排布,三个第二短路柱141b沿第二方向D2依次排布。三个第一短路柱141a和三 个第二短路柱141b的尺寸相同。三个第一短路柱141a和三个第二短路柱141b关于中轴线OO’对称,三个第一短路柱141a关于中轴线QQ’对称,三个第二短路柱141b关于中轴线OO’对称。在一些示例中,第一短路柱141a的半径约为0.2mm,且相邻第一短路柱之间的中心间距约为1.0mm至3.0mm,例如,1.0mm。第一短路柱141a的中心与第一缝隙131a靠近第一短路柱141a一侧边缘的垂直距离约为0.5mm至2.4mm,例如,0.5mm。本示例对于第一短路柱和第二短路柱的个数并不限定。关于本实施例的天线结构的其余结构和参数可以参照图1A所示的天线结构的说明,故于此不再赘述。
在一些示例性实施方式中,如图2B所示,天线结构在-6dB的阻抗带宽约为3.58GHz至3.78GHz。如图2C所示,天线结构在0dBi的增益带宽约为3.33GHz至4.05GHz,其中,最大增益约为7.5dBi,其对应的谐振频点约为3.69GHz,高低频辐射零点分别为4.53GHz和2.77GHz,高低频带外抑制分别为-25dBi和-18dBi。本示例性实施例中,天线结构在0dBi的增益带宽完全覆盖n78频段,而且天线整体带外抑制特性好,剖面低,可以满足移动终端设备对天线轻薄化的需求。
图3A为本公开至少一实施例的天线结构的另一平面示意图。图3B为图3A所示的天线结构的S11曲线的仿真结果图。图3C为图3A所示的天线结构的增益曲线的仿真结果图。
在一些示例性实施方式中,如图3A所示,在第二方向D2上,辐射层12的两个第二缝隙121a和121b的第一端连通并与辐射层12的边缘齐平,第一端远离同轴导电柱。辐射层12的第二缝隙121a包括依次连接的第一延伸部1211、第二延伸部1212和第三延伸部1213。第二缝隙121b包括依次连接的第一延伸部1221、第二延伸部1222和第三延伸部1213。第二缝隙121a的第一延伸部1211和第二缝隙121b的第一延伸部1221关于中轴线OO’对称,第二缝隙121a的第二延伸部1212和第二缝隙121b的第二延伸部1222关于中轴线OO’对称,第二缝隙121a和第二缝隙121b的第三延伸部1213重合且位于中轴线OO’上。第一延伸部1211和1221沿第二方向D2延伸,第二延伸部1212和1222沿第一方向D1延伸,第三延伸部1213沿第二方向D2延伸。在本示例中,两个第二缝隙121a和121b连通后呈倒置的Y型。 在一些示例中,第一延伸部1211和1221的平面尺寸约为0.2mm*19.0mm,第二延伸部1212和1222的平面尺寸约为1.60mm*0.2mm,第三延伸部1213的平面尺寸约为0.2mm*1.0mm。关于本实施例的天线结构的其余结构和参数可以参照图1A所示的天线结构的说明,故于此不再赘述。
在一些示例性实施方式中,如图3B所示,天线结构在-6dB的阻抗带宽约为3.56GHz至3.72GHz。如图3C所示,天线结构在0dBi的增益带宽约为3.33GHz至3.98GHz,其中,最大增益约为7.2dBi,其对应谐振频点约为3.65GHz,高低频辐射零点分别为4.53GHz和2.77GHz,高低频带外抑制分别为-21dBi和-18dBi。本示例性实施例中,天线结构在0dBi的增益带宽完全覆盖n78频段,且天线整体带外抑制特性好,剖面低,可以满足移动终端设备对天线轻薄化的需求。在本示例中,第一延伸部的第二长度在16mm至19mm之间对天线性能没有明显影响。
图4A为本公开至少一实施例的天线结构的结构示意图。图4B为图4A所示的天线结构的S11曲线的仿真结果图。图4C为图4A所示的天线结构的增益曲线的仿真结果图。
在一些示例性实施方式中,如图4A所示,在第二方向D2上,辐射层12的两个第二缝隙121a和121b的第一端连通,第二端也连通,且第一端和第二端均与辐射层12的边缘齐平。第二缝隙121a和121b关于中轴线OO’对称,第二缝隙121a关于中轴线QQ’对称,第二缝隙121b关于中轴线QQ’对称。第二缝隙121a包括依次连接的第三延伸部1213、第二延伸部1212、第一延伸部1211、第四延伸部1214和第五延伸部1215;第二缝隙121b包括依次连接的第三延伸部1213、第二延伸部1222、第一延伸部1221、第四延伸部1224和第五延伸部1215。两个第二缝隙121a和121b的第三延伸部1213重合且位于中轴线OO’,两个第二缝隙121a和121b的第五延伸部1215重合且位于中轴线OO’。第一缝隙121a的第一延伸部1211和第二缝隙121b的第一延伸部1221关于中轴线OO’对称,第一缝隙121a的第二延伸部1212和第二缝隙121b的第二延伸部1222关于中轴线OO’对称,第一缝隙121a的第四延伸部1214和第二缝隙121b的第四延伸部1224关于中轴线OO’对称。第一延伸部1211和1221沿第二方向D2延伸,第二延伸部1212和1222、第四 延伸部1214和1224沿第一方向D1延伸,第三延伸部1213和第五延伸部1215沿第二方向D2延伸。在一些示例中,第一延伸部1211和1221的平面尺寸约为0.2mm*18.0mm;第二延伸部1212和1222、第四延伸部1214和1224的平面尺寸约为0.2mm*1.6mm;第三延伸部1213和第五延伸部1215的平面尺寸约为0.2mm*1.0mm。关于本实施例的天线结构的其余结构和参数可以参照图1A所示的天线结构的说明,故于此不再赘述。
在一些示例性实施方式中,如图4B所示,天线结构在-6dB的阻抗带宽约为3.56GHz至3.71GHz。如图4C所示,天线结构在0dBi的增益带宽约为3.33GHz至3.96GHz,其中,最大增益约为7.10dBi,其对应谐振频点约为3.64GHz,高低频辐射零点分别在4.56GHz和2.75GHz,高低频带外抑制分别为-21dBi和-18dBi。本示例性实施例中,天线结构在0dBi的增益带宽完全覆盖n78频段,且天线整体带外抑制特性好,剖面低,可以满足移动终端设备对天线轻薄化的需求。在本示例中,第一延伸部的第二长度在16mm至19mm之间对天线性能没有明显影响。
本示例性实施方式提供的天线结构,具有结构简单、低剖面的优点,通过平面结构设计改变辐射层和接地层的表面电流分布,从而实现滤波功能。
图5为本公开至少一实施例的电子设备的示意图。如图5所示,本实施例提供一种电子设备91,包括:天线结构910。电子设备91可以为:手机、导航装置、游戏机、电视(TV)、车载音响、平板计算机、个人多媒体播放器(PMP)、个人数字助理(PDA)等任何具有通信功能的产品或部件。然而,本实施例对此并不限定。
本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求的范围当中。

Claims (10)

  1. 一种天线结构,包括:
    介质基板、位于所述介质基板相对两侧的接地层和辐射层;
    所述接地层具有两个第一缝隙,所述两个第一缝隙关于所述天线结构在第一方向上的中轴线对称,以引入一个辐射零点;
    所述辐射层具有两个第二缝隙,所述两个第二缝隙关于所述中轴线对称,且在第二方向上,所述两个第二缝隙的边缘与所述辐射层的边缘对齐,以引入另一个辐射零点;所述第二方向与第一方向垂直。
  2. 根据权利要求1所述的天线结构,其中,所述第二缝隙在所述介质基板上的正投影位于所述第一缝隙在所述介质基板上的正投影靠近所述中轴线的一侧。
  3. 根据权利要求1或2所述的天线结构,其中,所述两个第一缝隙和两个第二缝隙均沿所述第二方向延伸,且所述第一缝隙沿所述第二方向的长度大于所述第二缝隙沿所述第二方向的长度。
  4. 根据权利要求1至3中任一项所述的天线结构,还包括:至少一个第一短路柱和至少一个第二短路柱,所述第一短路柱和第二短路柱连接所述接地层和辐射层;
    所述第一短路柱和第二短路柱关于所述中轴线对称;
    所述第一短路柱和第二短路柱在所述介质基板上的正投影位于所述第一缝隙在所述介质基板上的正投影远离所述中轴线的一侧。
  5. 根据权利要求4所述的天线结构,其中,所述第一短路柱和第二短路柱的数目均为三个。
  6. 根据权利要求1至5中任一项所述的天线结构,其中,所述接地层与同轴导电柱的外侧导体连接,所述辐射层与所述同轴导电柱的内侧导体连接;
    所述同轴导电柱在所述介质基板上的正投影位于所述两个第二缝隙在所述介质基板上的正投影之间。
  7. 根据权利要求6所述的天线结构,其中,所述同轴导电柱与射频连接 器连接,所述射频连接器位于所述接地层远离所述介质基板的一侧。
  8. 根据权利要求1至7中任一项所述的天线结构,其中,在所述第二方向上,所述两个第二缝隙的第一端连通,并与辐射层的边缘齐平。
  9. 根据权利要求1至7中任一项所述的天线结构,其中,在所述第二方向上,所述两个第二缝隙的第一端连通并与辐射层的边缘齐平,且所述两个第二缝隙的第二端也连通并与辐射层的边缘齐平;所述第一端和第二端位于所述天线结构在所述第二方向上的中轴线的相对两侧。
  10. 一种电子设备,包括如权利要求1至9中任一项所述的天线结构。
PCT/CN2021/086406 2021-04-12 2021-04-12 天线结构及电子设备 WO2022217400A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/086406 WO2022217400A1 (zh) 2021-04-12 2021-04-12 天线结构及电子设备
CN202180000753.0A CN115474445A (zh) 2021-04-12 2021-04-12 天线结构及电子设备
US17/629,417 US20230318185A1 (en) 2021-04-12 2021-04-12 Antenna Structure and Electronic Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086406 WO2022217400A1 (zh) 2021-04-12 2021-04-12 天线结构及电子设备

Publications (1)

Publication Number Publication Date
WO2022217400A1 true WO2022217400A1 (zh) 2022-10-20

Family

ID=83639342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086406 WO2022217400A1 (zh) 2021-04-12 2021-04-12 天线结构及电子设备

Country Status (3)

Country Link
US (1) US20230318185A1 (zh)
CN (1) CN115474445A (zh)
WO (1) WO2022217400A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204326A1 (en) * 2007-02-23 2008-08-28 Gholamreza Zeinolabedin Rafi Patch antenna
CN106058450A (zh) * 2016-06-14 2016-10-26 南通大学 平面贴片滤波天线
CN109449582A (zh) * 2018-10-29 2019-03-08 西安电子科技大学 一种低剖面宽带滤波天线
CN109802225A (zh) * 2019-01-30 2019-05-24 西安电子科技大学 一种微带滤波天线
CN111293413A (zh) * 2020-03-03 2020-06-16 电子科技大学 基于交叉耦合结构的紧凑型宽带滤波天线及其mimo天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344833B1 (en) * 1999-04-02 2002-02-05 Qualcomm Inc. Adjusted directivity dielectric resonator antenna
US6292141B1 (en) * 1999-04-02 2001-09-18 Qualcomm Inc. Dielectric-patch resonator antenna
US8581801B2 (en) * 2010-06-01 2013-11-12 Raytheon Company Droopy bowtie radiator with integrated balun
US9431709B2 (en) * 2012-04-03 2016-08-30 Wemtec, Inc. Artificial magnetic conductor antennas with shielded feedlines
US11271319B2 (en) * 2019-06-10 2022-03-08 Trimble Inc. Antennas for reception of satellite signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204326A1 (en) * 2007-02-23 2008-08-28 Gholamreza Zeinolabedin Rafi Patch antenna
CN106058450A (zh) * 2016-06-14 2016-10-26 南通大学 平面贴片滤波天线
CN109449582A (zh) * 2018-10-29 2019-03-08 西安电子科技大学 一种低剖面宽带滤波天线
CN109802225A (zh) * 2019-01-30 2019-05-24 西安电子科技大学 一种微带滤波天线
CN111293413A (zh) * 2020-03-03 2020-06-16 电子科技大学 基于交叉耦合结构的紧凑型宽带滤波天线及其mimo天线

Also Published As

Publication number Publication date
US20230318185A1 (en) 2023-10-05
CN115474445A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
CN109904613B (zh) 一种应用于5G Sub 6GHz基站系统的差分双频双极化滤波天线
US11817638B2 (en) Patch antenna
WO2021082988A1 (zh) 天线模组及电子设备
US10879618B2 (en) Wideband substrate integrated waveguide slot antenna
DE202016002083U1 (de) Elektronische Vorrichtung mit peripherer Hybridantenne
US11133601B2 (en) Fractal-rectangular reactive impedance surface for antenna miniaturization
CN107732450B (zh) 用于移动数字电视的多层渐变分形缝隙石墨烯天线
TW201517385A (zh) 具有低被動相互調變的天線系統
US20200295449A1 (en) Antenna device
CN109155467A (zh) 天线装置
JP2005051747A (ja) アンテナ装置およびその製造方法
CN112886234B (zh) 一种基于嵌入式结构的微波毫米波共面共口径天线
WO2021218392A1 (zh) 天线模组及电子设备
WO2022217400A1 (zh) 天线结构及电子设备
WO2019111025A1 (en) Antenna
CN112821050A (zh) 天线组件及电子设备
CN111816996A (zh) 天线装置
WO2022221983A1 (zh) 天线结构及电子设备
WO2022087872A1 (zh) 相控阵天线系统及电子装置
WO2023024023A1 (zh) 天线结构及电子设备
TWI509892B (zh) 天線結構及其製造方法
US20230361474A1 (en) Microstrip Antenna
CN109075452B (zh) 宽带背腔式开槽天线
WO2023245435A1 (zh) 天线和电子装置
US20220311141A1 (en) Antenna Unit, Preparation Method thereof, and Electronic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936296

Country of ref document: EP

Kind code of ref document: A1