WO2022215707A1 - セラミックス材料、圧粉体、焼結体、及び物品 - Google Patents

セラミックス材料、圧粉体、焼結体、及び物品 Download PDF

Info

Publication number
WO2022215707A1
WO2022215707A1 PCT/JP2022/017171 JP2022017171W WO2022215707A1 WO 2022215707 A1 WO2022215707 A1 WO 2022215707A1 JP 2022017171 W JP2022017171 W JP 2022017171W WO 2022215707 A1 WO2022215707 A1 WO 2022215707A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic material
composite oxide
based composite
mass
lanthanum
Prior art date
Application number
PCT/JP2022/017171
Other languages
English (en)
French (fr)
Inventor
満央 黒川
久司 小塚
康之 沖村
章 中島
Original Assignee
日本特殊陶業株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社, 国立大学法人東京工業大学 filed Critical 日本特殊陶業株式会社
Priority to JP2023513030A priority Critical patent/JPWO2022215707A1/ja
Priority to CN202280027100.6A priority patent/CN117157264A/zh
Priority to EP22784689.6A priority patent/EP4321494A1/en
Priority to KR1020237030981A priority patent/KR20230144614A/ko
Publication of WO2022215707A1 publication Critical patent/WO2022215707A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Definitions

  • the present invention relates to ceramic materials, compacts, sintered bodies, and articles.
  • Patent Literature 1 As a new type of inorganic material with antibacterial and antiviral properties, ceramics made of composite oxides containing rare earths and molybdenum (Mo) are known. Among such ceramics, composite oxides containing lanthanum (La) as a rare earth (for example, La 2 Mo 2 O 9 ) use lanthanum, which is inexpensive and readily available among rare earths. It is particularly attracting attention because it is advantageous for
  • An object of the present invention is to provide a ceramic material, etc., containing La-Mo-based composite oxide as a main component and having excellent antibacterial and antiviral properties.
  • the present inventors have made intensive studies to achieve the above object, and found that, in a ceramic material containing a La—Mo-based composite oxide as a main component, at least one first selected from the group consisting of Si and Al The inventors have found that the antibacterial and antiviral properties are excellent when the element is contained in a predetermined ratio, and have completed the present invention.
  • Means for solving the above problems are as follows. Namely ⁇ 1> La-Mo-based composite oxide and at least one first element selected from the group consisting of Si and Al, the content of the first element exceeding 0% by mass and 0.5 A ceramic material with a mass % or less.
  • ⁇ 2> The ceramic material according to ⁇ 1>, which does not contain elements of the group consisting of Cd, Hg, Pb, Ra and U.
  • the ceramic material according to any one of ⁇ 1> to ⁇ 3> is in powder form, and a powder compact obtained by compression-molding the powdery ceramic material.
  • ⁇ 5> A sintered body obtained by sintering the ceramic material according to any one of ⁇ 1> to ⁇ 3>.
  • the ceramic material of this embodiment contains a La—Mo-based composite oxide and at least one first element selected from the group consisting of Si and Al, and contains the first element in a predetermined proportion.
  • La—Mo-based composite oxides are the main component of ceramic materials, and are mainly composed of composite oxides of lanthanum (La) and molybdenum (Mo).
  • La—Mo-based composite oxides are not particularly limited as long as they do not impair the object of the present invention, but examples include La 2 Mo 2 O 9 , La 2 Mo 3 O 12 , La 6 MoO 12 and La 7 Mo7O30 , La2Mo4O15 , La2MoO6 , La4MoO9 and LaMo2O5 .
  • These La—Mo-based composite oxides may be used alone or in combination of two or more.
  • the La-Mo-based composite oxide is preferably at least one selected from the group consisting of La 2 Mo 2 O 9 , La 2 Mo 4 O 15 and La 2 MoO 6 , and contains at least La 2 Mo 2 O 9 . is more preferred, and La 2 Mo 2 O 9 is particularly preferred.
  • the La-Mo-based composite oxide is a La-Mo-based composite oxide (unsubstituted La-Mo-based composite oxide) containing only lanthanum (La) and molybdenum (Mo) as metal elements.
  • the La-Mo-based composite oxide which is the main component, is contained in the ceramic material in an amount of at least 99.0% by mass or more, preferably 99.3% by mass or more, and 99.5% by mass or more. more preferred.
  • Ceramic materials contain trace elements in addition to La-Mo based composite oxides. Trace elements in the ceramic material are detected using an X-ray fluorescence spectrometer (XRF) or an ICP emission spectrometer (ICP), as described later.
  • XRF X-ray fluorescence spectrometer
  • ICP ICP emission spectrometer
  • Examples of trace elements include a first element consisting of at least one selected from the group consisting of Si and Al.
  • the first element is contained as an essential component in the ceramic material, and the content (content rate) of the first element in the ceramic material is more than 0% by mass and 0.5% by mass or less.
  • the content (content rate) of the first element in the ceramic material is within such a range, phase separation between La—Mo-based composite oxide (eg, La 2 Mo 2 O 9 ) and lanthanum aluminate occurs. Since it is suppressed, it is presumed that excellent antibacterial and antiviral properties can be obtained, and the time to develop antibacterial and antiviral properties can be shortened.
  • phase separation from the La—Mo-based composite oxide causes deterioration of the antibacterial and antiviral properties of the ceramic material.
  • the first element is too much (that is, when the content (content rate) of the first element exceeds 0.5% by mass)
  • phase separation occurs between the La-Mo-based composite oxide and lanthanum aluminate, resulting in antibacterial and cause a decrease in antiviral properties.
  • the first element is preferably contained in an amount of 0.0001% by mass or more, more preferably in an amount of 0.0003% by mass or more, further preferably in an amount of 0.01% by mass or more, and 0.01% by mass or more. 02% by mass or more is more preferable. Also, the first element may be contained in an amount of 0.1% by mass or less, or may be contained in an amount of 0.05% by mass or less.
  • the detection of the first element in the ceramic material is first performed using XRF, as described later.
  • the content (content rate) of the first element in the ceramic material is obtained based on the detection result. If the first element in the ceramic material cannot be detected by XRF, the first element is detected using ICP for the ceramic material, as will be described later.
  • trace elements include, for example, a secondary element consisting of at least one selected from the group consisting of Ca, Mg, Ni, Co, Na, S, Sr, Y, Zn and B.
  • the second element is preferably contained in the ceramic material at 0.01 mass % or less (100 ppm or less), more preferably 0.008 mass % or less (80 ppm or less).
  • the detection of the second element in the ceramic material is performed using ICP, as described later.
  • trace elements include, for example, harmful elements that are concerned about their impact on the human body.
  • harmful elements consist of Cd, Hg, Pb, Ra and U.
  • the ceramic material does not substantially contain harmful elements.
  • substantially free of harmful elements means that the content of harmful elements (content ratio) when the content (content rate) of trace elements in the ceramic material is evaluated by ICP, as described later. content) is below the detection limit.
  • the ceramic material of the present embodiment is ball-milled or mixed using alumina cobbles in the process of producing the La—Mo-based composite oxide described later (hereinafter, “ball-milling ) is performed for a long time (for example, 90 hours).
  • the ball mill treatment may be performed, for example, when the lanthanum compound and the molybdenum compound are mixed, or may be performed when pulverizing the powder obtained after calcination as described later.
  • the ceramic material finally comes to a state in which a predetermined amount of Al derived from the alumina cobblestone is contained.
  • Si is included in the ceramic material when silica cobblestone is used, and Zr is included in the ceramic material when zirconia cobblestone is used. As long as the object of the present invention is not impaired, even if a predetermined amount of the first element is supplied to the ceramic material by another method such as adding a predetermined amount of the first element to the raw material in advance, good.
  • the content (content rate) of the second element in the ceramic material in order to set the content (content rate) of the second element in the ceramic material within the range described above, for example, when manufacturing the La—Mo-based composite oxide, a high Pure raw materials (eg, high purity molybdenum compounds) are used.
  • a high Pure raw materials eg, high purity molybdenum compounds
  • the ceramic material may contain trace elements other than the first element, the second element, and the harmful element (e.g., Ce (cerium), W (tungsten), V (vanadium), as long as they do not impair the purpose of the present invention). , Gd (gadolinium).
  • the La-Mo-based composite oxide is manufactured through the preparation process and firing process shown below.
  • the adjustment process is a process of mixing a lanthanum compound and a molybdenum compound to prepare a mixed powder.
  • a lanthanum compound is a compound containing lanthanum ( La) necessary for producing a La — Mo - based composite oxide. mentioned.
  • the lanthanum compound for example, at least one selected from the group consisting of La(OH) 3 , La 2 O 3 and La 2 (CO 3 ) 3 may be used.
  • La(OH) 3 is preferable as the lanthanum compound.
  • the purity of the lanthanum compound is preferably 90.0% by mass or higher, more preferably 99.9% by mass or higher.
  • a molybdenum compound is a compound containing molybdenum (Mo) necessary for producing a La—Mo-based composite oxide, such as MoO 3 , MoO 2 , MoO, Mo(OH) 3 , Mo(OH) 5 , etc. is mentioned.
  • MoO 3 molybdenum
  • MoO3 molybdenum compound
  • the purity of the molybdenum compound is preferably 90.0% by mass or higher, more preferably 99.5% by mass or higher, and even more preferably 99.9% by mass or higher.
  • the mixing ratio of the lanthanum compound and the molybdenum compound is preferably adjusted so that the molar ratio of La:Mo is 1:1.
  • the lanthanum compound and the molybdenum compound are mixed with each other in a solid state.
  • the lanthanum compound and the molybdenum compound are powders of each other, and they may be mixed with each other in a powder state, or a solvent such as a lower alcohol (ethanol) may be added to the powders and wet-mixed.
  • the lanthanum compound and the molybdenum compound may be mixed by wet mixing using, for example, alumina balls (alumina cobbles).
  • the wet-mixed mixture (wet mixture) is appropriately dried by hot water bath drying, spray drying, or the like.
  • a mixed powder of a lanthanum compound and a molybdenum compound is obtained through such an adjustment process.
  • the firing process is a process of firing the mixed powder obtained in the preparation process in a solid state.
  • the mixed powder is fired in a solid state under a temperature condition of 500° C. or higher and 700° C. or lower for 2 hours or longer.
  • the firing process does not need to be carried out under a special synthetic air atmosphere, but is carried out under normal atmospheric conditions.
  • the solid-state lanthanum compound and the solid-state molybdenum compound in the mixed powder react to obtain a powdery La—Mo-based composite oxide containing La 2 Mo 2 O 9 and the like. be done.
  • first firing process the firing process performed for reacting the lanthanum compound and the molybdenum compound in the mixed powder.
  • This first firing step is a firing step (calcination step) performed before the powdery La—Mo-based composite oxide is sintered.
  • La-Mo composite oxide powder a powdery La-Mo composite oxide (sometimes referred to as "La-Mo composite oxide powder") is obtained.
  • the La-Mo-based composite oxide powder may be prepared into granules by granulation by spray drying or the like, if necessary.
  • a slurry is prepared by adding a solvent such as ethanol to the obtained La-Mo-based composite oxide powder and performing wet mixing pulverization (an example of ball milling) using alumina pebbles or the like.
  • a predetermined amount of the first element is supplied into the La--Mo-based composite oxide by performing this wet mixed pulverization for a long time (for example, 90 hours).
  • the ceramic material of the present embodiment is obtained by supplying a predetermined amount of the first element when producing the La--Mo-based composite oxide.
  • the La--Mo-based composite oxide containing a predetermined amount of the first element may be sintered and used as a sintered body.
  • the powdery La-Mo-based composite oxide is compression-molded into a predetermined shape (e.g., columnar, disk-like, etc.), and the obtained compact (powder By sintering the body) under a predetermined temperature condition (for example, 900 ° C. or higher), a sintered body of La-Mo-based composite oxide (ceramic material) containing a predetermined amount of the first element is obtained. can get.
  • the firing process for sintering the La—Mo-based composite oxide may be referred to as a "second firing process".
  • This second firing step is a main firing step for sintering the La—Mo-based composite oxide containing a predetermined amount of the first element, and can be performed in an air atmosphere.
  • a ceramic material containing a predetermined amount of the first element is obtained by supplying a predetermined amount of the first element when producing the La—Mo-based composite oxide.
  • the ceramic material of this embodiment exhibits antibacterial properties (antibacterial activity) and antiviral properties (antiviral activity) in a powder state before sintering.
  • the ceramic material of the present embodiment exhibits antibacterial and antiviral properties even after sintering, just like before sintering. Methods for evaluating the antibacterial and antiviral properties of the lanthanum-molybdenum composite oxide will be described later.
  • the ceramic material of this embodiment is water repellent. Evaluation of water repellency is performed using a sintered body of a ceramic material. Specifically, it is carried out with reference to JIS R 3257:1999 (testing method for wettability of substrate glass surface). The contact angle of the ceramic material to water is 60° to 110°.
  • the form of the ceramic material of the present embodiment may be powder, or granules obtained by granulating the powder by spray drying or the like.
  • the ceramic material may be used in the form of a green compact obtained by compression-molding a powdered ceramic material.
  • the ceramic material may be used in the state of a sintered body.
  • the ceramic material may be used in a form applied to at least part of the surface of the article.
  • the material constituting the article to which the ceramic material is applied is not particularly limited as long as it does not impair the object of the present invention. , synthetic rubber), genuine leather (natural leather), synthetic leather, metallic materials made of metals or alloys, wood, paper, fibers, non-woven fabrics, silicon (silicon wafers, etc.), carbon materials, minerals, gypsum, and the like.
  • the ceramic material may be used in a form dispersed in a predetermined base material.
  • the substrate on which the ceramic material is dispersed is not particularly limited as long as it does not impair the object of the present invention.
  • rubber synthetic leather
  • metallic materials made of metals or alloys paper, fibers, non-woven fabrics, carbon materials, minerals, gypsum, and the like.
  • the mixed powder was fired (preliminarily fired) for 2 hours at a temperature of 600°C in an air atmosphere to obtain a preliminarily fired powder composed of a reactant of the lanthanum compound and the molybdenum compound. Then, in order to granulate the obtained calcined powder, the following operations were performed.
  • Example 4 was carried out in the same manner as in Example 1, except that MoO 3 with a purity of 99.9% by mass was used as the molybdenum compound and wet mixing pulverization (ball mill) using alumina cobbles was performed for 90 hours. A granular ceramic material was obtained.
  • Measurement device Wavelength dispersive X-ray fluorescence spectrometer (device name “ZSX-Primus II, manufactured by Rigaku)
  • Target element Periodic table from B to U
  • Measurement range ppm level to main component
  • Excitation source Characteristic X-ray (Rh) Measurement diameter: 30mm
  • Measurement device ICP-AES (inductively coupled plasma atomic emission spectrometer (model “iCAP-6500”, manufactured by Thermo Fisher Scientific) Sample pretreatment: Nitric acid (hydrochloric acid added) heat decomposition treatment
  • Example 4 Regarding the ceramic material of Example 4, it was confirmed by the above-mentioned ICP emission spectroscopic analysis whether or not harmful elements were contained in the same manner as in Example 1 and the like. In addition, about Example 4, the trace element (second element) was also specified based on this measurement result. The results are shown in Table 1.
  • test sample consists of a glass substrate surface (50 mm ⁇ 50 mm) coated with 1.8 mg of a ceramic material in the state of a predetermined dispersion and dried (per unit area of the test sample The amount of powder is 0.0072 mg/mm 2 ).
  • the number of viable bacteria (cfu/cm 2 ) was counted when the concentration of the inoculum solution was 2.6 ⁇ 10 6 cfu/ml and the amount of the inoculum solution was 0.1 ml per sample.
  • Table 1 shows the results of the antibacterial activity value R.
  • the lower limit of detection in the antibacterial performance evaluation was defined as follows. Let N0 be the number of viable bacteria at elapsed time 0 , Nt be the number of viable bacteria at elapsed time t , and log( Nt / N0 ) be the common logarithm of the viable cell survival rate Nt / N0 . Time t is the working time. When log(N t /N 0 ) ⁇ log(N t+1 /N 0 ) ⁇ 0.5 even though the antibacterial activity value R is 2.0 or more (that is, R ⁇ 2.0) , log(N t /N 0 ) or log(N t+1 /N 0 ), whichever is smaller, was taken as the lower limit of detection.
  • Log (UD) is the logarithm (average value) of the number of phages after the action time (6 hours) in the unprocessed test sample
  • Log (TD) is the phage number after the action time (6 hours) in the processed test sample. It is the logarithmic value (mean value) of the number.
  • the number of samples of the test article is 3.
  • the test sample is made by applying 1.8 mg of a ceramic material in a predetermined dispersion state on the surface of a glass substrate (50 mm ⁇ 50 mm) and drying it (per unit area of the test sample The amount of powder is 0.0072 mg/mm 2 ).
  • the number of phages (infection value) (cfu/cm 2 ) was counted when the concentration of the inoculated phage solution was 2.5 ⁇ 10 7 cfu/ml and the amount of the inoculated phage solution was 0.1 ml per sample. .
  • Table 1 shows the results of the antiviral activity value VD.
  • the detection limit in the antiviral performance evaluation was defined as follows.
  • the number of phages (infection value) at 0 hours elapsed is N'0
  • the number of phages (infection value) at elapsed time t is N't
  • the common logarithm of the phage survival rate N't/ N'0 is log( N' t /N' 0 ).
  • Time t is the working time.
  • the value of the antiviral activity value VD is 3.0 or more (that is, VD ⁇ 3.0)
  • log(N' t /N' 0 ) and log(N' t+1 /N' 0 ) was taken as the lower limit of detection.
  • Each of Examples 1 to 3 is a case where a molybdenum compound (MoO 3 ) having a purity lower than that of Example 4 is used as a raw material to produce a ceramic material. Therefore, the ceramic materials of Examples 1 to 3 contained Al, Si, Ca, Mg, Ni, Co, Na, S, Sr, Y, Zn and B as trace elements derived from the raw materials. was included. As described above, the ceramic materials of Examples 1 to 3 contain the first elements Al and Si in a predetermined proportion. In addition, in the ceramic materials of Examples 1 to 3, the content of the second elements (Ca, Mg, Ni, Co, Na, S, Sr, Y, Zn and B) is 0.0015 mass, respectively.
  • Example 4 wet mixing pulverization (ball mill ) was performed for a longer time (90 hours) than in Examples 1 to 3 to produce a ceramic material. Therefore, the ceramic material of Example 4 contains the primary elements Al and Si as main trace elements at a content of 0.0403% by mass (403 ppm). These first elements are derived from substances separated from alumina cobbles when the alumina cobbles are pulverized for a long time. It was confirmed that the ceramic material of Example 4 thus obtained exhibited excellent antibacterial and antiviral properties, and exhibited the antibacterial and antiviral properties in a short period of time.
  • the ceramic material of Example 4 contained secondary elements (Ca, Mg, Ni, Co, Na, S, Sr, Y, Zn and B) from the results of ICP emission spectroscopic analysis. was confirmed.
  • Example 4 no harmful elements were detected.
  • FIG. 1 is a graph showing the results of the antibacterial performance evaluation test of Example 3, and FIG. 2 is a graph showing the results of the antiviral performance evaluation test of Example 3.
  • 3 is a graph showing the results of the antibacterial performance evaluation test of Example 4, and
  • FIG. 4 is a graph showing the results of the antiviral performance evaluation test of Example 4. 1 to 4, the solid line graphs correspond to the results of Example 3 or Example 4, and the broken line graphs correspond to the blank results.
  • the vertical axis in FIGS. 1 and 3 represents the viable cell survival rate N t /N 0 when the number of viable cells at the elapsed time of 0 hours is N 0 and the number of viable cells at the elapsed time t (hour) is N t .
  • Example 4 It is a common logarithm (Log(N t /N 0 )), and the horizontal axis is the elapsed time t (hours).
  • the elapsed time t started from 2 hours. 2 and 4, the number of phages (infection value) at elapsed time 0 hours is N'0, and the number of phages (infection value) at elapsed time t (time) is N't.
  • elapsed time t started from 2 hours.
  • Comparative Example 1 a ceramic material produced by the complex polymerization method described in Patent Document 1 (Example 1 of Patent Document 1), and as Comparative Example 2, ceramics produced by the solid phase method described in Patent Document 1. A material (Example 2 of Patent Document 1) is presented.
  • Comparative Example 1 Example 1 (complex polymerization method) of Patent Document 1)
  • Comparative Example 2 Example 2 (solid phase method) of Patent Document 1)
  • Staphylococcus aureus did not reach the detection limit within 6 hours
  • bacteriophage Q ⁇ novirus substitute
  • Example 3 As shown in Figures 1 and 2, Staphylococcus aureus and bacteriophage Q ⁇ (norovirus substitute) reached the detection limit in 1 hour.
  • Example 4 As shown in FIGS. 3 and 4, Staphylococcus aureus and bacteriophage Q ⁇ (a substitute for norovirus) reached the detection limit in 2 hours at the latest.
  • Examples 3 and 4 exhibited antibacterial and antiviral properties earlier than Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Structural Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【解決手段】本発明のセラミックス材料は、La-Mo系複合酸化物と、Si及びAlからなる群より選ばれる少なくとも1種の第一元素とを含み、前記第一元素の含有量が0質量%を超え、かつ0.5質量%以下である。

Description

セラミックス材料、圧粉体、焼結体、及び物品
 本発明は、セラミックス材料、圧粉体、焼結体、及び物品に関する。
 特許文献1に示されるように、抗菌性及び抗ウイルス性を備えた新しいタイプの無機系材料として、希土類と、モリブデン(Mo)等とを含む複合酸化物からなるセラミックスが知られている。そのようなセラミックスの中でも、希土類としてランタン(La)を含む複合酸化物(例えば、LaMo)からなるものは、希土類の中でも安価で入手し易いランタンを使用するため、工業的生産に有利である等の理由により、特に注目されている。
国際公開第2020/017493号
(発明が解決しようとする課題)
 しかしながら、従来、ランタンとモリブデンとを含む複合酸化物に対して、ランタン、モリブデン、酸素以外の元素が混入した場合、前記複合酸化物の抗菌性及び抗ウイルス性に対してどのような影響を及ぼすかについて、全く考慮されていなかった。
 本発明の目的は、主成分としてLa-Mo系複合酸化物を含む抗菌性及び抗ウイルス性に優れたセラミックス材料等を提供することである。
(課題を解決するための手段)
 本発明者らは、前記目的を達成すべく鋭意検討を行った結果、主成分としてLa-Mo系複合酸化物を含むセラミックス材料において、Si及びAlからなる群より選ばれる少なくとも1種の第一元素が、所定の割合で含まれていると、抗菌性及び抗ウイルス性に優れていることを見出し、本発明の完成に至った。
 前記課題を解決するための手段は、以下の通りである。即ち、
 <1> La-Mo系複合酸化物と、Si及びAlからなる群より選ばれる少なくとも1種の第一元素とを含み、前記第一元素の含有量が0質量%を超え、かつ0.5質量%以下であるセラミックス材料。
 <2> Cd,Hg,Pb,Ra及びUからなる群の元素を含まない前記<1>に記載のセラミックス材料。
 <3> 前記La-Mo系複合酸化物は、LaMoを含む前記<1>又は<2>に記載のセラミックス材料。
 <4> 前記<1>から<3>の何れか1つに記載のセラミックス材料が、粉末状であり、前記粉末状の前記セラミックス材料を圧縮成形してなる圧粉体。
 <5> 前記<1>から<3>の何れか1つに記載のセラミックス材料が焼結されてなる焼結体。
 <6> 表面の少なくとも一部に、前記<1>から<3>の何れか1つに記載のセラミックス材料を有する物品。
 <7> 前記<1>から<3>の何れか1つに記載のセラミックス材料が、基材中に分散されてなる物品。
(発明の効果)
 本発明によれば、主成分としてLa-Mo系複合酸化物を含む抗菌性及び抗ウイルス性に優れたセラミックス材料等を提供することができる。
実施例3の抗菌性能評価試験の結果を示すグラフ 実施例3の抗ウイルス性能評価試験の結果を示すグラフ 実施例4の抗菌性能評価試験の結果を示すグラフ 実施例4の抗ウイルス性能評価試験の結果を示すグラフ
 本実施形態のセラミックス材料は、La-Mo系複合酸化物と、Si及びAlからなる群より選ばれる少なくとも1種の第一元素とを含み、第一元素を所定の割合で含有する。
 La-Mo系複合酸化物は、セラミックス材料の主成分であり、主としてランタン(La)とモリブデン(Mo)の複合酸化物からなる。このようなLa-Mo系複合酸化物としては、本発明の目的を損なわない限り特に制限はないが、例えば、LaMo、LaMo12、LaMoO12、LaMo30、LaMo15、LaMoO、LaMoO及びLaMo等が挙げられる。これらのLa-Mo系複合酸化物は、単独で又は2種以上を組み合わせて用いてもよい。
 La-Mo系複合酸化物としては、LaMo、LaMo15、LaMoOからなる群より選ばれる少なくとも1種が好ましく、少なくともLaMoを含むことがより好ましく、LaMoであることが特に好ましい。
 なお、La-Mo系複合酸化物としては、金属元素として、ランタン(La)とモリブデン(Mo)のみを含有するLa-Mo系複合酸化物(非置換型La-Mo系複合酸化物)であっても良いし、例えば、La1.8Ce0.2Mo等の、ランタン(La)の一部がCe、W、V等の他の金属元素で置換されたLa-Mo系複合酸化物(一部置換型La-Mo系複合酸化物)であってもよい。
 主成分であるLa-Mo系複合酸化物は、セラミックス材料中に、少なくとも99.0質量%以上含まれ、99.3質量%以上含まれることが好ましく、99.5質量%以上含まれることがより好ましい。
 セラミックス材料は、La-Mo系複合酸化物以外に、微量元素を含んでいる。セラミックス材料中の微量元素は、後述するように、蛍光X線分光装置(XRF)又はICP発光分光分析装置(ICP)を用いて検出される。
 微量元素としては、例えば、Si及びAlからなる群より選ばれる少なくとも1種からなる第一元素が挙げられる。第一元素は、セラミックス材料中に必須成分として含まれるものであり、セラミックス材料中における第一元素の含有量(含有率)は、0質量%を超え、かつ0.5質量%以下である。セラミックス材料中における第一元素の含有量(含有率)が、このような範囲であると、La-Mo系複合酸化物(例えば、LaMo)とランタンアルミネートとの相分離が抑制されるため、優れた抗菌性及び抗ウイルス性が得られると共に、抗菌性及び抗ウイルス性を発現する時間を早めることができると推測される。なお、ランタンアルミネートは、抗菌性及び抗ウイルス性に寄与しないため、La-Mo系複合酸化物と相分離すると、セラミックス材料における抗菌性及び抗ウイルス性の低下の原因となる。第一元素が多過ぎると(つまり、第一元素の含有量(含有率)が、0.5質量%を超えると)、La-Mo系複合酸化物とランタンアルミネートが相分離し、抗菌性及び抗ウイル性の低下の原因となる。
 なお、セラミックス材料中において、第一元素は、0.0001質量%以上含むことが好ましく、0.0003質量%より多く含むことがより好ましく、0.01質量%以上含むことが更に好ましく、0.02質量%以上含むことが更に好ましい。また、第一元素は、0.1質量%以下含んでいても良いし、0.05質量%以下含んでいても良い。
 セラミックス材料中の第一元素の検出は、後述するように、先ず、XRFを使用して行われる。XRFにより第一元素を検出できた場合、その検出結果に基づいて、セラミックス材料中における第一元素の含有量(含有率)が求められる。なお、XRFにより、セラミックス材料中の第一元素を検出できなかった場合、そのセラミックス材料に対して、後述するように、ICPを使用して、第一元素の検出が行われる。
 他の微量元素としては、例えば、Ca、Mg、Ni、Co、Na、S、Sr、Y、Zn及びBからなる群より選ばれる少なくとも1種からなる第二元素が挙げられる。第二元素は、セラミックス材料中に、0.01質量%以下(100ppm以下)で含まれることが好ましく、0.008質量%以下(80ppm以下)で含まれることがより好ましい。
 セラミックス材料中の第二元素の検出は、後述するように、ICPを使用して行われる。
 他の微量元素としては、例えば、人体への影響が懸念される有害元素が挙げられる。本明細書において、有害元素とは、Cd、Hg、Pb、Ra及びUからなる。セラミックス材料は、有害元素を、実質的に含まないことが好ましい。本明細書において、「有害元素を実質的に含まない」とは、後述するように、ICPによりセラミックス材料中の微量元素の含有量(含有率)を評価した場合に、有害元素の含有量(含有率)が検出限界以下であることを意味する。
 有害元素は、極微量ではあるものの、原材料中に混在している場合や、製造装置(加熱炉、乾燥装置、粉砕装置等)等に付着している場合がある。そのため、有害元素等の不純物を含まない高純度の原材料の選択や、有害元素が付着している可能性のある製造装置の使用を避ける等によって、有害元素を実質的に含まないセラミックス材料を得ることができる。
 本実施形態のセラミックス材料は、第一元素を所定の割合で含有するように、後述するLa-Mo系複合酸化物の製造過程において、アルミナ玉石を使用したボールミル粉砕又は混合(以下、「ボールミル処理」と称する場合がある。)が長時間(例えば、90時間)行われることにより、製造される。ボールミル処理は、例えば、ランタン化合物とモリブデン化合物との混合時に行っても良いし、後述するように仮焼成後に得られる粉末の粉砕時に行われてもよい。このようにボールミル処理を長時間行うことにより、最終的に、セラミックス材料中に、アルミナ玉石に由来する所定量のAlが含まれた状態となる。シリカ玉石を用いた場合は、Siがセラミックス材料中に含まれ、ジルコニア玉石を用いた場合は、Zrがセラミックス材料に含まれる。なお、本発明の目的を損なわない限り、例えば、予め原材料中に所定量の第一元素を含有させておく等の他の方法により、セラミックス材料中に所定量の第一元素が供給されてもよい。
 また、セラミックス材料中の第二元素の含有量(含有率)を、上述した範囲内に設定するために、例えば、La-Mo系複合酸化物の製造時に、第二元素の含有量の少ない高純度の原材料(例えば、高純度のモリブデン化合物)が使用される。
 なお、セラミックス材料中には、本発明の目的を損なわない限り、第一元素、第二元素及び有害元素以外の他の微量元素(例えば、Ce(セリウム)、W(タングステン)、V(バナジウム)、Gd(ガドリニウム)が含まれていてもよい。
 次いで、La-Mo系複合酸化物の製造方法を説明する。
 La-Mo系複合酸化物は、以下に示される調製工程、焼成工程を経て製造される。
 調整工程は、ランタン化合物及びモリブデン化合物を混合して混合粉末を調製する工程である。
 ランタン化合物は、La-Mo系複合酸化物を製造するために必要なランタン(La)を含む化合物であり、例えば、La(OH)、La、La(CO等が挙げられる。ランタン化合物としては、例えば、La(OH)、La、La(COからなる群より選ばれる少なくとも1種が使用されてもよい。なお、ランタン化合物としては、La(OH)が好ましい。ランタン化合物の純度は、90.0質量%以上が好ましく、99.9質量%以上がより好ましい。
 モリブデン化合物は、La-Mo系複合酸化物を製造するために必要なモリブデン(Mo)を含む化合物であり、例えば、MoO、MoO、MoO、Mo(OH)、Mo(OH)等が挙げられる。モリブデン化合物としては、例えば、MoO、MoO、MoO、Mo(OH)、Mo(OH)からなる群より選ばれる少なくとも1種が使用されてもよい。なお、モリブデン化合物としては、MoOが好ましい。モリブデン化合物の純度は、90.0質量%以上が好ましく、99.5質量%以上がより好ましく、99.9質量%以上が更に好ましい。
 ランタン化合物及びモリブデン化合物の混合比は、モル比でLa:Mo=1:1となるように調整することが好ましい。
 ランタン化合物及びモリブデン化合物の混合は、互いに固相状態であるランタン化合物及びモリブデン化合物によって行われる。ランタン化合物及びモリブデン化合物は、互いに粉末であり、それらを互いに粉末の状態で混合してもよいし、それらの粉末に低級アルコール(エタノール)等の溶媒を加えて湿式混合を行ってもよい。ランタン化合物及びモリブデン化合物の混合は、例えば、アルミナボール(アルミナ玉石)等を利用した湿式混合で行われてもよい。なお、湿式混合された混合物(湿式混合物)は、湯煎乾燥、スプレードライ等によって適宜、乾燥される。
 このような調整工程により、ランタン化合物及びモリブデン化合物の混合粉末が得られる。
 焼成工程は、調製工程で得られた混合粉末を、固相状態で焼成する工程である。例えば、焼成工程は、前記混合粉末を、固相状態で500℃以上700℃以下の温度条件で、2時間以上焼成する。焼成工程は、特別な合成空気の雰囲気下で行う必要がなく、通常の大気雰囲気下で行われる。
 この焼成工程により、前記混合粉末中の固相状態のランタン化合物と固相状態のモリブデン化合物とが反応して、LaMo等を含む粉末状のLa-Mo系複合酸化物が得られる。
 なお、本明細書において、前記混合粉末中のランタン化合物及びモリブデン化合物を反応させるために行われる上記焼成工程を、「第1焼成工程」と称する場合がある。この第1焼成工程は、粉末状のLa-Mo系複合酸化物が焼結される前に行われる焼成工程(仮焼工程)である。
 前記焼成工程の後、粉末状のLa-Mo系複合酸化物(「La-Mo系複合酸化物粉末」と称する場合がある)が得られる。La-Mo系複合酸化物粉末は、必要に応じて、スプレードライ等により、造粒して顆粒状に調製されてもよい。例えば、得られたLa-Mo系複合酸化物粉末に、エタノール等の溶媒を添加しつつ、アルミナ玉石等を利用した湿式混合粉砕(ボールミル処理の一例)を行うことにより、スラリーが調製される。
 上述したように、この湿式混合粉砕を長時間(例えば、90時間)行うことにより、La-Mo系複合酸化物中に、所定量の第一元素が供給される。
 得られたスラリーを、スプレードライ等により乾燥させることで、所定の大きさに造粒された顆粒状のLa-Mo系複合酸化物が得られる。
 以上のようにして、La-Mo系複合酸化物を製造する際に、所定量の第一元素が供給されることにより、本実施形態のセラミックス材料が得られる。
 なお、所定量の第一元素を含むLa-Mo系複合酸化物を焼結させて、焼結体として用いてもよい。例えば、所定のプレス機を使用して、粉末状の前記La-Mo系複合酸化物を、所定形状(例えば、円柱状、円板状等)に圧縮成形し、得られた成形体(圧粉体)を所定の温度条件(例えば、900℃以上)で焼成することにより、焼結させることで、所定量の第一元素を含むLa-Mo系複合酸化物(セラミックス材料)の焼結体が得られる。
 なお、本明細書において、前記La-Mo系複合酸化物(セラミックス材料)を焼結させるために行われる焼成工程を、「第2焼成工程」と称する場合がある。この第2焼成工程は、所定量の第一元素を含む前記La-Mo系複合酸化物を焼結させるために行われる本焼成工程であり、大気雰囲気下で行うことができる。
 以上のようにして、La-Mo系複合酸化物を製造する際に、所定量の第一元素が供給されることにより、所定量の第一元素を含むセラミックス材料が得られる。
 本実施形態のセラミックス材料は、焼結前の粉末の状態で、抗菌性(抗菌活性)及び抗ウイルス性(抗ウイルス活性)を示す。また、本実施形態のセラミックス材料は、焼結後も、焼結前と同様に、抗菌性及び抗ウイルス性を示す。ランタン・モリブデン複合酸化物の抗菌性及び抗ウイルス性の評価方法は、後述する。
 また、本実施形態のセラミックス材料は、撥水性である。撥水性の評価は、セラミックス材料の焼結体を用いて行われる。具体的には、JIS R 3257:1999(基板ガラス表面の濡れ性試験方法)を参考にして行われる。なお、セラミックス材料の水に対する接触角は、60°~110°である。
 本実施形態のセラミックス材料の形態は、粉末であってもよいし、前記粉末をスプレードライ等により造粒して得られる顆粒状であってもよい。
 また、セラミックス材料は、粉末状のセラミックス材料を圧縮成形してなる圧粉体の状態で使用されてもよい。
 また、セラミックス材料は、焼結体の状態で使用されてもよい。
 また、セラミックス材料は、物品の表面の少なくとも一部に付与される形で、使用されてもよい。セラミックス材料が付与される物品を構成する素材は、本発明の目的を損なわない限り、特に制限はなく、例えば、ガラス、セラミックス、熱可塑性樹脂、熱硬化性樹脂等の合成樹脂、ゴム(天然ゴム、合成ゴム)、本革(天然皮革)、合成皮革、金属又は合金からなる金属系材料、木材、紙、繊維、不織布、シリコン(シリコンウェハ等)、カーボン素材、鉱物、石膏等が挙げられる。
 また、セラミックス材料は、所定の基材中に分散される形で、使用されてもよい。セラミックス材料が分散される基材としては、本発明の目的を損なわない限り、特に制限はなく、例えば、ガラス、セラミックス、熱可塑性樹脂、熱硬化性樹脂等の合成樹脂、ゴム(天然ゴム、合成ゴム)、合成皮革、金属又は合金からなる金属系材料、紙、繊維、不織布、カーボン素材、鉱物、石膏等が挙げられる。
 以下、実施例に基づいて本発明を更に説明する。なお、本発明はこれらの実施例により何ら限定されるものではない。
〔実施例1〕
 ランタン化合物として、La(OH)を用意し、モリブデン化合物として、MoOを用意した。なお、MoOの純度は、99.5質量%であった。そして、ランタン化合物の原料粉末と、モリブデン化合物の原料粉末とを、モル比で1:2(La:Mo=1:2)となるようにそれぞれ秤量した。秤量後の各原料粉末を、所定量のエタノールと共に混合し、得られた湿式混合物を乾燥することで、混合粉末を得た(調製工程)。
 次いで、前記混合粉末を、大気雰囲気下で、600℃の温度条件で2時間焼成(仮焼成)することにより、ランタン化合物とモリブデン化合物との反応物からなる仮焼成粉末を得た。そして、得られた仮焼成粉末を造粒するために、以下に示される操作を行った。
 所定量のエタノールと共に樹脂ポット内に入れ、それらの混合物に対して、アルミナ玉石を利用した湿式混合粉砕(ボールミル)を30時間行うことにより、スラリーを得た(粉砕工程)。
 その後、得られたスラリーを、スプレードライ乾燥することで、実施例1の顆粒状のセラミックス材料を得た。
〔実施例2〕
 ランタン化合物の原料粉末とモリブデン化合物の原料粉末とをモル比で2:1(La:Mo=2:1)となるように秤量し混合したこと、及び焼成条件を、650℃で10時間に変更したこと以外は、実施例1と同様の方法で、実施例2の顆粒状のセラミックス材料を得た。
〔実施例3〕
 ランタン化合物の原料粉末とモリブデン化合物の原料粉末とをモル比で1:1(La:Mo=1:1)となるように秤量し混合したこと、及び焼成条件を、650℃で10時間に変更したこと以外は、実施例1と同様の方法で、実施例3の顆粒状のセラミックス材料を得た。
〔実施例4〕
 モリブデン化合物として、純度99.9質量%のMoOを使用し、かつアルミナ玉石を利用した湿式混合粉砕(ボールミル)を90時間行ったこと以外は、実施例1と同様の方法で、実施例4の顆粒状のセラミックス材料を得た。
〔XRFを用いたLa-Mo系複合酸化物の特定〕
 各実施例のセラミックス材料について、蛍光X線分光装置(XRF:X‐ray Fluorescence Spectrometry)を利用して、La-Mo系複合酸化物に含まれる元素を特定した。測定条件は、以下の通りである。
 <測定条件>
 測定装置:波長分散型蛍光X線分析装置(装置名「ZSX-PrimusII、リガク社製)
 対象元素:周期表のBからUまで
 測定範囲:ppmレベル~主成分
 励起源:特性X線(Rh)
 測定径:30mm
〔微量元素の検出1〕
 実施例4のセラミックス材料について、得られたXRFスペクトルに基づいて、ランタン、モリブデン以外の元素(微量元素)の定性分析及び半定量分析を実施した。結果は、表1に示した。
 なお、実施例1~実施例3のセラミックス材料については、XRFスペクトルにより、ランタン、モリブデン以外の元素(微量元素)を検出できなかった。そのため、実施例1~実施例3については、後述するICP発光分光分析法により、ランタン、モリブデン以外の元素(微量元素)の検出を行った。
〔微量元素の検出2〕
 実施例1~実施例3のセラミックス材料について、以下に示される条件の下、ICP発光分光分析法により、ランタン、モリブデン以外の元素(微量元素)を検出した。そして、含有量の多い主要な元素について、その含有率(ppm)を、酸化物換算で求めた。結果は、表1に示した。
 <測定条件>
 測定装置:ICP-AES(誘導結合プラズマ発光分光分析装置(型式「iCAP-6500」、サーモフィッシャーサイエンティフィック製)
 試料前処理:硝酸(塩酸添加)加熱分解処理
〔有害元素の検出〕
 実施例1~3のセラミックス材料について、上述したICP発光分光分析法の測定結果(ICPスペクトル)より、セラミックス中に、有害元素が含まれているか否かを確認した。結果は、表1に示した。
 実施例4のセラミックス材料について、上述したICP発光分光分析法により、実施例1等と同様、有害元素が含まれているか否かを確認した。なお、実施例4については、この測定結果に基づいて、微量元素(第二元素)の特定も行った。結果は、表1に示した。
〔抗菌性能評価〕
 各実施例のセラミックス材料について、JIS Z 2801:2012に準拠しつつ、抗菌性能評価試験を行った。具体的には、試験菌として、黄色ブドウ球菌(Staphylococcus aureus)を使用しつつ、6時間後の抗菌活性値Rを求めた。抗菌活性値Rは、作用時間(6時間後)について、R=Ut-Atより求めた。Utは、無加工試験品における作用時間t(6時間後)の生菌数の対数値(平均値)であり、Atは、加工試験品における作用時間t(6時間後)の生菌数の対数値(平均値)である。試験品のサンプル数は、3である。なお、試験品は、ガラス基板の表面(50mm×50mm)上に、1.8mgのセラミックス材料を、所定の分散液の状態で塗布して乾燥させたものからなる(試験品における単位面積当たりの粉体量は、0.0072mg/mm)。
 なお、接種菌液の濃度を2.6×10cfu/ml、接種菌液の接種量を1サンプル当たり0.1mlとしたときの生菌数(cfu/cm)をカウントした。抗菌活性値Rの結果は、表1に示した。
 また、抗菌性能評価における検出下限は、以下の通りに定義した。経過0時間の生菌数をNとし、経過t時間の生菌数をNとし、その生菌生存率N/Nの常用対数をlog(N/N)と表す。時間tは、作用時間である。抗菌活性値Rの値が2.0以上(つまり、R≧2.0)であるにもかかわらず、log(N/N)-log(Nt+1/N)≦0.5のとき、log(N/N)とlog(Nt+1/N)の何れか小さい方の値を検出下限とした。
〔抗ウイルス性能評価〕
 各実施例のセラミックス材料について、JIS R 1756:2020「可視光応答型光触媒、抗ウイルス、フィルム密着法」に準拠しつつ、抗ウイルス性能評価試験を行った。具体的には、試験ウイルスとして、バクテリオファージQβ(bacteriophage Qβ)を使用しつつ、6時間後の抗ウイルス活性値(暗所)VDを求めた。抗ウイルス活性値(暗所)VDは、作用時間(6時間後)について、VD=Log(UD)-Log(TD)より求めた。Log(UD)は、無加工試験品における作用時間(6時間後)のファージ数の対数値(平均値)であり、Log(TD)は、加工試験品における作用時間(6時間後)のファージ数の対数値(平均値)である。試験品のサンプル数は、3である。なお、試験品は、ガラス基板の表面(50mm×50mm)上に、1.8mgのセラミックス材料を、所定の分散液の状態で塗布して乾燥させたものからなる(試験品における単位面積当たりの粉体量は、0.0072mg/mm)。
 なお、接種ファージ液の濃度を2.5×10cfu/ml、接種ファージ液の接種量を1サンプル当たり0.1mlとしたときのファージ数(感染値)(cfu/cm)をカウントした。抗ウイルス性活性値VDの結果は、表1に示した。
 また、抗ウイルス性能評価における検出下限は、以下の通りに定義した。経過時間0時間のファージ数(感染値)をN’とし、経過t時間のファージ数(感染値)をN’とし、そのファージ生存率N’/N’の常用対数をlog(N’/N’)と表す。時間tは、作用時間である。抗ウイルス活性値VDの値が3.0以上(つまり、VD≧3.0)であるにもかかわらず、log(N’/N’)-log(N’t+1/N’)≦0.5のとき、log(N’/N’)とlog(N’t+1/N’)の何れか小さい方の値を検出下限とした。
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例3は、何れも、原材料として、実施例4よりも純度の低いモリブデン化合物(MoO)を使用して、セラミックス材料を作製した場合である。そのため、実施例1~実施例3のセラミックス材料中には、原材料に由来する微量元素として、何れも、Al、Si、Ca、Mg、Ni、Co、Na、S、Sr、Y、Zn及びBが含まれていた。このように、実施例1~実施例3のセラミックス材料中には、第一元素であるAl,Siが所定の割合で含まれている。また、実施例1~実施例3のセラミックス材料中では、第二元素(Ca、Mg、Ni、Co、Na、S、Sr、Y、Zn及びB)の含有率が、それぞれ、0.0015質量%(15ppm)、0.0007質量%(7ppm)及び0.0019質量%(19ppm)に抑えられている。このような実施例1~実施例3のセラミックス材料では、優れた抗菌性及び抗ウイルス性が得られると共に、抗菌性及び抗ウイルス性を発現する時間が早いことが確かめられた。
 また、実施例1~実施例3では、有害元素が検出されなかった。
 実施例4は、原材料として、実施例1~実施例3よりも純度の高いモリブデン化合物(MoO)を使用しつつ、ランタン化合物とモリブデン化合物との混合時にアルミナ玉石を使用した湿式混合粉砕(ボールミル)を、実施例1~実施例3よりも長時間(90時間)行うことで、セラミックス材料を作製した場合である。そのため、実施例4のセラミックス材料中には、第一元素であるAl,Siが主要な微量元素として、0.0403質量%(403ppm)の含有率で含まれている。それらの第一元素は、アルミナ玉石を用いて長時間粉砕を行った際に、アルミナ玉石から分離した物質に由来するものである。このような実施例4のセラミックス材料では、優れた抗菌性及び抗ウイルス性が得られると共に、抗菌性及び抗ウイルス性を発現する時間が早いことが確かめられた。
 また、実施例4のセラミックス材料中には、ICP発光分光分析の結果より、第二元素(Ca、Mg、Ni、Co、Na、S、Sr、Y、Zn及びB)が含まれていることが確かめられた。
 また、実施例4では、有害元素が検出されなかった。
 ここで、実施例3,4の抗菌性能評価試験及び抗ウイルス性能評価試験の各結果と、比較例1,2の抗菌性能評価試験及び抗ウイルス性能評価試験の各結果とを比較する。
 図1は、実施例3の抗菌性能評価試験の結果を示すグラフであり、図2は、実施例3の抗ウイルス性能評価試験の結果を示すグラフである。また、図3は、実施例4の抗菌性能評価試験の結果を示すグラフであり、図4は、実施例4の抗ウイルス性能評価試験の結果を示すグラフである。なお、図1~図4において、実線で示されるグラフが、実施例3又は実施例4の結果に対応し、破線で示されるグラフが、ブランクの結果に対応する。図1及び図3の縦軸は、経過時間0時間の生菌数をNとし、経過時間t(時間)の生菌数をNとした場合における生菌生存率N/Nの常用対数(Log(N/N))であり、横軸は、経過時間t(時間)である。なお、実施例4(図3)については、経過時間tは、2時間から開始した。また、図2及び図4の縦軸は、経過時間0時間のファージ数(感染値)をN’とし、経過時間t(時間)のファージ数(感染値)をN’とした場合におけるファージ生存率N’/N’の常用対数(Log(N’/N’))であり、横軸は、経過時間t(時間)である。実施例4(図4)については、経過時間tは、2時間から開始した。
 比較例1として、特許文献1に記載の錯体重合法で作製されたセラミックス材料(特許文献1の実施例1)、及び比較例2として、特許文献1に記載の固相法で作製されたセラミックス材料(特許文献1の実施例2)を提示する。
 比較例1(特許文献1の実施例1(錯体重合法))では、黄色ブドウ球菌及びバクテリオファージQβ(ノロウイルス代替)が検出下限に至るまで、4時間かかっている。また、比較例2(特許文献1の実施例2(固相法))では、黄色ブドウ球菌は6時間以内に検出下限に至らず、バクテリオファージQβ(ノロウイルス代替)は、6時間を要している。
 これに対して、実施例3の場合、図1及び図2に示されるように、黄色ブドウ球菌及びバクテリオファージQβ(ノロウイルス代替)が検出下限に1時間で至った。また、実施例4の場合、図3及び図4に示されるように、黄色ブドウ球菌及びバクテリオファージQβ(ノロウイルス代替)が検出下限に遅くとも2時間で至った。このように、実施例3,4は、比較例1,2よりも、抗菌性及び抗ウイルス性を発現する時間が更に早いことが確認された。

Claims (7)

  1.  La-Mo系複合酸化物と、Si及びAlからなる群より選ばれる少なくとも1種の第一元素とを含み、前記第一元素の含有量が0質量%を超え、かつ0.5質量%以下であるセラミックス材料。
  2.  Cd,Hg,Pb,Ra及びUからなる群の元素を含まない請求項1に記載のセラミックス材料。
  3.  前記La-Mo系複合酸化物は、LaMoを含む請求項1又は請求項2に記載のセラミックス材料。
  4.  請求項1から請求項3の何れか一項に記載のセラミックス材料が、粉末状であり、
     前記粉末状の前記セラミックス材料を圧縮成形してなる圧粉体。
  5.  請求項1から請求項3の何れか一項に記載のセラミックス材料が焼結されてなる焼結体。
  6.  表面の少なくとも一部に、請求項1から請求項3の何れか一項に記載のセラミックス材料を有する物品。
  7.  請求項1から請求項3の何れか一項に記載のセラミックス材料が、基材中に分散されてなる物品。
PCT/JP2022/017171 2021-04-08 2022-04-06 セラミックス材料、圧粉体、焼結体、及び物品 WO2022215707A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023513030A JPWO2022215707A1 (ja) 2021-04-08 2022-04-06
CN202280027100.6A CN117157264A (zh) 2021-04-08 2022-04-06 陶瓷材料、压粉体、烧结体和物品
EP22784689.6A EP4321494A1 (en) 2021-04-08 2022-04-06 Ceramic material, green compact, sintered compact, and article
KR1020237030981A KR20230144614A (ko) 2021-04-08 2022-04-06 세라믹스 재료, 압분체, 소결체, 및 물품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-065750 2021-04-08
JP2021065750 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022215707A1 true WO2022215707A1 (ja) 2022-10-13

Family

ID=83546214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017171 WO2022215707A1 (ja) 2021-04-08 2022-04-06 セラミックス材料、圧粉体、焼結体、及び物品

Country Status (5)

Country Link
EP (1) EP4321494A1 (ja)
JP (1) JPWO2022215707A1 (ja)
KR (1) KR20230144614A (ja)
CN (1) CN117157264A (ja)
WO (1) WO2022215707A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095561A (ja) * 1998-07-24 2000-04-04 Kyocera Corp 誘電体磁器組成物及びこれを用いた誘電体共振器
WO2020017493A1 (ja) 2018-07-18 2020-01-23 国立大学法人東京工業大学 複合酸化物セラミックス及びその製造方法、並びに物品
WO2021261475A1 (ja) * 2020-06-22 2021-12-30 国立大学法人東京工業大学 ランタン・モリブデン複合酸化物、抗菌性焼結体及び抗ウイルス性焼結体
JP2022001543A (ja) * 2020-06-22 2022-01-06 日本特殊陶業株式会社 ランタン・モリブデン複合酸化物粉末の製造方法及び焼結体の製造方法
JP2022043763A (ja) * 2020-09-04 2022-03-16 日本特殊陶業株式会社 スプレー用組成物、及びスプレー製品
JP2022043764A (ja) * 2020-09-04 2022-03-16 日本特殊陶業株式会社 抗菌・抗ウイルス性膜、抗菌・抗ウイルス性膜の製造方法、及び膜付き製品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095561A (ja) * 1998-07-24 2000-04-04 Kyocera Corp 誘電体磁器組成物及びこれを用いた誘電体共振器
WO2020017493A1 (ja) 2018-07-18 2020-01-23 国立大学法人東京工業大学 複合酸化物セラミックス及びその製造方法、並びに物品
WO2021261475A1 (ja) * 2020-06-22 2021-12-30 国立大学法人東京工業大学 ランタン・モリブデン複合酸化物、抗菌性焼結体及び抗ウイルス性焼結体
JP2022001543A (ja) * 2020-06-22 2022-01-06 日本特殊陶業株式会社 ランタン・モリブデン複合酸化物粉末の製造方法及び焼結体の製造方法
JP2022001542A (ja) * 2020-06-22 2022-01-06 国立大学法人東京工業大学 ランタン・モリブデン複合酸化物、抗菌性焼結体及び抗ウイルス性焼結体
JP2022043763A (ja) * 2020-09-04 2022-03-16 日本特殊陶業株式会社 スプレー用組成物、及びスプレー製品
JP2022043764A (ja) * 2020-09-04 2022-03-16 日本特殊陶業株式会社 抗菌・抗ウイルス性膜、抗菌・抗ウイルス性膜の製造方法、及び膜付き製品

Also Published As

Publication number Publication date
EP4321494A1 (en) 2024-02-14
CN117157264A (zh) 2023-12-01
JPWO2022215707A1 (ja) 2022-10-13
KR20230144614A (ko) 2023-10-16

Similar Documents

Publication Publication Date Title
WO2021261475A1 (ja) ランタン・モリブデン複合酸化物、抗菌性焼結体及び抗ウイルス性焼結体
US7122129B2 (en) Fluorescent substance and fluorescent composition containing the same
JP7469153B2 (ja) ランタン・モリブデン複合酸化物粉末の製造方法及び焼結体の製造方法
US6479420B2 (en) Ceramics and their power for scintillators, and method for producing same
WO2006101095A1 (ja) 蛍光体とその製造方法
WO2014050900A1 (ja) 高電子密度の導電性マイエナイト化合物の製造方法
CN112533885A (zh) 复合氧化物陶瓷及其制造方法、以及物品
WO2022215707A1 (ja) セラミックス材料、圧粉体、焼結体、及び物品
US11746054B2 (en) Zirconia sintered body and method for manufacturing the same
KR20220087425A (ko) 산화물 스퍼터링 타깃
US11827569B2 (en) Yttrium aluminum garnet powder and processes for synthesizing same
US20240182322A1 (en) Ceramic material, green compact, sintered compact, and article
CN114008000A (zh) 氧化物烧结体
WO2020195721A1 (ja) スピネル粉末
CN110550945B (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
JPH07201528A (ja) サーミスタ用磁器組成物及びその製造方法
WO2024004762A1 (ja) Ce-Mo系複合酸化物セラミックス、圧粉体、焼結体、及び物品
Płońska et al. The influence of fabrication conditions on the physical properties of PLZT: Nd 3+ ceramics
Nakayama et al. Blue afterglow emission of glass-ceramics synthesized by melting mixture of ZrO2: Ti, K2CO3, and H3BO3
WO2023189535A1 (ja) 酸化物焼結体
US20240158255A1 (en) Ceramic sintered body, infrared stealth material, and method for manufacturing ceramic sintered body
Shiomi Blue afterglow emission of glass-ceramics synthesized by melting mixture of ZrO2: Ti, K2CO3, and H3BO3
DE112021003768T5 (de) Leuchtstoffpulver und lichtemittierende Vorrichtung
CN108774517A (zh) 一种氧化铝-氧化镁复合材料及制备方法
Erkalfa et al. The effect of B~ 2O~ 3 and TiCl~ 3 addition on the twin formation in Sb~ 2O~ 3 doped Ti-excess BaTiO~ 3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237030981

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030981

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023513030

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18554308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022784689

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784689

Country of ref document: EP

Effective date: 20231108