WO2022215633A1 - Electrostatic chuck and substrate processing device - Google Patents

Electrostatic chuck and substrate processing device Download PDF

Info

Publication number
WO2022215633A1
WO2022215633A1 PCT/JP2022/016272 JP2022016272W WO2022215633A1 WO 2022215633 A1 WO2022215633 A1 WO 2022215633A1 JP 2022016272 W JP2022016272 W JP 2022016272W WO 2022215633 A1 WO2022215633 A1 WO 2022215633A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ridge
electrostatic chuck
substrate
electrostatic
Prior art date
Application number
PCT/JP2022/016272
Other languages
French (fr)
Japanese (ja)
Inventor
地塩 輿水
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2023512988A priority Critical patent/JP7378668B2/en
Priority to KR1020237027246A priority patent/KR20230169071A/en
Publication of WO2022215633A1 publication Critical patent/WO2022215633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • Various aspects and embodiments of the present disclosure relate to electrostatic chucks and substrate processing apparatuses.
  • Patent Document 1 a space between a substrate and an electrostatic chuck, to which a heat transfer gas such as helium gas is supplied, is divided into the vicinity of the center of the substrate and the vicinity of the edge of the substrate.
  • Techniques for supplying a heat transfer gas at pressure are disclosed. Thereby, the temperature near the center of the substrate and the temperature near the edge of the substrate can be adjusted separately.
  • the present disclosure provides an electrostatic chuck and a substrate processing apparatus that can improve the temperature uniformity of the substrate.
  • an electrostatic chuck comprising a main body, a first ridge, a second ridge, an outer electrode, a first pipe, and a second pipe.
  • the first ridge is annularly provided on the upper surface of the main body.
  • the second protrusion is annularly provided on the upper surface of the main body so as to surround the first protrusion.
  • the outer electrode is provided outside from the inner peripheral surface of the first protrusion when viewed from the upper surface side of the main body, and has an electrostatic force for attracting the substrate to the first protrusion and the second protrusion. generate
  • the first pipe supplies gas to a first area surrounded by the first ridges in the upper surface of the main body.
  • the second pipe supplies gas to a second area surrounded by the first and second protrusions in the upper surface of the main body.
  • substrate temperature uniformity can be improved.
  • FIG. 1 is a system configuration diagram showing an example of a plasma processing system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an example of a plasma processing apparatus.
  • FIG. 3 is an enlarged cross-sectional view showing an example of the structure of the substrate supporting portion.
  • FIG. 4 is a plan view showing an example of the structure of the substrate supporting portion.
  • FIG. 5 is a diagram showing an example of the arrangement of electrodes in the electrostatic chuck.
  • FIG. 6 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 7 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck near the ring assembly in the comparative example.
  • FIG. 1 is a system configuration diagram showing an example of a plasma processing system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an example of a plasma processing apparatus.
  • FIG. 3 is an
  • FIG. 8 is a diagram showing an example of temperature distribution of a substrate in a comparative example.
  • FIG. 9 is a diagram showing an example of the temperature distribution of the substrate in this embodiment.
  • FIG. 10 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 11 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 12 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 13 is an enlarged cross-sectional view showing another example of the first ridge.
  • FIG. 14 is an enlarged cross-sectional view showing another example of the first ridge.
  • FIG. 10 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 11 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 15 is an enlarged cross-sectional view showing another example of the first ridge.
  • FIG. 16 is a plan view showing another example of the first ridge.
  • FIG. 17 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 18 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 19 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 20 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 21 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 22 is an enlarged sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 23 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 24 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 25 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 26 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 27 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 28 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck.
  • FIG. 29 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly.
  • FIG. 30 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck near the ring assembly.
  • the space between the substrate and the electrostatic chuck, to which the heat transfer gas such as helium gas is supplied is divided into the vicinity of the center of the substrate and the vicinity of the edge of the substrate, these two spaces are required on the electrostatic chuck.
  • a partition is provided to airtightly partition the two spaces. Since the partition contacts both the substrate and the electrostatic chuck, heat is transferred between the substrate and the electrostatic chuck via the partition. In areas other than the area of the electrostatic chuck where the partition is provided, heat is transferred between the substrate and the electrostatic chuck via a heat transfer gas supplied between the substrate and the electrostatic chuck. Therefore, in the area of the electrostatic chuck provided with the partition wall, heat may be excessively transferred compared to other areas of the electrostatic chuck.
  • a large temperature difference may occur between the portion of the substrate corresponding to the electrostatic chuck area provided with the partition and the portion of the substrate corresponding to the other electrostatic chuck area. If the temperature distribution of the substrate varies greatly, the characteristics of the semiconductor device formed on the substrate may differ depending on the location of the substrate, making it difficult to maintain the quality of the semiconductor device formed on the substrate constant.
  • the present disclosure provides a technology capable of improving the temperature uniformity of the substrate.
  • FIG. 1 is a system configuration diagram showing an example configuration of a plasma processing system 100 according to an embodiment of the present disclosure.
  • plasma processing system 100 includes plasma processing apparatus 1 and controller 2 .
  • the plasma processing apparatus 1 includes a plasma processing chamber 10 , a substrate support section 11 and a plasma generation section 12 .
  • Plasma processing chamber 10 has a plasma processing space.
  • the plasma processing chamber 10 also has at least one gas inlet for supplying at least one process gas to the plasma processing space and at least one gas outlet for exhausting gas from the plasma processing space.
  • the gas supply port is connected to a gas supply section 20, which will be described later, and the gas discharge port is connected to an exhaust system 40, which will be described later.
  • the substrate support 11 is arranged in the plasma processing space and has a substrate support surface for supporting the substrate.
  • the plasma generation unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space.
  • Plasma formed in the plasma processing space includes capacitively coupled plasma (CCP), inductively coupled plasma (ICP), electron-cyclotron-resonance plasma (ECR plasma), helicon wave excited plasma (HWP: Helicon Wave Plasma), surface wave plasma (SWP: Surface Wave Plasma), or the like.
  • various types of plasma generators including, for example, an AC (Alternating Current) plasma generator and a DC (Direct Current) plasma generator may be used.
  • the AC signal (AC power) used in the AC plasma generator has a frequency within the range of 100 kHz to 10 GHz.
  • AC signals include RF signals and microwave signals.
  • the RF signal has a frequency within the range of 200 kHz-150 MHz.
  • the controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 .
  • the control unit 2 may include, for example, a computer 2a.
  • the computer 2a may include, for example, a processing unit (CPU; Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. Processing unit 2a1 can be configured to perform various control operations based on programs stored in storage unit 2a2.
  • the storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is a schematic cross-sectional view showing an example of the plasma processing apparatus 1 according to one embodiment of the present disclosure.
  • a capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 . Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas introduction is configured to introduce at least one process gas into plasma processing chamber 10 .
  • the gas introduction section includes a showerhead 13 .
  • a substrate support 11 is positioned within the plasma processing chamber 10 .
  • the showerhead 13 is arranged above the substrate support 11 .
  • showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead 13 , side walls 10 a of the plasma processing chamber 10 and a substrate support 11 . Side wall 10a is grounded.
  • the showerhead 13 and substrate support 11 are electrically insulated from the housing of the plasma processing chamber 10 .
  • the substrate support section 11 includes a body section 111 and a ring assembly 112 .
  • the main body portion 111 has a substrate supporting surface 111 a for supporting the substrate W, which is the central region of the main body portion 111 , and a ring supporting surface 111 b for supporting the ring assembly 112, which is the annular region of the main body portion 111 .
  • Substrate W is sometimes referred to as a wafer.
  • the ring support surface 111b of the body portion 111 surrounds the substrate support surface 111a of the body portion 111 in plan view.
  • the substrate W is placed on the substrate support surface 111a of the body portion 111, and the ring assembly 112 is placed on the ring support surface 111b of the body portion 111 so as to surround the substrate W on the substrate support surface 111a of the body portion 111.
  • the substrate support portion 11 is supported by a cylindrical support portion 17 made of an insulating material such as quartz. Support 17 extends upward from the bottom of plasma processing chamber 10 . Cylindrical cover members 15 and 16 are provided on the outer peripheries of the substrate support portion 11 and the support portion 17 .
  • the body portion 111 includes a base 1111 and an electrostatic chuck 1110 .
  • Base 1111 includes a conductive member.
  • the conductive member of base 1111 functions as a lower electrode.
  • Electrostatic chuck 1110 is arranged on base 1111 .
  • the upper surface of the electrostatic chuck 1110 has a substrate support surface 111a.
  • Ring assembly 112 includes one or more annular members. At least one of the one or more annular members is an edge ring.
  • the substrate supporter 11 includes a temperature control module configured to control at least one of the electrostatic chuck 1110, the ring assembly 112, and the substrate W to a target temperature.
  • the temperature control module includes a channel 1112 formed in a base 1111 .
  • a heat transfer medium such as brine or gas whose temperature is controlled is supplied to the flow path 1112 from a chiller unit (not shown) through the pipe 18a.
  • the heat transfer medium supplied to the flow path 1112 flows through the flow path 1112 and is returned to the chiller unit via the pipe 18b.
  • the temperature control module also includes a heater 36, which will be described later.
  • the substrate support section 11 includes a heat transfer gas supply section configured to supply a heat transfer gas such as helium gas between the back surface of the substrate W and the substrate support surface 111a.
  • the showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c.
  • showerhead 13 also includes a conductive member.
  • a conductive member of the showerhead 13 functions as an upper electrode.
  • the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
  • SGI Side Gas Injector
  • the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 .
  • gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller.
  • gas supply 20 may include at least one flow modulation device for modulating or pulsing the flow rate of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power supply 31 is adapted to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to conductive members of substrate support 11, conductive members of showerhead 13, or both. is configured to Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Therefore, the RF power supply 31 can function as at least part of the plasma generator 12 . Further, by supplying the bias RF signal to the conductive member of the substrate supporting portion 11, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b.
  • the second RF generator 31b is an example of a bias power supply.
  • the first RF generator 31a is coupled via at least one impedance matching circuit to the conductive member of the substrate support 11, the conductive member of the showerhead 13, or both to provide a source RF signal for plasma generation ( source RF power).
  • the source RF signal has a frequency within the range of 13 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to conductive members of the substrate support 11, conductive members of the showerhead 13, or both.
  • the second RF generator 31b is coupled to the conductive member of the substrate support 11 via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power).
  • the bias RF signal has a lower frequency than the source RF signal.
  • the bias RF signal has a frequency within the range of 400 kHz to 13.56 MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • One or more bias RF signals generated are provided to the conductive members of the substrate support 11 .
  • at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
  • the first DC generator 32a is connected to a conductive member of the substrate support 11 and configured to generate the first DC signal.
  • the generated first DC signal is applied to the conductive member of substrate support 11 .
  • the first DC signal may be applied to other electrodes, such as electrodes in an electrostatic chuck.
  • the second DC generator 32b is connected to the conductive member of the showerhead 13 and configured to generate the second DC signal.
  • the generated second DC signal is applied to the conductive members of showerhead 13 .
  • the first and second DC signals may be pulsed. Note that the first DC generation unit 32a and the second DC generation unit 32b may be provided in addition to the RF power supply 31, and the first DC generation unit 32a is provided instead of the second RF generation unit 31b. may be
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Exhaust system 40 includes a vacuum pump.
  • the pressure regulating valve regulates the pressure in the plasma processing space 10s.
  • Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
  • FIG. 3 is an enlarged cross-sectional view showing an example of the structure of the substrate supporting portion 11.
  • FIG. 4 is a plan view showing an example of the structure of the substrate supporting portion 11.
  • FIG. 5 is a diagram showing an example of the arrangement of electrodes in the electrostatic chuck 1110.
  • FIG. 3 shows the substrate supporting portion 11 on which the substrate W is placed.
  • the AA section of FIG. 4 corresponds to FIG.
  • the electrostatic chuck 1110 has a body portion 50 .
  • a first ridge 50 a and a second ridge 50 b are provided on the upper surface of the body portion 50 .
  • the first ridge 50a is an example of an inner annular ridge
  • the second ridge 50b is an example of an outer annular ridge.
  • the area surrounded by the first ridges 50a is the central surface area 510
  • the area between the first ridges 50a and the second ridges 50b is the edge surface area 511.
  • the first ridge 50a is provided in an annular shape, for example, as shown in FIG.
  • the second ridge 50b is provided in an annular shape so as to surround the first ridge 50a.
  • the substrate W when the substrate W is placed on the electrostatic chuck 1110, the substrate W, the body portion 50, and the first ridges 50a are placed between the substrate W and the electrostatic chuck 1110.
  • a tubular first space 51a is formed to be surrounded.
  • the first space 51a is an example of a first recess.
  • the substrate W, the body portion 50, and the first ridges 50a are placed between the substrate W and the electrostatic chuck 1110.
  • a second annular space 51b surrounded by the second ridge 50b.
  • the second space 51b is an example of a second recess.
  • a plurality of protrusions 52 having the same height as the first protrusions 50a and the second protrusions 50b are provided in the area surrounded by the first protrusions 50a.
  • the substrate W is supported by the first ridge 50a, the second ridge 50b, and the plurality of protrusions 52.
  • the surfaces of the tops of the first protrusions 50a, the second protrusions 50b, and the plurality of protrusions 52 are substrate support surfaces 111a.
  • the first ridge 50a, the second ridge 50b, and the plurality of protrusions 52 are made of, for example, ceramics such as alumina ( Al2O3 ) , SiC, and AlN; polymers such as polyimide; .
  • a heat transfer gas such as helium gas is supplied to the first space 51a through a pipe 53a and an opening 54a.
  • a heat transfer gas is an example of a heat transfer medium.
  • a liquid or a solid may be used in addition to the heat transfer gas.
  • As the liquid or solid (heat transfer layer) for example, before or after mounting the substrate W, at least one of a liquid layer and a deformable solid layer is formed on the upper surface of the substrate supporting portion 11. It is conceivable to form a deformable heat transfer layer.
  • the technical content of Japanese Patent Application Nos. 2021-127619 and 2021-127644 is incorporated by reference to the extent not inconsistent with the content disclosed in the present application.
  • a heat transfer gas such as helium gas is supplied to the second space 51b via a pipe 53b and an opening 54b.
  • the pipe 53a is an example of a first heat medium flow path
  • the pipe 53b is an example of a second heat medium flow path.
  • the pipe 53a is provided with a first control valve 530a
  • the pipe 53b is provided with a second control valve
  • the pipe 53c is provided with a third control valve.
  • the pipe 53a supplies the heat transfer gas to the region of the upper surface of the main body 50 surrounded by the first ridges 50a.
  • the first control valve 530a controls the flow rate or pressure of the first heat medium supplied to the first space 51a through the pipe 53a.
  • the pipe 53b supplies the heat transfer gas to the region of the upper surface of the main body 50 surrounded by the first ridge 50a and the second ridge 50b.
  • the second control valve 530b controls the flow rate or pressure of the second heat medium supplied to the second space 51b through the pipe 53b.
  • the pipe 53a is an example of a first pipe
  • the pipe 53b is an example of a second pipe.
  • the area of the upper surface of the main body 50 surrounded by the first ridges 50a is an example of the first area
  • the upper surface of the main body 50 surrounded by the first ridges 50a and the second ridges 50b. is an example of the second area.
  • the heat transfer rate between the electrostatic chuck 1110 and the substrate W may be further controlled by controlling the voltage of .
  • the second electrode 55b (inner electrostatic electrode) and the third The heat transfer rate between the electrostatic chuck 1110 and the substrate W may be controlled by voltage control of the electrode 55c (outer electrostatic electrode).
  • the pressure of the heat transfer gas supplied to the first space 51a and the pressure of the heat transfer gas supplied to the second space 51b are independently controlled.
  • the pressure of the heat transfer gas supplied to the second space 51b is higher than the pressure of the heat transfer gas supplied to the first space 51a.
  • the type of heat transfer gas supplied to the first space 51a and the type of heat transfer gas supplied to the second space 51b may be different.
  • the heat transfer gas supplied to the second space 51b may be a gas having a higher thermal conductivity than the heat transfer gas supplied to the first space 51a. Thereby, the controllability of the temperature near the edge of the substrate W can be improved.
  • the ring support surface 111b of the electrostatic chuck 1110 is provided with a recess 51c.
  • a heat transfer gas such as helium gas is supplied to the concave portion 51c through a pipe 53c and an opening 54c.
  • the third control valve 530c controls the flow rate or pressure of the third heat medium (heat transfer gas) supplied to the recess 51c through the pipe 53c.
  • the pressure of the heat transfer gas supplied to the recess 51c and the pressure of the heat transfer gas supplied to the first space 51a and the second space 51b are controlled by the first control valve 530a, the second control valve 530b, and third control valve 530c, respectively.
  • a first electrode 55a, a second electrode 55b, a third electrode 55c, a fourth electrode 55d, and a fifth electrode 55e are provided in the body portion 50.
  • the second electrode 55b is an example of an inner electrostatic electrode
  • the third electrode 55c is an example of an outer electrostatic electrode.
  • the first electrode 55a and the second electrode 55b are examples of inner electrodes
  • the third electrode 55c is an example of an outer electrode.
  • the first electrode 55a and the second electrode 55b are arranged in a region corresponding to the first space 51a when viewed from the upper surface side of the main body 50, as shown in FIG. 5, for example.
  • the second electrode 55b is formed in an annular shape and arranged around the first electrode 55a.
  • the third electrode 55c is arranged in a region corresponding to the second space 51b when viewed from the upper surface side of the body portion 50 .
  • the third electrode 55c is provided outside (on the side of the second ridge 50b) from the inner peripheral surface of the first ridge 50a when viewed from the upper surface side of the main body 50.
  • the fourth electrode 55d and the fifth electrode 55e are formed in an annular shape and are arranged within the ring support surface 111b when viewed from the upper surface side of the main body portion 50 .
  • the second electrode 55b, the third electrode 55c, the fourth electrode 55d, and the fifth electrode 55e may be divided into two or more in the circumferential direction.
  • a power supply 57a is connected to the first electrode 55a, a power supply 57b is connected to the second electrode 55b, a power supply 57c is connected to the third electrode 55c, and a fourth electrode 55d is connected. is connected to a power source 57d, and the fifth electrode 55e is connected to a power source 57d.
  • Power supply 57 a includes filter 570 , switch 571 and variable DC power supply 572 .
  • Power supply 57b, power supply 57c, power supply 57d, and power supply 57e are of similar construction to power supply 57a.
  • the first electrode 55a generates electrostatic force according to the voltage applied from the power source 57a.
  • the second electrode 55b generates electrostatic force according to the voltage applied from the power source 57b.
  • the third electrode 55c generates electrostatic force according to the voltage applied from the power supply 57c. Electrostatic force generated by the first electrode 55a, the second electrode 55b, and the third electrode 55c causes the substrate W to move the first ridge 50a, the second ridge 50b, and the plurality of protrusions 52. is held by adsorption.
  • the voltage applied to the second electrode 55b (inner electrostatic electrode) is an example of a first voltage
  • the voltage applied to the third electrode 55c is an example of a second voltage. be.
  • the first voltage applied to the second electrode 55b (inner electrostatic electrode) and the second voltage applied to the third electrode 55c (outer electrostatic electrode) are DC voltages.
  • the disclosed technique is not limited to this.
  • the first voltage and the second voltage may be alternating current (AC) voltages.
  • the first voltage and the second voltage are AC voltages, for example, the second electrode 55b and the third electrode 55c are divided into n pieces (n ⁇ 2) in the circumferential direction, and two or more of which phases are different from each other.
  • n-phase AC voltage may be applied.
  • the n-phase AC voltage may be applied based on the self-bias voltage.
  • the technical content of Japanese Patent Application Laid-Open No. 2021-068880 is incorporated by reference to the extent that it does not contradict the content disclosed in the present application.
  • the voltage applied to the third electrode 55c is greater than the voltage applied to the first electrode 55a and the second electrode 55b.
  • the adsorption force between the portion of the substrate W corresponding to the first electrode 55a and the second electrode 55b and the first ridge 50a and the plurality of protrusions 52 corresponds to the third electrode 55c.
  • the attraction force between the portion of the substrate W that is to be held and the second ridge 50b is increased. Thereby, the controllability of the temperature near the edge of the substrate W can be improved.
  • the power supply 57d and the power supply 57e apply DC voltages to the fourth electrode 55d and the fifth electrode 55e, respectively, so that a predetermined potential difference is generated between the fourth electrode 55d and the fifth electrode 55e. do.
  • the set potential of each of the fourth electrode 55d and the fifth electrode 55e may be any of positive potential, negative potential, and 0V.
  • the potential of the fourth electrode 55d may be set to a positive potential
  • the potential of the fifth electrode 55e may be set to a negative potential.
  • the potential difference between the fourth electrode 55d and the fifth electrode 55e may be created using a single DC power supply instead of two DC power supplies.
  • a heater 56 a and a heater 56 b are provided in the electrostatic chuck 1110 .
  • a heater power source 58a is connected to the heater 56a.
  • a heater power supply 58b is connected to the heater 56b.
  • the heater 56a heats the substrate W placed on the substrate support surface 111a by generating heat according to the power supplied from the heater power source 58a.
  • the heater 56b heats the ring assembly 112 placed on the ring support surface 111b by generating heat according to the power supplied from the heater power source 58b.
  • the heater 56 a and the heater 56 b may be provided between the electrostatic chuck 1110 and the base 1111 . Also, each of the heater 56a and the heater 56b may be divided into two or more.
  • FIG. 6 is an enlarged cross-sectional view showing an example of the structure of electrostatic chuck 1110 near ring assembly 112 .
  • the substrate W is placed on the electrostatic chuck 1110 such that the edge of the substrate W is positioned apart from the outermost periphery of the upper surface of the main body 50 by ⁇ L0.
  • ⁇ L0 is, for example, 1 to 2 mm.
  • the first protrusion 50a is formed on the upper surface of the body portion 50 so that the outermost periphery of the first protrusion 50a is located at a distance of ⁇ L1 from the outermost periphery of the upper surface of the body portion 50 toward the center of the upper surface of the body portion 50.
  • ⁇ L1 is, for example, within 5 mm.
  • ⁇ L1 is preferably within 4 mm.
  • ⁇ L1 is more preferably within 3 mm.
  • the third electrode 55c is arranged in the electrostatic chuck 1110 so that the innermost circumference of the third electrode 55c is positioned apart from the innermost circumference of the first ridge 50a toward the ring assembly 112 by ⁇ L2. ing. That is, when the width of the first protrusion 50a is ⁇ W, the third electrode 55c is arranged such that the innermost circumference of the third electrode 55c is located at a position less than ( ⁇ L1+ ⁇ W) from the outermost circumference of the electrostatic chuck 1110. are placed in the electrostatic chuck 1110 at .
  • the third electrode 55c is positioned such that the innermost circumference of the third electrode 55c is less than 5.5 mm from the outermost circumference of the electrostatic chuck 1110.
  • ⁇ L2 is, for example, 0.1 mm.
  • ⁇ L2 may be shorter than 0.1 mm or 0 mm.
  • the third electrode 55c is electrostatically arranged so that the outermost circumference of the third electrode 55c is positioned ⁇ L4 away from the innermost circumference of the second ridge 50b to the ring assembly 112 side. Located within chuck 1110 . That is, when viewed from the upper surface side of the body portion 50, part of the third electrode 55c is arranged in the area of the second ridge 50b.
  • the second electrode 55b is arranged in the electrostatic chuck 1110 such that the outermost circumference of the second electrode 55b is located at a position away from the innermost circumference of the first ridge 50a toward the center of the upper surface of the main body 50 by ⁇ L3.
  • ⁇ L3 is, for example, 0.1 mm.
  • ⁇ L3 may be shorter than 0.1 mm or 0 mm.
  • FIG. 7 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck 1110' near the ring assembly 112 in the comparative example.
  • the outermost circumference of the first protrusion 50a' is positioned at a distance ⁇ L1' longer than ⁇ L1 from the outermost circumference of the upper surface of the main body portion 50 toward the center of the upper surface of the main body portion 50. It is formed on the upper surface of the main body part 50 so as to be.
  • .DELTA.L1' is 14 mm, for example.
  • the second electrode 55b' is arranged below the first space 51a', the first ridge 50a', and the second space 51b'.
  • the temperature distribution of the substrate W becomes, for example, as shown in FIG.
  • FIG. 8 is a diagram showing an example of the temperature distribution of the substrate W in the comparative example.
  • the temperature distribution of the substrate W in the radial direction of the substrate W is indicated by the relative temperature with the temperature at the center of the substrate W as the reference.
  • the substrate W when the substrate W is attracted to the electrostatic chuck 1110 by the electrostatic force generated by the second electrode 55b', the substrate W strongly contacts the first ridge 50a'.
  • the amount of heat transfer between the substrate W and the electrostatic chuck 1110 in the portion that is in strong contact with the first ridge 50a′ is the same as the amount of heat transfer between the substrate W and the electrostatic chuck 1110 in the portion that is not in contact with the first ridge 50a′. greater than the amount of heat transferred to and from 1110.
  • the temperature of the heater 56 and the temperature of the base 1111 are adjusted according to the temperature of the portion of the substrate W that is not in contact with the first ridge 50a', the temperature of the substrate W that is in contact with the first ridge 50a' is reduced.
  • the temperature of the substrate W at the portion may deviate greatly.
  • the influence of heat from the outside such as plasma is greater than the heat from the heater 56a and the base 1111.
  • the temperature of the substrate W near the edge may be higher than the temperature of the substrate W near the center, as shown in FIG. 8, for example.
  • the outermost circumference of the first protrusion 50a' extends from the outermost circumference of the upper surface of the main body 50 toward the center of the upper surface of the main body 50, as shown in FIG.
  • the temperature variation ⁇ T1 of the substrate W is large near the edge.
  • the temperature of the substrate W is lowest at a position 15 mm from the edge of the substrate W (that is, a position 135 mm from the center of the substrate W), which is the position where the first protrusion 50a′ is provided. , and the temperature of the substrate W is maximum at the edge of the substrate W.
  • the temperature distribution of the substrate W in this embodiment is, for example, as shown in FIG.
  • FIG. 9 is a diagram showing an example of the temperature distribution of the substrate W in this embodiment.
  • the temperature distribution of the substrate W in the radial direction of the substrate W is indicated by the relative temperature with the temperature at the center of the substrate W as the reference.
  • the third electrode 55c is arranged outside the innermost circumference of the first ridge 50a, and the second electrode 55b is arranged inside the innermost circumference of the first ridge 50a. placed.
  • the attraction force between the substrate W and the first ridges 50a can be kept low, and heat is transferred between the substrate W and the electrostatic chuck 1110 at the portion in contact with the first ridges 50a. You can reduce the amount. As a result, the temperature deviation of the substrate W at the portion in contact with the first ridge 50a can be reduced.
  • the outermost periphery of the first protrusion 50a is positioned at a distance ⁇ L1 toward the center of the substrate supporting surface 111a from the outermost periphery of the substrate supporting surface 111a. It is formed on the substrate supporting surface 111a.
  • ⁇ L1 is, for example, 3 mm or less.
  • the temperature of the substrate W at the portion in contact with the first ridge 50a can be controlled to be lower than the temperature of the substrate W at the portion not in contact with the first ridge 50a. Referring to FIG.
  • the temperature of the substrate W is minimized at a position 4 mm from the edge of the substrate W (that is, a position 146 mm from the center of the substrate W), which is the position where the first ridge 50a is provided. , and the temperature of the substrate W is maximum at the edge of the substrate W.
  • ⁇ T2 which is smaller than ⁇ T1. Therefore, in the electrostatic chuck 1110 of this embodiment, the temperature uniformity of the substrate W can be improved.
  • the outermost circumference of the third electrode 55c is arranged closer to the ring assembly 112 than the innermost circumference of the second ridge 50b.
  • the magnitude of the voltage applied to the third electrode 55c is greater than the magnitude of the voltage applied to the first electrode 55a and the second electrode 55b.
  • the pressure of the heat transfer gas supplied to the first space 51a is set higher than the pressure of the heat transfer gas supplied to the second space 51b.
  • the electrostatic chuck 1110 of the present embodiment can improve the controllability of the temperature near the edge of the substrate W, and improve the uniformity of the temperature of the substrate W.
  • the temperature near the edge of the substrate W can be controlled by using a gas having a higher thermal conductivity than the heat transfer gas supplied to the first space 51a as the heat transfer gas supplied to the second space 51b. It is possible to further improve the performance.
  • the electrostatic chuck 1110 in this embodiment includes the main body 50, the first ridges 50a, the second ridges 50b, the third electrode 55c, the pipes 53a, and the pipes 53b.
  • the first ridge 50 a is annularly provided on the upper surface of the body portion 50 .
  • the second ridge 50b is annularly provided on the upper surface of the body portion 50 so as to surround the first ridge 50a.
  • the third electrode 55c is provided outside from the inner peripheral surface of the first protrusion 50a when viewed from the upper surface side of the main body 50, and the substrate is provided on the first protrusion 50a and the second protrusion 50b. An electrostatic force is generated to attract W.
  • the pipe 53a supplies the heat transfer gas to a first area of the upper surface of the main body 50 surrounded by the first ridges 50a.
  • the pipe 53b supplies the heat transfer gas to a second area of the upper surface of the main body 50 surrounded by the first ridge 50a and the second ridge 50b. Thereby, the uniformity of the temperature of the substrate W can be improved.
  • a part of the third electrode 55c when viewed from the upper surface side of the main body portion 50, a part of the third electrode 55c is the It may overlap with at least one of them.
  • the electrostatic chuck 1110 in the above-described embodiment includes a first electrode 55a and a second electrode 55b provided inside the body portion 50 surrounded by the first ridges 50a.
  • the voltage applied to the third electrode 55c is greater than the voltage applied to the first electrode 55a and the second electrode 55b.
  • the pressure of the heat transfer gas supplied to the second area is higher than the pressure of the heat transfer gas supplied to the first area. Therefore, the uniformity of the temperature of the substrate W can be further improved.
  • the heat transfer gas supplied to the second area and the heat transfer gas supplied to the first area may be different types of gases.
  • the heat transfer gas supplied to the second region may be a gas having a higher thermal conductivity than the heat transfer gas supplied to the first region.
  • part of the third electrode 55c when viewed from the upper surface side of the body portion 50, part of the third electrode 55c is arranged in the region of the second ridge 50b.
  • the vicinity of the edge of the substrate W can be strongly attracted to the second protrusion 50b, and the temperature controllability of the vicinity of the edge of the substrate W can be improved.
  • the outermost circumference of the first protrusion 50a is arranged within 5 mm from the outermost circumference of the upper surface of the body portion 50. Thereby, variations in the temperature distribution of the substrate W can be suppressed.
  • the plasma processing apparatus 1 in the above-described embodiment includes a plasma processing chamber 10, an electrostatic chuck 1110, and a power supply 57.
  • An electrostatic chuck 1110 is provided within the plasma processing chamber 10 and a substrate W is placed thereon.
  • the electrostatic chuck 1110 has a body portion 50, a first ridge 50a, a second ridge 50b, a third electrode 55c, a pipe 53a, and a pipe 53b.
  • the first ridge 50 a is annularly provided on the upper surface of the body portion 50 .
  • the second ridge 50b is annularly provided on the upper surface of the body portion 50 so as to surround the first ridge 50a.
  • the third electrode 55c is provided inside the body portion 50 and outside from the inner peripheral surface of the first protrusion 50a when viewed from the upper surface side of the body portion 50.
  • An electrostatic force is generated for attracting the substrate W to the ridges 50b.
  • the pipe 53a supplies the heat transfer gas to a first area of the upper surface of the main body 50 surrounded by the first ridges 50a.
  • the pipe 53b supplies the heat transfer gas to a second area of the upper surface of the main body 50 surrounded by the first ridge 50a and the second ridge 50b. Thereby, the uniformity of the temperature of the substrate W can be improved.
  • the third electrode 55c is positioned such that the innermost circumference of the third electrode 55c is spaced apart from the innermost circumference of the first ridge 50a by ⁇ L2 toward the ring assembly 112, and The electrode 55c is arranged in the electrostatic chuck 1110 so that the outermost circumference of the electrode 55c is located at a distance of ⁇ L4 toward the ring assembly 112 from the innermost circumference of the second ridge 50b.
  • the technology disclosed is not limited to this.
  • the outermost circumference of the third electrode 55c is closer to the center side of the electrostatic chuck 1110 than the innermost circumference of the second ridge 50b. They may be arranged in the electrostatic chuck 1110 so as to be separated by ⁇ L5.
  • ⁇ L5 is, for example, 0.1 mm.
  • ⁇ L5 may be shorter than 0.1 mm or may be 0 mm.
  • the third electrode 55c is arranged such that the innermost circumference of the third electrode 55c is ⁇ L6 toward the ring assembly 112 from the outermost circumference of the first ridge 50a. They may be arranged in the electrostatic chuck 1110 so as to be spaced apart.
  • ⁇ L6 is, for example, 0.1 mm.
  • ⁇ L6 may be shorter than 0.1 mm or may be 0 mm.
  • the third electrode 55c is arranged such that the innermost circumference of the third electrode 55c is ⁇ L6 toward the ring assembly 112 from the outermost circumference of the first ridge 50a.
  • the outermost circumference of the third electrode 55c is separated from the innermost circumference of the second ridge 50b toward the center of the electrostatic chuck 1110 by ⁇ L5. may be placed.
  • the first ridge 50a is formed of the same member as the main body portion 50, but the disclosed technology is not limited to this.
  • a member 500 having a lower thermal conductivity than the body portion 50 may be provided on at least a portion of the first ridge 50a.
  • an annular member 500 is provided on the top of the first ridge 50a.
  • half of the body portion 50 is replaced with an annular member 500 in the width direction of the first protrusion 50a.
  • the connecting portion between the first ridge 50 a and the main body portion 50 is replaced with an annular member 500 .
  • FIG. 13 a member 500 having a lower thermal conductivity than the body portion 50 may be provided on at least a portion of the first ridge 50a.
  • an annular member 500 is provided on the top of the first ridge 50a.
  • half of the body portion 50 is replaced with an annular member 500 in the width direction of the first protrusion 50a.
  • the connecting portion between the first ridge 50 a and the main body portion 50 is replaced with an annular
  • portions formed of the same member as the body portion 50 and portions formed of the member 500 are alternately arranged in the extending direction of the first ridge 50a.
  • the first ridges 50a of the structure illustrated in FIGS. 13-16 reduce the amount of heat transfer between the substrate W and the electrostatic chuck 1110 via the first ridges 50a, thereby reducing the edge of the substrate W. It is possible to suppress variations in the temperature of the substrate W in the vicinity.
  • the electrostatic chuck 1110 includes an electrode 60a for supplying bias power to the substrate W and an electrode 60b for supplying bias power to the ring assembly 112, as shown in FIG. and may be provided.
  • Electrode 60a is an example of a bias electrode.
  • FIG. 17 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck 1110. As shown in FIG. The electrode 60a is provided within the electrostatic chuck 1110 corresponding to the area where the substrate W is placed, and the electrode 60b is provided within the electrostatic chuck 1110 corresponding to the area where the ring assembly 112 is placed. In the example of FIG.
  • source RF power is supplied to the base 1111 from the first RF generator 31a through a filter (not shown), and the electrodes 60a and 60b are supplied from the second RF generator 31b through a filter (not shown). is supplied with bias RF power.
  • the bias RF power supplied to electrode 60a and electrode 60b is independently controlled. Accordingly, the state of the plasma in the region where the substrate W is arranged and the state of the plasma in the region where the ring assembly 112 is arranged can be independently controlled according to the supplied bias power.
  • the bias RF power to the region where the ring assembly 112 is located may be supplied to electrode 55e.
  • the bias RF power supplied from the second RF generator 31b through a filter (not shown) is supplied through the capacitor 70 to the fourth electrode 55d, and through the capacitor 71 to the fourth electrode 55d. 5 electrodes 55e. Since the electrode 60b is not provided in the example of FIG. 18, the structure of the electrostatic chuck 1110 can be simplified.
  • the bias RF power to the region where the substrate W is arranged may be supplied to the base 1111 without providing the electrode 60a, as shown in FIG. Since the electrode 60a is not provided in the example of FIG. 18, the structure of the electrostatic chuck 1110 can be further simplified.
  • source RF power from the first RF generator 31a is further supplied to the fourth electrode 55d and the fifth electrode 55e. good too.
  • the source RF power supplied to the base 1111 and the source RF power supplied to the fourth electrode 55d and the fifth electrode 55e are independently controlled.
  • a common electrical path 75 is connected to the first RF generator 31a and the second RF generator 31b.
  • a first electrical path 76 and a second electrical path 77 branch from a common electrical path 75 .
  • a first electrical path 76 is connected to the base 1111 .
  • a second electrical path 77 is connected to one end of a variable impedance circuit 72 such as a variable capacitor. The other end of the variable impedance circuit 72 is connected via the capacitor 70 to the fourth electrode 55d. Also, the other end of the variable impedance circuit 72 is connected through the capacitor 71 to the fifth electrode 55e.
  • the first RF generator 31a and the second RF generator 31b can be shared, the number of parts can be reduced as compared with the example of FIG.
  • the electrostatic chuck 1110 is divided into a first electrostatic chuck 1110a and a second electrostatic chuck 1110b, and the base 1111 is divided as shown in FIG. , a first base 1111a and a second base 1111b.
  • the electrostatic chuck 1110 may be divided into a first electrostatic chuck 1110a and a second electrostatic chuck 1110b, as shown in FIG. 23, for example.
  • the base 1111 is formed with a groove 1111c.
  • the groove 1111 c is open on the upper surface of the base 1111 .
  • the bottom of the groove 1111c is located between the upper end opening of the groove 1111c and the lower surface of the base 1111.
  • the groove 1111c extends along and below the gap between the first electrostatic chuck 1110a and the second electrostatic chuck 1110b.
  • a capacitor 73 is provided between the common electrical path 75 and the first electrical path 76, as shown in FIG. 24, for example. may be connected to the second electrode 55b and the third electrode 55c.
  • the first electrical path 76 is also connected to the first electrode 55a.
  • the second RF generator 31b is connected to the common electrical path 75, and the first RF generator 31a is connected to the base 1111, as shown in FIG. may be
  • the first electrical path 76 is connected to the heater 56a, and the other end of the variable impedance circuit 72 is connected to the heater 56b via the capacitor 74, as shown in FIG. may be connected.
  • the electrode 60a is arranged between the first electrode 55a and the second electrode 55b, and the electrode 60b is arranged between the fourth electrode 55d. and the fifth electrode 55e.
  • the electrode 60a may be arranged between the second electrode 55b and the third electrode 55c.
  • the electrode 60a is arranged in the electrostatic chuck 1110 at the same height as the second electrode 55b and the third electrode 55c, and the electrode 60b is arranged in the electrostatic chuck 1110 above the fourth electrode 55d. and the fifth electrode 55e.
  • the electrode 60b may be arranged closer to the outer periphery of the electrostatic chuck 1110 than the fourth electrode 55d and the fifth electrode 55e, as shown in FIG. 28, for example. .
  • the cross-sectional shape of the ring assembly 112 in the above-described embodiment is such that, as shown in FIG. The width of the narrow part is narrow.
  • the top surface of the ring assembly 112 in the above-described embodiment is approximately the same height as the top surface of the substrate W placed on the electrostatic chuck 1110 .
  • the technology disclosed is not limited to this.
  • the area of the electrostatic chuck 1110 on which the ring assembly 112 is placed may be approximately the same height as the area of the electrostatic chuck 1110 on which the substrate W is placed. good. In the example of FIG.
  • the cross-sectional shape of the ring assembly 112 is such that the portion above the substrate W placed on the electrostatic chuck 1110 protrudes above the edge portion of the substrate W. ing.
  • the width of the second protrusion 50b is wider than the width of the second protrusion 50b in the above-described embodiment, and the outer wall of the second protrusion 50b is the electrostatic chuck 1110. is located outside the edge of the substrate W placed on the .
  • the third electrode 55c (outer electrostatic electrode) extends outside the edge of the substrate W placed on the electrostatic chuck 1110 .
  • the substrate W is placed on the electrostatic chuck 1110, the substrate W is placed on the electrostatic chuck 1110 while the ring assembly 112 is lifted upward. can be changed back to When the substrate W is unloaded from the electrostatic chuck 1110, the substrate W may be unloaded from the electrostatic chuck 1110 after the ring assembly 112 is lifted.
  • the top surface of the first ridge 50a is approximately the same height as the top surface of the second ridge 50b, as shown in FIG. 6, for example. It is not limited to this.
  • the height h1 of the first protrusion 50a is equal to that of the second protrusion 50b. It may be lower than the height h2.
  • the first ridges 50a and the substrate W are not in contact with each other, so that cooling singularities can be reduced compared to the case where they are in contact with each other.
  • the plasma processing apparatus 1 that performs processing using capacitively coupled plasma (CCP) was described as an example of the plasma source, but the plasma source is not limited to this.
  • plasma sources other than capacitively coupled plasma include inductively coupled plasma (ICP), microwave excited surface wave plasma (SWP), electron cycloton resonance plasma (ECP), and helicon wave excited plasma (HWP). be done.
  • the plasma processing apparatus 1 was described as an example of the substrate processing apparatus, but the technology disclosed is not limited to this. In other words, the technology disclosed herein can be applied to other substrate processing apparatuses that do not use plasma as long as the substrate processing apparatus includes the substrate supporting portion 11 having a function of controlling the temperature of the substrate W.
  • FIG. 1 the plasma processing apparatus 1 was described as an example of the substrate processing apparatus, but the technology disclosed is not limited to this. In other words, the technology disclosed herein can be applied to other substrate processing apparatuses that do not use plasma as long as the substrate processing apparatus includes the substrate supporting portion 11 having a function of controlling the temperature of the substrate W.
  • an electrostatic force is provided outside from the inner peripheral surface of the first ridge, and is for attracting the substrate to the first ridge and the second ridge.
  • an outer electrode that generates a first pipe that supplies gas to a first region surrounded by the first ridge in the upper surface of the main body;
  • An electrostatic chuck comprising: a second pipe that supplies gas to a second region surrounded by the first ridge and the second ridge in the upper surface of the main body.
  • Appendix 3 An inner electrode provided inside the main body surrounded by the first ridge, 3.
  • a substrate is placed on top of the first ridge and the second ridge, the substrate is treated with plasma; 3.
  • Appendix 7 The electrostatic chuck according to any one of appendices 1 to 6, wherein a part of the outer electrode is arranged in the region of the second ridge when viewed from the upper surface side of the main body.
  • Appendix 8 The electrostatic chuck according to any one of Appendices 1 to 7, wherein the outermost circumference of the first ridge is arranged within 5 mm from the outermost circumference of the upper surface of the main body.
  • Appendix 9 The electrostatic chuck according to any one of Appendices 1 to 8, wherein at least part of the first ridge is provided with a member having a lower thermal conductivity than the member forming the main body.
  • a substrate is placed on top of the first ridge and the second ridge, the substrate is treated with plasma; 10.
  • (Appendix 11) a chamber; an electrostatic chuck provided in the chamber and on which the substrate is placed; with power supply and
  • the electrostatic chuck is a main body; a first ridge annularly provided on the upper surface of the main body; a second protrusion annularly provided on the upper surface of the main body so as to surround the first protrusion;
  • the substrate When viewed from the upper surface side of the main body, the substrate is provided inside the main body and outside from the inner peripheral surface of the first ridge, and the substrate is attached to the first ridge and the second ridge.
  • an outer electrode that generates an electrostatic force for adsorption; a first pipe that supplies gas to a first region surrounded by the first ridge in the upper surface of the main body; a second pipe that supplies gas to a second region surrounded by the first ridge and the second ridge in the upper surface of the main body,
  • the substrate processing apparatus wherein the power source applies a voltage to the outer electrode.
  • the electrostatic chuck has a first heat medium flow path and a second heat medium flow path through which a second heat medium flows, the electrostatic chuck having an upper surface having an inner annular ridge and an outer annular ridge, The upper surface has a central surface area surrounded by the inner annular ridge and an edge surface area between the inner annular ridge and the outer annular ridge, with a second surface area formed in the central surface area.
  • One recess is in fluid communication with the first heat transfer flow channel, a second recess formed in the edge surface region is in fluid communication with the second heat transfer flow channel, and the a substrate support, wherein the central surface region has a plurality of protrusions; an inner electrostatic electrode and an outer electrostatic electrode disposed within the electrostatic chuck, the inner electrostatic electrode extending across the central surface region in plan view, the outer electrostatic electrode being planar; an inner electrostatic electrode and an outer electrostatic electrode extending visually across the edge surface area; at least one power source configured to apply a first voltage to the inner electrostatic electrode and a second voltage to the outer electrostatic electrode; The flow rate or pressure of the first heat medium supplied to the first recess through the first heat medium flow path is controlled, and the second heat medium flow path is supplied to the second recess through the second heat medium flow path. at least one control valve configured to control the flow rate or pressure of the supplied second heat transfer medium;
  • a substrate processing apparatus comprising:
  • Appendix 14 14. The substrate processing apparatus according to appendix 12 or 13, wherein the second voltage is higher than the first voltage.
  • Appendix 15 15. The substrate processing apparatus according to any one of appendices 12 to 14, further comprising a bias power supply configured to supply bias power to at least one of the inner electrostatic electrode and the outer electrostatic electrode. .
  • Appendix 17 a bias electrode disposed within the electrostatic chuck; 15.
  • the first heat medium is a first heat transfer gas
  • the second heat medium is a second heat transfer gas
  • the substrate processing apparatus according to any one of Appendixes 12 to 17, wherein the second heat transfer gas has a pressure higher than that of the first heat transfer gas.
  • Appendix 20 20.
  • (Appendix 21) 21 The substrate processing apparatus according to any one of appendices 12 to 20, wherein the distance from the outer circumferential surface of the inner annular ridge to the outer circumference of the upper surface of the electrostatic chuck is within 15 mm.
  • Appendix 24 the electrostatic chuck comprising a first material having a first thermal conductivity; 24.
  • the substrate processing apparatus according to any one of appendices 12 to 23, wherein the inner annular ridge includes a second material having a second thermal conductivity lower than the first thermal conductivity.
  • the height of the inner annular ridge is lower than the height of the outer annular ridge when the lowest portion of the surface of the second recess is used as a reference. Substrate processing equipment.
  • a second recess formed in the edge surface region is in fluid communication with the second heat transfer flow channel, and the central surface region includes a plurality of heat transfer flow channels.
  • a main body having a protrusion; an inner electrostatic electrode and an outer electrostatic electrode disposed within the body portion, the inner electrostatic electrode extending across the central surface region in plan view, and the outer electrostatic electrode, in plan view an inner electrostatic electrode and an outer electrostatic electrode extending across the edge surface area; an electrostatic chuck.
  • (Appendix 29) a main body; a first ridge annularly provided on the upper surface of the main body; a second protrusion annularly provided on the upper surface of the main body so as to surround the first protrusion; an outer electrode that is provided outward from the inner peripheral surface of the first ridge in plan view and generates an electrostatic force for attracting the substrate to the first ridge and the second ridge; a first heat medium flow path that supplies a heat medium to a first area surrounded by the first ridges in the upper surface of the main body; An electrostatic chuck, comprising a second heat medium flow path for supplying a heat medium to a second area surrounded by the first ridge and the second ridge in the upper surface of the main body.
  • Plasma processing system 1 Plasma processing apparatus 2 Control unit 2a Computer 2a1 Processing unit 2a2 Storage unit 2a3 Communication interface 10 Plasma processing chamber 10a Side wall 10e Gas outlet 10s Plasma processing space 11 Substrate support 111 Main unit 111a Substrate support surface 111b Ring support surface 1110 Electrostatic chuck 1110a First electrostatic chuck 1110b Second electrostatic chuck 1111 Base 1111a First base 1111b Second base 1111c Groove 1112 Channel 112 Ring assembly 12 Plasma generator 13 Shower Head 13a Gas supply port 13b Gas diffusion chamber 13c Gas introduction port 15 Cover member 16 Cover member 17 Support portion 18 Piping 20 Gas supply portion 21 Gas source 22 Flow controller 30 Power source 31 RF power source 31a First RF generator 31b Second RF generator 32 DC power supply 32a First DC generator 32b Second DC generator 40 Exhaust system 50 Main body 50a First ridge 50b Second ridge 51a First space 51b Second space 51c Concave portion 52 Protruding portion 53a Piping 53b Piping 53c Piping 54a Opening

Abstract

An electrostatic chuck according to the present invention comprises a body part, a first ridge, a second ridge, an outer electrode, a first piping, and a second piping. The first ridge is provided in an annular shape on the upper surface of the body part. The second ridge is provided in an annular shape surrounding the first ridge on the upper surface of the body part. The outer electrode is provided outward of the inner circumferential surface of the first ridge when viewed from the upper-surface side of the body part, and generates an electrostatic force for adhering a substrate to the first ridge and second ridge. The first piping supplies a gas to a first region surrounded by the first ridge within the upper surface of the body part. The second piping supplies a gas to a second region surrounded by the first ridge and second ridge within the upper surface of the body part.

Description

静電チャックおよび基板処理装置Electrostatic chuck and substrate processing equipment
 本開示の種々の側面および実施形態は、静電チャックおよび基板処理装置に関する。 Various aspects and embodiments of the present disclosure relate to electrostatic chucks and substrate processing apparatuses.
 例えば下記の特許文献1には、ヘリウムガス等の伝熱ガスが供給される、基板と静電チャックとの間の空間を、基板の中心付近と基板のエッジ付近とに分割し、それぞれに異なる圧力の伝熱ガスを供給する技術が開示されている。これにより、基板の中心付近の温度と基板のエッジ付近の温度とを別々に調整することができる。 For example, in Patent Document 1 below, a space between a substrate and an electrostatic chuck, to which a heat transfer gas such as helium gas is supplied, is divided into the vicinity of the center of the substrate and the vicinity of the edge of the substrate. Techniques for supplying a heat transfer gas at pressure are disclosed. Thereby, the temperature near the center of the substrate and the temperature near the edge of the substrate can be adjusted separately.
特開2008-251854号公報JP 2008-251854 A
 本開示は、基板の温度の均一性を向上させることができる静電チャックおよび基板処理装置を提供する。 The present disclosure provides an electrostatic chuck and a substrate processing apparatus that can improve the temperature uniformity of the substrate.
 本開示の一側面は、静電チャックであって、本体部と、第1の突条と、第2の突条と、外側電極と、第1の配管と、第2の配管とを備える。第1の突条は、本体部の上面に環状に設けられている。第2の突条は、本体部の上面に、第1の突条を囲むように環状に設けられている。外側電極は、本体部の上面側から見た場合に、第1の突条の内周面から外側に設けられ、第1の突条および第2の突条に基板を吸着させるための静電気力を発生させる。第1の配管は、本体部の上面の中で第1の突条で囲まれた第1の領域にガスを供給する。第2の配管は、本体部の上面の中で第1の突条と第2の突条とで囲まれた第2の領域にガスを供給する。 One aspect of the present disclosure is an electrostatic chuck comprising a main body, a first ridge, a second ridge, an outer electrode, a first pipe, and a second pipe. The first ridge is annularly provided on the upper surface of the main body. The second protrusion is annularly provided on the upper surface of the main body so as to surround the first protrusion. The outer electrode is provided outside from the inner peripheral surface of the first protrusion when viewed from the upper surface side of the main body, and has an electrostatic force for attracting the substrate to the first protrusion and the second protrusion. generate The first pipe supplies gas to a first area surrounded by the first ridges in the upper surface of the main body. The second pipe supplies gas to a second area surrounded by the first and second protrusions in the upper surface of the main body.
 本開示の種々の側面および実施形態によれば、基板の温度の均一性を向上させることができる。 According to various aspects and embodiments of the present disclosure, substrate temperature uniformity can be improved.
図1は、本開示の一実施形態におけるプラズマ処理システムの一例を示すシステム構成図である。FIG. 1 is a system configuration diagram showing an example of a plasma processing system according to an embodiment of the present disclosure. 図2は、プラズマ処理装置の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a plasma processing apparatus. 図3は、基板支持部の構造の一例を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing an example of the structure of the substrate supporting portion. 図4は、基板支持部の構造の一例を示す平面図である。FIG. 4 is a plan view showing an example of the structure of the substrate supporting portion. 図5は、静電チャック内の電極の配置の一例を示す図である。FIG. 5 is a diagram showing an example of the arrangement of electrodes in the electrostatic chuck. 図6は、リングアセンブリ付近の静電チャックの構造の一例を示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck near the ring assembly. 図7は、比較例におけるリングアセンブリ付近の静電チャックの構造の一例を示す拡大断面図である。FIG. 7 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck near the ring assembly in the comparative example. 図8は、比較例における基板の温度分布の一例を示す図である。FIG. 8 is a diagram showing an example of temperature distribution of a substrate in a comparative example. 図9は、本実施形態における基板の温度分布の一例を示す図である。FIG. 9 is a diagram showing an example of the temperature distribution of the substrate in this embodiment. 図10は、リングアセンブリ付近の静電チャックの構造の他の例を示す拡大断面図である。FIG. 10 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly. 図11は、リングアセンブリ付近の静電チャックの構造の他の例を示す拡大断面図である。FIG. 11 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly. 図12は、リングアセンブリ付近の静電チャックの構造の他の例を示す拡大断面図である。FIG. 12 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly. 図13は、第1の突条の他の例を示す拡大断面図である。FIG. 13 is an enlarged cross-sectional view showing another example of the first ridge. 図14は、第1の突条の他の例を示す拡大断面図である。FIG. 14 is an enlarged cross-sectional view showing another example of the first ridge. 図15は、第1の突条の他の例を示す拡大断面図である。FIG. 15 is an enlarged cross-sectional view showing another example of the first ridge. 図16は、第1の突条の他の例を示す平面図である。FIG. 16 is a plan view showing another example of the first ridge. 図17は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 17 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図18は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 18 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図19は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 19 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図20は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 20 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図21は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 21 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図22は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 22 is an enlarged sectional view showing another example of the structure of the electrostatic chuck. 図23は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 23 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図24は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 24 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図25は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 25 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図26は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 26 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図27は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 27 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図28は、静電チャックの構造の他の例を示す拡大断面図である。FIG. 28 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck. 図29は、リングアセンブリ付近の静電チャックの構造の他の例を示す拡大断面図である。FIG. 29 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck near the ring assembly. 図30は、リングアセンブリ付近の静電チャックの構造の一例を示す拡大断面図である。FIG. 30 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck near the ring assembly.
 以下に、静電チャックおよび基板処理装置の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される静電チャックおよび基板処理装置が限定されるものではない。 Embodiments of an electrostatic chuck and a substrate processing apparatus will be described in detail below based on the drawings. It should be noted that the disclosed electrostatic chuck and substrate processing apparatus are not limited to the following embodiments.
 ところで、ヘリウムガス等の伝熱ガスが供給される、基板と静電チャックとの間の空間を、基板の中心付近と基板のエッジ付近とに分割する場合、静電チャック上には、これら2つの空間を気密に仕切る隔壁が設けられる。この隔壁は、基板と静電チャックの両方に接触するため、隔壁を介して基板と静電チャックとの間で熱が伝達する。隔壁が設けられた静電チャックの領域以外の領域では、基板と静電チャックとの間の熱の伝達は、基板と静電チャックとの間に供給された伝熱ガスを介して行われる。そのため、隔壁が設けられた静電チャックの領域では、他の静電チャックの領域に比べて熱が過剰に伝達する場合がある。そのため、隔壁が設けられた静電チャックの領域に対応する基板の部分と、他の静電チャックの領域に対応する基板の部分とに大きな温度差ができる場合がある。基板の温度分布のばらつきが大きくなると、基板の場所によって、基板に形成された半導体装置の特性が異なる場合があり、基板に形成された半導体装置の品質を一定に保つことが難しくなる。 By the way, if the space between the substrate and the electrostatic chuck, to which the heat transfer gas such as helium gas is supplied, is divided into the vicinity of the center of the substrate and the vicinity of the edge of the substrate, these two spaces are required on the electrostatic chuck. A partition is provided to airtightly partition the two spaces. Since the partition contacts both the substrate and the electrostatic chuck, heat is transferred between the substrate and the electrostatic chuck via the partition. In areas other than the area of the electrostatic chuck where the partition is provided, heat is transferred between the substrate and the electrostatic chuck via a heat transfer gas supplied between the substrate and the electrostatic chuck. Therefore, in the area of the electrostatic chuck provided with the partition wall, heat may be excessively transferred compared to other areas of the electrostatic chuck. Therefore, a large temperature difference may occur between the portion of the substrate corresponding to the electrostatic chuck area provided with the partition and the portion of the substrate corresponding to the other electrostatic chuck area. If the temperature distribution of the substrate varies greatly, the characteristics of the semiconductor device formed on the substrate may differ depending on the location of the substrate, making it difficult to maintain the quality of the semiconductor device formed on the substrate constant.
 そこで、本開示は、基板の温度の均一性を向上させることができる技術を提供する。 Therefore, the present disclosure provides a technology capable of improving the temperature uniformity of the substrate.
[プラズマ処理システム100の構成]
 図1は、本開示の一実施形態におけるプラズマ処理システム100の構成の一例を示すシステム構成図である。一実施形態において、プラズマ処理システム100は、プラズマ処理装置1及び制御部2を含む。プラズマ処理装置1は、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。
[Configuration of plasma processing system 100]
FIG. 1 is a system configuration diagram showing an example configuration of a plasma processing system 100 according to an embodiment of the present disclosure. In one embodiment, plasma processing system 100 includes plasma processing apparatus 1 and controller 2 . The plasma processing apparatus 1 includes a plasma processing chamber 10 , a substrate support section 11 and a plasma generation section 12 . Plasma processing chamber 10 has a plasma processing space. The plasma processing chamber 10 also has at least one gas inlet for supplying at least one process gas to the plasma processing space and at least one gas outlet for exhausting gas from the plasma processing space. The gas supply port is connected to a gas supply section 20, which will be described later, and the gas discharge port is connected to an exhaust system 40, which will be described later. The substrate support 11 is arranged in the plasma processing space and has a substrate support surface for supporting the substrate.
 プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;Capacitively Coupled Plasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、プラズマ生成部12としては、例えばAC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数を有する。従って、AC信号は、RF信号及びマイクロ波信号を含む。一実施形態において、RF信号は、200kHz~150MHzの範囲内の周波数を有する。 The plasma generation unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space. Plasma formed in the plasma processing space includes capacitively coupled plasma (CCP), inductively coupled plasma (ICP), electron-cyclotron-resonance plasma (ECR plasma), helicon wave excited plasma (HWP: Helicon Wave Plasma), surface wave plasma (SWP: Surface Wave Plasma), or the like. Also, as the plasma generator 12, various types of plasma generators including, for example, an AC (Alternating Current) plasma generator and a DC (Direct Current) plasma generator may be used. In one embodiment, the AC signal (AC power) used in the AC plasma generator has a frequency within the range of 100 kHz to 10 GHz. Thus, AC signals include RF signals and microwave signals. In one embodiment, the RF signal has a frequency within the range of 200 kHz-150 MHz.
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、例えばコンピュータ2aを含んでもよい。コンピュータ2aは、例えば、処理部(CPU;Central Processing Unit)2a1、記憶部2a2、及び通信インターフェース2a3を含んでもよい。処理部2a1は、記憶部2a2に格納されたプログラムに基づいて種々の制御動作を行うように構成され得る。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 . The control unit 2 may include, for example, a computer 2a. The computer 2a may include, for example, a processing unit (CPU; Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. Processing unit 2a1 can be configured to perform various control operations based on programs stored in storage unit 2a2. The storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof. The communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
[プラズマ処理装置1の構成]
 以下に、プラズマ処理装置1の一例としての容量結合型のプラズマ処理装置の構成例について説明する。図2は、本開示の一実施形態におけるプラズマ処理装置1の一例を示す概略断面図である。容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成されている。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置されている。シャワーヘッド13は、基板支持部11の上方に配置されている。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(Ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。側壁10aは接地されている。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁されている。
[Configuration of plasma processing apparatus 1]
A configuration example of a capacitively coupled plasma processing apparatus as an example of the plasma processing apparatus 1 will be described below. FIG. 2 is a schematic cross-sectional view showing an example of the plasma processing apparatus 1 according to one embodiment of the present disclosure. A capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 . Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas introduction is configured to introduce at least one process gas into plasma processing chamber 10 . The gas introduction section includes a showerhead 13 . A substrate support 11 is positioned within the plasma processing chamber 10 . The showerhead 13 is arranged above the substrate support 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead 13 , side walls 10 a of the plasma processing chamber 10 and a substrate support 11 . Side wall 10a is grounded. The showerhead 13 and substrate support 11 are electrically insulated from the housing of the plasma processing chamber 10 .
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、本体部111の中央領域であり基板Wを支持するための基板支持面111aと、本体部111の環状領域でありリングアセンブリ112を支持するためのリング支持面111bとを有する。基板Wは、ウェハと呼ばれることもある。本体部111のリング支持面111bは、平面視で本体部111の基板支持面111aを囲んでいる。基板Wは、本体部111の基板支持面111a上に配置され、リングアセンブリ112は、本体部111の基板支持面111a上の基板Wを囲むように本体部111のリング支持面111b上に配置されている。基板支持部11は、例えば石英等の絶縁材料で筒状に形成された支持部17によって支持されている。支持部17は、プラズマ処理チャンバ10の底部から上方に延在している。基板支持部11および支持部17の外周には、筒状のカバー部材15およびカバー部材16が設けられている。 The substrate support section 11 includes a body section 111 and a ring assembly 112 . The main body portion 111 has a substrate supporting surface 111 a for supporting the substrate W, which is the central region of the main body portion 111 , and a ring supporting surface 111 b for supporting the ring assembly 112, which is the annular region of the main body portion 111 . Substrate W is sometimes referred to as a wafer. The ring support surface 111b of the body portion 111 surrounds the substrate support surface 111a of the body portion 111 in plan view. The substrate W is placed on the substrate support surface 111a of the body portion 111, and the ring assembly 112 is placed on the ring support surface 111b of the body portion 111 so as to surround the substrate W on the substrate support surface 111a of the body portion 111. ing. The substrate support portion 11 is supported by a cylindrical support portion 17 made of an insulating material such as quartz. Support 17 extends upward from the bottom of plasma processing chamber 10 . Cylindrical cover members 15 and 16 are provided on the outer peripheries of the substrate support portion 11 and the support portion 17 .
 一実施形態において、本体部111は、基台1111及び静電チャック1110を含む。基台1111は、導電性部材を含む。基台1111の導電性部材は下部電極として機能する。静電チャック1110は、基台1111の上に配置されている。静電チャック1110の上面は、基板支持面111aを有する。リングアセンブリ112は、1又は複数の環状部材を含む。1又は複数の環状部材のうち少なくとも1つはエッジリングである。また、基板支持部11は、静電チャック1110、リングアセンブリ112及び基板Wのうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含む。温調モジュールには、基台1111に形成された流路1112が含まれる。流路1112には、図示しないチラーユニットから配管18aを介して温度制御されたブラインやガスのような伝熱媒体が供給される。流路1112に供給された伝熱媒体は、流路1112内を流れ、配管18bを介してチラーユニットに戻される。また、温調モジュールには、後述するヒータ36が含まれる。また、基板支持部11は、基板Wの裏面と基板支持面111aとの間に、例えばヘリウムガス等の伝熱ガスを供給するように構成された伝熱ガス供給部を含む。 In one embodiment, the body portion 111 includes a base 1111 and an electrostatic chuck 1110 . Base 1111 includes a conductive member. The conductive member of base 1111 functions as a lower electrode. Electrostatic chuck 1110 is arranged on base 1111 . The upper surface of the electrostatic chuck 1110 has a substrate support surface 111a. Ring assembly 112 includes one or more annular members. At least one of the one or more annular members is an edge ring. Also, the substrate supporter 11 includes a temperature control module configured to control at least one of the electrostatic chuck 1110, the ring assembly 112, and the substrate W to a target temperature. The temperature control module includes a channel 1112 formed in a base 1111 . A heat transfer medium such as brine or gas whose temperature is controlled is supplied to the flow path 1112 from a chiller unit (not shown) through the pipe 18a. The heat transfer medium supplied to the flow path 1112 flows through the flow path 1112 and is returned to the chiller unit via the pipe 18b. The temperature control module also includes a heater 36, which will be described later. Further, the substrate support section 11 includes a heat transfer gas supply section configured to supply a heat transfer gas such as helium gas between the back surface of the substrate W and the substrate support surface 111a.
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、導電性部材を含む。シャワーヘッド13の導電性部材は上部電極として機能する。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s. The showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c. Showerhead 13 also includes a conductive member. A conductive member of the showerhead 13 functions as an upper electrode. In addition to the showerhead 13, the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成されている。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。 The gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 . In one embodiment, gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 . Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller. Additionally, gas supply 20 may include at least one flow modulation device for modulating or pulsing the flow rate of at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、基板支持部11の導電性部材、シャワーヘッド13の導電性部材、またはその両方に供給するように構成されている。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を基板支持部11の導電性部材に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. RF power supply 31 is adapted to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to conductive members of substrate support 11, conductive members of showerhead 13, or both. is configured to Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Therefore, the RF power supply 31 can function as at least part of the plasma generator 12 . Further, by supplying the bias RF signal to the conductive member of the substrate supporting portion 11, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W. FIG.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第2のRF生成部31bは、バイアス電源の一例である。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して基板支持部11の導電性部材、シャワーヘッド13の導電性部材、またはその両方に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成されている。一実施形態において、ソースRF信号は、13MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、基板支持部11の導電性部材、シャワーヘッド13の導電性部材、またはその両方に供給される。第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して基板支持部11の導電性部材に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。一実施形態において、バイアスRF信号は、ソースRF信号よりも低い周波数を有する。一実施形態において、バイアスRF信号は、400kHz~13.56MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、基板支持部11の導電性部材に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 In one embodiment, the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b. The second RF generator 31b is an example of a bias power supply. The first RF generator 31a is coupled via at least one impedance matching circuit to the conductive member of the substrate support 11, the conductive member of the showerhead 13, or both to provide a source RF signal for plasma generation ( source RF power). In one embodiment, the source RF signal has a frequency within the range of 13 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to conductive members of the substrate support 11, conductive members of the showerhead 13, or both. The second RF generator 31b is coupled to the conductive member of the substrate support 11 via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power). In one embodiment, the bias RF signal has a lower frequency than the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 400 kHz to 13.56 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. One or more bias RF signals generated are provided to the conductive members of the substrate support 11 . Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、基板支持部11の導電性部材に接続され、第1のDC信号を生成するように構成される。生成された第1のDC信号は、基板支持部11の導電性部材に印加される。一実施形態において、第1のDC信号が、静電チャック内の電極のような他の電極に印加されてもよい。一実施形態において、第2のDC生成部32bは、シャワーヘッド13の導電性部材に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、シャワーヘッド13の導電性部材に印加される。種々の実施形態において、第1及び第2のDC信号がパルス化されてもよい。なお、第1のDC生成部32a及び第2のDC生成部32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generator 32a and a second DC generator 32b. In one embodiment, the first DC generator 32a is connected to a conductive member of the substrate support 11 and configured to generate the first DC signal. The generated first DC signal is applied to the conductive member of substrate support 11 . In one embodiment, the first DC signal may be applied to other electrodes, such as electrodes in an electrostatic chuck. In one embodiment, the second DC generator 32b is connected to the conductive member of the showerhead 13 and configured to generate the second DC signal. The generated second DC signal is applied to the conductive members of showerhead 13 . In various embodiments, the first and second DC signals may be pulsed. Note that the first DC generation unit 32a and the second DC generation unit 32b may be provided in addition to the RF power supply 31, and the first DC generation unit 32a is provided instead of the second RF generation unit 31b. may be
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、真空ポンプを含む。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Exhaust system 40 includes a vacuum pump. The pressure regulating valve regulates the pressure in the plasma processing space 10s. Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
[基板支持部11の詳細]
 図3は、基板支持部11の構造の一例を示す拡大断面図である。図4は、基板支持部11の構造の一例を示す平面図である。図5は、静電チャック1110内の電極の配置の一例を示す図である。図3には、基板Wが載せられた状態の基板支持部11が図示されている。図4のA-A断面が図3に対応する。
[Details of substrate support part 11]
FIG. 3 is an enlarged cross-sectional view showing an example of the structure of the substrate supporting portion 11. As shown in FIG. FIG. 4 is a plan view showing an example of the structure of the substrate supporting portion 11. As shown in FIG. FIG. 5 is a diagram showing an example of the arrangement of electrodes in the electrostatic chuck 1110. As shown in FIG. FIG. 3 shows the substrate supporting portion 11 on which the substrate W is placed. The AA section of FIG. 4 corresponds to FIG.
 静電チャック1110は、本体部50を有する。本体部50の上面には、第1の突条50aおよび第2の突条50bが設けられている。第1の突条50aは内側環状突条の一例であり、第2の突条50bは外側環状突条の一例である。本体部50の上面において、第1の突条50aによって囲まれた領域は中央表面領域510であり、第1の突条50aと第2の突条50bとの間の領域はエッジ表面領域511である。第1の突条50aは、例えば図4に示されるように、環状に設けられている。第2の突条50bは、例えば図4に示されるように、第1の突条50aを囲むように環状に設けられている。例えば図3に示されるように、静電チャック1110に基板Wが載せられることにより、基板Wと静電チャック1110との間には、基板W、本体部50、および第1の突条50aで囲まれる筒状の第1の空間51aが形成される。第1の空間51aは、第1の凹部の一例である。また、例えば図3に示されるように、静電チャック1110に基板Wが載せられることにより、基板Wと静電チャック1110との間には、基板W、本体部50、第1の突条50a、および第2の突条50bで囲まれる環状の第2の空間51bが形成される。第2の空間51bは、第2の凹部の一例である。また、本体部50の上面において、第1の突条50aで囲まれた領域には、第1の突条50aおよび第2の突条50bと同じ高さの複数の凸部52が設けられている。基板Wは、第1の突条50a、第2の突条50b、および複数の凸部52によって支持される。第1の突条50a、第2の突条50b、および複数の凸部52の頂部の面が基板支持面111aである。第1の突条50a、第2の突条50b、および複数の凸部52は、例えば、アルミナ(Al)、SiC、AlN等のセラミック等;ポリイミド等のポリマー等で形成されている。 The electrostatic chuck 1110 has a body portion 50 . A first ridge 50 a and a second ridge 50 b are provided on the upper surface of the body portion 50 . The first ridge 50a is an example of an inner annular ridge, and the second ridge 50b is an example of an outer annular ridge. On the upper surface of the body portion 50, the area surrounded by the first ridges 50a is the central surface area 510, and the area between the first ridges 50a and the second ridges 50b is the edge surface area 511. be. The first ridge 50a is provided in an annular shape, for example, as shown in FIG. For example, as shown in FIG. 4, the second ridge 50b is provided in an annular shape so as to surround the first ridge 50a. For example, as shown in FIG. 3, when the substrate W is placed on the electrostatic chuck 1110, the substrate W, the body portion 50, and the first ridges 50a are placed between the substrate W and the electrostatic chuck 1110. A tubular first space 51a is formed to be surrounded. The first space 51a is an example of a first recess. Further, as shown in FIG. 3, for example, when the substrate W is placed on the electrostatic chuck 1110, the substrate W, the body portion 50, and the first ridges 50a are placed between the substrate W and the electrostatic chuck 1110. , and a second annular space 51b surrounded by the second ridge 50b. The second space 51b is an example of a second recess. In addition, on the upper surface of the body portion 50, a plurality of protrusions 52 having the same height as the first protrusions 50a and the second protrusions 50b are provided in the area surrounded by the first protrusions 50a. there is The substrate W is supported by the first ridge 50a, the second ridge 50b, and the plurality of protrusions 52. As shown in FIG. The surfaces of the tops of the first protrusions 50a, the second protrusions 50b, and the plurality of protrusions 52 are substrate support surfaces 111a. The first ridge 50a, the second ridge 50b, and the plurality of protrusions 52 are made of, for example, ceramics such as alumina ( Al2O3 ) , SiC, and AlN; polymers such as polyimide; .
 第1の空間51aには、配管53aおよび開口部54aを介して、ヘリウムガス等の伝熱ガスが供給される。伝熱ガスは、熱媒の一例である。なお、熱媒としては、伝熱ガス以外に、液体や固体(伝熱層)が用いられてもよい。液体または固体(伝熱層)としては、例えば、基板Wを載置する前又は後において、基板支持部11の上面に、液体の層または変形自在な固体の層の少なくともいずれか一方により構成され変形自在な伝熱層を形成することが考えられる。伝熱層については、本願に開示された内容と矛盾しない限度において、特願2021-127619号明細書および特願2021-127644号明細書の技術内容が参照により組み込まれる。 A heat transfer gas such as helium gas is supplied to the first space 51a through a pipe 53a and an opening 54a. A heat transfer gas is an example of a heat transfer medium. As the heat medium, a liquid or a solid (heat transfer layer) may be used in addition to the heat transfer gas. As the liquid or solid (heat transfer layer), for example, before or after mounting the substrate W, at least one of a liquid layer and a deformable solid layer is formed on the upper surface of the substrate supporting portion 11. It is conceivable to form a deformable heat transfer layer. Regarding the heat transfer layer, the technical content of Japanese Patent Application Nos. 2021-127619 and 2021-127644 is incorporated by reference to the extent not inconsistent with the content disclosed in the present application.
 第2の空間51bには、配管53bおよび開口部54bを介して、ヘリウムガス等の伝熱ガスが供給される。配管53aは第1の熱媒流路の一例であり、配管53bは第2の熱媒流路の一例である。配管53aには第1の制御バルブ530aが設けられており、配管53bには第2の制御バルブが設けられており、配管53cには第3の制御バルブが設けられている。配管53aは、第1の突条50aで囲まれた本体部50の上面の領域に伝熱ガスを供給する。第1の制御バルブ530aは、配管53aを介して第1の空間51aに供給される第1の熱媒の流量又は圧力を制御する。配管53bは、第1の突条50aと第2の突条50bとで囲まれた本体部50の上面の領域に伝熱ガスを供給する。第2の制御バルブ530bは、配管53bを介して第2の空間51bに供給される第2の熱媒の流量又は圧力を制御する。配管53aは第1の配管の一例であり、配管53bは第2の配管の一例である。第1の突条50aで囲まれた本体部50の上面の領域は、第1の領域の一例であり、第1の突条50aおよび第2の突条50bで囲まれた本体部50の上面の領域は、第2の領域の一例である。 A heat transfer gas such as helium gas is supplied to the second space 51b via a pipe 53b and an opening 54b. The pipe 53a is an example of a first heat medium flow path, and the pipe 53b is an example of a second heat medium flow path. The pipe 53a is provided with a first control valve 530a, the pipe 53b is provided with a second control valve, and the pipe 53c is provided with a third control valve. The pipe 53a supplies the heat transfer gas to the region of the upper surface of the main body 50 surrounded by the first ridges 50a. The first control valve 530a controls the flow rate or pressure of the first heat medium supplied to the first space 51a through the pipe 53a. The pipe 53b supplies the heat transfer gas to the region of the upper surface of the main body 50 surrounded by the first ridge 50a and the second ridge 50b. The second control valve 530b controls the flow rate or pressure of the second heat medium supplied to the second space 51b through the pipe 53b. The pipe 53a is an example of a first pipe, and the pipe 53b is an example of a second pipe. The area of the upper surface of the main body 50 surrounded by the first ridges 50a is an example of the first area, and the upper surface of the main body 50 surrounded by the first ridges 50a and the second ridges 50b. is an example of the second area.
 なお、第1の制御バルブ530aおよび第2の制御バルブ530bによる流量又は圧力の制御に加えて、後述する第2の電極55b(内側静電電極)と第3の電極55c(外側静電電極)の電圧制御によって、静電チャック1110と基板Wとの間の熱の伝達率がさらに制御されてもよい。また、配管53aおよび配管53bに供給される熱媒(伝熱ガス)の流量又は圧力が1つの制御バルブによって共通に制御される場合、第2の電極55b(内側静電電極)と第3の電極55c(外側静電電極)の電圧制御によって、静電チャック1110と基板Wとの間の熱の伝達率が制御されてもよい。 In addition to controlling the flow rate or pressure by the first control valve 530a and the second control valve 530b, a second electrode 55b (inner electrostatic electrode) and a third electrode 55c (outer electrostatic electrode), which will be described later, The heat transfer rate between the electrostatic chuck 1110 and the substrate W may be further controlled by controlling the voltage of . Further, when the flow rate or pressure of the heat medium (heat transfer gas) supplied to the pipes 53a and 53b is commonly controlled by one control valve, the second electrode 55b (inner electrostatic electrode) and the third The heat transfer rate between the electrostatic chuck 1110 and the substrate W may be controlled by voltage control of the electrode 55c (outer electrostatic electrode).
 第1の空間51aに供給される伝熱ガスの圧力と、第2の空間51bに供給される伝熱ガスの圧力とは、独立に制御される。本実施形態において、第2の空間51bに供給される伝熱ガスの圧力は、第1の空間51aに供給される伝熱ガスの圧力よりも高い。これにより、基板Wのエッジ付近の温度の制御性を高めることができる。 The pressure of the heat transfer gas supplied to the first space 51a and the pressure of the heat transfer gas supplied to the second space 51b are independently controlled. In this embodiment, the pressure of the heat transfer gas supplied to the second space 51b is higher than the pressure of the heat transfer gas supplied to the first space 51a. Thereby, the controllability of the temperature near the edge of the substrate W can be improved.
 なお、第1の空間51aに供給される伝熱ガスの種類と、第2の空間51bに供給される伝熱ガスの種類とは異なっていてもよい。例えば、第2の空間51bに供給される伝熱ガスは、第1の空間51aに供給される伝熱ガスよりも熱伝導率が高いガスであってもよい。これにより、基板Wのエッジ付近の温度の制御性を高めることができる。 The type of heat transfer gas supplied to the first space 51a and the type of heat transfer gas supplied to the second space 51b may be different. For example, the heat transfer gas supplied to the second space 51b may be a gas having a higher thermal conductivity than the heat transfer gas supplied to the first space 51a. Thereby, the controllability of the temperature near the edge of the substrate W can be improved.
 静電チャック1110のリング支持面111bには、凹部51cが設けられている。凹部51cには、配管53cおよび開口部54cを介して、ヘリウムガス等の伝熱ガスが供給される。第3の制御バルブ530cは、配管53cを介して凹部51cに供給される第3の熱媒(伝熱ガス)の流量又は圧力を制御する。凹部51cに供給される伝熱ガスの圧力と、第1の空間51aおよび第2の空間51bに供給される伝熱ガスの圧力とは、第1の制御バルブ530a、第2の制御バルブ530b、および第3の制御バルブ530cによって、それぞれ独立に制御される。 The ring support surface 111b of the electrostatic chuck 1110 is provided with a recess 51c. A heat transfer gas such as helium gas is supplied to the concave portion 51c through a pipe 53c and an opening 54c. The third control valve 530c controls the flow rate or pressure of the third heat medium (heat transfer gas) supplied to the recess 51c through the pipe 53c. The pressure of the heat transfer gas supplied to the recess 51c and the pressure of the heat transfer gas supplied to the first space 51a and the second space 51b are controlled by the first control valve 530a, the second control valve 530b, and third control valve 530c, respectively.
 本体部50内には、第1の電極55a、第2の電極55b、第3の電極55c、第4の電極55d、および第5の電極55eが設けられている。第2の電極55bは内側静電電極の一例であり、第3の電極55cは外側静電電極の一例である。第1の電極55aおよび第2の電極55bは内側電極の一例であり、第3の電極55cは外側電極の一例である。第1の電極55aおよび第2の電極55bは、本体部50の上面側から見た場合に、例えば図5に示されるように、第1の空間51aに対応する領域内に配置されている。第2の電極55bは、環状に形成されており、第1の電極55aの周囲に配置されている。第3の電極55cは、本体部50の上面側から見た場合に、第2の空間51bに対応する領域に配置されている。また、第3の電極55cは、本体部50の上面側から見た場合に、第1の突条50aの内周面から外側(第2の突条50b側)に設けられている。第4の電極55dおよび第5の電極55eは、環状に形成されており、本体部50の上面側から見た場合に、リング支持面111b内に配置されている。なお、第2の電極55b、第3の電極55c、第4の電極55d、および第5の電極55eは、周方向に2つ以上に分割されていてもよい。 A first electrode 55a, a second electrode 55b, a third electrode 55c, a fourth electrode 55d, and a fifth electrode 55e are provided in the body portion 50. The second electrode 55b is an example of an inner electrostatic electrode, and the third electrode 55c is an example of an outer electrostatic electrode. The first electrode 55a and the second electrode 55b are examples of inner electrodes, and the third electrode 55c is an example of an outer electrode. The first electrode 55a and the second electrode 55b are arranged in a region corresponding to the first space 51a when viewed from the upper surface side of the main body 50, as shown in FIG. 5, for example. The second electrode 55b is formed in an annular shape and arranged around the first electrode 55a. The third electrode 55c is arranged in a region corresponding to the second space 51b when viewed from the upper surface side of the body portion 50 . The third electrode 55c is provided outside (on the side of the second ridge 50b) from the inner peripheral surface of the first ridge 50a when viewed from the upper surface side of the main body 50. As shown in FIG. The fourth electrode 55d and the fifth electrode 55e are formed in an annular shape and are arranged within the ring support surface 111b when viewed from the upper surface side of the main body portion 50 . The second electrode 55b, the third electrode 55c, the fourth electrode 55d, and the fifth electrode 55e may be divided into two or more in the circumferential direction.
 第1の電極55aには電源57aが接続されており、第2の電極55bには電源57bが接続されており、第3の電極55cには電源57cが接続されており、第4の電極55dには電源57dが接続されており、第5の電極55eには電源57dが接続されている。電源57aには、フィルタ570、スイッチ571、および可変直流電源572が含まれる。電源57b、電源57c、電源57d、および電源57eは、電源57aと同様の構造である。第1の電極55aは、電源57aから印加された電圧に応じて静電気力を発生させる。第2の電極55bは、電源57bから印加された電圧に応じて静電気力を発生させる。第3の電極55cは、電源57cから印加された電圧に応じて静電気力を発生させる。基板Wは、第1の電極55a、第2の電極55b、および第3の電極55cが発生させた静電気力により、第1の突条50a、第2の突条50b、および複数の凸部52に吸着保持される。第2の電極55b(内側静電電極)に印加される電圧は第1の電圧の一例であり、第3の電極55c(外側静電電極)に印加される電圧は第2の電圧の一例である。 A power supply 57a is connected to the first electrode 55a, a power supply 57b is connected to the second electrode 55b, a power supply 57c is connected to the third electrode 55c, and a fourth electrode 55d is connected. is connected to a power source 57d, and the fifth electrode 55e is connected to a power source 57d. Power supply 57 a includes filter 570 , switch 571 and variable DC power supply 572 . Power supply 57b, power supply 57c, power supply 57d, and power supply 57e are of similar construction to power supply 57a. The first electrode 55a generates electrostatic force according to the voltage applied from the power source 57a. The second electrode 55b generates electrostatic force according to the voltage applied from the power source 57b. The third electrode 55c generates electrostatic force according to the voltage applied from the power supply 57c. Electrostatic force generated by the first electrode 55a, the second electrode 55b, and the third electrode 55c causes the substrate W to move the first ridge 50a, the second ridge 50b, and the plurality of protrusions 52. is held by adsorption. The voltage applied to the second electrode 55b (inner electrostatic electrode) is an example of a first voltage, and the voltage applied to the third electrode 55c (outer electrostatic electrode) is an example of a second voltage. be.
 本実施形態において、第2の電極55b(内側静電電極)に印加される第1の電圧、および、第3の電極55c(外側静電電極)に印加される第2の電圧は、直流電圧であるが、開示の技術はこれに限られない。他の形態として、第1の電圧および第2の電圧は、交流(AC)電圧であってもよい。第1の電圧および第2の電圧が交流電圧である場合、例えば、第2の電極55bおよび第3の電極55cが周方向にn個(n≧2)に分割され、互いに位相が異なる2以上のn相の交流電圧が印加されてもよい。この場合、n相の交流電圧は、セルフバイアス電圧に基づいて印加されてもよい。交流電圧を用いた基板Wの吸着については、本本願に開示された内容と矛盾しない限度において、特開2021-068880号公報の技術内容が参照により組み込まれる。 In this embodiment, the first voltage applied to the second electrode 55b (inner electrostatic electrode) and the second voltage applied to the third electrode 55c (outer electrostatic electrode) are DC voltages. However, the disclosed technique is not limited to this. Alternatively, the first voltage and the second voltage may be alternating current (AC) voltages. When the first voltage and the second voltage are AC voltages, for example, the second electrode 55b and the third electrode 55c are divided into n pieces (n≧2) in the circumferential direction, and two or more of which phases are different from each other. n-phase AC voltage may be applied. In this case, the n-phase AC voltage may be applied based on the self-bias voltage. Regarding the attraction of the substrate W using an AC voltage, the technical content of Japanese Patent Application Laid-Open No. 2021-068880 is incorporated by reference to the extent that it does not contradict the content disclosed in the present application.
 本実施形態において、第3の電極55cに印加される電圧は、第1の電極55aおよび第2の電極55bに印加される電圧よりも大きい。これにより、第1の電極55aおよび第2の電極55bに対応する基板Wの部分と第1の突条50aおよび複数の凸部52との間の吸着力よりも、第3の電極55cに対応する基板Wの部分と第2の突条50bとの吸着力が大きくなる。これにより、基板Wのエッジ付近の温度の制御性を高めることができる。 In this embodiment, the voltage applied to the third electrode 55c is greater than the voltage applied to the first electrode 55a and the second electrode 55b. As a result, the adsorption force between the portion of the substrate W corresponding to the first electrode 55a and the second electrode 55b and the first ridge 50a and the plurality of protrusions 52 corresponds to the third electrode 55c. The attraction force between the portion of the substrate W that is to be held and the second ridge 50b is increased. Thereby, the controllability of the temperature near the edge of the substrate W can be improved.
 電源57dおよび電源57eは、第4の電極55dと第5の電極55eとの間で予め定められた電位差が発生するように、直流電圧を第4の電極55dおよび第5の電極55eにそれぞれ印加する。なお、第4の電極55dおよび第5の電極55eのそれぞれの設定電位は、正電位、負電位、および0Vのうちいずれであってもよい。例えば、第4の電極55dの電位が正電位に設定され、第5の電極55eの電位が負電位に設定されてもよい。また、第4の電極55dと第5の電極55eとの間の電位差は、2つの直流電源ではなく、単一の直流電源を用いて形成されてもよい。第4の電極55dと第5の電極55eとの間で電位差が生じると、リング支持面111bとリングアセンブリ112との間に電位差に応じた静電気力が発生する。リングアセンブリ112は、発生した静電気力によりリング支持面111bに引き付けられ、リング支持面111bに保持される。 The power supply 57d and the power supply 57e apply DC voltages to the fourth electrode 55d and the fifth electrode 55e, respectively, so that a predetermined potential difference is generated between the fourth electrode 55d and the fifth electrode 55e. do. The set potential of each of the fourth electrode 55d and the fifth electrode 55e may be any of positive potential, negative potential, and 0V. For example, the potential of the fourth electrode 55d may be set to a positive potential, and the potential of the fifth electrode 55e may be set to a negative potential. Also, the potential difference between the fourth electrode 55d and the fifth electrode 55e may be created using a single DC power supply instead of two DC power supplies. When a potential difference is generated between the fourth electrode 55d and the fifth electrode 55e, an electrostatic force corresponding to the potential difference is generated between the ring support surface 111b and the ring assembly 112. FIG. The ring assembly 112 is attracted to the ring support surface 111b by the generated electrostatic force and held on the ring support surface 111b.
 静電チャック1110内には、ヒータ56aおよびヒータ56bが設けられている。ヒータ56aには、ヒータ電源58aが接続されている。ヒータ56bには、ヒータ電源58bが接続されている。ヒータ56aは、ヒータ電源58aから供給された電力に応じて発熱することにより、基板支持面111aに載せられた基板Wを加熱する。ヒータ56bは、ヒータ電源58bから供給された電力に応じて発熱することにより、リング支持面111bに載せられたリングアセンブリ112を加熱する。なお、ヒータ56aおよびヒータ56bは、静電チャック1110と基台1111の間に設けられていてもよい。また、ヒータ56aおよびヒータ56bは、それぞれ2以上に分割されていてもよい。 A heater 56 a and a heater 56 b are provided in the electrostatic chuck 1110 . A heater power source 58a is connected to the heater 56a. A heater power supply 58b is connected to the heater 56b. The heater 56a heats the substrate W placed on the substrate support surface 111a by generating heat according to the power supplied from the heater power source 58a. The heater 56b heats the ring assembly 112 placed on the ring support surface 111b by generating heat according to the power supplied from the heater power source 58b. Note that the heater 56 a and the heater 56 b may be provided between the electrostatic chuck 1110 and the base 1111 . Also, each of the heater 56a and the heater 56b may be divided into two or more.
[第3の電極55cの位置]
 図6は、リングアセンブリ112付近の静電チャック1110の構造の一例を示す拡大断面図である。基板Wは、基板Wのエッジ端が本体部50の上面の最外周からΔL0離れた位置となるように、静電チャック1110に載せられる。本実施形態において、ΔL0は、例えば1~2mmである。第1の突条50aは、第1の突条50aの最外周が、本体部50の上面の最外周から本体部50の上面の中心側へΔL1離れた位置となるように本体部50の上面に形成されている。実施形態において、ΔL1は、例えば5mm以内である。なお、ΔL1は、好ましくは4mm以内である。また、ΔL1は、より好ましくは3mm以内である。
[Position of third electrode 55c]
FIG. 6 is an enlarged cross-sectional view showing an example of the structure of electrostatic chuck 1110 near ring assembly 112 . The substrate W is placed on the electrostatic chuck 1110 such that the edge of the substrate W is positioned apart from the outermost periphery of the upper surface of the main body 50 by ΔL0. In this embodiment, ΔL0 is, for example, 1 to 2 mm. The first protrusion 50a is formed on the upper surface of the body portion 50 so that the outermost periphery of the first protrusion 50a is located at a distance of ΔL1 from the outermost periphery of the upper surface of the body portion 50 toward the center of the upper surface of the body portion 50. is formed in In an embodiment, ΔL1 is, for example, within 5 mm. ΔL1 is preferably within 4 mm. Also, ΔL1 is more preferably within 3 mm.
 第3の電極55cは、第3の電極55cの最内周が第1の突条50aの最内周よりもリングアセンブリ112側へΔL2離れた位置となるように静電チャック1110内に配置されている。即ち、第1の突条50aの幅をΔWとした場合、第3の電極55cは、第3の電極55cの最内周が静電チャック1110の最外周から(ΔL1+ΔW)未満の位置となるように静電チャック1110内に配置されている。第1の突条50aの幅ΔWが例えば0.5mmである場合、第3の電極55cは、第3の電極55cの最内周が静電チャック1110の最外周から例えば5.5mm未満の位置となるように静電チャック1110内に配置されている。実施形態において、ΔL2は、例えば0.1mmである。なお、他の形態として、ΔL2は、0.1mmより短くてもよく、0mmであってもよい。また、本実施形態において、第3の電極55cは、第3の電極55cの最外周が第2の突条50bの最内周よりもリングアセンブリ112側へΔL4離れた位置となるように静電チャック1110内に配置されている。即ち、本体部50の上面側から見た場合に、第3の電極55cの一部は、第2の突条50bの領域に配置されている。 The third electrode 55c is arranged in the electrostatic chuck 1110 so that the innermost circumference of the third electrode 55c is positioned apart from the innermost circumference of the first ridge 50a toward the ring assembly 112 by ΔL2. ing. That is, when the width of the first protrusion 50a is ΔW, the third electrode 55c is arranged such that the innermost circumference of the third electrode 55c is located at a position less than (ΔL1+ΔW) from the outermost circumference of the electrostatic chuck 1110. are placed in the electrostatic chuck 1110 at . When the width ΔW of the first ridge 50a is 0.5 mm, for example, the third electrode 55c is positioned such that the innermost circumference of the third electrode 55c is less than 5.5 mm from the outermost circumference of the electrostatic chuck 1110. are arranged in the electrostatic chuck 1110 so as to be In an embodiment, ΔL2 is, for example, 0.1 mm. Alternatively, ΔL2 may be shorter than 0.1 mm or 0 mm. In addition, in the present embodiment, the third electrode 55c is electrostatically arranged so that the outermost circumference of the third electrode 55c is positioned ΔL4 away from the innermost circumference of the second ridge 50b to the ring assembly 112 side. Located within chuck 1110 . That is, when viewed from the upper surface side of the body portion 50, part of the third electrode 55c is arranged in the area of the second ridge 50b.
 第2の電極55bは、第2の電極55bの最外周が第1の突条50aの最内周よりも本体部50の上面の中心側へΔL3離れた位置となるように静電チャック1110内に配置されている。実施形態において、ΔL3は、例えば0.1mmである。なお、他の形態として、ΔL3は、0.1mmより短くてもよく、0mmであってもよい。 The second electrode 55b is arranged in the electrostatic chuck 1110 such that the outermost circumference of the second electrode 55b is located at a position away from the innermost circumference of the first ridge 50a toward the center of the upper surface of the main body 50 by ΔL3. are placed in In an embodiment, ΔL3 is, for example, 0.1 mm. Alternatively, ΔL3 may be shorter than 0.1 mm or 0 mm.
 ここで、図7に例示された比較例について説明する。図7は、比較例におけるリングアセンブリ112付近の静電チャック1110’の構造の一例を示す拡大断面図である。比較例における第1の突条50a’は、第1の突条50a’の最外周が、本体部50の上面の最外周から本体部50の上面の中心側へΔL1より長いΔL1’離れた位置となるように本体部50の上面に形成されている。図7の例では、ΔL1’は、例えば14mmである。また、比較例では、第2の電極55b’が、第1の空間51a’、第1の突条50a’、および第2の空間51b’の下方に配置されている。このような構成の静電チャック1110’を用いて基板Wの温度を調整した場合、基板Wの温度分布は、例えば図8のようになる。図8は、比較例における基板Wの温度分布の一例を示す図である。図8では、基板Wの径方向における基板Wの温度分布が、基板Wの中心の温度を基準とする相対温度で示されている。 Here, a comparative example illustrated in FIG. 7 will be described. FIG. 7 is an enlarged cross-sectional view showing an example of the structure of the electrostatic chuck 1110' near the ring assembly 112 in the comparative example. In the first protrusion 50a' in the comparative example, the outermost circumference of the first protrusion 50a' is positioned at a distance ΔL1' longer than ΔL1 from the outermost circumference of the upper surface of the main body portion 50 toward the center of the upper surface of the main body portion 50. It is formed on the upper surface of the main body part 50 so as to be. In the example of FIG. 7, .DELTA.L1' is 14 mm, for example. Also, in the comparative example, the second electrode 55b' is arranged below the first space 51a', the first ridge 50a', and the second space 51b'. When the temperature of the substrate W is adjusted using the electrostatic chuck 1110' having such a configuration, the temperature distribution of the substrate W becomes, for example, as shown in FIG. FIG. 8 is a diagram showing an example of the temperature distribution of the substrate W in the comparative example. In FIG. 8, the temperature distribution of the substrate W in the radial direction of the substrate W is indicated by the relative temperature with the temperature at the center of the substrate W as the reference.
 比較例において、第2の電極55b’によって発生した静電気力により、基板Wが静電チャック1110に吸着すると、基板Wは、第1の突条50a’に強く接触する。第1の突条50a’に強く接触した部分における基板Wと静電チャック1110との間の熱の伝達量は、第1の突条50a’に接触していない部分における基板Wと静電チャック1110との間の熱の伝達量よりも大きい。そのため、第1の突条50a’に接触していない部分の基板Wの温度に合わせてヒータ56の温度や基台1111の温度を調整した場合、第1の突条50a’に接触している部分における基板Wの温度が大きくずれる場合がある。 In the comparative example, when the substrate W is attracted to the electrostatic chuck 1110 by the electrostatic force generated by the second electrode 55b', the substrate W strongly contacts the first ridge 50a'. The amount of heat transfer between the substrate W and the electrostatic chuck 1110 in the portion that is in strong contact with the first ridge 50a′ is the same as the amount of heat transfer between the substrate W and the electrostatic chuck 1110 in the portion that is not in contact with the first ridge 50a′. greater than the amount of heat transferred to and from 1110. Therefore, when the temperature of the heater 56 and the temperature of the base 1111 are adjusted according to the temperature of the portion of the substrate W that is not in contact with the first ridge 50a', the temperature of the substrate W that is in contact with the first ridge 50a' is reduced. The temperature of the substrate W at the portion may deviate greatly.
 また、本体部50の上面のエッジ付近は、ヒータ56aおよび基台1111から離れているため、ヒータ56aおよび基台1111からの熱よりも、プラズマ等の外部からの熱の影響が大きくなる。例えば、基板Wに対してプラズマによる入熱がある場合、エッジ付近の基板Wの温度は、例えば図8に示されるように中心付近の基板Wの温度よりも高くなる場合がある。比較例における第1の突条50a’は、例えば図7に示されるように、第1の突条50a’の最外周が、本体部50の上面の最外周から本体部50の上面の中心側へΔL1より長いΔL1’離れた位置となるように本体部50の上面に形成されている。そのため、エッジ付近において、基板Wの温度のばらつきΔT1が大きい。図8の例では、第1の突条50a’が設けられた位置である、基板Wのエッジから15mmの位置(即ち、基板Wの中心から135mmの位置)で基板Wの温度が最小になっており、基板Wのエッジにおいて基板Wの温度が最大になっている。 Also, since the vicinity of the edge of the upper surface of the main body part 50 is away from the heater 56a and the base 1111, the influence of heat from the outside such as plasma is greater than the heat from the heater 56a and the base 1111. For example, if there is heat input from the plasma to the substrate W, the temperature of the substrate W near the edge may be higher than the temperature of the substrate W near the center, as shown in FIG. 8, for example. In the first protrusion 50a' in the comparative example, the outermost circumference of the first protrusion 50a' extends from the outermost circumference of the upper surface of the main body 50 toward the center of the upper surface of the main body 50, as shown in FIG. It is formed on the upper surface of the body portion 50 so as to be at a position separated by ΔL1′ longer than ΔL1. Therefore, the temperature variation ΔT1 of the substrate W is large near the edge. In the example of FIG. 8, the temperature of the substrate W is lowest at a position 15 mm from the edge of the substrate W (that is, a position 135 mm from the center of the substrate W), which is the position where the first protrusion 50a′ is provided. , and the temperature of the substrate W is maximum at the edge of the substrate W. FIG.
 これに対し、本実施形態における基板Wの温度分布は、例えば図9のようになる。図9は、本実施形態における基板Wの温度分布の一例を示す図である。図9では、基板Wの径方向における基板Wの温度分布が、基板Wの中心の温度を基準とする相対温度で示されている。本実施形態では、第3の電極55cが第1の突条50aの最内周よりも外側に配置されており、第2の電極55bが第1の突条50aの最内周よりも内側に配置される。これにより、基板Wと第1の突条50aとの間の吸着力を低く抑えることができ、第1の突条50aに接触した部分における基板Wと静電チャック1110との間の熱の伝達量を抑えることができる。これにより、第1の突条50aに接触している部分における基板Wの温度のずれを小さくすることができる。 On the other hand, the temperature distribution of the substrate W in this embodiment is, for example, as shown in FIG. FIG. 9 is a diagram showing an example of the temperature distribution of the substrate W in this embodiment. In FIG. 9, the temperature distribution of the substrate W in the radial direction of the substrate W is indicated by the relative temperature with the temperature at the center of the substrate W as the reference. In this embodiment, the third electrode 55c is arranged outside the innermost circumference of the first ridge 50a, and the second electrode 55b is arranged inside the innermost circumference of the first ridge 50a. placed. As a result, the attraction force between the substrate W and the first ridges 50a can be kept low, and heat is transferred between the substrate W and the electrostatic chuck 1110 at the portion in contact with the first ridges 50a. You can reduce the amount. As a result, the temperature deviation of the substrate W at the portion in contact with the first ridge 50a can be reduced.
 また、本実施形態において、第1の突条50aは、第1の突条50aの最外周が、基板支持面111aの最外周から基板支持面111aの中心側へΔL1離れた位置となるように基板支持面111aに形成されている。実施形態において、ΔL1は、例えば3mm以下である。第1の突条50aに接触している部分における基板Wの温度は、第1の突条50aに接触していない部分における基板Wの温度よりも低く制御することができる。図9を参照すると、第1の突条50aが設けられた位置である、基板Wのエッジから4mmの位置(即ち、基板Wの中心から146mmの位置)で基板Wの温度が最小になっており、基板Wのエッジにおいて基板Wの温度が最大になっている。しかし、図8の比較例における基板Wの温度分布と比較すると、基板Wの温度分布のばらつきは、ΔT1よりも小さいΔT2に抑えられている。従って、本実施形態における静電チャック1110では、基板Wの温度の均一性を向上させることができる。 Further, in the present embodiment, the outermost periphery of the first protrusion 50a is positioned at a distance ΔL1 toward the center of the substrate supporting surface 111a from the outermost periphery of the substrate supporting surface 111a. It is formed on the substrate supporting surface 111a. In an embodiment, ΔL1 is, for example, 3 mm or less. The temperature of the substrate W at the portion in contact with the first ridge 50a can be controlled to be lower than the temperature of the substrate W at the portion not in contact with the first ridge 50a. Referring to FIG. 9, the temperature of the substrate W is minimized at a position 4 mm from the edge of the substrate W (that is, a position 146 mm from the center of the substrate W), which is the position where the first ridge 50a is provided. , and the temperature of the substrate W is maximum at the edge of the substrate W. FIG. However, when compared with the temperature distribution of the substrate W in the comparative example of FIG. 8, the variation in the temperature distribution of the substrate W is suppressed to ΔT2, which is smaller than ΔT1. Therefore, in the electrostatic chuck 1110 of this embodiment, the temperature uniformity of the substrate W can be improved.
 また、本実施形態において、第3の電極55cの最外周は、第2の突条50bの最内周よりもリングアセンブリ112側に配置されている。また、本実施形態において、第3の電極55cに印加される電圧の大きさは、第1の電極55aおよび第2の電極55bに印加される電圧の大きさよりも大きい。これにより、基板Wのエッジ付近が第2の突条50bに強く接触し、基板Wのエッジ付近において第2の突条50bを介して基板Wと静電チャック1110との間の熱の伝達量が多くなる。この点においても、本実施形態の静電チャック1110は、基板Wのエッジ付近の温度の制御性を向上させることができ、基板Wの温度の均一性を向上させることができる。 Also, in this embodiment, the outermost circumference of the third electrode 55c is arranged closer to the ring assembly 112 than the innermost circumference of the second ridge 50b. Also, in the present embodiment, the magnitude of the voltage applied to the third electrode 55c is greater than the magnitude of the voltage applied to the first electrode 55a and the second electrode 55b. As a result, the vicinity of the edge of the substrate W comes into strong contact with the second ridge 50b, and the amount of heat transfer between the substrate W and the electrostatic chuck 1110 via the second ridge 50b in the vicinity of the edge of the substrate W is will increase. In this respect as well, the electrostatic chuck 1110 of the present embodiment can improve the controllability of the temperature near the edge of the substrate W, and improve the uniformity of the temperature of the substrate W. FIG.
 また、本実施形態において、第1の空間51aに供給される伝熱ガスの圧力は、第2の空間51bに供給される伝熱ガスの圧力よりも高く設定される。この点においても、本実施形態の静電チャック1110は、基板Wのエッジ付近の温度の制御性を向上させることができ、基板Wの温度の均一性を向上させることができる。なお、第2の空間51bに供給される伝熱ガスに、第1の空間51aに供給される伝熱ガスよりも熱伝導率が高いガスを用いることにより、基板Wのエッジ付近の温度の制御性をさらに向上させることができる。 Also, in this embodiment, the pressure of the heat transfer gas supplied to the first space 51a is set higher than the pressure of the heat transfer gas supplied to the second space 51b. In this respect as well, the electrostatic chuck 1110 of the present embodiment can improve the controllability of the temperature near the edge of the substrate W, and improve the uniformity of the temperature of the substrate W. FIG. The temperature near the edge of the substrate W can be controlled by using a gas having a higher thermal conductivity than the heat transfer gas supplied to the first space 51a as the heat transfer gas supplied to the second space 51b. It is possible to further improve the performance.
 以上、実施形態について説明した。上記したように、本実施形態における静電チャック1110は、本体部50と、第1の突条50aと、第2の突条50bと、第3の電極55cと、配管53aと、配管53bとを備える。第1の突条50aは、本体部50の上面に環状に設けられている。第2の突条50bは、本体部50の上面に、第1の突条50aを囲むように環状に設けられている。第3の電極55cは、本体部50の上面側から見た場合に、第1の突条50aの内周面から外側に設けられ、第1の突条50aおよび第2の突条50bに基板Wを吸着させるための静電気力を発生させる。配管53aは、本体部50の上面の中で第1の突条50aで囲まれた第1の領域に伝熱ガスを供給する。配管53bは、本体部50の上面の中で第1の突条50aおよび第2の突条50bで囲まれた第2の領域に伝熱ガスを供給する。これにより、基板Wの温度の均一性を向上させることができる。 The embodiment has been described above. As described above, the electrostatic chuck 1110 in this embodiment includes the main body 50, the first ridges 50a, the second ridges 50b, the third electrode 55c, the pipes 53a, and the pipes 53b. Prepare. The first ridge 50 a is annularly provided on the upper surface of the body portion 50 . The second ridge 50b is annularly provided on the upper surface of the body portion 50 so as to surround the first ridge 50a. The third electrode 55c is provided outside from the inner peripheral surface of the first protrusion 50a when viewed from the upper surface side of the main body 50, and the substrate is provided on the first protrusion 50a and the second protrusion 50b. An electrostatic force is generated to attract W. The pipe 53a supplies the heat transfer gas to a first area of the upper surface of the main body 50 surrounded by the first ridges 50a. The pipe 53b supplies the heat transfer gas to a second area of the upper surface of the main body 50 surrounded by the first ridge 50a and the second ridge 50b. Thereby, the uniformity of the temperature of the substrate W can be improved.
 また、上記した実施形態の静電チャック1110において、本体部50の上面側から見た場合に、第3の電極55cの一部は、第1の突条50aおよび第2の突条50bのうち少なくともいずれか一方と重なっていてもよい。 Further, in the electrostatic chuck 1110 of the embodiment described above, when viewed from the upper surface side of the main body portion 50, a part of the third electrode 55c is the It may overlap with at least one of them.
 また、上記した実施形態における静電チャック1110は、第1の突条50aで囲まれた本体部50の内部に設けられた第1の電極55aおよび第2の電極55bを備える。第3の電極55cに印加される電圧は、第1の電極55aおよび第2の電極55bに印加される電圧よりも大きい。これにより、基板Wの温度の均一性をさらに向上させることができる。 Also, the electrostatic chuck 1110 in the above-described embodiment includes a first electrode 55a and a second electrode 55b provided inside the body portion 50 surrounded by the first ridges 50a. The voltage applied to the third electrode 55c is greater than the voltage applied to the first electrode 55a and the second electrode 55b. Thereby, the uniformity of the temperature of the substrate W can be further improved.
 また、上記した実施形態において、第2の領域に供給される伝熱ガスの圧力は、第1の領域に供給される伝熱ガスの圧力よりも高い。これにより、基板Wの温度の均一性をさらに向上させることができる。 Also, in the above-described embodiment, the pressure of the heat transfer gas supplied to the second area is higher than the pressure of the heat transfer gas supplied to the first area. Thereby, the uniformity of the temperature of the substrate W can be further improved.
 また、上記した実施形態において、第2の領域に供給される伝熱ガスと、第1の領域に供給される伝熱ガスとは、異なる種類のガスであってもよい。例えば、第2の領域に供給される伝熱ガスは、第1の領域に供給される伝熱ガスより熱伝導率が高いガスであってもよい。これにより、基板Wの温度の均一性をさらに向上させることができる。 Further, in the above-described embodiment, the heat transfer gas supplied to the second area and the heat transfer gas supplied to the first area may be different types of gases. For example, the heat transfer gas supplied to the second region may be a gas having a higher thermal conductivity than the heat transfer gas supplied to the first region. Thereby, the uniformity of the temperature of the substrate W can be further improved.
 また、上記した実施形態において、本体部50の上面側から見た場合に、第3の電極55cの一部は、第2の突条50bの領域に配置されている。これにより、基板Wのエッジ付近を第2の突条50bに強く吸着させることができ、基板Wのエッジ付近の温度の制御性を向上させることができる。 Further, in the above-described embodiment, when viewed from the upper surface side of the body portion 50, part of the third electrode 55c is arranged in the region of the second ridge 50b. As a result, the vicinity of the edge of the substrate W can be strongly attracted to the second protrusion 50b, and the temperature controllability of the vicinity of the edge of the substrate W can be improved.
 また、上記した実施形態において、第1の突条50aの最外周は、本体部50の上面の最外周から5mm以内に配置されている。これにより、基板Wの温度分布のばらつきを抑制することができる。 In addition, in the above-described embodiment, the outermost circumference of the first protrusion 50a is arranged within 5 mm from the outermost circumference of the upper surface of the body portion 50. Thereby, variations in the temperature distribution of the substrate W can be suppressed.
 また、上記した実施形態におけるプラズマ処理装置1は、プラズマ処理チャンバ10と、静電チャック1110と、電源57とを備える。静電チャック1110は、プラズマ処理チャンバ10内に設けられ、基板Wが載せられる。静電チャック1110は、本体部50と、第1の突条50aと、第2の突条50bと、第3の電極55cと、配管53aと、配管53bとを有する。第1の突条50aは、本体部50の上面に環状に設けられている。第2の突条50bは、本体部50の上面に、第1の突条50aを囲むように環状に設けられている。第3の電極55cは、本体部50の上面側から見た場合に、本体部50の内部かつ第1の突条50aの内周面から外側に設けられ、第1の突条50aおよび第2の突条50bに基板Wを吸着させるための静電気力を発生させる。配管53aは、本体部50の上面の中で第1の突条50aで囲まれた第1の領域に伝熱ガスを供給する。配管53bは、本体部50の上面の中で第1の突条50aおよび第2の突条50bで囲まれた第2の領域に伝熱ガスを供給する。これにより、基板Wの温度の均一性を向上させることができる。 Also, the plasma processing apparatus 1 in the above-described embodiment includes a plasma processing chamber 10, an electrostatic chuck 1110, and a power supply 57. An electrostatic chuck 1110 is provided within the plasma processing chamber 10 and a substrate W is placed thereon. The electrostatic chuck 1110 has a body portion 50, a first ridge 50a, a second ridge 50b, a third electrode 55c, a pipe 53a, and a pipe 53b. The first ridge 50 a is annularly provided on the upper surface of the body portion 50 . The second ridge 50b is annularly provided on the upper surface of the body portion 50 so as to surround the first ridge 50a. The third electrode 55c is provided inside the body portion 50 and outside from the inner peripheral surface of the first protrusion 50a when viewed from the upper surface side of the body portion 50. An electrostatic force is generated for attracting the substrate W to the ridges 50b. The pipe 53a supplies the heat transfer gas to a first area of the upper surface of the main body 50 surrounded by the first ridges 50a. The pipe 53b supplies the heat transfer gas to a second area of the upper surface of the main body 50 surrounded by the first ridge 50a and the second ridge 50b. Thereby, the uniformity of the temperature of the substrate W can be improved.
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
[others]
Note that the technology disclosed in the present application is not limited to the above-described embodiments, and various modifications are possible within the scope of the gist thereof.
 上記した実施形態において、第3の電極55cは、第3の電極55cの最内周が第1の突条50aの最内周よりもリングアセンブリ112側へΔL2離れた位置となり、かつ、第3の電極55cの最外周が第2の突条50bの最内周よりもリングアセンブリ112側へΔL4離れた位置となるように静電チャック1110内に配置されている。しかし、開示の技術はこれに限られない。他の形態として、例えば図10に示されるように、第3の電極55cは、第3の電極55cの最外周が第2の突条50bの最内周よりも静電チャック1110の中央側へΔL5離れた位置となるように静電チャック1110内に配置されていてもよい。ΔL5は、例えば0.1mmである。なお、ΔL5は、0.1mmより短くてもよく、0mmであってもよい。 In the above-described embodiment, the third electrode 55c is positioned such that the innermost circumference of the third electrode 55c is spaced apart from the innermost circumference of the first ridge 50a by ΔL2 toward the ring assembly 112, and The electrode 55c is arranged in the electrostatic chuck 1110 so that the outermost circumference of the electrode 55c is located at a distance of ΔL4 toward the ring assembly 112 from the innermost circumference of the second ridge 50b. However, the technology disclosed is not limited to this. As another form, for example, as shown in FIG. 10, the outermost circumference of the third electrode 55c is closer to the center side of the electrostatic chuck 1110 than the innermost circumference of the second ridge 50b. They may be arranged in the electrostatic chuck 1110 so as to be separated by ΔL5. ΔL5 is, for example, 0.1 mm. ΔL5 may be shorter than 0.1 mm or may be 0 mm.
 あるいは、他の形態として、例えば図11に示されるように、第3の電極55cは、第3の電極55cの最内周が第1の突条50aの最外周よりもリングアセンブリ112側へΔL6離れた位置となるように静電チャック1110内に配置されていてもよい。ΔL6は、例えば0.1mmである。なお、ΔL6は、0.1mmより短くてもよく、0mmであってもよい。 Alternatively, as another form, for example, as shown in FIG. 11, the third electrode 55c is arranged such that the innermost circumference of the third electrode 55c is ΔL6 toward the ring assembly 112 from the outermost circumference of the first ridge 50a. They may be arranged in the electrostatic chuck 1110 so as to be spaced apart. ΔL6 is, for example, 0.1 mm. ΔL6 may be shorter than 0.1 mm or may be 0 mm.
 あるいは、他の形態として、例えば図12に示されるように、第3の電極55cは、第3の電極55cの最内周が第1の突条50aの最外周よりもリングアセンブリ112側へΔL6離れた位置となり、かつ、第3の電極55cの最外周が第2の突条50bの最内周よりも静電チャック1110の中央側へΔL5離れた位置となるように静電チャック1110内に配置されていてもよい。 Alternatively, as another form, for example, as shown in FIG. 12, the third electrode 55c is arranged such that the innermost circumference of the third electrode 55c is ΔL6 toward the ring assembly 112 from the outermost circumference of the first ridge 50a. In the electrostatic chuck 1110, the outermost circumference of the third electrode 55c is separated from the innermost circumference of the second ridge 50b toward the center of the electrostatic chuck 1110 by ΔL5. may be placed.
 また、上記した実施形態において、第1の突条50aは、本体部50と同じ部材で形成されるが、開示の技術はこれに限られない。例えば図13~図16に示されるように、第1の突条50aの少なくとも一部には、本体部50よりも熱伝導率が低い部材500が設けられてもよい。図13の例では、第1の突条50aの頂部に環状の部材500が設けられている。また、図14の例では、第1の突条50aの幅方向において、本体部50の半分が環状の部材500に置き換えられている。また、図15の例では、第1の突条50aと本体部50の連結部分が環状の部材500に置き換えられている。図16の例では、第1の突条50aの延在方向において、本体部50と同じ部材で形成された部分と、部材500で形成された部分とが交互に配置されている。図13~図16に例示された構造の第1の突条50aにより、第1の突条50aを介する基板Wと静電チャック1110との間の熱の伝達量が減少し、基板Wのエッジ付近での基板Wの温度のばらつきを抑えることができる。 Also, in the above-described embodiment, the first ridge 50a is formed of the same member as the main body portion 50, but the disclosed technology is not limited to this. For example, as shown in FIGS. 13 to 16, a member 500 having a lower thermal conductivity than the body portion 50 may be provided on at least a portion of the first ridge 50a. In the example of FIG. 13, an annular member 500 is provided on the top of the first ridge 50a. In addition, in the example of FIG. 14, half of the body portion 50 is replaced with an annular member 500 in the width direction of the first protrusion 50a. Also, in the example of FIG. 15 , the connecting portion between the first ridge 50 a and the main body portion 50 is replaced with an annular member 500 . In the example of FIG. 16, portions formed of the same member as the body portion 50 and portions formed of the member 500 are alternately arranged in the extending direction of the first ridge 50a. The first ridges 50a of the structure illustrated in FIGS. 13-16 reduce the amount of heat transfer between the substrate W and the electrostatic chuck 1110 via the first ridges 50a, thereby reducing the edge of the substrate W. It is possible to suppress variations in the temperature of the substrate W in the vicinity.
 また、他の形態として、静電チャック1110内には、例えば図17に示されるように、基板Wにバイアス電力を供給するための電極60aとリングアセンブリ112にバイアス電力を供給するための電極60bとが設けられてもよい。電極60aは、バイアス電極の一例である。図17は、静電チャック1110の構造の他の例を示す拡大断面図である。電極60aは、基板Wが配置される領域に対応する静電チャック1110内に設けられ、電極60bは、リングアセンブリ112が配置される領域に対応する静電チャック1110内に設けられる。図17の例では、第1のRF生成部31aから図示しないフィルタを介して基台1111にソースRF電力が供給され、第2のRF生成部31bから図示しないフィルタを介して電極60aおよび電極60bにバイアスRF電力が供給される。なお、電極60aおよび電極60bに供給されるバイアスRF電力は、独立に制御される。これにより、供給されるバイアス電力に応じて、基板Wが配置される領域のプラズマの状態と、リングアセンブリ112が配置される領域のプラズマの状態とを独立に制御することができる。 As another form, the electrostatic chuck 1110 includes an electrode 60a for supplying bias power to the substrate W and an electrode 60b for supplying bias power to the ring assembly 112, as shown in FIG. and may be provided. Electrode 60a is an example of a bias electrode. FIG. 17 is an enlarged cross-sectional view showing another example of the structure of the electrostatic chuck 1110. As shown in FIG. The electrode 60a is provided within the electrostatic chuck 1110 corresponding to the area where the substrate W is placed, and the electrode 60b is provided within the electrostatic chuck 1110 corresponding to the area where the ring assembly 112 is placed. In the example of FIG. 17, source RF power is supplied to the base 1111 from the first RF generator 31a through a filter (not shown), and the electrodes 60a and 60b are supplied from the second RF generator 31b through a filter (not shown). is supplied with bias RF power. The bias RF power supplied to electrode 60a and electrode 60b is independently controlled. Accordingly, the state of the plasma in the region where the substrate W is arranged and the state of the plasma in the region where the ring assembly 112 is arranged can be independently controlled according to the supplied bias power.
 また、図17に対する他の例として、例えば図18に示されるように、電極60bを設けずに、リングアセンブリ112が配置される領域へのバイアスRF電力は、第4の電極55dおよび第5の電極55eに供給されてもよい。図18の例では、第2のRF生成部31bから図示しないフィルタを介して供給されるバイアスRF電力は、コンデンサ70を介して第4の電極55dに供給されると共に、コンデンサ71を介して第5の電極55eに供給される。図18の例では、電極60bが設けられていないため、静電チャック1110の構造を簡素化することができる。 Also, as another example to FIG. 17, without the electrode 60b, the bias RF power to the region where the ring assembly 112 is located, as shown in FIG. It may be supplied to electrode 55e. In the example of FIG. 18, the bias RF power supplied from the second RF generator 31b through a filter (not shown) is supplied through the capacitor 70 to the fourth electrode 55d, and through the capacitor 71 to the fourth electrode 55d. 5 electrodes 55e. Since the electrode 60b is not provided in the example of FIG. 18, the structure of the electrostatic chuck 1110 can be simplified.
 また、図18に対する他の例として、例えば図19に示されるように、電極60aを設けずに、基板Wが配置される領域へのバイアスRF電力は、基台1111に供給されてもよい。図18の例では、電極60aが設けられていないため、静電チャック1110の構造をさらに簡素化することができる。 As another example for FIG. 18, the bias RF power to the region where the substrate W is arranged may be supplied to the base 1111 without providing the electrode 60a, as shown in FIG. Since the electrode 60a is not provided in the example of FIG. 18, the structure of the electrostatic chuck 1110 can be further simplified.
 また、図19に対する他の例として、例えば図20に示されるように、第4の電極55dおよび第5の電極55eには、さらに第1のRF生成部31aからのソースRF電力が供給されてもよい。なお、基台1111に供給されるソースRF電力と、第4の電極55dおよび第5の電極55eに供給されるソースRF電力とは独立に制御される。 19, for example, as shown in FIG. 20, source RF power from the first RF generator 31a is further supplied to the fourth electrode 55d and the fifth electrode 55e. good too. The source RF power supplied to the base 1111 and the source RF power supplied to the fourth electrode 55d and the fifth electrode 55e are independently controlled.
 また、図20に対する他の例として、例えば図21に示されるように、共通の電気的パス75、第1の電気的パス76、および第2の電気的パス77を有してもよい。共通の電気的パス75は、第1のRF生成部31aおよび第2のRF生成部31bに接続されている。第1の電気的パス76および第2の電気的パス77は、共通の電気的パス75から分岐している。第1の電気的パス76は、基台1111に接続されている。第2の電気的パス77は、可変容量コンデンサ等の可変インピーダンス回路72の一端に接続されている。可変インピーダンス回路72の他端は、コンデンサ70を介して第4の電極55dに接続されている。また、可変インピーダンス回路72の他端は、コンデンサ71を介して第5の電極55eに接続されている。図21の例では、第1のRF生成部31aおよび第2のRF生成部31bを共通化できるので、図20の例に比べて部品点数を削減することができる。 Also, as another example for FIG. 20, there may be a common electrical path 75, a first electrical path 76, and a second electrical path 77, as shown in FIG. A common electrical path 75 is connected to the first RF generator 31a and the second RF generator 31b. A first electrical path 76 and a second electrical path 77 branch from a common electrical path 75 . A first electrical path 76 is connected to the base 1111 . A second electrical path 77 is connected to one end of a variable impedance circuit 72 such as a variable capacitor. The other end of the variable impedance circuit 72 is connected via the capacitor 70 to the fourth electrode 55d. Also, the other end of the variable impedance circuit 72 is connected through the capacitor 71 to the fifth electrode 55e. In the example of FIG. 21, since the first RF generator 31a and the second RF generator 31b can be shared, the number of parts can be reduced as compared with the example of FIG.
 また、図20に対する他の例として、例えば図22に示されるように、静電チャック1110が、第1の静電チャック1110aおよび第2の静電チャック1110bに分割されており、基台1111が、第1の基台1111aおよび第2の基台1111bに分割されていてもよい。第1の静電チャック1110aと第2の静電チャック1110bの間、および、第1の基台1111aと第2の基台1111bの間には、間隙が存在している。 20, the electrostatic chuck 1110 is divided into a first electrostatic chuck 1110a and a second electrostatic chuck 1110b, and the base 1111 is divided as shown in FIG. , a first base 1111a and a second base 1111b. A gap exists between the first electrostatic chuck 1110a and the second electrostatic chuck 1110b and between the first base 1111a and the second base 1111b.
 また、図21に対する他の例として、例えば図23に示されるように、静電チャック1110が、第1の静電チャック1110aおよび第2の静電チャック1110bに分割されていてもよい。なお、図23の例では、基台1111には、溝1111cが形成されている。溝1111cは、基台1111の上面において開口している。溝1111cの底は、溝1111cの上端開口と基台1111の下面との間に位置している。溝1111cは、第1の静電チャック1110aと第2の静電チャック1110bとの間の間隙に沿って、当該間隙の下方に延在している。 As another example for FIG. 21, the electrostatic chuck 1110 may be divided into a first electrostatic chuck 1110a and a second electrostatic chuck 1110b, as shown in FIG. 23, for example. In addition, in the example of FIG. 23, the base 1111 is formed with a groove 1111c. The groove 1111 c is open on the upper surface of the base 1111 . The bottom of the groove 1111c is located between the upper end opening of the groove 1111c and the lower surface of the base 1111. As shown in FIG. The groove 1111c extends along and below the gap between the first electrostatic chuck 1110a and the second electrostatic chuck 1110b.
 また、図21に対する他の例として、例えば図24に示されるように、共通の電気的パス75と第1の電気的パス76との間にコンデンサ73が設けられ、第1の電気的パス76が第2の電極55bおよび第3の電極55cに接続されていてもよい。なお、図21には図示されていないが、第1の電気的パス76は、第1の電極55aにも接続されている。 21, a capacitor 73 is provided between the common electrical path 75 and the first electrical path 76, as shown in FIG. 24, for example. may be connected to the second electrode 55b and the third electrode 55c. Although not shown in FIG. 21, the first electrical path 76 is also connected to the first electrode 55a.
 また、図24に対する他の例として、例えば図25に示されるように、第2のRF生成部31bが共通の電気的パス75に接続され、第1のRF生成部31aが基台1111に接続されてもよい。 24, the second RF generator 31b is connected to the common electrical path 75, and the first RF generator 31a is connected to the base 1111, as shown in FIG. may be
 また、図25に対する他の例として、例えば図26に示されるように、第1の電気的パス76はヒータ56aに接続され、可変インピーダンス回路72の他端は、コンデンサ74を介してヒータ56bに接続されてもよい。 25, the first electrical path 76 is connected to the heater 56a, and the other end of the variable impedance circuit 72 is connected to the heater 56b via the capacitor 74, as shown in FIG. may be connected.
 また、図17に対する他の例として、例えば図27に示されるように、電極60aは、第1の電極55aと第2の電極55bとの間に配置され、電極60bは、第4の電極55dと第5の電極55eとの間に配置されてもよい。なお、電極60aは、第2の電極55bと第3の電極55cとの間に配置されてもよい。また、電極60aは、静電チャック1110内において、第2の電極55bおよび第3の電極55cと同じ高さの位置に配置され、電極60bは、静電チャック1110内において、第4の電極55dおよび第5の電極55eと同じ高さの位置に配置されてもよい。 As another example for FIG. 17, as shown in FIG. 27, the electrode 60a is arranged between the first electrode 55a and the second electrode 55b, and the electrode 60b is arranged between the fourth electrode 55d. and the fifth electrode 55e. In addition, the electrode 60a may be arranged between the second electrode 55b and the third electrode 55c. Further, the electrode 60a is arranged in the electrostatic chuck 1110 at the same height as the second electrode 55b and the third electrode 55c, and the electrode 60b is arranged in the electrostatic chuck 1110 above the fourth electrode 55d. and the fifth electrode 55e.
 また、図27に対する他の例として、例えば図28に示されるように、電極60bは、第4の電極55dおよび第5の電極55eよりも、静電チャック1110の外周側に配置されてもよい。 27, the electrode 60b may be arranged closer to the outer periphery of the electrostatic chuck 1110 than the fourth electrode 55d and the fifth electrode 55e, as shown in FIG. 28, for example. .
 また、上記した実施形態におけるリングアセンブリ112の断面形状は、例えば図3に示されるように、静電チャック1110の上に載せられた基板Wより下の部分の幅が広く、基板Wと同じ高さの部分の幅が狭い。また、上記した実施形態におけるリングアセンブリ112の上面は、静電チャック1110の上に載せられた基板Wの上面とほぼ同じ高さである。しかし、開示の技術はこれに限られない。他の形態として、例えば図29に示されるように、リングアセンブリ112が載せられる静電チャック1110の領域は、基板Wが載せられる静電チャック1110の領域と同程度の高さになっていてもよい。また、図29の例では、リングアセンブリ112の断面形状は、静電チャック1110の上に載せられた基板Wよりも上の部分が、基板Wのエッジ部分の上に迫り出すような形状となっている。また、図29の例では、第2の突条50bの幅が、上記した実施形態における第2の突条50bの幅よりも広く、第2の突条50bの外側壁が、静電チャック1110の上に載せられた基板Wのエッジよりも外側に位置している。また、図29の例では、第3の電極55c(外側静電電極)が静電チャック1110の上に載せられた基板Wのエッジよりも外側まで延在している。静電チャック1110およびリングアセンブリ112が図29に例示された形状および配置となっていることにより、プラズマが基板Wのエッジの裏面に入り込むことを防止することができると共に、エッジを含む基板W前面の温度の均一性を確保することができる。なお、基板Wを静電チャック1110の上に載せる際は、リングアセンブリ112を上方に持ち上げた状態で静電チャック1110の上に基板Wを載せ、その後にリングアセンブリ112を静電チャック1110の上に戻してもよい。また、基板Wを静電チャック1110の上から搬出する際は、リングアセンブリ112を上方に持ち上げた後に、基板Wを静電チャック1110の上から搬出してもよい。 In addition, the cross-sectional shape of the ring assembly 112 in the above-described embodiment is such that, as shown in FIG. The width of the narrow part is narrow. Also, the top surface of the ring assembly 112 in the above-described embodiment is approximately the same height as the top surface of the substrate W placed on the electrostatic chuck 1110 . However, the technology disclosed is not limited to this. As another form, for example, as shown in FIG. 29, the area of the electrostatic chuck 1110 on which the ring assembly 112 is placed may be approximately the same height as the area of the electrostatic chuck 1110 on which the substrate W is placed. good. In the example of FIG. 29, the cross-sectional shape of the ring assembly 112 is such that the portion above the substrate W placed on the electrostatic chuck 1110 protrudes above the edge portion of the substrate W. ing. Moreover, in the example of FIG. 29, the width of the second protrusion 50b is wider than the width of the second protrusion 50b in the above-described embodiment, and the outer wall of the second protrusion 50b is the electrostatic chuck 1110. is located outside the edge of the substrate W placed on the . Also, in the example of FIG. 29, the third electrode 55c (outer electrostatic electrode) extends outside the edge of the substrate W placed on the electrostatic chuck 1110 . The shape and arrangement of the electrostatic chuck 1110 and ring assembly 112 illustrated in FIG. 29 can prevent the plasma from entering the back surface of the edge of the substrate W, and the front surface of the substrate W including the edge. temperature uniformity can be ensured. When the substrate W is placed on the electrostatic chuck 1110, the substrate W is placed on the electrostatic chuck 1110 while the ring assembly 112 is lifted upward. can be changed back to When the substrate W is unloaded from the electrostatic chuck 1110, the substrate W may be unloaded from the electrostatic chuck 1110 after the ring assembly 112 is lifted.
 また、上記した実施形態において、第1の突条50aとの上面は、例えば図6に示されるように、第2の突条50bの上面とほぼ同じ高さとなっているが、開示の技術はこれに限られない。他の形態として、例えば図30に示されるように、第2の空間51bの表面の最も低い部分を基準としたとき、第1の突条50aの高さh1は、第2の突条50bの高さh2よりも低くてもよい。これにより、第1の突条50aと基板Wとが接しないため、これらが接する場合と比べて冷却の特異点を減らすことができる。なお、基板Wのエッジ付近の静電チャック1110およびリングアセンブリ112の構造については、本願に開示された内容と矛盾しない限度において、特開2021-15820号公報の技術内容が参照により組み込まれる。 In the above-described embodiment, the top surface of the first ridge 50a is approximately the same height as the top surface of the second ridge 50b, as shown in FIG. 6, for example. It is not limited to this. As another form, for example, as shown in FIG. 30, when the lowest part of the surface of the second space 51b is used as a reference, the height h1 of the first protrusion 50a is equal to that of the second protrusion 50b. It may be lower than the height h2. As a result, the first ridges 50a and the substrate W are not in contact with each other, so that cooling singularities can be reduced compared to the case where they are in contact with each other. Regarding the structures of the electrostatic chuck 1110 and the ring assembly 112 near the edge of the substrate W, the technical contents of Japanese Patent Application Laid-Open No. 2021-15820 are incorporated by reference to the extent that they do not contradict the contents disclosed in the present application.
 また、上記した実施形態では、プラズマ源の一例として、容量結合型プラズマ(CCP)を用いて処理を行うプラズマ処理装置1を説明したが、プラズマ源はこれに限られない。容量結合型プラズマ以外のプラズマ源としては、例えば、誘導結合プラズマ(ICP)、マイクロ波励起表面波プラズマ(SWP)、電子サイクロトン共鳴プラズマ(ECP)、およびヘリコン波励起プラズマ(HWP)等が挙げられる。 Also, in the above embodiment, the plasma processing apparatus 1 that performs processing using capacitively coupled plasma (CCP) was described as an example of the plasma source, but the plasma source is not limited to this. Examples of plasma sources other than capacitively coupled plasma include inductively coupled plasma (ICP), microwave excited surface wave plasma (SWP), electron cycloton resonance plasma (ECP), and helicon wave excited plasma (HWP). be done.
 また、上記した実施形態では、基板処理装置としてプラズマ処理装置1を例に説明したが、開示の技術はこれに限られない。即ち、基板Wの温度を制御する機能を有する基板支持部11を備える基板処理装置であれば、プラズマを用いない他の基板処理装置に対しても開示の技術を適用することができる。 Further, in the above-described embodiments, the plasma processing apparatus 1 was described as an example of the substrate processing apparatus, but the technology disclosed is not limited to this. In other words, the technology disclosed herein can be applied to other substrate processing apparatuses that do not use plasma as long as the substrate processing apparatus includes the substrate supporting portion 11 having a function of controlling the temperature of the substrate W. FIG.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be noted that the embodiments disclosed this time should be considered as examples in all respects and not restrictive. Indeed, the above-described embodiments may be embodied in many different forms. Also, the above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 ここに本明細書の一部を構成するものとして米国特許公開2021/0074524A1号の内容を援用する。 The contents of US Patent Publication No. 2021/0074524A1 are incorporated herein as part of this specification.
 また、上記の実施形態に関し、さらに以下の付記を開示する。 In addition, the following additional remarks are disclosed regarding the above embodiments.
 (付記1)
 本体部と、
 前記本体部の上面に環状に設けられた第1の突条と、
 前記本体部の上面に、前記第1の突条を囲むように環状に設けられた第2の突条と、
 前記本体部の上面側から見た場合に、前記第1の突条の内周面から外側に設けられ、前記第1の突条および前記第2の突条に基板を吸着させるための静電気力を発生させる外側電極と、
 前記本体部の上面の中で前記第1の突条で囲まれた第1の領域にガスを供給する第1の配管と、
 前記本体部の上面の中で前記第1の突条と前記第2の突条とで囲まれた第2の領域にガスを供給する第2の配管と
を備える静電チャック。
(Appendix 1)
a main body;
a first ridge annularly provided on the upper surface of the main body;
a second protrusion annularly provided on the upper surface of the main body so as to surround the first protrusion;
When viewed from the upper surface side of the main body portion, an electrostatic force is provided outside from the inner peripheral surface of the first ridge, and is for attracting the substrate to the first ridge and the second ridge. an outer electrode that generates
a first pipe that supplies gas to a first region surrounded by the first ridge in the upper surface of the main body;
An electrostatic chuck, comprising: a second pipe that supplies gas to a second region surrounded by the first ridge and the second ridge in the upper surface of the main body.
(付記2)
 前記本体部の上面側から見た場合に、前記外側電極の一部が、前記第1の突条および前記第2の突条のうち少なくともいずれか一方と重なっている付記1に記載の静電チャック。
(Appendix 2)
The electrostatic discharge device according to Supplementary Note 1, wherein a portion of the outer electrode overlaps at least one of the first ridge and the second ridge when viewed from the upper surface side of the main body. Chuck.
(付記3)
 前記第1の突条で囲まれた前記本体部の内部に設けられた内側電極を備え、
 前記外側電極に印加される電圧は、前記内側電極に印加される電圧よりも大きい付記1または2に記載の静電チャック。
(Appendix 3)
An inner electrode provided inside the main body surrounded by the first ridge,
3. The electrostatic chuck according to appendix 1 or 2, wherein the voltage applied to the outer electrode is higher than the voltage applied to the inner electrode.
(付記4)
 前記第1の突条および前記第2の突条の頂部には、基板が載せられ、
 前記基板は、プラズマによって処理され、
 前記外側電極および前記内側電極の少なくともいずれか一方には、前記基板に供給されるバイアス電力が供給される付記3に記載の静電チャック。
(Appendix 4)
A substrate is placed on top of the first ridge and the second ridge,
the substrate is treated with plasma;
3. The electrostatic chuck according to claim 3, wherein bias power supplied to the substrate is supplied to at least one of the outer electrode and the inner electrode.
(付記5)
 前記第2の領域に供給されるガスの圧力は、前記第1の領域に供給されるガスの圧力よりも高い付記1から4のいずれか一項に記載の静電チャック。
(Appendix 5)
5. The electrostatic chuck according to any one of Appendices 1 to 4, wherein the pressure of the gas supplied to the second region is higher than the pressure of the gas supplied to the first region.
(付記6)
 前記第2の領域に供給されるガスと、前記第1の領域に供給されるガスとは、異なる種類のガスである付記1から5のいずれか一項に記載の静電チャック。
(Appendix 6)
6. The electrostatic chuck according to any one of appendices 1 to 5, wherein the gas supplied to the second region and the gas supplied to the first region are different types of gases.
(付記7)
 前記本体部の上面側から見た場合に、前記外側電極の一部は、前記第2の突条の領域に配置される付記1から6のいずれか一項に記載の静電チャック。
(Appendix 7)
7. The electrostatic chuck according to any one of appendices 1 to 6, wherein a part of the outer electrode is arranged in the region of the second ridge when viewed from the upper surface side of the main body.
(付記8)
 前記第1の突条の最外周は、前記本体部の上面の最外周から5mm以内に配置されている付記1から7のいずれか一項に記載の静電チャック。
(Appendix 8)
8. The electrostatic chuck according to any one of Appendices 1 to 7, wherein the outermost circumference of the first ridge is arranged within 5 mm from the outermost circumference of the upper surface of the main body.
(付記9)
 前記第1の突条の少なくとも一部には、前記本体部を構成する部材よりも熱伝導率が低い部材が設けられている付記1から8のいずれか一項に記載の静電チャック。
(Appendix 9)
9. The electrostatic chuck according to any one of Appendices 1 to 8, wherein at least part of the first ridge is provided with a member having a lower thermal conductivity than the member forming the main body.
(付記10)
 前記第1の突条および前記第2の突条の頂部には、基板が載せられ、
 前記基板は、プラズマによって処理され、
 前記本体部内には、前記基板に供給されるバイアス電力が供給される電極が設けられる付記1から9のいずれか一項に記載の静電チャック。
(Appendix 10)
A substrate is placed on top of the first ridge and the second ridge,
the substrate is treated with plasma;
10. The electrostatic chuck according to any one of appendices 1 to 9, wherein an electrode supplied with bias power supplied to the substrate is provided in the main body.
(付記11)
 チャンバと、
 前記チャンバ内に設けられ、基板が載せられる静電チャックと、
 電源と
を備え、
 前記静電チャックは、
 本体部と、
 前記本体部の上面に環状に設けられた第1の突条と、
 前記本体部の上面に、前記第1の突条を囲むように環状に設けられた第2の突条と、
 前記本体部の上面側から見た場合に、前記本体部の内部かつ前記第1の突条の内周面から外側に設けられ、前記第1の突条および前記第2の突条に基板を吸着させるための静電気力を発生させる外側電極と、
 前記本体部の上面の中で前記第1の突条で囲まれた第1の領域にガスを供給する第1の配管と、
 前記本体部の上面の中で前記第1の突条と前記第2の突条とで囲まれた第2の領域にガスを供給する第2の配管と
を有し、
 前記電源は、前記外側電極に電圧を印加する基板処理装置。
(Appendix 11)
a chamber;
an electrostatic chuck provided in the chamber and on which the substrate is placed;
with power supply and
The electrostatic chuck is
a main body;
a first ridge annularly provided on the upper surface of the main body;
a second protrusion annularly provided on the upper surface of the main body so as to surround the first protrusion;
When viewed from the upper surface side of the main body, the substrate is provided inside the main body and outside from the inner peripheral surface of the first ridge, and the substrate is attached to the first ridge and the second ridge. an outer electrode that generates an electrostatic force for adsorption;
a first pipe that supplies gas to a first region surrounded by the first ridge in the upper surface of the main body;
a second pipe that supplies gas to a second region surrounded by the first ridge and the second ridge in the upper surface of the main body,
The substrate processing apparatus, wherein the power source applies a voltage to the outer electrode.
(付記12)
 チャンバと、
 前記チャンバ内に配置される基板支持部であり、前記基板支持部は、基台と前記基台上に配置される静電チャックとを含み、前記静電チャックは、第1の熱媒が流通する第1の熱媒流路及び第2の熱媒が流通する第2の熱媒流路を有し、前記静電チャックは、内側環状突条及び外側環状突条を有する上面を有し、前記上面は、前記内側環状突条により囲まれた中央表面領域、及び、前記内側環状突条と前記外側環状突条との間のエッジ表面領域を有し、前記中央表面領域に形成された第1の凹部は、前記第1の熱媒流路と流体連通しており、前記エッジ表面領域に形成された第2の凹部は、前記第2の熱媒流路と流体連通しており、前記中央表面領域は、複数の凸部を有する、基板支持部と、
 前記静電チャック内に配置される内側静電電極及び外側静電電極であり、前記内側静電電極は、平面視で前記中央表面領域に渡って延在し、前記外側静電電極は、平面視で前記エッジ表面領域に渡って延在する、内側静電電極及び外側静電電極と、
 前記内側静電電極に第1の電圧を印加し、前記外側静電電極に第2の電圧を印加するように構成される少なくとも1つの電源と、
 前記第1の熱媒流路を介して前記第1の凹部に供給される第1の熱媒の流量又は圧力を制御し、前記第2の熱媒流路を介して前記第2の凹部に供給される第2の熱媒の流量又は圧力を制御するように構成される少なくとも1つの制御バルブと、
を備える、基板処理装置。
(Appendix 12)
a chamber;
A substrate support portion disposed within the chamber, the substrate support portion including a base and an electrostatic chuck disposed on the base, the electrostatic chuck having a first heat medium circulating therethrough. The electrostatic chuck has a first heat medium flow path and a second heat medium flow path through which a second heat medium flows, the electrostatic chuck having an upper surface having an inner annular ridge and an outer annular ridge, The upper surface has a central surface area surrounded by the inner annular ridge and an edge surface area between the inner annular ridge and the outer annular ridge, with a second surface area formed in the central surface area. One recess is in fluid communication with the first heat transfer flow channel, a second recess formed in the edge surface region is in fluid communication with the second heat transfer flow channel, and the a substrate support, wherein the central surface region has a plurality of protrusions;
an inner electrostatic electrode and an outer electrostatic electrode disposed within the electrostatic chuck, the inner electrostatic electrode extending across the central surface region in plan view, the outer electrostatic electrode being planar; an inner electrostatic electrode and an outer electrostatic electrode extending visually across the edge surface area;
at least one power source configured to apply a first voltage to the inner electrostatic electrode and a second voltage to the outer electrostatic electrode;
The flow rate or pressure of the first heat medium supplied to the first recess through the first heat medium flow path is controlled, and the second heat medium flow path is supplied to the second recess through the second heat medium flow path. at least one control valve configured to control the flow rate or pressure of the supplied second heat transfer medium;
A substrate processing apparatus comprising:
(付記13)
 前記外側静電電極は、平面視で前記内側環状突条及び前記外側環状突条のうち少なくともいずれか一方と重なっている、付記12に記載の基板処理装置。
(Appendix 13)
13. The substrate processing apparatus according to appendix 12, wherein the outer electrostatic electrode overlaps at least one of the inner annular ridge and the outer annular ridge in plan view.
(付記14)
 前記第2の電圧は、前記第1の電圧よりも大きい、付記12又は13に記載の基板処理装置。
(Appendix 14)
14. The substrate processing apparatus according to appendix 12 or 13, wherein the second voltage is higher than the first voltage.
(付記15)
 前記内側静電電極及び前記外側静電電極のうち少なくともいずれか一方にバイアス電力を供給するように構成されるバイアス電源を更に備える、付記12~14のうちいずれか一項に記載の基板処理装置。
(Appendix 15)
15. The substrate processing apparatus according to any one of appendices 12 to 14, further comprising a bias power supply configured to supply bias power to at least one of the inner electrostatic electrode and the outer electrostatic electrode. .
(付記16)
 前記内側静電電極及び前記外側静電電極のうち少なくともいずれか一方にRF電力を供給するように構成される少なくとも1つのRF電源を更に備える、付記12~14のうちいずれか一項に記載の基板処理装置。
(Appendix 16)
15. The method of any one of clauses 12-14, further comprising at least one RF power supply configured to supply RF power to at least one of the inner electrostatic electrode and the outer electrostatic electrode. Substrate processing equipment.
(付記17)
 前記静電チャック内に配置されるバイアス電極と、
 前記バイアス電極にバイアス電力を供給するように構成される少なくとも1つのバイアス電源とを更に備える、付記12~14のうちいずれか一項に記載の基板処理装置。
(Appendix 17)
a bias electrode disposed within the electrostatic chuck;
15. The substrate processing apparatus according to any one of appendices 12 to 14, further comprising at least one bias power supply configured to supply bias power to the bias electrode.
(付記18)
 前記第1の熱媒は第1の伝熱ガスであり、前記第2の熱媒は第2の伝熱ガスであり、
 前記第2の伝熱ガスは、前記第1の伝熱ガスの圧力よりも高い圧力を有する、付記12~17のうちいずれか一項に記載の基板処理装置。
(Appendix 18)
The first heat medium is a first heat transfer gas, the second heat medium is a second heat transfer gas,
18. The substrate processing apparatus according to any one of Appendixes 12 to 17, wherein the second heat transfer gas has a pressure higher than that of the first heat transfer gas.
(付記19)
 前記第2の熱媒は、前記第1の熱媒とは異なる、付記12~18のうちいずれか一項に記載の基板処理装置。
(Appendix 19)
19. The substrate processing apparatus according to any one of appendices 12 to 18, wherein the second heat medium is different from the first heat medium.
(付記20)
 前記外側静電電極は、前記外側環状突条の下に配置されている、付記12~19のうちいずれか一項に記載の基板処理装置。
(Appendix 20)
20. The substrate processing apparatus according to any one of Appendices 12 to 19, wherein the outer electrostatic electrode is arranged below the outer annular ridge.
(付記21)
 前記内側環状突条の外周面から前記静電チャックの上面の外周までの距離は15mm以内である、付記12~20のうちいずれか一項に記載の基板処理装置。
(Appendix 21)
21. The substrate processing apparatus according to any one of appendices 12 to 20, wherein the distance from the outer circumferential surface of the inner annular ridge to the outer circumference of the upper surface of the electrostatic chuck is within 15 mm.
(付記22)
 前記内側環状突条の外周面から前記静電チャックの上面の外周までの距離は5mm以内である、付記12~20のうちいずれか一項に記載の基板処理装置。
(Appendix 22)
21. The substrate processing apparatus according to any one of appendices 12 to 20, wherein the distance from the outer circumferential surface of the inner annular ridge to the outer circumference of the upper surface of the electrostatic chuck is within 5 mm.
(付記23)
 前記内側環状突条の外周面から前記静電チャックの上面の外周までの距離は3mm以内である、付記12~20のうちいずれか一項に記載の基板処理装置。
(Appendix 23)
21. The substrate processing apparatus according to any one of Appendices 12 to 20, wherein the distance from the outer circumferential surface of the inner annular ridge to the outer circumference of the upper surface of the electrostatic chuck is within 3 mm.
(付記24)
 前記静電チャックは、第1の熱伝導率を有する第1の材料を含み、
 前記内側環状突条は、前記第1の熱伝導率よりも低い第2の熱伝導率を有する第2の材料を含む、付記12~23のうちいずれか一項に記載の基板処理装置。
(Appendix 24)
the electrostatic chuck comprising a first material having a first thermal conductivity;
24. The substrate processing apparatus according to any one of appendices 12 to 23, wherein the inner annular ridge includes a second material having a second thermal conductivity lower than the first thermal conductivity.
(付記25)
 前記第2の凹部表面の最も低い部分を基準としたとき、前記内側環状突条の高さは、前記外側環状突条の高さよりも低い、付記12~24のうちいずれか一項に記載の基板処理装置。
(Appendix 25)
The height of the inner annular ridge is lower than the height of the outer annular ridge when the lowest portion of the surface of the second recess is used as a reference. Substrate processing equipment.
(付記26)
 第1の熱媒流路及び第2の熱媒流路を有する本体部であり、前記本体部は、内側環状突条及び外側環状突条を有する上面を有し、前記上面は、前記内側環状突条により囲まれた中央表面領域、及び、前記内側環状突条と前記外側環状突条との間のエッジ表面領域を有し、前記中央表面領域に形成された第1の凹部は、前記第1の熱媒流路と流体連通しており、前記エッジ表面領域に形成された第2の凹部は、前記第2の熱媒流路と流体連通しており、前記中央表面領域は、複数の凸部を有する、本体部と、
 前記本体部内に配置される内側静電電極及び外側静電電極であり、前記内側静電電極は、平面視で前記中央表面領域に渡って延在し、前記外側静電電極は、平面視で前記エッジ表面領域に渡って延在する、内側静電電極及び外側静電電極と、
を備える、静電チャック。
(Appendix 26)
A main body portion having a first heat medium flow channel and a second heat medium flow channel, the main body portion having an upper surface having an inner annular ridge and an outer annular ridge, the upper surface having the inner annular ridge. A first recess formed in the central surface region having a central surface region surrounded by a ridge and an edge surface region between the inner annular ridge and the outer annular ridge; A second recess formed in the edge surface region is in fluid communication with the second heat transfer flow channel, and the central surface region includes a plurality of heat transfer flow channels. a main body having a protrusion;
an inner electrostatic electrode and an outer electrostatic electrode disposed within the body portion, the inner electrostatic electrode extending across the central surface region in plan view, and the outer electrostatic electrode, in plan view an inner electrostatic electrode and an outer electrostatic electrode extending across the edge surface area;
an electrostatic chuck.
(付記27)
 前記本体部内に配置されるバイアス電極を更に備える、付記26に記載の静電チャック。
(Appendix 27)
Clause 27. The electrostatic chuck of Clause 26, further comprising a bias electrode disposed within the body portion.
(付記28)
 前記内側静電電極は前記バイアス電極としても機能する、付記27に記載の静電チャック。
(Appendix 28)
28. The electrostatic chuck of clause 27, wherein the inner electrostatic electrode also functions as the bias electrode.
(付記29)
 本体部と、
 前記本体部の上面に環状に設けられた第1の突条と、
 前記本体部の上面に、前記第1の突条を囲むように環状に設けられた第2の突条と、
 平面視で、前記第1の突条の内周面から外側に設けられ、前記第1の突条および前記第2の突条に基板を吸着させるための静電気力を発生させる外側電極と、
 前記本体部の上面の中で前記第1の突条で囲まれた第1の領域に熱媒を供給する第1の熱媒流路と、
 前記本体部の上面の中で前記第1の突条と前記第2の突条とで囲まれた第2の領域に熱媒を供給する第2の熱媒流路と
を備える静電チャック。
(Appendix 29)
a main body;
a first ridge annularly provided on the upper surface of the main body;
a second protrusion annularly provided on the upper surface of the main body so as to surround the first protrusion;
an outer electrode that is provided outward from the inner peripheral surface of the first ridge in plan view and generates an electrostatic force for attracting the substrate to the first ridge and the second ridge;
a first heat medium flow path that supplies a heat medium to a first area surrounded by the first ridges in the upper surface of the main body;
An electrostatic chuck, comprising a second heat medium flow path for supplying a heat medium to a second area surrounded by the first ridge and the second ridge in the upper surface of the main body.
(付記30)
 平面視で、前記外側電極の一部が、前記第1の突条および前記第2の突条のうち少なくともいずれか一方と重なっている付記29に記載の静電チャック。
(Appendix 30)
30. The electrostatic chuck according to appendix 29, wherein a portion of the outer electrode overlaps at least one of the first ridge and the second ridge in plan view.
(付記31)
 前記第1の突条で囲まれた前記本体部の内部に設けられた内側電極を備え、
 前記外側電極に印加される電圧は、前記内側電極に印加される電圧よりも大きい付記29または30に記載の静電チャック。
(Appendix 31)
An inner electrode provided inside the main body surrounded by the first ridge,
31. The electrostatic chuck of claim 29 or 30, wherein the voltage applied to the outer electrode is greater than the voltage applied to the inner electrode.
W 基板
100 プラズマ処理システム
1 プラズマ処理装置
2 制御部
2a コンピュータ
2a1 処理部
2a2 記憶部
2a3 通信インターフェース
10 プラズマ処理チャンバ
10a 側壁
10e ガス排出口
10s プラズマ処理空間
11 基板支持部
111 本体部
111a 基板支持面
111b リング支持面
1110 静電チャック
1110a 第1の静電チャック
1110b 第2の静電チャック
1111 基台
1111a 第1の基台
1111b 第2の基台
1111c 溝
1112 流路
112 リングアセンブリ
12 プラズマ生成部
13 シャワーヘッド
13a ガス供給口
13b ガス拡散室
13c ガス導入口
15 カバー部材
16 カバー部材
17 支持部
18 配管
20 ガス供給部
21 ガスソース
22 流量制御器
30 電源
31 RF電源
31a 第1のRF生成部
31b 第2のRF生成部
32 DC電源
32a 第1のDC生成部
32b 第2のDC生成部
40 排気システム
50 本体部
50a 第1の突条
50b 第2の突条
51a 第1の空間
51b 第2の空間
51c 凹部
52 凸部
53a 配管
53b 配管
53c 配管
54a 開口部
54b 開口部
54c 開口部
55a 第1の電極
55b 第2の電極
55c 第3の電極
55d 第4の電極
55e 第5の電極
56 ヒータ
57 電源
570 フィルタ
571 スイッチ
572 可変直流電源
58 ヒータ電源
500 部材
60 電極
70 コンデンサ
71 コンデンサ
72 可変インピーダンス回路
73 コンデンサ
74 コンデンサ
75 共通の電気的パス
76 第1の電気的パス
77 第2の電気的パス
W Substrate 100 Plasma processing system 1 Plasma processing apparatus 2 Control unit 2a Computer 2a1 Processing unit 2a2 Storage unit 2a3 Communication interface 10 Plasma processing chamber 10a Side wall 10e Gas outlet 10s Plasma processing space 11 Substrate support 111 Main unit 111a Substrate support surface 111b Ring support surface 1110 Electrostatic chuck 1110a First electrostatic chuck 1110b Second electrostatic chuck 1111 Base 1111a First base 1111b Second base 1111c Groove 1112 Channel 112 Ring assembly 12 Plasma generator 13 Shower Head 13a Gas supply port 13b Gas diffusion chamber 13c Gas introduction port 15 Cover member 16 Cover member 17 Support portion 18 Piping 20 Gas supply portion 21 Gas source 22 Flow controller 30 Power source 31 RF power source 31a First RF generator 31b Second RF generator 32 DC power supply 32a First DC generator 32b Second DC generator 40 Exhaust system 50 Main body 50a First ridge 50b Second ridge 51a First space 51b Second space 51c Concave portion 52 Protruding portion 53a Piping 53b Piping 53c Piping 54a Opening 54b Opening 54c Opening 55a First electrode 55b Second electrode 55c Third electrode 55d Fourth electrode 55e Fifth electrode 56 Heater 57 Power source 570 Filter 571 switch 572 variable DC power supply 58 heater power supply 500 member 60 electrode 70 capacitor 71 capacitor 72 variable impedance circuit 73 capacitor 74 capacitor 75 common electrical path 76 first electrical path 77 second electrical path

Claims (20)

  1.  チャンバと、
     前記チャンバ内に配置される基板支持部であり、前記基板支持部は、基台と前記基台上に配置される静電チャックとを含み、前記静電チャックは、第1の熱媒が流通する第1の熱媒流路及び第2の熱媒が流通する第2の熱媒流路を有し、前記静電チャックは、内側環状突条及び外側環状突条を有する上面を有し、前記上面は、前記内側環状突条により囲まれた中央表面領域、及び、前記内側環状突条と前記外側環状突条との間のエッジ表面領域を有し、前記中央表面領域に形成された第1の凹部は、前記第1の熱媒流路と流体連通しており、前記エッジ表面領域に形成された第2の凹部は、前記第2の熱媒流路と流体連通しており、前記中央表面領域は、複数の凸部を有する、基板支持部と、
     前記静電チャック内に配置される内側静電電極及び外側静電電極であり、前記内側静電電極は、平面視で前記中央表面領域に渡って延在し、前記外側静電電極は、平面視で前記エッジ表面領域に渡って延在する、内側静電電極及び外側静電電極と、
     前記内側静電電極に第1の電圧を印加し、前記外側静電電極に第2の電圧を印加するように構成される少なくとも1つの電源と、
     前記第1の熱媒流路を介して前記第1の凹部に供給される第1の熱媒の流量又は圧力を制御し、前記第2の熱媒流路を介して前記第2の凹部に供給される第2の熱媒の流量又は圧力を制御するように構成される少なくとも1つの制御バルブと、
    を備える、基板処理装置。
    a chamber;
    A substrate support portion disposed within the chamber, the substrate support portion including a base and an electrostatic chuck disposed on the base, the electrostatic chuck having a first heat medium circulating therethrough. The electrostatic chuck has a first heat medium flow path and a second heat medium flow path through which a second heat medium flows, the electrostatic chuck having an upper surface having an inner annular ridge and an outer annular ridge, The upper surface has a central surface area surrounded by the inner annular ridge and an edge surface area between the inner annular ridge and the outer annular ridge, with a second surface area formed in the central surface area. One recess is in fluid communication with the first heat transfer flow channel, a second recess formed in the edge surface region is in fluid communication with the second heat transfer flow channel, and the a substrate support, wherein the central surface region has a plurality of protrusions;
    an inner electrostatic electrode and an outer electrostatic electrode disposed within the electrostatic chuck, the inner electrostatic electrode extending across the central surface region in plan view, the outer electrostatic electrode being planar; an inner electrostatic electrode and an outer electrostatic electrode extending visually across the edge surface area;
    at least one power source configured to apply a first voltage to the inner electrostatic electrode and a second voltage to the outer electrostatic electrode;
    The flow rate or pressure of the first heat medium supplied to the first recess through the first heat medium flow path is controlled, and the second heat medium flow path is supplied to the second recess through the second heat medium flow path. at least one control valve configured to control the flow rate or pressure of the supplied second heat transfer medium;
    A substrate processing apparatus comprising:
  2.  前記外側静電電極は、平面視で前記内側環状突条及び前記外側環状突条のうち少なくともいずれか一方と重なっている、請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein said outer electrostatic electrode overlaps at least one of said inner ring-shaped ridge and said outer ring-shaped ridge in plan view.
  3.  前記第2の電圧は、前記第1の電圧よりも大きい、請求項1又は2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein said second voltage is higher than said first voltage.
  4.  前記内側静電電極及び前記外側静電電極のうち少なくともいずれか一方にバイアス電力を供給するように構成されるバイアス電源を更に備える、請求項1~3のうちいずれか一項に記載の基板処理装置。 The substrate processing of any one of claims 1-3, further comprising a bias power supply configured to supply bias power to at least one of the inner electrostatic electrode and the outer electrostatic electrode. Device.
  5.  前記内側静電電極及び前記外側静電電極のうち少なくともいずれか一方にRF電力を供給するように構成される少なくとも1つのRF電源を更に備える、請求項1~3のうちいずれか一項に記載の基板処理装置。 4. The apparatus of any one of claims 1-3, further comprising at least one RF power source configured to supply RF power to at least one of the inner electrostatic electrode and the outer electrostatic electrode. substrate processing equipment.
  6.  前記静電チャック内に配置されるバイアス電極と、
     前記バイアス電極にバイアス電力を供給するように構成される少なくとも1つのバイアス電源とを更に備える、請求項1~3のうちいずれか一項に記載の基板処理装置。
    a bias electrode disposed within the electrostatic chuck;
    4. The substrate processing apparatus according to any one of claims 1 to 3, further comprising at least one bias power supply configured to supply bias power to said bias electrode.
  7.  前記第1の熱媒は第1の伝熱ガスであり、前記第2の熱媒は第2の伝熱ガスであり、
     前記第2の伝熱ガスは、前記第1の伝熱ガスの圧力よりも高い圧力を有する、請求項1~6のうちいずれか一項に記載の基板処理装置。
    The first heat medium is a first heat transfer gas, the second heat medium is a second heat transfer gas,
    The substrate processing apparatus according to any one of claims 1 to 6, wherein said second heat transfer gas has a pressure higher than that of said first heat transfer gas.
  8.  前記第2の熱媒は、前記第1の熱媒とは異なる、請求項1~7のうちいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 7, wherein said second heat medium is different from said first heat medium.
  9.  前記外側静電電極は、前記外側環状突条の下に配置されている、請求項1~8のうちいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein said outer electrostatic electrode is arranged below said outer annular ridge.
  10.  前記内側環状突条の外周面から前記静電チャックの上面の外周までの距離は15mm以内である、請求項1~9のうちいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 9, wherein the distance from the outer circumferential surface of said inner annular ridge to the outer circumference of the upper surface of said electrostatic chuck is within 15 mm.
  11.  前記内側環状突条の外周面から前記静電チャックの上面の外周までの距離は5mm以内である、請求項1~9のうちいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 9, wherein the distance from the outer circumferential surface of said inner annular ridge to the outer circumference of the upper surface of said electrostatic chuck is within 5 mm.
  12.  前記内側環状突条の外周面から前記静電チャックの上面の外周までの距離は3mm以内である、請求項1~9のうちいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 9, wherein the distance from the outer circumferential surface of said inner annular ridge to the outer circumference of the upper surface of said electrostatic chuck is within 3 mm.
  13.  前記静電チャックは、第1の熱伝導率を有する第1の材料を含み、
     前記内側環状突条は、前記第1の熱伝導率よりも低い第2の熱伝導率を有する第2の材料を含む、請求項1~12のうちいずれか一項に記載の基板処理装置。
    the electrostatic chuck comprising a first material having a first thermal conductivity;
    The substrate processing apparatus according to any one of claims 1 to 12, wherein said inner annular ridge includes a second material having a second thermal conductivity lower than said first thermal conductivity.
  14.  前記第2の凹部表面の最も低い部分を基準としたとき、前記内側環状突条の高さは、前記外側環状突条の高さよりも低い、請求項1~13のうちいずれか一項に記載の基板処理装置。 The height of the inner annular ridge is lower than the height of the outer annular ridge when the lowest portion of the surface of the second recess is used as a reference, according to any one of claims 1 to 13. substrate processing equipment.
  15.  第1の熱媒流路及び第2の熱媒流路を有する本体部であり、前記本体部は、内側環状突条及び外側環状突条を有する上面を有し、前記上面は、前記内側環状突条により囲まれた中央表面領域、及び、前記内側環状突条と前記外側環状突条との間のエッジ表面領域を有し、前記中央表面領域に形成された第1の凹部は、前記第1の熱媒流路と流体連通しており、前記エッジ表面領域に形成された第2の凹部は、前記第2の熱媒流路と流体連通しており、前記中央表面領域は、複数の凸部を有する、本体部と、
     前記本体部内に配置される内側静電電極及び外側静電電極であり、前記内側静電電極は、平面視で前記中央表面領域に渡って延在し、前記外側静電電極は、平面視で前記エッジ表面領域に渡って延在する、内側静電電極及び外側静電電極と、
    を備える、静電チャック。
    A main body portion having a first heat medium flow channel and a second heat medium flow channel, the main body portion having an upper surface having an inner annular ridge and an outer annular ridge, the upper surface having the inner annular ridge. A first recess formed in the central surface region having a central surface region surrounded by a ridge and an edge surface region between the inner annular ridge and the outer annular ridge; A second recess formed in the edge surface region is in fluid communication with the second heat transfer flow channel, and the central surface region includes a plurality of heat transfer flow channels. a main body having a protrusion;
    an inner electrostatic electrode and an outer electrostatic electrode disposed within the body portion, the inner electrostatic electrode extending across the central surface region in plan view, and the outer electrostatic electrode, in plan view an inner electrostatic electrode and an outer electrostatic electrode extending across the edge surface area;
    an electrostatic chuck.
  16.  前記本体部内に配置されるバイアス電極を更に備える、請求項15に記載の静電チャック。 The electrostatic chuck of claim 15, further comprising a bias electrode disposed within said body portion.
  17.  前記内側静電電極は前記バイアス電極としても機能する、請求項16に記載の静電チャック。 The electrostatic chuck of claim 16, wherein said inner electrostatic electrode also functions as said bias electrode.
  18.  本体部と、
     前記本体部の上面に環状に設けられた第1の突条と、
     前記本体部の上面に、前記第1の突条を囲むように環状に設けられた第2の突条と、
     平面視で、前記第1の突条の内周面から外側に設けられ、前記第1の突条および前記第2の突条に基板を吸着させるための静電気力を発生させる外側電極と、
     前記本体部の上面の中で前記第1の突条で囲まれた第1の領域に熱媒を供給する第1の熱媒流路と、
     前記本体部の上面の中で前記第1の突条と前記第2の突条とで囲まれた第2の領域に熱媒を供給する第2の熱媒流路と
    を備える静電チャック。
    a main body;
    a first ridge annularly provided on the upper surface of the main body;
    a second protrusion annularly provided on the upper surface of the main body so as to surround the first protrusion;
    an outer electrode that is provided outward from the inner peripheral surface of the first ridge in plan view and generates an electrostatic force for attracting the substrate to the first ridge and the second ridge;
    a first heat medium flow path that supplies a heat medium to a first area surrounded by the first ridges in the upper surface of the main body;
    An electrostatic chuck, comprising a second heat medium flow path for supplying a heat medium to a second area surrounded by the first ridge and the second ridge in the upper surface of the main body.
  19.  平面視で、前記外側電極の一部が、前記第1の突条および前記第2の突条のうち少なくともいずれか一方と重なっている請求項18に記載の静電チャック。 The electrostatic chuck according to claim 18, wherein a portion of the outer electrode overlaps at least one of the first ridge and the second ridge in plan view.
  20.  前記第1の突条で囲まれた前記本体部の内部に設けられた内側電極を備え、
     前記外側電極に印加される電圧は、前記内側電極に印加される電圧よりも大きい請求項18または19に記載の静電チャック。
    An inner electrode provided inside the main body surrounded by the first ridge,
    20. An electrostatic chuck according to claim 18 or 19, wherein the voltage applied to said outer electrode is higher than the voltage applied to said inner electrode.
PCT/JP2022/016272 2021-04-09 2022-03-30 Electrostatic chuck and substrate processing device WO2022215633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023512988A JP7378668B2 (en) 2021-04-09 2022-03-30 Electrostatic chuck and substrate processing equipment
KR1020237027246A KR20230169071A (en) 2021-04-09 2022-03-30 Electrostatic chucks and substrate handling devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066278 2021-04-09
JP2021-066278 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215633A1 true WO2022215633A1 (en) 2022-10-13

Family

ID=83546080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016272 WO2022215633A1 (en) 2021-04-09 2022-03-30 Electrostatic chuck and substrate processing device

Country Status (4)

Country Link
JP (1) JP7378668B2 (en)
KR (1) KR20230169071A (en)
TW (1) TW202306020A (en)
WO (1) WO2022215633A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251854A (en) * 2007-03-30 2008-10-16 Tokyo Electron Ltd Plasma processor
JP2013042145A (en) * 2012-09-03 2013-02-28 Tokyo Electron Ltd Plasma processing apparatus
JP2015062237A (en) * 2014-10-29 2015-04-02 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424700B2 (en) * 2015-03-26 2018-11-21 住友大阪セメント株式会社 Electrostatic chuck device
JP7140183B2 (en) * 2018-02-20 2022-09-21 住友大阪セメント株式会社 Electrostatic chuck device and method for manufacturing electrostatic chuck device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251854A (en) * 2007-03-30 2008-10-16 Tokyo Electron Ltd Plasma processor
JP2013042145A (en) * 2012-09-03 2013-02-28 Tokyo Electron Ltd Plasma processing apparatus
JP2015062237A (en) * 2014-10-29 2015-04-02 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TW202306020A (en) 2023-02-01
JPWO2022215633A1 (en) 2022-10-13
JP7378668B2 (en) 2023-11-13
KR20230169071A (en) 2023-12-15

Similar Documents

Publication Publication Date Title
KR102430205B1 (en) Plasma processing apparatus
US20210398786A1 (en) Plasma processing apparatus
WO2022215633A1 (en) Electrostatic chuck and substrate processing device
CN115527828A (en) Plasma processing apparatus and substrate support
JP2023088520A (en) Plasma etching processing device and upper electrode
JP2023044379A (en) Plasma processing apparatus
JP2022171027A (en) Substrate support and processing device
WO2023095707A1 (en) Electrostatic chuck and plasma processing device
WO2024038785A1 (en) Electrostatic chuck and substrate processing device
WO2024070267A1 (en) Substrate processing device and substrate processing method
WO2023074475A1 (en) Plasma processing device and electrostatic chuck
US20240062991A1 (en) Plasma processing apparatus and substrate processing method
WO2023058475A1 (en) Plasma processing apparatus
US20240079219A1 (en) Substrate processing apparatus
WO2022230728A1 (en) Bottom electrode mechanism, substrate processing device, and substrate processing method
US20240079215A1 (en) Substrate processing apparatus
WO2024018960A1 (en) Plasma processing device and plasma processing method
JP2023165222A (en) Electrostatic chuck, substrate support assembly, and plasma processing device
KR20220145274A (en) Electrode for plasma processing apparatus and plasma processing apparatus
JP2024011192A (en) Substrate supporter and plasma processing apparatus
JP2024033855A (en) plasma processing equipment
JP2024030838A (en) plasma processing equipment
JP2023002461A (en) Substrate processing apparatus and electrostatic chuck
JP2022130067A (en) Plasma processing device and substrate support
JP2023143783A (en) Plasma processor and mounting board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784617

Country of ref document: EP

Kind code of ref document: A1