WO2022215295A1 - 固定子、回転電機、固定子の製造方法および回転電機の製造方法 - Google Patents

固定子、回転電機、固定子の製造方法および回転電機の製造方法 Download PDF

Info

Publication number
WO2022215295A1
WO2022215295A1 PCT/JP2021/042815 JP2021042815W WO2022215295A1 WO 2022215295 A1 WO2022215295 A1 WO 2022215295A1 JP 2021042815 W JP2021042815 W JP 2021042815W WO 2022215295 A1 WO2022215295 A1 WO 2022215295A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole pieces
snap
stator
winding
Prior art date
Application number
PCT/JP2021/042815
Other languages
English (en)
French (fr)
Inventor
隆之 鬼橋
勇士 八木
遼 並河
太一 徳久
智也 糸瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180096397.7A priority Critical patent/CN117063376A/zh
Priority to JP2023512815A priority patent/JP7481583B2/ja
Publication of WO2022215295A1 publication Critical patent/WO2022215295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto

Definitions

  • the present application relates to a stator, a rotating electrical machine, a method for manufacturing a stator, and a method for manufacturing a rotating electrical machine.
  • a stator for a rotary electric machine in which magnetic pole pieces obtained by dividing a core into tooth units are connected to each other so as to be freely bendable in a direction perpendicular to the rotation output shaft direction (hereinafter simply referred to as the axial direction) via an insulator.
  • the axial direction perpendicular to the rotation output shaft direction
  • Patent Document 1 See, for example, Patent Document 1 below.
  • the adjacent magnetic pole pieces are prevented from interfering with each other by changing the angle of the connecting portion between the insulators so that the tooth portions are located on the outer diameter side. Since the conductive wire can be wound around the tooth portion without the wire being wound, the space factor of the winding can be improved.
  • Patent Document 1 it is necessary to prepare two types of insulators having different shapes in order to connect adjacent magnetic pole pieces using insulators. Therefore, there is a problem that the number of types of members increases and the process becomes complicated.
  • a mechanism is provided for inserting and extracting them in the axial direction.
  • the magnetic pole piece is arranged radially outward, it is necessary to prepare a holding mechanism or the like in order to prevent the magnetic pole piece from being axially displaced after coupling, which complicates the manufacturing process.
  • the crossover wire moves when the tooth portions of the magnetic pole pieces are arranged radially inward to form a ring. It is difficult to fix and arrange the connecting wire at a fixed position, and in some cases, a separate step of fixing and positioning the connecting wire at a fixed position is required.
  • the present application discloses a technique for solving the above-described problems, and provides a low-cost, high-performance stator, a rotating electrical machine, a stator manufacturing method, and a rotating machine without increasing the number of parts and manufacturing processes.
  • the object is to provide a method for manufacturing an electric machine.
  • the stator disclosed in the present application is A plurality of magnetic pole pieces each having a tooth portion projecting radially inwardly from an arc-shaped yoke portion are provided. and each of the magnetic pole pieces to which the insulator is attached is arranged in an annular shape with a conductive wire wound thereon,
  • One of the adjacent insulators attached to the magnetic pole pieces in the annular arrangement has a snap-fit female portion having an open ring portion formed with an opening opening in a direction orthogonal to the axial direction.
  • the other insulator is provided with a snap-fit male portion having a columnar portion axially extending from a base portion that bulges in the circumferential and radial directions, and the columnar portion fits into the open ring portion.
  • the magnetic pole pieces are oscillatably connected to each other by snap-fitting with each other, and at least one of the connecting portions that are snap-fitted and connected to each other is formed with a fixing portion for fixing the connecting portion.
  • the rotating electric machine disclosed in the present application includes the stator configured as described above and a rotor rotatably and coaxially arranged on the inner peripheral surface side of the stator.
  • the stator manufacturing method disclosed in the present application includes: an insulation assembly step of attaching the insulator to the magnetic pole piece; A winding step in which a conductor wire is intensively wound around one magnetic pole piece after the insulation assembly step, and a next magnetic pole piece to be wound after the winding step without cutting the conductor wire.
  • the manufacturing method of the rotating electrical machine disclosed in the present application includes a step of rotatably and coaxially arranging the rotor on the inner peripheral surface side of the stator after the above-described stator manufacturing steps.
  • the stator the rotating electrical machine, the manufacturing method of the stator, and the manufacturing method of the rotating electrical machine disclosed in the present application, it is possible to obtain an inexpensive, compact, high-performance product without increasing the number of parts. Further, according to the stator manufacturing method and the rotating electric machine manufacturing method disclosed in the present application, manufacturing can be performed without increasing the number of manufacturing processes, so manufacturing costs can be suppressed.
  • FIG. 1 is a schematic cross-sectional view showing a stator of a rotary electric machine according to Embodiment 1; 4 is a perspective view showing one magnetic pole piece that constitutes the stator according to Embodiment 1; FIG. 4 is a connection diagram showing a connection state of each magnetic pole piece of the stator according to Embodiment 1.
  • FIG. FIG. 4 is a wiring diagram schematically showing a wire connection state in which all magnetic pole pieces forming the stator according to Embodiment 1 are arranged in a straight line;
  • FIG. 4 is a perspective view of a state in which two insulators are attached to the magnetic pole pieces in the first embodiment, viewed from the radially inner side of the stator; FIG.
  • FIG. 4 is a front view of the state in which two insulators are attached to the magnetic pole pieces in the first embodiment, viewed from the radially outer side of the stator;
  • FIG. 4 is a perspective view of one insulator attached to the magnetic pole piece in Embodiment 1, viewed from the radially inner side;
  • Fig. 2 is a perspective view of the insulator viewed from the radially outer side in the first embodiment;
  • FIG. 4 is a plan view showing a state in which two adjacent magnetic pole pieces to which insulators are attached are snap-fitted and arranged in a straight line according to the first embodiment;
  • FIG. 10 is a perspective view showing a state in which the configuration shown in FIG. 9 is bent in a V shape;
  • FIG. 10 is a perspective view showing a state in which the configuration shown in FIG. 9 is bent in a V shape;
  • FIG. 10 is a view taken along the line AA in FIG. 9;
  • 1 is a schematic configuration diagram of an automatic winding machine used when manufacturing a stator for a rotary electric machine;
  • FIG. FIG. 4 is an explanatory diagram showing a state in which a conductive wire is continuously wound around four magnetic pole pieces corresponding to one phase (here, V phase) of three-phase alternating current according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing a state in which a conductive wire is continuously wound around four magnetic pole pieces corresponding to another one phase (here, U phase) of three-phase alternating current according to Embodiment 1; It is a figure which shows the state which welded the columnar part and open ring part of the insulator from the state shown in FIG.
  • FIG. 10 is a perspective view of one insulator attached to the magnetic pole piece as seen from the radially inner side in the second embodiment;
  • Fig. 10 is a perspective view of the insulator of the second embodiment as seen from the radially outer side;
  • FIG. 10 is a schematic side view of the snap-fit joint connecting portions of the magnetic pole pieces adjacent to each other to which the insulators of the second embodiment are mounted, viewed from the circumferential direction;
  • FIG. 10 is a perspective view of one insulator attached to the magnetic pole piece as seen from the radially inner side in the second embodiment;
  • Fig. 10 is a perspective view of the insulator of the second embodiment as
  • FIG. 21 is a view showing a state in which the snap-fit jointed connecting portion from the state shown in FIG. 20 is welded using a welding tool;
  • FIG. 4 is a schematic side view of a state in which snap-fit joints of adjacent magnetic pole pieces to which insulators are attached are fixed using screws, viewed from the circumferential direction;
  • 23A and 23B are plan views showing variations of insulators attached to adjacent pole pieces.
  • FIG. 2 is a schematic cross-sectional view of a rotating electric machine showing a modification of Embodiment 1;
  • FIG. FIG. 7 is a schematic cross-sectional view of a rotating electric machine showing another modification of the first embodiment;
  • FIG. FIG. 5 is a schematic side view showing an example of welding snap-fitted connecting portions of adjacent pole pieces;
  • FIG. 5 is a schematic side view showing another example of welding the snap-fit joints of adjacent pole pieces together;
  • Embodiment 1. 1 is a schematic cross-sectional view showing a stator of a rotating electric machine according to Embodiment 1
  • FIG. 2 is a perspective view showing one magnetic pole piece constituting the stator according to Embodiment 1
  • FIG. 3 is a stator according to Embodiment 1.
  • FIG. 4 is a wiring diagram schematically showing a wire connection state in which all the magnetic pole pieces forming the stator of Embodiment 1 are linearly arranged.
  • the magnetic pole pieces are shown in a simplified manner, and the conductors wound around the teeth and the insulators are omitted.
  • the stator 2 is for, as an example, a 10-pole, 12-teeth, three-phase DC brushless motor.
  • a plurality of (12 pieces in this example) magnetic pole pieces 10 each composed of a laminated iron core fixed by means of the magnetic pole pieces 10 are provided.
  • Each magnetic pole piece 10 has a back yoke portion 11 and tooth portions 12 protruding radially inward from the back yoke portion 11 .
  • Mounting grooves 13 for mounting the magnetic pole pieces 10 to a holding jig 52 of a rotation positioning mechanism 51 (to be described later) are formed on the radially outer peripheral surface side of the back yoke portion 11 when manufacturing the stator 2 .
  • Insulators 25 having the same shape are attached to each pole piece 10 from both ends in the axial direction. Details of the structure of the insulator 25 will be described later.
  • Two adjacent magnetic pole pieces 10 each having an insulator 25 mounted thereon are regarded as one set, and a conductive wire 20 made of a copper wire or the like is wound continuously around the two sets (total of four pieces) from above the insulator 25 . ing.
  • a total of four magnetic pole pieces 10, each of which is a set of two, correspond to one phase of each of the phases U, V, and W of the three-phase alternating current.
  • one set of two magnetic pole pieces 10 among the four magnetic pole pieces 10 around which the conductor wire 20 is wound is arranged so that each pair of magnetic pole pieces 10 is arranged in a point-symmetrical position opposite to each other with the center O of the circle interposed therebetween.
  • the magnetic pole pieces 10 are arranged in an annular shape so that each phase is alternately arranged along the circumferential direction. Circumferential butting ends of the back yoke portions 11 of the magnetic pole pieces 10 arranged annularly in this manner are connected to each other by the insulator 25 by a snap-fit connection, which will be described later.
  • each magnetic pole piece 10 corresponds to the respective phases of the three-phase alternating current, and N is the neutral point.
  • subscripts for each phase U, V, and W are shown to distinguish each conducting wire 20 wound around the tooth portion 12 of each adjacent two magnetic pole pieces 10, and the difference between U1 and U1' is indicates that the winding direction is left-right opposite.
  • U1 indicates counterclockwise rotation
  • U1' indicates clockwise rotation when viewed from the back yoke portion 11 side.
  • the difference between U1 and U2 is that U1 is the wire 20 wrapped around the first pair of pole pieces 10 and U2 is the second pair of pole pieces 10. It shows that it is a lead wire 20 that is wrapped around the eye.
  • the conducting wire 20 wound around the tooth portion 12 of each magnetic pole piece 10 is called a winding 21, and the conducting wire 20 that is routed between the magnetic pole pieces 10 without being cut is called a connecting wire 22.
  • the crossover wire connecting the pair of magnetic pole pieces 10 is indicated by reference numeral 22a. is denoted by reference numeral 22b.
  • the conductor wire 20 when the conductor wire 20 is wound continuously within the same phase, four magnetic pole pieces 10 are used as one unit for any of the U, V, and W phases.
  • the conductive wire 20 is continuously connected via a connecting wire 22a connecting a pair of magnetic pole pieces 10 adjacent to each other in the unit and a connecting wire 22b connecting each pair of magnetic pole pieces 10. can be wound, the number of connections of the winding ends can be reduced, and the manufacturing cost can be reduced.
  • FIG. 5 is a perspective view of a state in which two insulators are attached to one magnetic pole piece, viewed from the radially inner side of the stator.
  • FIG. 6 is a state in which two insulators are attached to one magnetic pole piece. It is the front view seen from the direction outside side.
  • 7 is a perspective view of the insulator attached to the magnetic pole piece viewed from the radially inner side
  • FIG. 8 is a perspective view of the insulator attached to the magnetic pole piece viewed from the radially outer side.
  • the insulator 25 is integrally molded, for example, from an insulating thermoplastic resin, and one type of insulator having the same shape is used for each individual magnetic pole piece 10 . If the insulator 25 is made of thermoplastic resin, even if it is manufactured by injection molding, it can be welded to each magnetic pole piece 10 by applying heat afterward.
  • the insulator 25 has a tooth fitting portion 27 fitted to the tooth portion 12 of each magnetic pole piece 10 and a back yoke fitting portion 32 fitted to the back yoke portion 11 .
  • the tooth fitting portion 27 includes a dome-shaped winding portion 28 that covers the axial half of the circumferential side surface of the tooth portion 12 of the magnetic pole piece 10 and extends circumferentially from the radially inner end of the winding portion 28 . and winding dams 29 projecting in the axial direction.
  • the back yoke fitting portions 32 are formed on the left and right sides in the circumferential direction with the inner peripheral surface cover portions 33 covering the inner peripheral surface of the back yoke portion 11 sandwiching the winding portion 28 .
  • a quadrangular prism-shaped protruding portion 34 protruding in the circumferential and radial directions is formed.
  • An intermediate protrusion 35 is provided between the two protrusions 34 so as to protrude in the axial direction.
  • winding relief grooves 36 are formed respectively.
  • the winding relief groove 36 is provided to release the winding start portion and the winding end portion of the conductor wire 20 radially outward in order to prevent the winding start portion and the winding end portion of the conductor wire 20 from interfering with the winding. belongs to.
  • a substantially C-shaped open ring portion 37a is integrally formed from one protruding portion 34 (on the right side in FIGS. 5 and 7), protruding outward in the circumferential direction and radial direction.
  • the open ring portion 37a is provided with an opening 37b that opens in a direction orthogonal to the axial direction, and a notch 37c is provided on the side facing the opening 37b.
  • a snap-fit female portion 37 is constituted by the ring-opening portion 37a in which the notch 37c and the opening 37b are formed.
  • the ring-opening portion 37a has a gap corresponding to the axial thickness D of the base portion 38a, which will be described later, between the axial ends of the pole pieces 10 in the axial direction. are provided.
  • a base portion 38a is formed integrally with the projection portion 34 on the other side (the left side in FIGS. 5 and 7) and protrudes outward in the circumferential and radial directions.
  • a cylindrical columnar portion 38b is formed.
  • the axial direction of the base portion 38a of the snap-fit male portion 38 is adjusted so that the columnar portion 38b is fitted through the opening portion 37b inside the open ring portion 37a.
  • the thickness D of is set so as to correspond to the axial clearance of the ring-opening portion 37a of the snap-fit female portion 37, as described above.
  • the axial length of the columnar portion 38b is set longer than the axial thickness of the ring-opening portion 37a.
  • a snap-fit male portion 38 is composed of the base portion 38a and the columnar portion 38b.
  • the outer diameter of the columnar portion 38b is preferably set to be equal to or greater than the inner diameter of the open ring portion 37a in a free state where no external force is applied to the open ring portion 37a of the snap-fit female portion 37. This is to prevent the columnar portion 38b from being easily detached from the ring-opening portion 37a when the columnar portion 38b is fitted into the ring-opening portion 37a and connected.
  • the opening 37b provided in the ring-opening portion 37a of the snap-fit female portion 37 is set so that the slit width is equal to or less than the diameter of the columnar portion 38b in a free state where no external force is applied. . This is also to prevent the columnar portion 38b from easily coming off from the ring-opening portion 37a when the columnar portion 38b is fitted into the ring-opening portion 37a and connected.
  • the open ring portion 37a is provided with a notch 37c on the side facing the opening portion 37b.
  • a notch 37c By providing such a notch 37c, the force for widening the opening 37b can be reduced, the columnar portion 38b can be smoothly fitted into the open ring portion 37a, and the inner peripheral surface side of the open ring portion 37a can be shifted from the outer peripheral surface side. It is possible to prevent breakage of the ring-opening portion 37a even when a force directed toward is suddenly applied.
  • the insulators 25 are arranged adjacent to each other as described later, and the columnar portion 38b of the snap-fit male portion 38 is connected to the open ring portion 37a of the snap-fit female portion 37.
  • a connecting portion is formed by a strong snap-fit connection, and the columnar portion 38b is rotatably held within the open ring portion 37a.
  • the inner peripheral surface of the ring-opening portion 37a does not necessarily have to be an arc as long as the columnar portion 38b can rotate.
  • the columnar portion 38b does not need to be a cylinder as long as the necessary rotation range can be secured.
  • the shape and the like can be changed as appropriate.
  • insulation assembly operation the operation of attaching the insulator 25 to one magnetic pole piece 10 (hereinafter referred to as insulation assembly operation) will be described.
  • insulators 25 shown in FIGS. 7 and 8 are attached to one magnetic pole piece 10 from both ends in the axial direction.
  • the snap-fit female portion 37 and the snap-fit male portion 38 are arranged so as to face opposite positions in the circumferential direction.
  • the circumferential surface of the tooth portion 12 of the pole piece 10 is covered with the winding portion 28 of the insulator 25, which is an insulating material.
  • the two insulators 25 mounted from both ends in the axial direction of the pole piece 10 have the same shape, and the insulators 25 inserted from the front and back in the axial direction are mutually different in shape. As compared with the case of making them different, the types of resin molding dies can be suppressed, making it possible to provide inexpensive products.
  • the pair of insulators 25 are attached separately to the magnetic pole piece 10, but instead, the magnetic pole piece 10 can be placed in a molding machine and directly covered with resin to integrally mold the insulator 25. It is possible.
  • FIG. 9 is a plan view showing a state in which two adjacent magnetic pole pieces with insulators attached are connected by a snap fit and arranged in a straight line
  • FIG. 10 is a state in which the configuration shown in FIG. 9 is bent into a V shape.
  • FIG. 11 is a view taken along line A--A in FIG.
  • the back yoke portions 11 of the pair of magnetic pole pieces 10 to which the insulators 25 are attached are arranged in parallel so that they are adjacent to each other. Then, between the magnetic pole pieces 10 adjacent to each other, the columnar portions 38b of the snap-fit male portions 38 are inserted into the openings 37b provided in the ring-opening portions 37a of the snap-fit female portions 37 at both ends along the axial direction. will face each other.
  • the columnar portion 38b is pushed into the open ring portion 37a.
  • the pair of adjacent magnetic pole pieces 10 to which the insulators 25 are attached are simultaneously snap-fit coupled at both ends in the axial direction, and as a result, the adjacent magnetic pole pieces 10 can rotate about the coupling portion.
  • the connection between the columnar portion 38b and the ring-opening portion 37a can be manually assembled, but may be fitted using a jig or the like.
  • the open ring portion 37a of the snap-fit female portion 37 is located between the ends of the pole pieces 10 in the axial direction, as described above. , a gap corresponding to the thickness D of the base portion 38a of the snap-fit male portion 38 is provided.
  • the axial length of the columnar portion 38b is set longer than the axial thickness of the open ring portion 37a, as shown in FIG. It will be in the state which only fixed length L protruded in the axial direction from the part 37a. This is to ensure in advance a material for welding the protruding portion of the columnar portion 38b and fixing it to the ring-opening portion 37a in a welding operation or a partial welding operation, which will be described later.
  • the axially opposite side is also snap-fitted in a similar manner.
  • FIG. 12 is a schematic configuration diagram of an automatic winding machine used to form the stator of the rotary electric machine having the above configuration.
  • This automatic winding machine 50 comprises a rotary positioning mechanism 51 for positioning each pole piece 10 and a flyer 54 for supply winding of the wire 20 .
  • the magnetic pole piece 10 with the insulator 25 mounted thereon is simply referred to as the magnetic pole piece 10 for convenience of explanation.
  • the rotation positioning mechanism 51 has a disk-shaped holding jig 52 that fixes each magnetic pole piece 10 .
  • the holding jig 52 is provided with a plurality of mounting pins (not shown) which are inserted into the mounting grooves 13 formed in the respective magnetic pole pieces 10 along the circumferential direction thereof, and a winding for fixing the winding start portion of the conductor 20 .
  • a starting line fixing pin 53 is provided.
  • the holding jig 52 is rotatable around its center O1.
  • the flyer 54 is for winding the conductor wire 20 around the tooth portion 12 of each magnetic pole piece 10 while supplying the conductor wire 20, and the arm portion 54b attached to the axial end of the pivot shaft 54a is positioned at the center of the pivot shaft 54a. As indicated by the arrow ⁇ , it can be rotated in forward and reverse directions around O2, and the rotation shaft 54a is slid in the axial direction (Z direction) in synchronization with the rotation for performing alignment winding. It is configured.
  • the conductive wire 20 to be supplied is connected from the base end side of the arm portion 54b of the flyer 54 to the tip portion through the inside of the arm portion 54b.
  • FIG. 13 is an explanatory diagram showing a state in which the conductor 20 is continuously wound around four magnetic pole pieces 10 corresponding to one phase (here, V phase) of a three-phase alternating current
  • FIG. 14 shows the remainder of the three-phase alternating current
  • 2 is an explanatory view showing a state in which a conductor 20 is continuously wound around each of four magnetic pole pieces 10 corresponding to two phases (U phase as an example here) of , and the conductor 20 wound around each tooth portion 12 part is omitted.
  • a 10-pole 12-teeth stator can be constructed by setting FIG. 13 to U phase and W phase, and FIG. 14 to V phase.
  • winding work the work of routing the conductor 20 to the next magnetic pole piece without cutting the end of the winding
  • crossover work repetitive work including winding work and crossover work is referred to as wiring work here.
  • the magnetic pole pieces 10 are individually denoted by reference numerals 10a, 10b, 10c, and 10d so that the magnetic pole pieces 10 can be distinguished from each other.
  • a set of two magnetic pole pieces 10a and 10b and a set of two magnetic pole pieces 10c and 10d are arranged so as to be substantially point-symmetrical with respect to each other with the center O1 of the holding jig 52 interposed therebetween.
  • the magnetic pole pieces 10a and 10b and the magnetic pole pieces 10c and 10d adjacent to each other are connected to each other by the snap-fit connection of the insulator 25 as described above.
  • each pair of adjacent magnetic pole pieces 10 a and 10 b and each pair of magnetic pole pieces 10 c and 10 d are held so that each tooth portion 12 is positioned outside the disk-shaped holding jig 52 .
  • a mounting pin (not shown) of the jig 52 is inserted into the mounting groove 13 formed in the back yoke portion 11 and fixed.
  • a set of two magnetic pole pieces 10a and 10b and a set of two magnetic pole pieces 10c and 10d adjacent to each other are arranged to form a V shape in which the distance along the circumferential direction between the tooth portions 12 is widened. be done.
  • the holding jig 52 is rotated to first move one magnetic pole piece 10a to a position facing the pivot shaft 54a of the flyer 54 .
  • the conductor wire 20 is wound around the insulator 25.
  • the flyer 54 is turned (here, turned clockwise when viewed from the back yoke portion 11 side), and in synchronization with this, the turning shaft is slid along the axial direction (Z direction).
  • the conductor wire 20 is wound around the tooth portion 12 of the magnetic pole piece 10a (hereinafter referred to as winding operation 1).
  • the other magnetic pole piece 10b, to which the wire 20 is not wound, and the other pair of magnetic pole pieces 10c, 10d are always flyers.
  • the winding work is performed by setting the arrangement positions of the respective magnetic pole pieces so that they are positioned outside the rotation plane Q of the turning tip of 54 (indicated by symbols P2, P3, and P4 in FIG. 12). In this way, when the conductor wire 20 is wound around one magnetic pole piece 10a, the flyer 54 can be reliably prevented from interfering with other magnetic pole pieces 10b, 10c, and 10d.
  • the holding jig 52 is rotated to move the other magnetic pole piece 10b to a position facing the pivot shaft 54a of the flyer 54.
  • the end of the winding of the conductor 20 wound around the previous magnetic pole piece 10a is not cut off and is used as a crossover wire 22a. along the winding relief groove 36 of the magnetic pole piece 10b (hereinafter, this is referred to as a crossover work 1).
  • the conductive wire 20 is wound around the tooth portion 12 of the magnetic pole piece 10b in a direction opposite to the winding direction of the previous magnetic pole piece 10a (in this example, counterclockwise when viewed from the back yoke portion 11 side) (hereinafter referred to as This is called winding operation 2).
  • winding operation 2 the magnetic pole pieces 10a, 10c, and 10d other than the magnetic pole piece 10b to which the wire 20 is to be wound are always positioned outside the plane of rotation Q of the tip of the flyer 54.
  • the holding jig 52 is rotated to move the magnetic pole piece 10c to a position facing the pivot shaft 54a of the flyer 54.
  • a predetermined length of wire just reaching the magnetic pole piece 10c to be the next winding work target is provided.
  • the conductor wire 20 is laid along the winding escape groove 36 for the magnetic pole piece 10c to be wound (hereinafter referred to as crossover work 2). .
  • the conducting wire 20 is wound in the same direction as the magnetic pole piece 10b (counterclockwise when viewed from the back yoke portion 11 side) (hereinafter referred to as winding operation 3).
  • winding operation 3 all of the magnetic pole pieces 10d, 10a, and 10b other than the magnetic pole piece 10c to which the wire 20 is to be wound are always positioned outside the plane of rotation Q of the turning end of the flyer 54.
  • the winding operation reliably prevents the flyer 54 from interfering with the other pole pieces 10d, 10a, 10b.
  • the holding jig 52 is rotated to move the magnetic pole piece 10d to a position facing the pivot shaft 54a of the flyer 54.
  • the holding jig 52 is rotated to move the magnetic pole piece 10d to a position facing the pivot shaft 54a of the flyer 54.
  • it is used as a crossover wire 22a, passed through the winding relief groove of the insulator 25, and then subjected to the next winding operation. It is made to run along the winding escape groove 36 of the pole piece 10d (hereinafter, this is referred to as the crossover work 3).
  • the conductive wire 20 is wound around the tooth portion 12 of the magnetic pole piece 10d in a direction opposite to the direction in which the previous magnetic pole piece 10c was wound (in this example, left and right when viewed from the back yoke portion 11 side) (hereinafter referred to as This is called winding operation 4).
  • the magnetic pole pieces 10c, 10a, and 10b other than the magnetic pole piece 10d to which the wire 20 is to be wound are always positioned outside the plane of rotation Q of the tip of the flyer 54.
  • the winding operation ensures that the flyer 54 does not interfere with the other pole pieces 10c, 10a, 10b.
  • the conductor 20 is wound continuously through the connecting wire 22 in at least two of the four magnetic pole pieces 10a, 10b, 10c, and 10d.
  • the conductive wire 20 is continuously wound through the connecting wire 22 on all of the magnetic pole pieces 10a, 10b, 10c, and 10d of each phase, in order to reduce the man-hours and the number of parts.
  • the wiring work and the partial ringing work are similarly performed for the four magnetic pole pieces 10 corresponding to the U phase and the W phase, respectively, and the four magnetic pole pieces 10 for each phase are connected.
  • a set of two magnetic pole pieces 10 arranged adjacent to each other are arranged alternately in the circumferential direction to form an annular ring, as shown in FIG.
  • the adjacent end surfaces of the magnetic pole pieces 10 are integrally connected by snap-fit coupling using insulators 25 (hereinafter, this is referred to as ringing operation).
  • connection processing is performed so that the connection state shown in FIGS. 3 and 4 is achieved.
  • the outer periphery of the magnetic pole pieces 10 arranged in an annular shape is molded with a resin 5 or the like to obtain the desired stator 2 for a three-phase DC brushless motor with 10 poles and 12 teeth.
  • the connecting wire 22b connecting each pair of the pair of magnetic pole pieces 10 adjacent to each other is along the outer periphery of the stator 2.
  • the connecting wire 22b is routed as long as it is possible to avoid interference with each magnetic pole piece 10 when connecting all the magnetic pole pieces 10 in an annular shape.
  • it can be located radially inwardly of each pole piece 10 arranged in an annular shape, or it can be located radially outwardly.
  • This welding part 40 melts a part of the columnar part 38b, so it becomes unnecessary to use another material (adhesive, screws, etc.). Further, the welded portion 40 bulges in the circumferential and radial directions to cover the axial end surface of the ring-opening portion 37a. Therefore, even if a load due to vibration or the like is applied to the connecting portions that are connected to each other by snap-fit coupling, the connecting portions are less likely to break and can be reliably fixed.
  • the welded parts are all snap-fitted connecting parts, but are not limited to this. As long as it is easy to handle in the circularization work, it is sufficient that there are not 24 points on both end faces in the axial direction, but 12 points on one end face, or 6 points, which is less than that. good.
  • the welding work is performed after the ring-shaped work for all the magnetic pole pieces 10 is completed, but the present invention is not limited to this. That is, after the wiring work to a set of two magnetic pole pieces is finished, the partial annular work of arranging the magnetic pole pieces 10a, 10b and 10c, 10d adjacent to each other so that the tooth portions 12 face the inner diameter is finished. It is also possible to perform welding at this point (hereinafter referred to as partial welding operation).
  • the magnetic pole pieces 10 are arranged alternately for each phase and arranged in an annular shape. Adjacent pole pieces 10a, 10b and 10c, 10d do not move during handling to perform an annular ringing operation that connects them together. That is, even if one of the pair of magnetic pole pieces 10a and 10b is gripped and moved during handling, the relative positions of the magnetic pole pieces 10a and 10b are fixed and will not be displaced. Therefore, handling of the device or jig can be facilitated.
  • the automatic winding machine 50 As explained above, by applying the automatic winding machine 50 as shown in FIG. You can move it to the desired position. After the magnetic pole piece 10 has moved to the predetermined position, the conductor wire 20 can be wound by rotating the flyer 54 while the position of the magnetic pole piece 10 remains fixed. In other words, since the rotation positioning mechanism 51 and the flyer 54 are separate and independent, the movement of the magnetic pole piece 10 to the supply side of the conductor 20 and the winding of the conductor 20 can be performed simultaneously by one mechanism. is simplified, failures are less likely to occur, and the device can be manufactured at low cost.
  • the magnetic pole piece 10 since the conductor 20 is wound by rotating the flyer 54, the magnetic pole piece 10 itself does not rotate at high speed, so vibration or deflection occurs during the winding of the conductor 20, resulting in good alignment of the wound conductor 20. Therefore, the working time is shortened and the production amount per unit time can be increased.
  • the magnetic pole pieces 10 are arranged in a V-shape as compared to the case where the number of the magnetic pole pieces 10 fixed to the holding jig 52 is large. Since each magnetic pole piece 10 can be opposed to the flyer 54 simply by rotating the rotation positioning mechanism 51 after attaching it at a desired interval, the angle between the adjacent magnetic pole pieces 10 becomes narrower and the conductor wire 20 is less likely to be wound. It is possible to eliminate troubles such as being an obstacle and not being able to freely set the length of the crossover 22a.
  • stator 2 In constructing the stator 2, it is often the case that a set of two magnetic pole pieces 10 are alternately arranged along the circumferential direction to form an annular ring. Although the distance of the crossover wire 22b connecting each pair of the magnetic pole pieces 10 becomes long, the magnetic pole pieces 10 can be positioned at the positions where the winding work is performed in sequence simply by rotating the rotation positioning mechanism 51. The length of the line 22b can be freely set.
  • the windings 21 when the windings 21 are applied, interference between the adjacent magnetic pole piece 10 and the flyer 54 can be avoided, and the alignment of the windings 21 can be improved. Moreover, since the crossover wires 22b can be provided even for the magnetic pole pieces 10 existing at discrete positions, the productivity can be improved.
  • FIG. 16 is a flow chart showing an example of a method for manufacturing the stator in the rotary electric machine of the first embodiment.
  • the insulation assembly work described above is performed, and the insulators 25 are attached to the respective magnetic pole pieces 10.
  • the magnetic pole piece 10 instead of attaching the pair of insulators 25 to the magnetic pole piece 10, the magnetic pole piece 10 can be placed in a molding machine and directly covered with resin for integral molding.
  • step S10 When the insulation assembly process of step S10 is finished, next, a pair of mutually adjacent magnetic pole pieces 10 with insulators 25 mounted thereon are snap-fitted and connected, and the two connected magnetic pole pieces 10 are made into one set, The two sets (four in total) are set as one of the U-phase, V-phase, and W-phase.
  • the process shifts to a wiring process in which the above-described wiring work (winding work of the conducting wire 20 and crossover work) is performed for each of the four magnetic pole pieces 10 corresponding to one phase.
  • step S11 the above-described winding work 1 is carried out, in which the conductive wire is intensively wound around one magnetic pole piece 10a via the insulator 25.
  • the crossover process 1 of step S12 the above-described crossover work 1 of forming a crossover without cutting the conductive wire continuously to the next magnetic pole piece 10b to be wound is performed.
  • the above-described winding operation 2 of intensively winding the conductive wire around one magnetic pole piece 10b through the insulator 25 is performed.
  • step S14 in the crossover process 2, the above-described crossover work 2 is performed to form a crossover wire without cutting the conductive wire continuously to the separated magnetic pole piece 10c to be wound.
  • step 3 of step S15 the above-described winding operation 3 of intensively winding the conductive wire around one magnetic pole piece 10c through the insulator 25 is performed.
  • step S16 the above-described crossover work 3 of forming a crossover without cutting the conductor 20 continuously to the next magnetic pole piece 10d to be wound is performed.
  • step 4 of step S17 the above-described winding operation 4 of intensively winding the conducting wire 20 around one magnetic pole piece 10d via the insulator 25 is performed.
  • step S18 for each of the four magnetic pole pieces 10 corresponding to each phase, the respective tooth portions 12 of the four magnetic pole pieces 10 are restored from the reversely warped V-shaped state to form an arc shape as described above. carry out conversion work.
  • step S19 the above-described partial welding operation of welding snap-fitted connection portions at least one or more places is performed for two sets (four pieces in total) of the magnetic pole pieces 10 corresponding to each phase.
  • the connecting portion where the pair of magnetic pole pieces 10a and 10b adjacent to each other are snap-fitted, two axial end surfaces are welded, or the pair of magnetic pole pieces 10c and 10d adjacent to each other are snap-fitted.
  • One of the axial end faces of the connecting portion is welded at one point.
  • the magnetic pole pieces 10a can be connected to each other.
  • 10b can be fixed, which facilitates handling.
  • the degree of freedom between the magnetic pole pieces 10 is reduced.
  • the magnetic pole piece 10 of each phase is welded, if there is no partial welding process, there are 12 points where the connecting portion that is snap-fitted moves. If they are alternately arranged in an annular shape, the overall rigidity may be weak, and it may be difficult to maintain the annular shape.
  • the adjacent pole pieces 10 of each phase are welded together, there are six movable parts during the ringing operation. Therefore, stronger fixation is possible.
  • step S19 when the partial welding process of step S19 is completed for the magnetic pole pieces 10 of all phases, the process proceeds to the next step S20 of circularizing process.
  • step S20 of forming an annular ring as shown in FIG. 1, all the magnetic pole pieces 10 are alternately arranged along the circumferential direction to form an annular ring.
  • the above-mentioned ringing operation of integrally connecting them by snap-fitting using the insulator 25 is performed.
  • step S21 the above-described welding operation of welding the remaining snap-fit jointed connecting portions that have not been welded in the partial welding process of step S19 is carried out.
  • the movement of each magnetic pole piece 10 can be suppressed, and the annular shape of the stator 2 can be easily maintained. Therefore, the magnetic pole pieces 10 do not come apart during handling until the subsequent molding step of molding with resin, and the shape is maintained when the magnetic pole piece 10 is put into the molding die, so that the insertability is improved. It is also possible to perform only the welding process without performing the partial welding process. In this case, since the welding process can be integrated into one process, productivity can be improved.
  • step S22 the entire stator 2 including the magnetic pole piece 10, the conductor wire 20, the open ring portion 37a of the insulator 25, the columnar portion 38b, etc., which are arranged in an annular shape, is molded with the resin 5. to implement.
  • the resin 5. to implement.
  • the connecting portion of the insulator 25 that protrudes to the outer diameter side of the pole piece 10 and is snap-fitted interferes.
  • the resin 5 can cover the conductive wire 20 which is a heat generating source, so that the heat dissipation can be improved, which in turn contributes to miniaturization of the rotary electric machine 1 using the stator 2 .
  • the rotor is rotatably and coaxially arranged on the inner diameter side of the stator 2 to obtain the desired rotating electric machine with low cost, small size, and high performance. .
  • FIG. 17A is a schematic cross-sectional view of the rotating electric machine thus obtained, and FIG. 17B is an enlarged view of part A1 in FIG. 17A.
  • a rotor 3 is rotatably coaxially arranged on the inner diameter side of a stator 2 having the configuration shown in FIG.
  • the rotor 3 is composed of a rotation output shaft 4, a rotor core 6 inserted into the rotation output shaft 4, and permanent magnets 7 arranged on the outer periphery thereof.
  • the permanent magnets 7 have ten poles. It is configured so as to be magnetized.
  • the permanent magnet 7 is ring-shaped here, it is not limited to such a configuration, and for example, a magnet divided into a plurality of pieces may be used.
  • the rotor 3 is configured as a surface-attached magnet structure (SPM; Surface Permanent Magnet), it is not limited to this. good too.
  • the entire stator 2 including the conducting wire 20 , the open ring portion 37 a of the insulator 25 , the columnar portion 38 b and the like is molded with the resin 5 . That is, the resin 5 molded on the stator 2 has an inner peripheral surface 5a formed up to the position of the inner peripheral contour extending in the circumferential direction from the inner peripheral surface of the magnetic pole piece 10, and an outer peripheral surface 5b extending from the inner peripheral surface of the magnetic pole piece 10.
  • the opening 37a and the columnar portion 38b of the insulator 25, which protrude radially outward, are also formed at a position to cover all of them.
  • each magnetic pole piece 10 can be easily fixed even if the columnar portion 38b serving as the rotation center of the insulator 25 is arranged on the outer diameter side of the magnetic pole piece 10 .
  • the connecting portion of the insulator 25 protruding to the outer diameter side of the pole piece 10 by snap-fitting interferes. This can be avoided by molding with the resin 5 as in the first embodiment, and the divided magnetic pole pieces 10 are fixed in an annular shape. Also, even if oil or the like adheres to the outer surface of the stator 2, damage to the conductors 20 and the pole pieces 10 can be suppressed.
  • the stator 2 of the rotary electric machine 1 for a three-phase DC brushless motor with 10 poles and 12 teeth is configured.
  • the magnetic pole pieces 10 are continuously wound, the magnetic pole pieces 10 are not limited to this, and can be applied to three or more magnetic pole pieces 10 adjacent to each other.
  • insulators 25 having the same shape are used and attached to the respective magnetic pole pieces 10, and the respective magnetic pole pieces 10 are connected by snap-fitting using the insulators 25. It is configured to form a connecting portion that is swingable and restricts displacement in the axial direction. Then, after the magnetic pole pieces 10 are formed into a ring, a structure and a manufacturing method are adopted in which the magnetic pole pieces are fixed together by welding the connecting portions that are snap-fitted together. Therefore, it is possible to obtain the rotary electric machine 1 having the high-performance stator 2 without increasing the number of parts used. In addition, since the manufacturing process can be performed without increasing the number of manufacturing steps, the manufacturing cost can be suppressed and the manufacturing work can be easily performed.
  • Embodiment 2 is a perspective view of one insulator attached to a magnetic pole piece viewed from the inside in the radial direction in the second embodiment, and FIG. 19 is a perspective view of the insulator of the second embodiment seen from the outside in the radial direction.
  • 20 is a schematic side view of the connecting portion of the magnetic pole pieces that are snap-fitted to each other and are fitted with the insulators of the second embodiment, viewed from the circumferential direction. 7, 8, and 11 of Embodiment 1 are denoted by the same reference numerals.
  • a feature of the second embodiment is that a slit 38f is provided by notching the axial end of the columnar portion 38b of the insulator 25 .
  • a chamfer 38h is formed on the axial end face of the slit 38f.
  • Other components are the same as those of the first embodiment.
  • FIG. 21 is a diagram showing a state in which the snap-fit jointed connecting portion from the state shown in FIG. 20 is welded using a welding tool.
  • the welding tool 60 has a cylindrical tubular portion 60a and a pressing portion 60b provided concentrically inside the tubular portion 60a.
  • the inner diameter of the cylindrical portion 60a is set slightly larger than the outer diameter of the open ring portion 37a.
  • the pressing portion 60b is arranged axially withdrawn from the open end of the cylindrical portion 60a by a certain distance, and is provided with a slit fitting projection 60c that is fitted into the slit 38f at the center of the end face.
  • the welding tool 60 When welding snap-fit joints of the magnetic pole pieces 10 adjacent to each other, the welding tool 60 is axially pressed against the tubular portion 60a and heated. At this time, since the cylindrical portion 60a is chamfered 38h in advance, the slit fitting protrusion 60c is easily fitted into the slit 38f without being displaced. Then, when the welding tool 60 is pressed against the tubular portion 60a and heated, the tip of the columnar portion 38b melts and changes its shape to form the welded portion 40. As shown in FIG.
  • the welded portion 40 formed in this case not only covers the axial end face of the ring-opening portion 37a, but also partially covers the outer peripheral surface of the ring-opening portion 37a. For this reason, the snap-fitted joints are firmly welded. In this way, the connecting portion that has been snap-fitted can be firmly fixed by a single operation of pressing the welding tool 60 against the cylindrical portion 60a and heating it. work can be done.
  • the connecting portions that are snap-fitted are welded to form welded portions 40 for fixation.
  • Such welding is desirable because it eliminates the need to use other materials, but it is not limited to forming a fixing portion by fixing snap-fitted connecting portions.
  • the axial length of the columnar portion 38b is set slightly shorter than the axial thickness of the ring-opening portion 37a, and the columnar portion 38b is fixed by screwing a screw 62, for example. good too.
  • the connecting portion can be fixed by such means.
  • the open ring portion 37a may be melted and welded. By doing so, even if an external force is applied to move the magnetic pole pieces 10 away from each other, this can be suppressed by closing the open ring portion 37a.
  • the insulators 25 attached to the individual magnetic pole pieces 10 are all of the same shape and of only one type. That is, the insulator 25 has a configuration in which a snap-fit female portion 37 having an open ring portion 37a on one circumferential end side and a snap-fit male portion 38 having a columnar portion 38b on the other circumferential end side are formed.
  • the present application is not limited to such a configuration.
  • FIGS. 23A and 23B it is possible to use two types of insulators having symmetrical shapes with respect to the circumferential center of the tooth portion 12 of the pole piece 10 as a boundary. That is, as shown in FIG. 23A, one insulator 25a is formed with snap-fit female portions 37 having open ring portions 37a at both ends in the circumferential direction. 23B, the other insulator 25b is formed with snap-fit male portions 38 having columnar portions 38b at both ends in the circumferential direction.
  • the two types of insulators 25a and 25b are attached to the magnetic pole pieces 10 adjacent to each other, and snap-fit coupling is achieved by fitting the columnar portion 38b into the open ring portion 37a, and the magnetic pole pieces 10 are rotatably connected.
  • the other insulator 25b is provided with a hole 39 that is not present in the one insulator 25a.
  • This hole 39 is connected to a terminal for connecting the end of the conductor 20 to supply power.
  • Embodiment 1 ( FIG. 17 ), the entire stator 2 including the conducting wire 20 , the open ring portion 37 a of the insulator 25 , the columnar portion 38 b and the like is molded with the resin 5 .
  • the resin 5 molded on the stator 2 is formed so that the inner peripheral surface 5a thereof reaches the position of the inner diameter contour extending in the circumferential direction from the inner peripheral surface of the pole piece 10.
  • the position of the outer peripheral surface 5b is the position of the outer diameter contour extending in the circumferential direction from the outer peripheral surface of the pole piece 10. formed inside the Therefore, in this configuration, the open ring portion 37 a and the columnar portion 38 b of the insulator 25 are not molded with the resin 5 .
  • the divided magnetic pole pieces 10 are formed into an annular shape. While maintaining the fixed state, it is possible to reduce the amount of the resin 5 used for molding, thereby reducing the weight and material cost.
  • the position of the outer peripheral surface 5b (indicated by the dashed line in the figure) of the resin 5 to be molded is the position of the outer diameter contour obtained by extending the outer peripheral surface of the pole piece 10 in the circumferential direction. It is formed slightly inside the However, unlike the above modification (FIG. 24), the ring-opening portion 37a and the columnar portion 38b of the insulator 25 projecting further radially outward than the pole pieces 10 are locally molded with the resin 5c. there is A connecting wire (not shown) is also molded in this way.
  • the outer peripheral surface 5b (indicated by the broken line in the drawing) is ) is formed slightly inside the position of the outer diameter contour extending in the circumferential direction of the outer peripheral surface of the magnetic pole piece 10, so molding is performed as compared with the case of the first embodiment (FIG. 17). It is possible to reduce the amount of resin 5 used, thereby reducing weight and material costs.
  • a slit 38f is provided in a part of the columnar portion 38b of the insulator 25, and the axial ends of the columnar portion 38b are welded, so that the magnetic pole pieces 10 are snap-fitted to each other.
  • the connecting portions that are connected to each other are further strongly connected.
  • the crossover wire 22 is arranged in a slit 38f provided in a part of the columnar portion 38b, and the axial end portion of the columnar portion 38b is welded in this state. Furthermore, a portion of the radially outer peripheral side of the base portion 38a of the snap-fit male portion 38 of the insulator 25 is cut away to form a groove portion 38g having a U-shaped cross section at two upper and lower positions along the axial direction. is deformed by bending, winding, etc. so as to pass through the groove 38g.
  • the crossover wire 22 that passes through the welded portion of the columnar portion 38b is a crossover wire that corresponds to a certain phase (for example, the V phase) and is routed between the magnetic pole pieces 10 that are arranged adjacent to each other.
  • the crossover wire arranged in the groove portion 38g is a crossover wire of another phase (for example, U phase, W phase) different from this.
  • the connecting wire 22 can be prevented from moving.
  • the connecting wires 22 of other phases it is possible to avoid unexpected contact between the connecting wires 22 of different phases having a large potential difference.
  • the crossover wire 22 is fixed by welding (33h) that portion.
  • the connecting wires 22 arranged in the columnar portion 38b and the grooves 38g are of different phases.
  • each connecting wire 22 is arranged in each groove portion 38g after the ringing process, the portion is welded (33h) to fix the connecting wire 22, so that each connecting wire 22 can be regulated, and unexpected contact between different-phase crossover wires 22 having a large potential difference can be reliably avoided.
  • 1 rotating electrical machine 2 stator, 3 rotor, 5 resin, 10, 10a, 10b, 10c, 10d magnetic pole piece, 11 back yoke portion, 12 tooth portion, 20 conducting wire, 21 winding, 22, 22a, 22b connecting wire , 25, 25a, 25b insulator, 37 snap-fit female part, 37a ring-opening part, 37b opening part, 38 snap-fit male part, 38a base part, 38b columnar part, 38f slit, 40 welding part, 50 automatic winding machine, 51 Rotation positioning mechanism, 54 flyer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

一対の樹脂製のインシュレータ(25)が装着された複数の磁極片(10)は、導線(20)が巻装されて円環状に配置され、インシュレータ(25)は、軸方向端部の周方向の一方端に開口部が形成された開環部(37a)を有するスナップフィット雌部(37)が、他方端に基部(38a)から軸方向に延出された柱状部(38b)を有するスナップフィット雄部(38)が設けられ、互いに隣接する磁極片(10)同士は、開環部(37a)への柱状部(38b)の嵌合によりスナップフィット結合されて互いに揺動可能に連結され、かつ互いに連結された連結部分は溶着されて溶着部(40)が形成されている。

Description

固定子、回転電機、固定子の製造方法および回転電機の製造方法
 本願は、固定子、回転電機、固定子の製造方法および回転電機の製造方法
に関するものである。
 回転電機の固定子において、コアをティース単位で分割した磁極片同士を、インシュレータを介して回転出力軸方向(以下、単に軸方向という)と直交する方向に折り曲げ自在に連結する構成のものが開示されている(例えば、下記の特許文献1参照)。
 この構成によれば、磁極片のティース部に巻線を施すために、ティース部が外径側に位置するようにインシュレータ相互の連結部分の角度を変えることで、隣り合う磁極片同士が干渉せずにティース部に導線を巻回できるので、巻線の占積率を向上させることができる。
特開2006-254569号公報
 しかしながら、特許文献1においては、インシュレータを用いて隣接する磁極片同士を連結するには、形状の異なる2種類のインシュレータを用意する必要がある。そのため、部材の種類の増加と工程の複雑化を招く問題がある。
 また、各磁極片の連結と回転のために、軸方向に抜き差しする機構を設けているが、磁極片のティース部に巻線を施すために、ティース部を逆反りしたV字形を呈するように径方向の外側に配置する際、連結後の磁極片が軸方向に位置ずれするのを防止するため、保持機構等を用意する必要があり、製造工程が煩雑となる問題がある。
 また、複数の磁極片に対して渡り線を介して連続して巻線をしようとすると、磁極片のティース部を径方向の内側に配置して環状化する際、渡り線が動いてしまい、一定の位置に固定配置することが難しく、別途、渡り線を所定の位置に固定配置する工程が必要となる場合があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、部品点数と製造工程を増加させることなく、安価、高性能な固定子、回転電機、固定子の製造方法および回転電機の製造方法を提供することを目的としている。
 本願に開示される固定子は、
円弧状のヨーク部から径方向の内方に向けてティース部が一体に突出形成された複数の磁極片を備え、各々の前記磁極片は、前記径方向と直交する軸方向において、一対の樹脂製のインシュレータがそれぞれ装着され、かつ前記インシュレータが装着された各々の前記磁極片は、導線が巻装された状態で円環状に配置されており、
前記円環状の配置における前記磁極片に装着されて互いに隣接する前記インシュレータの内、一方のインシュレータには軸方向と直交する方向に開口する開口部が形成された開環部を有するスナップフィット雌部が、他方のインシュレータには周方向および径方向に膨出された基部から軸方向に延出された柱状部を有するスナップフィット雄部が設けられ、前記開環部への前記柱状部の嵌合によりスナップフィット結合されて前記磁極片が互いに揺動可能に連結され、かつ、前記スナップフィット結合されて互いに連結された連結部分の少なくとも1箇所は、当該連結部分を固定する固定部が形成されている。
 本願に開示される回転電機は、上記構成の固定子、およびこの固定子の内周面側に回転自在に同軸配置された回転子を備える。
 本願に開示される固定子の製造方法は、
前記磁極片に対して前記インシュレータを装着する絶縁組立工程と、
前記絶縁組立工程を経た後の1つの磁極片に対して導線を集中的に巻き付ける巻線工程と、前記巻線工程を経た後に、次の巻線対象の磁極片に対して導線を切断せずに渡り線として導入する渡り線工程とを繰り返す配線工程と、
前記配線工程により、全ての磁極片に対する導線の巻き付けが完了した後に、各々の磁極片を円環状に配置して互いに隣接する磁極片同士の全てを前記インシュレータのスナップフィット結合により連結する環状化工程と、
互いにスナップフィット結合された連結部分を固定する固定工程とを含む。
 本願に開示される回転電機の製造方法は、上記の固定子の製造工程を経た後、前記固定子の内周面側に回転子を回転自在に同軸配置する工程を含む。
 本願に開示される固定子、回転電機、固定子の製造方法および回転電機の製造方法によれば、部品点数を徒に増加させることなく、安価、小型で高性能な製品が得られる。また、本願に開示され固定子の製造方法および回転電機の製造方法によれば、製造工程を増加させることなく製作できるので、製造コストを抑えることができる。
実施の形態1に係る回転電機の固定子を示す断面略図である。 実施の形態1に係る固定子を構成する一つの磁極片を示す斜視図である。 実施の形態1に係る固定子の各磁極片の結線状態を示す結線図である。 実施の形態1に係る固定子を構成する全ての磁極片を直線状に並べた結線状態を模式的に表した結線図である。 実施の形態1において磁極片に2つのインシュレータを装着した状態を固定子の径方向内方側から見た斜視図である。 実施の形態1において磁極片に2つのインシュレータを装着した状態を固定子の径方向外方側から見た正面図である。 実施の形態1において磁極片に装着される1つのインシュレータを径方向内方側から見た斜視図である。 実施の形態1においてインシュレータを径方向外方側から見た斜視図である。 実施の形態1においてインシュレータを装着した互いに隣接する2つの磁極片をスナップフィット結合して直線状に配置した状態を示す平面図である。 図9の構成のものをV字状に屈曲配置した状態を示す斜視図である。 図9のA-A矢視図である。 回転電機の固定子を製造する場合に使用される自動巻線機の概略構成図である。 実施の形態1の3相交流の1相分(ここではV相)に対応する4個の磁極片に対して連続して導線を巻き付けた状態を示す説明図である。 実施の形態1の3相交流の他の1相分(ここではU相)に対応する4個の磁極片に対して連続して導線を巻き付けた状態を示す説明図である。 図11に示す状態からインシュレータの柱状部と開環部を溶着した状態を示す図である。 実施の形態1に係る固定子の製造方法の一例を示すフローチャートである。 図17Aは実施の形態1に係る固定子の製造方法に基づいて得られる回転電機の概略断面図であり、図17Bは図17AのA1部の拡大図である。 実施の形態2において、磁極片に装着される1つのインシュレータを径方向内方から見た斜視図である。 実施の形態2のインシュレータを径方向外方から見た斜視図である。 実施の形態2のインシュレータを装着した互いに隣接する磁極片のスナップフィット結合された連結部分を周方向から見た概略側面図である。 図20に示す状態からスナップフィット結合された連結部分を溶着ツールを用いて溶着した状態を示す図である。 インシュレータを装着した互いに隣接する磁極片のスナップフィット結合された連結部分をネジを用いて固定した場合の状態を周方向から見た概略側面図である。 図23Aおよび図23Bは互いに隣接する磁極片に装着されるインシュレータの変形例を示す平面図である。 実施の形態1の変形例を示す回転電機の概略断面略図である。 実施の形態1の他の変形例を示す回転電機の概略断面略図である。 互いに隣接する磁極片のスナップフィット結合された連結部分を溶着した一例を示す概略側面図である。 互いに隣接する磁極片のスナップフィット結合された連結部分を溶着した他の一例を示す概略側面図である。
実施の形態1.
 図1は実施の形態1の回転電機の固定子を示す断面略図、図2は実施の形態1の固定子を構成する一つの磁極片を示す斜視図、図3は実施の形態1の固定子を構成する各磁極片の結線状態を示す結線図、図4は実施の形態1の固定子を構成する全ての磁極片を直線状に並べた結線状態を模式的に表した結線図である。なお、図4では磁極片は簡略化して表しており、ティース部に巻かれる導線、インシュレータは省略している。
 この実施の形態1の回転電機1において、固定子2は、一例として10極12ティースの3相DCブラシレスモータ用のものであって、軸方向に沿って薄板を複数枚積み重ねてカシメ、あるいは溶接等により固定されてなる積層鉄心で構成された複数個(本例では12個)の磁極片10を備える。
 各磁極片10は、バックヨーク部11と、このバックヨーク部11から径方向内方に突出したティース部12とを有する。そして、バックヨーク部11の径方向外周面側には、固定子2の製造に際して磁極片10を後述の回転位置決め機構51の保持治具52に取り付けるための取付溝13が形成されている。
 また、各磁極片10には、軸方向の両端それぞれから同一形状のインシュレータ25が装着されている。なお、インシュレータ25の構造の詳細については後述する。そして、インシュレータ25が装着された互いに隣接する2個の磁極片10を1組として、その2組分(計4個)に連続して銅線等からなる導線20がインシュレータ25の上から巻き付けられている。この2個1組の計4個の磁極片10が3相交流のそれぞれの相U、V、Wの内の1相分に対応している。
 そして、この導線20が巻き付けられた4個の磁極片10の内、2個1組の磁極片10同士が互いに円の中心Oを挟む点対称位置に対向配置されるように、2個1組の磁極片10を周方向に沿って各相が交互になるように順次配置して円環状に配置されている。このように円環状に配置された各磁極片10のバックヨーク部11の周方向の突き合わせ端部同士がインシュレータ25による後述するスナップフィット結合により結合されている。
これにより、10極12ティースの3相DCブラシレスモータ用の固定子2が構成されている。
 なお、図1、図3、図4において、各磁極片10に対して付された符号U、V、Wは3相交流のそれぞれの相に対応しており、Nは中性点である。また、各相U、V、Wに対する添え字は、それぞれの隣接する2つの各磁極片10のティース部12に巻き付けられた各導線20を区別するために示しており、U1とU1’の違いは、巻回方向が左右反対であることを示す。例えば、図3においてバックヨーク部11側から見てU1が左回り、U1’が右回りを示す。またU1とU2との違いは、U1が2個1組となった磁極片10の第1組目に巻き付けられる導線20であり、U2が2個1組となった磁極片10の第2組目に巻き付けられる導線20であることを示す。
 また、各磁極片10のティース部12の箇所に巻き付けられる導線20を巻線21と、また各磁極片10間に渡って切断することなく引き回される導線20を渡り線22と称する。この場合、渡り線22を特に区別する必要があるときには、2個1組の磁極片10間を結ぶ渡り線は符号22aで、2個1組の磁極片10の各組相互間を結ぶ渡り線は符号22bで示す。
 この実施の形態1では、図4に示すように、同相内で連続して導線20を巻き付ける場合、U、V、Wの各相のいずれについても、4個の磁極片10を1単位として、その単位内で互いに隣接する2個1組の磁極片10間を結ぶ渡り線22a、ならびに2個1組の磁極片10の各組相互間を結ぶ渡り線22bを経由して連続して導線20を巻き付ければよいので、巻線端末部の接続回数を削減でき、安価に製造できるので有利である。
 図5は一つの磁極片に2つのインシュレータを装着した状態を固定子の径方向内方側から見た斜視図、図6は一つの磁極片に2つのインシュレータを装着した状態を固定子の径方向外方側から見た正面図である。また、図7は磁極片に装着されるインシュレータを径方向内方側から見た斜視図、図8は磁極片に装着されるインシュレータを径方向外方側から見た斜視図である。
 インシュレータ25は、例えば絶縁性の熱可塑性樹脂などで一体成形されたもので、個々の磁極片10に対して全て同一形状をした1種類のものが使用される。なお、インシュレータ25を熱可塑性樹脂で構成しておけば、射出成形で製作された場合でも、その後に熱を加えることで各磁極片10に溶着することが可能となる。
 次に、インシュレータ25の構成について説明する。
 インシュレータ25は、各磁極片10のティース部12に嵌合されるティース嵌合部27と、バックヨーク部11に嵌合されるバックヨーク嵌合部32とを有する。
 ティース嵌合部27は、磁極片10のティース部12の周方向の周側面について、その軸方向の半分を覆うドーム状の巻線部28、および巻線部28の径方向内端から周方向および軸方向にそれぞれ張り出した巻線堰止部29を有する。
 また、バックヨーク嵌合部32は、バックヨーク部11の内周面を覆う内周面カバー部33が巻線部28を挟む周方向の左右にそれぞれ形成されている。そして、各内周面カバー部33の軸方向の一端には、周方向および径方向に突出した四角柱状の突出部34が形成されている。また、両突出部34の間には軸方向に突出する中間突出部35が設けられている。さらに、突出部34と中間突出部35の間には、それぞれ巻線逃がし溝36が形成されている。なお、巻線逃がし溝36は、導線20の巻始め部分および巻終り部分が巻線と干渉することを避けるために、導線20の巻始め部分および巻終り部分を径方向外方側に逃すためのものである。
 また、一方(図5、図7の右側)の突出部34からは、周方向および径方向外方に膨出して略C字状をなす開環部37aが一体に形成されている。そして、この開環部37aには軸方向と直交する方向に開口する開口部37bが設けられるとともに、開口部37bに対向する側には切れ込み37cが設けられている。そして、上記の切れ込み37cおよび開口部37bが形成された開環部37aによりスナップフィット雌部37が構成されている。しかも、この開環部37aは、図6に示すように、軸方向において、磁極片10の軸方向端部との間に、後述の基部38aの軸方向の厚みDに対応する隙間を存して設けられている。
 また、他方(図5、図7の左側)の突出部34からは、周方向および径方向外方に膨出して基部38aが一体に形成されており、この基部38aには軸方向に延出された円柱状の柱状部38bが形成されている。
 この場合、インシュレータ25が後述するように互いに隣接配置された際、柱状部38bが開環部37aの内部に開口部37bを通じて嵌合されるように、スナップフィット雄部38の基部38aの軸方向の厚さDは、上記のように、スナップフィット雌部37の開環部37aの軸方向の隙間に対応するように設定されている。また、柱状部38bの軸方向の長さは、開環部37aの軸方向の厚さよりも長く設定されている。そして、上記の基部38aおよび柱状部38bによりスナップフィット雄部38が構成されている。
 なお、柱状部38bの外径は、スナップフィット雌部37の開環部37aに何ら外力が加わらないフリーの状態では、開環部37aの内径以上に設定することが好ましい。これは、柱状部38bを開環部37aに嵌め込んで連結させた際に、柱状部38bが開環部37aから容易に外れるのを防ぐためである。
 また、スナップフィット雌部37の開環部37aに設けられている開口部37bは、何ら外力が加わらないフリーの状態では、そのスリット幅が柱状部38bの径以下になるように設定されている。これも、柱状部38bを開環部37aに嵌め込んで連結させた際に、柱状部38bが開環部37aから容易に外れるのを防ぐためである。
 また、開環部37aには、開口部37bに対向する側に切れ込み37c設けている。このような切れ込み37cを設けることで、開口部37bを拡げる力を低減でき、柱状部38bの開環部37aへの嵌め込みを円滑に行えるとともに、開環部37aの内周面側から外周面側に向かう力が不意に加わった際にも、開環部37aの破断を防止することができる。
 上記のような構成を有するインシュレータ25を用いることにより、インシュレータ25を後述するように互いに隣接配置した上で、スナップフィット雄部38の柱状部38bを、スナップフィット雌部37の開環部37aの開口部37bに対して軸方向と直交する方向から挿入することで、強固なスナップフィット結合による連結部分が形成され、かつ、開環部37a内で柱状部38bが回動可能に保持される。
 なお、開環部37aの内周面は、柱状部38bが回転できるのであれば、必ずしも円弧である必要はない。また、柱状部38bについても、必要な回動範囲を確保できるのであれば、円柱である必要はなく、例えば、ある角度で保持したいような場合、断面形状が楕円形、あるいは一部を切り欠いた形状等、適宜変更可能である。
 次に、一つの磁極片10に対してインシュレータ25を装着する作業(以下、絶縁組立作業と称す)について説明する。
 図5、図6に示すように、一つの磁極片10に対しては、その軸方向の両端から、それぞれ図7、図8に示すインシュレータ25を装着する。その際、スナップフィット雌部37とスナップフィット雄部38とが周方向において互いに逆向きの位置になるように配置する。これにより、磁極片10のティース部12の周方向の周回面が絶縁材であるインシュレータ25の巻線部28で覆われた状態となる。
 磁極片10の軸方向の両端からそれぞれ装着される2つのインシュレータ25は、図7、図8に示すように、同一形状のものであり、軸方向の前後それぞれから挿入するインシュレータ25の形状を互いに異ならせる場合に比べて、樹脂成形金型の種類を抑制することができ、安価な製品を提供することが可能となる。
 なお、ここでは、磁極片10に一対のインシュレータ25を別途装着するようにしているが、その代わりに、磁極片10を成形機に入れて直接に樹脂で覆ってインシュレータ25を一体成形することも可能である。
 次に、インシュレータ25を装着した磁極片10同士をスナップフィット結合により互いに連結する作業について説明する。
 なお、ここでは、理解を容易にするため、互いに隣接する一対の磁極片10同士を連結する場合を例に取って説明するが、3個以上の磁極片10同士を連結する場合も同様である。
 図9はインシュレータを装着した互いに隣接する2つの磁極片をスナップフィットで結合して直線状に配置した状態を示す平面図、図10は図9の構成のものをV字状に屈曲配置した状態を示す斜視図、図11は図9のA-A矢視図である。
 図9、図10に示すように、インシュレータ25を装着した一対の磁極片10のバックヨーク部11同士が互いに隣接するように並列に並べる。そうすると、互いに隣接する磁極片10間では、軸方向に沿う両端部において、それぞれスナップフィット雌部37の開環部37aに設けられている開口部37bに、スナップフィット雄部38の柱状部38bが対向することになる。
 そこで、磁極片10間の角度を調整しつつ、柱状部38bを開環部37aの内部に向かって押し込む。これにより、インシュレータ25を装着した互いに隣接する一対の磁極片10同士は、軸方向の両端において、同時にスナップフィット結合され、その結果、結合部分を中心として互いに隣接する磁極片10同士が回動可能に連結される。なお、柱状部38bと開環部37aの連結は、手作業で組み付けることができるが、治具等を用いて嵌め込んでもよい。
 しかも、磁極片10に装着された互いに隣接するインシュレータ25相互間においては、前述のように、軸方向において、スナップフィット雌部37の開環部37aは、磁極片10の端部との間に、スナップフィット雄部38の基部38aの厚みDに対応する隙間を存して設けられている。
 このため、図11に示すように、インシュレータ25を装着した互いに隣接する磁極片10をスナップフィット結合により連結すると、基部38aが、隙間Dに挟み込まれる。
このため、軸方向への動きが生じた場合でも、開環部37aと基部38aとの互いの当接によりその動きが規制される。したがって、互いに隣接する磁極片10間で軸方向の変位が生じることによる脱落が防止される。その結果、複数の磁極片10が連なった状態(図9、図10参照)を容易に維持することができ、図1に示したように、環状への連結も容易に行うことができる。
 また、柱状部38bの軸方向の長さは、開環部37aの軸方向の厚さよりも長く設定されているので、図11に示すように、柱状部38bの軸方向端部は、開環部37aから軸方向に一定長さLだけ突出した状態となる。これは、後述する溶着作業あるいは部分溶着作業において、柱状部38bの突出部分を溶着して開環部37aに固定するための材料を予め確保しておくためである。なお、軸方向の反対側についても同様の態様でスナップフィット結合されている。
 図12は上記構成の回転電機の固定子を形成する場合に使用される自動巻線機の概略構成図である。
 この自動巻線機50は、各磁極片10を位置決めするための回転位置決め機構51と、導線20の供給巻付用のフライヤ54とを備える。なお、以下で自動巻線機50を使用して導線20の巻き付けを行う場合において、説明の便宜上、磁極片10にインシュレータ25が装着された状態のものを単に磁極片10と称する。
 回転位置決め機構51は、各磁極片10を固定する円盤状の保持治具52を有する。この保持治具52には、その周方向に沿って各磁極片10に形成された取付溝13に差し込まれる図示しない取付ピンが複数設けられるとともに、導線20の巻始め箇所を固定するための巻始線固定用ピン53を備える。そして、この保持治具52は、その中心O1を回転中心として回転可能に構成されている。
 一方、フライヤ54は、導線20を供給しつつ、各磁極片10のティース部12に導線20を巻き付けるためのもので、旋回軸54aの軸端に取り付けられたアーム部54bが旋回軸54aの中心O2を中心として矢印θで示すように正逆転方向にそれぞれ旋回可能に設けられるとともに、整列巻きを行うために旋回動作と同期して旋回軸54aが軸方向(符号Z方向)へスライドするように構成されている。そして、供給される導線20は、フライヤ54のアーム部54bの基端側からアーム部54bの内部を通って先端部分まで繋がっている。
 図13は3相交流の1相分(ここではV相)に対応する4個の磁極片10に対して連続して導線20を巻き付けた状態を示す説明図、図14は3相交流の残りの2相分(ここでは一例としてU相)に対応する4個の各磁極片10に対して連続して導線20を巻き付けた状態を示す説明図であり、各ティース部12に巻き付けられる導線20の部分は省略している。
 図13、図14の比較から分るように、U相、W相の場合は、V相の場合と導線20が巻き付けられる方向、および巻き始め部分および巻き終わり部分の位置が逆になっている。また、これとは逆に図13をU相、W相、図14をV相とすることでも10極12ティースの固定子を構成することができる。
 次に、図12および図13を参照し、自動巻線機50を使用して、1相分(ここではV相)を構成する2個1組の計4個の磁極片10の各ティース部に導線20を巻き付ける作業(以下、巻線作業という)、および巻線作業後に導線20の巻き終わり部分を切断することなくこれを次の磁極片まで引き回す作業(以下、渡り線作業という)の内容について説明する。
 なお、ここでは、巻線作業と渡り線作業を合わせた繰り返し作業を配線作業と称する。
また、ここでは、説明の便宜上、各磁極片10が区別できるように、磁極片に対して個別に10a、10b、10c、10dの各符号を付す。
 まず、2個1組の磁極片10a、10bと、2個1組の磁極片10c、10dの2組が互いに保持治具52の中心O1を挟む略点対称位置となるように配置する。このとき、互いに隣接する磁極片10aと10b、および磁極片10cと10dは前述したようにインシュレータ25のスナップフィット結合により互いに連結されている状態である。
 次いで、互いに隣接する2個1組の磁極片10a、10bおよび2個1組の磁極片10c、10dそれぞれについて、各ティース部12が円盤状の保持治具52の外側に位置するように、保持治具52の図示しない取付ピンをバックヨーク部11に形成された取付溝13に挿入するなどして固定する。これによって、互いに隣接する2個1組の磁極片10a、10bおよび2個1組の磁極片10c、10dのティース部12相互間の周方向に沿う離間距離が広がったV字形を呈するように配置される。
 そして、保持治具52を回転してまず一つの磁極片10aをフライヤ54の旋回軸54aと対面する位置に移動させる。続いて、フライヤ54のアーム部54bの先端から出ている導線20の端末部分を保持治具52に設置されている巻始線固定用ピン53等に固定した後、導線20をインシュレータ25の巻線逃がし溝36に沿わせてから、フライヤ54を旋回(ここではバックヨーク部11側から見て右回り旋回)するとともに、これに同期して旋回軸を軸方向(Z方向)に沿ってスライドさせながらこの磁極片10aのティース部12に導線20を巻き付ける(以下、巻線作業1と称す)。
 その際、2個1組の磁極片10a、10bの内、導線20の巻線作業を行っていない他の磁極片10b、ならびに2個1組の他の磁極片10c、10dがいずれも常にフライヤ54の旋回先端の回転面Qよりも外側(図12では符号P2、P3、P4で示す箇所)に位置するように各磁極片の配置位置を設定して巻線作業を行う。このようにすれば、一つの磁極片10aに導線20を巻き付ける際、これ以外の他の磁極片10b、10c、10dに対してフライヤ54が干渉することを確実に避けることができる。
 次に、保持治具52を回転し、他方の磁極片10bをフライヤ54の旋回軸54aと対面する位置に移動させる。このとき、先の磁極片10aに巻き付けた導線20の巻き終わり部分を切断することなくこれを渡り線22aとして、インシュレータ25の巻線逃がし溝36を通した後、次の巻線作業の対象となる磁極片10bの巻線逃がし溝36に沿わせる(以下、これを渡り線作業1と称す)。
 続いて、この磁極片10bのティース部12に対して先の磁極片10aに巻いた方向とは逆方向(この例ではバックヨーク部11側から見て左回り)に導線20を巻き付ける(以下、これを巻線作業2と称す)。
 その際、導線20の巻線作業の対象となる磁極片10b以外の他の磁極片10a、10c、10dがいずれも常にフライヤ54の旋回先端の回転面Qよりも外側に位置するように各磁極片の配置位置を設定して巻線作業を行うことで、他の磁極片10a、10c、10dにフライヤ54が干渉することを確実に避けることができる。
 次に、保持治具52を回転し、磁極片10cをフライヤ54の旋回軸54aと対面する位置に移動させる。このとき、先の磁極片10bに巻き付けた導線20の巻き終わり部分を切断することなく、巻線逃がし溝36を通した後、次の巻線作業の対象となる磁極片10cに至るだけの所定長さ分を渡り線22bとして確保した後、この巻線作業の対象となる磁極片10cに対して、導線20を巻線逃がし溝36に沿わせる(以下、これを渡り線作業2と称す)。
 次いで、先の磁極片10bと同じ方向(バックヨーク部11側から見て左回り)に導線20を巻き付ける(以下、これを巻線作業3と称す)。
 この場合も、導線20の巻線作業の対象となる磁極片10c以外の他の磁極片10d、10a、10bがいずれも常にフライヤ54の旋回先端の回転面Qよりも外側に位置するようにして巻線作業を行うことで、他の磁極片10d、10a、10bにフライヤ54が干渉することを確実に避けることができる。
 最後に、保持治具52を回転し、磁極片10dをフライヤ54の旋回軸54aと対面する位置に移動させる。このとき、先の磁極片10cに巻き付けた導線20の巻き終わり部分を切断することなくこれを渡り線22aとして、インシュレータ25の巻線逃がし溝を通した後、次の巻線作業の対象となる磁極片10dの巻線逃がし溝36に沿わせる(以下、これを渡り線作業3と称す)。
 続いて、この磁極片10dのティース部12に対して先の磁極片10cに巻いた方向とは逆方向(この例ではバックヨーク部11側から見て左右回り)に導線20を巻き付ける(以下、これを巻線作業4と称す)。
 この場合も、導線20の巻線作業の対象となる磁極片10d以外の他の磁極片10c、10a、10bがいずれも常にフライヤ54の旋回先端の回転面Qよりも外側に位置するようにして巻線作業を行うことで、他の磁極片10c、10a、10bにフライヤ54が干渉することを確実に避けることができる。
 このようして、2個1組の計4個の磁極片10a、10b、10c、10dについて配線作業(巻線作業と渡り線作業)を行った後、これらの各磁極片10a、10b、10c、10dを保持治具52から取り外す。そして、図13に示すように、2個1組(計4個)の磁極片10a、10bおよび10c、10dのそれぞれのティース部12を逆反りしたV字形の状態から円弧状となるように元に戻す(以下、この作業を部分環状化作業と称する)。これにより、V相に対応する4個の磁極片10a、10b、10c、10dに対して連続して導線20が巻き付けられた状態となる。
 なお、4個の磁極片10a、10b、10c、10dの内、少なくとも2つの磁極片において渡り線22を介して連続して導線20が巻き付けられていればよく、渡り線22がない箇所は結線で補ってもよい。望ましくは、各相の磁極片10a、10b、10c、10dの全てにおいて渡り線22を介して連続して導線20が巻き付けられている方が工数、部品点数を低減できる点で好ましい。
 以下、同様にしてU相およびW相にそれぞれ対応する4個の各磁極片10に対しても同様に配線作業および部分環状化作業を実施し、これら各相4個分の各磁極片10の内、互いに隣接配置された2個1組の磁極片10を、図1に示したように周方向に沿って各相交互に順次配置して円環状にする。そして、各磁極片10の互いに隣接する端面同士を、インシュレータ25を用いたスナップフィット結合により一体的に連結する(以下、これを環状化作業と称する)。
 続いて、図3、図4に示した結線状態となるように結線処理を行う。その後、円環状に配置された磁極片10の外周を樹脂5でモールドするなどすることにより、所期の10極12ティースの3相DCブラシレスモータ用の固定子2が得られる。
 なお、先の図13、図14に示した例では、互いに隣接する2個1組の磁極片10の各組の相互間を結ぶ渡り線22bは、固定子2の外周に沿わせているが、全ての磁極片10を円環状に結合する際に、渡り線22bが各磁極片10に干渉するのを避けることができる態様ならばどのように引き回すかについては特別な制約はない。例えば、円環状に配置される各磁極片10の径方向の内方側に位置させる、あるいは径方向の外方側に位置させることができる。
 図11に示したように、インシュレータ25を装着した磁極片10同士をスナップフィット結合により互いに連結すると、柱状部38bの軸方向端部は、開環部37aから軸方向に一定長さLだけ突出した状態となっている。そこで、次に、全てのインシュレータ25の柱状部38bに対して熱を加え、図15に示すように、柱状部38bの軸方向端部を開環部37aに溶着して溶着部40を作る(以下、これを溶着作業という)。そして、この溶着部40が特許請求の範囲における固定部に相当する。
 この溶着部40は、柱状部38bの一部を溶かすので、別の材料(接着剤、ねじなど)を使用するのが不要となる。また、この溶着部40は、周方向および径方向に膨出されて開環部37aの軸方向端面を覆っている。そのため、スナップフィット結合により互いに連結された連結部分に振動等によって荷重が加わっても、破壊されにくく、確実に連結部分を固定することが可能となる。
 なお、上記の説明では、溶着作業において、溶着箇所はスナップフィット結合された全ての連結部分としたが、これに限定されることはない。環状化作業においてハンドリングが容易となればそれでよいので、軸方向の両方の端面の24箇所でなくても、一方の端面の12箇所であってもよいし、それより少ない6箇所であってもよい。
 また、上記の説明では、全ての磁極片10を円環状にした環状化作業が終わった後に、溶着作業を行っているが、これに限定されることはない。すなわち、2個1組の磁極片への配線作業が終わった後、互いに隣接する磁極片10a、10b、および10c、10dをティース部12が内径を向くように配置する部分環状化作業が終了した時点で溶着することも可能である(以下、これを部分溶着作業という)。
 このような部分溶着作業を行うことで、次に各相交互に磁極片10を順次配置して円環状に配置して互いに隣接する磁極片10同士の全てをインシュレータ25を用いたスナップフィット結合により一体的に連結する環状化作業を行うためのハンドリングの際に、互いに隣接する磁極片10a、10b、および10c、10dが移動することがない。すなわち、ハンドリング時に例えば一対の磁極片10a、10bについて、そのどちらか一方を把持して動かしても、互いの磁極片10a、10bの相対位置が固定されて位置ずれすることがない。このため、装置または治具の扱いを容易化することができる。
 以上説明したように、図12に示したような自動巻線機50を適用することにより、回転位置決め機構51を回転させるだけで同機構に取り付けた磁極片10がフライヤ54の旋回軸54aと対面する位置まで順次移動させることができる。そして、磁極片10が所定の位置まで移動した後は、磁極片10の位置は固定したままでフライヤ54を回転させることで導線20を巻き付けることができる。つまり、回転位置決め機構51とフライヤ54とは分離独立しているため、磁極片10の導線20の供給側への移動、および導線20の巻付とを一つの機構で同時に行えるので、装置の構成が簡素化され、故障が少なくかつ装置を安価に製作することができる。
 しかも、フライヤ54を回転させることで導線20の巻き付けを実施する構成であり、磁極片10自体は高速回転しないので、導線20の巻き付け時に振動、あるいはたわみが発生して巻き付けた導線20の整列性が悪化するなどの不都合は生じず、このため、作業時間が早くなり、単位時間当たりの生産量を増やすことができる。
 また、保持治具52に固定する磁極片10の数が多い場合と比較して、2個1組の磁極片10を保持治具52に取り付ける場合、これらの磁極片10をV字形を呈するように所望の間隔で取り付けた上で回転位置決め機構51を回転するだけで各磁極片10をフライヤ54に対向させることができるので、隣接する磁極片10の角度が狭くなって導線20を巻き付ける際の邪魔になり、また渡り線22aの長さを自由に設定できないなどの不具合発生を無くすことができる。
 また、固定子2を構成する上では、2個1組の磁極片10を周方向に沿って各相交互に順次配置して円環状にすることが多いが、その場合、2個1組の磁極片10の各組相互間を結ぶ渡り線22bの距離は長くなるが、回転位置決め機構51を回転させるだけで順次巻線作業を行う箇所に各磁極片10を位置させることができるので、渡り線22bの長さを自由に設定することができる。
 さらに、巻線21を施す際に、隣接する磁極片10とフライヤ54との干渉を避けることができ、巻線21の整列性を高めることができる。しかも、離散した位置に存在する磁極片10に対しても渡り線22bを施すことが可能であるため、生産性を高めることができる。
 図16はこの実施の形態1の回転電機における固定子の製造方法の一例を示すフローチャートである。
 まず、ステップS10の絶縁組立工程では、前述の絶縁組立作業を行い、各磁極片10にインシュレータ25を装着する。なお、この絶縁組立工程では、磁極片10に一対のインシュレータ25を装着する代わりに、磁極片10を成形機に入れて直接に樹脂で覆って一体成形することも可能である。
 ステップS10の絶縁組立工程が終了すると、次に、インシュレータ25を装着した互いに隣接する一対の磁極片10同士をスナップフィット結合して連結し、連結された2個の磁極片10を1組として、その2組分(計4個)をU相、V相、W相のいずれか一つの相として設定する。
 続いて、一つの相に対応する4個の各磁極片10に対して前述の配線作業(導線20の巻線作業および渡り線作業)を実施する配線工程に移行する。
 具体的な工程としては、
 まず、ステップS11の巻線工程1では、インシュレータ25を介して1つの磁極片10aに導線を集中的に巻き付ける前述の巻線作業1を実施する。
 次に、ステップS12の渡り線工程1では、次の巻線対象の磁極片10bに連続して導線を切断せず渡り線として形成する前述の渡り線作業1を実施する。
 次に、ステップS13の巻線工程2では、インシュレータ25を介して1つの磁極片10bに導線を集中的に巻き付ける前述の巻線作業2を実施する。
 次に、ステップS14の渡り線工程2では、離間する巻線対象の磁極片10cに連続して導線を切断せず渡り線として形成する前述の渡り線作業2を実施する。
 次に、ステップS15の巻線工程3では、インシュレータ25を介して1つの磁極片10cに導線を集中的に巻き付ける前述の巻線作業3を実施する。
 次に、ステップS16の渡り線工程3では、次の巻線対象の磁極片10dに連続して導線20を切断せず渡り線として形成する前述の渡り線作業3を実施する。
 次に、ステップS17の巻線工程4では、インシュレータ25を介して1つの磁極片10dに導線20を集中的に巻き付ける前述の巻線作業4を実施する。
 上記のU相、V相、W相のいずれか一つの相に対応する4個の各磁極片10の配線工程(巻線工程1~4、および渡り線工程1~3)が完了すると、残りの他の相に対応する4個の各磁極片10に対しても、同様にして、配線工程(巻線工程1~4、および渡り線工程1~3)を繰り返し実施する。
 そして、全ての相について4個分の各磁極片10の配線工程(導線20の巻線工程1~4および渡り線工程1~3)が完了すると、次の部分環状化工程に移行する。
 ステップS18の部分環状化工程では、各相に対応する4個の各磁極片10について、それぞれのティース部12を逆反りしたV字形の状態から円弧状となるように元に戻す前述の部分環状化作業を行う。
 ステップS19の部分溶着工程では、各相に対応する2組分(計4個)の磁極片10について、スナップフィット結合された連結部分を少なくとも1箇所以上溶着する前述の部分溶着作業を行う。
 例えば、互いに隣接する一対の磁極片10a、10bのスナップフィット結合された連結部分において、軸方向の両端面の2箇所を溶着する、あるいは互いに隣接する一対の磁極片10c、10dのスナップフィット結合された連結部分の軸方向の両端面の内の、一方の端面の1箇所を溶着する。
 このような部分溶着作業を行うことで、次の環状化工程でのハンドリングの際に、例えば一対の磁極片10a、10bについて、そのどちらか一方を把持して動かしても、互いの磁極片10a、10bの相対位置を固定することができ、ハンドリングが容易となる。
 すなわち、環状化作業を行う環状化工程の前に、予め部分溶着工程が存在するようにしておくと、各磁極片10間の自由度が小さくなる。つまり、各相の磁極片10が溶着されている場合、部分溶着工程がないと、スナップフィット結合された連結部分が動く点が12箇所あるので、各磁極片10を周方向に沿って各相交互に順次配置して円環状に配置した場合に、全体の剛性が弱く、円環状に維持することが難しくなる場合がある。これに対して、各相の互いに隣接する磁極片10が溶着されている場合、環状化作業を行った際の可動部分は6箇所となる。このため、より強固な固定が可能となる。
 そして、全ての相の磁極片10について、ステップS19の部分溶着工程が完了すると、次のステップS20の環状化工程に移行する。ステップS20の環状化工程では、図1に示したように、全ての磁極片10を周方向に沿って各相交互に順次配置して円環状にした後、各磁極片10の互いに隣接する端面同士を、インシュレータ25を用いたスナップフィット結合により一体的に連結する前述の環状化作業を実施する。
 次のステップS21の溶着工程では、ステップS19の部分溶着工程で溶着していない残りのスナップフィット結合された連結部分を溶着する前述の溶着作業を実施する。
 これより、各磁極片10の動きを抑制でき、固定子2となるべき円環状の形状を維持し易い。このため、その後に樹脂でモールドするモールド工程までのハンドリング時に各磁極片10がバラバラにならず、モールド金型に投入する際に形状が維持されているため挿入性が良くなる。
 なお、部分溶着工程を実施せず、溶着工程だけを行うことも可能である。この場合、溶着工程を1つの工程に集約することができるため、生産性を高めることができる。
 最後に、ステップS22のモールド工程では、円環状に配置された磁極片10、導線20、インシュレータ25の開環部37a、柱状部38bなどを含めた固定子2全体を樹脂5でモールドするモールド作業を実施する。このようにすることで、インシュレータ25の一部(この実施の形態1では、スナップフィット結合された連結部分の回転中心となる柱状部38b)を磁極片10の外径側に配置したとしても、各磁極片10の固定を容易に行える。つまり、筒状の金属リングを磁極片10の外径に圧入、接着等で配置しようとすると、磁極片10よりも外径側にはみ出したインシュレータ25のスナップフィット結合された連結部分が干渉してしまうが、本願のように樹脂5でモールドして覆うことでこれを回避することが可能となる。また、樹脂5により発熱源となる導線20を覆うことができ、放熱性を高めることができ、ひいてはこの固定子2を用いた回転電機1の小型化に寄与することができる。
 そして、図16に示した固定子の製造工程を経た後、固定子2の内径側に回転子を回転自在に同軸配置する工程により、安価、小型で高性能な所期の回転電機が得られる。
 図17Aは、このようにして得られた回転電機の概略断面図であり、図17Bは図17AのA1部の拡大図である。
 この回転電機1は、図1に示した構成の固定子2の内径側に回転子3が回転自在に同軸配置され、固定子2の外周は樹脂5でモールドされている。そして、回転子3は、内径側から回転出力軸4、この回転出力軸4に挿入された回転子鉄心6、およびその外周に配置された永久磁石7からなり、永久磁石7は、10極になるように着磁されて構成されている。
 なお、ここでは永久磁石7をリング状としたが、このような構成に限定されるものではなく、例えば複数に分割された磁石を使用してもよい。また、回転子3の構成を表面貼付型磁石構造(SPM;Surface Permanent Magnet)としているが、これに限定されるものではなく、例えば埋込型磁石構造(IPM;Interior Permanent Magnet)を採用してもよい。
 また、ここでは、導線20、インシュレータ25の開環部37a、柱状部38bなどを含めた固定子2全体が樹脂5でモールドされている。すなわち、固定子2にモールドされた樹脂5は、その内周面5aが磁極片10の内周面を周方向に延長した内径輪郭の位置まで形成され、また、その外周面5bが磁極片10よりもさらに径方向外方に突出したインシュレータ25の開環部37a、柱状部38bも全て覆う位置に形成されている。
 この構成であると、インシュレータ25の回転中心となる柱状部38bが磁極片10の外径側に配置されていても、各磁極片10の固定を容易に行える。つまり、筒状の金属リングを磁極片10の外径に圧入、接着等で配置しようとすると、磁極片10より外径側にはみ出したインシュレータ25のスナップフィット結合による連結部分が干渉してしまうが、この実施の形態1のように、樹脂5でモールドすることでこれを回避することが可能となり、分割された磁極片10が環状に固定される。また、固定子2の外面に油などが付着しても、導線20、磁極片10へのダメージを抑制することができる。
 なお、この実施の形態1では、10極12ティースの3相DCブラシレスモータ用の回転電機1の固定子2を構成する場合を前提としたため、互いに隣接する磁極片10として2個の磁極片10が連続に巻線されるものについて説明したが、これに限定されることはなく、磁極片10が3個以上隣接するものであっても適用可能である。
 以上のように、この実施の形態1によれば、同一形状をしたインシュレータ25を使用してこれを各磁極片10に装着し、このインシュレータ25を用いて、各磁極片10をスナップフィット結合によって揺動可能、かつ軸方向の変位を規制する連結部分を形成するように構成している。そして、各磁極片10を環状化した後は、スナップフィット結合された連結部分を溶着して磁極片同士を固定する構造、製法を採用した。このため、使用部品点数を増加させることなく、高性能な固定子2を有する回転電機1を得ることができる。また、製造工程を徒に増加させることなく製作できるので、製造コストを抑えることができ、かつ製作作業を容易に行える。
実施の形態2.
 図18は実施の形態2において、磁極片に装着される1つのインシュレータを径方向内方から見た斜視図、図19は実施の形態2のインシュレータを径方向外方から見た斜視図、図20は実施の形態2のインシュレータを装着した互いに隣接する磁極片のスナップフィット結合された連結部分を周方向から見た概略側面図である。なお、実施の形態1の図7、図8、図11と対応する構成部分には、同一の符号を付す。
 この実施の形態2の特徴は、インシュレータ25の柱状部38bの軸方向端部を切り欠いてスリット38fが設けられている。そして、スリット38fの軸方向端面には面取り38hが形成されている。その他の構成部分は、実施の形態1と同様である。
 図21は、図20に示す状態からスナップフィット結合された連結部分を溶着ツールを用いて溶着した状態を示す図である。
 溶着ツール60は、円筒状の筒状部60a、および筒状部60aの内側に同心状に設けられた押圧部60bを有する。そして、筒状部60aは、その内径が開環部37aの外径よりも幾分大きく設定されている。また、押圧部60bは、筒状部60aの開放端から軸方向に一定寸法だけ後退して配置されるとともに、その端面中央には、スリット38f内に嵌入されるスリット嵌入突起60cが設けられている。
 互いに隣接する磁極片10のスナップフィット結合された連結部分を溶着する場合には、この溶着ツール60を筒状部60aに対して軸方向から押し付けて加熱する。その際、筒状部60aに予め面取り38hが形成されているので、スリット嵌入突起60cが位置ずれすることなくスリット38f内に容易に嵌入される。そして、溶着ツール60を筒状部60aに対して押圧、加熱すると、柱状部38bの先端が溶解して形状を変え溶着部40が形成される。
 その場合に形成される溶着部40は、開環部37aの軸方向端面を覆うだけでなく、開環部37aの外周面の一部も同時に覆った状態となる。このため、スナップフィット結合された連結部分は、強固に溶着される。このように、溶着ツール60を筒状部60aに対して押し付けて加熱するという一度の作業でスナップフィット結合された連結部分を強固に固定できるので、前述の部分溶着工程、あるいは溶着工程で効率よく作業を行うことができる。
 なお、上記の実施の形態1、2では、スナップフィット結合された連結部分を溶着して溶着部40を形成することで固定した。このように溶着を行えば、他の材料を使用する必要がないので望ましいが、スナップフィット結合された連結部分を固定して固定部を形成するには、これに限定されることはない。
 例えば、図22に示すように、柱状部38bの軸方向の長さを開環部37aの軸方向の厚さよりも若干短く設定し、柱状部38bに例えばねじ62を螺合して固定してもよい。
インシュレータ25に熱硬化性樹脂を使った場合であっても、このような手段で連結部分を固定することができる。また、他の方法で固定部を形成するには、例えば開環部37aを溶かすことで溶着してもよい。このようにすることで、磁極片10同士が遠ざかる方向に外れるような外力が作用したとしても、開環部37aが閉じていることでこれを抑制することができる。さらに他の方法で固定部を形成するには、例えば連結部分に接着剤を入れて固定することも可能である。
 なお、上記の実施の形態1、2において、個々の磁極片10に対して装着されるインシュレータ25は、全て同一形状をした1種類のものだけを使用している。すなわち、インシュレータ25は、周方向の一方端側に開環部37aを有するスナップフィット雌部37を、他方端側に柱状部38bを有するスナップフィット雄部38を形成した構成としている。しかし、本願は、このような構成に限定されない。
 例えば、図23Aおよび図23Bに示すように、磁極片10のティース部12の周方向の中央を境に対称形状をしたインシュレータを2種類使用することも可能である。すなわち、一方のインシュレータ25aは、図23Aに示すように、周方向の両端に共に開環部37aを有するスナップフィット雌部37が形成されている。また、他方のインシュレータ25bは、図23Bに示すように、周方向の両端に共に柱状部38bを有するスナップフィット雄部38が形成されている。
 この2種類のインシュレータ25a、25bを互いに隣接する磁極片10に装着し、開環部37aに柱状部38bを嵌め合わせることでスナップフィット結合され、磁極片10同士が回動可能に連結される。
 なお、他方のインシュレータ25bには、一方のインシュレータ25aには存在しない穴39を設けている。この穴39は、導線20の端末を接続して電源を供給する端子が接続される。このように、複数種類のインシュレータ25a、25bを備えることで、それぞれに違う形状を持たせることができ、自由度が広がるというメリットがある。ただし、部品点数が増える懸念もあるため、どちらが有利かを判断して使用すればよい。
 さらに、上記の実施の形態1、2に対して次の変形例を考えることができる。
変形例1.
 実施の形態1(図17)では、導線20、インシュレータ25の開環部37a、柱状部38bなどを含めた固定子2全体が樹脂5でモールドされている。
 これに対して、図24に示す変形例では、固定子2にモールドされた樹脂5は、その内周面5aが磁極片10の内周面を周方向に延長した内径輪郭の位置まで形成されているが、その外周面5b(図中、破線で示す)の位置は、実施の形態1(図17)の場合と異なり、磁極片10の外周面を周方向に延長した外径輪郭の位置よりも内側に形成されている。したがって、この構成では、インシュレータ25の開環部37a、柱状部38bなどは、樹脂5でモールドされていない。
 このように、モールドする樹脂5の外周面5bの位置を磁極片10の外周面を周方向に延長した外径輪郭の位置よりも内側に形成することにより、分割された磁極片10を環状に固定した状態を保ちつつ、モールドする樹脂5の使用量を抑制し、軽量化および材料費の低減を図ることができる。
変形例2.
 上記の変形例(図24)では、モールドした樹脂5の外周面5bの位置は、磁極片10の外周面を周方向に延長した外径輪郭の位置よりも内側に形成されており、インシュレータ25の開環部37a、柱状部38bなどは、樹脂5でモールドされていない。
 これに対して、図25に示す変形例では、モールドする樹脂5の外周面5b(図中、破線で示す)の位置は、磁極片10の外周面を周方向に延長した外径輪郭の位置よりも若干内側に形成されている。しかし、上記の変形例(図24)の場合と異なり、磁極片10よりもさらに径方向外方に突出したインシュレータ25の開環部37a、および柱状部38bが樹脂5cで局部的にモールドされている。これにより図示しない渡り線もモールドされている。
 このように、磁極片10同士がスナップフィット結合されて互いに連結された連結部分(開環部37a、および柱状部38b)を樹脂5でモールドすることで、回転電機1の固定子2の剛性を上げることができ、振動を抑制することができる。また、固定子2の外面に油などが付着しても、スナップフィット結合されて互いに連結された連結部分へのダメージを抑制することができる。さらに、磁極片10よりもさらに径方向外方に突出したインシュレータ25の開環部37a、柱状部38bを樹脂5cで局部的にモールドした部分を除けば、その外周面5b(図中、破線で示す)の位置は、磁極片10の外周面を周方向に延長した外径輪郭の位置よりも若干内側に形成しているので、実施の形態1(図17)の場合と比べて、モールドする樹脂5の使用量を抑制し、軽量化および材料費の低減を図ることができる。
変形例3.
 実施の形態2(図18~図22)では、インシュレータ25の柱状部38bの一部にスリット38fを設け、柱状部38bの軸方向端部を溶着することにより、磁極片10同士がスナップフィットにより互いに連結された連結部分を更に強固に結合させている。
 これに対して、図26に示す変形例では、柱状部38bの一部に設けたスリット38f内に渡り線22を配置し、この状態で柱状部38bの軸方向端部を溶着している。さらに、インシュレータ25のスナップフィット雄部38の基部38aの径方向の外周側の一部を切り欠いて断面コの字形状の溝部38gを軸方向に沿って上下2箇所に形成し、渡り線22がこの溝部38g内を通過するように屈曲、巻き付け等により変形して配置している。
 この場合、柱状部38bを溶着した箇所を通過する渡り線22は、互いに隣接配置された磁極片10間に引き回される、ある1相(例えばV相)に対応する渡り線であり、各々の溝部38gに配置される渡り線は、これとは異なる他の相(例えばU相、W相)の渡り線である。
 このような構成とすることで、柱状部38bを溶着した箇所の渡り線22は、環状化工程の際に磁極片10を回転させたとしても渡り線22の動きを規制することができることに加えて、溝部38g内に他の相の渡り線22が通過するようにしたことで、電位差が大きい互いに異なる相の渡り線22同士の不意の接触を避けることができる。
 さらに、図26に示した構成に加えて、図27に示すように、各々の溝部38g内に渡り線22を通した後、その部分を溶着(33h)して渡り線22を固定した構成とすることもできる。なお、この構成の場合も、柱状部38b、および各溝部38g内に配置される渡り線22は、互いに異なる相の渡り線22である。
 このような構成とすることで、例えば環状化工程の後に各溝部38g内に渡り線22を配置した後にその部分を溶着(33h)して渡り線22を固定することで、各々の渡り線22の動きを規制することができ、電位差が大きい異相の渡り線22同士の不意の接触を確実に避けることができる。
 また、本願は、様々な例示的な実施の形態および変形例が記載されているが、一つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも一つの構成要素を変形する場合、追加する場合、または省略する場合、さらには、少なくとも一つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれものとする。
 1 回転電機、2 固定子、3 回転子、5 樹脂、10,10a,10b,10c,10d 磁極片、11 バックヨーク部、12 ティース部、20 導線、21 巻線、22,22a,22b 渡り線、25,25a,25b インシュレータ、37 スナップフィット雌部、37a 開環部、37b 開口部、38 スナップフィット雄部、38a 基部、38b 柱状部、38f スリット、40 溶着部、50 自動巻線機、51 回転位置決め機構、54 フライヤ。

Claims (13)

  1. 円弧状のヨーク部から径方向の内方に向けてティース部が一体に突出形成された複数の磁極片を備え、各々の前記磁極片は、前記径方向と直交する軸方向において、一対の樹脂製のインシュレータがそれぞれ装着され、かつ前記インシュレータが装着された各々の前記磁極片は、導線が巻装された状態で円環状に配置されており、
    前記円環状の配置における前記磁極片に装着されて互いに隣接する前記インシュレータの内、一方のインシュレータには軸方向と直交する方向に開口する開口部が形成された開環部を有するスナップフィット雌部が、他方のインシュレータには周方向および径方向に膨出された基部から軸方向に延出された柱状部を有するスナップフィット雄部が設けられ、前記開環部への前記柱状部の嵌合によりスナップフィット結合されて前記磁極片が互いに揺動可能に連結され、かつ、前記スナップフィット結合されて互いに連結された連結部分の少なくとも1箇所は、当該連結部分を固定する固定部が形成されている固定子。
  2. 前記固定部は、スナップフィット結合されて互いに連結された連結部分を溶着した溶着部で構成されている請求項1に記載の固定子。
  3. 前記溶着部は、前記柱状部の前記開環部よりも軸方向に突出した部分が溶着されたものである請求項2に記載の固定子。
  4. 前記溶着部は、少なくとも周方向および径方向に膨出されている請求項3に記載の固定子。
  5. 前記開環部は、前記軸方向において前記磁極片との間に前記基部の軸方向の厚みに対応する隙間を存して設けられ、前記スナップフィット結合された状態において、前記基部が、前記隙間に挟み込まれて軸方向の変位が規制されている、請求項1から請求項4のいずれか1項に記載の固定子。
  6. 全ての前記磁極片の一部と、前記磁極片の間を結ぶ渡り線の少なくとも一部が樹脂でモールドされている請求項1から請求項5のいずれか1項に記載の固定子。
  7. 前記スナップフィット結合されて互いに連結された前記連結部分の少なくとも1箇所は、前記磁極片の間を結ぶ渡り線が係止されるとともに、溶着されて前記渡り線が固定されている請求項1から請求項6のいずれか1項に記載の固定子。
  8. 請求項1から請求項7のいずれか1項に記載の固定子、および前記固定子の内周面側に回転自在に同軸配置された回転子を備えた回転電機。
  9. 請求項1から請求項7のいずれか1項に記載の固定子の製造方法であって、
    前記磁極片に対して前記インシュレータを装着する絶縁組立工程と、
    前記絶縁組立工程を経た後の1つの磁極片に対して導線を集中的に巻き付ける巻線工程と、前記巻線工程を経た後に、次の巻線対象の磁極片に対して導線を切断せずに渡り線として導入する渡り線工程とを繰り返す配線工程と、
    前記配線工程により、全ての磁極片に対する導線の巻き付けが完了した後に、各々の磁極片を円環状に配置して互いに隣接する磁極片同士の全てを前記インシュレータのスナップフィット結合により連結する環状化工程と、
    互いにスナップフィット結合された連結部分を固定する固定工程と、
    を有する固定子の製造方法。
  10. 前記固定工程は、前記柱状部と前記開環部を溶着する溶着工程である請求項9に記載の固定子の製造方法。
  11. 前記配線工程の後で、かつ、前記環状化工程の前に、互いに隣接する一対の磁極片の前記スナップフィット結合されて互いに連結された連結部分の少なくとも1箇所を、固定する部分固定工程を有する、請求項9または請求項10に記載の固定子の製造方法。
  12. 前記部分固定工程は、前記柱状部と前記開環部を溶着する溶着工程である請求項11に記載の固定子の製造方法。
  13. 請求項9から請求項12のいずれか1項に記載の固定子の製造工程を経た後、前記固定子の内周面側に回転子を回転自在に同軸配置する工程、を含む回転電機の製造方法。
PCT/JP2021/042815 2021-04-05 2021-11-22 固定子、回転電機、固定子の製造方法および回転電機の製造方法 WO2022215295A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180096397.7A CN117063376A (zh) 2021-04-05 2021-11-22 定子、旋转电机、定子的制造方法以及旋转电机的制造方法
JP2023512815A JP7481583B2 (ja) 2021-04-05 2021-11-22 固定子、回転電機、固定子の製造方法および回転電機の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-063931 2021-04-05
JP2021063931 2021-04-05

Publications (1)

Publication Number Publication Date
WO2022215295A1 true WO2022215295A1 (ja) 2022-10-13

Family

ID=83546303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042815 WO2022215295A1 (ja) 2021-04-05 2021-11-22 固定子、回転電機、固定子の製造方法および回転電機の製造方法

Country Status (3)

Country Link
JP (1) JP7481583B2 (ja)
CN (1) CN117063376A (ja)
WO (1) WO2022215295A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531484A (ja) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー セグメント化された固定子用端部キャップ
JP2012075213A (ja) * 2010-09-28 2012-04-12 Nidec Sankyo Corp ステータ
WO2021033496A1 (ja) * 2019-08-20 2021-02-25 三菱電機株式会社 ステータと回転電機、およびそれらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531484A (ja) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー セグメント化された固定子用端部キャップ
JP2012075213A (ja) * 2010-09-28 2012-04-12 Nidec Sankyo Corp ステータ
WO2021033496A1 (ja) * 2019-08-20 2021-02-25 三菱電機株式会社 ステータと回転電機、およびそれらの製造方法

Also Published As

Publication number Publication date
CN117063376A (zh) 2023-11-14
JP7481583B2 (ja) 2024-05-10
JPWO2022215295A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
JP6267907B2 (ja) バスバーユニットおよびブラシレスモータ
JP3568364B2 (ja) 回転電機のコア
JP7142700B2 (ja) 分布巻ラジアルギャップ型回転電機及びその固定子
JP4286829B2 (ja) 回転機の製造方法
JP5377702B2 (ja) 回転電機およびその製造方法
JP2007159170A5 (ja)
WO2002084842A1 (fr) Stator pour moteurs a rotor interne et procede de production
JP3430109B2 (ja) 内転型電動機の固定子
WO2020174817A1 (ja) 回転電機のステータ、回転電機、回転電機のステータの製造方法、および、回転電機の製造方法
US10840656B2 (en) Bus bar unit and rotary electric machine having the same
WO2022215294A1 (ja) 固定子、回転電機、固定子の製造方法および回転電機の製造方法
WO2022215295A1 (ja) 固定子、回転電機、固定子の製造方法および回転電機の製造方法
JP2012170295A (ja) 回転電機のステータおよびその製造方法
JP6334823B2 (ja) 回転電機の固定子、回転電機、回転電機の固定子の製造方法、回転電機の製造方法
JP2009106008A (ja) 回転電機の固定子
WO2022249525A1 (ja) インシュレーター、ステーター、回転電機、ステーターの製造方法、および回転電機の製造方法
CN108702044B (zh) 旋转电机的定子、使用了该定子的旋转电机以及旋转电机的定子的制造方法
JP3538422B2 (ja) 内転型電動機の固定子およびその製造方法
JP2005312207A (ja) ステータ
WO2023149252A1 (ja) 回転電機のステータ、回転電機、回転電機のステータの製造方法および回転電機の製造方法
JP2014107993A (ja) 電動アクチュエータ
WO2023058420A1 (ja) 回転電機の製造方法および回転電機
WO2023276631A1 (ja) コイル線モジュール
WO2023140074A1 (ja) モータステータ及びこれを備えるモータ
JP7251393B2 (ja) スロットレス回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512815

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180096397.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936093

Country of ref document: EP

Kind code of ref document: A1