WO2022213952A1 - 信息传输方法、装置及系统 - Google Patents

信息传输方法、装置及系统 Download PDF

Info

Publication number
WO2022213952A1
WO2022213952A1 PCT/CN2022/085181 CN2022085181W WO2022213952A1 WO 2022213952 A1 WO2022213952 A1 WO 2022213952A1 CN 2022085181 W CN2022085181 W CN 2022085181W WO 2022213952 A1 WO2022213952 A1 WO 2022213952A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
bits
domain resource
frequency domain
pucch format
Prior art date
Application number
PCT/CN2022/085181
Other languages
English (en)
French (fr)
Inventor
刘荣宽
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3214889A priority Critical patent/CA3214889A1/en
Priority to BR112023020722A priority patent/BR112023020722A2/pt
Priority to EP22784018.8A priority patent/EP4307806A4/en
Publication of WO2022213952A1 publication Critical patent/WO2022213952A1/zh
Priority to US18/477,540 priority patent/US20240040573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and in particular, to methods, devices and systems for information transmission.
  • a terminal device can transmit uplink control information (uplink control information, UCI) using various physical uplink control channel (physical uplink control channel, PUCCH) formats (PUCCH format).
  • the UCI may include one of hybrid automatic repeat request acknowledgement (HARQ-ACK) information, channel-state information (CSI), or scheduling request (SR) or variety.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • CSI channel-state information
  • SR scheduling request
  • the new radio (NR) standard defines five PUCCH formats, which are PUCCH format0/1/2/3/4 respectively.
  • the NR standard versions (Release, R) 15 and R16 make the following provisions for PUCCH format 4 (hereinafter referred to as PF4): occupy 4 to 14 symbols in the time domain, and occupy 1 resource block in the frequency domain (resource block, RB); carry information greater than 2 bits (bit); in the case that UCI includes CSI, the sum of the number of UCI bits and the number of cyclic redundancy check (cyclic redundancy check, CRC) bits does not exceed 115 bits.
  • PF4 PUCCH format 4
  • the present application provides an information transmission method, device and system, which can improve the coverage of UCI, thereby improving communication efficiency.
  • a first aspect provides an information transmission method, which can be executed by a terminal device, or by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device, or by a device that can implement all or Logic module or software realization of some terminal equipment functions.
  • the method includes: determining uplink control information UCI, and sending the UCI to a network device on N frequency domain resource units, where N is a positive integer greater than 1.
  • the present application uses N frequency-domain resource units to transmit UCI.
  • the power spectral density is determined, the greater the number of frequency-domain resource units, the greater the transmit power.
  • the number of domain resource units increases, so that the transmit power of the terminal equipment can be increased, thereby improving the coverage of UCI; on the other hand, due to the increase of frequency domain resource units for sending UCI in this application, the number of UCI bits carried in each frequency domain resource unit exists.
  • the threshold value more UCI bits can be carried by N frequency domain resource units, and when the amount of CSI data is large, the feedback efficiency of CSI can be improved, thereby improving communication efficiency.
  • rate matching can be performed on the N frequency domain resource units to reduce the code rate, thereby improving the transmission reliability.
  • the UCI includes N UCI subsections, and different UCI subsections in the N UCI subsections are carried by different frequency domain resource elements in the N frequency domain resource elements .
  • the UCI is divided into N UCI sub-segments and transmitted on N frequency-domain resource units, so that the UCI bits transmitted on each frequency-domain resource unit are reduced, so that redundant bits can be increased, that is, reduced bit rate and improve transmission reliability.
  • N frequency domain resource units can transmit more UCI information than one frequency domain resource unit.
  • the sum of the number of bits of the UCI subsection and the number of bits of the cyclic redundancy check code CRC corresponding to the UCI subsection is less than or equal to the first threshold
  • the first threshold is the maximum number of bits that the frequency domain resource unit can carry. Based on this embodiment, the bits carried on the frequency domain resource unit can be prevented from exceeding the maximum carrying capacity, thereby reducing errors and improving transmission efficiency.
  • sending UCI on N frequency domain resource units includes: performing physical layer processing on N UCI subsections to obtain N first modulation symbols; The first modulation symbols are mapped to N frequency domain resource units and sent.
  • the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit.
  • the UCI is mapped X times on the N frequency domain resource units, where X is a positive integer greater than 1. Based on this embodiment, the UCI can be sent multiple times, thereby improving the transmission reliability of the UCI.
  • X is equal to N, and the number of UCI bits is A; sending the UCI on the N frequency domain resource units includes: performing physical layer processing on the UCI of A bits, Obtain a second modulation symbol; map the second modulation symbol to each of the N frequency-domain resource units respectively and send it.
  • the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit.
  • X is equal to N, and the number of UCI bits is A; sending UCI on N frequency-domain resource units includes: performing physical layer processing on the N A-bit UCI After processing, N third modulation symbols are obtained; the N third modulation symbols are mapped to N frequency domain resource units and sent.
  • the physical layer processing includes rate matching, the rate matching is based on one frequency domain resource unit, and the N A-bit UCIs are obtained by duplicating the A-bit UCIs.
  • the UCI is mapped N times on the frequency domain resource unit, or repeated N-1 times, in the frequency selective channel, the reception reliability can be improved, thereby improving the communication efficiency.
  • the sum of the number of bits of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to the first threshold, and the first threshold is the maximum bit that can be carried by the frequency domain resource unit. number.
  • the bits carried on the frequency domain resource unit can be prevented from exceeding the maximum carrying capacity, thereby reducing errors and improving transmission efficiency.
  • the number of UCI bits is A; sending the UCI on N frequency domain resource units includes: performing physical layer processing on the first UCI to obtain a fourth modulation symbol ; Map the fourth modulation symbol to N frequency domain resource units and send it.
  • the physical layer processing includes rate matching, the rate matching is based on N frequency domain resource units, the first UCI is obtained by duplicating A-bit UCI, and the first UCI includes A multiplied by X bits.
  • the transmission reliability can be improved, thereby improving the communication efficiency.
  • the sum of the number of bits of the first UCI and the number of bits of the CRC corresponding to the first UCI is less than or equal to the second threshold; or, the sum of the number of bits of the first UCI and The sum of the number of bits of the CRC corresponding to the first UCI is less than or equal to the smaller of the second threshold and the third threshold.
  • the second threshold is determined by one or more of the following: N, the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, the number of time units corresponding to the first PUCCH format, the first PUCCH
  • the modulation mode corresponding to the format, or the first code rate, the first PUCCH format is the PUCCH format used when sending UCI, the first code rate is the code rate configured by the network device; the third threshold is the preset threshold or the threshold value configured by the network device .
  • the bits carried on the N frequency-domain resource units can be made not to exceed the maximum bearing capacity of the N frequency-domain resource units, thereby reducing errors and improving transmission efficiency.
  • the second threshold, N, the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, and the time unit corresponding to the first PUCCH format satisfy the following formula:
  • Thr 2 is the second threshold
  • N sc is the number of subcarriers included in the frequency domain resource unit
  • Q m is related to the modulation mode corresponding to the first PUCCH format
  • r is the first code rate.
  • the information transmission method further includes: receiving first indication information from a network device, where the first indication information is used to indicate the value of X.
  • the value of X can be configured by the network device, or determined by the terminal device according to the relevant configuration of the network device, thereby improving the flexibility of UCI transmission.
  • the number of UCI bits is A; sending the UCI on N frequency domain resource units includes: performing physical layer processing on the A bits of UCI to obtain a fifth modulation symbol; the fifth modulation symbol is mapped in N frequency domain resource elements and sent.
  • the physical layer processing includes rate matching, and the rate matching is based on N frequency domain resource units.
  • the information transmission method further includes: receiving second indication information from a network device, where the second indication information is used to indicate the number of frequency domain resource units that bear UCI not less than N.
  • the terminal device still uses N frequency domain resource units to send UCI when the number of UCI bits is small, thereby reducing the code rate and ensuring transmission reliability.
  • the value of N is a preset value; or, the information transmission method further includes: receiving third indication information from a network device, where the third indication information is used for Indicates the value of N.
  • an information transmission method is provided.
  • the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • the method includes: receiving signals from terminal equipment on N frequency domain resource units, where N is a positive integer greater than 1; and performing physical layer processing on the signals to obtain uplink control information UCI.
  • the UCI includes N UCI subsections, and different UCI subsections in the N UCI subsections are carried by different frequency domain resource elements in the N frequency domain resource elements .
  • the sum of the number of bits of the UCI subsection and the number of bits of the cyclic redundancy check code CRC corresponding to the UCI subsection is less than or equal to the first threshold, the first threshold is the maximum number of bits that the frequency domain resource unit can carry.
  • the signal is a first signal
  • the first signal includes N first modulation symbols
  • the first modulation symbols are modulation symbols corresponding to the UCI subsection.
  • the UCI is mapped X times on the N frequency domain resource units, where X is a positive integer greater than 1.
  • the signal is a second signal
  • X is equal to N
  • the number of UCI bits is A
  • the second signal includes N second modulation symbols
  • the second modulation symbols are The modulation symbol corresponding to the A-bit UCI.
  • the signal is a third signal
  • X is equal to N
  • the number of UCI bits is A
  • the third signal includes N third modulation symbols
  • the third modulation symbol is The modulation symbol corresponding to the A-bit UCI.
  • the sum of the number of bits of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to a first threshold, and the first threshold is a value that can be carried by the frequency domain resource unit. Maximum number of bits.
  • the signal is a fourth signal
  • the number of bits of the UCI is A
  • the fourth signal includes a fourth modulation symbol
  • the fourth modulation symbol is corresponding to the first UCI
  • the first UCI is obtained by duplicating the A-bit UCI
  • the first UCI includes A multiplied by X bits.
  • the sum of the number of bits of the first UCI and the number of bits of the CRC corresponding to the first UCI is less than or equal to the second threshold; or, the sum of the number of bits of the first UCI and The sum of the number of bits of the CRC corresponding to the first UCI is less than or equal to the smaller of the second threshold and the third threshold; wherein, the second threshold is determined by one or more of the following: The number of carriers, the spreading factor corresponding to the first PUCCH format, the number of time units corresponding to the first PUCCH format, the modulation method corresponding to the first PUCCH format, or the first code rate, where the first PUCCH format is the PUCCH used when sending UCI format, the first bit rate is the bit rate configured by the network device; the third threshold is a preset threshold or a threshold configured by the network device.
  • the second threshold, N, the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, and the time unit corresponding to the first PUCCH format satisfy the following formula:
  • Thr 2 is the second threshold
  • N sc is the number of subcarriers included in the frequency domain resource unit
  • Q m is related to the modulation mode corresponding to the first PUCCH format
  • r is the first code rate.
  • the information transmission method further includes: sending first indication information to the terminal device, where the first indication information is used to indicate the value of X.
  • the signal is a fifth signal
  • the number of UCI bits is A
  • the fifth signal includes a fifth modulation symbol
  • the fifth modulation symbol is a UCI corresponding to A bits. modulation symbol.
  • the information transmission method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not equal less than N.
  • the value of N is a preset value; or, the information transmission method further includes: sending third indication information to the terminal device, where the third indication information is used to indicate The value of N.
  • a communication apparatus for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the first aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the network device in the second aspect, Or a device including the above network device, or a device included in the above network device, such as a chip.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module also referred to as a transceiver unit, is used to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manners.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module may be used to implement the processing functions in any of the foregoing aspects and any possible implementation manners thereof.
  • the transceiver module includes a sending module and a receiving module, which are respectively used to implement the sending and receiving functions in any of the above aspects and any possible implementation manners.
  • a communication device comprising: a processor and a memory; the memory is used for storing computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device may be the terminal device in the first aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the network device in the second aspect, Or a device including the above network device, or a device included in the above network device, such as a chip.
  • a communication device comprising: a processor and a communication interface; the communication interface is used to communicate with modules other than the communication device; the processor is used to execute a computer program or instructions to enable the communication device A method as described in any of the preceding aspects is performed.
  • the communication device may be the terminal device in the first aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the network device in the second aspect, Or a device including the above network device, or a device included in the above network device, such as a chip.
  • a communication device comprising: a logic circuit and an interface circuit; the interface circuit is used for acquiring information to be processed and/or outputting the processed information; the logic circuit is used for executing any one of the above-mentioned aspects. method to process the to-be-processed information and/or generate the processed information.
  • the communication device may be the terminal device in the first aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the network device in the second aspect, Or a device including the above network device, or a device included in the above network device, such as a chip.
  • the processed information is uplink control information UCI.
  • the information to be processed is first indication information, and the first indication information is used to indicate the value of X.
  • the information to be processed is second indication information, and the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N.
  • the information to be processed is uplink control information UCI.
  • the processed information is the first indication information
  • the first indication information is used to indicate the value of X.
  • the processed information is second indication information, and the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N.
  • a communication device comprising: at least one processor; the processor is configured to execute a computer program or instruction stored in a memory, so that the communication device executes the method described in any one of the preceding aspects.
  • the memory may be coupled to the processor, or it may be independent of the processor.
  • the communication device may be the terminal device in the first aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the network device in the second aspect, Or a device including the above network device, or a device included in the above network device, such as a chip.
  • a computer-readable storage medium having instructions stored therein, when executed on a communication device, enables the communication device to perform the method described in any of the above aspects.
  • a computer program product comprising instructions which, when run on a communication device, enable the communication device to perform the method of any of the preceding aspects.
  • a tenth aspect provides a communication apparatus (for example, the communication apparatus may be a chip or a chip system), the communication apparatus includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device includes memory for holding necessary program instructions and data.
  • the device when it is a system-on-a-chip, it may consist of a chip or may contain a chip and other discrete devices.
  • the above-mentioned sending action/function may be understood as output information
  • the above-mentioned receiving action/function may be understood as input information
  • a communication system includes the network device and the terminal device described in the above aspects.
  • FIG. 1a is a schematic diagram of a UCI physical layer processing flow diagram of a terminal device provided by the application;
  • FIG. 1b is a schematic diagram of a UCI physical layer processing flow diagram of a network device provided by the application;
  • FIG. 2 is a schematic structural diagram of a communication system provided by the application.
  • FIG. 3 is a schematic structural diagram of a terminal device and a network device provided by the present application.
  • FIG. 5 is a schematic flowchart of another information transmission method provided by the present application.
  • 6a is a schematic flowchart of a terminal device sending UCI provided by the application
  • 6b is a schematic flowchart of a network device receiving UCI provided by the application.
  • FIG. 7 is a schematic diagram of a UCI physical layer processing flow diagram of a terminal device provided by the present application.
  • 8a is a schematic flowchart of a terminal device sending UCI provided by the application.
  • 8b is a schematic flowchart of a network device receiving UCI provided by the application.
  • FIG. 9 is a schematic diagram of a UCI physical layer processing flow diagram of a terminal device provided by the present application.
  • 10a is a schematic flowchart of a terminal device sending UCI provided by the application
  • 10b is a schematic flowchart of a network device receiving UCI provided by the application.
  • FIG. 11 is a UCI physical layer processing flow of a terminal device provided by this application.
  • 12a is a schematic flowchart of a terminal device sending UCI provided by the application
  • 12b is a schematic flowchart of a network device receiving UCI provided by the application.
  • FIG. 13 is a UCI physical layer processing flow of a terminal device provided by this application.
  • 14a is a schematic flowchart of a terminal device sending UCI provided by the application
  • 14b is a schematic flowchart of a network device receiving UCI provided by the application.
  • FIG. 15 is a UCI physical layer processing flow of a terminal device provided by this application.
  • 16 is a schematic structural diagram of a terminal device provided by the application.
  • FIG. 17 is a schematic structural diagram of a network device provided by the application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by this application.
  • the UCI physical layer processing flow of the terminal device mainly includes the following steps:
  • the unit of channel coding is a code block, where a "code block” may also be referred to as a "coding block”.
  • Channel coding can adapt the spectral characteristics of the code stream to the spectral characteristics of the channel, so as to minimize the energy loss in the transmission process, improve the ratio of signal energy to noise energy, reduce the possibility of errors, and increase the reliability of communication.
  • step S102a channel coding is performed on one or more code blocks obtained in step S101a, respectively.
  • the code rate used in channel coding can be understood as the reference code rate.
  • Rate matching is code block. Rate matching may mean that bits on the channel are retransmitted (repeated) or punctured (punctured) to match the carrying capacity of the physical channel, and the bit rate required by the transport format is achieved during channel mapping.
  • step S103a rate matching is performed on the channel-coded code blocks obtained in step S102a respectively.
  • the code block concatenation may refer to merging the results of rate matching of each code block in step S103a.
  • the modulation method may include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) modulation.
  • the modulation mode may also be quadrature amplitude modulation (QAM).
  • QAM modulation may be divided into 16QAM, 64QAM, 256QAM, etc. according to different modulation orders.
  • the modulation symbol can be obtained after adjusting the result after rate matching. Afterwards, the obtained modulation symbols can be mapped to transmission resources (eg PUCCH), so that the final generated signal is sent through the antenna.
  • transmission resources eg PUCCH
  • FIG. 1b it is the UCI physical layer processing flow of the network device, and the physical layer processing process of the UCI by the network device is the inverse process of the terminal device, which mainly includes the following steps:
  • the network device After the network device receives the signal sent by the network device through the antenna, it demodulates the signal. It can be understood that demodulation is an inverse process of modulation, and the demodulation mode used by the network device corresponds to the modulation mode used by the terminal device. For example, if the terminal device adopts QPSK modulation, the network device adopts the corresponding demodulation mode of QPSK for demodulation.
  • the network device may divide the demodulated bits into one or more parts by decoding block concatenation (or decoding concatenation).
  • de-rate matching is the inverse process of rate matching, and the relevant parameters when the terminal device performs rate matching may be configured by the network device or specified by the protocol, so that the network device can know the de-rate matching method.
  • channel decoding is the inverse process of channel encoding, and the manner in which the terminal device performs channel encoding may be configured by the network device or specified by the protocol, so that the network device can know the channel decoding method.
  • the physical layer of the network device acquires the UCI bits. Afterwards, the physical layer of the network device may send the UCI bits to an upper layer (eg, a medium access control (Medium access control, MAC) layer), so that the upper layer processes the UCI bits.
  • an upper layer eg, a medium access control (Medium access control, MAC) layer
  • PUCCH format 4 occupies 1 RB in the frequency domain.
  • There are regulatory constraints on the transmission of signals in the shared frequency band such as 52.6GHz-71GHz). For example, the regulations restrict the PSD and maximum transmit power. If the PUCCH format 4 in R15 and R16 continues to be used in the shared frequency band, the regulatory constraints may make the terminal The power of the device to transmit UCI on the PUCCH is limited, resulting in limited coverage of the UCI. Shared frequency bands may be referred to as unlicensed frequency bands.
  • the terminal device When the terminal device is far away from the network device, it may cause the problem that the UCI cannot be successfully received by the network device, which may lead to the resource request (SR) not being processed in time, the downlink data receiving feedback (HARQ-ACK information) not being timely, The CSI feedback is not timely, thereby causing waste of resources or reducing communication efficiency.
  • SR resource request
  • HARQ-ACK information downlink data receiving feedback
  • PUCCH format 4 defined in NR standards R15 and R16 has constraints on the maximum number of bits, and cannot transmit bits larger than this constraint.
  • the CSI will be processed in segments and transmitted in multiple times, which may result in untimely or incomplete CSI feedback, affecting the transmission efficiency of the system.
  • the present application provides an information transmission method, which can improve the coverage, transmission reliability, and communication efficiency of UCI.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner to facilitate understanding.
  • the communication system may be a third generation partnership project (3GPP) communication system, for example, a long term evolution (LTE) system, a third generation partnership project (3GPP) communication system,
  • 3GPP third generation partnership project
  • 5G 5th generation mobile communication system
  • NR system new air interface vehicle to everything
  • NR V2X new air interface vehicle to everything
  • M2M machine to machine
  • IoT Internet of Things
  • IoT Internet of Things
  • enhanced mobile broadband eMBB
  • ultra-reliable and low-latency communication ultra reliable and low-latency communication
  • URLLC low latency communication
  • MTC machine type communication
  • mMTC massive machine type communication
  • D2D V2X
  • IoT IoT
  • the communication system 10 includes at least one network device 20 and one or more terminal devices 30 connected to the network device 20 .
  • different terminal devices 30 may communicate with each other.
  • the terminal device 30 involved in this application may also be referred to as user equipment (UE), terminal, access terminal, subscriber unit, subscriber station, mobile station (MS), remote station, Remote terminal, mobile terminal (MT), user terminal, wireless communication equipment, user agent or user equipment, etc.
  • the terminal device may be a wireless terminal or a wired terminal in an IoT, V2X, D2D, M2M, 5G network, or a future evolved public land mobile network (Public Land Mobile Network, PLMN).
  • PLMN Public Land Mobile Network
  • a wireless terminal can refer to a device with wireless transceiver functions, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device 30 may be a drone, an IoT device (eg, a sensor, an electricity meter, a water meter, etc.), a V2X device, a station (station, ST) in a wireless local area network (WLAN), a cellular phone , cordless phones, session initiation protocol (session initiation protocol, SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistant (personal digital assistant, PDA) equipment, handheld devices with wireless communication capabilities, computing Devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices (also known as wearable smart devices), tablet computers or computers with wireless transceiver capabilities, virtual reality (VR) terminals, industrial controls Wireless terminals in (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, in-vehicle terminals, vehicles with vehicle-to-vehicle (
  • the network device 20 involved in the present application is a device that accesses the terminal device 30 to a wireless network, which may be an evolved type in LTE or an evolved LTE system (LTE-Advanced, LTE-A).
  • Base station evolutional Node B, eNB or eNodeB
  • eNB evolved Node B
  • eNodeB next generation node B
  • TRP transmission reception point
  • BNG broadband network gateway
  • the base station in this embodiment of the present application may include various forms of base station, such as: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, etc., which are not specifically limited in this embodiment of the present application. .
  • the network device 20 involved in the present application may also refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be composed of a CU and a DU. Multiple DUs can share one CU. A DU can also be connected to multiple CUs. CU and DU can be understood as the division of network devices from the perspective of logical functions. The CU and the DU may be physically separated, or may be deployed together, which is not specifically limited in this embodiment of the present application. The CU and the DU can be connected through an interface, such as an F1 interface. CU and DU can be divided according to the protocol layer of the wireless network.
  • the function settings of the radio resource control (RRC) protocol layer, the service data adaptation protocol (SDAP) protocol layer and the packet data convergence protocol (PDCP) protocol layer In the CU, the functions of the radio link control (radio link control, RLC) protocol layer, the media access control (media access control, MAC) protocol layer, and the physical (physical, PHY) protocol layer are set in the DU.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • media access control media access control
  • PHY physical (physical, PHY) protocol layer
  • a CU or DU can be divided into functions with more protocol layers.
  • a CU or DU can also be divided into partial processing functions with a protocol layer.
  • some functions of the RLC layer and functions of the protocol layers above the RLC layer are placed in the CU, and the remaining functions of the RLC layer and the functions of the protocol layers below the RLC layer are placed in the DU.
  • the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to the delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set farther away.
  • a CU may be composed of a CU control plane (CU control plane, CU-CP) and a CU user plane (CU user plane, CU-UP).
  • Logical function perspective is divided.
  • the CU-CP and CU-UP can be divided according to the protocol layer of the wireless network. For example, the functions of the RRC protocol layer and the PDCP protocol layer corresponding to the signaling radio bearer (SRB) are set in the CU-CP, and the data The function of the PDCP protocol layer corresponding to the radio bearer (data radio bearer, DRB) is set in the CU-UP.
  • the functions of the SDAP protocol layer may also be set in the CU-UP.
  • the network device 20 and the terminal device 30 may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in this embodiment of the present application.
  • FIG. 3 it is a schematic structural diagram of a network device 20 and a terminal device 30 according to an embodiment of the present application.
  • the terminal device 30 includes at least one processor (in FIG. 3 , it is exemplified by including one processor 301 ) and at least one transceiver (in FIG. 3 , it is exemplified by including one transceiver 303 ) ). Further, the terminal device 30 may also include at least one memory (in FIG. 3 , it is exemplified that one memory 302 is included for illustration), at least one output device (in FIG. 3 , it is exemplified that one output device 304 is included for example) description) and at least one input device (in FIG. 3, one input device 305 is used as an example for description).
  • the processor 301, the memory 302 and the transceiver 303 are connected by a communication line.
  • the communication link may include a path to communicate information between the components described above.
  • the processor 301 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of programs in the present application. circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 302 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory 302 may exist independently and be connected to the processor 301 through a communication line.
  • the memory 302 may also be integrated with the processor 301 .
  • the memory 302 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute the computer-executed instructions stored in the memory 302, thereby implementing the methods described in the embodiments of the present application.
  • the processor 301 may also perform processing-related functions in the signal sending and receiving methods provided in this application, and the transceiver 303 is responsible for communicating with other devices or communication networks, which are not specifically limited in this embodiment of the application .
  • the computer-executed instructions involved in the present application may also be referred to as application program code or computer program code, which is not specifically limited in this embodiment of the present application.
  • Transceiver 303 may use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access networks (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) or the like.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • Input device 305 communicates with processor 301 and can accept user input in a variety of ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the network device 20 includes at least one processor (in FIG. 3 , it is exemplified by including one processor 201 ) and at least one transceiver (in FIG. 3 , it is exemplified by including one transceiver 203 ). Further, the network device 20 may also include at least one memory (in FIG. 3 , it is exemplified by including one memory 202 for illustration) and at least one network interface (in FIG. 3 , it is exemplified by including one network interface 204 for example) illustrate). The processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through a communication line.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in FIG. 3 ).
  • a link such as the S1 interface
  • a wired or wireless link such as the X2 interface
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 30 and the network device 20 .
  • the terminal device 30 and the network device 20 may include more or less components than shown, or some components may be combined, or some components may be split, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the execution body may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • interaction mechanism between the network device and the terminal device in the various embodiments of the present application can be appropriately modified to apply to the interaction between the CU or DU and the terminal device.
  • an information transmission method provided by an embodiment of the present application includes the following steps:
  • the terminal device determines the UCI.
  • the UCI may be used to implement one or more of the following functions: for feeding back whether downlink data is successfully received, for requesting scheduling of transmission resources, or for feeding back channel status.
  • UCI may include one or more of HARQ-ACK information, SR, and CSI.
  • the determination of the UCI by the terminal device may also be understood as the generation of the UCI by the terminal device, and the two may be replaced by each other, which is not specifically limited in this application.
  • the UCI determined by the terminal device in step S401 is represented in the form of bits, or in other words, the UCI includes several bits, and therefore, the UCI may also be referred to as UCI bits.
  • the number of bits of the UCI determined by the terminal device in S401 is A, or in other words, the number of UCI bits is A as an example for description, and A is a positive integer.
  • the number A of UCI bits is less than or equal to the maximum number of UCI bits T that can be transmitted on the PUCCH resource, or the maximum threshold of the number of UCI bits transmitted on the PUCCH resource is T. Therefore, as shown in FIG. 5 , before step S401 , the information transmission method provided by the present application may further include: the terminal device determines the maximum number T of UCI bits.
  • the maximum number of UCI bits T may be configured by the network device.
  • the network device may send the first configuration information to the terminal device for configuring the maximum number of UCI bits T that can be transmitted on the PUCCH resource, and the first configuration information may be carried in the RRC message.
  • the terminal device determines the maximum number of UCI bits T, which may be: the terminal device receives the first configuration information of the network device, and determines the maximum number of UCI bits T according to the first configuration information.
  • the maximum number of UCI bits T may be agreed by the protocol.
  • the maximum number of UCI bits T may be stored in the terminal device when the terminal device leaves the factory, and the terminal device determines the maximum number of UCI bits T to be understood as: the terminal device reads the maximum number of UCI bits T stored in it.
  • the terminal device sends the UCI to the network device on the N frequency domain resource units.
  • the network device receives the UCI from the terminal device.
  • the value of the number N of frequency domain resource units may be indicated by the network device.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate the value of N.
  • the terminal device may determine N according to the third indication information.
  • the information transmission method provided by this application also involves "first indication information” and "second indication information", and the first indication information and the second indication information will be described in subsequent embodiments, and will not be described here. To repeat.
  • the value of the number N of frequency domain resources may be a preset value.
  • the preset value may be predefined by the protocol.
  • the value of N satisfies: Among them, ⁇ 2 , ⁇ 3 , and ⁇ 5 are non-negative and positive numbers.
  • the frequency domain resource unit in this application is a unit of frequency domain resources, including one or more minimum granularity frequency domain resources.
  • the frequency domain resource with the smallest granularity is a subcarrier, so the frequency domain resource unit in this application may include one or more subcarriers, for example, this
  • the frequency domain resource unit in the application may be an RB, which exemplarily includes 12 subcarriers. With the evolution of the communication system, the number of subcarriers included in one RB in this application may also be other values.
  • the N frequency-domain resource units may be consecutive N frequency-domain resource units in the frequency domain, such as N consecutive RBs, or N consecutive physical resource blocks (physical resource blocks). , PRB).
  • the N frequency-domain resource units may also be non-consecutive in the frequency domain, for example, the difference between the indices of any two adjacent frequency-domain resource units in the N frequency-domain resource units is the first numerical value.
  • N1 frequency domain resource units in the N frequency domain resource units are continuous in the frequency domain, and the remaining N2 frequency domain resource units are non-consecutive in the frequency domain, and N is the sum of N1 and N2. This application This is not specifically limited.
  • the terminal device sends the UCI to the network device using the first PUCCH format.
  • the first PUCCH format may be determined by the terminal device before step S402. Therefore, as shown in FIG. 5 , before step S402 , the information transmission method provided by the present application further includes: the terminal device determines to use the first PUCCH format for UCI transmission.
  • the first PUCCH format is PUCCH format 4.
  • the network device may send second configuration information to the terminal device, where the second configuration information is used to configure the first PUCCH format, for example, configure the location of the time domain resource and the location of the frequency domain resource corresponding to the first PUCCH format , modulation method, etc.
  • the terminal device determining to use the first PUCCH format for UCI transmission may include: the terminal device receiving second configuration information from the network device, and determining to use the first PUCCH format for UCI transmission according to the second configuration information.
  • the above N frequency-domain resource units are frequency-domain resource units occupied by the first PUCCH format.
  • the present application uses N frequency-domain resource units to transmit UCI.
  • the power spectral density is determined, the greater the number of frequency-domain resource units, the greater the transmit power.
  • the number of domain resource units increases, so that the transmit power of the terminal equipment can be increased, thereby improving the coverage of UCI; on the other hand, due to the increase of frequency domain resource units for sending UCI in this application, the number of UCI bits carried in each frequency domain resource unit exists.
  • the threshold value more UCI bits can be carried by N frequency domain resource units, and when the amount of CSI data is large, the feedback efficiency of CSI can be improved, thereby improving communication efficiency.
  • rate matching can be performed on the N frequency domain resource units to reduce the code rate, thereby improving the transmission reliability.
  • the terminal device sends the UCI in segments.
  • the terminal device may divide the UCI into N UCI sub-segments, that is, the UCI includes N UCI sub-segments.
  • different UCI subsections in the N UCI subsections are carried by different frequency domain resource units in the N frequency domain resource units.
  • each UCI subsection in the N UCI subsections corresponds to a frequency domain resource unit respectively, and different UCI subsections correspond to different frequency domain resource units.
  • the UCI subsection in this application may also be referred to as UCI sub-information, and the two may be replaced by each other, which is not specifically limited in this application.
  • the number of bits A of the UCI is divisible by N
  • the number of bits of each UCI subsection may be the same, that is, both are A/N.
  • the number of bits of the N-1 UCI sub-segments in the N UCI sub-segments may be:
  • the number of bits in another UCI subsection can be: in, Indicates rounded up.
  • the rounding up in the formula can also be replaced by rounding down or rounding down, which is not specifically limited in this application.
  • the N-1 UCI subsections can be the first N-1 UCI subsections among the N UCI subsections, or the last N-1 UCI subsections, or any N-1 UCI subsections. There is no specific limitation in the application.
  • the sum of the number of bits of the UCI subsection and the number of bits of the CRC corresponding to the UCI subsection is less than or equal to a first threshold Q, where the first threshold Q is the maximum number of bits that a frequency domain resource unit can carry .
  • the first threshold may be configured by a network device, or may be specified by a protocol, which is not specifically limited in this application.
  • the terminal device sends UCI on N frequency domain resource units, which may include:
  • S601a Perform physical layer processing on the N UCI subsections to obtain N first modulation symbols.
  • the terminal device performs physical layer processing on the N UCI subsections respectively to obtain N first modulation symbols
  • the physical layer processing includes rate matching based on a frequency domain resource element.
  • the rate matching is performed with one frequency domain resource unit.
  • the rate matching is used to match the bearing capacity of a frequency domain resource unit.
  • rate matching can be performed after determining the length E of the output bit sequence after rate matching.
  • E f(E tot ), that is, E is a function based on E tot , or the value of E is related to E tot , or the value of E is determined according to E tot .
  • the terminal device performs rate matching based on one frequency domain resource unit, if the modulation mode is QPSK, then:
  • a and b are positive numbers, for example, a is equal to 14, and b is equal to 12.
  • the spreading factor corresponding to the first PUCCH format is used for frequency domain spreading, which can resist frequency selective fading.
  • the value of the expansion factor may be 2 or 4.
  • the time unit of the present application may be a symbol, a slot, a subframe, or a frame, or the like.
  • the physical layer processing may include, in addition to rate matching, one or more of the following: code block division and CRC insertion, channel coding, code block concatenation, or modulation.
  • code block division and CRC insertion code block division and CRC insertion
  • channel coding code block concatenation
  • modulation modulation
  • mapping the N first modulation symbols to the N frequency domain resource elements may include: mapping one first modulation symbol to one frequency domain resource element, the first modulation symbols mapped on different frequency domain resource elements The symbols are different.
  • S603a Send N first modulation symbols.
  • the N first modulation symbols may be included in the first signal, and the terminal device may send the first signal to the network device, where the first signal is carried by the above N frequency domain resource units, or, in other words, in the The first signal is sent to the network device over the N frequency domain resource units.
  • the terminal device sends the UCI in mode 1
  • its receiving operation may include the following steps:
  • S601a Receive a first signal from a terminal device.
  • the first signal is carried by the above-mentioned N frequency domain resource units, and the first signal includes N first modulation symbols.
  • the UCI includes N UCI sub-segments, and the UCI sub-segments may refer to the above-mentioned related descriptions, which will not be repeated here.
  • the physical layer processing of the first signal by the network device matches the physical layer processing of the UCI subsection by the terminal device. For example, if the physical layer processing of the UCI subsection by the terminal device includes rate matching, then the physical layer processing of the first signal by the network device includes de-rate matching; the physical layer processing of the UCI subsection by the terminal device includes modulation, then the network device will The physical layer processing of a signal includes demodulation; the physical layer processing of the UCI subsection by the terminal equipment includes code block concatenation, then the physical layer processing of the first signal by the network equipment includes decoding block concatenation; The physical layer processing includes channel coding, then the physical layer processing of the first signal by the network device includes channel decoding; the physical layer processing of the UCI subsection by the terminal device includes code block division and CRC insertion, then the physical layer processing of the first signal by the network device. Layer processing includes decoding block segmentation and de-CRC.
  • the network device may perform related processing according to the UCI. For example, if the UCI includes HARQ-ACK information, determine whether to retransmit the downlink data according to the HARQ-ACK information; or, if the UCI includes SR In the following, uplink resources are scheduled for the terminal device; or, if the UCI includes CSI, the precoding of downlink data is performed according to the CSI, which is not specifically limited in this application.
  • the UCI is divided into N UCI sub-segments and transmitted on N frequency-domain resource units, so that the UCI bits transmitted on each frequency-domain resource unit are reduced, so that redundant bits can be increased, that is, the reduction code rate and improve transmission reliability.
  • N frequency domain resource units can transmit more UCI information than one frequency domain resource unit.
  • the terminal device After the terminal device processes the UCI at the physical layer, it sends the UCI by means of duplication. For example, UCI is sent by duplicating modulation symbols.
  • the terminal device sends the UCI on N frequency domain resource units, which may include:
  • the second modulation symbol may also be understood as a modulation symbol corresponding to the UCI subsection of the A-bit.
  • the sum of the number of bits A of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to a first threshold.
  • first threshold reference may be made to the relevant description in the above-mentioned method 1, which will not be repeated here.
  • the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit. Reference may be made to the relevant description in the above step S601a, which is not repeated here.
  • the physical layer processing may include, in addition to rate matching, one or more of the following: code block division and CRC insertion, channel coding, code block concatenation, or modulation.
  • the physical layer processing includes all the operations listed above, as shown in FIG. 9 , it is the execution flow of each operation, that is, after performing code block division and CRC insertion on the A-bit UCI, channel coding is performed, and then channel coding is performed. Rate matching is performed on the result after rate matching, and code block concatenation is performed on the result after rate matching, and finally modulation is performed.
  • S802a Map the second modulation symbol to each of the N frequency-domain resource units respectively.
  • the modulation symbols mapped to each frequency-domain resource unit are the same, and both are the second modulation symbols.
  • the terminal device maps the second modulation symbol to each frequency domain resource unit respectively.
  • the second modulation symbols mapped in each frequency domain resource unit may be included in the second signal, and the terminal device may send the second signal to the network device, the The second signal is carried by the above N frequency domain resource units, or in other words, the second signal is sent to the network device on the N frequency domain resource units.
  • the second method can also be understood as that A-bit UCI is mapped N times on N frequency-domain resource units, or in other words, A-bit UCI is repeated N-1 times on N frequency-domain resource units, In other words, A-bit UCI is sent N times on N frequency domain resource units, or in other words, N copies of UCI are sent on N frequency domain resource units.
  • its receiving operation may include the following steps:
  • the second signal is carried by the above-mentioned N frequency domain resource units, and the second signal includes N identical second modulation symbols.
  • the physical layer processing of the second signal by the network device matches the physical layer processing of the A-bit UCI by the terminal device, and reference may be made to the relevant description in the foregoing step S602b, which will not be repeated here.
  • the network device may perform physical layer processing on part of the second modulation symbols in the second signal, that is, the network device may perform physical layer processing on part of the second modulation symbols in the second signal.
  • Physical layer processing is performed on the second modulation symbol carried by the frequency domain resource unit, for example, only physical layer processing is performed on the second modulation symbol carried by one frequency domain resource unit.
  • the network device may perform related processing according to the UCI, and reference may be made to the relevant description in the foregoing step S602b, which will not be repeated here.
  • the terminal device sends N copies of UCI on N frequency domain resource units by duplicating the UCI.
  • the terminal device sends the UCI on N frequency domain resource units, which may include:
  • the total UCI bits sent by the terminal device on the N frequency-domain resource units are A times N.
  • the sum of the number of bits A of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to a first threshold.
  • first threshold reference may be made to the relevant description in the above-mentioned method 1, which will not be repeated here.
  • S1002a Perform physical layer processing on the N A-bit UCIs to obtain N third modulation symbols.
  • the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit. Reference may be made to the relevant description in the above step S601a, which is not repeated here.
  • the physical layer processing may also include one or more of the following: code block division and CRC insertion, channel coding, code block concatenation, or modulation, please refer to step S601a above. The related descriptions are not repeated here.
  • code block division and CRC insertion code block division and CRC insertion
  • channel coding code block concatenation
  • modulation please refer to step S601a above. The related descriptions are not repeated here.
  • the physical layer processing includes all the operations listed above, as shown in FIG. 11 , it is the execution flow of each operation, that is, after performing code block division and CRC insertion on the A-bit UCI, channel coding is performed, Rate matching is performed on the channel-coded result, and code block concatenation is performed on the rate-matched result, and finally modulation is performed.
  • each frequency domain resource unit is mapped with the same third modulation symbol.
  • the above-mentioned N identical third modulation symbols may be included in the third signal, and the terminal device may send a third signal to the network device, and the third signal may be carried by the above-mentioned N frequency-domain resource units, or Say, the third signal is sent to the network device on N frequency domain resource units.
  • the third method can also be understood as the A-bit UCI is repeated N-1 times on the N frequency-domain resource units, or in other words, the A-bit UCI maps N on the N frequency-domain resource units In other words, the A-bit UCI is sent N times on N frequency-domain resource units, or in other words, N shares of UCI are sent on N frequency-domain resource units.
  • its receiving operation may include the following steps:
  • S1001b Receive a third signal from a terminal device.
  • the third signal is carried by the above-mentioned N frequency domain resource units, and the third signal includes N identical third modulation symbols.
  • the physical layer processing of the third signal by the network device matches the physical layer processing of the A-bit UCI by the terminal device, and reference may be made to the relevant description in the above step S602b, which will not be repeated here.
  • the network device may perform physical layer processing on part of the third modulation symbols in the third signal, that is, the network device may perform physical layer processing on part of the third modulation symbols in the third signal.
  • Physical layer processing is performed on the third modulation symbol carried by the frequency domain resource unit, for example, physical layer processing is performed only on the third modulation symbol carried by one frequency domain resource unit.
  • the network device may perform related processing according to the UCI, and reference may be made to the relevant description in the foregoing step S602b, which will not be repeated here.
  • the terminal device transmits X copies of UCI on the N frequency domain resource units by duplicating the UCI, where X is a positive integer greater than 1.
  • the terminal device sends the UCI on N frequency domain resource units, which may include:
  • S1201a Duplicate the A-bit UCI to obtain a first UCI, where the first UCI includes A multiplied by X bits.
  • the total UCI bits sent by the terminal device on the N frequency-domain resource units are A times X.
  • the fourth modulation symbol may be understood as the modulation symbol corresponding to the first UCI.
  • the physical layer processing includes rate matching based on N frequency domain resource elements.
  • the rate matching is performed with N frequency domain resource units.
  • the rate matching is used to match the bearing capacity of the N frequency-domain resource units.
  • rate matching can be performed after determining the length E of the output bit sequence after rate matching.
  • E f(E tot ), that is, E is a function based on E tot , or the value of E is related to E tot , or the value of E is determined according to E tot .
  • the terminal device performs rate matching based on N frequency domain resource units, if the modulation mode is QPSK, then:
  • the input bit length M of rate matching is the number of bits obtained after channel coding is performed by multiplying A by X-bit UCI (ie, the first UCI).
  • the sum of the number of bits of the first UCI (ie A times X) and the number of bits of the CRC corresponding to the first UCI is less than or equal to the second threshold; or, the number of bits of the first UCI corresponds to the first UCI
  • the sum of the number of bits of the CRC is less than or equal to the smaller of the second threshold and the third threshold.
  • the second threshold may be determined by one or more of the following: the above N, the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, and the time unit corresponding to the first PUCCH format The number of , the modulation mode corresponding to the first PUCCH format, or the first code rate, where the first PUCCH format is the PUCCH format used when sending UCI, and the first code rate is the code rate configured by the network device.
  • the second threshold, N the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, the number of time units corresponding to the first PUCCH format, the modulation method corresponding to the first PUCCH format, and the first code rate, which satisfies the following formula:
  • Thr 2 is the second threshold; 0 CRC is the number of bits of the CRC corresponding to the first UCI.
  • N sc is the number of subcarriers included in the frequency domain resource unit, is the spreading factor corresponding to the first PUCCH format.
  • Q m is related to the modulation scheme corresponding to the first PUCCH format. For example, when the modulation method is QPSK, the value of Q m is 2; when the modulation method is ⁇ /2 BPSK, the value of Q m is 1.
  • r is the first code rate, for example, it may be the code rate configured by the network device through the RRC message.
  • the third threshold may be the maximum number of bits that can be carried by the N frequency-domain resource units in total.
  • the third threshold may be configured by the network device, or may be agreed in a protocol, which is not specifically limited in this application.
  • the value of X may be indicated by the network device.
  • the information transmission method provided by this application may further include: the network device may send first indication information to the terminal device, where the first indication information is used to indicate the value of X, and accordingly, the terminal device receives the first indication information from the network device. After the indication information, the specific value of X can be determined according to the first indication information.
  • the physical layer processing may also include one or more of the following: code block division and CRC insertion, channel coding, code block concatenation, or modulation, refer to the above step S601a for reference. Related descriptions are not repeated here.
  • the physical layer processing includes all the operations listed above, as shown in FIG. 13 , it is the execution flow of each operation. Perform channel coding, and then perform rate matching on the result after channel coding with N frequency domain resource units, and then perform code block concatenation on the result after rate matching, and finally perform modulation.
  • each of the N frequency-domain resource units is mapped with a part of modulation symbols included in the fourth modulation symbol.
  • the foregoing fourth modulation symbol may be included in a fourth signal, and the terminal device may send a fourth signal to the network device, where the fourth signal may be borne by the foregoing N frequency domain resource units, or, in N The fourth signal is sent to the network device over the frequency domain resource units.
  • the fourth method can also be understood as the A-bit UCI is repeated X-1 times on the N frequency-domain resource units, or in other words, the A-bit UCI maps X on the N frequency-domain resource units In other words, the A-bit UCI is sent X times on the N frequency-domain resource units, or, in other words, X copies of the UCI are sent on the N frequency-domain resource units.
  • its receiving operation may include the following steps:
  • the fourth signal is carried by the above-mentioned N frequency domain resource units, and the fourth signal includes a fourth modulation symbol.
  • the physical layer processing of the fourth signal by the network device matches the physical layer processing of the first UCI by the terminal device, and reference may be made to the relevant description in the foregoing step S602b, which will not be repeated here.
  • the network device may perform related processing according to the UCI, and reference may be made to the relevant description in the foregoing step S602b, which will not be repeated here.
  • UCI is mapped X times on the frequency domain resource unit, or repeated X-1 times.
  • transmission reliability can be improved, thereby improving communication efficiency.
  • the value of X can be configured by the network device, or determined by the terminal device according to the relevant configuration of the network device, thereby improving the flexibility of UCI transmission.
  • the terminal device performs rate matching based on the N frequency-domain resource units, and sends one UCI on the N frequency-domain resource units.
  • the terminal device sends the UCI on N frequency domain resource units, which may include:
  • S1401a Perform physical layer processing on the UCI of A bits to obtain a fifth modulation symbol.
  • the fifth modulation symbol may be understood as the modulation symbol corresponding to the UCI of the A-bit.
  • the physical layer processing includes rate matching, and the rate matching is based on N frequency domain resource units.
  • the physical layer processing may also include one or more of the following: code block division and CRC insertion, channel coding, code block concatenation, or modulation, please refer to step S601a above. The related descriptions are not repeated here.
  • code block division and CRC insertion code block division and CRC insertion
  • channel coding code block concatenation
  • modulation modulation
  • the network device may send second indication information to the terminal device, where the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N. That is, the network device indicates that the terminal device is not allowed to reduce the usage of the frequency domain resources, that is, the terminal device sends UCI on all the frequency domain resources occupied by the PUCCH configured by the network device or agreed in the protocol.
  • the terminal device receives the second indication information from the network device, even if the bit number A of the UCI to be sent is small, the terminal device still performs rate matching with N frequency domain resource units. At this time, due to the input bit length of the rate matching If it is smaller, redundant bits can be increased during rate matching, that is, the code rate can be reduced, thereby improving the transmission reliability of UCI.
  • the terminal device may perform rate matching using N frequency domain resource units when the sum of the number of bits A of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to the fourth threshold. , the UCI is sent on N frequency-domain resource units.
  • the fourth threshold may be determined by one or more of the following: the above N, the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, and the time unit corresponding to the first PUCCH format The number of , the modulation mode corresponding to the first PUCCH format, or the first code rate.
  • the fourth threshold, N the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, the number of time units corresponding to the first PUCCH format, the modulation mode corresponding to the first PUCCH format, and the first code rate, which satisfies the following formula:
  • O' CRC is the number of bits of the CRC corresponding to the A-bit UCI.
  • the number of bits A of the UCI and the number of bits of the CRC corresponding to the UCI are less than or equal to the maximum number of bits P that can be carried by the N frequency-domain resource units.
  • the maximum number of bits P may be configured by a network device or agreed in a protocol, which is not specifically limited in this application.
  • each of the N frequency-domain resource elements is mapped with a part of modulation symbols included in the fifth modulation symbol.
  • the fifth modulation symbol may be included in a fifth signal, and the terminal device may send a fifth signal to the network device, where the fifth signal is borne by the N frequency domain resource units, or in other words, in N frequency domain resource units The fifth signal is sent to the network device on the frequency domain resource unit.
  • its receiving operation may include the following steps:
  • the fifth signal is carried by the above N frequency domain resource units, and the fifth signal includes a fifth modulation symbol.
  • the physical layer processing of the fifth signal by the network device matches the physical layer processing of the A-bit UCI by the terminal device, and reference may be made to the relevant description in the above step S602b, which will not be repeated here.
  • the network device may perform related processing according to the UCI, and reference may be made to the relevant description in the foregoing step S602b, which will not be repeated here.
  • a UCI is sent on N frequency domain resources.
  • redundant bits can be added to reduce the code rate, improve the transmission reliability, and thus improve the communication efficiency.
  • the methods and/or steps implemented by a network device may also be implemented by components (such as chips or circuits) that can be used in the network device; the methods and/or steps implemented by a terminal device , can also be implemented with components (eg chips or circuits) available for the terminal device.
  • the solution provided by the present application has been introduced above mainly from the perspective of interaction between various devices.
  • the present application also provides a communication device, which is used to implement the above-mentioned various methods.
  • the communication device may be the network device in the above method embodiment, or a device including the above network device, or a component usable for the network device; or, the communication device may be the terminal device in the above method embodiment, or including the above A device of a terminal device, or a component that can be used in a terminal device.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software, in conjunction with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device may be divided into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 16 shows a schematic structural diagram of a terminal device 160 .
  • the terminal device 160 includes a processing module 1601 and a transceiver module 1602 .
  • the terminal device 160 may further include a storage module (not shown in FIG. 16 ) for storing program instructions and data.
  • the transceiving module 1602 which may also be referred to as a transceiving unit, is used to implement sending and/or receiving functions.
  • the transceiver module 1602 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1602 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the terminal in the above method embodiments, and/or to support the techniques described herein.
  • the processing module 1601 can be used to perform the steps of the processing class (eg, determination, acquisition, etc.) performed by the terminal in the above method embodiments, and/or other processes used to support the techniques described herein.
  • a processing module 1601 configured to determine uplink control information UCI
  • the processing module 1601 is configured to send the UCI to the network device on the N frequency domain resource units through the transceiver module 1602, where N is a positive integer greater than 1.
  • the UCI includes N UCI subsections, and different UCI subsections in the N UCI subsections are carried by different frequency domain resource elements in the N frequency domain resource elements.
  • the sum of the number of bits of the UCI subsection and the number of bits of the cyclic redundancy check code CRC corresponding to the UCI subsection is less than or equal to a first threshold, and the first threshold is a value that can be carried by the frequency domain resource unit. Maximum number of bits.
  • the processing module 1601, configured to send the UCI on the N frequency domain resource units through the transceiver module 1602, includes:
  • the processing module 1601 is configured to perform physical layer processing on the N UCI subsections to obtain N first modulation symbols, the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit;
  • the processing module 1601 is further configured to map the N first modulation symbols to the N frequency domain resource units;
  • Transceiver module 1602 configured to send N first modulation symbols.
  • the UCI is mapped on the N frequency domain resource units X times, where X is a positive integer greater than 1.
  • X is equal to N, and the number of UCI bits is A;
  • the processing module 1601 is configured to send the UCI on the N frequency domain resource units through the transceiver module 1602, including:
  • the processing module 1601 is configured to perform physical layer processing on the A-bit UCI to obtain a second modulation symbol, the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit;
  • the processing module 1601 is further configured to map the second modulation symbol to each frequency domain resource unit in the N frequency domain resource units;
  • the transceiver module 1602 is configured to send the second modulation symbol mapped in each frequency domain resource unit.
  • X is equal to N, and the number of UCI bits is A;
  • the processing module 1601 is configured to send the UCI on the N frequency domain resource units through the transceiver module 1602, including:
  • the processing module 1601 is configured to perform physical layer processing on the N A-bit UCIs to obtain N third modulation symbols, the physical layer processing includes rate matching, and the rate matching is based on a frequency domain resource unit, and the N A-bit UCIs are: It is obtained by copying the UCI of A bit;
  • the processing module 1601 is further configured to map the N third modulation symbols to the N frequency domain resource units;
  • Transceiver module 1602 configured to send N third modulation symbols.
  • the sum of the number of bits of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to a first threshold, and the first threshold is the maximum number of bits that the frequency domain resource unit can carry.
  • the number of UCI bits is A; the processing module 1601 is configured to send the UCI on the N frequency domain resource units through the transceiver module 1602, including:
  • the processing module 1601 is further configured to perform physical layer processing on the first UCI to obtain a fourth modulation symbol, the physical layer processing includes rate matching, the rate matching is based on N frequency domain resource units, and the first UCI is to replicate the A-bit UCI resulting, the first UCI includes A by X bits;
  • the processing module 1601 is further configured to map the fourth modulation symbol to N frequency domain resource units;
  • Transceiver module 1602 configured to send a fourth modulation symbol.
  • the sum of the number of bits of the first UCI and the number of bits of the CRC corresponding to the first UCI is less than or equal to the second threshold; or, the number of bits of the first UCI and the bits of the CRC corresponding to the first UCI The sum of the numbers is less than or equal to the smaller of the second threshold and the third threshold; wherein the second threshold is determined by one or more of the following: N, the number of subcarriers included in the frequency domain resource unit, the first PUCCH format The corresponding spreading factor, the number of time units corresponding to the first PUCCH format, the modulation method corresponding to the first PUCCH format, or the first code rate.
  • the first PUCCH format is the PUCCH format used when sending UCI
  • the first code rate is the network The bit rate configured by the device
  • the third threshold is a preset threshold or a threshold configured by the network device.
  • the second threshold, N the number of subcarriers included in the frequency domain resource unit, the spreading factor corresponding to the first PUCCH format, the number of time units corresponding to the first PUCCH format, the corresponding The modulation method and the first code rate of , satisfy the following formula:
  • Thr 2 is the second threshold
  • N sc is the number of subcarriers included in the frequency domain resource unit
  • Q m is related to the modulation mode corresponding to the first PUCCH format
  • r is the first code rate.
  • the transceiver module 1602 is further configured to receive first indication information from the network device, where the first indication information is used to indicate the value of X.
  • the number of UCI bits is A; the processing module 1601 is configured to send the UCI on the N frequency domain resource units through the transceiver module 1602, including:
  • the processing module 1601 is configured to perform physical layer processing on A-bit UCI to obtain a fifth modulation symbol, where the physical layer processing includes rate matching, and the rate matching is based on N frequency domain resource units;
  • the processing module 1601 is further configured to map the fifth modulation symbol in the N frequency domain resource units;
  • the transceiver module 1602 is configured to send the fifth modulation symbol.
  • the transceiver module 1602 is further configured to receive second indication information from the network device, where the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N.
  • the value of N is a preset value; or, the transceiver module 1602 is further configured to receive third indication information from the network device, where the third indication information is used to indicate the value of N.
  • the terminal device 160 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other functions that may provide the above-described functions device.
  • ASIC application-specific integrated circuit
  • the terminal device 160 may take the form of the terminal device 30 shown in FIG. 3 .
  • the function/implementation process of the processing module 1601 in FIG. 16 can be implemented by the processor 301 in the terminal 30 shown in FIG. 3 calling the computer-executed instructions stored in the memory 302, and the transceiver module 1602 in FIG.
  • the function/implementation process can be implemented by the transceiver 303 in the terminal 30 shown in FIG. 3 .
  • the function/implementation process of the transceiver module 1602 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the processing module 1601
  • the function/implementation process may be realized by a processor (or processing circuit) of a chip or system on a chip.
  • terminal device 160 provided in this embodiment can execute the above method, reference can be made to the above method embodiments for the technical effects that can be obtained, and details are not repeated here.
  • FIG. 17 shows a schematic structural diagram of a network device 170 .
  • the network device 170 includes a processing module 1701 and a transceiver module 1702 .
  • the network device 170 may also include a storage module (not shown in FIG. 17 ) for storing program instructions and data.
  • the transceiving module 1702 which may also be referred to as a transceiving unit, is used to implement sending and/or receiving functions.
  • the transceiver module 1702 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1702 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the network device in the above method embodiments, and/or to support the techniques described herein
  • the processing module 1701 can be used to perform the steps of the processing class (eg, determination, acquisition, etc.) performed by the network device in the above method embodiments, and/or other processes used to support the technology described herein.
  • Transceiver module 1702 configured to receive signals from terminal equipment on N frequency domain resource units, where N is a positive integer greater than 1;
  • the processing module 1701 is configured to perform physical layer processing on the signal to obtain uplink control information UCI.
  • the UCI includes N UCI subsections, and different UCI subsections in the N UCI subsections are carried by different frequency domain resource elements in the N frequency domain resource elements.
  • the sum of the number of bits of the UCI subsection and the number of bits of the cyclic redundancy check code CRC corresponding to the UCI subsection is less than or equal to a first threshold, and the first threshold is a value that can be carried by the frequency domain resource unit. Maximum number of bits.
  • the signal is a first signal
  • the first signal includes N first modulation symbols
  • the first modulation symbols are modulation symbols corresponding to the UCI subsection.
  • the UCI is mapped X times on the N frequency domain resource units, where X is a positive integer greater than 1.
  • the signal is a second signal
  • X is equal to N
  • the number of UCI bits is A
  • the second signal includes N second modulation symbols
  • the second modulation symbols are modulation symbols corresponding to A-bit UCI .
  • the signal is a third signal
  • X is equal to N
  • the number of UCI bits is A
  • the third signal includes N third modulation symbols
  • the third modulation symbol is the modulation symbol corresponding to A-bit UCI .
  • the sum of the number of bits of the UCI and the number of bits of the CRC corresponding to the UCI is less than or equal to a first threshold, and the first threshold is the maximum number of bits that the frequency domain resource unit can bear.
  • the signal is a fourth signal
  • the number of UCI bits is A
  • the fourth signal includes a fourth modulation symbol
  • the fourth modulation symbol is a modulation symbol corresponding to the first UCI
  • the first UCI is a pair of A
  • the first UCI includes A multiplied by X bits, obtained by duplicating the bit UCI.
  • the sum of the number of bits of the first UCI and the number of bits of the CRC corresponding to the first UCI is less than or equal to the second threshold; or, the number of bits of the first UCI and the bits of the CRC corresponding to the first UCI The sum of the numbers is less than or equal to the smaller of the second threshold and the third threshold; wherein the second threshold is determined by one or more of the following: N, the number of subcarriers included in the frequency domain resource unit, the first PUCCH format The corresponding spreading factor, the number of time units corresponding to the first PUCCH format, the modulation method corresponding to the first PUCCH format, or the first code rate.
  • the first PUCCH format is the PUCCH format used when sending UCI
  • the first code rate is the network The bit rate configured by the device
  • the third threshold is a preset threshold or a threshold configured by the network device.
  • the transceiver module 1702 is further configured to send first indication information to the terminal device, where the first indication information is used to indicate the value of X.
  • the signal is a fifth signal
  • the number of UCI bits is A
  • the fifth signal includes a fifth modulation symbol
  • the fifth modulation symbol is a modulation symbol corresponding to A-bit UCI.
  • the transceiver module 1702 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N.
  • the value of N is a preset value; or, the transceiver module 1702 is further configured to send third indication information to the terminal device, where the third indication information is used to indicate the value of N.
  • the network device 170 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other functions that may provide the above-described functions device.
  • ASIC application-specific integrated circuit
  • the network device 170 may take the form of the network device 20 shown in FIG. 3 .
  • the function/implementation process of the processing module 1701 in FIG. 17 can be implemented by the processor 201 in the terminal 20 shown in FIG. 3 calling the computer-executed instructions stored in the memory 202, and the transceiver module 1702 in FIG. 17
  • the function/implementation process of the terminal 20 can be implemented by the transceiver 203 in the terminal 20 shown in FIG. 3 .
  • the function/implementation process of the transceiver module 1702 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the processing module 1701
  • the function/implementation process may be realized by a processor (or processing circuit) of a chip or system on a chip.
  • the network device 170 provided in this embodiment can perform the above method, the technical effect that can be obtained by the network device 170 may refer to the above method embodiments, which will not be repeated here.
  • the terminal equipment and network equipment described in the embodiments of the present application can also be implemented by using the following: one or more field programmable gate arrays (FPGA), programmable logic A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic A programmable logic device
  • state machine gate logic
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication apparatus to execute the method in any of the above method embodiments.
  • the memory may also not be in the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly obtained from memory read, or possibly through other devices) and transferred to the processor.
  • the interface circuit is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly obtained from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, where the communication interface is used to communicate with modules other than the communication device.
  • the communication device may be a chip or a chip system, and when the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in this application.
  • the present application also provides a communication device (for example, the communication device may be a chip or a chip system), the communication device includes an interface circuit and a logic circuit, the interface circuit is used to obtain the information to be processed and /or output the processed information; the logic circuit is used to execute the method in any of the above method embodiments, to process the information to be processed and/or to generate the processed information.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes an interface circuit and a logic circuit, the interface circuit is used to obtain the information to be processed and /or output the processed information; the logic circuit is used to execute the method in any of the above method embodiments, to process the information to be processed and/or to generate the processed information.
  • the processed information is uplink control information UCI.
  • the information to be processed is first indication information, and the first indication information is used to indicate the value of X.
  • the information to be processed is second indication information, and the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N.
  • the information to be processed is uplink control information UCI.
  • the processed information is first indication information, and the first indication information is used to indicate the value of X.
  • the processed information is second indication information, and the second indication information is used to indicate that the number of frequency domain resource units carrying UCI is not less than N.
  • the network device and the terminal device described in the embodiments of the present application may be implemented by a general bus architecture.
  • FIG. 18 is a schematic structural diagram of a communication apparatus 1800 provided by the present application.
  • the communication apparatus 1800 includes a processor 1801 and a transceiver 1802 .
  • the communication apparatus 1800 may be a network device or a terminal device, or a chip therein.
  • FIG. 18 shows only the main components of the communication device 1800 .
  • the communication device may further include a memory 1803, and an input and output device (not shown).
  • the processor 1801 is mainly used for processing communication protocols and communication data, and controlling the entire communication device, executing software programs, and processing data of the software programs.
  • the memory 1803 is mainly used to store software programs and data.
  • the transceiver 1802 may include a radio frequency circuit and an antenna, and the radio frequency circuit is mainly used for converting baseband signals to radio frequency signals and processing radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1801, the transceiver 1802, and the memory 1803 may be connected through a communication bus.
  • the processor 1801 can read the software program in the memory 1803, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1801 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1801, and the processor 1801 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the present application also provides a computer-readable storage medium on which a computer program or instruction is stored, and when the computer program or instruction is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid-state disks (SSDs)), and the like.
  • the computer may include the aforementioned apparatus.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a computer-readable storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息传输方法、装置及系统,能够提高UCI的覆盖范围和传输可靠性,从而提高通信效率。该方法中,终端设备确定上行控制信息UCI后,在N个频域资源单元上发送该上行控制信息,N为大于1的正整数。基于该方案,在功率谱密度确定情况下,频域资源单元的数量越多,发送功率可以越大,进而可以提高UCI的覆盖范围。此外,在UCI比特数较小时,可以在N个频域资源单元上进行速率匹配,以降低码率,从而提高传输可靠性。

Description

信息传输方法、装置及系统
本申请要求于2021年04月06日提交国家知识产权局、申请号为202110369481.3、申请名称为“信息传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及信息传输方法、装置及系统。
背景技术
通常,终端设备可以采用多种物理上行控制信道(physical uplink control channel,PUCCH)格式(PUCCH format)传输上行控制信息(uplink control information,UCI)。其中,UCI可以包括混合自动重传请求确认(hybrid automatic repeat request acknowledgement,HARQ-ACK)信息、信道状态信息(channel-state information,CSI)、或调度请求(scheduling request,SR)中的一种或多种。
目前,新空口(new radio,NR)标准定义了五种PUCCH格式,分别为PUCCH format0/1/2/3/4。其中,NR标准版本(Release,R)15和R16中对于PUCCH format 4(下文简称PF4)做出如下规定:在时域上占用4~14个符号,频域占用1个资源块(resource block,RB);承载大于2比特(bit)的信息;在UCI包括CSI的情况下,UCI比特数和循环冗余校验码(cyclic redundancy check,CRC)比特数之和不超过115比特。
基于上述规定,由于PF4在频域占用1个RB,在一些场景下,会对功率谱密度(power spectral density,PSD)进行约束,限制了终端设备的发射功率,从而导致PUCCH的覆盖范围受限。
发明内容
本申请提供一种信息传输方法、装置及系统,能够提高UCI的覆盖范围,从而提高通信效率。
为达到上述目的,本申请提供如下技术方案:
第一方面,提供了一种信息传输方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:确定上行控制信息UCI,并在N个频域资源单元上向网络设备发送UCI,N为大于1的正整数。
基于该方案,本申请采用N个频域资源单元发送UCI,一方面,在功率谱密度确定的情况下,频域资源单元的数量越多,发送功率可以越大,由于本申请发送UCI的频域资源单元增加,从而可以增加终端设备的发射功率,进而提高UCI的覆盖范围;另一方面,由于本申请发送UCI的频域资源单元增加,在每个频域资源单元承载的UCI比特数存在阈值的情况下,通过N个频域资源单元可以承载更多的UCI比特,在CSI的数据量较大时,可以提高CSI的反馈效率,进而提高通信效率。再一方面,在UCI比特数较小时,可以在N个频域资源单元上进行速率匹配,以降低码率,从而提高传输可靠性。
结合第一方面,在第一方面的某些实施方式中,UCI包括N个UCI子段,N个UCI子段中不同的UCI子段由N个频域资源单元中不同的频域资源单元承载。
基于该实施方式,一方面,将UCI分为N个UCI子段在N个频域资源单元上传输,使得每个频域资源单元上传输的UCI比特减少,从而可以增加冗余比特,即降低码率, 提高传输可靠性。另一方面,N个频域资源单元相比于一个频域资源单元可以传输更多的UCI信息,在UCI包括CSI,且CSI的数据量较大的情况下,可以通过一次发送将CSI的全部数据量反馈给网络设备,从而提高CIS反馈的及时性,进而提高通信效率;再一方面,将UCI分为N个UCI子段,在该N个UCI子段的部分UCI子段传输成功的情况下,网络设备可以获得部分UCI,终端设备可以重发传输失败的部分,而无需重发全部UCI,从而可以降低资源开销。
结合第一方面,在第一方面的某些实施方式中,UCI子段的比特数和UCI子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。基于该实施方式,能够使得频域资源单元上承载的比特不超过其最大承载能力,从而减少出错,提高传输效率。
结合第一方面,在第一方面的某些实施方式中,在N个频域资源单元上发送UCI,包括:对N个UCI子段进行物理层处理,得到N个第一调制符号;将N个第一调制符号映射至N个频域资源单元并发送。其中,物理层处理包括速率匹配,速率匹配基于一个频域资源单元。
基于该实施方式,能够对UCI进行分段的物理层处理,在各个子段的物理层处理并行执行时,可以降低处理时延。
结合第一方面,在第一方面的某些实施方式中,UCI在N个频域资源单元上映射X次,X为大于1的正整数。基于该实施方式,能够发送多次UCI,提高UCI的传输可靠性。
结合第一方面,在第一方面的某些实施方式中,X等于N,UCI的比特数为A;在N个频域资源单元上发送UCI,包括:对A比特的UCI进行物理层处理,得到第二调制符号;将第二调制符号分别映射至N个频域资源单元中的每个频域资源单元并发送。其中,物理层处理包括速率匹配,速率匹配基于一个频域资源单元。
基于该实施方式,通过频域调制符号复制的方式,使得UCI在频域资源单元上映射N次,在频率选择性信道中,可以提高接收可靠性,从而提高通信效率。
结合第一方面,在第一方面的某些实施方式中,X等于N,UCI的比特数为A;在N个频域资源单元上发送UCI,包括:对N个A比特的UCI进行物理层处理,得到N个第三调制符号;将N个第三调制符号映射至N个频域资源单元并发送。其中,物理层处理包括速率匹配,速率匹配基于一个频域资源单元,N个A比特的述UCI为对A比特的UCI进行复制得到的。
基于该实施方式,通过复制UCI的方式,使得UCI在频域资源单元上映射N次,或者说重复N-1次,在频率选择性信道中,可以提高接收可靠性,从而提高通信效率。
结合第一方面,在第一方面的某些实施方式中,UCI的比特数和UCI对应的CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
基于该实施方式,能够使得频域资源单元上承载的比特不超过其最大承载能力,从而减少出错,提高传输效率。
结合第一方面,在第一方面的某些实施方式中,UCI的比特数为A;在N个频域资源单元上发送UCI,包括:对第一UCI进行物理层处理,得到第四调制符号;将第四调制符号映射至N个频域资源单元并发送。其中,物理层处理包括速率匹配,速率匹配基于N个频域资源单元,第一UCI是对A比特的UCI进行复制得到的,第一UCI包括A乘X比特。
基于该实施方式,通过复制UCI的方式,使得UCI在频域资源单元上映射X次,或者说重复X-1次,在频率选择性信道中,可以提高传输可靠性,从而提高通信效率。
结合第一方面,在第一方面的某些实施方式中,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值;或者,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值。其中,第二阈值由以下一项或多项确定:N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、或第一码率,第一PUCCH格式为发送UCI时采用的PUCCH格式,第一码率为网络设备配置的码率;第三阈值为预设阈值或网络设备配置的阈值。
基于该实施方式,能够使得N个频域资源单元上承载的比特不超过N个频域资源单元的最大承载能力,从而减少出错,提高传输效率。
结合第一方面,在第一方面的某些实施方式中,第二阈值、N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、以及第一码率,满足如下公式:
Figure PCTCN2022085181-appb-000001
其中,Thr 2为第二阈值,
Figure PCTCN2022085181-appb-000002
N sc为频域资源单元包括的子载波的数量,
Figure PCTCN2022085181-appb-000003
为第一PUCCH格式对应的扩展因子,
Figure PCTCN2022085181-appb-000004
为第一PUCCH格式对应的时间单元的数量,Q m与第一PUCCH格式对应的调制方式相关,r为第一码率。
结合第一方面,在第一方面的某些实施方式中,该信息传输方法还包括:接收来自网络设备的第一指示信息,第一指示信息用于指示X的取值。
基于该实施方式,X的取值可以由网络设备配置,或者由终端设备根据网络设备的相关配置确定,从而提高UCI传输的灵活性。
结合第一方面,在第一方面的某些实施方式中,UCI的比特数为A;在N个频域资源单元上发送UCI,包括:对A比特的UCI进行物理层处理,得到第五调制符号;在N个频域资源单元中映射第五调制符号并发送。其中,物理层处理包括速率匹配,速率匹配基于N个频域资源单元。
基于该实施方式,在N个频域资源上发送一份UCI,在速率匹配时,可以增加冗余比特以降低码率,提高传输可靠性,从而提高通信效率。
结合第一方面,在第一方面的某些实施方式中,该信息传输方法还包括:接收来自网络设备的第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
基于该实施方式,能够保证终端设备在UCI比特数较少的情况下,仍然使用N个频域资源单元发送UCI,从而降低码率,保证传输可靠性。
结合第一方面,在第一方面的某些实施方式中,N的取值为预设值;或者,该信息传输方法还包括:接收来自网络设备的第三指示信息,第三指示信息用于指示N的取值。
第二方面,提供了一种信息传输方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:在N个频域资源单元上接收来自终端设备的信号,N为大于1的正整数;对该信号进行物理层处理,得到上行控制信息UCI。其中,第二方面所带来的技术效果可参考上述第一方面所带来的技术效果,在此不再赘述。
结合第二方面,在第二方面的某些实施方式中,UCI包括N个UCI子段,N个UCI子段中不同的UCI子段由N个频域资源单元中不同的频域资源单元承载。
结合第二方面,在第二方面的某些实施方式中,UCI子段的比特数和UCI子段对应的 循环冗余校验码CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
结合第二方面,在第二方面的某些实施方式中,该信号为第一信号,第一信号包括N个第一调制符号,第一调制符号为UCI子段对应的调制符号。
结合第二方面,在第二方面的某些实施方式中,该UCI在N个频域资源单元上映射X次,X为大于1的正整数。
结合第二方面,在第二方面的某些实施方式中,该信号为第二信号,X等于N,UCI的比特数为A,第二信号包括N个第二调制符号,第二调制符号为A比特的UCI对应的调制符号。
结合第二方面,在第二方面的某些实施方式中,该信号为第三信号,X等于N,UCI的比特数为A,第三信号包括N个第三调制符号,第三调制符号为A比特的UCI对应的调制符号。
结合第二方面,在第二方面的某些实施方式中,该UCI的比特数和该UCI对应的CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
结合第二方面,在第二方面的某些实施方式中,该信号为第四信号,该UCI的比特数为A,第四信号包括第四调制符号,第四调制符号为第一UCI对应的调制符号,第一UCI是对A比特的UCI进行复制得到的,第一UCI包括A乘X比特。
结合第二方面,在第二方面的某些实施方式中,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值;或者,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;其中,第二阈值由以下一项或多项确定:N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、或第一码率,第一PUCCH格式为发送UCI时采用的PUCCH格式,第一码率为网络设备配置的码率;第三阈值为预设阈值或网络设备配置的阈值。
结合第二方面,在第二方面的某些实施方式中,第二阈值、N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、以及第一码率,满足如下公式:
Figure PCTCN2022085181-appb-000005
其中,Thr 2为第二阈值,
Figure PCTCN2022085181-appb-000006
N sc为频域资源单元包括的子载波的数量,
Figure PCTCN2022085181-appb-000007
为第一PUCCH格式对应的扩展因子,
Figure PCTCN2022085181-appb-000008
为第一PUCCH格式对应的时间单元的数量,Q m与第一PUCCH格式对应的调制方式相关,r为第一码率。
结合第二方面,在第二方面的某些实施方式中,该信息传输方法还包括:向终端设备发送第一指示信息,第一指示信息用于指示X的取值。
结合第二方面,在第二方面的某些实施方式中,该信号为第五信号,UCI的比特数为A,第五信号包括第五调制符号,第五调制符号为A比特的UCI对应的调制符号。
结合第二方面,在第二方面的某些实施方式中,该信息传输方法还包括:向终端设备发送第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
结合第二方面,在第二方面的某些实施方式中,N的取值为预设值;或者,该信息传输方法还包括:向终端设备发送第三指示信息,第三指示信息用于指示N的取值。
其中,第二方面的各个实施方式所带来的技术效果可参考上述第一方面中相应实施方式所带来的技术效果,在此不再赘述。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括收发模块和处理模块。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。
在一些可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。
第五方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。
第六方面,提供一种通信装置,包括:逻辑电路和接口电路;该接口电路,用于获取待处理的信息和/或输出处理后的信息;该逻辑电路用于执行上述任一方面所述的方法,对所述待处理的信息进行处理和/或生成所述处理后的信息。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。
结合第六方面,在第六方面的一种实施方式中,该通信装置用于实现上述终端设备的功能时:
在一些可能的设计中,处理后的信息为上行控制信息UCI。
在一些可能的设计中,待处理的信息为第一指示信息,第一指示信息用于指示X的取值。
在一些可能的设计中,待处理的信息为第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
结合第六方面,在第六方面的一种实施方式中,该通信装置用于实现上述网络设备的功能时:
在一些可能的设计中,待处理的信息为上行控制信息UCI。
在一些可能的设计中,处理后的信息为第一指示信息,第一指示信息用于指示X的 取值。
在一些可能的设计中,处理后的信息为第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
第七方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行上述任一方面所述的方法。
第十方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第三方面至第十方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出信息,上述的接收动作/功能可以理解为输入信息。
其中,第三方面至第十方面中任一种实施方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,在此不再赘述。
第十一方面,提供一种通信系统,该通信系统包括上述方面所述的网络设备和终端设备。
附图说明
图1a为本申请提供的一种终端设备的UCI物理层处理流程示意图;
图1b为本申请提供的一种网络设备的UCI物理层处理流程示意图;
图2为本申请提供的一种通信系统的结构示意图;
图3为本申请提供的一种终端设备和网络设备的结构示意图;
图4为本申请提供的一种信息传输方法的流程示意图;
图5为本申请提供的另一种信息传输方法的流程示意图;
图6a为本申请提供的一种终端设备发送UCI的流程示意图;
图6b为本申请提供的一种网络设备接收UCI的流程示意图;
图7为本申请提供的一种终端设备的UCI物理层处理流程示意图;
图8a为本申请提供的一种终端设备发送UCI的流程示意图;
图8b为本申请提供的一种网络设备接收UCI的流程示意图;
图9为本申请提供的一种终端设备的UCI物理层处理流程示意图;
图10a为本申请提供的一种终端设备发送UCI的流程示意图;
图10b为本申请提供的一种网络设备接收UCI的流程示意图;
图11为本申请提供的一种终端设备的UCI物理层处理流程;
图12a为本申请提供的一种终端设备发送UCI的流程示意图;
图12b为本申请提供的一种网络设备接收UCI的流程示意图;
图13为本申请提供的一种终端设备的UCI物理层处理流程;
图14a为本申请提供的一种终端设备发送UCI的流程示意图;
图14b为本申请提供的一种网络设备接收UCI的流程示意图;
图15为本申请提供的一种终端设备的UCI物理层处理流程;
图16为本申请提供的一种终端设备的结构示意图;
图17为本申请提供的一种网络设备的结构示意图;
图18为本申请提供的一种通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、UCI物理层处理流程:
示例性的,如图1a所示,为终端设备的UCI物理层处理流程,主要包括以下步骤:
S101a、分割与CRC插入。
其中,对UCI进行分割与CRC插入后得到一个或多个带差错保护的码块。
S102a、信道编码。
其中,信道编码的单位为码块,其中,“码块”也可以称为“编码块”。信道编码可以使码流的频谱特性适应信道的频谱特性,从而使传输过程中能量损失最小,提高信号能量与噪声能量的比例,减小发生差错的可能性,增加通信的可靠性。
可以理解的,在该步骤S102a中,分别对步骤S101a得到的一个或多个码块进行信道编码。信道编码时采用的码率可以理解为基准码率。
S103a、速率匹配。
其中,速率匹配的单位为码块。速率匹配可以指信道上的比特被重发(repeated)或者被打孔(punctured),以匹配物理信道的承载能力,信道映射时达到传输格式所要求的比特速率。
可以理解的,在该步骤S103a中,分别对步骤S102a得到的信道编码后的码块进行速率匹配。
S104a、码块级联。
其中,码块级联可以指对步骤S103a中各个码块进行速率匹配后的结果进行合并。
S105a、调制。
通常,调制方式可以包括二进制相移键控(binary phase shift keying,BPSK)和正交相移键控(quadrature phase shift keying,QPSK)调制。此外,在一些场景下,调制方式还可以为正交幅度调制(quadrature amplitude modulation,QAM),进一步的,QAM调制可以按照调制阶数的不同分为16QAM、64QAM、256QAM等。
可以理解的是,对速率匹配后的结果进行调整后可以得到调制符号。之后,可以将得到的调制符号映射至传输资源(例如PUCCH),以便最终生成信号通过天线发送。
示例性的,如图1b所示,为网络设备的UCI物理层处理流程,网络设备对UCI的物理层处理过程为终端设备的逆过程,主要包括以下步骤:
S101b、解调制。
网络设备通过天线接收网络设备发送的信号后,对该信号进行解调制。可以理解的,解调制是调制的逆过程,网络设备使用的解调制方式与终端设备使用的调制方式相对应。例如,终端设备采用QPSK调制,则网络设备采用QPSK相应的解调方式解调。
S102b、解码块级联。
网络设备通过解码块级联(或者说解级联)可以将解调制后的比特分割为一份或多份。
S103b、解速率匹配。
可以理解的,解速率匹配是速率匹配的逆过程,终端设备进行速率匹配时的相关参数可以是网络设备配置的或者协议规定的,从而网络设备能够获知解速率匹配的方式。
S104b、信道译码。
可以理解的,信道译码是信道编码的逆过程,终端设备进行信道编码的方式可以是网络设备配置的或者协议规定的,从而网络设备能够获知信道译码的方式。
S105b、解码块分割与去CRC。
可以理解的是,该步骤S105b完成后,网络设备的物理层即获取到了UCI比特。之后,网络设备的物理层可以向上层(例如媒介接入控制(medium access control,MAC)层层)发送该UCI比特,以使上层对UCI比特进行处理。
如上所述,在NR标准R15和R16中,一方面,PUCCH format 4在频域占用1个RB。共享频段(例如52.6GHz-71GHz)中信号的发送存在法规约束,例如法规对PSD和最大发射功率进行了约束,若在共享频段中继续沿用R15和R16中的PUCCH format4,法规的约束可能使终端设备在PUCCH上发送UCI的功率受限,导致UCI的覆盖范围受限。共享频段可以被称为非授权频段。在终端设备距离网络设备较远的情况下,可能导致UCI无法被网络设备成功接收的问题,从而可能导致资源请求(SR)无法被及时处理、下行数据接收反馈(HARQ-ACK信息)不及时、CSI反馈不及时,进而造成资源浪费或降低通信效率。
另一方面,NR标准R15和R16中定义的PUCCH format 4对最大比特数存在约束,无法传输大于该约束的比特。在终端设备待上报的CSI的数据量较大时,CSI将被分段处理并分多次传输,可能导致CSI反馈不及时或不全面,影响系统的传输效率。
基于此,本申请提供一种信息传输方法,能够提高UCI的覆盖范围、传输可靠性、以及通信效率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且 “第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时一定要有判断的动作,也不意味着存在其它限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请实施例的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(third generation partnership project,3GPP)通信系统,例如,长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、NR系统、新空口车联网(vehicle to everything,NR V2X)系统,还可以应用于LTE和5G混合组网的系统中,或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT),以及其他下一代通信系统,也可以为非3GPP通信系统,不予限制。
本申请实施例的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、D2D、V2X、和IoT等通信场景。
其中,上述适用本申请的通信系统和通信场景仅是举例说明,适用本申请的通信系统和通信场景不限于此,在此统一说明,以下不再赘述。
如图2所示,为本申请实施例提供的一种通信系统10。该通信系统10包括至少一个网络设备20,以及与该网络设备20连接的一个或多个终端设备30。可选的,不同的终端设备30之间可以相互通信。
在一些实施例中,本申请涉及的终端设备30也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal,MT)、用户终端、无线通信设备、用户代理或用户装置等。终端设备可以是IoT、V2X、D2D、M2M、5G网络、或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的无线终端或有线终端。无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如 轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
示例性的,终端设备30可以是无人机、IoT设备(例如,传感器,电表,水表等)、V2X设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、平板电脑或带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有车对车(vehicle-to-vehicle,V2V)通信能力的车辆、智能网联车、具有无人机对无人机(UAV to UAV,U2U)通信能力的无人机等等。终端可以是移动的,也可以是固定的,本申请对此不作具体限定。
在一些实施例中,本申请涉及的网络设备20,是一种将终端设备30接入到无线网络的设备,可以是LTE或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolutional Node B,eNB或eNodeB),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者可以是5G系统中的下一代节点B(next generation node B,gNodeB或gNB);或者可以是传输接收点(transmission reception point,TRP);或者可以是未来演进的PLMN中的基站;或者可以是宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或非3GPP接入设备;或者可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者可以是WiFi系统中的接入节点(access point,AP);或者可以是无线中继节点或无线回传节点;或者可以是IoT中实现基站功能的设备、V2X中实现基站功能的设备、D2D中实现基站功能的设备、或者M2M中实现基站功能的设备,本申请实施例对此不作具体限定。
示例性的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
在一些实施例中,本申请涉及的网络设备20也可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU),或者,网络设备也可以是CU和DU组成的。多个DU可以共用一个CU。一个DU也可以连接多个CU。CU和DU可以理解为是对网络设备从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如,无线资源控制(radio resource control,RRC)协议层、业务数据适配协议栈(service data adaptation protocol,SDAP)协议层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)协议层的功能设置在CU中,而无线链路控制(radio link control,RLC)协议层,媒体接入控制(media access control,MAC)协议层,物理(physical,PHY)协议层等的功能设置在DU中。
可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。
例如,可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层 以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
在一些实施例中,CU可以由CU控制面(CU control plane,CU-CP)和CU用户面(CU user plane,CU-UP)组成,CU-CP和CU-UP可以理解为是对CU从逻辑功能的角度进行划分。其中,CU-CP和CU-UP可以根据无线网络的协议层划分,例如,RRC协议层和信令无线承载(signal radio bearer,SRB)对应的PDCP协议层的功能设置在CU-CP中,数据无线承载(data radio bearer,DRB)对应的PDCP协议层的功能设置在CU-UP中。此外,SDAP协议层的功能也可能设置在CU-UP中。
在一些实施例中,网络设备20与终端设备30也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
如图3所示,为本申请实施例提供的网络设备20和终端设备30的结构示意图。
其中,终端设备30包括至少一个处理器(图3中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图3中示例性的以包括一个收发器303为例进行说明)。进一步的,终端设备30还可以包括至少一个存储器(图3中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图3中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图3中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实 现本申请实施例中所述的方法。
或者,本申请中,也可以是处理器301执行本申请提供的信号发送、接收方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请涉及的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器(图3中示例性的以包括一个处理器201为例进行说明)和至少一个收发器(图3中示例性的以包括一个收发器203为例进行说明)。进一步的,网络设备20还可以包括至少一个存储器(图3中示例性的以包括一个存储器202为例进行说明)和至少一个网络接口(图3中示例性的以包括一个网络接口204为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图3中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备30中处理器301、存储器302和收发器303的描述,在此不再赘述。
可以理解的是,图3所示的结构并不构成对终端设备30和网络设备20的具体限定。比如,在本申请另一些实施例中,终端设备30和网络设备20可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合附图,以图3所示的网络设备20与终端设备30之间的交互为例,对本申请实施例提供的方法进行展开说明。
可以理解的,本申请实施例中,执行主体可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
可以理解的,本申请的各个实施例中网络设备与终端设备的交互机制可以进行适当的变形,以适用CU或者DU与终端设备之间的交互。
需要说明的是,本申请下述实施例中各个设备之间的消息名字或消息中各参数的名字或信息的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图4所示,为本申请实施例提供的一种信息传输方法,该信息传输方法包括如下步骤:
S401、终端设备确定UCI。
在一些实施例中,UCI可以用于实现以下一项或多项功能:用于反馈下行数据是否接收成功、用于请求调度传输资源、或用于反馈信道状态。例如,UCI可以包括HARQ-ACK信息、SR、CSI中的一项或多项。
在一些实施例中,终端设备确定UCI也可以理解为终端设备生成UCI,两者可以相互替换,本申请对此不作具体限定。
在一些实施例中,步骤S401中终端设备确定的该UCI以比特形式表示,或者说,该UCI包括若干个比特,因此,该UCI也可以称为UCI比特。本申请以S401中终端设备确定的该UCI的比特数为A,或者说,UCI比特的数量为A为例进行说明,A为正整数。
在一些实施例中,该UCI的比特数A小于或等于PUCCH资源上能够传输的最大UCI比特数T,或者说,PUCCH资源上传输的UCI比特数的最大阈值为T。从而,如图5所示,在该步骤S401之前,本申请提供的信息传输方法还可以包括:终端设备确定最大UCI比特数T。
作为一种示例,该最大UCI比特数T可以是由网络设备配置的。例如,网络设备可以向终端设备发送第一配置信息用于配置PUCCH资源上能够传输的最大UCI比特数T,该第一配置信息可以携带在RRC消息中。该情况下,终端设备确定最大UCI比特数T,可以为:终端设备接收网络设备的第一配置信息,根据该第一配置信息确定最大UCI比特数T。
作为另一种示例,该最大UCI比特数T可以是协议约定的。该情况下,最大UCI比特数T可以是终端设备出厂时存储在终端设备中的,终端设备确定最大UCI比特数T以理解为:终端设备读取其存储的最大UCI比特数T。
S402、终端设备在N个频域资源单元上向网络设备发送UCI。相应的,网络设备接收来自终端设备的UCI。
其中,关于N个取值:
在一些实施例中,频域资源单元的数量N的取值可以是网络设备指示的。例如,网络设备向终端设备发送第三指示信息,该第三指示信息用于指示N的取值。相应的,终端设备收到该第三指示信息后,可以根据该第三指示信息确定N。
需要说明的是,本申请提供的信息传输方法还涉及“第一指示信息”和“第二指示信息”,将在后续实施例中对第一指示信息和第二指示信息进行说明,在此不予赘述。
在另一些实施例中,频域资源的数量N的取值可以是预设值。例如,该预设值可以是协议预定义的。
在一些实施例中,N的取值满足:
Figure PCTCN2022085181-appb-000009
其中,α 2、α 3、α 5为非负正数。
在一些实施例中,本申请中的频域资源单元为频域资源的单位,包括一个或多个最小粒度的频域资源。例如,在正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中最小粒度的频域资源为子载波,从而,本申请中的频域资源单元可以包括一个或多个子载波,例如,本申请中的频域资源单元可以为RB,示例 性的包括12个子载波。随着通信系统的演进,本申请中的一个RB包括的子载波的数量也可以是其他值。
在一些实施例中,该N个频域资源单元可以是频域上连续的N个频域资源单元,例如为N个连续的RB,或者说,为N个连续的物理资源块(physical resource block,PRB)。
在一些实施例中,该N个频域资源单元在频域上也可以是非连续的,例如,该N个频域资源单元中任意两个相邻的频域资源单元的索引之差为第一数值。或者,该N个频域资源单元中的N1个频域资源单元在频域上是连续的,剩余N2个频域资源单元在频域上是非连续的,N为N1与N2之和,本申请对此不作具体限定。
在一些实施例中,终端设备采用第一PUCCH格式向网络设备发送UCI。该第一PUCCH格式可以是步骤S402之前终端设备确定的。从而,如图5所示,在该步骤S402之前,本申请提供的信息传输方法还包括:终端设备确定采用第一PUCCH格式进行UCI传输。作为一种示例,该第一PUCCH格式为PUCCH格式4。
作为一种示例,网络设备可以向终端设备发送第二配置信息,该第二配置信息用于配置第一PUCCH格式,例如,配置第一PUCCH格式对应的时域资源的位置、频域资源的位置、调制方式等。该情况下,终端设备确定采用第一PUCCH格式进行UCI传输,可以包括:终端设备接收来自网络设备的第二配置信息,根据该第二配置信息确定采用第一PUCCH格式进行UCI传输。
在一些实施例中,上述N个频域资源单元为该第一PUCCH格式占用的频域资源单元。
基于该方案,本申请采用N个频域资源单元发送UCI,一方面,在功率谱密度确定的情况下,频域资源单元的数量越多,发送功率可以越大,由于本申请发送UCI的频域资源单元增加,从而可以增加终端设备的发射功率,进而提高UCI的覆盖范围;另一方面,由于本申请发送UCI的频域资源单元增加,在每个频域资源单元承载的UCI比特数存在阈值的情况下,通过N个频域资源单元可以承载更多的UCI比特,在CSI的数据量较大时,可以提高CSI的反馈效率,进而提高通信效率。再一方面,在UCI比特数较小时,可以在N个频域资源单元上进行速率匹配,以降低码率,从而提高传输可靠性。
下面,对UCI在N个频域资源单元上的具体发送方法进行说明。示例性的,可以包括如下五种方式。
方式一:
终端设备将UCI分段后发送。
在一些实施例中,终端设备可以将UCI分为N个UCI子段,也就是说,该UCI包括N个UCI子段。其中,该N个UCI子段中的不同UCI子段由N个频域资源单元中不同的频域资源单元承载。或者说,该N个UCI子段中的每个UCI子段分别对应一个频域资源单元,不同UCI子段对应不同的频域资源单元。
在一些实施例中,本申请中的UCI子段也可以称为UCI子信息,两者可以相互替换,本申请对此不作具体限定。
在一些实施例中,该N个UCI子段中可以存在至少两个UCI子段的比特数不同。或者,在UCI的比特数A可以整除N的情况下,每个UCI子段的比特数可以相同,即均为A/N。
在一些实施例中,UCI的比特数A不能整除N的情况下,该N个UCI子段中的N-1个UCI子段的比特数可以为:
Figure PCTCN2022085181-appb-000010
另外一个UCI子段的比特数可以为:
Figure PCTCN2022085181-appb-000011
其中,
Figure PCTCN2022085181-appb-000012
表示向上取整。当然,式中的向上取整也可以替换为向下取整或四舍五入取整,本申请对此不作具体限定。
作为一种示例,比特数为
Figure PCTCN2022085181-appb-000013
的N-1个UCI子段可以是N个UCI子段中的前N-1个UCI子段,或者是后N-1个UCI子段,或者是任意的N-1个UCI子段,本申请对此不作具体限定。
作为一种实现方式,UCI子段的比特数和该UCI子段对应的CRC的比特数之和小于或等于第一阈值Q,该第一阈值Q为一个频域资源单元能够承载的最大比特数。
示例性的,该第一阈值可以是网络设备配置的,或者,可以是协议规定的,本申请对此不作具体限定。
在一些实施例中,如图6a所示,终端设备在N个频域资源单元上发送UCI,可以包括:
S601a、对N个UCI子段进行物理层处理,得到N个第一调制符号。
作为一种实现方式,终端设备对该N个UCI子段分别进行物理层处理,得到N个第一调制符号,该第一调制符号也可以理解为UCI子段对应的调制符号。也就是说,终端设备对第i个UCI子段进行物理层处理,得到一个第一调制符号,i=1,2,...,N。
在一些实施例中,该物理层处理包括速率匹配,该速率匹配基于一个频域资源单元。或者说,该速率匹配以一个频域资源单元进行。或者说,该速率匹配用于匹配一个频域资源单元的承载能力。
以速率匹配的输入比特长度是M为例,确定速率匹配后的输出比特序列长度E后,即可以进行速率匹配。其中,E=f(E tot),也就是说,E是基于E tot的函数,或者说,E的取值与E tot相关,或者说,E的取值是根据E tot确定的。
作为一种示例,在终端设备基于一个频域资源单元进行速率匹配时,若调制方式为QPSK,则:
Figure PCTCN2022085181-appb-000014
若调制方式为π/2 BPSK,则:
Figure PCTCN2022085181-appb-000015
其中,
Figure PCTCN2022085181-appb-000016
为第一PUCCH格式对应的扩展因子;
Figure PCTCN2022085181-appb-000017
为第一PUCCH格式对应的时间单元的数量;a和b为正数,例如,a等于14,b等于12。
其中,第一PUCCH格式对应的扩展因子用于频域扩频,能够对抗频率选择性衰落。示例性的,该扩展因子的取值可以为2或4。
示例性地,本申请的时间单元可以为符号、时隙、子帧、或帧等。
在另一些实施例中,该物理层处理除速率匹配外,还可以包括以下一项或多项:码块分割与CRC插入、信道编码、码块级联、或调制。示例性的,在物理层处理包括上述列举的全部操作的情况下,如图7所示,为各个操作的执行流程,即对UCI子段进行 码块分割与CRC插入后,进行信道编码,再对信道编码后的结果进行速率匹配,之后对速率匹配后的结果进行码块级联,最后进行调制。
S602a、将N个第一调制符号映射至N个频域资源单元。
在一些实施例中,将N个第一调制符号映射至N个频域资源单元,可以包括:将一个第一调制符号映射至一个频域资源单元,不同频域资源单元上映射的第一调制符号不同。示例性的,终端设备可以将第i个UCI对应的第一调制符号,映射至第i个频域资源单元,i=1,2,...,N。
S603a、发送N个第一调制符号。
在一些实施例中,该N个第一调制符号可以包含于第一信号中,终端设备可以向网络设备发送第一信号,该第一信号由上述N个频域资源单元承载,或者说,在N个频域资源单元上向网络设备发送第一信号。
在终端设备采用方式一发送UCI的情况下,对于网络设备来说,如图6b所示,其接收操作可以包括如下步骤:
S601a、接收来自终端设备的第一信号。
在一些实施例中,该第一信号由上述N个频域资源单元承载,该第一信号包括N个第一调制符号。
S602b、对第一信号进行物理层处理,得到UCI。
其中,该UCI包括N个UCI子段,UCI子段可参考上述相关说明,在此不再赘述。
在一些实施例中,网络设备对第一信号的物理层处理与终端设备对UCI子段的物理层处理相匹配。例如,终端设备对UCI子段的物理层处理包括速率匹配,那么网络设备对第一信号的物理层处理包括解速率匹配;终端设备对UCI子段的物理层处理包括调制,那么网络设备对第一信号的物理层处理包括解调制;终端设备对UCI子段的物理层处理包括码块级联,那么网络设备对第一信号的物理层处理包括解码块级联;终端设备对UCI子段的物理层处理包括信道编码,那么网络设备对第一信号的物理层处理包括信道译码;终端设备对UCI子段的物理层处理包括码块分割与CRC插入,那么网络设备对第一信号的物理层处理包括解码块分割和去CRC。
作为一种示例,网络设备得到UCI后,可以根据UCI进行相关处理,例如,UCI包括HARQ-ACK信息的情况下,根据该HARQ-ACK信息确定是否重传下行数据;或者,UCI包括SR的情况下,为终端设备调度上行资源;或者,UCI包括CSI的情况下,根据该CSI进行下行数据的预编码等,本申请对此不作具体限定。
基于该方案,一方面,将UCI分为N个UCI子段在N个频域资源单元上传输,使得每个频域资源单元上传输的UCI比特减少,从而可以增加冗余比特,即降低码率,提高传输可靠性。另一方面,N个频域资源单元相比于一个频域资源单元可以传输更多的UCI信息,在UCI包括CSI,且CSI的数据量较大的情况下,可以通过一次发送将CSI的全部数据量反馈给网络设备,从而提高CSI反馈的及时性,进而提高通信效率;再一方面,将UCI分为N个UCI子段,在该N个UCI子段的部分UCI子段传输成功的情况下,网络设备可以获得部分UCI,终端设备可以重发传输失败的部分,而无需重发全部UCI,从而可以降低资源开销。
方式二:
终端设备对UCI进行物理层处理后,通过复制的方式发送UCI。例如,通过复制调 制符号的方式发送UCI。
示例性的,以该UCI的比特数为A为例,如图8a所示,该方式二下,终端设备在N个频域资源单元上发送UCI,可以包括:
S801a、对A比特的该UCI进行物理层处理,得到第二调制符号。
其中,该第二调制符号也可以理解为该A比特的UCI子段对应的调制符号。
在一些实施例中,该UCI的比特数A和该UCI对应的CRC的比特数之和小于或等于第一阈值,第一阈值可参考上述方式一中的相关说明,在此不再赘述。
在一些实施例中,该物理层处理包括速率匹配,该速率匹配基于一个频域资源单元,可参考上述步骤S601a中的相关说明,在此不再赘述。
在另一些实施例中,该物理层处理除速率匹配外,还可以包括以下一项或多项:码块分割与CRC插入、信道编码、码块级联、或调制。在物理层处理包括上述列举的全部操作的情况下,如图9所示,为各个操作的执行流程,即对A比特的UCI进行码块分割与CRC插入后,进行信道编码,再对信道编码后的结果进行速率匹配,之后对速率匹配后的结果进行码块级联,最后进行调制。
S802a、将第二调制符号分别映射至N个频域资源单元中的每个频域资源单元。
也就是说,每个频域资源单元上映射的调制符号相同,均为第二调制符号。示例性的,如图9所示,在调制完成之后,终端设备将第二调制符号分别映射至每个频域资源单元。
S803a、发送每个频域资源单元中映射的第二调制符号。
在一些实施例中,上述每个频域资源单元中映射的第二调制符号,即N个相同的第二调制符号可以包含于第二信号中,终端设备可以向网络设备发送第二信号,该第二信号由上述N个频域资源单元承载,或者说,在N个频域资源单元上向网络设备发送第二信号。
在一些实施例中,该方式二也可以理解为A比特的UCI在N个频域资源单元上映射N次,或者说,A比特的UCI在N个频域资源单元上重复N-1次,或者说,A比特的UCI在N个频域资源单元上发送N次,或者说,在N个频域资源单元上发送了N份UCI。
在终端设备采用方式二发送UCI的情况下,对于网络设备来说,如图8b所示,其接收操作可以包括如下步骤:
S801b、接收来自终端设备的第二信号。
在一些实施例中,该第二信号由上述N个频域资源单元承载,该第二信号包括N个相同的第二调制符号。
S802b、对第二信号进行物理层处理,得到UCI。
作为一种实现方式,网络设备对第二信号的物理层处理与终端设备对A比特的UCI的物理层处理相匹配,可参考上述步骤S602b中的相关描述,在此不再赘述。
作为一种实现方式,由于第二信号包括N个相同的第二调制符号,因此,网络设备可以对第二信号中的部分第二调制符号进行物理层处理,也就是说,网络设备可以对部分频域资源单元承载的第二调制符号进行物理层处理,例如,仅对一个频域资源单元承载的第二调制符号进行物理层处理。
作为一种示例,网络设备得到UCI后,可以根据UCI进行相关处理,可参考上述步骤S602b中的相关描述,在此不再赘述。
基于该方案,通过频域调制符号复制的方式,使得UCI在频域资源单元上映射N次,在频率选择性信道中,可以提高接收可靠性,从而提高通信效率。
方式三:
终端设备通过复制UCI,在N个频域资源单元上发送N份UCI。
作为一种示例,以该UCI的比特数为A为例,如图10a所示,该方式三下,终端设备在N个频域资源单元上发送UCI,可以包括:
S1001a、对A比特的UCI进行复制得到N个A比特的UCI。
也就是说,终端设备在N个频域资源单元上发送的UCI总比特为A乘N。
在一些实施例中,该UCI的比特数A和该UCI对应的CRC的比特数之和小于或等于第一阈值,第一阈值可参考上述方式一中的相关说明,在此不再赘述。
S1002a、对N个A比特的UCI进行物理层处理,得到N个第三调制符号。
作为一种实现方式,终端设备对该N个A比特的UCI分别进行物理层处理,得到N个第三调制符号,该第三调制符号也可以理解为A比特的UCI对应的调制符号。也就是说,终端设备对第i个UCI进行物理层处理,得到一个第三调制符号,i=1,2,...,N。可以理解的是,该N个第三调制符号为相同的调制符号。
在一些实施例中,该物理层处理包括速率匹配,该速率匹配基于一个频域资源单元,可参考上述步骤S601a中的相关说明,在此不再赘述。
在另一些实施例中,该物理层处理除速率匹配外,还可以包括以下一项或多项:码块分割与CRC插入、信道编码、码块级联、或调制,可参考上述步骤S601a中的相关说明,在此不再赘述。示例性的,在物理层处理包括上述列举的全部操作的情况下,如图11所示,为各个操作的执行流程,即对A比特的UCI进行码块分割与CRC插入后,进行信道编码,再对信道编码后的结果进行速率匹配,之后对速率匹配后的结果进行码块级联,最后进行调制。
S1003a、将N个第三调制符号映射至N个频域资源单元。
也就是说,每个频域资源单元上都映射有相同的第三调制符号。
S1004a、发送该N个第三调制符号。
作为一种实现方式,上述N个相同的第三调制符号可以包含于第三信号中,终端设备可以向网络设备发送第三信号,该第三信号可以由上述N个频域资源单元承载,或者说,在N个频域资源单元上向网络设备发送第三信号。
在一些实施例中,该方式三也可以理解为A比特的UCI在N个频域资源单元上重复了N-1次,或者说,A比特的UCI在N个频域资源单元上映射了N次,或者说,A比特的UCI在N个频域资源单元上发送N次,或者说,在N个频域资源单元上发送了N份UCI。
在终端设备采用方式三发送UCI的情况下,对于网络设备来说,如图10b所示,其接收操作可以包括如下步骤:
S1001b、接收来自终端设备的第三信号。
在一些实施例中,该第三信号由上述N个频域资源单元承载,该第三信号包括N个相同的第三调制符号。
S1002b、对第三信号进行物理层处理,得到UCI。
作为一种实现方式,网络设备对第三信号的物理层处理与终端设备对A比特的UCI的物理层处理相匹配,可参考上述步骤S602b中的相关描述,在此不再赘述。
在一些实施例中,由于第三信号包括N个相同的第三调制符号,因此,网络设备可以对第三信号中的部分第三调制符号进行物理层处理,也就是说,网络设备可以对部分频域资源单元承载的第三调制符号进行物理层处理,例如,仅对一个频域资源单元承载的第三调制符号进行物理层处理。
作为一种示例,网络设备得到UCI后,可以根据UCI进行相关处理,可参考上述步骤S602b中的相关描述,在此不再赘述。
基于该方案,通过复制UCI的方式,使得UCI在频域资源单元上映射N次,或者说重复N-1次,在频率选择性信道中,可以提高接收可靠性,从而提高通信效率。
方式四:
终端设备通过复制UCI,在N个频域资源单元上发送X份UCI,X为大于1的正整数。
在一些实施例中,以该UCI的比特数为A为例,如图12a所示,该方式四下,终端设备在N个频域资源单元上发送UCI,可以包括:
S1201a、对A比特的UCI进行复制得到第一UCI,第一UCI包括A乘X比特。
也就是说,终端设备在N个频域资源单元上发送的UCI总比特为A乘X。
S1202a、对第一UCI进行物理层处理,得到第四调制符号。
其中,该第四调制符号可以理解为第一UCI对应的调制符号。
在一些实施例中,该物理层处理包括速率匹配,该速率匹配基于N个频域资源单元。或者说,该速率匹配以N个频域资源单元进行。或者说,该速率匹配用于匹配N个频域资源单元的承载能力。
以速率匹配的输入比特长度是M为例,确定速率匹配后的输出比特序列长度E后,即可以进行速率匹配。其中,E=f(E tot),也就是说,E是基于E tot的函数,或者说,E的取值与E tot相关,或者说,E的取值是根据E tot确定的。
作为一种示例,在终端设备基于N个频域资源单元进行速率匹配时,若调制方式为QPSK,则:
Figure PCTCN2022085181-appb-000018
若调制方式为π/2 BPSK,则:
Figure PCTCN2022085181-appb-000019
其中,各个参数可参考上述步骤S601a中的相关说明,在此不再赘述。可以理解的是,该步骤S1202a中,速率匹配的输入比特长度M是A乘X比特UCI(即第一UCI)进行信道编码后得到的比特数。
关于X的取值:
在一些实施例中,第一UCI的比特数(即A乘X)和第一UCI对应的CRC的比特数之和小于或等于第二阈值;或者,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值。
作为一种示例,该第二阈值可以由以下一项或多项确定:上述N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、或第一码率,第一PUCCH格式为发送UCI时采用的PUCCH格式,第一码率为网络设备配置的码率。
示例性的,第二阈值、N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、以及第一码率,满足如下公式:
Figure PCTCN2022085181-appb-000020
也就是说:
Figure PCTCN2022085181-appb-000021
其中:
Thr 2为第二阈值;O CRC为第一UCI对应的CRC的比特数。
Figure PCTCN2022085181-appb-000022
N sc为频域资源单元包括的子载波的数量,
Figure PCTCN2022085181-appb-000023
为第一PUCCH格式对应的扩展因子。
Figure PCTCN2022085181-appb-000024
为第一PUCCH格式对应的时间单元的数量。
Q m与第一PUCCH格式对应的调制方式相关。例如,调制方式为QPSK的情况下,Q m的取值为2;调制方式为π/2 BPSK的情况下,Q m的取值为1。
r为第一码率,例如,可以是网络设备通过RRC消息配置的码率。
作为一种示例,第三阈值可以是N个频域资源单元总共能够承载的最大比特数量。该第三阈值可以是网络设备配置的,或者,可以是协议约定的,本申请对此不作具体限定。
在另一些实施例中,X的取值可以是网络设备指示的。例如,本申请提供的信息传输方法还可以包括:网络设备可以向终端设备发送第一指示信息,该第一指示信息用于指示X的取值,相应的,终端设备接收来自网络设备的第一指示信息后,可以根据第一指示信息确定X的具体取值。
在一些实施例中,该物理层处理除速率匹配外,还可以包括以下一项或多项:码块分割与CRC插入、信道编码、码块级联、或调制,可参考上述步骤S601a中的相关说明,在此不再赘述。示例性的,在物理层处理包括上述列举的全部操作的情况下,如图13所示,为各个操作的执行流程,即对A乘X比特的第一UCI进行码块分割与CRC插入后,进行信道编码,再对信道编码后的结果以N个频域资源单元进行速率匹配,之后对速率匹配后的结果进行码块级联,最后进行调制。
S1203a、将第四调制符号映射至N个频域资源单元。
在一些实施例中,该N个频域资源单元中的每个频域资源单元映射有第四调制符号包括的部分调制符号。
S1204a、发送第四调制符号。
作为一种实现方式,上述第四调制符号可以包含于第四信号中,终端设备可以向网络设备发送第四信号,该第四信号可以由上述N个频域资源单元承载,或者说,在N个频域资源单元上向网络设备发送第四信号。
在一些实施例中,该方式四也可以理解为A比特的UCI在N个频域资源单元上重复了X-1次,或者说,A比特的UCI在N个频域资源单元上映射了X次,或者说,A比特的UCI在N个频域资源单元上发送X次,或者说,在N个频域资源单元上发送了X份UCI。
在终端设备采用方式四发送UCI的情况下,对于网络设备来说,如图12b所示,其接收操作可以包括如下步骤:
S1201b、接收来自终端设备的第四信号。
作为一种实现方式,该第四信号由上述N个频域资源单元承载,该第四信号包括第四调制符号。
S1202b、对第四信号进行物理层处理,得到UCI。
作为一种实现方式,网络设备对第四信号的物理层处理与终端设备对第一UCI的物理层处理相匹配,可参考上述步骤S602b中的相关描述,在此不再赘述。
作为一种示例,网络设备得到UCI后,可以根据UCI进行相关处理,可参考上述步骤S602b中的相关描述,在此不再赘述。
基于该方案,通过复制UCI的方式,使得UCI在频域资源单元上映射X次,或者说重复X-1次,在频率选择性信道中,可以提高传输可靠性,从而提高通信效率。此外,X的取值可以由网络设备配置,或者由终端设备根据网络设备的相关配置确定,从而提高UCI传输的灵活性。
方式五:
终端设备基于N个频域资源单元进行速率匹配,在N个频域资源单元上发送1份UCI。
作为一种示例,以该UCI的比特数为A为例,如图14a所示,该方式五下,终端设备在N个频域资源单元上发送UCI,可以包括:
S1401a、对A比特的UCI进行物理层处理,得到第五调制符号。
其中,该第五调制符号可以理解为A比特的UCI对应的调制符号。
在一些实施例中,该物理层处理包括速率匹配,该速率匹配基于N个频域资源单元,可参考上述步骤S1201a中的相关描述,在此不再赘述。
在另一些实施例中,该物理层处理除速率匹配外,还可以包括以下一项或多项:码块分割与CRC插入、信道编码、码块级联、或调制,可参考上述步骤S601a中的相关说明,在此不再赘述。示例性的,在物理层处理包括上述列举的全部操作的情况下,如图15所示,为各个操作的执行流程,即对A比特的UCI进行码块分割与CRC插入后,进行信道编码,再对信道编码后的结果以N个频域资源单元进行速率匹配,之后对速率匹配后的结果进行码块级联,最后进行调制。
在一些实施例中,网络设备可以向终端设备发送第二指示信息,该第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。也就是说,网络设备指示不允许终端设备降低频域资源的使用量,即终端设备在网络设备配置的或协议约定的PUCCH占用的全部频域资源上发送UCI。终端设备接收来自该网络设备的第二指示信息后,即使待发送的UCI的比特数A较小,终端设备仍然以N个频域资源单元进行速率匹配,此时,由于速率匹配的输入比特长度较小,在速率匹配时可以增加冗余比特,即降低码率,从而提高UCI的传输可靠性。
在另一些实施例中,终端设备可以在UCI的比特数A和该UCI对应的CRC的比特数之和小于或等于第四阈值的情况下,以N个频域资源单元进行速率匹配,或者说,在N个频域资源单元上发送UCI。
作为一种示例,该第四阈值可以由以下一项或多项确定:上述N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、或第一码率。
示例性的,第四阈值、N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的 扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、以及第一码率,满足如下公式:
Figure PCTCN2022085181-appb-000025
也就是说:
Figure PCTCN2022085181-appb-000026
其中,O' CRC为A比特的UCI对应的CRC的比特数。其余参数的物理含义可参考上述步骤S1202a中的相关描述,在此不再赘述。
在一些实施例中,UCI的比特数A和该UCI对应的CRC的比特数小于或等于N个频域资源单元能够承载的最大比特数P。该最大比特数P可以是网络设备配置的,也可以是协议约定的,本申请对此不作具体限定。
S1402a、将第五调制符号映射至N个频域资源单元。
在一些实施例中,该N个频域资源单元中的每个频域资源单元映射有第五调制符号包括的部分调制符号。
S1403a、发送第五调制符号。
在一些实施例中,上述第五调制符号可以包含于第五信号中,终端设备可以向网络设备发送第五信号,该第五信号由上述N个频域资源单元承载,或者说,在N个频域资源单元上向网络设备发送第五信号。
在终端设备采用方式五发送UCI的情况下,对于网络设备来说,如图14b所示,其接收操作可以包括如下步骤:
S1401b、接收来自终端设备的第五信号。
作为一种实现方式,该第五信号由上述N个频域资源单元承载,该第五信号包括第五调制符号。
S1402b、对第五信号进行物理层处理,得到UCI。
作为一种实现方式,网络设备对第五信号的物理层处理与终端设备对A比特的UCI的物理层处理相匹配,可参考上述步骤S602b中的相关描述,在此不再赘述。
作为一种实现示例,网络设备得到UCI后,可以根据UCI进行相关处理,可参考上述步骤S602b中的相关描述,在此不再赘述。
基于该方案,在N个频域资源上发送一份UCI,在速率匹配时,可以增加冗余比特以降低码率,提高传输可靠性,从而提高通信效率。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由可用于该网络设备的部件(例如芯片或者电路)实现;由终端设备实现的方法和/或步骤,也可以有可用于该终端设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件;或者,该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来 实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在一种实施场景下,以通信装置为上述方法实施例中的终端设备为例,图16示出了一种终端设备160的结构示意图。该终端设备160包括处理模块1601和收发模块1602。
在一些实施例中,该终端设备160还可以包括存储模块(图16中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块1602,也可以称为收发单元用以实现发送和/或接收功能。该收发模块1602可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块1602,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块1601,可以用于执行上述方法实施例中由终端执行的处理类(例如确定、获取等)的步骤,和/或用于支持本文所描述的技术的其它过程。
作为一种示例:
处理模块1601,用于确定上行控制信息UCI;
处理模块1601,用于通过收发模块1602在N个频域资源单元上向网络设备发送UCI,N为大于1的正整数。
作为一种可能的实现方式,UCI包括N个UCI子段,N个UCI子段中不同的UCI子段由N个频域资源单元中不同的频域资源单元承载。
作为一种可能的实现方式,UCI子段的比特数和UCI子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
作为一种可能的实现方式,处理模块1601,用于通过收发模块1602在N个频域资源单元上发送UCI,包括:
处理模块1601,用于对N个UCI子段进行物理层处理,得到N个第一调制符号,物理层处理包括速率匹配,速率匹配基于一个频域资源单元;
处理模块1601,还用于将N个第一调制符号映射至N个频域资源单元;
收发模块1602,用于发送N个第一调制符号。
作为一种可能的实现方式,UCI在N个频域资源单元上映射X次,X为大于1的正整数。
作为一种可能的实现方式,X等于N,UCI的比特数为A;处理模块1601,用于通过收发模块1602在N个频域资源单元上发送UCI,包括:
处理模块1601,用于对A比特的UCI进行物理层处理,得到第二调制符号,物理层处理包括速率匹配,速率匹配基于一个频域资源单元;
处理模块1601,还用于将第二调制符号分别映射至N个频域资源单元中的每个频域资源单元;
收发模块1602,用于发送每个频域资源单元中映射的第二调制符号。
作为一种可能的实现方式,X等于N,UCI的比特数为A;处理模块1601,用于通过收发模块1602在N个频域资源单元上发送UCI,包括:
处理模块1601,用于对N个A比特的UCI进行物理层处理,得到N个第三调制符号,物理层处理包括速率匹配,速率匹配基于一个频域资源单元,该N个A比特的UCI是对A比特的UCI进行复制得到的;
处理模块1601,还用于将N个第三调制符号映射至N个频域资源单元;
收发模块1602,用于发送N个第三调制符号。
作为一种可能的实现方式,UCI的比特数和UCI对应的CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
作为一种可能的实现方式,UCI的比特数为A;处理模块1601,用于通过收发模块1602在N个频域资源单元上发送UCI,包括:
处理模块1601,还用于对第一UCI进行物理层处理,得到第四调制符号,物理层处理包括速率匹配,速率匹配基于N个频域资源单元,第一UCI是对A比特的UCI进行复制得到的,第一UCI包括A乘X比特;
处理模块1601,还用于将第四调制符号映射至N个频域资源单元;
收发模块1602,用于发送第四调制符号。
作为一种可能的实现方式,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值;或者,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;其中,第二阈值由以下一项或多项确定:N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、或第一码率,第一PUCCH格式为发送UCI时采用的PUCCH格式,第一码率为网络设备配置的码率;第三阈值为预设阈值或网络设备配置的阈值。
作为一种可能的实现方式,第二阈值、N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、以及第一码率,满足如下公式:
Figure PCTCN2022085181-appb-000027
其中,Thr 2为第二阈值,
Figure PCTCN2022085181-appb-000028
N sc为频域资源单元包括的子载波的数量,
Figure PCTCN2022085181-appb-000029
为第一PUCCH格式对应的扩展因子,
Figure PCTCN2022085181-appb-000030
为第一PUCCH格式对应的时间单元的数量,Q m与第一PUCCH格式对应的调制方式相关,r为第一码率。
作为一种可能的实现方式,收发模块1602,还用于接收来自网络设备的第一指示信息,第一指示信息用于指示X的取值。
作为一种可能的实现方式,UCI的比特数为A;处理模块1601,用于通过收发模块1602在N个频域资源单元上发送UCI,包括:
处理模块1601,用于对A比特的UCI进行物理层处理,得到第五调制符号,物理层处理包括速率匹配,速率匹配基于N个频域资源单元;
处理模块1601,还用于在N个频域资源单元中映射第五调制符号;
收发模块1602,用于发送第五调制符号。
作为一种可能的实现方式,收发模块1602,还用于接收来自网络设备的第二指示信息, 第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
作为一种可能的实现方式,N的取值为预设值;或者,收发模块1602,还用于接收来自网络设备的第三指示信息,第三指示信息用于指示N的取值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该终端设备160以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该终端设备160可以采用图3所示的终端设备30的形式。
作为一种示例,图16中的处理模块1601的功能/实现过程可以通过图3所示的终端30中的处理器301调用存储器302中存储的计算机执行指令来实现,图16中的收发模块1602的功能/实现过程可以通过图3所示的终端30中的收发器303来实现。
在一些实施例中,当图16中的终端设备160是芯片或芯片系统时,收发模块1602的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块1601的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的终端设备160可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一种实施场景下,以通信装置为上述方法实施例中的网络设备为例,图17示出了一种网络设备170的结构示意图。该网络设备170包括处理模块1701和收发模块1702。
在一些实施例中,该网络设备170还可以包括存储模块(图17中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块1702,也可以称为收发单元用以实现发送和/或接收功能。该收发模块1702可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块1702,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块1701,可以用于执行上述方法实施例中由网络设备执行的处理类(例如确定、获取等)的步骤,和/或用于支持本文所描述的技术的其它过程。
作为一种示例:
收发模块1702,用于在N个频域资源单元上接收来自终端设备的信号,N为大于1的正整数;
处理模块1701,用于对信号进行物理层处理,得到上行控制信息UCI。
作为一种可能的实现方式,UCI包括N个UCI子段,N个UCI子段中不同的UCI子段由N个频域资源单元中不同的频域资源单元承载。
作为一种可能的实现方式,UCI子段的比特数和UCI子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
作为一种可能的实现方式,该信号为第一信号,第一信号包括N个第一调制符号,第一调制符号为UCI子段对应的调制符号。
作为一种可能的实现方式,其特征在于,UCI在N个频域资源单元上映射X次,X为大于1的正整数。
作为一种可能的实现方式,该信号为第二信号,X等于N,UCI的比特数为A,第二信号包括N个第二调制符号,第二调制符号为A比特的UCI对应的调制符号。
作为一种可能的实现方式,该信号为第三信号,X等于N,UCI的比特数为A,第三信号包括N个第三调制符号,第三调制符号为A比特的UCI对应的调制符号。
作为一种可能的实现方式,UCI的比特数和UCI对应的CRC的比特数之和小于或等于第一阈值,第一阈值为频域资源单元能够承载的最大比特数。
作为一种可能的实现方式,该信号为第四信号,UCI的比特数为A,第四信号包括第四调制符号,第四调制符号为第一UCI对应的调制符号,第一UCI是对A比特的UCI进行复制得到的,第一UCI包括A乘X比特。
作为一种可能的实现方式,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值;或者,第一UCI的比特数和第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;其中,第二阈值由以下一项或多项确定:N、频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、第一PUCCH格式对应的调制方式、或第一码率,第一PUCCH格式为发送UCI时采用的PUCCH格式,第一码率为网络设备配置的码率;第三阈值为预设阈值或网络设备配置的阈值。
作为一种可能的实现方式,收发模块1702,还用于向终端设备发送第一指示信息,第一指示信息用于指示X的取值。
作为一种可能的实现方式,该信号为第五信号,UCI的比特数为A,第五信号包括第五调制符号,第五调制符号为A比特的UCI对应的调制符号。
作为一种可能的实现方式,收发模块1702,还用于向终端设备发送第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
作为一种可能的实现方式,N的取值为预设值;或者,收发模块1702,还用于向终端设备发送第三指示信息,第三指示信息用于指示N的取值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该网络设备170以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该网络设备170可以采用图3所示的网络设备20的形式。
作为一种示例,图17中的处理模块1701的功能/实现过程可以通过图3所示的终端20中的处理器201调用存储器202中存储的计算机执行指令来实现,图17中的收发模块1702的功能/实现过程可以通过图3所示的终端20中的收发器203来实现。
在一些实施例中,当图17中的网络设备170是芯片或芯片系统时,收发模块1702的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块1701的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的网络设备170可执行上述方法,因此其所能获得的技术效果可 参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的终端设备和网络设备,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请对此不作具体限定。
在一些实施例中,本申请还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括接口电路和逻辑电路,该接口电路用于获取待处理的信息和/或输出处理后的信息;该逻辑电路,用于执行上述任一方法实施例中的方法,对待处理的信息进行处理和/或生成处理后的信息。
作为一种可能的实现,该通信装置用于实现上述终端设备的功能时:
在一些可能的设计中,处理后的信息为上行控制信息UCI。
在一些可能的设计中,待处理的信息为第一指示信息,第一指示信息用于指示X的取值。
在一些可能的设计中,待处理的信息为第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
作为一种可能的实现,该通信装置用于实现上述网络设备的功能时:
在一些可能的设计中,待处理的信息为上行控制信息UCI。
在一些可能的设计中,处理后的信息为第一指示信息,第一指示信息用于指示X的取值。
在一些可能的设计中,处理后的信息为第二指示信息,第二指示信息用于指示承载UCI的频域资源单元的个数不小于N。
作为一种可能的产品形态,本申请实施例所述的网络设备和终端设备,可以由一般性的总线体系结构来实现。
为了便于说明,参见图18,图18是本申请提供的通信装置1800的结构示意图,该通信装置1800包括处理器1801和收发器1802。该通信装置1800可以为网络设备或终端设备,或其中的芯片。图18仅示出了通信装置1800的主要部件。除处理器1801和收发器1802之外,所述通信装置还可以进一步包括存储器1803、以及输入输出装置(图未示意)。
其中,处理器1801主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1803主要用于存储软件程序和数据。收发器1802可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
其中,处理器1801、收发器1802、以及存储器1803可以通过通信总线连接。
当通信装置开机后,处理器1801可以读取存储器1803中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1801对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1801,处理器1801将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如 红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid-state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个计算机可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。计算机可读存储介质可参考前述相关说明,在此不予赘述。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (67)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    确定上行控制信息UCI;
    接收网络设备发送的第三指示信息,所述第三指示信息用于指示N个频域资源单元,所述N为大于1的正整数;
    在所述N个频域资源单元上采用第一物理上行控制信道PUCCH格式向所述网络设备发送所述UCI,所述第一PUCCH格式为PUCCH格式4。
  2. 根据权利要求1所述的方法,其特征在于,所述UCI包括N个UCI子段,所述N个UCI子段中不同的UCI子段由所述N个频域资源单元中不同的频域资源单元承载。
  3. 根据权利要求2所述的方法,其特征在于,所述UCI子段的比特数和所述UCI子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  4. 根据权利要求2或3所述的方法,其特征在于,在N个频域资源单元上发送所述UCI,包括:
    对所述N个UCI子段进行物理层处理,得到N个第一调制符号,所述物理层处理包括速率匹配,所述速率匹配基于一个所述频域资源单元;
    将所述N个第一调制符号映射至所述N个频域资源单元并发送。
  5. 根据权利要求1所述的方法,其特征在于,所述UCI在所述N个频域资源单元上映射X次,X为大于1的正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述X等于N,所述UCI的比特数为A;在N个频域资源单元上发送所述UCI,包括:
    对A比特的所述UCI进行物理层处理,得到第二调制符号,所述物理层处理包括速率匹配,所述速率匹配基于一个所述频域资源单元;
    将所述第二调制符号分别映射至所述N个频域资源单元中的每个频域资源单元并发送。
  7. 根据权利要求5所述的方法,其特征在于,所述X等于N,所述UCI的比特数为A;在N个频域资源单元上发送所述UCI,包括:
    对N个A比特的所述UCI进行物理层处理,得到N个第三调制符号,所述物理层处理包括速率匹配,所述速率匹配基于一个所述频域资源单元,所述N个A比特的所述UCI为对A比特的所述UCI进行复制得到的;
    将所述N个第三调制符号映射至所述N个频域资源单元并发送。
  8. 根据权利要求1、5-7任一项所述的方法,其特征在于,所述UCI的比特数和所述UCI对应的CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  9. 根据权利要求5所述的方法,其特征在于,所述UCI的比特数为A;在N个频域资源单元上发送所述UCI,包括:
    对第一UCI进行物理层处理,得到第四调制符号,所述物理层处理包括速率匹配,所述速率匹配基于所述N个频域资源单元,所述第一UCI是对A比特的所述UCI进行复制得到的,所述第一UCI包括A乘X比特;
    将所述第四调制符号映射至所述N个频域资源单元并发送。
  10. 根据权利要求9所述的方法,其特征在于,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值;
    或者,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;
    其中,所述第二阈值由以下一项或多项确定:所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、或第一码率,所述第一码率为网络设备配置的码率;所述第三阈值为预设阈值或网络设备配置的阈值。
  11. 根据权利要求10所述的方法,其特征在于,所述第二阈值、所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、以及所述第一码率,满足如下公式:
    Figure PCTCN2022085181-appb-100001
    其中,Thr 2为所述第二阈值,
    Figure PCTCN2022085181-appb-100002
    N sc为所述频域资源单元包括的子载波的数量,
    Figure PCTCN2022085181-appb-100003
    为所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100004
    为所述第一PUCCH格式对应的时间单元的数量,Q m与所述第一PUCCH格式对应的调制方式相关,r为所述第一码率。
  12. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述X的取值。
  13. 根据权利要求1所述的方法,其特征在于,所述UCI的比特数为A;在N个频域资源单元上发送所述UCI,包括:
    对A比特的所述UCI进行物理层处理,得到第五调制符号,所述物理层处理包括速率匹配,所述速率匹配基于所述N个频域资源单元;
    在所述N个频域资源单元中映射所述第五调制符号并发送。
  14. 根据权利要求13所述的方法,其特征在于,所述UCI的比特数A和所述UCI对应的CRC的比特数之和小于或等于第四阈值的情况下,所述速率匹配基于所述N个频域资源单元。
  15. 根据权利要求14所述的方法,其特征在于,所述第四阈值由以下一项或多项确定:所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、或第一码率,所述第一码率为所述网络设备配置的码率。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第四阈值满足如下公式:
    Figure PCTCN2022085181-appb-100005
    其中,Thr 4表示所述第四阈值,
    Figure PCTCN2022085181-appb-100006
    N sc表示所述频域资源单元包括的子载波的数量,
    Figure PCTCN2022085181-appb-100007
    表示所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100008
    表示所述第一PUCCH格式对应的时间单元的数量,Q m与所述第一PUCCH格式对应的调制方式相关,r为第一码率,所述第一码率为所述网络设备配置的码率。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述速率匹配后的输出比特序列长度E是基于E tot确定的,
    所述第一PUCCH格式对应的调制方式为正交相移键控QPSK时:
    Figure PCTCN2022085181-appb-100009
    所述第一PUCCH格式对应的调制方式为π/2二进制相移键控BPSK时:
    Figure PCTCN2022085181-appb-100010
    其中,
    Figure PCTCN2022085181-appb-100011
    为所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100012
    为所述第一PUCCH格式对应的时间单元的数量,a和b为正数。
  18. 根据权利要求13所述的方法,其特征在于,所述UCI的比特数A和所述UCI对应的CRC的比特数之和小于或等于所述N个频域资源单元能够承载的最大比特数。
  19. 一种信息传输方法,其特征在于,所述方法包括:
    向终端设备发送第三指示信息,所述第三指示信息用于指示N个频域资源单元,所述N为大于1的正整数;
    在所述N个频域资源单元上接收来自所述终端设备的信号;
    对所述信号进行物理层处理,得到上行控制信息UCI,所述UCI对应的物理上行控制信道PUCCH格式为第一PUCCH格式,所述第一PUCCH格式为PUCCH格式4。
  20. 根据权利要求19所述的方法,其特征在于,所述UCI包括N个UCI子段,所述N个UCI子段中不同的UCI子段由所述N个频域资源单元中不同的频域资源单元承载。
  21. 根据权利要求20所述的方法,其特征在于,所述UCI子段的比特数和所述UCI子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  22. 根据权利要求19或20所述的方法,其特征在于,所述信号为第一信号,所述第一信号包括N个第一调制符号,所述第一调制符号为所述UCI子段对应的调制符号。
  23. 根据权利要求19所述的方法,其特征在于,所述UCI在所述N个频域资源单元上映射X次,X为大于1的正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述信号为第二信号,所述X等于N,所述UCI的比特数为A,所述第二信号包括N个第二调制符号,所述第二调制符号为A比特的所述UCI对应的调制符号。
  25. 根据权利要求23所述的方法,其特征在于,所述信号为第三信号,所述X等于N,所述UCI的比特数为A,所述第三信号包括N个第三调制符号,所述第三调制符号为A比特的所述UCI对应的调制符号。
  26. 根据权利要求19、23-25任一项所述的方法,其特征在于,所述UCI的比特数和所述UCI对应的CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  27. 根据权利要求23所述的方法,其特征在于,所述信号为第四信号,所述UCI的比特数为A,所述第四信号包括第四调制符号,所述第四调制符号为第一UCI对应的调制符号,所述第一UCI是对A比特的所述UCI进行复制得到的,所述第一UCI包括A乘X比特。
  28. 根据权利要求27所述的方法,其特征在于,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值;
    或者,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;
    其中,所述第二阈值由以下一项或多项确定:所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、或第一码率,所述第一码率为网络设备配置的 码率;所述第三阈值为预设阈值或网络设备配置的阈值。
  29. 根据权利要求28所述的方法,其特征在于,所述第二阈值、所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、以及所述第一码率,满足如下公式:
    Figure PCTCN2022085181-appb-100013
    其中,Thr 2为所述第二阈值,
    Figure PCTCN2022085181-appb-100014
    N sc为所述频域资源单元包括的子载波的数量,
    Figure PCTCN2022085181-appb-100015
    为所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100016
    为所述第一PUCCH格式对应的时间单元的数量,Q m与所述第一PUCCH格式对应的调制方式相关,r为所述第一码率。
  30. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述X的取值。
  31. 根据权利要求19所述的方法,其特征在于,所述信号为第五信号,所述UCI的比特数为A,所述第五信号包括第五调制符号,所述第五调制符号为A比特的所述UCI对应的调制符号。
  32. 一种通信装置,其特征在于,所述通信装置包括:至少一个处理器;
    所述处理器,用于执行指令,以使所述通信装置执行如权利要求1-18中任一项所述的方法,或者,以使所述通信装置执行如权利要求19-31中任一项所述的方法。
  33. 一种通信装置,其特征在于,所述通信装置包括:逻辑电路和接口电路;
    所述接口电路,用于获取待处理的信息和/或输出处理后的信息;
    所述逻辑电路用于执行权利要求1-18中任一项所述的方法,或者用于执行权利要求19-31中任一项所述的方法,对所述待处理的信息进行处理和/或生成所述处理后的信息。
  34. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置执行如权利要求1-18中任一项所述的方法,或者,以使所述通信装置执行如权利要求19-31中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行如权利要求1-18中任一项所述的方法,或者,使得所述通信装置执行如权利要求19-31中任一项所述的方法。
  36. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行如权利要求1-18任一项所述的方法,或者执行如权利要求19-31任一项所述的方法。
  37. 一种终端设备,其特征在于,所述终端设备包括:处理模块和收发模块;
    所述处理模块,用于确定上行控制信息UCI;
    所述收发模块,用于接收网络设备发送的第三指示信息,所述第三指示信息用于指示N个频域资源单元,所述N为大于1的正整数;
    所述处理模块,还用于在所述N个频域资源单元上采用第一物理上行控制信道PUCCH格式向所述网络设备发送所述UCI,所述第一PUCCH格式为PUCCH格式4。
  38. 根据权利要求37所述的终端设备,其特征在于,所述UCI包括N个UCI子段,所述N个UCI子段中不同的UCI子段由所述N个频域资源单元中不同的频域资源单元承载。
  39. 根据权利要求38所述的终端设备,其特征在于,所述UCI子段的比特数和所述UCI 子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  40. 根据权利要求38或39所述的终端设备,其特征在于,所述处理模块,用于通过所述收发模块在N个频域资源单元上发送所述UCI,包括:
    所述处理模块,用于对所述N个UCI子段进行物理层处理,得到N个第一调制符号,所述物理层处理包括速率匹配,所述速率匹配基于一个所述频域资源单元;
    所述处理模块,还用于将所述N个第一调制符号映射至所述N个频域资源单元并通过所述收发模块发送。
  41. 根据权利要求37所述的终端设备,其特征在于,所述UCI在所述N个频域资源单元上映射X次,X为大于1的正整数。
  42. 根据权利要求41所述的终端设备,其特征在于,所述X等于N,所述UCI的比特数为A;所述处理模块,用于通过所述收发模块在N个频域资源单元上发送所述UCI,包括:
    所述处理模块,用于对A比特的所述UCI进行物理层处理,得到第二调制符号,所述物理层处理包括速率匹配,所述速率匹配基于一个所述频域资源单元;
    所述处理模块,还用于将所述第二调制符号分别映射至所述N个频域资源单元中的每个频域资源单元并通过所述收发模块发送。
  43. 根据权利要求41所述的终端设备,其特征在于,所述X等于N,所述UCI的比特数为A;所述处理模块,用于通过所述收发模块在N个频域资源单元上发送所述UCI,包括:
    所述处理模块,用于通过所述收发模块对N个A比特的所述UCI进行物理层处理,得到N个第三调制符号,所述物理层处理包括速率匹配,所述速率匹配基于一个所述频域资源单元,所述N个A比特的所述UCI为对A比特的所述UCI进行复制得到的;
    所述处理模块,还用于将所述N个第三调制符号映射至所述N个频域资源单元并通过所述收发模块发送。
  44. 根据权利要求37、41-43任一项所述的终端设备,其特征在于,所述UCI的比特数和所述UCI对应的CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  45. 根据权利要求41所述的终端设备,其特征在于,所述UCI的比特数为A;所述处理模块,用于通过所述收发模块在N个频域资源单元上发送所述UCI,包括:
    所述处理模块,用于对第一UCI进行物理层处理,得到第四调制符号,所述物理层处理包括速率匹配,所述速率匹配基于所述N个频域资源单元,所述第一UCI是对A比特的所述UCI进行复制得到的,所述第一UCI包括A乘X比特;
    所述处理模块,还用于将所述第四调制符号映射至所述N个频域资源单元并通过所述收发模块发送。
  46. 根据权利要求45所述的终端设备,其特征在于,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值;
    或者,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;
    其中,所述第二阈值由以下一项或多项确定:所述N、所述频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、或第一码率,所述第一码率为网络设备配置的码率;所述第三阈值为预设阈值或网络设备配置的阈值。
  47. 根据权利要求46所述的终端设备,其特征在于,所述第二阈值、所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、以及所述第一码率,满足如下公式:
    Figure PCTCN2022085181-appb-100017
    其中,Thr 2为所述第二阈值,
    Figure PCTCN2022085181-appb-100018
    N sc为所述频域资源单元包括的子载波的数量,
    Figure PCTCN2022085181-appb-100019
    为所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100020
    为所述第一PUCCH格式对应的时间单元的数量,Q m与所述第一PUCCH格式对应的调制方式相关,r为所述第一码率。
  48. 根据权利要求45所述的终端设备,其特征在于,
    所述收发模块,还用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述X的取值。
  49. 根据权利要求37所述的终端设备,其特征在于,所述UCI的比特数为A;所述处理模块,用于通过所述收发模块在N个频域资源单元上发送所述UCI,包括:
    所述处理模块,用于通过所述收发模块对A比特的所述UCI进行物理层处理,得到第五调制符号,所述物理层处理包括速率匹配,所述速率匹配基于所述N个频域资源单元;
    所述处理模块,还用于在所述N个频域资源单元中映射所述第五调制符号并通过所述收发模块发送。
  50. 根据权利要求49所述的终端设备,其特征在于,所述UCI的比特数A和所述UCI对应的CRC的比特数之和小于或等于第四阈值的情况下,所述速率匹配基于所述N个频域资源单元。
  51. 根据权利要求50所述的终端设备,其特征在于,所述第四阈值由以下一项或多项确定:所述N、所述频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、或第一码率,所述第一码率为网络设备配置的码率。
  52. 根据权利要求50或51所述的终端设备,其特征在于,所述第四阈值满足如下公式:
    Figure PCTCN2022085181-appb-100021
    其中,Thr 4表示所述第四阈值,
    Figure PCTCN2022085181-appb-100022
    N sc表示所述频域资源单元包括的子载波的数量,
    Figure PCTCN2022085181-appb-100023
    表示所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100024
    表示所述第一PUCCH格式对应的时间单元的数量,Q m与所述第一PUCCH格式对应的调制方式相关,r为第一码率,所述第一码率为所述网络设备配置的码率。
  53. 根据权利要求49-52任一项所述的终端设备,其特征在于,所述速率匹配后的输出比特序列长度E是基于E tot确定的,
    所述第一PUCCH格式对应的调制方式为正交相移键控QPSK时:
    Figure PCTCN2022085181-appb-100025
    所述第一PUCCH格式对应的调制方式为π/2二进制相移键控BPSK时:
    Figure PCTCN2022085181-appb-100026
    其中,
    Figure PCTCN2022085181-appb-100027
    为所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100028
    为所述第一PUCCH格式对应的时间单元的数量,a和b为正数。
  54. 根据权利要求49所述的终端设备,其特征在于,所述UCI的比特数A和所述UCI对应的CRC的比特数之和小于或等于所述N个频域资源单元能够承载的最大比特数。
  55. 一种网络设备,其特征在于,所述网络设备包括:处理模块和收发模块;
    所述收发模块,用于向终端设备发送第三指示信息,所述第三指示信息用于指示N个频域资源单元,所述N为大于1的正整数;所述收发模块,用于在所述N个频域资源单元上接收来自终端设备的信号;
    所述处理模块,用于对所述信号进行物理层处理,得到上行控制信息UCI,所述UCI对应的物理上行控制信道PUCCH格式为第一PUCCH格式,所述第一PUCCH格式为PUCCH格式4。
  56. 根据权利要求55所述的网络设备,其特征在于,所述UCI包括N个UCI子段,所述N个UCI子段中不同的UCI子段由所述N个频域资源单元中不同的频域资源单元承载。
  57. 根据权利要求56所述的网络设备,其特征在于,所述UCI子段的比特数和所述UCI子段对应的循环冗余校验码CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  58. 根据权利要求55或56所述的网络设备,其特征在于,所述信号为第一信号,所述第一信号包括N个第一调制符号,所述第一调制符号为所述UCI子段对应的调制符号。
  59. 根据权利要求55所述的网络设备,其特征在于,所述UCI在所述N个频域资源单元上映射X次,X为大于1的正整数。
  60. 根据权利要求59所述的网络设备,其特征在于,所述信号为第二信号,所述X等于N,所述UCI的比特数为A,所述第二信号包括N个第二调制符号,所述第二调制符号为A比特的所述UCI对应的调制符号。
  61. 根据权利要求59所述的网络设备,其特征在于,所述信号为第三信号,所述X等于N,所述UCI的比特数为A,所述第三信号包括N个第三调制符号,所述第三调制符号为A比特的所述UCI对应的调制符号。
  62. 根据权利要求55、59-61任一项所述的网络设备,其特征在于,所述UCI的比特数和所述UCI对应的CRC的比特数之和小于或等于第一阈值,所述第一阈值为所述频域资源单元能够承载的最大比特数。
  63. 根据权利要求59所述的网络设备,其特征在于,所述信号为第四信号,所述UCI的比特数为A,所述第四信号包括第四调制符号,所述第四调制符号为第一UCI对应的调制符号,所述第一UCI是对A比特的所述UCI进行复制得到的,所述第一UCI包括A乘X比特。
  64. 根据权利要求63所述的网络设备,其特征在于,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值;
    或者,所述第一UCI的比特数和所述第一UCI对应的CRC的比特数之和小于或等于第二阈值和第三阈值中的较小值;
    其中,所述第二阈值由以下一项或多项确定:所述N、所述频域资源单元包括的子载波的数量、第一PUCCH格式对应的扩展因子、第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、或第一码率,所述第一码率为网络设备配置的码率;所述第三阈值为预设阈值或网络设备配置的阈值。
  65. 根据权利要求64所述的网络设备,其特征在于,所述第二阈值、所述N、所述频域资源单元包括的子载波的数量、所述第一PUCCH格式对应的扩展因子、所述第一PUCCH格式对应的时间单元的数量、所述第一PUCCH格式对应的调制方式、以及所述第一码率,满足如下公式:
    Figure PCTCN2022085181-appb-100029
    其中,Thr 2为所述第二阈值,
    Figure PCTCN2022085181-appb-100030
    N sc为所述频域资源单元包括的子载波的数量,
    Figure PCTCN2022085181-appb-100031
    为所述第一PUCCH格式对应的扩展因子,
    Figure PCTCN2022085181-appb-100032
    为所述第一PUCCH格式对应的时间单元的数量,Q m与所述第一PUCCH格式对应的调制方式相关,r为所述第一码率。
  66. 根据权利要求63所述的网络设备,其特征在于,
    所述收发模块,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述X的取值。
  67. 根据权利要求55所述的网络设备,其特征在于,所述信号为第五信号,所述UCI的比特数为A,所述第五信号包括第五调制符号,所述第五调制符号为A比特的所述UCI对应的调制符号。
PCT/CN2022/085181 2021-04-06 2022-04-02 信息传输方法、装置及系统 WO2022213952A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3214889A CA3214889A1 (en) 2021-04-06 2022-04-02 Information transmission method, apparatus, and system
BR112023020722A BR112023020722A2 (pt) 2021-04-06 2022-04-02 Método de transmissão de informação, aparelho e sistema
EP22784018.8A EP4307806A4 (en) 2021-04-06 2022-04-02 METHOD, APPARATUS AND SYSTEM FOR TRANSMITTING INFORMATION
US18/477,540 US20240040573A1 (en) 2021-04-06 2023-09-28 Information transmission method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369481.3A CN115190620A (zh) 2021-04-06 2021-04-06 信息传输方法、装置及系统
CN202110369481.3 2021-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,540 Continuation US20240040573A1 (en) 2021-04-06 2023-09-28 Information transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022213952A1 true WO2022213952A1 (zh) 2022-10-13

Family

ID=83512177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085181 WO2022213952A1 (zh) 2021-04-06 2022-04-02 信息传输方法、装置及系统

Country Status (6)

Country Link
US (1) US20240040573A1 (zh)
EP (1) EP4307806A4 (zh)
CN (1) CN115190620A (zh)
BR (1) BR112023020722A2 (zh)
CA (1) CA3214889A1 (zh)
WO (1) WO2022213952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118102463A (zh) * 2022-11-25 2024-05-28 华为技术有限公司 信息传输方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027181A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种上行控制信息的传输方法及装置
CN108737311A (zh) * 2017-04-17 2018-11-02 北京三星通信技术研究有限公司 上行控制信息传输的方法及用户设备
CN111181694A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 一种上行控制信息的传输方法及装置
CN111953458A (zh) * 2019-05-15 2020-11-17 大唐移动通信设备有限公司 一种pucch资源确定方法和通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027181A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种上行控制信息的传输方法及装置
CN108737311A (zh) * 2017-04-17 2018-11-02 北京三星通信技术研究有限公司 上行控制信息传输的方法及用户设备
CN111181694A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 一种上行控制信息的传输方法及装置
CN111953458A (zh) * 2019-05-15 2020-11-17 大唐移动通信设备有限公司 一种pucch资源确定方法和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4307806A4

Also Published As

Publication number Publication date
EP4307806A4 (en) 2024-10-09
US20240040573A1 (en) 2024-02-01
CA3214889A1 (en) 2022-10-13
BR112023020722A2 (pt) 2024-02-06
CN115190620A (zh) 2022-10-14
EP4307806A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US11758537B2 (en) Method and apparatus for data transmission of terminal in wireless communication system
JP7032576B2 (ja) フィードバック情報送信方法および通信デバイス
RU2725159C1 (ru) Способы и узлы для определения размера блока данных передачи
US11930506B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
JP6999689B2 (ja) データ伝送方法、端末装置及びネットワーク機器
CN105557032B (zh) 使用控制信道的长期演进设备到设备发现
WO2021027518A1 (zh) 处理数据的方法和通信装置
WO2020098685A1 (zh) 接收数据的方法和通信装置
WO2017092632A1 (zh) 无线通信的方法和装置
WO2021065153A1 (ja) 端末及び通信方法
WO2022151987A1 (zh) 信号发送、接收方法及装置
WO2021161861A1 (ja) 端末及び通信方法
WO2015024267A1 (zh) 业务数据的传输方法、终端及基站
WO2018201984A1 (zh) 数据的传输方法和设备
US20220124846A1 (en) Method for data replication, data counting method, corresponding entities and media
WO2022213952A1 (zh) 信息传输方法、装置及系统
JP2024109710A (ja) 端末装置、通信方法及び集積回路
WO2024066979A1 (zh) 一种协作传输的数据调度的方法和装置
WO2022140907A1 (zh) 一种数据发送方法及装置
JP2023024376A (ja) ハイブリッド自動反復要求送信を処理するためのデバイスおよび方法
WO2019191911A1 (zh) 数据传输的方法和设备
WO2023207271A1 (zh) 一种信号传输方法及装置
WO2024060995A1 (zh) 一种协作传输的数据调度的方法和装置
WO2024031540A1 (zh) 通信方法及通信装置
WO2022215299A1 (ja) 基地局、端末、及び、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3214889

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022784018

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023020722

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022784018

Country of ref document: EP

Effective date: 20231012

WWE Wipo information: entry into national phase

Ref document number: 202337075084

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023020722

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231006