WO2022213939A1 - 弹性测量方法、装置、系统和存储介质 - Google Patents

弹性测量方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2022213939A1
WO2022213939A1 PCT/CN2022/085129 CN2022085129W WO2022213939A1 WO 2022213939 A1 WO2022213939 A1 WO 2022213939A1 CN 2022085129 W CN2022085129 W CN 2022085129W WO 2022213939 A1 WO2022213939 A1 WO 2022213939A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
low
measured
frequency vibration
ultrasonic
Prior art date
Application number
PCT/CN2022/085129
Other languages
English (en)
French (fr)
Inventor
何琼
邵金华
孙锦
Original Assignee
无锡海斯凯尔医学技术有限公司
北京索瑞特医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司, 北京索瑞特医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2022213939A1 publication Critical patent/WO2022213939A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray

Definitions

  • the embodiments of the present application relate to the technical field of measurement, and in particular, to an elasticity measurement method, device, system, and storage medium.
  • Elasticity measurement has a wide range of applications in the food industry, medical care and other fields.
  • the elasticity of food can be measured by elastic measurement to monitor the quality of food; another example, a certain part of the human or animal body can be measured by elastic measurement. An examination is carried out, and according to the elasticity measurement results, it can be determined whether there is a lesion in the part, etc.
  • the method of elasticity detection is to use a probe to generate a low-frequency vibration signal to the monitoring object, and at the same time transmit an ultrasonic signal to the detection object, and collect the ultrasonic signal returned from the detection object.
  • the reference point of the sensor changes, which interferes with the returned ultrasonic signal. Therefore, it is necessary to add a displacement sensor to the probe to detect the relative displacement of the probe when the low-frequency vibration occurs, and then calculate the displacement compensation for the returned ultrasonic signal, and process the compensation. After the signal is calculated, the elasticity of the detected object is obtained.
  • Embodiments of the present application provide an elasticity measurement method, device, system, and storage medium to solve the problems of increased cost, computational complexity, and long computation time of the measurement device caused by the need for additional displacement sensors to perform displacement compensation calculations in the prior art.
  • a first aspect of the embodiments of the present application provides an elasticity measurement method, including:
  • the elasticity of the medium to be tested is determined according to the returned ultrasonic signal.
  • determining the elasticity of the medium to be measured according to the returned ultrasonic signal includes:
  • the elasticity of the medium to be measured is obtained by calculation according to the propagation speed.
  • the method further includes: the step of determining to stop transmitting the low-frequency vibration signal:
  • the sending of the low-frequency vibration signal is stopped.
  • the preset pressure range is determined according to the empirical value of the pressure range at the end of the vibration excitation in the elastic measurement process; and/or the duration range is determined according to the empirical value of the duration of the vibration excitation in the elastic measurement process.
  • the method further includes: the step of determining to stop transmitting the low-frequency vibration signal:
  • the transmitting a low-frequency vibration signal to the medium to be measured includes:
  • a low-frequency vibration signal is continuously transmitted to the medium to be measured at a first frequency, where the value of the first frequency ranges from 0.5 Hz to 3000 Hz.
  • the sending an ultrasonic signal to the medium to be measured includes:
  • Ultrasonic waves are emitted to the medium to be measured at a second frequency, where the value of the second frequency ranges from 100 Hz to 100,000 Hz.
  • the value range of the preset duration is [0, 10] seconds.
  • the low frequency vibration signal is a shear wave signal.
  • a second aspect of the embodiments of the present application provides an elasticity measuring device, including:
  • the sending module is used for transmitting a low-frequency vibration signal to the medium to be measured; after stopping transmitting the low-frequency vibration signal for a preset duration, an ultrasonic signal is sent to the medium to be measured, so that the ultrasonic signal tracks the low-frequency vibration signal, wherein, the preset duration is greater than or equal to 0;
  • a collection module used for collecting the ultrasonic signal returned by the medium to be tested
  • a determination module configured to determine the elasticity of the medium to be measured according to the returned ultrasonic signal.
  • a third aspect of the embodiments of the present application provides an elasticity measurement system, including: an ultrasonic probe and a control device;
  • the ultrasonic probe includes an ultrasonic transducer contact and a vibrator connected to the ultrasonic transducer contact;
  • the vibrator is used to generate and send low-frequency vibration signals to the medium to be measured;
  • the control device is respectively connected with the vibrator and the ultrasonic transducer contact, and is used to control the ultrasonic transducer contact to send the low frequency vibration signal to the
  • the medium to be measured sends an ultrasonic signal, so that the ultrasonic signal tracks the low-frequency vibration signal, and collects the ultrasonic signal returned by the medium to be measured; wherein, the preset duration is greater than or equal to 0;
  • the control device is further configured to determine the elasticity of the medium to be measured according to the returned ultrasonic signal.
  • control device is specifically used for:
  • the elasticity of the medium to be measured is obtained by calculation according to the propagation speed.
  • the ultrasonic probe further includes: a pressure sensor array;
  • the pressure sensor array is disposed between the ultrasonic transducer contact and the vibrator, and the pressure sensor array is in contact with the ultrasonic transducer contact and the vibrator, respectively.
  • the elasticity measuring device further includes: a display unit, the display unit is connected with the control device.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the first aspect of the embodiments of the present application is implemented Provides a measure of elasticity.
  • the embodiments of the present application provide an elasticity measurement method, device, system, and storage medium.
  • a low-frequency vibration signal to perform elasticity measurement
  • an ultrasonic signal is sent to the medium to be measured, so that all The ultrasonic signal tracks the low-frequency vibration signal, so that the returned ultrasonic signal will not be disturbed by the low-frequency vibration emitted by the probe, that is, it can be considered that the reference point of the returned ultrasonic signal is static.
  • FIG. 1 is an application scenario diagram of the elasticity measurement method shown in an exemplary embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for measuring elasticity according to an exemplary embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for measuring elasticity according to another exemplary embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an elasticity measuring device according to an exemplary embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an elasticity measurement system according to an exemplary embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an elasticity measuring device according to an exemplary embodiment of the present application.
  • the elastic detection method is to use the probe to generate a low-frequency vibration signal to the monitoring object, and at the same time transmit an ultrasonic signal to the detected object, and collect the ultrasonic signal returned from the detected object. Since the probe generates low-frequency vibration, it will cause the reference point of the returned ultrasonic signal. It changes and interferes with the returned ultrasonic signal. Therefore, it is necessary to add a displacement sensor to the probe to detect the relative displacement of the probe when the low-frequency vibration occurs, and then perform the displacement compensation calculation on the returned ultrasonic signal. The elasticity of the detected object is obtained during the calculation.
  • the technical solution of the present application mainly lies in: when using the low-frequency vibration signal for elastic measurement, the ultrasonic signal is transmitted with a delay time, that is, the ultrasonic signal is transmitted after the low-frequency vibration signal is transmitted, so that the ultrasonic signal can track the medium to be measured.
  • the low-frequency vibration signal propagated in the medium, so that the returned ultrasonic signal is not disturbed by the vibration of the ultrasonic probe, that is, the reference point of the returned ultrasonic signal can be considered to be static, and the probe interference does not need to be considered when calculating the elasticity of the medium to be measured. Influenced by the returned ultrasonic signal, the cost and complexity of the elasticity measurement device can be reduced, the calculation time and calculation amount of the elasticity of the medium to be measured can be reduced, and the efficiency and accuracy of elasticity measurement can be improved.
  • FIG. 1 is an application scenario diagram of the elasticity measurement method shown in an exemplary embodiment of the present application.
  • the main architecture of the improved application scenario in this embodiment includes: an ultrasonic probe 101 , a control device 102 , and a medium to be measured 103 ; the ultrasonic probe 101 applies appropriate pressure to the medium to be measured, and the control device 102 controls the ultrasonic probe to
  • the medium to be measured 103 transmits low-frequency vibration signals and ultrasonic signals, and receives ultrasonic signals returned by the medium to be measured.
  • FIG. 2 is a schematic flowchart of a method for measuring elasticity according to an exemplary embodiment of the present application.
  • the improved method of this embodiment may include the following steps.
  • the ultrasonic probe presses the medium to be measured with a certain pressure
  • the control device controls the vibrator in the ultrasonic probe to generate low-frequency vibration
  • the value range of the vibration frequency can be Between 0.5Hz and 3000Hz.
  • the preset duration is greater than or equal to 0, and the specific value of the preset duration may be determined according to the actual situation.
  • the control device controls the ultrasonic probe to send an ultrasonic signal to the medium to be measured, and the frequency of the ultrasonic wave can range from 100Hz to 100000Hz. time, so that the ultrasonic signal tracks the low-frequency vibration signal propagating in the medium to be measured.
  • S203 Collect the ultrasonic signal returned by the medium to be tested.
  • the ultrasonic signal tracks the low-frequency vibration signal and returns after reaching one end of the medium to be measured, and the ultrasonic probe collects the returned ultrasonic signal.
  • the propagation speed of the low-frequency vibration signal in the medium to be measured can be calculated according to the returned ultrasonic signal, so that the propagation speed of the medium to be measured can be calculated according to the propagation speed. elasticity.
  • the low-frequency vibration signal when used for elasticity measurement, when the transmission of the low-frequency vibration signal is stopped, an ultrasonic signal is sent to the medium to be measured, so that the ultrasonic signal tracks the low-frequency vibration signal, so that the returned The ultrasonic signal will not be disturbed by the low-frequency vibration of the probe, that is, it can be considered that the reference point of the returned ultrasonic signal is static. Therefore, when calculating the elasticity of the medium to be measured, it is not necessary to consider the low-frequency vibration of the probe to interfere with the ultrasonic signal returned by the medium to be measured. Therefore, the cost of the device is reduced, the calculation complexity and calculation time are reduced, and the elasticity measurement efficiency and accuracy are improved.
  • the value range of the preset duration may be set to [0, 10] seconds, or [0, 1] seconds.
  • the value range of the preset duration is set to [0, 10] seconds or [0, 1] seconds, which can not only reduce the influence of motion artifacts when the probe vibrates on the calculation, but also can reduce the influence of motion artifacts on the calculation when the ultrasonic probe vibrates. Ultrasonic transmission and reception are not carried out at any time, and the effect of energy saving is realized.
  • the determining of the elasticity of the medium to be measured according to the returned ultrasonic signal includes the following steps.
  • low-frequency vibration will cause an elastic wave to propagate into the medium to be measured, and the propagation speed depends on the elasticity of the medium to be measured. Since the ultrasonic waves track the low-frequency vibration signal propagating in the medium to be measured, the returned ultrasonic signal contains low-frequency vibration signals. The frequency and phase of the vibration signal propagating in the medium to be measured, as well as the frequency and phase of the elastic wave in the medium to be measured.
  • the phase of the low-frequency vibration signal (denoted as f 0 ) at the center frequency of the elastic wave (denoted as f 0 ) is calculated for each depth of the medium to be measured z represents the depth of the medium to be measured), according to the center frequency f 0 of the elastic wave and the phase of the low-frequency vibration signal at the center frequency
  • the propagation velocity is calculated, and the first formula is Among them, V(z) represents the propagation velocity of elastic waves at the depth z of the medium to be measured.
  • the elasticity of the medium to be measured is calculated according to the propagation velocity, the density of the medium to be measured, and the second formula.
  • the transmitting the low-frequency vibration signal to the medium to be measured includes: continuously transmitting the low-frequency vibration signal to the medium to be measured at a first frequency, where the value of the first frequency ranges from 0.5 Hz to 3000 Hz.
  • the sending an ultrasonic signal to the medium to be measured includes: transmitting ultrasonic waves to the medium to be measured at a second frequency, where the value of the second frequency is between 100 Hz and 100,000 Hz.
  • the method provided in this embodiment may further include: the step of determining to stop transmitting the low-frequency vibration signal: collecting pressure information fed back by the ultrasonic probe, and/or, the duration of transmitting the low-frequency vibration signal; if it is determined that the pressure value is within a preset value When the pressure is within the range and/or the duration is within the preset time range, the sending of the low-frequency vibration signal is stopped.
  • the preset pressure range is determined according to the empirical value of the pressure range of the end of the vibration excitation in the elastic measurement process; and/or the duration range is determined according to the empirical value of the duration of the vibration excitation in the elastic measurement process.
  • the control device when the ultrasonic probe contacts and presses the medium to be measured, a certain pressure will be generated.
  • the pressure sensor on the ultrasonic probe collects the pressure value between the ultrasonic probe and the medium to be measured in real time, and feeds it back to the control device, which is stored in advance in the control device.
  • the control device After receiving the pressure value fed back by the ultrasonic probe, the control device compares the pressure value with the preset pressure range. If the collected pressure value is within the preset pressure range, it means that the elastic measurement process is met at this time. In the pressure condition at the end of the vibration excitation, the control stops transmitting the low frequency vibration signal.
  • the control device when the ultrasonic probe transmits a low-frequency vibration signal to the medium to be measured, the control device records the duration of the transmission of the low-frequency vibration signal in real time, the control device pre-stores a preset time range, and the control device records the duration and preset time range. For comparison, if the duration is within the preset range, it means that the conditions at the end of the vibration excitation in the elastic measurement process are met, and the control device controls the ultrasonic probe to stop sending low-frequency vibration signals.
  • the above-mentioned preset pressure range and preset time range may be determined in advance based on a large amount of clinical experience.
  • the step of determining to stop transmitting the low-frequency vibration signal may be: collecting pressure information fed back by the ultrasonic probe; sending the pressure information to a display screen to instruct the target person to determine to stop according to the pressure information The low frequency vibration signal is emitted.
  • control device After the control device receives the pressure value fed back by the ultrasonic probe, it will send the pressure value to the display screen to display to the target person, and the target person determines according to their own experience that the pressure value conforms to the pressure range at the end of the vibration excitation during the elastic measurement process. , control the ultrasonic probe to stop transmitting low-frequency vibration signals.
  • the pressure range at the end of the vibration excitation in the elastic measurement process is the experience preset of the target person.
  • the low frequency vibration signal may be a shear wave signal.
  • FIG. 4 is a schematic structural diagram of an elasticity measuring device according to an exemplary embodiment of the present application.
  • the device provided in this embodiment includes: a sending module 41, a collecting module 42 and a determining module 43; wherein, the sending module 41 is used to transmit a low-frequency vibration signal to the medium to be measured; when the transmission of the low-frequency vibration signal is stopped , send an ultrasonic signal to the medium to be measured, so that the ultrasonic signal tracks the low-frequency vibration signal; the acquisition module 42 is used to collect the ultrasonic signal returned by the medium to be measured; the determination module 43 is used to The returned ultrasonic signal determines the elasticity of the medium to be measured.
  • the determining module is specifically configured to: calculate the propagation speed of the low-frequency vibration signal in the medium to be measured according to the returned ultrasonic signal; and calculate the elasticity of the medium to be measured according to the propagation speed.
  • the sending module is specifically configured to continuously transmit a low-frequency vibration signal to the medium to be measured at a first frequency, where the value of the first frequency ranges from 0.5 Hz to 3000 Hz.
  • the sending module is specifically configured to: transmit ultrasonic waves to the medium to be measured at a second frequency, where the value of the second frequency is between 100 Hz and 100000 Hz.
  • the collection module is also used for: collecting the pressure information fed back by the ultrasonic probe, and/or, the duration of transmitting the low-frequency vibration signal; the sending module is also used for determining that the pressure value is within the preset pressure. range and/or the duration is within a preset time range, stop sending the low-frequency vibration signal.
  • the collection module is further used for: collecting the pressure information fed back by the ultrasonic probe; the sending module is further used for sending the pressure information to the display screen, so as to instruct the target person to determine according to the pressure information to stop transmitting the said pressure information.
  • Low frequency vibration signal is further used for:
  • FIG. 5 is a schematic structural diagram of an elasticity measurement system according to an exemplary embodiment of the present application.
  • the apparatus provided in this embodiment includes: an ultrasonic probe 51 and a control device 52; the ultrasonic probe 51 includes an ultrasonic transducer contact 511 and a vibrator 512 connected to the ultrasonic transducer contact ; wherein, the vibrator is used to generate and send low-frequency vibration signals to the medium to be measured; the control device is respectively connected with the vibrator and the ultrasonic transducer contacts, and is used to control the ultrasonic transducer contact When the vibrator stops transmitting the low-frequency vibration signal, the head sends an ultrasonic signal to the medium to be measured, so that the ultrasonic signal tracks the low-frequency vibration signal, and collects the ultrasonic signal returned by the medium to be measured; the The control device is further configured to determine the elasticity of the medium to be measured according to the returned ultrasonic signal.
  • the control device may be, but not limited to, a computer, a microprocessor, or a central processing unit.
  • the vibrator can continuously transmit a low-frequency vibration signal to the medium to be measured at a first frequency, and the value of the first frequency (denoted as f) is between 0.5Hz and 3000Hz.
  • the amplitude of the signal is between 0.5mm and 20mm, and the duration can be determined according to the first frequency f, for example, the duration is between 1/2f and 20/f. Since the ultrasonic transducer contact is connected with the vibrator, the vibration generated by the vibrator can be transmitted to the medium to be measured by the ultrasonic transducer contact.
  • the ultrasonic probe contacts the medium to be measured, the operator controls the ultrasonic transducer contact to press the medium to be measured with a certain pressure, and then the control device first controls the vibrator to generate low-frequency vibration, and the low-frequency vibration signal is transmitted through the ultrasonic transducer contact.
  • the controller controls the ultrasonic probe to transmit ultrasonic signals to the medium to be measured at the second frequency, and collects the The ultrasonic signal returned by the measuring medium.
  • the value of the second frequency ranges from 100 Hz to 100000 Hz.
  • the ultrasonic probe is arranged in the ultrasonic transmitting and receiving circuit.
  • control device 52 is specifically configured to: calculate the propagation speed of the low-frequency vibration signal in the medium to be measured according to the returned ultrasonic signal; calculate the elasticity of the medium to be measured according to the propagation speed .
  • the ultrasonic probe 51 further includes: a pressure sensor array 513; the pressure sensor array is arranged between the ultrasonic transducer contact and the vibrator, and the pressure sensor array is respectively connected to the ultrasonic The transducer contacts are in contact with the vibrator.
  • the pressure sensor array includes one or more pressure sensors.
  • the average pressure exerted by the operator on the contact of the ultrasonic transducer can be obtained, and using the pressure value difference detected by each pressure sensor in the pressure sensor array, It can be judged whether the ultrasonic transducer contact is close to vertical to the surface of the medium to be measured.
  • the apparatus provided in this embodiment further includes: a display unit, where the display unit is connected to the control device.
  • the above-mentioned display unit may be integrated with the control device, or a separate display unit may be connected to the control device.
  • FIG. 6 is a schematic diagram of a hardware structure of an elasticity measurement device provided by an embodiment of the present application.
  • the elasticity measurement device 60 provided in this embodiment includes: at least one processor 601 and a memory 602 .
  • the processor 601 and the memory 602 are connected through a bus 603 .
  • the at least one processor 601 executes the computer-executed instructions stored in the memory 602, so that the at least one processor 601 executes the elasticity measurement method in the foregoing method embodiment.
  • the processor may be a central processing unit (English: Central Processing Unit, referred to as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as: ASIC) and so on.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one disk memory.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • Another embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the elasticity measurement in the foregoing method embodiment is implemented method.
  • the above-mentioned computer-readable storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • An exemplary readable storage medium is coupled to the processor such that the processor can read information from, and write information to, the readable storage medium.
  • the readable storage medium can also be an integral part of the processor.
  • the processor and the readable storage medium may be located in an application specific integrated circuit (Application Specific Integrated Circuits, ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium may also exist in the device as discrete components.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above method embodiments are executed; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种弹性测量方法、装置、系统和存储介质,该方法包括:向待测介质(103)发射低频振动信号(S201);在停止发射低频振动信号预设时长后,向待测介质(103)发送超声波信号,以使超声波信号追踪低频振动信号(S202),其中预设时长大于或等于0;采集待测介质(103)返回的超声波信号(S203);根据返回的超声波信号确定待测介质(103)的弹性(S204)。该方法在计算待测介质(103)的弹性时不需要考虑探头(101)低频振动干扰待测介质(103)返回的超声波信号的影响,无需进行位移补偿计算,降低了装置的成本,同时降低了计算复杂度和计算时间,提高了弹性测量效率和准确率。

Description

弹性测量方法、装置、系统和存储介质 技术领域
本申请实施例涉及测量技术领域,尤其涉及一种弹性测量方法、装置、系统和存储介质。
背景技术
弹性测量在食品工业、医疗保健等领域具有广泛应用,比如,可以通过弹性测量的方法测量食品的弹性以对食品进行质量监测;再比如,通过弹性测量的方法对人或动物身体的某个部位进行检查,根据弹性测量结果可以确定该部位是否发生病变等。
现有技术中,弹性检测的方法是利用探头对监测对象产生低频振动信号,同时向检测对象发射超声波信号,采集从检测对象返回的超声波信号,由于探头在产生低频振动时会造成返回的超声波信号的参考点是变化的,干扰返回的超声波信号,因此,需要在探头上增加一个位移传感器,检测探头在产生低频振动时发生的相对位移,然后对返回的超声波信号进行位移补偿计算,对补偿处理后的信号在进行计算得到检测对象的弹性。
但是,这种方法需要增加额外的位移传感器,造成测量装置成本增加,同时位移的补偿计算提高了计算复杂度和计算时间,降低了弹性测量效率和准确率。
发明内容
本申请实施例提供一种弹性测量方法、装置、系统和存储介质,以解决现有技术中需要额外增加位移传感器进行位移补偿计算导致的测量装置成本增加、计算复杂度和计算时间长的问题。
本申请实施例的第一方面提供一种弹性测量方法,包括:
向待测介质发射低频振动信号;
在停止发射低频振动信号预设时长后,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,其中,所述预设时长 大于或等于0;
采集所述待测介质返回的超声波信号;
根据所述返回的超声波信号确定所述待测介质的弹性。
可选地,所述根据所述返回的超声波信号确定所述待测介质的弹性,包括:
根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度;
根据所述传播速度计算得到所述待测介质的弹性。
可选的,所述方法还包括:确定停止发射低频振动信号的步骤:
采集超声探头反馈的压力信息,和/或,发射所述低频振动信号的持续时间;
若判定所述压力值在预设压力范围内和/或所述持续时间在预设时间范围内,则停止发送所述低频振动信号。
所述预设压力范围是根据弹性测量过程中的振动激励结束的压力范围经验值确定;和/或所述持续时间范围是根据弹性测量过程中的振动激励结束的持续时间经验值确定。
可选的,所述方法还包括:确定停止发射低频振动信号的步骤:
采集超声探头反馈的压力信息;
将所述压力信息发送至显示屏,以指示目标人员根据所述压力信息确定停止发射所述低频振动信号。
可选地,所述向待测介质发射低频振动信号,包括:
以第一频率持续向所述待测介质发射低频振动信号,所述第一频率的取值在0.5Hz至3000Hz之间。
可选地,所述向所述待测介质发送超声波信号,包括:
以第二频率向所述待测介质发射超声波,所述第二频率的取值在100Hz至100000Hz之间。
可选的,所述预设时长的取值范围是[0,10]秒。
可选地,所述低频振动信号是剪切波信号。
本申请实施例的第二方面提供一种弹性测量装置,包括:
发送模块,用于向待测介质发射低频振动信号;在停止发射低频振动信号预设时长后,向所述待测介质发送超声波信号,以使所述超声波信 号追踪所述低频振动信号,其中,所述预设时长大于或等于0;
采集模块,用于采集所述待测介质返回的超声波信号;
确定模块,用于根据所述返回的超声波信号确定所述待测介质的弹性。
本申请实施例的第三方面提供一种弹性测量系统,包括:超声探头和控制设备;
所述超声探头包括超声波换能器触头和与所述超声波换能器触头连接的振动器;其中,
所述振动器用于产生并向待测介质发送低频振动信号;
所述控制设备分别与所述振动器和所述超声波换能器触头连接,用于控制所述超声波换能器触头在所述振动器停止发射低频振动信号预设时长后,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,并采集所述待测介质返回的超声波信号;其中,所述预设时长大于或等于0;
所述控制设备还用于根据所述返回的超声波信号确定所述待测介质的弹性。
可选地,所述控制设备具体用于:
根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度;
根据所述传播速度计算得到所述待测介质的弹性。
可选地,所述超声探头还包括:压力传感器阵列;
所述压力传感器阵列设置于所述超声波换能器触头和所述振动器之间,且所述压力传感器阵列分别与所述超声波换能器触头和所述振动器接触。
可选地,该弹性测量装置还包括:显示单元,所述显示单元与所述控制设备连接。
本申请实施例的第四方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现本申请实施例第一方面提供的弹性测量方法。
本申请实施例提供一种弹性测量方法、装置、系统和存储介质,在利用低频振动信号进行弹性测量时,通过在停止发射低频振动信号时,向 所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,使得返回的超声波信号不会受到探头发出低频振动的干扰,即可以认为返回的超声波信号的参考点是静止的,因此,在计算待测介质的弹性时不需要考虑探头低频振动干扰待测介质返回的超声波信号的影响,无需进行位移补偿计算,从而降低了装置的成本,同时降低了计算复杂度和计算时间,提高了弹性测量效率和准确率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一示例性实施例示出的弹性测量方法的应用场景图;
图2是本申请一示例性实施例示出的弹性测量方法的流程示意图;
图3是本申请另一示例性实施例示出的弹性测量方法的流程示意图;
图4是本申请一示例性实施例示出的弹性测量装置的结构示意图;
图5是本申请一示例性实施例示出的弹性测量系统的结构示意图;
图6是本申请一示例性实施例示出的弹性测量设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形, 意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前,弹性检测的方法是利用探头对监测对象产生低频振动信号,同时向检测对象发射超声波信号,采集从检测对象返回的超声波信号,由于探头在产生低频振动时会造成返回的超声波信号的参考点是变化的,干扰返回的超声波信号,因此,需要在探头上增加一个位移传感器,检测探头在产生低频振动时发生的相对位移,然后对返回的超声波信号进行位移补偿计算,对补偿处理后的信号在进行计算得到检测对象的弹性。
但是,这种方法需要增加额外的位移传感器,造成测量装置成本增加,同时位移的补偿计算提高了计算复杂度和计算时间,降低了弹性测量效率和准确率。
针对此缺陷,本申请的技术方案主要在于:在利用低频振动信号进行弹性测量的时候,延迟时间发射超声波信号,即在低频振动信号发射完毕后再发射超声波信号,以便超声波信号追踪在待测介质中传播的低频振动信号,从而使得返回的超声波信号未受到超声探头的振动干扰,即可以认为返回的超声波信号的参考点是静止的,在计算待测介质的弹性时无需考虑探头干扰对待测介质返回的超声波信号的影响,从而能够降低弹性测量装置的成本和复杂度,减少了待测介质弹性的计算时间和计算量,提高弹性测量效率和准确率。
图1是本申请一示例性实施例示出的弹性测量方法的应用场景图。
如图1所示,本实施例提高的应用场景的主要架构包括:超声探头101、控制设备102以及待测介质103;超声探头101向待测介质施压适当压力,控制设备102控制超声探头向待测介质103发射低频振动信号和超声波信号,并接收待测介质返回的超声波信号。
图2是本申请一示例性实施例示出的弹性测量方法的流程示意图。
如图2所示,本实施例提高的方法可以包括以下步骤。
S201,向待测介质发射低频振动信号。
具体的,超声探头以一定的压力按压待测介质,控制设备控制超声探头中的振动器产生低频振动,带动超声波换能器触头向待测介质发出低频振动信号,振动频率的取值范围可以在0.5Hz至3000Hz之间。
S202,在停止发射低频振动信号预设时长后,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号。
其中,预设时长大于或等于0,预设时长的具体值可根据实际情况来确定。
具体的,在低频振动信号停止发射的同时,或者在低频振动信号停止发射5秒后,由控制设备控制超声探头向待测介质发送超声波信号,超声波的频率的取值范围可以在100Hz至100000Hz之间,以便超声波信号追踪在待测介质中传播的低频振动信号。
S203,采集所述待测介质返回的超声波信号。
具体的,超声波信号追踪到低频振动信号且到达待测介质的一端后返回,超声探头采集返回的超声波信号。
S204,根据所述返回的超声波信号确定所述待测介质的弹性。
具体的,由于超声波信号追踪待测介质中传播的低频振动信号,因此根据返回的超声波信号可以计算到低频振动信号在待测介质中的传播速度,从而可以根据传播速度可以计算得到待测介质的弹性。
本实施例中,在利用低频振动信号进行弹性测量时,通过在停止发射低频振动信号时,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,使得返回的超声波信号不会受到探头发出低频振动的干扰,即可以认为返回的超声波信号的参考点是静止的,因此,在计算待测介质的弹性时不需要考虑探头低频振动干扰待测介质返回的超声波信号的影响,无需进行位移补偿计算,从而降低了装置的成本,同时降低了计算复杂度和计算时间,提高了弹性测量效率和准确率。
可选的,预设时长的取值范围可以设置为[0,10]秒,或者,[0,1]秒。
本实施例中,将预设时长的取值范围设置为[0,10]秒或者[0,1]秒,既可以减小探头振动时的运动伪影对计算的影响还可以在超声探头振动时不进行超声发射和接收,实现了节能的效果。
进一步的,如图3所示,所述根据所述返回的超声波信号确定所述待测介质的弹性,包括以下步骤。
S301,根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度。
具体的,低频振动会导致一种弹性波向待测介质中传播,传播速度取决于待测介质的弹性,由于超声波追踪待测介质中传播的低频振动信号,因此,返回的超声波信号中包含低频振动信号在待测介质中传播时的频率、相位,以及待测介质中的弹性波的频率和相位等信息。根据返回的超声波信号,对待测介质的每个深度计算弹性波的中心频率(记为f 0)处的低频振动信号的相位(记为
Figure PCTCN2022085129-appb-000001
z表示待测介质的深度),根据弹性波的中心频率f 0、中心频率处低频振动信号的相位
Figure PCTCN2022085129-appb-000002
以及第一公式,计算得到传播速度,第一公式为
Figure PCTCN2022085129-appb-000003
其中,V(z)表示待测介质深度z处的弹性波传播速度。
S302,根据所述传播速度计算得到所述待测介质的弹性。
具体的,根据传播速度、待测介质的密度以及第二公式计算得到待测介质的弹性,第二公式为E(z)=3ρ[V(z)] 2,其中,E(z)表示待测介质在深度z处的弹性。
进一步的,所述向待测介质发射低频振动信号,包括:以第一频率持续向所述待测介质发射低频振动信号,所述第一频率的取值在0.5Hz至3000Hz之间。
进一步的,所述向所述待测介质发送超声波信号,包括:以第二频率向所述待测介质发射超声波,所述第二频率的取值在100Hz至100000Hz之间。
本实施例提供的方法还可以包括:确定停止发射低频振动信号的步骤:采集超声探头反馈的压力信息,和/或,发射所述低频振动信号的持续时间;若判定所述压力值在预设压力范围内和/或所述持续时间在预设时间范围内,则停止发送所述低频振动信号。
所述预设压力范围是根据弹性测量过程中的振动激励结束的压力范围经验值确定;和/或所述持续时间范围是根据弹性测量过程中的振动激励 结束的持续时间经验值确定。
具体的,当超声探头接触并按压待测介质时会产生一定的压力,超声探头上的压力传感器实时采集超声探头和待测介质之间的压力值,并反馈给控制设备,控制设备中预先存储有预设压力范围,控制设备接收到超声探头反馈的压力值后,将压力值与预设压力范围进行比较,如果采集到的压力值在预设压力范围内,则说明此时符合弹性测量过程中的振动激励结束时的压力条件,则控制停止发射低频振动信号。或者,控制设备在超声探头向待测介质发射低频振动信号时,实时记录低频振动信号发射的持续时间,控制设备中预先存储有预设时间范围,控制设备将记录的持续时间与预设时间范围进行比较,如果持续时间在预设范围内,则说明符合弹性测量过程中的振动激励结束时的条件,控制设备控制超声探头停止发送低频振动信号。
需要说明的是,上述预设压力范围和预设时间范围可以是预先根据大量临床经验确定的。
在另一种可能的实施例中,确定停止发射低频振动信号的步骤可以是:采集超声探头反馈的压力信息;将所述压力信息发送至显示屏,以指示目标人员根据所述压力信息确定停止发射所述低频振动信号。
具体的,控制设备接收到超声探头反馈的压力值后,会将该压力值发送至显示屏幕展示给目标人员,目标人员根据自己经验判定压力值符合弹性测量过程中振动激励结束时的压力范围时,控制超声探头停止发射低频振动信号。其中所述符合弹性测量过程中振动激励结束时的压力范围是目标人员的经验预设。
在一个实施例中,所述低频振动信号可以是剪切波信号。
图4是本申请一示例性实施例示出的弹性测量装置的结构示意图。
如图4所示,本实施例提供的装置包括:发送模块41,采集模块42和确定模块43;其中,发送模块41,用于向待测介质发射低频振动信号;在停止发射低频振动信号时,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号;采集模块42,用于采集所述待测介质返回的超声波信号;确定模块43,用于根据所述返回的超声波信号确定所述待测 介质的弹性。
进一步的,所述确定模块具体用于:根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度;根据所述传播速度计算得到所述待测介质的弹性。
进一步的,所述发送模块具体用于:以第一频率持续向所述待测介质发射低频振动信号,所述第一频率的取值在0.5Hz至3000Hz之间。
进一步的,所述发送模块具体用于:以第二频率向所述待测介质发射超声波,所述第二频率的取值在100Hz至100000Hz之间。
进一步的,所述采集模块还用于:采集超声探头反馈的压力信息,和/或,发射所述低频振动信号的持续时间;所述发送模块还用于若判定所述压力值在预设压力范围内和/或所述持续时间在预设时间范围内,则停止发送所述低频振动信号。
进一步的,所述采集模块还用于:采集超声探头反馈的压力信息;所述发送模块还用于将所述压力信息发送至显示屏,以指示目标人员根据所述压力信息确定停止发射所述低频振动信号。
图5是本申请一示例性实施例示出的弹性测量系统的结构示意图。
如图5所示,本实施例提供的装置包括:超声探头51和控制设备52;所述超声探头51包括超声波换能器触头511和与所述超声波换能器触头连接的振动器512;其中,所述振动器用于产生并向待测介质发送低频振动信号;所述控制设备分别与所述振动器和所述超声波换能器触头连接,用于控制所述超声波换能器触头在所述振动器停止发射低频振动信号时,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,并采集所述待测介质返回的超声波信号;所述控制设备还用于根据所述返回的超声波信号确定所述待测介质的弹性。
其中,控制设备可以但不限于是计算机、微处理器或者中央处理器等。
其中,振动器可以在控制设备的控制下以第一频率持续向所述待测介质发射低频振动信号,所述第一频率(记为f)的取值在0.5Hz至3000Hz之间,低频振动信号的幅值在0.5mm至20mm之间,持续时间可根据第一频率f来确定,比如,持续时间在1/2f至20/f之间。由于超声波换能器触头与振动器连接,因此,振动器产生的振动可以由超声波换能器触头传入待测 介质。
具体的,超声探头接触待测介质,操作人员以一定的压力控制超声波换能器触头按压待测介质,然后控制设备首先控制振动器产生低频振动,低频振动信号通过超声波换能器触头传入待测介质,从而产生一个向待测介质内部传播的低频弹性波,当振动器停止发射低频振动信号时,控制器再控制超声探头以第二频率向待测介质发射超声波信号,同时采集待测介质返回的超声波信号。
其中,第二频率的取值在100Hz至100000Hz之间。
需要说明的是,超声探头内设置于超声发射接收电路。
进一步的,所述控制设备52具体用于:根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度;根据所述传播速度计算得到所述待测介质的弹性。
进一步的,所述超声探头51还包括:压力传感器阵列513;所述压力传感器阵列设置于所述超声波换能器触头和所述振动器之间,且所述压力传感器阵列分别与所述超声波换能器触头和所述振动器接触。
其中,压力传感器阵列包括一个或多个压力传感器。
具体的,利用压力传感器阵列中各个压力传感器检测到的压力值,可以得到操作人员施加在超声波换能器触头上的平均压力,利用压力传感器阵列中的各压力传感器检测到的压力值差,可以判断超声波换能器触头与待测介质表面是否接近垂直。
进一步的,本实施例提供的装置还包括:显示单元,所述显示单元与所述控制设备连接。
需要说明的是,上述显示单元可以是与控制设备一体的,也可以是单独的一个显示器和控制设备连接。
本实施例中,各个模块的具体功能实现未作详细说明的部分可以参考有关该方法实施例中的描述。
图6为本申请实施例提供的弹性测量设备的硬件结构示意图。如图6所示,本实施例提供的弹性测量设备60包括:至少一个处理器601和存储器602。其中,处理器601、存储器602通过总线603连接。
在具体实现过程中,至少一个处理器601执行所述存储器602存储的计算机执行指令,使得至少一个处理器601执行上述方法实施例中的弹 性测量方法。
处理器601的具体实现过程可参见上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在上述的图6所示的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
本申请的另一实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现上述方法实施例中的弹性测量方法。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种弹性测量方法,其特征在于,包括:
    向待测介质发射低频振动信号;
    在停止发射低频振动信号预设时长后,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,其中,所述预设时长大于或等于0;
    采集所述待测介质返回的超声波信号;
    根据所述返回的超声波信号确定所述待测介质的弹性。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述返回的超声波信号确定所述待测介质的弹性,包括:
    根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度;
    根据所述传播速度计算得到所述待测介质的弹性。
  3. 根据权利要求1所述的方法,其特征在于,还包括:确定停止发射低频振动信号的步骤:
    采集超声探头反馈的压力信息,和/或,发射所述低频振动信号的持续时间;
    若判定所述压力值在预设压力范围内和/或所述持续时间在预设时间范围内,则停止发送所述低频振动信号;
    所述预设压力范围是根据弹性测量过程中的振动激励结束的压力范围经验值确定;
    和/或所述持续时间范围是根据弹性测量过程中的振动激励结束的持续时间经验值确定。
  4. 根据权利要求1所述的方法,其特征在于,还包括:确定停止发射低频振动信号的步骤:
    采集超声探头反馈的压力信息;
    将所述压力信息发送至显示屏,以指示目标人员根据所述压力信息确定停止发射所述低频振动信号。
  5. 根据权利要求1所述的方法,其特征在于,所述向待测介质发射低频振动信号,包括:
    以第一频率持续向所述待测介质发射低频振动信号,所述第一频率的取 值在0.5Hz至3000Hz之间;
    所述向所述待测介质发送超声波信号,包括:
    以第二频率向所述待测介质发射超声波,所述第二频率的取值在100Hz至100000Hz之间。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述预设时长的取值范围是[0,10]秒。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述低频振动信号是剪切波信号。
  8. 一种弹性测量装置,其特征在于,包括:
    发送模块,用于向待测介质发射低频振动信号;在停止发射低频振动信号预设时长后,
    向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,其中,所述预设时长大于或等于0;
    采集模块,用于采集所述待测介质返回的超声波信号;
    确定模块,用于根据所述返回的超声波信号确定所述待测介质的弹性。
  9. 一种弹性测量系统,其特征在于,包括:超声探头和控制设备;所述超声探头包括超声波换能器触头和与所述超声波换能器触头连接的振动器;其中,
    所述振动器用于产生并向待测介质发送低频振动信号;
    所述控制设备分别与所述振动器和所述超声波换能器触头连接,用于控制所述超声波换能器触头在所述振动器停止发射低频振动信号预设时长后,向所述待测介质发送超声波信号,以使所述超声波信号追踪所述低频振动信号,并采集所述待测介质返回的超声波信号;其中,所述预设时长大于或等于0;
    所述控制设备还用于根据所述返回的超声波信号确定所述待测介质的弹性。
  10. 根据权利要求9所述的系统,其特征在于,所述控制设备具体用于:
    根据所述返回的超声波信号计算所述低频振动信号在所述待测介质中的传播速度;
    根据所述传播速度计算得到所述待测介质的弹性。
  11. 根据权利要求9所述的系统,其特征在于,所述超声探头还包括: 压力传感器阵列;
    所述压力传感器阵列设置于所述超声波换能器触头和所述振动器之间,且所述压力传感器阵列分别与所述超声波换能器触头和所述振动器接触。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1至7任一项所述的弹性测量方法。
PCT/CN2022/085129 2021-04-06 2022-04-02 弹性测量方法、装置、系统和存储介质 WO2022213939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369491.7A CN113081040A (zh) 2021-04-06 2021-04-06 弹性测量方法、装置、系统和存储介质
CN202110369491.7 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213939A1 true WO2022213939A1 (zh) 2022-10-13

Family

ID=76674993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085129 WO2022213939A1 (zh) 2021-04-06 2022-04-02 弹性测量方法、装置、系统和存储介质

Country Status (2)

Country Link
CN (1) CN113081040A (zh)
WO (1) WO2022213939A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113081040A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 弹性测量方法、装置、系统和存储介质
CN114414663B (zh) * 2022-01-26 2023-12-19 瀚云科技有限公司 一种土壤测量方法、装置、电子设备以及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674827A (zh) * 2002-08-08 2005-09-28 回波检测公司 测量人或动物器官的弹性的装置和方法
CN101699280A (zh) * 2009-10-15 2010-04-28 北京索瑞特医学技术有限公司 超声无损检测粘弹性介质弹性的方法及其装置
CN102151152A (zh) * 2011-03-01 2011-08-17 深圳市一体医疗科技股份有限公司 一种用于测量粘弹性介质弹性的测量探头、系统及方法
US20170143309A1 (en) * 2015-11-25 2017-05-25 Seiko Epson Corporation Ultrasonic probe, control device, and measurement apparatus
CN109077754A (zh) * 2018-07-06 2018-12-25 深圳大学 一种测量组织力学特性参数的方法及设备
CN110536644A (zh) * 2018-04-28 2019-12-03 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性测量装置及方法
CN110831504A (zh) * 2018-03-02 2020-02-21 法国爱科森有限公司 混合弹性成像方法、用于混合弹性成像的探头和装置
CN113081040A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 弹性测量方法、装置、系统和存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103720490A (zh) * 2013-12-31 2014-04-16 无锡海斯凯尔医学技术有限公司 一种瞬时弹性检测装置
CN113768545B (zh) * 2018-04-28 2023-10-13 深圳迈瑞生物医疗电子股份有限公司 一种超声瞬时弹性测量设备及方法
CN112386276A (zh) * 2019-08-14 2021-02-23 深圳迈瑞生物医疗电子股份有限公司 剪切波弹性成像方法、超声成像系统及计算机可读存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674827A (zh) * 2002-08-08 2005-09-28 回波检测公司 测量人或动物器官的弹性的装置和方法
CN101699280A (zh) * 2009-10-15 2010-04-28 北京索瑞特医学技术有限公司 超声无损检测粘弹性介质弹性的方法及其装置
CN102151152A (zh) * 2011-03-01 2011-08-17 深圳市一体医疗科技股份有限公司 一种用于测量粘弹性介质弹性的测量探头、系统及方法
US20170143309A1 (en) * 2015-11-25 2017-05-25 Seiko Epson Corporation Ultrasonic probe, control device, and measurement apparatus
CN110831504A (zh) * 2018-03-02 2020-02-21 法国爱科森有限公司 混合弹性成像方法、用于混合弹性成像的探头和装置
CN110536644A (zh) * 2018-04-28 2019-12-03 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性测量装置及方法
CN109077754A (zh) * 2018-07-06 2018-12-25 深圳大学 一种测量组织力学特性参数的方法及设备
CN113081040A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 弹性测量方法、装置、系统和存储介质

Also Published As

Publication number Publication date
CN113081040A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022213939A1 (zh) 弹性测量方法、装置、系统和存储介质
WO2017107660A1 (zh) 粘弹性介质的粘弹性参数检测方法和设备
WO2020044769A1 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2017071605A1 (zh) 弹性检测方法和设备
JP2006506607A5 (zh)
JPWO2007063619A1 (ja) 超音波診断装置
JP2013544615A5 (zh)
US11224406B2 (en) Ultrasound diagnosis apparatus and ultrasound probe maintenance apparatus
CN110613485B (zh) 一种组织弹性检测方法及设备
WO2022213928A1 (zh) 组织弹性检测方法、装置和系统
US20150107371A1 (en) Method and system for determining characteristics of an acoustic signal
WO2022213927A1 (zh) 超声信号触发方法、装置和系统
WO2020042020A1 (zh) 一种超声弹性检测设备及剪切波弹性成像方法、装置
JP5844175B2 (ja) 超音波診断装置および超音波画像生成方法
JP2629734B2 (ja) 超音波物体検査装置
WO2022114070A1 (ja) 嚥下評価システムおよび嚥下評価方法
WO2021057238A1 (zh) 一种组织弹性检测方法及设备
WO2019015399A1 (zh) 介质粘弹性的测量方法和装置
JP3105952B2 (ja) 超音波診断装置
US20240090875A1 (en) System and Method for Non-Invasive Determination of Bladder Overactivity Using Ultrasound Vibrometry
US11925503B2 (en) Shear wave elasticity imaging method and ultrasonic imaging device
JPH01145565A (ja) 超音波探傷装置
US20220022849A1 (en) Ultrasound diagnostic apparatus, control method of ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus
US11796511B1 (en) Structural monitoring system
KR20110042649A (ko) 초음파 진단 시스템에서의 측면 동요 보상 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784005

Country of ref document: EP

Kind code of ref document: A1