WO2022213887A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2022213887A1
WO2022213887A1 PCT/CN2022/084587 CN2022084587W WO2022213887A1 WO 2022213887 A1 WO2022213887 A1 WO 2022213887A1 CN 2022084587 W CN2022084587 W CN 2022084587W WO 2022213887 A1 WO2022213887 A1 WO 2022213887A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
multicast
data
value
semi
Prior art date
Application number
PCT/CN2022/084587
Other languages
English (en)
French (fr)
Inventor
苏桐
李秉肇
夏金环
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023560991A priority Critical patent/JP2024513866A/ja
Priority to EP22783954.5A priority patent/EP4311357A4/en
Publication of WO2022213887A1 publication Critical patent/WO2022213887A1/zh
Priority to US18/479,890 priority patent/US20240032017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data transmission method and apparatus.
  • the base station can send data to the terminal through multicast or unicast. Compared with the unicast mode, the multicast mode can save downlink resources.
  • the multicast transmission usually adopts dynamic scheduling. For example, before each physical downlink shared channel (PDSCH) is sent, the physical downlink control channel (PDCCH) needs to be sent to schedule PDSCH. Downlink data is carried on the PDSCH. In this manner, the overhead of control signaling is relatively large, resulting in low data transmission efficiency.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • Embodiments of the present application provide a data transmission method and apparatus, so as to reduce signaling overhead and improve data transmission efficiency.
  • an embodiment of the present application provides a data transmission method, including: receiving first multicast data transmitted by SPS based on multicast semi-persistent scheduling; receiving first downlink control information DCI, where the first DCI is configured by The scheduling wireless network temporary identifier CS-RNTI is masked; and according to the first DCI, first data is received, where the first data is retransmission data of the first multicast data.
  • semi-persistent scheduling is used for multicast data transmission, and there is no need to send scheduling information, namely DCI, before sending multicast data each time, which can reduce the overhead of control signaling; and when data needs to be retransmitted to individual terminal devices,
  • the foregoing multicast data is retransmitted to the terminal device in a unicast manner, instead of scheduling data retransmission in a multicast manner, which can further save downlink resource occupation and improve data transmission efficiency.
  • the method further includes: receiving a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the second DCI is used to activate the multicast Semi-persistent scheduling SPS transmission.
  • the method further includes: receiving a third DCI masked by a group wireless network temporary identifier G-RNTI, where the third DCI is used to activate the multicast semi-persistent scheduling SPS transmission, the first indication information included in the third DCI takes a value of a first value, wherein the value of the first indication information includes a first value or a second value, and the first value is used to indicate the multicast Semi-persistently scheduled SPS transmission, the second value is used to indicate the dynamically scheduled transmission of multicast.
  • G-RNTI can be used to realize dynamic scheduling of multicast data or semi-persistent scheduling of multicast data, which expands the application scenarios of G-RNTI and saves terminals.
  • the resources of the blind detection on the device side also reduce the control signaling overhead in the downlink data scheduling of multicast.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the new data in the first DCI indicates that the NDI value is 1; the new data in the second DCI indicates that the NDI value is 0; the new data in the third DCI indicates that the NDI value is 0; The NDI value is 0.
  • the NDI in the DCI can distinguish whether the initial transmission data or the retransmission data is scheduled.
  • the method further includes: receiving a fourth DCI masked by a group wireless network temporary identifier G-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission; or, receiving a fourth DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission.
  • G-RNTI corresponding to the fourth DCI and the G-RNTI corresponding to the third DCI may be the same or different; similarly, the G-CS-RNTI corresponding to the fourth DCI and the G-CS corresponding to the second DCI - RNTIs can be the same or different.
  • an embodiment of the present application provides a data transmission method, which can be applied to a network device, including:
  • the first multicast data transmitted by the multicast-based semi-persistent scheduling SPS is sent. It can be understood that, generally, the first multicast data is sent to multiple terminal devices. Send the first downlink control information DCI to a single terminal device among the multiple terminal devices, the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI, the first DCI is used for scheduling the first data, so The first data is the retransmission data of the first multicast data; wherein, a single terminal device refers to a terminal device among the terminal devices that failed to receive the first multicast data, or a single terminal device refers to a network side device One of the terminal devices that did not receive positive feedback for the first multicast data, or a single terminal device refers to one of the terminal devices that received negative feedback for the first multicast data by the network-side device.
  • semi-persistent scheduling is used for multicast data transmission, and there is no need to send scheduling information, namely DCI, before sending multicast data each time, which can reduce the overhead of control signaling; and when data needs to be retransmitted to individual terminal devices,
  • the foregoing multicast data is retransmitted to the terminal device in a unicast manner, instead of scheduling data retransmission in a multicast manner, which can further save downlink resource occupation and improve data transmission efficiency.
  • the method further includes: sending a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the second DCI is used to activate the multicast Semi-persistent scheduling SPS transmission.
  • the method further includes: sending a third DCI masked by the group wireless network temporary identifier G-RNTI, where the third DCI is used to activate the multicast semi-persistent scheduling SPS transmission, the first indication information included in the third DCI takes a value of a first value, wherein the value of the first indication information includes a first value or a second value, and the first value is used to indicate the multicast Semi-persistently scheduled SPS transmission, the second value is used to indicate the dynamically scheduled transmission of multicast.
  • G-RNTI can be used to realize dynamic scheduling of multicast data or semi-persistent scheduling of multicast data, which expands the application scenarios of G-RNTI and saves terminals.
  • the resources of the blind detection on the device side also reduce the control signaling overhead in the downlink data scheduling of multicast.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the new data in the first DCI indicates that the NDI value is 1; the new data in the second DCI indicates that the NDI value is 0; the new data in the third DCI indicates that the NDI value is 0; The NDI value is 0.
  • the NDI in the DCI can distinguish whether the initial transmission data or the retransmission data is scheduled.
  • the method further includes: sending a fourth DCI masked by the group wireless network temporary identifier G-RNTI, where the fourth DCI is used to deactivate the semi-persistent scheduling of the multicast SPS transmission; or, sending a fourth DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission.
  • an embodiment of the present application provides a data transmission device, including: a communication unit, configured to receive first multicast data transmitted by SPS based on multicast based semi-persistent scheduling; the communication unit, further configured to receive first downlink data Control information DCI, the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI; the processing unit is configured to receive first data through the communication unit according to the first DCI, where the first data is Retransmission data of the first multicast data.
  • the processing unit is further configured to determine that the reception of the first multicast data fails, and send feedback information such as NACK, where the feedback information is used to indicate that the reception of the first multicast data fails.
  • the communication unit is further configured to: receive a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the second DCI is used to activate the Multicast semi-persistently scheduled SPS transmission.
  • the communication unit is further configured to: receive a third DCI masked by the group wireless network temporary identifier G-RNTI, where the third DCI is used to activate the multicast half-time Persistently scheduled SPS transmission, the first indication information included in the third DCI takes a value of a first value, wherein the value of the first indication information includes a first value or a second value, and the first value is used to indicate Multicast semi-persistent scheduling SPS transmission, the second value is used to indicate multicast dynamic scheduling transmission.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the new data in the first DCI indicates that the NDI value is 1; the new data in the second DCI indicates that the NDI value is 0; the new data in the third DCI indicates that the NDI value is 0; The NDI value is 0.
  • the communication module is further configured to: receive a fourth DCI masked by the group wireless network temporary identifier G-RNTI, where the fourth DCI is used to deactivate the multicast Semi-persistent scheduling SPS transmission; or, receiving a fourth DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission.
  • an embodiment of the present application provides a data transmission device, including: a processing unit configured to generate first multicast data transmitted by SPS based on multicast; a communication unit configured to send the first group broadcast data; the communication unit is further configured to send the first downlink control information DCI, the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI, the first DCI is used for scheduling the first data, The first data is retransmission data of the first multicast data.
  • semi-persistent scheduling is adopted during multicast transmission, and there is no need to send scheduling information, namely DCI, before sending multicast data each time, which can reduce the overhead of control signaling; and when data needs to be retransmitted to individual terminal devices,
  • the foregoing multicast data is retransmitted to the terminal device in a unicast manner, instead of scheduling data retransmission in a multicast manner, which can further save downlink resource occupation and improve data transmission efficiency.
  • the communication unit is further configured to: send a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the second DCI is used to activate the Multicast semi-persistently scheduled SPS transmission.
  • the communication unit is further configured to: send a third DCI masked by the group wireless network temporary identifier G-RNTI, where the third DCI is used to activate the multicast half-time Persistently scheduled SPS transmission, the first indication information included in the third DCI takes a value of a first value, wherein the value of the first indication information includes a first value or a second value, and the first value is used to indicate Multicast semi-persistent scheduling SPS transmission, the second value is used to indicate multicast dynamic scheduling transmission.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the new data in the first DCI indicates that the NDI value is 1; the new data in the second DCI indicates that the NDI value is 0; the new data in the third DCI indicates that the NDI value is 0; The NDI value is 0.
  • the communication unit is further configured to: send a fourth DCI masked by the group wireless network temporary identifier G-RNTI, where the fourth DCI is used to deactivate the multicast Semi-persistent scheduling SPS transmission; or, sending a fourth DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission.
  • an embodiment of the present application provides a communication device, which includes a processor, the processor is coupled with a memory, the memory is used for storing computer programs or instructions, and the processor is used for executing the computer programs or instructions, so as to execute the first aspect or the first aspect above.
  • the memory may be located within the device or external to the device.
  • the number of the processors is one or more.
  • an embodiment of the present application provides a communication device comprising: a logic circuit and an input and output interface; an input and output interface for inputting first multicast data transmitted by the multicast-based semi-persistent scheduling SPS; an input and output interface, further is used to input the first downlink control information DCI, the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI; the logic circuit is used to obtain the first DCI through the input and output interface according to the first DCI data, where the first data is retransmission data of the first multicast data.
  • the logic circuit is further configured to determine that the reception of the first multicast data fails, and output feedback information such as NACK, which is used to indicate that the reception of the first multicast data fails.
  • an embodiment of the present application provides a communication device including: a logic circuit and an input and output interface; a logic circuit for generating first multicast data transmitted by SPS based on multicast; an input and output interface for outputting the first multicast data; the input and output interface is also used to output the first downlink control information DCI, the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI, the first DCI is used to schedule first data, where the first data is retransmission data of the first multicast data.
  • the present application provides a communication device, comprising: a processor and an interface circuit, where the interface circuit is used for communicating with other devices, and the processor is used for each implementation method of the first aspect or the second aspect.
  • the present application provides a communication system, including: a terminal device for executing the implementation methods of the first aspect, and a network device for executing the implementation methods of the second aspect.
  • the present application further provides a chip system, including: a processor configured to execute each implementation method of the first aspect or the second aspect.
  • the present application further provides a computing program product, including computer-executable instructions, when the computer-executable instructions are executed on the computer, each implementation method of the first aspect or the second aspect is executed.
  • the present application further provides a computer-readable storage medium, where computer programs or instructions are stored in the computer-readable storage medium, and when the instructions are run on a computer, each implementation of the first aspect or the second aspect is implemented method.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of data scheduling of multicast-based SPS transmission according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a unicast retransmission scheduling mechanism provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of SPS transmission for deactivating multicast provided by an embodiment of the present application.
  • FIG 5 is another schematic diagram of data scheduling of multicast-based SPS transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another SPS transmission for deactivating multicast provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication method and device provided by the embodiments of the present application can be applied to various communication systems, especially a system of harmonized communication and sensing (HCS).
  • Communication in this system includes but is not limited to: long term evolution (LTE) system, 5G system, new radio (NR) system, wireless-fidelity (WiFi) system, third-generation cooperation Other wireless communication systems related to the Partnership Project (3rd generation partnership project, 3GPP), or wireless communication systems that may appear in the future.
  • the network equipment can communicate with the terminal equipment to provide wireless access services for the terminal equipment.
  • the network equipment may also be referred to as base station equipment, or as a base station.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the network device involved in the following embodiments of the present application may be a base station in NR, where a base station in 5G NR may also be referred to as a transmission reception point (transmission reception point, TRP) or a next generation node B (next generation).
  • TRP transmission reception point
  • next generation node B next generation
  • Node B, gNB the network equipment involved in the following embodiments of the present application may also be a node B (nodeB, NB) in a wideband code division multiple access (WCDMA) system; the embodiments of the present application relate to the following
  • the obtained network device may also be an evolved Node B (evolutional Node B, eNB or eNodeB) in a long term evolution (long term evolution, LTE) system.
  • the communication device used to implement the function of the network device may be a network device, a network device having some functions of a base station, or a device capable of supporting the network device to realize the function, such as a chip system, the device Can be installed in network equipment.
  • Terminal equipment may also be referred to as user equipment (UE), access terminal, terminal unit, end station, mobile station, mobile station, remote station, remote terminal, mobile device, mobile terminal, terminal, wireless communication device, terminal agent or terminal device, etc.
  • the terminal device includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function, a terminal device in a 5G network or a terminal device in a future evolved PLMN network, and the like.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in the power grid, wireless terminals in smart cities, such as smart fuel dispensers, terminal equipment on high-speed rail, wireless terminals in smart homes, such as smart speakers, smart coffee machines, smart printers, etc. Wait.
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control a wireless terminal in unmanned driving
  • a wireless terminal in telemedicine intelligent Wireless terminals in the power grid
  • wireless terminals in smart cities such as smart fuel dispensers, terminal equipment on high-speed rail
  • wireless terminals in smart homes such as smart speakers, smart coffee machines, smart printers, etc. Wait.
  • the communication device for realizing the function of the terminal device may be a terminal device, a terminal device having a terminal function, or a device capable of supporting the terminal device to realize this function, such as a chip system, the device Can be installed in terminal equipment.
  • the signal sent by the network device to the terminal device is also called the downlink signal, and the downlink signal includes the downlink control signal and the downlink data signal.
  • the downlink control channel in the embodiment of the present application is used to refer to a downlink control signal, that is, a downlink control channel can also be understood as a downlink control signal, and the downlink control channel can be a physical downlink control channel (physical downlink control channel, PDCCH).
  • the downlink data channel in the embodiment of the present application is used to refer to the downlink data signal, that is, the downlink data channel can also be understood as a downlink data signal, and the downlink data channel can be a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • the downlink control channel can be used to schedule downlink data channels.
  • PDCCH is used to transmit PDSCH-related scheduling and configuration information
  • PDSCH carries downlink data
  • PDCCH carries downlink control information (DCI)
  • DCI is used to indicate
  • the configuration information of the PDSCH eg, time/frequency position, modulation information, etc.
  • the DCI can also be used to indicate the indication information of the time domain resources occupied by the feedback information corresponding to the PDSCH scheduled by the DCI.
  • the feedback information includes acknowledgement (ACK) information or negative acknowledgement (NACK) information, indicating whether the terminal device successfully receives downlink data
  • ACK can also be Referred to as HARQ-ACK
  • NACK may also be referred to as HARQ-NACK.
  • the terminal device will feed back ACK information on the uplink control channel (physical uplink control channel, PUCCH) if the reception is correct, and feed back NACK information on the PUCCH if it is incorrect.
  • PUCCH physical uplink control channel
  • DCI is divided into fallback DCI and non-fallback DCI; wherein, fallback DCI is DCI in formats 0_0 and 1_0, and non-fallback DCI is DCI in formats 0_1/0_2 and 1_1/1_2.
  • fallback DCI is DCI in formats 0_0 and 1_0
  • non-fallback DCI is DCI in formats 0_1/0_2 and 1_1/1_2.
  • the DCI in format 0_0/0_1/0_2 is used for scheduling uplink transmission
  • the DCI in format 1_0/1_1/1_2 is used for scheduling downlink transmission.
  • the unicast transmission mode is a one-to-one data transmission mode.
  • the unicast refers to that a network device sends a downlink signal, such as unicast data, to a single terminal device.
  • the multicast transmission mode is a one-to-many data transmission mode.
  • multicast refers to that a network device sends the same downlink signal to a group of terminal devices, such as multicast data, which can be obtained by this group of terminal devices. to the multicast data.
  • a group of terminal devices includes multiple terminal devices.
  • a group of terminal devices may be located in the same cell. It can be understood that in the multicast transmission mode, a group of terminal devices can share resources, and the downlink signal sent by the network device on the resource can be received by a group of terminal devices. Compared with the unicast transmission mode, the resources for transmitting downlink signals can be saved. .
  • the multicast in this embodiment of the present application may include multicast or broadcast, which is not limited.
  • Dynamic scheduling means that the network device needs to send a PDCCH for scheduling the PDSCH each time before sending the PDSCH.
  • the PDSCH based on the dynamic scheduling may also be called the PDSCH of the normal scheduling. It can be understood that the PDSCH of the normal scheduling are all PDSCHs with scheduling information. Dynamic scheduling can be used in multicast or unicast transmission scenarios.
  • the network device assigns a cell-radio network temporary identifier (C-RNTI) to a terminal device, and the network device sends a unicast method to multiple terminal devices each time.
  • C-RNTI cell-radio network temporary identifier
  • the DCI masked by the C-RNTI of each terminal device is sent, and each terminal device can blindly detect the PDCCH according to the respective C-RNTI, and then receive downlink data.
  • the C-RNTI is used to identify the dynamic scheduling of unicast, and may be configured by the network device for a single terminal device.
  • the C-RNTI may also be other identifiers, as long as it can be used to identify unicast dynamic scheduling, which is not limited in this embodiment of the present application.
  • the network device assigns the same group-radio network temporary identifier (G-RNTI) to multiple terminal devices, and the network device sends multiple The terminal device sends the DCI masked by the G-RNTI before sending the PDSCH.
  • G-RNTI group-radio network temporary identifier
  • Each terminal device can blindly detect the PDCCH according to the G-RNTI, and then receive the same PDSCH, or it can also be understood as receiving downlink data carried by the PDSCH.
  • the G-RNTI is used to identify multicast/broadcast scheduling, and may be configured by the network device for a group of terminal devices.
  • the G-RNTI may also be other identifiers, such as M-RNTI, as long as it can be used to identify multicast/broadcast scheduling, which is not limited in this embodiment of the present application.
  • the semi-persistent scheduling SPS refers to that the terminal device can periodically receive the PDSCH based on the semi-persistent scheduling configuration indicated by the network device, and the semi-persistent scheduling may be called semi-persistent scheduling.
  • the network device Before sending the PDSCH to the terminal device for the first time, the network device first sends an activated PDCCH (or activated DCI) to the terminal device, and the activated PDCCH is used to activate the corresponding SPS configuration.
  • the activated PDCCH is also used to indicate downlink time domain resources occupied by downlink data scheduled by the activated PDCCH.
  • the aforementioned downlink time domain resources occupied may include a downlink time slot where the scheduled downlink data is located, and a start symbol S and a length L where the downlink data is located in the downlink time slot.
  • the subsequent terminal device may receive the PDSCH sent by the network device based on the activated SPS configuration. It can be understood that for the semi-persistent scheduling method, the PDSCH sent by the network device for the first time is scheduled by the activated PDCCH, and the PDSCH sent by the network device subsequently does not need other PDCCH scheduling, and is based on the activated PDCCH. Alternatively, it can also be understood that the PDSCH sent by the network device for the first time may be referred to as a PDSCH with scheduling information, and the PDSCH sent by the subsequent network device are all PDSCHs without scheduling information.
  • the network device can configure one or more SPS configurations for the terminal device, such as a maximum of 8 SPS configurations.
  • the parameters in each set of SPS configurations may be the same or different, and the parameters contained in each set of SPS configurations may include at least one of the following: the index (index, ID) corresponding to the set of SPS configurations; the SPS transmission period; the physical uplink control channel ( physical uplink control channel, PUCCH) resource configuration information; modulation and coding scheme table (MCS-table), where MCS refers to modulation and coding scheme; used to determine the hybrid automatic repeat request (hybrid automatic repeat request, HARQ) process ( procedure) information.
  • MCS-table modulation and coding scheme table
  • the configuration information of the PUCCH resources is used to configure the symbols occupied by the PUCCH resources carrying the feedback information in one time slot, and the configuration information of the PUCCH resources includes PUCCH format 0 or PUCCH format 1, indicating that the length of the PUCCH resources that can accommodate the feedback information is 1 bit or 2 bits, it should be noted that if the network device configures a set of SPS configuration for the terminal device, the terminal device can provide feedback based on the PUCCH resources indicated in the SPS configuration; if the network device configures multiple sets of SPS for the terminal device configuration, the terminal device needs to determine the PUCCH resource used to carry the feedback information from the PUCCH resource set of the SPS, and the aforementioned PUCCH resource set of the SPS is configured in the PUCCH-config configured by the high layer.
  • the modulation and coding scheme table is used to indicate the modulation and coding scheme adopted by the scheduled PDSCH, and may be specifically represented by an MCS index.
  • the aforementioned information for determining the HARQ process includes the number of HARQ processes available to the SPS and the configured offset, and the specific HARQ process ID can be determined in the following manner:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;
  • CURRENT_slot [(SFN ⁇ numberOfSlotsPerFrame)+slot number in the frame]
  • SFN represents the system frame number (system frame number)
  • numberOfSlotsPerFrame is the number of slots in each subframe
  • slot number in the frame represents the index of the current slot
  • periodicity is the scheduling period
  • nrofHARQ-Processes is the available SPS The number of HARQ processes, and harq-ProcID-Offset is the configured offset.
  • the HARQ process ID here is used to identify the HARQ process used by the terminal device to receive the PDSCH based on SPS transmission after the SPS configuration is activated.
  • the network device Based on semi-persistent scheduling, the network device does not need to send the PDCCH for scheduling before sending downlink data each time, which can reduce the overhead of control signaling compared to the dynamic scheduling method.
  • the related technical solution involves the application of semi-persistent scheduling in unicast scenarios. For example, before sending downlink data to a single terminal device for the first time, the network device sends an activated DCI, and the terminal device blindly detects the activated DCI on the PDCCH, and then based on the activation The downlink time domain resource indicated by the DCI receives the downlink data sent by the network device for the first time.
  • the network device subsequently sends downlink data, and no longer sends DCI for scheduling, and the terminal device receives the downlink data based on the activated SPS configuration.
  • the embodiment of the present application provides an implementation scheme of the semi-persistent scheduling of multicast, which will be described in detail in the following content.
  • the scrambled in the embodiments of this application means that the CRC check bits corresponding to the DCI carried in the PDCCH are scrambled with a specific RNTI.
  • the DCI masked by the RNTI can also be called the PDCCH masked by the RNTI because the DCI is carried in the PDCCH.
  • the blind detection in this embodiment of the present application refers to that the terminal device uses a specific RNTI to perform blind detection on the PDCCH to try to receive possible DCIs.
  • the terminal device uses a specific RNTI to perform blind detection on DCI, or that the terminal device uses a specific RNTI to perform blind detection on DCI on the PDCCH, and so on.
  • the terminal device uses the C-RNTI to perform blind detection on the PDCCH (DCI).
  • the multiple involved in the embodiments of the present application refers to two or more.
  • "And/or" which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects are an "or" relationship.
  • first, second, etc. may be used to describe various objects in the embodiments of the present application, these objects should not be limited by these terms. These terms are only used to distinguish each object from one another.
  • an embodiment of the present application provides a data transmission method, which can reduce control signaling while saving downlink resources by implementing the semi-persistent scheduling scheme of multicast. Reduce overhead and improve data transmission efficiency.
  • the communication system includes at least one terminal device and at least one network device.
  • FIG. 1 illustrates one network device and six terminal devices, such as UE1, UE2, UE3, UE4, UE5, and UE6.
  • the network device can instruct multiple terminal devices to activate the semi-persistent scheduling configuration through multicast, or it can be understood that the network device instructs multiple terminal devices to activate the semi-persistent scheduling SPS transmission of multicast, and then transmits to multiple terminals through multicast.
  • the device sends the downlink data of the semi-persistent scheduling transmission based on multicast, and the downlink data can be referred to as group SPS PDSCH for short; each terminal device can receive the aforementioned group SPS PDSCH based on the semi-persistent scheduling transmission of multicast, and send the group SPS to the network device.
  • Feedback information corresponding to PDSCH The network device may receive feedback information corresponding to the group SPS PDSCH sent by each terminal device, and the feedback information may be ACK or NACK.
  • the network device determines whether the aforementioned group of SPS PDSCHs needs to be retransmitted based on the feedback information sent by each terminal device.
  • the network device may also instruct multiple terminal devices to deactivate the semi-persistent scheduling configuration through multicast, or it may be understood that the network device instructs multiple terminal devices to deactivate the multicast semi-persistent scheduling SPS transmission.
  • the data transmission method provided in the embodiments of the present application can be applied to the following communication services: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and ultra-reliable low-latency communication (ultra-reliable communication) and low-latency communication, URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • ultra-reliable low-latency communication ultra-reliable communication
  • URLLC low-latency communication
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable low-latency communication
  • URLLC ultra-reliable low-latency communication
  • it can be applied to scenarios such as unmanned driving and telemedicine of the URLLC service, and the instruction overhead can be reduced as much as possible while meeting the requirements of high reliability and low latency.
  • the data transmission method provided in this embodiment of the present application may include at least one of the following processes: activation of multicast SPS transmission, deactivation of multicast SPS transmission, and data retransmission related to multicast SPS transmission .
  • the data transmission method includes the activation of multicast semi-persistent scheduling transmission and the deactivation of multicast semi-persistent scheduling transmission; for another example, the data transmission method includes the activation of multicast semi-persistent scheduling transmission and the semi-persistent scheduling transmission with multicast Relevant data retransmission; another example, the data transmission method includes activation of multicast SPS transmission, data retransmission related to multicast SPS transmission, and deactivation of multicast SPS transmission.
  • the above process will be described in further detail below in conjunction with the first and second solutions. It should be noted that the first and second solutions may be implemented in combination with each other, or may be implemented independently.
  • the steps of the network device may be implemented by different functional entities constituting the network device, in other words, the functional entities performing the steps of the network device may be located in different physical entities.
  • the sending or receiving action of the network device may be located in a radio frequency unit (RF) of the network device, or a radio remote unit (RRU) or an active antenna processing unit (AAU).
  • the actions processed by the network device may be located in a central unit CU of the network device or the like. This application does not limit this.
  • the network device can configure the same group-configured scheduling-radio network temporary identifier (G-CS-RNTI) for multiple terminal devices.
  • G-CS-RNTI group-configured scheduling-radio network temporary identifier
  • the network device Before sending the same downlink data (that is, the aforementioned group of SPS PDSCHs) to multiple terminal devices for the first time, the network device sends a DCI masked by the G-CS-RNTI.
  • the terminal device blindly detects the DCI masked by the G-CS-RNTI on the PDCCH, and then activates the multicast semi-persistent scheduling SPS transmission based on the DCI masked by the G-CS-RNTI, and receives the group SPS sent by the network device for the first time.
  • PDSCH group-configured scheduling-radio network temporary identifier
  • the G-CS-RNTI is used to identify the semi-persistent scheduling of multicast, and can also be used to identify the retransmission scheduling of semi-persistent scheduling based on multicast, which can be configured by the network device for a group of terminal devices.
  • the G-CS-RNTI can also be replaced with other identifiers, as long as it can be used to identify the semi-persistent scheduling of multicast or the retransmission scheduling of semi-persistent scheduling based on multicast, which is not limited in this embodiment of the present application .
  • the DCI masked by the G-CS-RNTI for activating the multicast semi-persistent scheduling SPS transmission may be referred to as the activation DCI, and the DCI masked by the G-CS-RNTI sent by the network device below includes: content is explained in detail.
  • the DCI masked by the G-CS-RNTI sent by the network device includes information for identifying the DCI as an activated DCI, for example, the Redundancy Version field is included in the DCI, and the Redundancy Version field is an all 0 identifier.
  • the DCI is the active DCI.
  • the terminal device receives a DCI according to the G-CS-RNTI, and if the received DCI includes the information for identifying the DCI as the aforementioned activated DCI, the terminal device knows that the received DCI is the activated DCI, which is used to activate the multicast.
  • the semi-persistently scheduled SPS transmission is used to activate the multicast.
  • the DCI masked by the G-CS-RNTI sent by the network device may indicate at least one of the following time parameters: the time slot where the group SPS PDSCH is located; the start symbol S and the length where the group SPS PDSCH is located in the time slot. L; the time slot where the feedback information corresponding to the group of SPS PDSCHs is located.
  • the DCI may include a bit field indicating the resources occupied by the data scheduled by the DCI in the time domain: the time domain resource assignment (Time domain resource assignment) domain, where the number of bits occupied by the time domain resource assignment domain is taken. The value range is [0, 4].
  • the DCI masked by the G-CS-RNTI sent by the network device may also include a bit field indicating the resources occupied by the data scheduled by the DCI in the frequency domain: Frequency domain resource assignment (Frequency domain resource assignment). )area.
  • the DCI masked by the G-CS-RNTI sent by the network device may also include a bit field indicating the modulation and coding scheme of the data scheduled by the DCI: a modulation and coding scheme (Modulation and coding scheme, MCS) field.
  • MCS Modulation and coding scheme
  • the method of indicating the time slot where the group SPS PDSCH is located, as well as S and L are: the aforementioned DCI masked by the G-CS-RNTI carried in the PDCCH indicates a row in a time domain resource table, the time domain resource
  • the table may be a table predefined by a protocol or a table configured by high-level signaling.
  • the table contains multiple rows, each row contains: parameter K0, parameter S and L; where K0 is used to indicate the number of time slots between the time slot where the PDCCH is located and the time slot where the PDSCH is located;
  • S and L can be combined Encoded as a parameter: start symbol and length (start and length indicator value, SLIV), or two separate parameters, represented by (S, L).
  • Table 1 shows a time domain resource table.
  • the DCI may specifically include a bit field indicating a row index (index), which may occupy 2 bits (bits). For example, if the index included in the DCI is 1, it means that the DCI indicates that K0 is 1, and (S, L) is (1, 2). ), that is to say, if the terminal device receives the aforementioned DCI masked by G-CS-RNTI in the nth time slot, it can receive the group SPS PDSCH scheduled by the DCI in the n+1th time slot, specifically in the Symbol 1 and symbol 2 in the n+1th slot receive the DCI scheduled group SPS PDSCH.
  • the method for indicating the time slot where the feedback information corresponding to the group of SPS PDSCHs is located is: including a piece of indication information in the DCI, specifically, the PDSCH-to-HARQ_feedback timing indicator bit field can be used to represent the foregoing indication information, and the bit field can be used.
  • the range of the number of occupied bits is [0, 3], and the bit field is used to indicate the time at which the terminal device performs feedback after receiving the group SPS PDSCH, that is, sends the corresponding feedback information.
  • the indication information can be a value of K1 in the K1 set
  • the K1 set (such as the dl-DataToUL-ACK field) can be a set of high-level signaling configurations
  • the value of K1 represents the time slot where the group SPS PDSCH is located and the corresponding The number of time slots for the feedback information interval. Assuming that the group of SPS PDSCHs is in the n+1th time slot, the feedback information corresponding to the group of SPS PDSCHs is in the n+1+K1th time slot.
  • the value of K1 may be 4, and the feedback information is specifically ACK information or NACK information.
  • the time slots may also be sub-slots.
  • the terminal equipment After determining the feedback time slot of the group SPS PDSCH based on the indication of the aforementioned DCI, it is necessary to determine the specific feedback resources that the feedback information can occupy.
  • the terminal device first determines the number of bits of feedback information corresponding to the group SPS PDSCH that needs to be fed back in the feedback time slot, for example, the sum of the number of bits of the feedback information of all the groups of SPS PDSCH to be fed back in the feedback time slot is used as the number of bits of the feedback information. , and then select a PUCCH resource according to the number of bits of the feedback information in the semi-persistently scheduled PUCCH resource set preconfigured by the network device to send the feedback information of the group of SPS PDSCHs.
  • the network device has configured 4 PUCCH resources for the terminal device. If the number of feedback information bits is less than or equal to 2, the first PUCCH resource is used to send the feedback information of the group SPS PDSCH; if the number of bits is from 3 to N1, then Use the second PUCCH resource; if the number of feedback bits is between N1 and N2, use the third PUCCH resource, and if the number of feedback bits is between N2 and N3, use the fourth PUCCH resource, where N1 is less than N2 and If it is greater than 2, N2 is less than N3; N1, N2, and N3 are also indicated by the configuration information sent by the network device (for example, in high-layer signaling). If there is no indication, the default value is 1706.
  • the above-mentioned DCI masked by the G-CS-RNTI may further include information indicating which semi-persistent scheduling SPS configuration the DCI is used to activate.
  • the network device configures multiple SPS configurations for the terminal device, specifically, the HARQ process number (HARQ process number, HPN) bit field in the DCI can be used to indicate the aforementioned activated semi-persistent scheduling SPS configuration, and the bit field can be occupied.
  • the number of bits is in the range [0,4].
  • the terminal device can determine the activation of the semi-persistent scheduling SPS transmission of the multicast through the value of the HARQ process number, which specifically corresponds to the number of the activation of the foregoing multiple SPS configurations.
  • the HARQ process number in the DCI is set to 0 by default through the value of the HARQ process number.
  • the above-mentioned DCI masked by the G-CS-RNTI may further include information indicating that the group SPS PDSCH scheduled by the DCI is initial transmission data.
  • the DCI may include 1 bit field, and the bit field is recorded as a new data indicator (NDI), and the value of NDI is 0 to indicate that the group SPS PDSCH scheduled by the DCI is initial transmission data.
  • NDI new data indicator
  • the network device sends the group SPS PDSCH in the subsequent transmission, without first sending the DCI for scheduling, and the terminal device receives the group SPS PDSCH based on the activated SPS configuration.
  • the network device sends the DCI masked by the G-CS-RNTI to schedule the group SPS PDSCH in the time unit 1 before the time unit 2 sends the group SPS PDSCH for the first time.
  • Static SPS transmission optionally, the DCI includes information used to indicate a semi-persistent scheduling SPS configuration, and the DCI is specifically used to activate the SPS configuration.
  • the network device does not need to send other DCIs when sending the group SPS PDSCH, and the terminal device can receive the subsequent group SPS PDSCH based on the aforementioned activated SPS configuration.
  • FIG. 2 illustrates that the subsequent terminal equipment periodically receives the group SPS PDSCH in time units 3-6 without receiving DCI.
  • time unit here refers to the time unit of SPS scheduling, which is a time domain concept.
  • Time units can be in frames, subframes, slots and symbols.
  • the subcarrier spacing of 15kHz is adopted, and the time length of one time slot is 1ms.
  • one slot includes 12 symbols; in the case of using the normal cyclic prefix, one slot includes 14 symbols.
  • the symbols here, or time-domain symbols may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • time units 1-6 in FIG. 2 do not mean continuous time units. For example, between time units 2-6, two adjacent time units are separated by an SPS period.
  • the terminal device may determine the time slot position of the subsequent group SPS PDSCH according to the SPS transmission period P configured by the high layer. For example, if the SPS transmission period P is 1ms, and the time domain duration of 1 slot is 1ms, the first group of SPS PDSCH symbols 1 and 2 in the n+1th time slot, then In the case of activating the multicast SPS, the position where the group SPS PDSCH is located starts from the n+1th time slot, occupies symbol 1 and symbol 2 of each time slot, and x is an integer greater than 1. It can be understood that the time unit shown in FIG. 2 can refer to a time slot, then as an example, FIG.
  • the aforementioned scheduling period P may also be other values, depending on the high-level configuration.
  • the SPS transmission period P configured by the upper layer is 2ms, and the first group SPS PDSCH is in symbol 1 and symbol 2 in the n+1th time slot, then in the case of activating the multicast SPS, the group SPS PDSCH where the The position starts from the n+1th time slot, and every other time slot occupies the symbol 1 and symbol 2 in the time slot, that is, the position of the group SPS PDSCH is the time slot of the n+1+x*2th time slot, where x is Integer greater than or equal to 0.
  • the duration of a time unit is 1ms and the SPS scheduling period is 1ms, which corresponds to 1 time unit, that is, SPS PDSCH is transmitted in each time unit; the SPS scheduling period is 2ms, which corresponds to 2 time units, that is, the SPS PDSCH is transmitted at an interval of one time unit.
  • the aforementioned high layers can be understood as high-level protocol layers, including at least one protocol layer above the physical layer: medium access control (MAC) layer, radio link control (radio link control, RLC) layer, packet data The convergence protocol (packet data convergence protocol, PDCP) layer, radio resource control (radio resource control, RRC) layer and non-access stratum (non access stratum, NAS) layer.
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • non-access stratum non access stratum
  • the high-level signaling may be NAS layer signaling, an RRC message, or a media access control (media access control, MAC) control element (control element, CE), and the RRC message may include a dedicated RRC message , or a broadcast multicast RRC message, which is not limited in this embodiment of the present application.
  • RRC message may include a dedicated RRC message , or a broadcast multicast RRC message, which is not limited in this embodiment of the present application.
  • Case 1 If the feedback information of the group SPS PDSCH of many terminal devices is all NACK information, that is, there are many terminal devices that fail to receive the group SPS PDSCH, the network device can send the retransmission data of the aforementioned group SPS PDSCH through multicast. , or retransmitting the aforementioned group of SPS PDSCHs.
  • the number threshold can be set. If there are terminal devices greater than or equal to the set number threshold in a group of terminal devices that fail to successfully receive the group SPS PDSCH sent by the network device, and all feedback NACK information to the network device, then the network device It can be determined that there are many terminal devices that have not successfully received the group SPS PDSCH. Exemplarily, for example, a group of terminal devices includes 6 terminal devices, and the set number threshold may be 3. When the feedback information sent by 3 or more terminal devices to the network device is NACK information, the network device can pass the group. The retransmission data of the group SPS PDSCH that has not been received successfully is sent in the broadcast mode.
  • the network device may send a DCI masked by the G-CS-RNTI to the multiple terminal devices in a multicast manner, where the DCI is used for scheduling reconfiguration.
  • the retransmission data may be the retransmission data of one SPS PDSCH among the multiple SPS PDSCHs used for the aforementioned activated multicast SPS transmission.
  • the DCI includes NDI, and the value of NDI is 1, indicating that the PDSCH scheduled by the DCI is retransmission data.
  • the DCI may further include an HPN, indicating the HARQ process occupied by the retransmission, and optionally the HARQ process occupied by the retransmission indicated by the HPN is the same as the HARQ process calculated according to the activated SPS configuration. That is, the terminal device receives the DCI masked by the G-CS-RNTI. According to the NDI with a value of 1 in the DCI, it can be known that the DCI schedules retransmission data, and the HPN in the DCI can know that the received retransmission data is occupied.
  • the HARQ process is used to facilitate soft combining of retransmitted data.
  • Case 2 If the feedback information of the group SPS PDSCH with fewer terminal devices is all NACK information, that is, there are fewer terminal devices that fail to receive the group SPS PDSCH, the network device can unicast to the terminals that failed to receive the group SPS PDSCH. The device sends the retransmission data of the aforementioned group of SPS PDSCHs individually.
  • the number threshold can be set. If a group of receiving terminal devices has a terminal device that is smaller than the set number threshold and fails to receive the group SPS PDSCH sent by the network device and feeds back NACK information to the network device, the network device can It is determined that there are fewer terminal devices that did not successfully receive the group SPS PDSCH. Exemplarily, for example, a group of terminal devices includes 6 terminal devices, and the set number threshold can be 3. When the feedback information sent by one or two terminal devices to the network device is NACK information, the network device can pass the single The retransmission data of the group SPS PDSCH that has not been received successfully is sent in the broadcast mode.
  • the network device configures or notifies the retransmission scheduling method of the terminal device. Specifically, in a group of terminal devices, the network device configures or notifies the retransmission scheduling method of some terminal devices based on unicast. The retransmission scheduling method of terminal equipment is based on multicast. If the retransmission scheduling mode is configured or notified as unicast-based, the terminal device fails to receive the group SPS PDSCH sent by the network device, and feeds back NACK information to the network device, the network device uses unicast-based retransmission scheduling to send The terminal equipment transmits the retransmission data of the group SPS PDSCH.
  • the terminal device fails to receive the group SPS PDSCH sent by the network device, and feeds back NACK information to the network device, the network device uses multicast-based retransmission scheduling to send
  • the terminal equipment transmits the retransmission data of the group SPS PDSCH.
  • a group of terminal devices includes 6 terminal devices, terminal device #1 is configured with unicast-based retransmission scheduling, and terminal devices #2 to #6 are configured with multicast-based retransmission scheduling.
  • the feedback information sent by the device #1 to the network device is NACK information
  • the network device may send the retransmission data of the unsuccessfully received group SPS PDSCH to the terminal device #1 in a unicast manner. If the feedback information sent by any one of terminal equipment #2 to #6 to the network equipment is NACK information, the network equipment sends the retransmission data of the unsuccessfully received group SPS PDSCH to terminal equipment #2 to 6 through multicast. .
  • the network device may send the DCI masked by the configured scheduling network temporary identifier (CS-RNTI) to the terminal device.
  • the DCI is used to schedule retransmission data, the DCI includes NDI, and the value of NDI is 1, indicating that the group SPS PDSCH scheduled by the DCI is retransmission data.
  • the DCI here includes an HPN field indicating the HARQ process occupied by retransmission, and optionally the HARQ process occupied by the HPN indication retransmission is the same as the HARQ process calculated according to the activated SPS configuration.
  • the terminal device when the terminal device receives the DCI masked by CS-RNTI, it can know that the retransmission data is scheduled by the DCI according to the NDI whose value is 1 in the DCI, and then according to the HPN in the DCI, it can know that the retransmission data is received.
  • the HARQ process facilitates soft combining of retransmitted data.
  • the CS-RNTI is used to identify unicast transmission, which may be configured by a network device for a single terminal device.
  • the CS-RNTI can also be replaced with other identifiers, as long as it can be used to identify unicast transmission, which is not limited in this embodiment of the present application.
  • terminal device 1 and terminal device 2 send NACK
  • the network device sends DCI to these two terminal devices respectively, for example, the DCI masked by the CS-RNTI of terminal device 1 is sent to terminal device 1, and is sent to the terminal device 1 with The aforementioned SPS PDSCH is retransmitted to the terminal equipment 1 in a unicast manner, and the DCI masked by the CS-RNTI of the terminal equipment 2 is used to send to the terminal equipment 2, and the aforementioned SPS PDSCH is retransmitted to the terminal equipment 2 in a unicast manner.
  • the foregoing unicast retransmission scheduling mechanism is illustrated. Assuming that a single terminal device fails to receive the group SPS PDSCH sent by the network device in time unit 1, the feedback information is determined according to the PDSCH-to-HARQ_feedback timing indicator in the DCI masked by the G-CS-RNTI in the aforementioned activation phase A1
  • the feedback time unit is time unit 2, then in time unit 2, NACK information is sent to the network device on the PUCCH.
  • the network device After the network device receives the PUCCH and determines that the terminal device has fed back NACK, the network device sends a group of SPS PDSCH retransmission data to the terminal device in a unicast manner.
  • the network device sends the DCI masked by CS-RNTI to the terminal device in time unit 3, and the terminal device blindly detects the aforementioned DCI masked by CS-RNTI on the PDCCH, and the HARQ process indicated by the HPN in the DCI is the same as
  • the HARQ processes calculated according to the activated SPS configuration are the same, for example, they are all HARQ processes: N.
  • the value of NDI in the DCI is 1, then the terminal device knows that the DCI masked by CS-RNTI schedules retransmission data, and the retransmission data is the retransmission data of the aforementioned SPS PDSCH, then the terminal device receives the set of retransmission data.
  • the retransmission data of the SPS PDSCH can be soft combined with the data in the initially transmitted group SPS PDSCH.
  • the network device may schedule the retransmission of the multicast SPS data through the DCI masked by the CS-RNTI, that is, send the retransmission data of the group SPS PDSCH to a single terminal device in a unicast manner. Without introducing a new RNTI, the resources used by the terminal equipment to blindly detect DCI can be saved.
  • the network device can send a deactivated DCI masked by the G-CS-RNTI to multiple terminal devices.
  • the Redundancy Version field in the deactivated DCI is all 0s, and the Modulation and coding scheme field is all 1s.
  • the frequency domain resource assignment (Frequency domain resource assignment) field is all 1s (ie, Type1) or all 0s (ie, Type0).
  • the terminal device can know that the deactivated DCI is used to deactivate the semi-persistent scheduling SPS transmission of the multicast.
  • Other information such as HPN is also included in the deactivated DCI.
  • the value of the HPN may be the same as the value of the HPN in the DCI in the activation phase (A1).
  • the terminal device may deactivate the SPS configuration indicated by the HPN based on the deactivation of the HPN in the DCI, and no longer receive the group SPS PDSCH of the deactivated SPS configuration in subsequent time units.
  • the network device sends the deactivated DCI masked by the G-CS-RNTI in time unit 1, then the terminal device blindly detects the deactivated DCI on the PDCCH, and according to the HPN in the deactivated DCI, It is determined that the group SPS PDSCH corresponding to the SPS configuration of the HPN will no longer be received.
  • "x" indicates that the group SPS PDSCH on the time unit 2-6 will no longer be received, or it can be understood that the network device is no longer in the time unit 2-6.
  • Send group SPS on PDSCH is mapped to the time unit 2-6.
  • the first solution may include one or more of the above stages A1 to A3, and the execution sequence of the stages A1 to A3 may be determined based on actual requirements, which is not limited in this embodiment of the present application.
  • Indication information for indicating whether the dynamically scheduled transmission or the semi-persistently scheduled SPS transmission may be included in the DCI.
  • the DCI is combined with the group-radio network temporary identifier (G-RNTI) to indicate the dynamic scheduling of multicast or the semi-persistent scheduling of multicast.
  • G-RNTI group-radio network temporary identifier
  • the G-RNTI is used to identify the multicast transmission, and may be configured by the network device for a group of terminal devices.
  • the G-RNTI can also be replaced with other identifiers, as long as it can be used to identify multicast transmission, which is not limited in this embodiment of the present application.
  • the DCI may include a target bit field for indicating dynamic scheduling or semi-persistent scheduling SPS, the target bit field may occupy 1 bit, and when the target bit field is 0, it indicates that the target bit field is 0.
  • DCI indicates dynamic scheduling; when the value of the target bit field is 1, it indicates that the DCI indicates semi-persistent scheduling SPS. Or conversely, when the target bit field is 1, it indicates that the DCI indicates dynamic scheduling; when the target bit field is 0, it indicates that the DCI indicates semi-persistent scheduling SPS.
  • the DCI and G-RNTI jointly indicate the dynamic scheduling of multicast or the semi-persistent scheduling of multicast
  • the description of the Identifier for DCI formats field in the traditional DCI format can be changed, and the value of the Identifier for DCI formats field can be used to distinguish the dynamic scheduling of the packet or the semi-persistent scheduling of the multicast. For example, if the value of the Identifier for DCI formats field in the DCI is 0, it indicates that the DCI indicates dynamic scheduling; if the value of the Identifier for DCI formats field in the DCI is 1, it indicates that the DCI indicates semi-persistent scheduling. SPS.
  • the DCI indicates dynamic scheduling; if the value of the Identifier for DCI formats field in the DCI is 0, it indicates that the DCI indicates half-time scheduling. Continuously schedule SPS.
  • the activation of the semi-persistent scheduling of multicast, the retransmission related to the semi-persistent scheduling of multicast, and the deactivation of semi-persistent scheduling of multicast can refer to the following: Embodiments in B1 to B3 are implemented.
  • a network device can configure the same group-radio network temporary identifier (G-RNTI) for multiple terminal devices.
  • G-RNTI group-radio network temporary identifier
  • the network device Before sending the same downlink data (that is, the group SPS PDSCH) to multiple terminal devices for the first time, the network device sends a DCI masked by the G-RNTI, and the DCI contains the data used to indicate the semi-persistent scheduling transmission of the multicast. information, such as the aforementioned target bit field.
  • the terminal device blindly detects the DCI masked by the G-RNTI on the PDCCH, and determines that the DCI contains information used to indicate the SPS configuration, and can activate the multicast SPS configuration based on the DCI masked by the G-CS-RNTI, receive The group SPS PDSCH sent by the network device for the first time.
  • the DCI masked by the G-RNTI for activation can also be understood as the activation DCI.
  • the activation DCI For other content contained in the DCI masked by the G-RNTI sent by the network device below, refer to A1 by G-RNTI. The description of the content included in the DCI masked by the CS-RNTI is not repeated in this embodiment of the present application.
  • the network device subsequently sends the group SPS PDSCH without first sending DCI for scheduling, and the terminal device receives the group SPS PDSCH based on the activated SPS configuration.
  • the network device sends the DCI masked by the G-RNTI to schedule the group SPS PDSCH in the time unit 1 before the time unit 2 sends the group SPS PDSCH for the first time, and the DCI is used to activate the semi-static SPS of the multicast Transmission; optionally, the DCI includes information used to indicate a semi-persistent scheduling SPS configuration, and the DCI is specifically used to activate the SPS configuration.
  • the network device does not need to send other DCIs when sending the group SPS PDSCH, and the terminal device can receive the subsequent group SPS PDSCH based on the aforementioned activated SPS configuration.
  • FIG. 5 illustrates that the subsequent terminal equipment periodically receives the group SPS PDSCH in time units 3-5 without receiving other DCIs.
  • the network device can also perform dynamic scheduling of multicast while performing semi-persistent scheduling of multicast.
  • Figure 5 also shows that the network device sends the data of multicast-based dynamic scheduling transmission for the first time in time unit 2.
  • the RNTI-masked DCI schedules the DYN PDSCH, where the DCI includes information used to indicate dynamic scheduling.
  • the terminal equipment can blindly detect two DCIs by G-RNTI on the PDCCH in time unit 1.
  • Fig. 5 is represented by DCI-1 and DCI-2, wherein, what is scheduled by DCI-1 is in time unit 2.
  • DCI-2 schedules the group SPS PDSCH in time unit 2 and subsequent time units.
  • the value of the target bit in DCI-1 indicates dynamic scheduling, and the value of the target bit as 1 indicates semi-persistent scheduling as an example, then the value of the target bit in DCI-1
  • the target bit takes the value 0
  • the target bit in DCI-2 takes the value 1.
  • Case 1 If the feedback information of the group SPS PDSCH of many terminal devices is all NACK information, that is, there are many terminal devices that fail to receive the group SPS PDSCH, the network device can send the retransmission data of the aforementioned group SPS PDSCH through multicast. .
  • the network device may schedule the retransmission data of the aforementioned group of SPS PDSCHs based on the DCI masked by the G-RNTI.
  • the specific implementation can be performed with reference to the solution in Case 1 of A2, which is not repeated in this embodiment of the present application.
  • Case 2 If the feedback information of the group SPS PDSCH with fewer terminal devices is all NACK information, that is, there are fewer terminal devices that fail to receive the group SPS PDSCH, the network device can unicast to the terminals that failed to receive the group SPS PDSCH. The device sends the retransmission data of the aforementioned group of SPS PDSCHs individually.
  • the network device may schedule the retransmission data of the aforementioned group of SPS PDSCHs based on the DCI masked by the CS-RNTI.
  • the specific implementation can be performed with reference to the solution in Case 2 of A2, which is not repeated in this embodiment of the present application.
  • Scenario 3 If the retransmission scheduling mode is configured or notified as the unicast-based terminal device fails to receive the group SPS PDSCH, the sent feedback information is NACK, and the network device is configured with the retransmission mode or notified as unicast-based.
  • the terminal equipment sends the retransmission data of the aforementioned group SPS PDSCH through a unicast-based scheduling method; if the retransmission scheduling method is configured or notified as a multicast-based terminal equipment successfully receiving the group SPS PDSCH, the sent feedback information is NACK , the network device sends the retransmission data of the aforementioned group of SPS PDSCHs to the terminal device whose retransmission mode is configured or notified as multicast-based scheduling.
  • the network device can schedule the retransmission data of the aforementioned group of SPS PDSCHs based on the DCI masked by CS-RNTI to the terminal device whose retransmission scheduling mode is configured as unicast, and can be based on G-RNTI or G-CS-RNTI plus.
  • the masked DCI schedules the retransmission data of the aforementioned multicast SPS PDSCH to the terminal equipment whose retransmission scheduling mode is configured as multicast.
  • the specific implementation can be implemented with reference to the solution in Case 3 of A2, which is no longer performed in this embodiment of the application. Repeat.
  • the network device can send a deactivated DCI masked by G-RNTI to multiple terminal devices.
  • the Redundancy Version field in the deactivated DCI is all 0s
  • the Modulation and coding scheme field is all 1s
  • the frequency domain is all 1s.
  • the resource assignment (Frequency domain resource assignment) field is all 1s (ie, Type1) or all 0s (ie, Type0).
  • the terminal device can know that the deactivated DCI is used to deactivate the semi-persistent scheduling SPS of the multicast. Other information such as HPN is also included in the deactivated DCI.
  • the value of the HPN may be the same as the value of the HPN in the DCI in the activation phase (A1).
  • the terminal device may deactivate the SPS configuration indicated by the HPN based on the deactivation of the HPN in the DCI, and no longer receive the group SPS PDSCH of the deactivated SPS configuration in subsequent time units.
  • the network device sends the deactivated DCI masked by the G-RNTI in time unit 1, then the terminal device blindly detects the deactivated DCI on the PDCCH, and determines whether the deactivated DCI is not based on the HPN in the deactivated DCI.
  • Group SPS PDSCH specifically uses " ⁇ " to indicate that the group SPS PD
  • the first solution may include one or more of the above stages B1 to B3, and the execution sequence of the stages B1 to B3 may be determined based on actual requirements, which is not limited in this embodiment of the present application.
  • G-RNTI by defining a method for indicating semi-persistent scheduling or dynamic scheduling in DCI, G-RNTI can be used to realize dynamic scheduling of multicast data or semi-persistent scheduling of multicast data, which expands the The application scenario of G-RNTI saves the resources of blind detection on the terminal device side, and also reduces the control signaling overhead in the downlink data scheduling of multicast.
  • an embodiment of the present application provides a schematic flowchart of a data transmission method.
  • the method includes the following processes:
  • the network device may send the first multicast data to multiple terminal devices in a multicast semi-persistent scheduling manner, that is, each terminal device may receive the first multicast data transmitted by the multicast-based semi-persistent scheduling SPS.
  • FIG. 7 illustrates three terminal devices, denoted as a first terminal device, a second terminal device, and a third terminal device. It should be noted that, in FIG. 7 , the network device does not send the first multicast data three times, but only sends the first multicast data once, and all three terminal devices can receive the multicast data.
  • the first multicast data of the multicast-based semi-persistent scheduling SPS transmission can be interpreted as "first multicast data using a multi-cast based SPS transmission".
  • the multicast-based semi-persistent scheduling transmission mainly includes the following transmission in the activation phase and transmission after activation.
  • Transmission in the activation phase requires semi-persistent SPS transmission through DCI-activated multicast.
  • the first multicast data sent by the network device in the activation phase can be understood as data with scheduling information, and the first multicast data sent by the network device after activation can be understood as Data without scheduling information or data without DCI.
  • the network device may send a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI to a plurality of terminal devices, where the second DCI is used to activate the multicast-based semi-persistent scheduling SPS transmission. Then, each terminal device can activate the multicast-based semi-persistent scheduling SPS transmission based on the second DCI, and then receive the aforementioned first multicast data scheduled by the second DCI and subsequent first multicast data without scheduling information.
  • the network device may send a third DCI masked by the group wireless network temporary identifier G-RNTI to a plurality of terminal devices, where the third DCI is used to activate the multicast semi-persistent scheduling SPS transmission.
  • the first indication information included in the three DCI takes the value of the first value.
  • the value of the first indication information includes a first value or a second value, the first value is used to indicate the semi-persistent scheduling SPS transmission of the multicast, and the second value is used to indicate the dynamic scheduling transmission of the multicast .
  • the first indication information may be the target bits introduced in the foregoing solution 2 or the Identifier for DCI formats.
  • the first value may be 0 and the second finger may be 1; alternatively, the first value may be 1 and the second value may be 0. Then, each terminal device can activate the multicast semi-persistent scheduling SPS transmission based on the third DCI, and then receive the aforementioned first multicast data scheduled by the third DCI and the subsequent first multicast data without scheduling information.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the third DCI does not include the Identifier for DCI formats.
  • the Identifier for DCI formats is used in the third DCI to indicate the semi-persistent scheduling transmission of multicast or the dynamic scheduling transmission of multicast, the description or definition of the Identifier for DCI formats cannot be used to indicate that the third DCI is used for scheduling uplink transmission or Downlink transmission.
  • the new data in the second DCI indicates that the NDI value is 0, indicating that the second DCI schedules initial transmission data; the new data in the third DCI indicates that the NDI value is 0, indicating that the third DCI schedules is the initial data.
  • the feedback information received by the network device from the first terminal device is NACK, that is, the first terminal device has not successfully received the aforementioned first multicast data.
  • the network device sends the first DCI masked by the CS-RNTI and the first data to the first terminal device, where the first data is retransmission data of the first multicast data, wherein the first data can be understood as a single-based broadcast transmitted data.
  • the new data in the first DCI indicates that the NDI value is 1, indicating that the first DCI schedules retransmission data.
  • the network device can perform multicast retransmission scheduling based on G-CS-RNTI or G-RNTI, such as sending second multicast data, the second multicast data is the retransmission data of the first multicast data, the second multicast data
  • the data can be understood as multicast data.
  • the terminal device receives the first DCI, and receives the first data according to the first DCI.
  • semi-persistent scheduling is used for multicast transmission, and there is no need to send scheduling information, namely DCI, before sending multicast data each time, which can reduce the overhead of control signaling; and when individual terminal devices fail to receive multicast data successfully , retransmitting the aforementioned multicast data to the terminal device through unicast mode instead of scheduling data retransmission in multicast mode, which can further save the occupation of downlink resources and improve the data transmission efficiency.
  • scheduling information namely DCI
  • the network device may also send a fourth DCI masked by G-RNTI or G-CS-RNTI to the terminal device, where the fourth DCI is used to deactivate the half of the multicast. Continuously schedule SPS transmissions.
  • the content included in the fourth DCI may be implemented with reference to the manner in A3 or B3, which will not be repeated here.
  • FIG. 8 provides a possible exemplary block diagram of the data transmission apparatus involved in the present application, and the apparatus 800 may exist in the form of software or hardware.
  • the apparatus 800 may include: a processing unit 802 and a communication unit 803 .
  • the communication unit 803 may include a receiving unit and a sending unit.
  • the processing unit 802 is used to control and manage the actions of the device 800 .
  • the communication unit 803 is used to support the communication between the apparatus 800 and other network entities.
  • the apparatus 800 may further include a storage unit 801 for storing program codes and data of the apparatus 800 .
  • the processing unit 802 may be a processor or a controller, for example, a general-purpose central processing unit (CPU), general-purpose processor, digital signal processing (DSP), application specific integrated circuit (application specific integrated circuit) circuits, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the storage unit 801 may be a memory.
  • the communication unit 803 is an interface circuit of the device for receiving signals from other devices. For example, when the device is implemented as a chip, the communication unit 803 is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit used by the chip to send signals to other chips or devices.
  • the apparatus 800 may be the terminal device in any of the foregoing embodiments, and may also be a chip used for the terminal device.
  • the processing unit 802 may be, for example, a processor
  • the communication unit 803 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 802 may be, for example, a processor
  • the communication unit 803 may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit 802 can execute computer-executed instructions stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc. storage units, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the apparatus 800 is applied to a terminal device, and its interior includes functions or operations performed by each unit, and will be described in detail.
  • the communication unit 803 is configured to receive the first multicast data transmitted by the multicast-based semi-persistent scheduling SPS.
  • the communication unit 803 is further configured to receive first downlink control information DCI, where the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI.
  • the processing unit 802 is configured to receive first data through the communication unit 803 according to the first DCI, where the first data is retransmission data of the first multicast data.
  • semi-persistent scheduling is used for multicast transmission, and there is no need to send scheduling information, namely DCI, before sending multicast data each time, which can reduce the overhead of control signaling; and when data needs to be retransmitted to individual terminal equipment, the The foregoing multicast data is retransmitted to the terminal device in a unicast manner, instead of scheduling data retransmission in a multicast manner, which can further save the occupation of downlink resources and improve the data transmission efficiency.
  • the processing unit 802 before the communication unit 803 receives the first DCI, the processing unit 802 is further configured to determine that the reception of the first multicast data fails, and send feedback information such as NACK, where the feedback information is used to indicate Failed to receive the first multicast data.
  • the communication unit 803 is further configured to: receive a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the second DCI is used to activate all Semi-persistently scheduled SPS transmission of the multicast.
  • the communication unit 803 is further configured to: receive a third DCI masked by the group wireless network temporary identifier G-RNTI, where the third DCI is used to activate the multicast Semi-persistent scheduling SPS transmission, the first indication information included in the third DCI takes a value of a first value, wherein the value of the first indication information includes a first value or a second value, and the first value is used for Indicates the semi-persistently scheduled SPS transmission of the multicast, and the second value is used to indicate the dynamically scheduled transmission of the multicast.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the new data in the first DCI indicates that the NDI value is 1; the new data in the second DCI indicates that the NDI value is 0; the new data in the third DCI indicates that the NDI value is 0; The NDI value is 0.
  • the communication module is further configured to: receive a fourth DCI masked by the group wireless network temporary identifier G-RNTI, where the fourth DCI is used to deactivate the multicast Semi-persistent scheduling SPS transmission; or, receiving a fourth DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission.
  • the apparatus 800 may be the network device in any of the foregoing embodiments, and may also be a chip used for the network device.
  • the processing unit 802 may be, for example, a processor
  • the communication unit 803 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 802 may be, for example, a processor
  • the communication unit 803 may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit 802 can execute computer-executed instructions stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit can also be a network device located outside the chip.
  • storage units such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the apparatus 800 is applied to network equipment, and the functions or operations performed by each unit are included in the apparatus 800, and will be described in detail below.
  • the processing unit 802 is configured to generate the first multicast data transmitted by the multicast-based semi-persistent scheduling SPS.
  • a communication unit 803, configured to send the first multicast data.
  • the communication unit 803 is further configured to send first downlink control information DCI, where the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI, the first DCI is used for scheduling the first data, the The first data is retransmission data of the first multicast data.
  • semi-persistent scheduling is used for multicast transmission, and there is no need to send scheduling information, namely DCI, before sending multicast data each time, which can reduce the overhead of control signaling; and when data needs to be retransmitted to individual terminal equipment, the The foregoing multicast data is retransmitted to the terminal device in a unicast manner, instead of scheduling data retransmission in a multicast manner, which can further save the occupation of downlink resources and improve the data transmission efficiency.
  • the communication unit 803 is further configured to: send a second DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the second DCI is used to activate all Semi-persistently scheduled SPS transmission of the multicast.
  • the communication unit 803 is further configured to: send a third DCI masked by the group wireless network temporary identifier G-RNTI, where the third DCI is used to activate the multicast Semi-persistent scheduling SPS transmission, the first indication information included in the third DCI takes a value of a first value, wherein the value of the first indication information includes a first value or a second value, and the first value is used for Indicates the semi-persistently scheduled SPS transmission of the multicast, and the second value is used to indicate the dynamically scheduled transmission of the multicast.
  • the third DCI does not include information for indicating that the third DCI is used for scheduling uplink transmission or downlink transmission.
  • the new data in the first DCI indicates that the NDI value is 1; the new data in the second DCI indicates that the NDI value is 0; the new data in the third DCI indicates that the NDI value is 0; The NDI value is 0.
  • the communication unit 803 is further configured to: send a fourth DCI masked by the group wireless network temporary identifier G-RNTI, where the fourth DCI is used to deactivate the multicast or send a fourth DCI masked by the group configuration scheduling wireless network temporary identifier G-CS-RNTI, where the fourth DCI is used to deactivate the multicast semi-persistent scheduling SPS transmission.
  • the apparatus 900 includes: a processor 902 , a communication interface 903 , and a memory 901 .
  • the apparatus 900 may further include a communication line 904 .
  • the communication interface 903, the processor 902 and the memory 901 can be connected to each other through a communication line 904;
  • the communication line 904 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus, etc.
  • the communication line 904 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor 902 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the programs of the present application.
  • Communication interface 903 using any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 901 can be a ROM or other types of static storage devices that can store static information and instructions, a RAM or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory CD-ROM
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory may exist independently and be connected to the processor through communication line 904 .
  • the memory can also be integrated with the processor.
  • the memory 901 is used for storing computer-executed instructions for executing the solutions of the present application, and the execution is controlled by the processor 902 .
  • the processor 902 is configured to execute the computer-executed instructions stored in the memory 901, thereby implementing the data transmission method provided by the above embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • an embodiment of the present application further provides another communication device 1000 , where the communication device is a chip system, and includes an input and output interface 1010 and a logic circuit 1020 .
  • the logic circuit 1020 and the input/output interface 1010 may be used to perform the functions or operations performed by the above-mentioned terminal device.
  • the input/output interface 1010 is used for inputting the first multicast data transmitted by the SPS based on the multicast semi-persistent scheduling; the input/output interface 1010 is also used for inputting the first downlink control information DCI, the first DCI masked by the configuration scheduling wireless network temporary identifier CS-RNTI; the logic circuit 1020 is configured to obtain first data through the input and output interface 1010 according to the first DCI, and the first data is the first multicast Data retransmission data.
  • the logic circuit 1020 is further configured to determine that the reception of the first multicast data fails, and output feedback information such as NACK, which is used to indicate the reception of the first multicast data. fail.
  • the logic circuit 1020 and the input/output interface 1010 may be used to perform the functions or operations performed by the network device.
  • the logic circuit 1020 is used to generate the first multicast data; the input and output interface 1010 is used to output the first multicast data, and the first multicast data is transmitted based on the semi-persistent scheduling SPS of multicast; the The input and output interface 1010 is further configured to output the first downlink control information DCI, where the first DCI is masked by the configuration scheduling wireless network temporary identifier CS-RNTI, the first DCI is used for scheduling the first data, and the first DCI is used for scheduling the first data.
  • One data is retransmission data of the first multicast data.
  • the communication apparatus 1000 provided in this embodiment can be applied to a terminal device to execute the method executed by the terminal device, or applied to a network device to execute the method executed by the network device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, which will not be repeated here.
  • embodiments of the present application further provide a communication system, where the communication system includes at least one communication device applied to a network device and at least one communication device applied to a terminal device.
  • the communication system includes at least one communication device applied to a network device and at least one communication device applied to a terminal device.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer programs or instructions are stored in the computer-readable storage medium, and when the instructions are executed, the method for executing the network device in any of the foregoing embodiments is performed. is implemented, or the method performed by the positioning management device in any of the foregoing embodiments is implemented, or the method performed by the terminal device in any of the foregoing embodiments is implemented.
  • the computer-readable storage medium may include: a USB flash drive, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication apparatus to implement the functions involved in the network equipment or terminal equipment in the foregoing method embodiments.
  • the chip is connected to a memory or the chip includes a memory for storing computer programs or instructions and data necessary for the communication device.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product.
  • it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSD)), and the like.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • a software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor may read information from, and store information in, the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium may be provided in the ASIC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法及装置,用于解决组播传输控制信令开销大的问题。该方法包括:接收基于组播的半持续调度SPS传输的第一组播数据;接收第一下行控制信息DCI,第一DCI由配置调度无线网络临时标识CS-RNTI加掩;根据第一DCI,接收第一数据,第一数据为第一组播数据的重传数据。

Description

数据传输方法及装置
相关申请的交叉引用
本申请要求在2021年04月04日提交中华人民共和国知识产权局、申请号为202110364242.9、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
在第4代(4th generation,4G)网络或者第5代(5th generation,4G)网络中,基站可以通过组播方式或者单播方式向终端发送数据。组播方式相较于单播方式能够节省下行资源。
目前,组播方式传输通常采用动态调度,如在每次发送物理下行共享信道(physical downlink shared channel,PDSCH)前,都需要发送下行控制信道(physical downlink control channel,PDCCH),用于调度PDSCH,该PDSCH上承载下行数据。该方式中,控制信令的开销较大,导致数据的传输效率低下。
发明内容
本申请实施例提供一种数据传输方法及装置,以期减少信令开销,提升数据传输效率。
第一方面,本申请实施例提供一种数据传输方法,包括:接收基于组播的半持续调度SPS传输的第一组播数据;接收第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩;根据所述第一DCI,接收第一数据,所述第一数据为所述第一组播数据的重传数据。
本申请实施例中,采用半持续调度进行组播数据传输,无需每次在发送组播数据前发送调度信息即DCI,能够减少控制信令的开销;且需对个别终端设备重传数据时,通过单播方式向该终端设备重传前述组播数据,而不是以组播方式调度数据的重传,能够进一步节省下行资源的占用,且提升数据的传输效率。
在一种可选的实现方式中,所述方法还包括:接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
在一种可选的实现方式中,所述方法还包括:接收由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。通过在DCI中定义用于指示半持续调度还是动态调度的方式,可以用G-RNTI实现动态的调度组播数据或者半持续的调度组播数据,拓展了G-RNTI的应用场景,节省了终端设备侧盲检的资源,同时也减少了在组播的下行数据调度时的控制信令开销。
在一种可选的实现方式中,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
在一种可选的实现方式中,所述第一DCI中的新数据指示NDI值为1;所述第二DCI中的新数据指示NDI值为0;所述第三DCI中的新数据指示NDI值为0。通过DCI中的NDI能够区分调度的是初传数据还是重传数据。
在一种可选的实现方式中,所述方法还包括:接收由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。可以理解的,第四DCI对应的G-RNTI与第三DCI对应的G-RNTI可以相同,也可以不同;类似的,第四DCI对应的G-CS-RNTI与第二DCI对应的G-CS-RNTI可以相同,也可以不同。
第二方面,本申请实施例提供一种数据传输方法,可以应用于网络设备,包括:
发送基于组播的半持续调度SPS传输的第一组播数据。可以理解的,通常,该第一组播数据是发给向多个终端设备的。向多个终端设备中的单个终端设备发送第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据;其中,单个终端设备指的是未成功接收第一组播数据的终端设备中的一个终端设备,或者单个终端设备指的是网络侧设备没有接收到针对该第一组播数据的肯定反馈的终端设备中的一个,或者单个终端设备指的是网络侧设备接收到针对该第一组播数据的否定反馈的终端设备中的一个。
本申请实施例中,采用半持续调度进行组播数据传输,无需每次在发送组播数据前发送调度信息即DCI,能够减少控制信令的开销;且需对个别终端设备重传数据时,通过单播方式向该终端设备重传前述组播数据,而不是以组播方式调度数据的重传,能够进一步节省下行资源的占用,且提升数据的传输效率。
在一种可选的实现方式中,所述方法还包括:发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
在一种可选的实现方式中,所述方法还包括:发送由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。通过在DCI中定义用于指示半持续调度还是动态调度的方式,可以用G-RNTI实现动态的调度组播数据或者半持续的调度组播数据,拓展了G-RNTI的应用场景,节省了终端设备侧盲检的资源,同时也减少了在组播的下行数据调度时的控制信令开销。
在一种可选的实现方式中,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
在一种可选的实现方式中,所述第一DCI中的新数据指示NDI值为1;所述第二DCI中的新数据指示NDI值为0;所述第三DCI中的新数据指示NDI值为0。通过DCI中的NDI能够区分调度的是初传数据还是重传数据。
在一种可选的实现方式中,所述方法还包括:发送由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所 述组播的半持续调度SPS传输。
第三方面,本申请实施例提供一种数据传输装置,包括:通信单元,用于接收基于组播的半持续调度SPS传输的第一组播数据;通信单元,还用于接收第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩;处理单元,用于根据所述第一DCI,通过所述通信单元接收第一数据,所述第一数据为所述第一组播数据的重传数据。可选的,通信单元接收第一DCI之前,处理单元,还用于确定对第一组播数据的接收失败,发送反馈信息如NACK,该反馈信息用于指示第一组播数据接收失败。
在一种可选的实现方式中,所述通信单元,还用于:接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
在一种可选的实现方式中,所述通信单元,还用于:接收由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
在一种可选的实现方式中,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
在一种可选的实现方式中,所述第一DCI中的新数据指示NDI值为1;所述第二DCI中的新数据指示NDI值为0;所述第三DCI中的新数据指示NDI值为0。
在一种可选的实现方式中,所述通信模块,还用于:接收由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
第四方面,本申请实施例提供一种数据传输装置,包括:处理单元,用于生成基于组播的半持续调度SPS传输的第一组播数据;通信单元,用于发送所述第一组播数据;所述通信单元,还用于发送第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据。
本申请实施例中,在组播传输时采用半持续调度,无需每次在发送组播数据前发送调度信息即DCI,能够减少控制信令的开销;且需对个别终端设备重传数据时,通过单播方式向该终端设备重传前述组播数据,而不是以组播方式调度数据的重传,能够进一步节省下行资源的占用,且提升数据的传输效率。
在一种可选的实现方式中,所述通信单元,还用于:发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
在一种可选的实现方式中,所述通信单元,还用于:发送由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
在一种可选的实现方式中,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
在一种可选的实现方式中,所述第一DCI中的新数据指示NDI值为1;所述第二DCI中的新数据指示NDI值为0;所述第三DCI中的新数据指示NDI值为0。
在一种可选的实现方式中,所述通信单元,还用于:发送由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
第五方面,本申请实施例提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述第一方面或第二方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第六方面,本申请实施例提供一种通信装置包括:逻辑电路和输入输出接口;输入输出接口,用于输入基于组播的半持续调度SPS传输的第一组播数据;输入输出接口,还用于输入第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩;逻辑电路,用于根据所述第一DCI,通过所述输入输出接口获取第一数据,所述第一数据为所述第一组播数据的重传数据。可选的,输入输出接口输入第一DCI之前,逻辑电路,还用于确定对第一组播数据的接收失败,输出反馈信息如NACK,该反馈信息用于指示第一组播数据接收失败。
第七方面,本申请实施例提供一种通信装置包括:逻辑电路和输入输出接口;逻辑电路,用于生成基于组播的半持续调度SPS传输的第一组播数据;输入输出接口,用于输出所述第一组播数据;所述输入输出接口,还用于输出第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据。
第八方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于上述第一方面或第二方面的各实现方法。
第九方面,本申请提供一种通信系统,包括:用于执行上述第一方面各实现方法的终端设备,和用于执行上述第二方面各实现方法的网络设备。
第十方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面或第二方面的各实现方法。
第十一方面,本申请还提供一种计算程序产品,包括计算机执行指令,当计算机执行指令在计算机上运行时,使得上述第一方面或第二方面的各实现方法被执行。
第十二方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当指令在计算机上运行时,实现上述第一方面或第二方面的各实现方法。
上述第五方面至第十方面可以达到的技术效果请参照上述第一方面至第二方面中相应技术方案可以带来的技术效果,此处不再重复赘述。
附图说明
图1为本申请实施例提供的一种通信系统架构示意图;
图2为本申请实施例提供的一种基于组播的SPS传输的数据调度示意图;
图3为本申请实施例提供的一种单播的重传调度机制示意图;
图4为本申请实施例提供的一种去激活组播的SPS传输示意图;
图5为本申请实施例提供的另一种基于组播的SPS传输的数据调度示意图;
图6为本申请实施例提供的另一种去激活组播的SPS传输示意图;
图7为本申请实施例提供的一种数据传输方法的流程示意图;
图8为本申请实施例提供的一种数据传输装置的结构示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请实施例提供的通信方法和装置可应用于各种通信系统,尤其是通信感知一体化(harmonized communication and sensing,HCS)的系统。该系统中的通信包括但不限于:长期演进(long term evolution,LTE)系统,5G系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的其它无线通信系统,或未来可能出现的无线通信系统等。
以下对本申请实施例中提供的部分用语进行解释说明,方便本领域技术人员理解:
(1)网络设备
网络设备可以和终端设备通信,为终端设备提供无线接入服务。网络设备也可以称作基站设备,或称作基站。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例如下涉及到的网络设备可以是NR中的基站,其中,5G NR中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(next generation Node B,gNB);本申请实施例如下涉及到的网络设备也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(nodeB,NB);本申请实施例如下涉及到的网络设备还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional Node B,eNB或eNodeB)。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是具有基站部分功能的网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
(2)终端设备
终端设备也可以称作用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、移动终端、终端、无线通信设备、终端代理或终端装置等。示例性的,终端设备包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备,5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。示例性地,终端设备可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端,如智能加油器,高铁上的终端设备、智慧家庭(smart home)中的无线终端,如智能音响、智能咖啡机、智能打印机等等。
本申请实施例中,用于实现终端设备功能的通信装置可以是终端设备,也可以是具有终端部分功能的终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。
(3)下行控制信道、下行数据信道
下行传输过程中,网络设备向终端设备发送的信号也称为下行信号,下行信号包括下行控制信号和下行数据信号。本申请实施例中的下行控制信道用于指代下行控制信号,即下行控制信道也可以被理解为下行控制信号,下行控制信道可以是物理下行控制信道(physical downlink control channel,PDCCH)。本申请实施例中的下行数据信道用于指代下行数据信号,即下行数据信道也可以被理解为下行数据信号,下行数据信道可以是物理下行共享信道(physical downlink shared channel,PDSCH)。
下行控制信道可以用于调度下行数据信道,例如PDCCH用于传递PDSCH相关的调度和配置信息,PDSCH中承载着下行数据,PDCCH中承载着下行控制信息(downlink control information,DCI),DCI用于指示PDSCH的配置信息(例如,时间/频率位置、调制信息等),DCI还可用于指示该DCI调度的PDSCH对应的反馈信息所占的时域资源的指示信息。其中,基于混合自动重传请求(hybrid automatic repeat request,HARQ)机制,反馈信息包括确认(acknowledge,ACK)信息或者否认(negative acknowledge,NACK)信息,表示终端设备是否成功接收下行数据,ACK也可以被称为HARQ-ACK,NACK也可以被称为HARQ-NACK。具体的,终端设备在接收下行数据之后,如果接收正确,则会在上行控制信道(physical uplink control channel,PUCCH)上反馈ACK信息,如果不正确,则在PUCCH上反馈NACK信息。
此外,DCI分为fallback DCI和non fallback DCI;其中,fallback DCI即格式0_0、1_0的DCI,non fallback DCI即格式0_1/0_2、1_1/1_2的DCI。格式0_0/0_1/0_2的DCI用于调度上行传输,格式1_0/1_1/1_2的DCI用于调度下行传输。
(4)单播、组播
单播传输方式为一对一的数据传输方式,在本申请实施例中,单播指的是网络设备向单个终端设备发送下行信号,如单播数据。
组播传输方式为一对多的数据传输方式,本申请实施例中,组播指的是网络设备向一组终端设备发送相同的下行信号,例如组播数据,这一组终端设备均可获取到该组播数据。其中,一组终端设备包括多个终端设备。可选的,一组终端设备可以位于同一小区。可以理解的,组播传输方式中,一组终端设备可以共享资源,网络设备在该资源上发送的下行信号可以被一组终端设备接收,相比单播传输方式,可以节省传输下行信号的资源。
可以理解的,本申请实施例中的组播,可以包括组播,也可以包括广播,不对此进行限制。
(5)动态调度
动态调度指的是网络设备在每次发送PDSCH之前,都需要发送一个用于调度本次PDSCH的PDCCH。基于动态调度的PDSCH,也可被称作正常调度的PDSCH,可以理解,正常调度的PDSCH都是有调度信息的PDSCH。动态调度可用于组播或者单播传输场景中。
可选的,对于单播的动态调度,网络设备给一个终端设备分配一个小区无线网络标识(cell-radio network temporary identifier,C-RNTI),网络设备在每次通过单播方式向多个终端设备发送PDSCH前发送由每个终端设备的C-RNTI加掩的DCI,各终端设备可根据各 自的C-RNTI盲检PDCCH,进而接收下行数据。此外需要说明的是,C-RNTI用于标识单播的动态调度,可以是网络设备针对单个终端设备配置的。当然,C-RNTI也可以是其它的标识,只要其可用于标识单播的动态调度即可,本申请实施例对此不进行限制。
可选的,对于组播的动态调度,网络设备给多个终端设备分配相同的组无线网络标识(group-radio network temporary identifier,G-RNTI),网络设备在每次通过组播方式向多个终端设备发送PDSCH前发送由该G-RNTI加掩的DCI,各终端设备可根据该G-RNTI盲检PDCCH,进而接收相同的PDSCH,或者也可以理解为接收PDSCH承载的下行数据。此外需要说明的是,G-RNTI用于标识组播/广播调度,可以是网络设备针对一组终端设备配置的。当然,G-RNTI也可以是其它的标识,诸如M-RNTI,只要其可用于标识组播/广播调度即可,本申请实施例对此不进行限制。
(6)半持续调度(semi-persistent scheduling,SPS)
半持续调度SPS指的是终端设备可基于网络设备指示的半持续调度配置,周期性的接收PDSCH,半持续调度或可称为半静态调度。网络设备在第一次向终端设备发送PDSCH前,先给终端设备发送一个激活PDCCH(或称,激活DCI),这个激活PDCCH用于激活相应SPS配置。激活PDCCH还用于指示该激活PDCCH调度的下行数据所占的下行时域资源。具体的,前述所占的下行时域资源可以包括调度的下行数据所在的下行时隙,以及在该下行时隙内下行数据所在的开始符号S和长度L。后续终端设备可基于激活的SPS配置来接收网络设备发送的PDSCH。可以理解对于半持续调度方式,网络设备第一次发送的PDSCH由激活PDCCH调度,网络设备后续发送的PDSCH无需其它的PDCCH调度,均基于该激活PDCCH。或者也可以理解,第一次网络设备发送的PDSCH可以称为有调度信息的PDSCH,后续网络设备发送的PDSCH均是无调度信息的PDSCH。
网络设备可以为终端设备配置一套或者多套SPS配置,诸如最多配置8套SPS配置。每套SPS配置中的参数可以相同也可以不相同,每套SPS配置中包含的参数可以包括以下至少一个:该套SPS配置对应的索引(index,ID);SPS传输周期;物理上行控制信道(physical uplink control channel,PUCCH)资源的配置信息;调制编码方案表(MCS-table),其中MCS指的是modulation and coding scheme;用于确定混合自动重传请求(hybrid automatic repeat request,HARQ)进程(proccess)的信息。
其中,PUCCH资源的配置信息用于配置承载反馈信息的PUCCH资源在一个时隙内占用的符号,PUCCH资源的配置信息包括PUCCH格式0或者PUCCH格式1,表示PUCCH资源可容纳反馈信息的长度是1比特或者2比特,需要说明的是,若网络设备给终端设备配置了一套SPS配置,则终端设备可基于该SPS配置中指示的PUCCH资源进行反馈;若网络设备给终端设备配置了多套SPS配置,则终端设备需从SPS的PUCCH资源集合中确定用于承载反馈信息的PUCCH资源,前述SPS的PUCCH资源集合是在高层配置的PUCCH-config中配置的。
调制编码方案表用于指示调度的PDSCH所采用的调制编码方案,具体可以采用MCS索引表示。
前述用于确定HARQ进程的信息包括SPS可用的HARQ进程的数量和配置的偏移量,具体的HARQ进程ID可通过如下方式确定:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;
其中,CURRENT_slot=[(SFN×numberOfSlotsPerFrame)+slot number in the frame]
SFN表示系统帧号(system frame number),numberOfSlotsPerFrame为每个子帧中的时隙数,slot number in the frame表示当前时隙的索引,periodicity为所述调度周期,nrofHARQ-Processes为所述SPS可用的HARQ进程的数量,harq-ProcID-Offset为所述配置的偏移量。
可以理解,这里的HARQ进程ID用于标识当SPS配置激活后,终端设备接收基于SPS传输的PDSCH所用的HARQ进程。
基于半持续调度,网络设备无需每次发送下行数据之前发送用于调度的PDCCH,相较于动态调度的方式能够减少控制信令的开销。相关技术方案中涉及半持续调度应用于单播场景中,如网络设备在第一次向单个终端设备发送下行数据之前,发送一个激活DCI,终端设备在PDCCH盲检该激活DCI,进而基于该激活DCI所指示的下行时域资源,接收网络设备第一次发送的下行数据。网络设备在后续发送下行数据,不再发送DCI进行调度,终端设备基于激活的SPS配置接收下行数据。但缺乏针对半持续调度应用于组播场景的设计。考虑到组播方式能够节省下行资源,而组播的动态调度会增加控制信令的开销,本申请实施例提供组播的半持续调度的实现方案,该方案将在后续内容中详细描述。
(7)加掩
本申请实施例中的加掩(scrambled),指的是PDCCH中承载的DCI对应的CRC校验比特使用特定的RNTI加掩,为了描述方便,一个DCI被使用特定RNTI加掩后,简称为该RNTI加掩的DCI,由于DCI在PDCCH中承载,因此,也可以称为该RNTI加掩的PDCCH。比如,C-RNTI加掩的DCI,G-RNTI加掩的DCI等。
(8)盲检
本申请实施例中的盲检,指的是终端设备使用特定的RNTI对PDCCH进行盲检,以尝试接收可能的DCI。为了描述方便,也可以称为终端设备使用特定的RNTI对DCI进行盲检,或者称为终端设备在PDCCH使用特定的RNTI对DCI进行盲检等。比如终端设备使用C-RNTI对PDCCH(DCI)进行盲检等。
(9)本申请实施例中涉及的多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本申请实施例中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
(10)本申请实施例的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
鉴于组播的动态调度存在控制信令开销较大的问题,本申请实施例提供了一种数据传输方法,通过实现组播的半持续调度的方案,在节省下行资源的同时,能够减少控制信令 开销,提升数据的传输效率。
参阅图1示意的通信系统,本申请实施例提供的数据传输方法可以应用于该通信系统。该通信系统包括至少一个终端设备和至少一个网络设备。示例性的,图1示意出了一个网络设备,以及6个终端设备,如UE1、UE2、UE3、UE4、UE5、UE6。
网络设备可以通过组播的方式指示多个终端设备激活半持续调度配置,或者可以理解为网络设备指示多个终端设备激活组播的半持续调度SPS传输,进而通过组播的方式向多个终端设备发送基于组播的半持续调度传输的下行数据,该下行数据可以简称为组SPS PDSCH;各个终端设备可以接收基于组播的半持续调度传输的前述组SPS PDSCH,以及向网络设备发送组SPS PDSCH对应的反馈信息。网络设备可以接收各终端设备发送的组SPS PDSCH对应的反馈信息,该反馈信息可以是ACK或者NACK。网络设备基于各终端设备发送反馈信息确定是否需要重传前述组SPS PDSCH。此外,网络设备还可以通过组播的方式指示多个终端设备对于半持续调度配置进行去激活,或者可以理解为网络设备指示多个终端设备对组播的半持续调度SPS传输进行去激活。
本申请实施例提供的数据传输方法可以应用于如下通信业务:增强型移动宽带(enhanced mobile broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC)和超可靠低延迟通信(ultra-reliable and low-latency communication,URLLC)。示例性的,可应用于URLLC业务的无人驾驶、远程医疗等场景,在满足高可靠性及低时延要求下,尽可能减小指令开销。
本申请实施例提供的数据传输方法可以包括如下至少一个流程:组播的半持续调度传输的激活、组播的半持续调度传输的去激活、与组播的半持续调度传输相关的数据重传。例如数据传输方法包括组播的半持续调度传输的激活以及组播的半持续调度传输的去激活;又例如数据传输方法包括组播的半持续调度传输的激活以及与组播的半持续调度传输相关的数据重传;又例如数据传输方法包括组播的半持续调度传输的激活、与组播的半持续调度传输相关的数据重传以及组播的半持续调度传输的去激活。下面结合方案一、方案二对上述流程作进一步地详细描述,需要说明的是,方案一与方案二之间可以相互结合实施,也可以独立的实施。
在下面方法中,网络设备的步骤可以由组成网络设备的不同功能实体来实现,换言之,执行网络设备的步骤的功能实体可以位于不同的物理实体。比如网络设备发送或接收的动作可以位于网络设备的射频单元(radio frequency,RF),或者射频拉远单元(radio remote unit,RRU)或者有源天线处理单元(active antenna unit,AAU)。网络设备处理的动作可以位于网络设备的中心单元CU等。本申请对此不作限制。
方案一:
A1,组播的半持续调度传输的激活
网络设备可以为多个终端设备配置相同的组配置调度无线网络临时标识(group-configured scheduling-radio network temporary identifier,G-CS-RNTI)。网络设备在第一次向多个终端设备发送相同的下行数据(即前述组SPS PDSCH)之前,发送一个由该G-CS-RNTI加掩的DCI。终端设备在PDCCH盲检由该G-CS-RNTI加掩的DCI,进而基于该G-CS-RNTI加掩的DCI激活组播的半持续调度SPS传输,接收网络设备第一次发送的组SPS PDSCH。需要说明的是,G-CS-RNTI用于标识组播的半持续调度,也可以用于标识基于组播的半持续调度的重传调度,可以是网络设备针对一组终端设备配置的。当然, G-CS-RNTI也可以替换成其它的标识,只要其可用于标识组播的半持续调度或者基于组播的半持续调度的重传调度即可,本申请实施例对此不进行限制。
可选的,由G-CS-RNTI加掩的用于激活组播的半持续调度SPS传输的DCI可以简称为激活DCI,以下对网络设备所发送的由G-CS-RNTI加掩的DCI包含的内容进行详细说明。
可选的,该网络设备所发送的由G-CS-RNTI加掩的DCI中包括用于标识该DCI为激活DCI的信息,例如在DCI中包括Redundancy Version域,且Redundancy Version域为全0标识该DCI为激活DCI。则终端设备根据G-CS-RNTI接收一个DCI,若接收到的DCI中包括用于标识该DCI为前述激活DCI的信息,则终端设备得知所接收的DCI为激活DCI,用于激活组播的半持续调度SPS传输。
可选的,该网络设备所发送的由G-CS-RNTI加掩的DCI可以指示如下至少一个时间参数:组SPS PDSCH所在的时隙;该时隙内组SPS PDSCH所在的开始符号S和长度L;该组SPS PDSCH对应的反馈信息所在的时隙。示例性的,DCI中可包括指示该DCI调度的数据在时域上所占的资源的比特域:时域资源分配(Time domain resource assignment)域,该时域资源分配域所占比特数的取值范围为[0,4]。可选的,该网络设备所发送的由G-CS-RNTI加掩的DCI还可以包括指示该DCI调度的数据在频域上所占的资源的比特域:频域资源分配(Frequency domain resource assignment)域。可选的,该网络设备所发送的由G-CS-RNTI加掩的DCI还可以包括指示该DCI调度的数据的调制编码方案的比特域:调制编码方案(Modulation and coding scheme,MCS)域。
可选的,指示组SPS PDSCH所在的时隙,以及S、L的方式为:PDCCH中承载的前述由G-CS-RNTI加掩的DCI指示一个时域资源表格中的一行,该时域资源表格可以是协议预定义的表格或者是高层信令配置的表格。该表格中包含多行,每一行包含:参数K0、参数S和L;其中,K0用于指示PDCCH所在的时隙和PDSCH所在的时隙之间间隔的时隙个数;S和L可以联合编码为一个参数:起始符号以及长度(start and length indicator value,SLIV),或者是分别的2个独立参数,以(S,L)表示。示例性的,表1示意了一个时域资源表格。DCI中可具体包括一个指示行索引(index)的比特域,可占用2比特(bits),例如DCI包括的索引1,则表示该DCI指示K0为1,(S,L)为(1,2),也就是表示若终端设备在第n个时隙接收到前述由G-CS-RNTI加掩的DCI,则可在第n+1个时隙中接收该DCI调度的组SPS PDSCH,具体在第n+1个时隙中的符号1和符号2接收该DCI调度的组SPS PDSCH。
表1
索引(Index) K0 (S,L)
0 1 (2,4)
1 1 (1,2)
2 2 (3,4)
3 2 (0,7)
可选的,指示该组SPS PDSCH对应的反馈信息所在的时隙的方法为:在DCI中包含一个指示信息,具体可以采用PDSCH-to-HARQ_feedback timing indicator比特域表示前述 指示信息,该比特域可以占用的比特数范围为[0,3],该指比特域用于指示终端设备在接收到组SPS PDSCH之后,在哪个时刻进行反馈即发送对应的反馈信息。可选的,该指示信息可以是K1集合中一个K1的值,K1集合(比如dl-DataToUL-ACK字段)可以为高层信令配置的集合,K1的值表示组SPS PDSCH所在的时隙和对应的反馈信息间隔的时隙个数。假设组SPS PDSCH在第n+1个时隙,则该组SPS PDSCH对应的反馈信息在第n+1+K1个时隙。示例性的,K1的值可以为4,反馈信息具体为ACK信息或者NACK信息。所述时隙也可以为子时隙。
对于终端设备来说,基于前述DCI的指示,确定组SPS PDSCH的反馈时隙之后,还要确定反馈信息具体可占用的反馈资源,终端设备确定反馈资源的方式可参照如下方式实施:
终端设备首先确定在反馈时隙需要反馈的组SPS PDSCH对应的反馈信息的比特数,如将所有要在反馈时隙进行反馈的组SPS PDSCH的反馈信息的比特数之和作为反馈信息的比特数,然后在网络设备预先配置的半持续调度的PUCCH资源集合中,根据反馈信息的比特数选择一个PUCCH资源,来发送该组SPS PDSCH的反馈信息。
示例性的,假设网络设备为终端设备配置了4个PUCCH资源,如果反馈信息比特数小于等于2,则用第一个PUCCH资源发送组SPS PDSCH的反馈信息;如果比特数在3到N1,则用第二个PUCCH资源;如果反馈比特数在N1到N2之间,则用第3个PUCCH资源,如果反馈比特数在N2到N3之间,则用第4个PUCCH资源,其中N1小于N2且大于2,N2小于N3;N1,N2,N3也是网络设备发送配置信息(比如在高层信令中)指示的,如果没有指示,则默认取1706。
可选的,上述由G-CS-RNTI加掩的DCI中还可以包括指示该DCI用于激活哪个半持续调度SPS配置的信息。示例性的,若网络设备为终端设备配置了多个SPS配置,具体可以采用DCI中的HARQ进程号(HARQ process number,HPN)比特域指示前述激活的半持续调度SPS配置,该比特域可以占用的比特数范围为[0,4]。终端设备可以通过HARQ process number的取值确定激活组播的半持续调度SPS传输,具体对应激活前述多个SPS配置中的第几个。或者,若网络设备为终端设备配置了1个SPS配置,则该DCI中的HARQ process number,通过HARQ process number的取值默认为0。
可选的,上述由G-CS-RNTI加掩的DCI中还可以包括指示该DCI所调度的组SPS PDSCH为初传数据的信息。示例性的,该DCI中可包含1个比特域,该比特域记作新数据指示(new data indicator,NDI),以NDI的取值为0表示DCI调度的组SPS PDSCH是初传数据。
进一步网络设备在后续发送组SPS PDSCH,无需先发送DCI进行调度,终端设备基于激活的SPS配置接收组SPS PDSCH。参见图2,网络设备在时间单元2第一次发送组SPS PDSCH之前的时间单元1,发送由G-CS-RNTI加掩的DCI对组SPS PDSCH进行调度,该DCI用于激活组播的半静态SPS传输;可选的,该DCI包含用于指示半持续调度SPS配置的信息,该DCI具体用于激活SPS配置。在后续的时间单元中网络设备发送组SPS PDSCH无需再发送其它DCI,终端设备可基于前述激活的SPS配置接收后续的组SPS PDSCH。示例性的,图2示意出了后续终端设备周期性的在时间单元3-6接收组SPS PDSCH,而无需接收DCI。
需要说明的是,这里的时间单元指的是SPS调度的时间单元,是时域概念。时间单元 可以以帧,子帧,时隙和符号为单位。示例性的,如在5G NR系统中,采用15kHz的子载波间隔,一个时隙的时间长度为1ms。在采用扩展循环前缀的情况下,一个时隙包括12个符号;在采用普通循环前缀的情况下,一个时隙包括14个符号。这里的符号,或称时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。可以理解的,图2中的时间单元1-6,并不意味着是连续的时间单元,比如,时间单元2-6之间,相邻的两个时间单元都是间隔一个SPS周期。
可选的,终端设备可以按照高层配置的SPS传输周期P,可以确定后续的组SPS PDSCH的所在时隙位置。例如,若SPS传输周期P为1ms,且1个时隙(slot)的时域持续时间为1ms,第一次的组SPS PDSCH在第n+1个时隙中的符号1和符号2,则在激活组播的SPS的情况下,组SPS PDSCH所在的位置为从第n+1时隙开始,占用每个时隙的符号1和符号2,x为大于1的整数。可以理解,图2中示意的时间单元可以指代时隙,则作为示例,图2示意出了G-CS-RNTI加掩的DCI所在的时间单元1即为第n个时隙,组SPS PDSCH所在的位置为从第n+1时隙开始,即从时间单元2开始,时间单元3、时间单元4等的每个时间单元。此外,前述调度周期P也可以是其它值,取决于高层配置。如若高层配置的SPS传输周期P为2ms,第一次的组SPS PDSCH在第n+1个时隙中的符号1和符号2,则在激活组播的SPS的情况下,组SPS PDSCH所在的位置为从第n+1时隙开始,每隔一个时隙占用时隙内的符号1和符号2,即组SPS PDSCH所在的位置为第n+1+x*2的时隙,其中x为大于或者等于0的整数。可以理解,该示例中,假设一个时间单元的持续时间为1ms,SPS调度周期为1ms,就对应1个时间单元,即每一个时间单元中都传输SPS PDSCH;SPS调度周期为2ms,就对应2个时间单元,即间隔一个时间单元传输SPS PDSCH。
其中,前述高层,可以理解为高层协议层,包括物理层以上的至少一个协议层:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入(non access stratum,NAS)层。相应的,本申请各实施例中,高层信令可以是NAS层信令,RRC消息或媒体接入控制(media access control,MAC)控制元素(control element,CE),RRC消息可以包括专用RRC消息,或者广播多播的RRC消息,本申请实施例不作限制。
A2,与组播的半持续调度传输相关的数据重传
关于组SPS PDSCH的重传,可以分以下三种情况实施:
情况一:若存在较多终端设备的组SPS PDSCH的反馈信息均为NACK信息,即存在较多终端设备未成功接收组SPS PDSCH,网络设备可以通过组播方式发送前述组SPS PDSCH的重传数据,或称为对前述组SPS PDSCH进行重传。
其中,可以设定数量阈值,若一组终端设备中,存在大于等于设定的数量阈值的终端设备未成功接收到网络设备发送的组SPS PDSCH,均向网络设备反馈了NACK信息,则网络设备可确定存在较多的终端设备未成功接收组SPS PDSCH。示例性的,例如一组终端设备包括6个终端设备,设定数量阈值可以为3,当存在3以及3个以上的终端设备发送给网络设备的反馈信息为NACK信息时,网络设备可以通过组播方式发送未接收成功的组SPS PDSCH的重传数据。
示例性的,网络设备可在收到多个终端设备发送的NACK信息后,以组播方式向该多个终端设备发送一个由G-CS-RNTI加掩的DCI,这里的DCI用于调度重传数据,所述重传数据可能是用于前述激活的组播SPS传输的多个SPS PDSCH中一个SPS PDSCH的重传数据。该DCI包括NDI,NDI的取值为1表示该DCI调度的PDSCH是重传数据。该DCI还可以包括HPN,指示重传所占用的HARQ进程,可选的该HPN指示的重传所占用的HARQ进程与根据激活的SPS配置计算得出的HARQ进程相同。即终端设备接收由G-CS-RNTI加掩的DCI,根据DCI中取值为1的NDI可知该DCI调度的是重传数据,且可根据该DCI中的HPN得知接收重传数据所占用的HARQ进程,便于重传数据的软合并(soft combination)。
情况二:若存在较少终端设备的组SPS PDSCH的反馈信息均为NACK信息,即存在较少终端设备未成功接收组SPS PDSCH,网络设备可以通过单播方式向未成功接收组SPS PDSCH的终端设备,单独的发送前述组SPS PDSCH的重传数据。
其中,可以设定数量阈值,若一组接收终端设备中,存在小于设定的数量阈值的终端设备未成功接收到网络设备发送的组SPS PDSCH,向网络设备反馈了NACK信息,则网络设备可确定存在较少的终端设备未成功接收组SPS PDSCH。示例性的,例如一组终端设备包括6个终端设备,设定数量阈值可以为3,当存在1个或者2个的终端设备发送给网络设备的反馈信息为NACK信息时,网络设备可以通过单播方式发送未接收成功的组SPS PDSCH的重传数据。
情况三:网络设备配置或通知终端设备的重传调度方式,具体的,一组终端设备中,网络设备配置或通知某些终端设备的重传调度方式是基于单播的,配置或通知某些终端设备的重传调度方式是基于组播的。若重传调度方式被配置或通知为基于单播的,终端设备未成功接收到网络设备发送的组SPS PDSCH,向网络设备反馈了NACK信息,则网络设备通过基于单播的重传调度,给该终端设备传输组SPS PDSCH的重传数据。若重传调度方式被配置或通知为基于组播的,终端设备未成功接收到网络设备发送的组SPS PDSCH,向网络设备反馈了NACK信息,则网络设备通过基于组播的重传调度,给该终端设备传输组SPS PDSCH的重传数据。示例性的,例如一组终端设备包括6个终端设备,终端设备#1被配置了基于单播的重传调度,终端设备#2~#6被配置了基于组播的重传调度,若终端设备#1发送给网络设备的反馈信息为NACK信息时,网络设备可以通过单播方式发送未接收成功的组SPS PDSCH的重传数据给终端设备#1。若终端设备#2~#6中的任意一个发送给网络设备的反馈信息为NACK信息时,网络设备通过组播方式发送为未接收成功的组SPS PDSCH的重传数据给终端设备#2~6。
可选的,网络设备可在收到终端设备发送的NACK信息后,向该终端设备发送由配置调度无线网络标识(configured scheduling network temporary identifier,CS-RNTI)加掩的DCI。该DCI用于调度重传数据,该DCI包括NDI,NDI的取值为1表示该DCI调度的组SPS PDSCH是重传数据。这里的DCI包括指示重传所占用的HARQ进程的HPN字段,可选的该HPN指示重传所占用的HARQ进程与根据激活的SPS配置计算得到的HARQ进程相同。即终端设备在接收由CS-RNTI加掩的DCI,可根据DCI中取值为1的NDI可知该DCI调度的是重传数据,进而根据该DCI中的HPN得知接收重传数据所占用的HARQ进程,便于重传数据的软合并。需要说明的是,本申请实施例中CS-RNTI用于标识单播传输,可以是网络设备针对单个终端设备配置的。当然,CS-RNTI也可以替换为其它的标识,只 要其可用于标识单播传输即可,本申请实施例对此不进行限制。可以理解的,如果终端设备1和终端设备2发送了NACK,则网络设备分别向这两个终端设备发送DCI,比如使用终端设备1的CS-RNTI加掩的DCI发送给终端设备1,并以单播方式向终端设备1重传前述SPS PDSCH,使用终端设备2的CS-RNTI加掩的DCI发送给终端设备2,并以单播方式向终端设备2重传前述SPS PDSCH。
示例性的参见图3,示意出了前述单播的重传调度机制。假设单个终端设备在时间单元1中未成功接收网络设备发送的组SPS PDSCH,则根据前述激活阶段A1中由G-CS-RNTI加掩的DCI中的PDSCH-to-HARQ_feedback timing indicator,确定反馈信息的反馈时间单元为时间单元2,则在时间单元2在PUCCH上向网络设备发送NACK信息。网络设备接收到PUCCH后确定终端设备反馈了NACK,则网络设备通过单播的方式向该终端设备发送一个组SPS PDSCH的重传数据。具体的,网络设备在时间单元3中向终端设备发送由CS-RNTI加掩的DCI,终端设备在PDCCH盲检到前述由CS-RNTI加掩的DCI,该DCI中的HPN指示的HARQ进程与根据激活的SPS配置计算得到的HARQ进程相同,例如均为HARQ进程:N。该DCI中的NDI的值为1,则终端设备知道该由CS-RNTI加掩的DCI调度的是重传数据,该重传数据为前述SPS PDSCH的重传数据,则终端设备收到该组SPS PDSCH的重传数据可以与初传的组SPS PDSCH中的数据进行软合并。
本申请实施例中,网络设备可通过CS-RNTI加掩的DCI对组播的SPS数据进行重传调度,即将组SPS PDSCH的重传数据以单播的方式发送给单个终端设备,这种方式不引入新的RNTI,能够节省终端设备盲检DCI所用的资源。
A3,组播的半持续调度传输的去激活
网络设备可以向多个终端设备发送一个由G-CS-RNTI加掩的去激活DCI,该去激活DCI中的Redundancy Version域为全0,调制编码方案(Modulation and coding scheme)域为全1,频域资源分配(Frequency domain resource assignment)域为全1(即,Type1)或者全0(即,Type0)。终端设备根据该去激活DCI中的前述信息,则可知道该去激活DCI用于去激活组播的半持续调度SPS传输。该去激活DCI中还包括其它信息如HPN。该HPN的取值可与激活阶段(A1)中DCI内的HPN取值相同。终端设备可以基于去激活DCI中的HPN,去激活该HPN所指示的SPS配置,在后续的时间单元中不再接收去激活的SPS配置的组SPS PDSCH。示例性的,如图4示意出网络设备在时间单元1中发送由G-CS-RNTI加掩的去激活DCI,则终端设备在PDCCH上盲检去激活DCI,根据去激活DCI中的HPN,确定不再接收该HPN对应SPS配置的组SPS PDSCH,图4具体以“×”表示不再接收时间单元2-6上的组SPS PDSCH,或者可以理解网络设备也不再在时间单元2-6上发送组SPS PDSCH。
需要说明的是,方案一可以包括以上A1~A3阶段中的一个或多个阶段,且A1~A3阶段的执行顺序可以基于实际需求确定,本申请实施例对此并不进行限制。
方案二:
可在DCI中包括用于指示动态调度传输还是半持续调度SPS传输的指示信息。将该DCI与组无线网络临时标识(group-radio network temporary identifier,G-RNTI)联合指示组播的动态调度或者组播的半持续调度。需要说明的是,G-RNTI用于标识组播传输,可以是网络设备针对一组终端设备配置的。当然,G-RNTI也可以替换为其它的标识,只要 其可用于标识组播传输即可,本申请实施例对此不进行限制。
一种可选的实施方式中,该DCI中可包括用于指示动态调度或者半持续调度SPS的目标比特域,该目标比特域可占1比特,该目标比特域取值为0时,表示该DCI指示的是动态调度;该目标比特域取值为1时,表示该DCI指示的是半持续调度SPS。或者反之,该目标比特域取值为1时,表示该DCI指示的是动态调度;该目标比特域取值为0时,表示该DCI指示的是半持续调度SPS。
另一种可选的实施方式中,考虑到组播的动态调度或者组播的半持续调度均是下行通信,故当DCI与G-RNTI联合指示组播的动态调度或者组播的半持续调度时,可变更传统DCI格式中的Identifier for DCI formats域的描述,以Identifier for DCI formats域的取值来区分组播的动态调度还是组播的半持续调度。例如若DCI中Identifier for DCI formats域的取值为0时,表示该DCI指示的是动态调度;该若DCI中Identifier for DCI formats域的取值为1时,表示该DCI指示的是半持续调度SPS。或者反之,若DCI中Identifier for DCI formats域的取值为1时,表示该DCI指示的是动态调度;该若DCI中Identifier for DCI formats域的取值为0时,表示该DCI指示的是半持续调度SPS。
可选的,基于前述G-RNTI和DCI联合指示的方式,组播的半持续调度的激活、与组播的半持续调度相关的重传以及组播的半持续调度的去激活,可参照如下B1~B3中的方式实施。
B1,组播的半持续调度传输的激活
网络设备可以为多个终端设备配置相同的组无线网络临时标识(group-radio network temporary identifier,G-RNTI)。网络设备在第一次向多个终端设备发送相同的下行数据(即组SPS PDSCH)之前,发送一个由该G-RNTI加掩的DCI,该DCI包含用于指示组播的半持续调度传输的信息,例如前述目标比特域。终端设备在PDCCH盲检由该G-RNTI加掩的DCI,确定该DCI中包含用于指示SPS配置的信息,则可基于该G-CS-RNTI加掩的DCI激活组播的SPS配置,接收网络设备第一次发送的组SPS PDSCH。
可选的,由G-RNTI加掩的用于激活的DCI也可以被理解为激活DCI,以下对网络设备所发送的由G-RNTI加掩的DCI包含的其它内容可参照A1中由G-CS-RNTI加掩的DCI包含的内容的描述,本申请实施例对此不再进行赘述。
进一步,网络设备在后续发送组SPS PDSCH,无需先发送DCI进行调度,终端设备基于激活的SPS配置接收组SPS PDSCH。参见图5,网络设备在时间单元2第一次发送组SPS PDSCH之前的时间单元1,发送由G-RNTI加掩的DCI对组SPS PDSCH进行调度,该DCI用于激活组播的半静态SPS传输;可选的,该DCI包含用于指示半持续调度SPS配置的信息,该DCI具体用于激活SPS配置。在后续的时间单元中网络设备发送组SPS PDSCH无需再发送其它的DCI,终端设备可基于前述激活的SPS配置接收后续的组SPS PDSCH。示例性的,图5示意出了后续终端设备周期性的在时间单元3-5接收组SPS PDSCH,而无需接收其它的DCI。
此外,网络设备还可以在进行组播的半持续调度的同时,进行组播的动态调度。如图5还示意出了网络设备在时间单元2第一次发送基于组播的动态调度传输的数据,例如动态调度的PDSCH(Dynamic scheduling PDSCH,DYN PDSCH)之前的时间单元1,发送由G-RNTI加掩的DCI对DYN PDSCH进行调度,这里的DCI包括用于指示动态调度的信息。则终端设备在时间单元1中PDCCH上可盲检到由G-RNTI两个DCI,为加以区分图5 以DCI-1和DCI-2进行表示,其中,DCI-1调度的是时间单元2中的DYN PDSCH。DCI-2调度的是时间单元2及后续时间单元中的组SPS PDSCH,以前述目标比特取值为0表示动态调度,目标比特取值为1表示半持续调度为例,则DCI-1中的目标比特取值为0,DCI-2中的目标比特取值为1。
B2,与组播的半持续调度传输相关的数据重传
关于组SPS PDSCH的重传,可以分以下三种情况实施:
情况一:若存在较多终端设备的组SPS PDSCH的反馈信息均为NACK信息,即存在较多终端设备未成功接收组SPS PDSCH,网络设备可以通过组播方式发送前述组SPS PDSCH的重传数据。
可选的,网络设备可以基于G-RNTI加掩的DCI调度前述组SPS PDSCH的重传数据,具体的实施方式可参照A2情况一中的方案执行,本申请实施例对此不再进行赘述。
情况二:若存在较少终端设备的组SPS PDSCH的反馈信息均为NACK信息,即存在较少终端设备未成功接收组SPS PDSCH,网络设备可以通过单播方式向未成功接收组SPS PDSCH的终端设备,单独的发送前述组SPS PDSCH的重传数据。
可选的,网络设备可以基于CS-RNTI加掩的DCI调度前述组SPS PDSCH的重传数据,具体的实施方式可参照A2情况二中的方案执行,本申请实施例对此不再进行赘述。
情况三:若重传调度方式被配置或被通知为基于单播的终端设备未成功接收组SPS PDSCH,发送的反馈信息为NACK,网络设备向重传方式被配置或被通知为基于单播的终端设备,通过基于单播的调度方式发送前述组SPS PDSCH的重传数据;若重传调度方式被配置或被通知为基于组播的终端设备为成功接收组SPS PDSCH,发送的反馈信息为NACK,网络设备向重传方式被配置或被通知为基于组播的终端设备,通过基于组播的调度方式发送前述组SPS PDSCH的重传数据。
可选的,网络设备可以基于CS-RNTI加掩的DCI调度前述组SPS PDSCH的重传数据给重传调度方式被配置为单播的终端设备,可以基于G-RNTI或G-CS-RNTI加掩的DCI调度前述组播SPS PDSCH的重传数据给重传调度方式被配置为组播的终端设备,具体的实施方式可参照A2情况三中的方案执行,本申请实施例对此不再进行赘述。
B3,组播的半持续调度的去激活
网络设备可以向多个终端设备发送一个由G-RNTI加掩的去激活DCI,该去激活DCI中的Redundancy Version域为全0,调制编码方案(Modulation and coding scheme)域为全1,频域资源分配(Frequency domain resource assignment)域为全1(即,Type1)或者全0(即,Type0)。终端设备根据该去激活DCI中的前述信息,则可知道该去激活DCI用于去激活组播的半持续调度SPS。该去激活DCI中还包括其它信息如HPN。该HPN的取值可与激活阶段(A1)中DCI内的HPN取值相同。终端设备可以基于去激活DCI中的HPN,去激活该HPN所指示的SPS配置,在后续的时间单元中不再接收去激活的SPS配置的组SPS PDSCH。示例性的,如图6示意出网络设备在时间单元1中发送由G-RNTI加掩的去激活DCI,则终端设备在PDCCH上盲检去激活DCI,根据去激活DCI中的HPN,确定不再接收该HPN对应SPS配置的组SPS PDSCH,图6具体以“×”表示不再接收时间单元2-5上的组SPS PDSCH,或者可以理解网络设备也不再在时间单元2-5上发送组SPS PDSCH。
需要说明的是,方案一可以包括以上B1~B3阶段中的一个或多个阶段,且B1~B3阶 段的执行顺序可以基于实际需求确定,本申请实施例对此并不进行限制。
本申请实施例提供的上述方案二,通过在DCI中定义用于指示半持续调度还是动态调度的方式,可以用G-RNTI实现动态的调度组播数据或者半持续的调度组播数据,拓展了G-RNTI的应用场景,节省了终端设备侧盲检的资源,同时也减少了在组播的下行数据调度时的控制信令开销。
基于上述方案一和方案二,参见图7,本申请实施例提供一种数据传输方法的流程示意图。该方法包括如下流程:
S701,网络设备可采用组播的半持续调度方式向多个终端设备发送第一组播数据,即各个终端设备可接收到基于组播的半持续调度SPS传输的第一组播数据。示例性的,图7示意出了3个终端设备,记为第一终端设备、第二终端设备、第三终端设备。需要说明的是,图7中并不是网络设备发送了3次第一组播数据,而是只发送了一次,三个终端设备均可以接收该组播数据。基于组播的半持续调度SPS传输的第一组播数据可以释义为“first multicast data using a multi-cast based SPS transmission”。
其中,基于组播的半持续调度传输主要包括如下激活阶段的传输和激活后传输。激活阶段的传输需要通过DCI激活组播的半持续SPS传输,激活阶段网络设备发送的第一组播数据可以理解为有调度信息的数据,激活后网络设备发送的第一组播数据可以理解为无调度信息的数据或无DCI的数据。
一种可选的实施方式中,对应前述方案一中A1的实施方式。网络设备可向多个终端设备发送一个由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述基于组播的半持续调度SPS传输。则各个终端设备可基于该第二DCI激活基于组播的半持续调度SPS传输,进而接收由第二DCI调度的前述第一组播数据,以及后续无调度信息的第一组播数据。
另一种可选的实施方式中,对应方案二中B1的实施方式。网络设备可向多个终端设备发送由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,此时,所述第三DCI包含的第一指示信息取值为第一值。其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。可选的,第一指示信息可以是前述方案二中介绍的目标比特或者是Identifier for DCI formats。第一值可以是0,第二指可以是1;或者,第一值可以是1,第二值可以是0。则各个终端设备可基于该第三DCI激活组播的半持续调度SPS传输,进而接收由第三DCI调度的前述第一组播数据,以及后续无调度信息的第一组播数据。
此外需要说明的是,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。比如,第三DCI中采用目标比特指示组播的半持续调度传输或者组播的动态调度传输时,则第三DCI中不包括Identifier for DCI formats。第三DCI中采用Identifier for DCI formats指示组播的半持续调度传输或者组播的动态调度传输时,该Identifier for DCI formats的描述或者说定义不能是指示所述第三DCI用于调度上行传输或者下行传输。
可选的,所述第二DCI中的新数据指示NDI值为0,表示第二DCI调度的是初传数据;所述第三DCI中的新数据指示NDI值为0,表示第三DCI调度的是初传数据。
S702,网络设备接收到第一终端设备的反馈信息为NACK,即第一终端设备未成功接 收前述第一组播数据。
S703,网络设备向第一终端设备发送由CS-RNTI加掩的第一DCI以及第一数据,第一数据为第一组播数据的重传数据,其中,第一数据可以理解为一个基于单播传输的数据。
可选的,所述第一DCI中的新数据指示NDI值为1,表示该第一DCI调度的是重传数据。
此外需要说明的是,若网络设备接收到较多的NACK信息,例如若网络设备接收到的是第一终端设备和第二终端设备的反馈信息均为NACK,则基于前述激活阶段所采用的RNTI,网络设备可基于G-CS-RNTI或者G-RNTI做组播的重传调度,如发送第二组播数据,第二组播数据为第一组播数据的重传数据,第二组播数据可以理解为组播数据。具体的实施方式可参照前述A2、B2中的方案,本申请实施例对此不再进行赘述。
S704,终端设备接收第一DCI,并根据第一DCI接收第一数据。
本申请实施例中,采用半持续调度进行组播传输,无需每次在发送组播数据前发送调度信息即DCI,能够减少控制信令的开销;且当个别终端设备未成功接收组播数据时,通过单播方式向该终端设备重传前述组播数据,而不是以组播方式调度数据的重传,能够进一步节省下行资源的占用,且提升数据的传输效率。
进一步,如需去激活SPS传输时,网络设备还可以向终端设备发送由G-RNTI或者G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。其中,第四DCI包括的内容可参照前述A3或者B3中的方式实施,对此不再进行赘述。
基于同一构思,图8提供本申请所涉及的数据传输装置的一种可能的示例性框图,该装置800可以以软件或硬件的形式存在。装置800可以包括:处理单元802和通信单元803。作为一种实现方式,该通信单元803可以包括接收单元和发送单元。处理单元802用于对装置800的动作进行控制管理。通信单元803用于支持装置800与其他网络实体的通信。装置800还可以包括存储单元801,用于存储装置800的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元801可以是存储器。通信单元803是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元803是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
一种方案中,该装置800可以为上述任一实施例中的终端设备,还可以为用于终端设备的芯片。例如,当装置800为终端设备时,该处理单元802例如可以是处理器,该通信单元803例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置800为用于终端设备的芯片时,该处理单元802例如可以是处理器,该通信单元803例如可以是输入/输出接口、管脚或电路等。该处理单元802可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、 缓存等,该存储单元还可以是该终端设备内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
以下对该装置800应用于终端设备,其内部包含各单元执行的功能或称操作,进行详细说明。
通信单元803,用于接收基于组播的半持续调度SPS传输的第一组播数据。
通信单元803,还用于接收第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩。
处理单元802,用于根据所述第一DCI,通过所述通信单元803接收第一数据,所述第一数据为所述第一组播数据的重传数据。
本申请实施例中,采用半持续调度进行组播传输,无需每次在发送组播数据前发送调度信息即DCI,能够减少控制信令的开销;且需对个别终端设备重传数据时,通过单播方式向该终端设备重传前述组播数据,而不是以组播方式调度数据的重传,能够进一步节省下行资源的占用,且提升数据的传输效率。
在一种可选的实施方式中,在通信单元803接收第一DCI之前,处理单元802,还用于确定对第一组播数据的接收失败,发送反馈信息如NACK,该反馈信息用于指示第一组播数据接收失败。
在一种可选的实施方式中,所述通信单元803,还用于:接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
在一种可选的实施方式中,所述通信单元803,还用于:接收由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
在一种可选的实施方式中,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
在一种可选的实施方式中,所述第一DCI中的新数据指示NDI值为1;所述第二DCI中的新数据指示NDI值为0;所述第三DCI中的新数据指示NDI值为0。
在一种可选的实施方式中,所述通信模块,还用于:接收由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
另一种方案中,该装置800可以为上述任一实施例中的网络设备,还可以为用于网络设备的芯片。例如,当装置800为网络设备时,该处理单元802例如可以是处理器,该通信单元803例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置800为用于网络设备的芯片时,该处理单元802例如可以是处理器,该通信单元803例如可以是输入/输出接口、管脚或电路等。该处理单元802可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该网络设备内的位于该芯片外部的存储单元,如只读存储器 (read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
以下对该装置800应用于网络设备,其内部包含各单元执行的功能或称操作,进行详细说明。
处理单元802,用于生成基于组播的半持续调度SPS传输的第一组播数据。
通信单元803,用于发送所述第一组播数据。
所述通信单元803,还用于发送第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据。
本申请实施例中,采用半持续调度进行组播传输,无需每次在发送组播数据前发送调度信息即DCI,能够减少控制信令的开销;且需对个别终端设备重传数据时,通过单播方式向该终端设备重传前述组播数据,而不是以组播方式调度数据的重传,能够进一步节省下行资源的占用,且提升数据的传输效率。
在一种可选的实施方式中,所述通信单元803,还用于:发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
在一种可选的实施方式中,所述通信单元803,还用于:发送由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
在一种可选的实施方式中,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
在一种可选的实施方式中,所述第一DCI中的新数据指示NDI值为1;所述第二DCI中的新数据指示NDI值为0;所述第三DCI中的新数据指示NDI值为0。
在一种可选的实施方式中,所述通信单元803,还用于:发送由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
如图9所示,为本申请提供的一种通信装置示意图,该装置可以是上述实施例中的终端设备、或网络设备。该装置900包括:处理器902、通信接口903、存储器901。可选的,装置900还可以包括通信线路904。其中,通信接口903、处理器902以及存储器901可以通过通信线路904相互连接;通信线路904可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述通信线路904可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器902可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口903,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以 太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器901可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路904与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器901用于存储执行本申请方案的计算机执行指令,并由处理器902来控制执行。处理器902用于执行存储器901中存储的计算机执行指令,从而实现本申请上述实施例提供的数据传输方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
参见图10,本申请实施例还提供另一种通信装置1000,该通信装置是芯片系统,包括:输入输出接口1010和逻辑电路1020。
当该通信装置1000是终端设备中的芯片系统,在本申请的一些实施例中,该逻辑电路1020和输入输出接口1010可用于执行上述终端设备执行的功能或操作等。示例性的,输入输出接口1010,用于输入基于组播的半持续调度SPS传输的第一组播数据;输入输出接口1010,还用于输入第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩;逻辑电路1020,用于根据所述第一DCI,通过所述输入输出接口1010获取第一数据,所述第一数据为所述第一组播数据的重传数据。可选的,输入输出接口1010输入第一DCI之前,逻辑电路1020,还用于确定对第一组播数据的接收失败,输出反馈信息如NACK,该反馈信息用于指示第一组播数据接收失败。
当该通信装置1000是网络设备中的芯片系统,在本申请的一些实施例中,该逻辑电路1020和输入输出接口1010可用于执行上述网络设备执行的功能或操作等。逻辑电路1020,用于生成第一组播数据;输入输出接口1010,用于输出所述第一组播数据,所述第一组播数据是基于组播的半持续调度SPS传输的;所述输入输出接口1010,还用于输出第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据。
由于本实施例提供的通信装置1000可应用于终端设备,执行上述终端设备所执行的方法,或者应用于网络设备,执行上述网络设备所执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种通信系统,该通信系统包括至少一个应用于网络设备的通信装置和至少一个应用于终端设备的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当指令被执行时,使上述任一实施例中网络设备执行的方 法被实施,或者上述任一实施例中定位管理设备执行的方法被实施或者上述任一实施例中终端设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述图9~图10的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中网络设备或者终端设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的计算机程序或指令和数据。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的构思和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (31)

  1. 一种数据传输方法,其特征在于,包括:
    接收基于组播的半持续调度SPS传输的第一组播数据;
    接收第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩;
    根据所述第一DCI,接收第一数据,所述第一数据为所述第一组播数据的重传数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
  5. 根据权利要求2所述的方法,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第二DCI中的新数据指示NDI值为0。
  6. 根据权利要求3或4所述的方法,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第三DCI中的新数据指示NDI值为0。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    接收由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,
    接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
  8. 一种数据传输方法,其特征在于,包括:
    发送基于组播的半持续调度SPS传输的第一组播数据;
    发送第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    发送由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
  12. 根据权利要求9所述的方法,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第二DCI中的新数据指示NDI值为0。
  13. 根据权利要求10或11所述的方法,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第三DCI中的新数据指示NDI值为0。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    发送由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,
    发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
  15. 一种数据传输装置,其特征在于,包括:
    通信单元,用于接收基于组播的半持续调度SPS传输的第一组播数据;
    所述通信单元,还用于接收第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩;
    处理单元,用于根据所述第一DCI,通过所述通信单元接收第一数据,所述第一数据为所述第一组播数据的重传数据。
  16. 根据权利要求15所述的装置,其特征在于,所述通信单元,还用于:
    接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
  17. 根据权利要求15所述的装置,其特征在于,所述通信单元,还用于:
    接收由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
  18. 根据权利要求17所述的装置,其特征在于,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
  19. 根据权利要求16所述的装置,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第二DCI中的新数据指示NDI值为0。
  20. 根据权利要求17或18所述的装置,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第三DCI中的新数据指示NDI值为0。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述通信模块,还用于:
    接收由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,
    接收由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
  22. 一种数据传输装置,其特征在于,包括:
    处理单元,用于生成基于组播的半持续调度SPS传输的第一组播数据;
    通信单元,用于发送所述第一组播数据;
    所述通信单元,还用于发送第一下行控制信息DCI,所述第一DCI由配置调度无线网络临时标识CS-RNTI加掩,所述第一DCI用于调度第一数据,所述第一数据为第一组播数据的重传数据。
  23. 根据权利要求22所述的装置,其特征在于,所述通信单元,还用于:
    发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第二DCI,所述第二DCI用于激活所述组播的半持续调度SPS传输。
  24. 根据权利要求22所述的装置,其特征在于,所述通信单元,还用于:
    发送由组无线网络临时标识G-RNTI加掩的第三DCI,所述第三DCI用于激活所述组播的半持续调度SPS传输,所述第三DCI包含的第一指示信息取值为第一值,其中,所述第一指示信息取值包括第一值或第二值,所述第一值用于指示组播的半持续调度SPS传输,所述第二值用于指示组播的动态调度传输。
  25. 根据权利要求24所述的装置,其特征在于,所述第三DCI不包含用于指示所述第三DCI用于调度上行传输或者下行传输的信息。
  26. 根据权利要求23所述的装置,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第二DCI中的新数据指示NDI值为0。
  27. 根据权利要求24或25所述的装置,其特征在于,所述第一DCI中的新数据指示NDI值为1,所述第三DCI中的新数据指示NDI值为0。
  28. 根据权利要求22-27任一项所述的装置,其特征在于,所述通信单元,还用于:
    发送由组无线网络临时标识G-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输;或者,
    发送由组配置调度无线网络临时标识G-CS-RNTI加掩的第四DCI,所述第四DCI用于去激活所述组播的半持续调度SPS传输。
  29. 一种通信装置,其特征在于,包括:
    处理器,所述处理器和存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,以实现权利要求1-7任一项所述的方法或者权利要求8-14任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述指令在计算机上运行时,实现权利要求1-7任一项所述的方法或者权利要求8-14任一项所述的方法。
  31. 一种计算程序产品,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-7或权利要求8-14任一项所述的方法。
PCT/CN2022/084587 2021-04-04 2022-03-31 数据传输方法及装置 WO2022213887A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023560991A JP2024513866A (ja) 2021-04-04 2022-03-31 データ伝送方法及び装置
EP22783954.5A EP4311357A4 (en) 2021-04-04 2022-03-31 METHOD AND APPARATUS FOR DATA TRANSMISSION
US18/479,890 US20240032017A1 (en) 2021-04-04 2023-10-03 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110364242.9A CN115175354A (zh) 2021-04-04 2021-04-04 数据传输方法及装置
CN202110364242.9 2021-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/479,890 Continuation US20240032017A1 (en) 2021-04-04 2023-10-03 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022213887A1 true WO2022213887A1 (zh) 2022-10-13

Family

ID=83475888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084587 WO2022213887A1 (zh) 2021-04-04 2022-03-31 数据传输方法及装置

Country Status (5)

Country Link
US (1) US20240032017A1 (zh)
EP (1) EP4311357A4 (zh)
JP (1) JP2024513866A (zh)
CN (1) CN115175354A (zh)
WO (1) WO2022213887A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264039A (zh) * 2011-04-29 2011-11-30 电信科学技术研究院 一种实现半持续调度传输的方法及装置
CN106560011A (zh) * 2015-07-27 2017-04-05 华为技术有限公司 应答信息发送、接收方法,及接收设备和发送设备
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
CN110622451A (zh) * 2017-05-03 2019-12-27 英特尔Ip公司 针对基于微时隙和基于时隙的传输处理冲突
CN111684744A (zh) * 2018-01-04 2020-09-18 欧芬诺有限责任公司 半持久信道状态信息报告
US20200396684A1 (en) * 2019-06-14 2020-12-17 Samsung Electronics Co., Ltd. Operation with power saving in connected mode discontinuous reception (c-drx)
CN112398579A (zh) * 2019-08-14 2021-02-23 联发科技股份有限公司 下行链路反馈信息发送以及接收的方法
US20210099980A1 (en) * 2019-09-30 2021-04-01 Qualcomm Incorporated Group-based acknowledgment feedback for wireless communications in the presence of semi-persistent scheduling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734468B (zh) * 2016-08-12 2020-07-28 中兴通讯股份有限公司 组播传输方法及装置
US11382068B2 (en) * 2019-04-04 2022-07-05 Qualcomm Incorporated Semi-persistent scheduling for broadcast or multicast

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264039A (zh) * 2011-04-29 2011-11-30 电信科学技术研究院 一种实现半持续调度传输的方法及装置
CN106560011A (zh) * 2015-07-27 2017-04-05 华为技术有限公司 应答信息发送、接收方法,及接收设备和发送设备
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
CN110622451A (zh) * 2017-05-03 2019-12-27 英特尔Ip公司 针对基于微时隙和基于时隙的传输处理冲突
CN111684744A (zh) * 2018-01-04 2020-09-18 欧芬诺有限责任公司 半持久信道状态信息报告
US20200396684A1 (en) * 2019-06-14 2020-12-17 Samsung Electronics Co., Ltd. Operation with power saving in connected mode discontinuous reception (c-drx)
CN112398579A (zh) * 2019-08-14 2021-02-23 联发科技股份有限公司 下行链路反馈信息发送以及接收的方法
US20210099980A1 (en) * 2019-09-30 2021-04-01 Qualcomm Incorporated Group-based acknowledgment feedback for wireless communications in the presence of semi-persistent scheduling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4311357A4 *

Also Published As

Publication number Publication date
EP4311357A4 (en) 2024-08-28
JP2024513866A (ja) 2024-03-27
CN115175354A (zh) 2022-10-11
EP4311357A1 (en) 2024-01-24
US20240032017A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US11889552B2 (en) Method and apparatus for setting downlink control channel reception time in wireless communication system
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
US10743310B2 (en) User terminal, radio base station and radio communication method
US10009919B2 (en) Control channel for wireless communication
US20200305189A1 (en) Method and apparatus for facilitating coexistence of 4th and 5th generation communication systems
US11368273B2 (en) Method and apparatus for channel access in unlicensed band in wireless communication system
CN111263353B (zh) 空口能力交换的系统和方法
JP7272484B2 (ja) 通信システム
US11757687B2 (en) Method and apparatus for transmitting and receiving reference signal for sidelink data in wireless communication system
US9648599B2 (en) System and method for avoiding collisions between open discovery and cellular resources
US11653336B2 (en) Method and apparatus for transmitting and receiving downlink control information in wireless communication system
JP2016518087A (ja) フレキシブル・サブフレームを用いるフレキシブルなtddアップリンク/ダウンリンク構成
US10129880B2 (en) Aggregation groups for aggregating heterogeneous carriers
WO2014000514A1 (zh) 设备间通信方法、用户设备和基站
KR20160044501A (ko) 리소스 할당 방법 및 장치
WO2021057960A1 (zh) 由用户设备执行的方法以及用户设备
CN111434167A (zh) 无线通信系统中发送上行数据的方法和装置
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2017133479A1 (zh) 一种下行控制信息传输方法及装置
WO2022213887A1 (zh) 数据传输方法及装置
US12127194B2 (en) Method and apparatus for repetitive transmission of downlink control information in network cooperative communications
WO2021139619A1 (zh) 由用户设备执行的方法以及用户设备
WO2023012982A1 (ja) 端末及び無線通信方法
US20240187272A1 (en) Terminal and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317065692

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023560991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022783954

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022783954

Country of ref document: EP

Effective date: 20231017

NENP Non-entry into the national phase

Ref country code: DE