WO2022213813A1 - 一种激光雷达的同步控制装置及方法 - Google Patents

一种激光雷达的同步控制装置及方法 Download PDF

Info

Publication number
WO2022213813A1
WO2022213813A1 PCT/CN2022/082828 CN2022082828W WO2022213813A1 WO 2022213813 A1 WO2022213813 A1 WO 2022213813A1 CN 2022082828 W CN2022082828 W CN 2022082828W WO 2022213813 A1 WO2022213813 A1 WO 2022213813A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection signal
signal
mark
echo signal
scanning
Prior art date
Application number
PCT/CN2022/082828
Other languages
English (en)
French (fr)
Inventor
王曰孟
王伟
余安亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22783880.2A priority Critical patent/EP4318027A1/en
Publication of WO2022213813A1 publication Critical patent/WO2022213813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present application relates to the field of sensor technology, and in particular, to a synchronization control device and method for a laser radar.
  • LiDAR light detection and ranging, LiDAR
  • LiDAR light detection and ranging, LiDAR
  • TOF time of flight of light
  • lidar can be divided into mechanical pan-tilt scanning, scanning mirror, optical phased array, flash mode, etc.
  • the scanning mirror is one of the current mainstream lidar architectures.
  • the implementation of the scanning mirror may include a swing mirror, a rotating mirror, a polygonal mirror, etc., among which, the polygonal mirror has the characteristics of high point cloud frame rate compared with other implementations, and one reflective surface of the polygonal mirror usually generates a frame of points. Cloud, the polygon mirror can be rotated 360 degrees clockwise or counterclockwise to achieve multi-frame point cloud output, which can improve the resolution of object detection, especially for moving objects, can quickly detect changes in objects.
  • the frame rate it also brings higher requirements to the synchronization of the point cloud generated by the reflection surface.
  • In the existing synchronization control method generally only two adjacent frames of point clouds or multi-frame point clouds can be achieved. The scanning space between them is synchronized, and the cost is high; and the synchronous control of the generation method of the reflection surface and its corresponding point cloud cannot be realized.
  • an embodiment of the present application provides a synchronization control device for a laser radar, including: a synchronization signal transceiver module, a scan signal transceiver module, a controller, and a scanning mirror;
  • the scanning mirror includes a plurality of reflective surfaces , the plurality of reflective surfaces include corresponding signs, and the plurality of reflective surfaces include a first reflective surface;
  • the controller is used to control the synchronization signal transceiver module to transmit a first detection signal;
  • the synchronization signal transceiver module for receiving a first echo signal;
  • the controller is configured to determine that the first echo signal includes the echo signal of the first detection signal reflected by the first mark corresponding to the first reflection surface, and controls the
  • the scanning signal transceiver module transmits a second detection signal to the first reflection surface in a first manner, wherein the first identification corresponds to the first manner.
  • the multiple reflecting surfaces of the scanning mirror include corresponding signs, the synchronization signal transceiver module transmits the first detection signal, and receives the first echo signal; the controller determines that the first echo signal contains the first detection signal When the echo signal is reflected by the first mark corresponding to the first reflection surface, the scanning signal transceiver module is controlled to transmit the second detection signal to the first reflection surface, so as to complete a spatial scan using the first reflection surface, and can generate A frame of point cloud corresponding to the first reflective surface; multiple reflective surfaces of the scanning mirror include corresponding marks, and the controller can control the scanning signal transceiver module to transmit echo signals when determining the echo signals reflected by the corresponding marks of each reflective surface.
  • Each reflective surface emits a second detection signal, thereby completing a spatial scan using each reflective surface, and can generate a frame of point cloud corresponding to each reflective surface, thereby realizing the scanning spatial synchronization of two or more adjacent frames, without the need for Hardware such as an angle encoder is used, and at the same time, the method of transmitting the second detection signal (ie, the first method) corresponds to the first identification, that is, it can correspond to the first reflection surface, so that the scanning signal transceiver module can follow the first reflection surface.
  • the corresponding method transmits the second detection signal to the first reflection surface, thereby realizing the synchronous control of the generation method of the first reflection surface and its corresponding point cloud, that is, for a frame of point cloud, the corresponding generation method can be determined, increasing the The flexibility of lidar control reduces the requirement for consistency between the first reflective surface and other reflective surfaces, resulting in lower cost and higher reliability.
  • different reflective surfaces have different identifiers.
  • the controller determines that the first echo signal includes the echo signal reflected by the first detection signal through a marker, the controller can accurately locate the location where the marker is located by using the marker.
  • Reflecting surface while realizing the scanning space synchronization of two or more adjacent frames, the point cloud generation method corresponding to each reflecting surface can be individually controlled to achieve differentiated control, that is, to realize the difference of point clouds of different frames
  • the synchronous control of the scanning mirror further improves the flexibility of the synchronous control; at the same time, it reduces the requirement for the consistency of each reflecting surface of the scanning mirror and reduces the cost.
  • the first feature set of the first echo signal and a preset feature Set matching; wherein, there is a corresponding relationship between the preset feature set and the first identifier.
  • the identifier of the reflected first echo signal can be identified according to the first feature set of the first echo signal, so as to determine the corresponding reflecting surface.
  • the first identifier is an initial identifier of the first reflective surface
  • the emission moment of the second detection signal is the start moment of the frame data corresponding to the first reflection surface.
  • the controller can control the scanning signal transceiver module to work at the starting moment of the point cloud corresponding to the first reflective surface according to the moment of recognizing the first mark, that is, according to the first method corresponding to the first mark.
  • the first reflective surface emits a second detection signal, performs spatial scanning, and obtains a complete point cloud corresponding to the first reflective surface, thereby ensuring the use of the first reflective surface for spatial scanning while recognizing the first identification. Reliability, and at low cost, the scanning space synchronization of two or more adjacent frames is realized.
  • the first reflective surface is further provided with a second identifier; the controller is also used for: controlling the echo signal of the first detection signal reflected by the first mark, the echo signal of the first detection signal reflected by the second mark, and preset rotation information Scanning mirror rotates.
  • the rotation information of the scanning mirror can be corrected through the first mark and the second mark on the first reflection surface, so as to realize precise synchronous control of the rotation of the scanning mirror during the spatial scanning process.
  • the first marker is provided at an edge position of the first reflective surface.
  • the wavelength ranges of the first detection signal and the second detection signal are different .
  • the first feature set includes: the first Any one or more of the waveform characteristics of the wave signal, the pattern characteristics corresponding to the first echo signal, and the time characteristics corresponding to the first echo signal.
  • the corresponding identification can be identified according to the difference in waveform characteristics, pattern characteristics, time characteristics, etc. of the echo signals reflected by the first detection signals through different identifications.
  • the first identification is performed by coating, engraving on the first reflective surface. etch, film, change material, and change shape in any one or more ways.
  • the reflective surface is simply processed through the above-mentioned various methods, and a mark is set, so as to realize the distinction between the mark and the reflective surface where the mark is located; and different processing can also be performed on different reflective surfaces through the above-mentioned various methods, thereby Different signs are set on different reflecting surfaces, and the processing cost is low.
  • the embodiments of the present application provide a method for controlling synchronization of a laser radar, the method comprising: controlling a synchronization signal transceiver module of the laser radar to transmit a first detection signal;
  • the first echo signal includes the echo signal of the first detection signal reflected by the first mark corresponding to the first reflection surface of the scanning mirror included in the lidar, and the scanning signal transceiver module is controlled to be sent to the receiver in the first manner.
  • the first reflection surface emits a second detection signal, wherein the first identification corresponds to the first mode.
  • the identifiers of different reflecting surfaces of the scanning mirror included in the lidar are different.
  • the first feature set of the first echo signal and a preset feature Set matching wherein, there is a corresponding relationship between the preset feature set and the first identifier.
  • the first identifier is a start identifier of the first reflective surface
  • the emission moment of the second detection signal is the start moment of the frame data corresponding to the first reflection surface.
  • the first reflective surface is further provided with a second identification; the method further Including: controlling the scanning mirror according to the echo signal of the first detection signal reflected by the first mark, the echo signal of the first detection signal reflected by the second mark, and preset rotation information turn.
  • the first mark is provided at an edge position of the first reflection surface.
  • the wavelength ranges of the first detection signal and the second detection signal are different .
  • the first feature set includes: the first Any one or more of the waveform characteristics of the wave signal, the pattern characteristics corresponding to the first echo signal, and the time characteristics corresponding to the first echo signal.
  • the first mark is formed by coating, engraving on the first reflective surface. It can be set by any one or more of etching, filming, changing material and changing shape.
  • embodiments of the present application provide a laser radar, where the laser radar includes the first aspect or a synchronization control device for a laser radar according to one or more of the multiple possible implementations of the first aspect .
  • an embodiment of the present application provides a terminal, where the terminal includes the above-mentioned first aspect or one or more of the lidar synchronization control apparatuses in the multiple possible implementation manners of the first aspect.
  • embodiments of the present application provide a synchronization control device for a lidar, including: at least one processor; a memory for storing instructions executable by the processor; wherein the at least one processor is configured to execute The instruction implements the second aspect or one or more of the possible implementation manners of the second aspect for the synchronization control method of the lidar.
  • embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, wherein the computer program instructions are executed by a processor to implement the above-mentioned second aspect
  • one or more of the multiple possible implementation manners of the second aspect are a synchronous control method for a lidar.
  • embodiments of the present application provide a computer program product, comprising computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in an electronic
  • the processor in the electronic device executes the second aspect or one or more of the synchronization control methods for the laser radar in the second aspect or multiple possible implementation manners of the second aspect.
  • FIG. 1 shows a schematic diagram of the structure of a laser radar in a polygon mirror scanning manner in the related art.
  • FIG. 2 shows a schematic diagram of using the lidar in FIG. 1 to generate point clouds of adjacent frames.
  • FIG. 3 shows a schematic diagram of a lidar synchronization control method in the related art.
  • FIG. 4 shows a schematic diagram of another lidar synchronization control method in the related art.
  • FIG. 5 shows a schematic diagram of a possible application scenario to which a synchronization control device for a lidar according to an embodiment of the present application is applicable.
  • FIG. 6 shows a structural diagram of a synchronization control device for a lidar according to an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of another synchronization control apparatus for a lidar according to an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of another laser radar synchronization control apparatus according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a first reflective surface according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a scanning mirror according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of implementing synchronization control based on the scanning mirror in FIG. 10 according to an embodiment of the present application.
  • FIG. 12 shows a flowchart of a synchronization control method for a lidar according to an embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of another synchronization control apparatus for a lidar according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of the structure of a laser radar in the related art with a polygon mirror scanning method.
  • the laser radar may include: a laser transmitting module, a laser receiving module, and a polygon mirror (in the figure, the four-sided mirror is the Example) and the controller; the controller controls the detection signal sent by the laser transmitting module to reach the space object through the reflection of the polygon mirror, and is reflected by the space object to form an echo signal, and the echo signal reaches the laser receiving module after being reflected by the polygon mirror.
  • a frame of point cloud refers to a set of detection signals and corresponding echo signals reflected by a reflective surface
  • the generated data exemplarily, a set of detection signals may include a period of continuous detection signals in the time domain, or may include multiple sections of continuous detection signals in the time domain, wherein the detection signals of each section may be in time The domains are consecutive to each other, and can also have a certain interval.
  • Fig. 2 shows a schematic diagram of using the lidar in Fig. 1 to generate point clouds of adjacent frames; as shown in Fig. 2, the polygon mirror of the lidar includes a reflective surface A, a reflective surface B, a reflective surface C, and a reflective surface D (in the figure (not shown) a total of four reflective surfaces; with the rotation of the polygon mirror, whenever the polygon mirror rotates to a position where a reflective surface can receive the detection signal emitted by the laser emitting module, the laser emitting module can emit a set of signals in a specific direction.
  • the polygon mirror of the lidar includes a reflective surface A, a reflective surface B, a reflective surface C, and a reflective surface D (in the figure (not shown) a total of four reflective surfaces; with the rotation of the polygon mirror, whenever the polygon mirror rotates to a position where a reflective surface can receive the detection signal emitted by the laser emitting module, the laser emitting module can emit a set of signals in a specific direction.
  • the group of detection signals can reach the external environment after being reflected by the reflective surface, and a group of echo signals reflected by the external environment can return through the original optical path, and the laser receiving module can receive the group of echo signals, thus completing the use of One spatial scan of the reflective surface can generate one frame of point cloud through the set of detection signals and the set of echo signals.
  • a set of detection signals and a corresponding set of echo signals reflected by the reflection surface A are used to generate the point cloud of the Mth frame (M is an integer greater than 0); as shown in Figure 2(b), when the polygon mirror rotates to the reflection surface
  • B can receive the position of the detection signal emitted by the laser emitting module, it sends a set of detection signals to the reflective surface B to complete a spatial scan using the reflective surface B.
  • a set of detection signals reflected by the reflective surface B and a corresponding set of detection signals are completed.
  • the echo signal is used to generate the M+1th frame point cloud.
  • the above-mentioned "specific direction” may be a certain fixed direction or a direction within a certain direction range, which is related to the position of the reflective surface.
  • Fig. 3 shows a schematic diagram of a lidar synchronization control method in the related art.
  • an angle encoder is provided under the polygon mirror of the lidar shown in Fig. 2, and the angle encoder is used to realize Synchronous control of the polygon mirror: that is, the 360-degree angle encoder is used to measure and feedback the rotation angle of the polygon mirror, and the initial rotation angle point of a certain frame is set as the initial 0 degree angle of the angle encoder, and the polygon mirror starts from 0 degrees. degree starts to rotate clockwise or counterclockwise, and the angle encoder will periodically measure the angle that the current polygon mirror rotates from the starting angle of 0 degrees.
  • the rotated angle of the polygon mirror can be obtained.
  • four frames of point clouds can be generated by rotating the polygon mirror by 360 degrees.
  • the interval Bi angle between the starting angle (or the angle corresponding to the junction of the reflecting surface corresponding to this frame and the reflecting surface corresponding to the previous frame) i represents which frame, 1 ⁇ i ⁇ 4, Bi ⁇ 90 )
  • the initial rotation angle point of the frame corresponding to the reflection surface A be the initial 0+B1 degree angle of the angle encoder
  • the initial rotation angle point of the frame corresponding to the reflection surface B is the initial 90+B2 degree angle of the angle encoder
  • the angle corresponding to the starting moment of the detection signal emission corresponding to each frame of point cloud can be determined, and the laser emission module transmits the detection signal at this starting moment, so as to realize the generated point clouds of two adjacent frames or more
  • the scanning space synchronization between frame point clouds that is, the M-th frame point cloud in Fig. 2(a) and the M+1
  • FIG. 4 shows a schematic diagram of another lidar synchronization control method in the related art.
  • the lidar in the above-mentioned FIG. (not shown), the reflector is set at a specific position, when the polygon mirror rotates to a specific angle (that is, the angle corresponding to the junction of each reflecting surface), the synchronous detection signal reflected by the synchronous emission module is reflected by the polygon mirror and the reflector , reach the synchronous receiving module; and when the polygon mirror rotates to other angles, the synchronous detection signal cannot reach the synchronous receiving module; in this way, through the synchronous transmitting module and the synchronous receiving module, monitor whether the polygon mirror rotates to the above-mentioned specific angle, so as to obtain the multi-faceted The starting moment of each scanning surface of the mirror; the synchronous transmitting module starts to transmit the synchronous detection signal at the end of the previous frame, and only when the polygon mirror is rotated to the above-mentioned specific angle, the detection signal transmitted by the synchronous transmitting module
  • the synchronous receiving module When the synchronous receiving module receives the echo signal of the synchronous receiving module, the starting time of the angle corresponding to each reflective surface of the frame can be known, and the detection and transmitting module (not shown in the figure) will be notified according to the starting time. Lighting, so as to achieve the scanning space synchronization between two adjacent frames of point clouds or multi-frame point clouds scanned by the polygon mirror.
  • an embodiment of the present application provides a synchronization control device for a lidar, which can realize the synchronization between two adjacent frames of point clouds or multi-frame point clouds in a lower cost and higher reliability manner.
  • the synchronous control of the generation method of a reflecting surface and its corresponding point cloud (the emission method of the detection signal used for spatial scanning) can be realized, that is, for a frame of point cloud, the corresponding generation method can be determined. , which increases the flexibility of lidar control and can reduce the consistency requirements for multiple reflecting surfaces of the polygon mirror.
  • the lidar synchronization control device provided in the embodiments of the present application may be applied to lidar or terminals, and the like, for example, the lidar synchronization control device may be a vehicle with lidar synchronization control function, or a lidar synchronization control device. Other parts of the control function.
  • the synchronous control device of the lidar includes but is not limited to: vehicle terminal, vehicle controller, vehicle module, vehicle module, vehicle component, vehicle chip, vehicle unit, vehicle lidar, etc.
  • the synchronous control device of the lidar can also be other terminals with the synchronous control function of the lidar except the vehicle, or set in other terminals with the synchronous control function of the lidar except the vehicle, or set in a component of the terminal.
  • the terminal can be intelligent transportation equipment, smart home equipment, robots, drones, surveying and mapping equipment, augmented reality (AR) game equipment, virtual reality (VR) game equipment, medical equipment and other terminal equipment .
  • the synchronization control device of the lidar includes, but is not limited to, a smart terminal or a controller, a chip, sensors such as lidar, and other components in the smart terminal.
  • FIG. 5 shows a schematic diagram of a possible application scenario to which a synchronization control device for a lidar according to an embodiment of the present application is applicable.
  • the application scenario may be an automatic driving scenario, intelligent driving or unmanned driving, etc.
  • the scenario may include at least one self-vehicle 501 , and at least one lidar 502 is installed in the self-vehicle.
  • the lidar At least one lidar synchronization control device is installed in 502, and the lidar synchronization control device is used to obtain objects (such as other vehicles 503, obstacles 504, etc.) when scanning objects in the surrounding environment through the lidar 502.
  • the lidar 502 transmits a detection signal, and then processes the received echo signal reflected by the obstacle 504 and the detection signal to obtain information about the obstacle 504, such as parameters such as distance, bearing, altitude, speed, attitude, and even shape, so that obstacles 504 can be detected, tracked, and identified.
  • the synchronization control device of the laser radar provided by the present application will be specifically described below.
  • FIG. 6 shows a structural diagram of a synchronization control device for a lidar according to an embodiment of the present application.
  • the device may include: a synchronization signal transceiver module 601 , a scan signal transceiver module 602 , and a controller 603, and scanning mirror 604,
  • the scanning mirror 604 includes a plurality of reflecting surfaces, the multiple reflecting surfaces include corresponding marks, and the multiple reflecting surfaces include a first reflecting surface 605;
  • the controller 603 is configured to control the synchronization signal transceiver module 601 to transmit the first detection signal
  • the synchronization signal transceiver module 601 is used for receiving the first echo signal
  • the controller 603 is configured to determine that the first echo signal includes the echo signal of the first detection signal reflected by the first mark 606 corresponding to the first reflection surface 605, and control the scanning signal transceiver mode.
  • the group 602 transmits a second detection signal to the first reflection surface 605 in a first manner, wherein the first identification 606 corresponds to the first manner.
  • the multiple reflecting surfaces of the scanning mirror 604 include corresponding identifiers, the synchronization signal transceiver module 601 transmits the first detection signal, and receives the first echo signal; the controller 603 determines that the first echo signal contains When the first detection signal is reflected by the echo signal corresponding to the first mark 606 of the first reflection surface 605, the scanning signal transceiver module 602 is controlled to transmit the second detection signal to the first reflection surface 605, thereby completing the use of the first reflection surface 605, and can generate a frame of point cloud corresponding to the first reflective surface 605; the multiple reflective surfaces of the scanning mirror 604 all contain corresponding signs, and the controller 603 can determine the return of the corresponding logo reflection on each reflective surface.
  • the scanning signal transceiver module 602 is controlled to transmit the second detection signal to each reflective surface, thereby completing a spatial scan using each reflective surface, and can generate a frame of point cloud corresponding to each reflective surface, thereby realizing
  • the scanning space synchronization of two or more adjacent frames does not require hardware such as angle encoders; at the same time, the mode of transmitting the second detection signal (ie the first mode) corresponds to the first identification 606, that is, corresponds to the first reflection surface 605,
  • the scanning signal transceiver module can transmit the second detection signal to the first reflection surface 605 according to the corresponding mode of the first reflection surface 605, thereby realizing the synchronous control of the first reflection surface 605 and its corresponding point cloud generation method, that is, for One frame of point cloud can determine the corresponding generation method, which increases the flexibility of lidar control, and reduces the consistency requirements for the first reflecting surface and other reflecting surfaces, resulting in lower cost and higher reliability.
  • the scanning mirror 604 may include 3, 4, or 6 reflective surfaces, and the embodiment of the present application does not limit the number of reflective surfaces included in the scanning mirror 604; for example, the scanning mirror 604 may be a four-sided mirror.
  • a reflective surface 605 can be any one of the four reflective surfaces.
  • Each reflection surface may include one or more corresponding marks, that is, the first reflection surface 605 may include one or more corresponding marks, and the first mark 606 may be any mark of the first reflection surface 605 .
  • the controller 603 controls the scanning signal transceiver module 602 to send the signal to the first reflective surface 605 when recognizing that the first echo signal includes the echo signal reflected by the logo.
  • a second detection signal is emitted, and the second detection signal can be a continuous detection signal in the time domain, so that the second detection signal is used as a group of detection signals to complete a spatial scan using the first reflecting surface 605 to generate a Frame point cloud.
  • the controller 603 may control the scanning signal transceiver module 602 when recognizing that the first echo signal includes the echo signals reflected by the marks on the first reflection surface
  • the second detection signal is transmitted to the first reflection surface 605, and the second detection signal corresponding to each of the transmitted marks may be a continuous detection signal in the time domain, and the multiple sections of the second detection signal corresponding to the multiple transmitted marks may be combined. They are used together as a group of detection signals, so that by using this group of detection signals, a spatial scan using the first reflecting surface 605 is completed, and a frame of point cloud is generated.
  • the synchronization signal transceiving module 601 and the scanning signal transceiving module 602 may be set independently, or may be set in an integrated manner, which is not specifically limited in this embodiment of the present application.
  • the scanning signal transceiver module 602 can be any transceiver module that can realize the spatial scanning function
  • the synchronization signal receiving module can be any transceiver module that can realize the synchronization function.
  • the synchronization signal transceiver module 601 ′′ is to distinguish the transceiver modules that implement different functions, and the specific names of the transceiver modules are not limited in this embodiment of the present application.
  • the position of the scanning signal transceiver module 602 and the position of the synchronization signal transceiver module 601 can be set based on conventional methods in the art, so as to cooperate with components such as the scanning mirror 604 to realize spatial scanning and synchronization functions.
  • the synchronization control device of the lidar may include one or more synchronization signal transceiver modules 601, and may also include one or more scan signal transceiver modules 602. In this embodiment of the present application, the synchronization signal transceiver module 601 and the scan signal transceiver module are compared.
  • the number of 602 is not limited.
  • FIG. 7 shows a schematic structural diagram of another lidar synchronization control device according to an embodiment of the present application; as shown in FIG. 7 , the scanning signal transceiver module 602 in the device may include a scanning signal transmitting module 6021 and a scanning signal receiving module 6021. Module 6022, the synchronization signal transceiver module 601 may include a synchronization signal transmitting module 6011 and a synchronization signal receiving module 6012. The synchronization signal transmitting module 6011 and the synchronization signal receiving module 6012 can be set independently or integrated.
  • the controller 603 can control the synchronization signal transmitting module 6011 to transmit the first detection signal, the first detection signal can reach the scanning mirror 604, and the first echo signal reflected by the scanning mirror 604 can reach the synchronization signal receiving module 6012, and the synchronization signal receives
  • the module 6012 can receive the first echo signal, and the synchronization signal receiving module 6012 can send the received first echo signal to the controller 603 to determine whether the first echo signal includes the first detection signal corresponding to the first echo signal.
  • the reflective surface 605 emits a second detection signal, wherein the first identification 606 corresponds to the first mode.
  • the scanning signal transmitting module 6021 and the scanning signal receiving module 6022 can be set independently or integrated.
  • the controller 603 can control the scanning signal transmitting module 6021 to transmit the second detection signal according to the first method, the second detection signal can reach the first reflection surface 605 of the scanning mirror 604, and is reflected by the first reflection surface 605 to reach the external environment, The second echo signal reflected by the external environment is reflected again by the first reflective surface 605 and reaches the scanning signal receiving module 6022.
  • the scanning signal receiving module 6022 can send the received second echo signal to the controller 603, and the controller 603 responds to the second echo signal.
  • a frame of point cloud can be generated by processing the second detection signal and the second echo signal reflected by the first reflecting surface 605 .
  • FIG. 8 shows a schematic structural diagram of another laser radar synchronization control device according to an embodiment of the present application; as shown in FIG. 8 , the scanning signal transceiver module 602 in the device may include a scanning signal transmitting module 6021 and a scanning signal receiving module 6021.
  • the synchronization signal transceiver module 601 may include a synchronization signal transmitting module 6011 and a synchronization signal receiving module 6012, and may also include a mirror 607, and the number of the mirrors 607 may be one or more (one is shown in the figure).
  • the first echo signal reflected by the scanning mirror 604 can reach the synchronization signal receiving module 6012 after being reflected by the reflecting mirror 607.
  • the direction of the first echo signal is changed by the reflecting mirror 607, thereby reducing the need for the synchronization signal receiving module 6012.
  • location requirements improve economy and applicability. It can be understood that the direction of the first detection signal, the second detection signal, and the second echo signal can also be changed through the mirror 607, thereby reducing the impact on the synchronization signal transmitting module 6011, the scanning signal transmitting module 6021, and the scanning signal receiving module 6022.
  • the location requirements further improve the economy and applicability.
  • the wavelength range of the first detection signal and the second detection signal are different, for example, the wavelength range of the first detection signal may be 900nm-905nm, and the wavelength range of the second detection signal may be It is 1550nm-1555nm; thus, mutual interference between the first detection signal and the second detection signal can be avoided, and the scanning spatial synchronization of two or more adjacent frames and the reliability and accuracy of spatial scanning using the reflective surface are ensured.
  • the wavelength ranges of the first detection signal and the second detection signal may also partially overlap.
  • the synchronization signal transmitting module 6011 may include one or more laser light sources, and the laser light sources emit detection signals (eg, pulsed, continuous light) outwards, and can also be based on the spot quality of the laser light source.
  • a collimating mirror is arranged in the device to optimize the direction of the transmitted detection signal;
  • the synchronization signal receiving module 6012 may include one or more laser detectors, so as to detect the reflected Echo signal, the laser detector includes but is not limited to avalanche photodiode (APD), single-photon avalanche diode (SPAD), silicon photomultiplier (SiPM), photodiode, etc. Wait.
  • APD avalanche photodiode
  • SPAD single-photon avalanche diode
  • SiPM silicon photomultiplier
  • the number of laser light sources may be the same as the number of laser detectors, the laser light sources may be in one-to-one correspondence with the laser detectors, and each laser detector is configured to receive echo signals reflected by objects from detection signals emitted by the corresponding laser light sources.
  • the controller 603 can be electrically connected with the synchronization signal transceiver module 601 , the scan signal transceiver module 602 and the scan mirror 604 , and the controller 603 can control the synchronization signal transceiver module 601 to transmit the first detection signal and obtain the synchronization signal transceiver module 601
  • the received first echo signal; the scanning signal transceiver module 602 can also be controlled to transmit the second detection signal to the first reflective surface 605, and the second echo signal received by the scan signal transceiver module 602 can be obtained, and the controller 603 can pass
  • the second detection signal and the second echo signal reflected by the same reflecting surface within a certain period of time are processed to generate a frame of point cloud corresponding to the reflecting surface; for example, the controller 603 may control the scanning signal transceiver module 602 When the transmission of the second detection signal for generating one frame of point cloud is completed, or when the generation of one frame of point cloud is completed, the synchronization signal transceiver module 601 is controlled to transmit the
  • the first detection signal reaches the first reflecting surface 605, the first echo signal reflected by the first mark 606 of the first reflecting surface 605, There is a difference with the first echo signal reflected by the part other than the first mark 606, and according to this difference, the echo signal of the first detection signal reflected by the first mark 606 corresponding to the first reflection surface 605 can be determined;
  • the characteristics of the first echo signal after the first detection signal is reflected by the first identifier 606 can be predetermined, and the controller 603 can compare the characteristics of the first echo signal received by the synchronization signal transceiver module 601 with the characteristics of the first echo signal. The predetermined features are matched, and if the matching is successful, it can be determined that the first echo signal is reflected through the first identifier 606 .
  • the controller 603 determines that the first echo signal is the echo signal of the first detection signal reflected by the first mark 606 corresponding to the first reflection surface 605 , the controller 603 can control the scanning signal transceiver module 602 to transmit to the first detection signal in the first manner.
  • the first reflection surface 605 emits a second detection signal.
  • the correspondence between the first mark 606 and the first manner is related to at least one of the reflecting surface where the first mark 606 is located and the position of the reflecting surface; for example, one reflecting surface may correspond to one transmitting the second detection signal way, when the controller 603 determines that the first echo signal is reflected by the first mark 606, it can control the scanning signal transceiver module 602 to transmit the second detection to the first reflecting surface 605 in the first way corresponding to the first reflecting surface 605 signal, so as to achieve synchronization of the first reflection surface 605 and the generation method of the corresponding point cloud, that is, for a frame of point cloud corresponding to the first reflection surface 605, the corresponding generation method can be determined.
  • one reflective surface may correspond to multiple modes of transmitting the second detection signal, wherein each mode corresponds to each preset position on the first reflective surface 605 one-to-one, and the preset position may be the position where each marker is located.
  • the plurality of preset positions may be set at equal intervals, and the second detection signals corresponding to each marker are collectively used as a group of detection signals for generating a frame of point cloud corresponding to the reflective surface. It can be understood that the second detection signal corresponding to a certain identifier can be used to generate a part of the point cloud of the frame.
  • the controller 603 determines that the first echo signal is reflected by the first mark 606 , it can control the scanning signal transceiver module 602 according to the position of the first mark 606 on the first reflection surface 605 (for example, the preset corresponding to the first mark 606 )
  • the second detection signal is emitted in a manner corresponding to the position), thereby realizing the synchronization of the generation method for a position point of the first reflective surface 605 and its corresponding partial point cloud, that is, for a frame of point cloud corresponding to the first reflective surface 605
  • the corresponding generation method can be determined to further improve the precision of synchronous control.
  • the first identifier 606 is the start identifier of the first reflection surface 605
  • the transmission time of the second detection signal is the frame data corresponding to the first reflection surface 605 . start time.
  • the frame data may be a point cloud generated by the second detection signal reflected by the first reflection surface 605 and the corresponding second echo signal within a certain period of time, and the initial mark indicates that the first reflection surface 605 can be the first detection signal by the first detection signal.
  • the scanned mark (such as the mark located at the edge of the rotation direction of the reflection surface), that is, according to the rotation direction of the scanning mirror 604, when rotated at a certain angle, the first detection signal can reach the first reflection surface 605, at this time, relative to the first detection signal 605 At other positions on the reflective surface 605, the first detection signal may reach the first mark 606 first.
  • the scanning mirror 604 shown in FIG. 7 rotates clockwise in the direction of the arrow, and the first mark 606 is the start mark.
  • the controller 603 can identify the first mark 606 according to the first echo signal reflected by the first mark 606 , and can take the moment of identifying the first mark 606 (ie, the starting moment of the first reflecting surface 605 ) as the corresponding first reflecting surface 605 .
  • the starting moment of the point cloud can also be set at a certain time interval between the starting moment of the point cloud corresponding to the first reflective surface 605 and the moment of identifying the first mark 606 according to actual needs.
  • the controller 603 can control the scanning signal transceiver module 602 to work according to the moment of identifying the first identification 606 at the beginning of the point cloud corresponding to the first reflecting surface 605, that is, according to the first identification 606 corresponding to the first identification 606.
  • a second detection signal is transmitted to the first reflection surface 605 in one way, and a spatial scan is performed to obtain a complete point cloud corresponding to the first reflection surface 605, thereby ensuring the use of the first reflection surface while recognizing the first mark 606.
  • the reliability of the 605 for spatial scanning at a lower cost, realizes the scanning spatial synchronization of two or more adjacent frames.
  • the first manner can characterize the properties of the second detection signal, including but not limited to: signal type, wavelength range, signal strength, pulse interval, emission timing, emission duration, scanning signal emission module that performs emission work, and the same.
  • One or more of the related information of the configured lasers; for different identifiers, the corresponding manner of transmitting the second detection signal may be the same or different, which is not limited.
  • the first manner may be preset, or may be determined in real time by the controller 603 according to the newly generated point cloud.
  • the corresponding scanning signal transmitting modules such as lasers and detectors, etc.
  • the controller 603 determines a frame of point cloud generated by the second echo signal and the second detection signal reflected in the previous reflection surface of the first reflection surface 605 within a certain period of time, and determines the point cloud in the scanning space through the frame of point cloud.
  • the controller 603 can determine that the signal strength of the second detection signal corresponding to the point cloud of the next frame needs to be increased, that is, determine that the first reflective surface 605 (or The transmission mode of the second detection signal corresponding to the first identification), so as to obtain the information of the target object with higher resolution.
  • the controller 603 when the controller 603 determines, through a frame of point cloud corresponding to the previous reflective surface of the first reflective surface 605, that the scanning space contains fog, haze and other objects that limit the detection distance, the controller 603 can determine the The wavelength range of the second detection signal corresponding to the point cloud of the next frame needs to be increased, that is, the emission mode of the second detection signal corresponding to the first reflection surface 605 (or the first mark) is determined, so as to increase the detection distance and obtain clearer Stable point cloud.
  • the controller 603 determines that the first echo signal includes the echo signal reflected by the first mark 606 of the first reflective surface 605 , it controls the scanning
  • the signal transceiver module 602 sends the second detection signal to the first reflection surface 605 according to the transmission mode of the second detection signal corresponding to the first reflection surface 605 determined above, so as to generate a frame of point cloud corresponding to the first reflection surface 605 .
  • the first reflective surface 605 is further provided with a second mark 608; the first mark 606 and the second mark 608 are different marks; the controller 603 may also The echo signal of the detection signal reflected by the first mark 606 , the echo signal of the first detection signal reflected by the second mark 608 , and preset rotation information control the rotation of the scanning mirror 604 .
  • the rotation information (eg, rotation speed, direction, etc.) of the scanning mirror 604 may fluctuate, that is, there is a difference between the actual rotation information of the scanning mirror 604 and the preset rotation information of the spatial scanning, which may There may be a deviation between the actual position where the second detection signal reaches the first reflection surface 605 and the preset position.
  • the deviation is It may gradually increase over time, that is, the position deviation in the second half of the time period may be larger than the position deviation in the first half. In this way, the rotation information of the scanning mirror 604 can be corrected through the first marking 606 and the second marking 608 on the first reflective surface 605, so as to realize precise synchronization control of the rotation of the scanning mirror 604 during the spatial scanning process.
  • FIG. 9 shows a schematic diagram of a first reflection surface 605 according to an embodiment of the present application; as shown in FIG. One is shown), the first logo 606 and the second logo 608 are different logos; the positions of the first logo 606 and the second logo 608 have a certain interval in the horizontal direction, and the positions of the first logo 606 and the second logo 608 are the same as There is a corresponding relationship between the angle information of the scanning mirror 604 . Assuming that the rotation direction of the scanning mirror 604 is clockwise (view from the top down), the controller 603 can use the echo signal reflected by the first detection signal through the first mark 606 and the first detection signal reflected by the second mark 608. The echo signals determine actual rotational information of the scanning mirror 604, such as the actual rotational speed.
  • the controller 603 may control the synchronization signal transceiver module 601 to continuously send the first detection signal, and determine the scanning mirror 604 corresponding to the first identification 606 by identifying the echo signal reflected by the first detection signal through the first identification 606 .
  • a second moment of the mark 606, and then, according to the first angle, the second angle, the first mark 606, and the second mark 608, the actual rotation speed of the scanning mirror 604 is determined, and the actual rotation speed and the space are scanned at the first angle,
  • the preset rotation speeds corresponding to the second angles are compared, and when the difference between the two is greater than the threshold, the rotation speed of the scanning mirror 604 is adjusted to the preset rotation speed, so as to adjust the real-time rotation speed of the scanning mirror 604 to realize the spatial scanning. Precise synchronized control of scanning mirror 604 rotation during the process.
  • the identifications of different reflective surfaces are different.
  • different reflective surfaces can be distinguished by different identifiers, and when the controller determines that the first echo signal contains the echo signal reflected by the first detection signal corresponding to a marker, the controller can accurately locate the location where the marker is located through the marker.
  • Reflecting surface while realizing the scanning space synchronization of two or more adjacent frames, the point cloud generation method corresponding to each reflecting surface can be individually controlled to achieve differentiated control, that is, to realize the difference of point clouds of different frames
  • the synchronous control of the scanning mirror 604 further improves the flexibility of the synchronous control; at the same time, the requirement for the consistency of each reflection surface of the scanning mirror 604 is reduced, and the cost is reduced.
  • different marks may be set on at least two reflecting surfaces, for example, if the scanning mirror 604 includes four reflecting surfaces, marks may be set on all of the four reflecting surfaces, and the marks exist on the reflecting surfaces on which the marks are located. difference, and the marks set on different reflection surfaces are different; at least one reflection surface of multiple reflection surfaces can also be used as a mark, that is, at least one reflection surface does not need to be set with additional marks, for example, the scanning mirror 604 includes four reflection surfaces, Then, marks can be set on three of the reflecting surfaces respectively, and the marks set on different reflecting surfaces are different, and the other reflecting surface itself is used as the mark at the same time; Through the identification, the reflective surface corresponding to the identification can be determined.
  • each mark may be set at an edge position of the reflective surface.
  • the controller 603 controls the scanning signal transceiver module to transmit the second detection signal to the first reflection surface 605 to perform spatial scanning, and the first mark 606 is set on the left edge of the first reflection surface 605.
  • the reflected echo signal can timely and accurately determine that the reflective surface rotates to the first reflective surface 605 , so as to reduce or avoid the influence of the first mark 606 on the spatial scanning using the first reflective surface 605 .
  • FIG. 10 shows a schematic diagram of a scanning mirror 604 according to an embodiment of the present application; as shown in FIG. 10 , the scanning mirror 604 may be a four-sided mirror, wherein the reflective surface A' The surface B' is provided with an identification b, the identification a is different from the identification b, and the manners of transmitting the second detection signal corresponding to the identification a and the identification b are different.
  • the controller 603 may generate the N-1th frame (N is an integer greater than 1) point After the cloud, when the scanning mirror 604 rotates to the angle r1, the synchronization signal transceiver module 601 can be controlled to periodically continuously transmit the first detection signal, and the synchronization signal transceiver module 601 receives the corresponding first echo signal, and the scanning mirror
  • the controller 603 processes the first echo signal reflected by the scanning mirror 604, and this When the first detection signal is reflected by the mark (including mark a, mark b, etc.), the echo signal cannot be detected; when the scanning mirror 604 rotates to the angle r3, the first detection signal reaches mark a, and the controller 603 can determine the synchronization
  • the controller 603 can control the scanning signal transceiver module 602 according to the corresponding identification b. way to transmit the second detection signal to the reflective surface B', correspondingly, the moment when the scanning mirror 604 rotates to the angle r6 is the start moment of the N+1th frame point cloud; at this time, the controller 603 can also control the synchronization signal to send and receive The module 601 stops working; when the scanning mirror 604 rotates to the angle r7, the controller 603 controls the scanning signal transceiver module 602 to stop transmitting the second detection signal, which is the end time of the N+1th frame point cloud, so far, Complete the empty space using the reflective surface B' Scan to generate the corresponding N+1 frame point cloud.
  • different reflective surfaces can be distinguished by the marks corresponding to the reflective surfaces, and different ways of transmitting the second detection signal can be different; when a mark is identified, it can be determined that the reflective surface where the mark is located is about to start spatial scanning, Control the scanning signal transceiver module 602 to transmit the second detection signal to the reflection surface where the identification is located according to the mode corresponding to the identification, perform spatial scanning, and generate a frame of point cloud, thereby realizing the difference between different reflecting surfaces and their corresponding point cloud generation methods control.
  • the way in which the controller 603 controls the operation of the synchronization signal transceiver module 601 can be determined according to the number of marks set on the reflective surface. For example, if a reflective surface is provided with only one mark, the controller 603 can recognize the mark when When the synchronizing signal transceiver module 601 is controlled to stop working; if a reflection surface is provided with a plurality of marks, the controller 603 can control the synchronization signal transceiver module to continue to work when the initial mark and the middle mark of the reflecting surface are identified, until the The last mark (end mark) in the reflecting surface is identified; in this way, when the number of marks on the two reflecting surfaces is different, the reflecting surface can be determined by the number of identified marks on one reflecting surface; The multiple marks on the reflective surface can obtain more information such as the rotation angle and rotation speed of the scanning mirror 604 to further improve the synchronization accuracy. For the start mark, middle mark and end mark on the same reflective surface, it can be distinguished and defined according to the specific product design.
  • the controller 603 can determine whether the first echo signal includes the first detection signal through the first echo signal corresponding to the first reflection surface 605 through the feature set of the first echo signal Identifies 606 the reflected echo signal.
  • the condition for determining that the first echo signal includes the echo signal reflected by the first detection signal through the first mark 606 corresponding to the first reflection surface 605 may be: a first feature set of the first echo signal Matching with a preset feature set; wherein, the preset feature set and the first identifier 606 have a corresponding relationship.
  • a preset feature set of the echo signal reflected by the first detection signal via each marker on different reflective surfaces can be extracted in advance, so that a preset feature set corresponding to each marker can be established; during the synchronization process, the controller 603 can Extract the first feature set of the first echo signal; when the first feature set matches the preset feature set corresponding to the first identifier 606 , it is determined that the first echo signal includes the first detection signal reflected by the first identifier 606 The echo signal, wherein the first detection signal transmitted in the stage of establishing the preset feature set corresponding to each identifier and the synchronization process is the same. In this way, the mark reflecting the first echo signal can be identified according to the first feature set of the first echo signal, so as to determine the reflecting surface on which the mark is located.
  • the first feature set may include: any one of the waveform feature of the first echo signal, the pattern feature corresponding to the first echo signal, and the time feature corresponding to the first echo signal. one or more.
  • the corresponding marks can be identified according to the differences in waveform characteristics, pattern characteristics, time characteristics, etc. of the echo signals reflected by the different marks of the first detection signal.
  • the mark can be set by any one or more manners of coating the reflective surface, etching, sticking a film, changing material, and changing shape.
  • a region of a reflective surface can be coated with a coating, and the coating can be used as a mark of the reflective surface; and a region of a reflective surface can be etched to change the texture of the reflective surface, and the The texture is used as the identification of the reflective surface; it is also possible to apply a film to an area of a reflective surface, and the film can be used as the identification of the reflective surface; you can also change the material of an area of a reflective surface, so that this area is different from The reflective surface, the region is used as the identification of the reflective surface; the shape of a region of a reflective surface can also be changed, such as convex or concave, so that the region is different from other parts of the reflective surface, and the region is used as the The identification of the reflective surface; the reflective surface is simply processed by the above-mentioned various methods, and the identification
  • different processing can be performed on different reflective surfaces in the above-mentioned various ways, so as to set different marks on different reflective surfaces, and the processing cost is low.
  • the processing cost is low.
  • the echoes of the first detection signal reflected by the different markings are different.
  • waveform characteristics, pattern characteristics, time characteristics and other characteristics between the signals, and between the echo signal reflected by the mark and the echo signal reflected by the reflecting surface where the mark is located, so that this difference can be used to identify different logotypes.
  • waveform characteristics may include, but are not limited to, any one or more of amplitude, wavelength (or frequency), phase, and the like.
  • the material of the first mark 606 may be different from the material (or other marks) of the first reflection surface 605 , and the first detection signal passes through the first mark 606 and the non-first reflection surface 605 . After a part of the mark 606 (or other marks) is reflected, there is a difference in the amplitude of the echo signal. In this way, the amplitude of the first echo signal is matched with the amplitude of the echo signal corresponding to the preset first mark 606, so as to determine First identification 606 .
  • the material of the first marking 606 may be different from the material (or other markings) of the first reflective surface 605.
  • a certain wavelength band of the broad-spectrum light source is absorbed.
  • the center wavelength of the received first echo signal can be converted into The center wavelength of the echo signal corresponding to the preset first identifier 606 is matched to determine the first identifier 606 .
  • the phase will change differently; the material of the first marking 606 may be different from the material (or other markings) of the first reflecting surface 605; the received The first echo information obtained is compared with the first detection signal, the actual phase change is determined, and the actual phase change is matched with the phase change corresponding to the preset first identifier 606 , so as to determine the first identifier 606 .
  • the pattern features may include: any one or more of the patterns, shapes, and numbers of light spots formed by the first echo signal. For example, a specific pattern or Texture, and the pattern or texture is different from other marks, after the first detection signal is reflected by the first mark 606 and other marks, the light spot formed by the echo signal is different, and the light spot pattern formed by the received first echo signal is different from that of the first detection signal.
  • the light spot patterns formed by the echo signals corresponding to an identifier 606 are matched to determine the first identifier 606 .
  • a first mark 606 with a specific shape can be provided on the first reflective surface 605 through film, coating, etc., and the shape is different from other marks, and the first detection signal After the reflection of the first mark 606 and other marks, the shape of the light spot formed by the echo signal is different, and the light spot shape formed by the received first echo signal and the shape of the light spot formed by the echo signal corresponding to the first mark 606 are compared. match, thereby determining the first identification 606 .
  • a pattern sequence in the vertical direction can be set on the first reflective surface 605 by means of film sticking or etching as the first mark 606, different patterns in the sequence are arranged at certain intervals, and each pattern in the pattern sequence corresponding to the different marks is arranged.
  • the arrangement interval is the same, and the number of patterns is different;
  • the first detection signal emitted by the synchronization signal transceiver module includes a plurality of laser beams arranged at a certain interval in the vertical direction, and different laser beams can reach different intervals. After the detection signal is reflected by the first mark 606 and other marks, there is a difference in the number of light spots formed by the echo signals. The number of spots is matched to determine the first identification 606 .
  • the time characteristic may include: the time interval between multiple echo signals.
  • a pattern sequence may be set on the first reflective surface 605 as the first mark 606 by means of film sticking or etching. The arrangement interval is different, and the pattern sequence includes at least two patterns, and the time interval corresponding to the identifier can be determined according to the time of echo signals corresponding to two adjacent patterns in the same pattern sequence. In this way, the first detection signal passes through the first detection signal. After the logo 606 is reflected from other logos, the time intervals corresponding to different logos are different, and the time interval determined by the first echo signals reflected by the adjacent two patterns is matched with the time interval corresponding to the first logo 606, thereby determining the first echo signal. Identifies 606 .
  • the embodiments of the present application further provide a synchronization control method for a laser radar.
  • the method can be applied to the synchronization control device of the lidar in any of the above embodiments.
  • FIG. 12 shows a flowchart of a synchronization control method for a lidar according to an embodiment of the present application.
  • the method may be executed by the controller 603 in FIG. 6 .
  • the method may include:
  • Step 1201 Control the synchronization signal transceiver module of the lidar to transmit a first detection signal.
  • Step 1202 Determine that the first echo signal received by the synchronization signal transceiver module includes the echo signal of the first detection signal reflected by the first mark corresponding to the first reflection surface of the scanning mirror included in the lidar , controlling the scanning signal transceiver module to transmit a second detection signal to the first reflection surface in a first manner, wherein the first identification corresponds to the first manner.
  • the controller controls the synchronization signal transceiver module of the lidar to transmit the first detection signal, and when it is determined that the first echo signal includes the echo of the first detection signal reflected by the first mark corresponding to the first reflection surface
  • the scanning signal transceiver module is controlled to transmit the second detection signal, thereby completing a spatial scan using the first reflecting surface, and generating a frame of point cloud corresponding to the first reflecting surface;
  • the multiple reflecting surfaces of the scanning mirror are all Including the corresponding identification
  • the controller can control the scanning signal transceiver module to transmit the second detection signal to each reflecting surface when determining the echo signal reflected by the corresponding identification of each reflecting surface, so as to complete a spatial scan using each reflecting surface, And can generate a frame of point cloud corresponding to each reflection surface, thus realizing the scanning space synchronization of two or more adjacent frames, without using hardware such as angle encoders; method) corresponds to the first mark, that is, corresponds to the first reflective surface, so that the scanning signal trans
  • the identifiers of different reflecting surfaces of the scanning mirror included in the lidar are different.
  • the first feature set of the first echo signal matches a preset feature set; wherein, the preset feature set and the first identifier have a corresponding relationship.
  • the first identifier is a start identifier of the first reflection surface
  • the transmission moment of the second detection signal is the start of frame data corresponding to the first reflection surface time
  • the first reflecting surface is further provided with a second mark; the method further includes: according to the echo signal reflected by the first mark on the first detection signal, the first mark An echo signal reflected by a detection signal through the second marker and preset rotation information controls the rotation of the scanning mirror.
  • the first mark is provided at an edge position of the first reflection surface.
  • the wavelength ranges of the first detection signal and the second detection signal are different.
  • the first feature set includes: waveform features of the first echo signal, pattern features corresponding to the first echo signal, and time corresponding to the first echo signal any one or more of the features.
  • the first mark is set by any one or more manners of coating the first reflective surface, etching, sticking a film, changing materials, and changing shapes.
  • An embodiment of the present application provides a synchronization control device for a lidar, comprising: at least one processor and a memory for storing instructions executable by the processor; wherein the at least one processor is configured to execute the instructions when the at least one processor is configured to execute the instructions.
  • the synchronization control method of the above-mentioned lidar is realized.
  • FIG. 13 shows a schematic structural diagram of another lidar synchronization control apparatus according to an embodiment of the present application.
  • the lidar synchronization control apparatus may include: at least one processor 1001 and at least one communication interface 1004.
  • a communication line 1002 and a memory 1003 may also be included.
  • the processor 1001 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 1001 may be used to implement the controller 603 in this embodiment of the present application.
  • Communication line 1002 may include a path to communicate information between the components described above.
  • Communication interface 1004 using any transceiver-like device, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • Memory 1003 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through communication line 1002 .
  • the memory can also be integrated with the processor.
  • the memory provided by the embodiments of the present application may generally be non-volatile.
  • the memory 1003 is used for storing computer-executed instructions for executing the solutions of the present application, and the execution is controlled by the processor 1001 .
  • the processor 1001 is configured to execute the computer-executed instructions stored in the memory 1003, thereby implementing the synchronization control method of the lidar provided in the above-mentioned embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 13 .
  • the synchronization control apparatus of the lidar may include multiple processors, for example, the processor 1001 and the processor 1007 in FIG. 13 .
  • Each of these processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the synchronization control apparatus of the lidar may further include an output device 1005 and an input device 1006 .
  • the output device 1005 is in communication with the processor 1001 and can display information in a variety of ways.
  • the output device 1005 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 1006 is in communication with the processor 1001 and can receive user input in a variety of ways.
  • the input device 1006 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • Embodiments of the present application further provide a lidar, where the lidar includes at least one synchronization control device for the lidar mentioned in the above embodiments of the present application.
  • the synchronous control device of the lidar can be applied to advanced driver assistance systems (ADAS) and automated driving systems (ADS) of vehicles, and can also be used for various driving functions (such as autonomous driving systems).
  • ADAS advanced driver assistance systems
  • ADS automated driving systems
  • Adaptive cruise control (ACC) and automatic emergency braking (advanced emergency braking, AEB), etc. can also be applied to device to device communication (D2D), vehicle communication with anything (vehicle to everything, V2X), vehicle to vehicle (V2V), long term evolution and vehicle communication (long term evolution-vehicle, LTE-V), long term evolution and machine communication (long term evolution-machine, LTE-M) ) and other scenarios.
  • D2D device to device communication
  • V2X vehicle to everything
  • V2V vehicle to vehicle
  • LTE-V long term evolution and vehicle communication
  • LTE-M long term evolution-machine
  • An embodiment of the present application further provides a terminal, where the terminal includes at least one synchronization control device for the laser radar mentioned in the above embodiments of the present application.
  • the terminal can be intelligent transportation equipment, smart home equipment, robots, drones, surveying and mapping equipment, augmented reality (AR) game equipment, virtual reality (VR) game equipment, medical equipment and other terminal equipment .
  • the synchronization control device of the lidar includes, but is not limited to, a smart terminal or a controller, a chip, sensors such as lidar, and other components in the smart terminal.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the above method.
  • Embodiments of the present application provide a computer program product, including computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in a processor of an electronic device When running in the electronic device, the processor in the electronic device executes the above method.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable type programmable read-only memory (electrically programmable read-only-memory, EPROM or flash memory), static random-access memory (static random-access memory, SRAM), portable compact disc read-only memory (compact disc read-only memory, CD - ROM), digital video discs (DVDs), memory sticks, floppy disks, mechanically encoded devices, such as punch cards or raised structures in grooves on which instructions are stored, and any suitable combination of the foregoing .
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable type programmable read-only memory
  • EPROM electrically programmable read-only-memory
  • EPROM erasable type programmable read-only memory
  • static random-access memory static random-access memory
  • SRAM static random-access memory
  • portable compact disc read-only memory compact disc read-only memory
  • CD - ROM compact disc
  • Computer readable program instructions or code described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • Computer program instructions for carrying out the operations of the present application may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or in one or more source or object code written in any combination of programming languages, including object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer can be connected to the user's computer through any kind of network—including a local area network (LAN) or a wide area network (WAN)—or, can be connected to an external computer (e.g., use an internet service provider to connect via the internet).
  • electronic circuits such as programmable logic circuits, field-programmable gate arrays (FPGAs), or programmable logic arrays (programmable logic arrays), are personalized by utilizing state information of computer-readable program instructions logic array, PLA), the electronic circuit can execute computer-readable program instructions to implement various aspects of the present application.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in hardware (eg, circuits or application specific integrated circuits) that perform the corresponding function or action. (application specific integrated circuit, ASIC)), or it can be implemented with a combination of hardware and software, such as firmware.
  • hardware eg, circuits or application specific integrated circuits
  • ASIC application specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达的同步控制装置,可应用于自动驾驶、智能驾驶、无人驾驶等领域。该装置包括:同步信号收发模组(601)、扫描信号收发模组(602)、控制器(603)和扫描镜(604),扫描镜(604)包括多个反射面,多个反射面包含相应的标识,多个反射面包含第一反射面(605);控制器(603)用于控制同步信号收发模组(601)发射第一探测信号;同步信号收发模组(601)用于接收第一回波信号;控制器(603)用于确定第一回波信号包含第一探测信号经对应于第一反射面(605)的第一标识(606)反射的回波信号,控制扫描信号收发模组(602)按照第一方式向第一反射面(605)发射第二探测信号,第一标识(606)对应于第一方式。还涉及一种激光雷达的同步控制方法、激光雷达、终端、计算机可读存储介质。能够实现多帧点云之间的扫描空间及第一反射面(605)与其对应点云的生成方式的同步,成本低,增加了激光雷达控制的灵活性。

Description

一种激光雷达的同步控制装置及方法
本申请要求于2021年4月9日提交中国专利局、申请号为202110383460.7、发明名称为“一种激光雷达的同步控制装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传感器技术领域,尤其涉及一种激光雷达的同步控制装置及方法。
背景技术
激光雷达(light detection and ranging,LiDAR)技术是一种光学测量技术,它通过激光源向目标发出探测信号,可以通过测量发出探测信号与接收回波信号的时间差(也称为光的飞行时间(time of flight,TOF))来测量目标距离光源的距离等信息,生成点云(pointcloud),点云在三维建模、自动驾驶、高级辅助驾驶、测绘学、考古学、地理学、地貌、地震、林业、遥感以及大气物理等领域应用广泛。激光雷达按照扫描器的扫描方式可以分为机械云台扫描、扫描镜、光学相控阵、闪光(flash)方式等。
其中,扫描镜是当前激光雷达主流架构之一。扫描镜的实现方式可以包括摆镜、转镜、多面镜(polygon)等,其中,多面镜相比其他实现方式具有点云帧率高的特点,多面镜的一个反射面通常对应生成一帧点云,多面镜顺时针或者逆时针旋转360度可以实现多帧点云输出,可以提高物体检测的分辨率,尤其对于运动的物体,可以快速探测物体的变化。然而,在提高帧率的同时,也对反射面生成点云的同步性带来了更高的要求,现有同步控制方式中,一般仅能实现相邻两帧点云或者多帧点云之间的扫描空间同步,且成本较高;并且,无法实现反射面与其对应点云的生成方式的同步控制。
发明内容
有鉴于此,提出了一种激光雷达的同步控制装置、方法、激光雷达、终端及可读存储介质。
第一方面,本申请的实施例提供了一种激光雷达的同步控制装置,包括:同步信号收发模组、扫描信号收发模组、控制器、和扫描镜;所述扫描镜包括多个反射面,所述多个反射面包含相应的标识,所述多个反射面包含第一反射面;所述控制器用于控制所述同步信号收发模组发射第一探测信号;所述同步信号收发模组用于接收第一回波信号;所述控制器用于确定所述第一回波信号包含所述第一探测信号经对应于所述第一反射面的第一标识反射的回波信号,控制所述扫描信号收发模组按照第一方式向所述第一反射面发射第二探测信号,其中,所述第一标识对应于所述第一方式。
基于上述技术方案,扫描镜的多个反射面包含相应的标识,同步信号收发模组发射第一探测信号,并接收第一回波信号;控制器在确定第一回波信号包含第一探测信号经对应于第一反射面的第一标识反射的回波信号时,控制扫描信号收发模组向第一反射面发射第二探测信号,从而完成利用第一反射面的一次空间扫描,并可以生成第一反射面对应的一帧点云; 扫描镜的多个反射面均包含相应的标识,控制器可以在确定各反射面的相应标识反射的回波信号时,控制扫描信号收发模组向各反射面发射第二探测信号,从而完成利用各反射面的一次空间扫描,并可以生成各反射面对应的一帧点云,从而实现了相邻两帧或多帧的扫描空间同步,无需采用角度编码器等硬件,同时,发射第二探测信号的方式(即第一方式)与第一标识对应,即可以跟第一反射面对应,使得扫描信号收发模组能够按照第一反射面对应的方式向第一反射面发射第二探测信号,由此实现了第一反射面与其对应点云的生成方式的同步控制,即针对一帧点云,可确定相应的生成方式,增加了激光雷达控制的灵活性,且降低了对第一反射面与其他反射面的一致性要求,成本更低、可靠性更高。
根据第一方面,在所述第一方面的第一种可能的实现方式中,不同反射面的标识不同。
基于上述技术方案,通过不同的标识区分不同的反射面,控制器在确定第一回波信号包含第一探测信号经一标识反射的回波信号时,可以通过该标识准确定位到该标识所在的反射面,在实现相邻两帧或多帧的扫描空间同步的同时,可以针对每一个反射面对应的点云生成方式进行单独控制,实现差异化控制,即实现不同帧点云的差异性的同步控制,进一步提高了同步控制的灵活性;同时,降低了对扫描镜的各反射面的一致性要求,降低了成本。
根据第一方面或第一方面的第一种可能的实现方式,在所述第一方面的第二种可能的实现方式中,所述第一回波信号的第一特征集合与一预设特征集合匹配;其中,所述预设特征集合与所述第一标识存在对应关系。
基于上述技术方案,可以根据第一回波信号的第一特征集合,识别反射第一回波信号的标识,从而确定对应的反射面。
根据第一方面或上述第一方面的各种可能的实现方式,在所述第一方面的第三种可能的实现方式中,所述第一标识为所述第一反射面的起始标识,所述第二探测信号的发射时刻是所述第一反射面对应的帧数据的起始时刻。
基于上述技术方案,控制器可以根据识别第一标识的时刻,在第一反射面对应的点云的起始时刻控制扫描信号收发模组工作,即按照第一标识对应的第一方式向所述第一反射面发射第二探测信号,进行空间扫描,得到第一反射面对应的一帧完整的点云,从而在识别第一标识的同时,保证了利用第一反射面进行空间扫描的可靠性,以较低的成本,实现了相邻两帧或多帧的扫描空间同步。
根据第一方面或上述第一方面的各种可能的实现方式,在所述第一方面的第四种可能的实现方式中,所述第一反射面还设置有第二标识;所述控制器还用于:根据所述第一探测信号经所述第一标识反射的回波信号、所述第一探测信号经所述第二标识反射的回波信号、及预设转动信息,控制所述扫描镜转动。
基于上述技术方案,可以通过第一反射面上的第一标识及第二标识,对扫描镜的转动信息进行校正,从而在空间扫描过程中实现扫描镜转动的精确同步控制。
根据第一方面或上述第一方面的各种可能的实现方式,在所述第一方面的第五种可能的实现方式中,所述第一标识设置在所述第一反射面的边缘位置。
基于上述技术方案,可通过识别第一标识反射的回波信号,及时、准确判断反射面旋转至第一反射面,可以减少或避免标识对空间扫描的影响。
根据第一方面或上述第一方面的各种可能的实现方式,在所述第一方面的第六种可能的实现方式中,所述第一探测信号与所述第二探测信号的波长范围不同。
基于上述技术方案,可以避免第一探测信号与第二探测信号之间相互干扰,保证了相邻两帧或多帧的扫描空间同步及利用反射面进行空间扫描的可靠性及精确度。
根据第一方面的第二至第六种可能的实现方式中的任一种,在所述第一方面的第七种可能的实现方式中,所述第一特征集合包括:所述第一回波信号的波形特征、所述第一回波信号对应的图案特征、所述第一回波信号对应的时间特征中的任意一种或多种。
基于上述技术方案,可以根据第一探测信号经不同的标识反射后的回波信号的波形特征、图案特征、时间特征等的差异,识别对应的标识。
根据第一方面或上述第一方面的各种可能的实现方式,在所述第一方面的第八种可能的实现方式中,所述第一标识通过对所述第一反射面进行镀膜、刻蚀、贴膜、改变材料、和改变形状中的中的任意一种或多种方式设置。
基于上述技术方案,通过上述多种方式对反射面进行简单加工,设置标识,从而实现标识与该标识所在反射面的区分;还可以通过上述多种方式,对不同反射面进行不同的加工,从而在不同反射面上设置不同标识,且加工成本低。
第二方面,本申请的实施例提供了一种激光雷达的同步控制方法,所述方法包括:控制激光雷达的同步信号收发模组发射第一探测信号;确定所述同步信号收发模组接收的第一回波信号包含所述第一探测信号经对应于所述激光雷达包含的扫描镜的第一反射面的第一标识反射的回波信号,控制扫描信号收发模组按照第一方式向所述第一反射面发射第二探测信号,其中,所述第一标识对应于所述第一方式。
根据第二方面,在所述第二方面的第一种可能的实现方式中,所述激光雷达包含的扫描镜的不同反射面的标识不同。
根据第二方面或第二方面的第一种可能的实现方式,在所述第二方面的第二种可能的实现方式中,所述第一回波信号的第一特征集合与一预设特征集合匹配;其中,所述预设特征集合与所述第一标识存在对应关系。
根据第二方面或上述第二方面的各种可能的实现方式,在所述第二方面的第三种可能的实现方式中,所述第一标识为所述第一反射面的起始标识,所述第二探测信号的发射时刻是所述第一反射面对应的帧数据的起始时刻。
根据第二方面或上述第二方面的各种可能的实现方式,在所述第二方面的第四种可能的实现方式中,所述第一反射面还设置有第二标识;所述方法还包括:根据所述第一探测信号经所述第一标识反射的回波信号、所述第一探测信号经所述第二标识反射的回波信号、及预设转动信息,控制所述扫描镜转动。
根据第二方面或上述第二方面的各种可能的实现方式,在所述第二方面的第五种可能的实现方式中,所述第一标识设置在所述第一反射面的边缘位置。
根据第二方面或上述第二方面的各种可能的实现方式,在所述第二方面的第六种可能的实现方式中,所述第一探测信号与所述第二探测信号的波长范围不同。
根据第二方面的第二至第六种可能的实现方式中的任一种,在所述第二方面的第七种可能的实现方式中,所述第一特征集合包括:所述第一回波信号的波形特征、所述第一回波信号对应的图案特征、所述第一回波信号对应的时间特征中的任意一种或多种。
根据第二方面或上述第二方面的各种可能的实现方式,在所述第二方面的第八种可能的实现方式中,所述第一标识通过对所述第一反射面进行镀膜、刻蚀、贴膜、改变材料和改变 形状中的中的任意一种或多种方式设置。
第三方面,本申请的实施例提供了一种激光雷达,所述激光雷达包括上述第一方面或者第一方面的多种可能的实现方式中的一种或几种的激光雷达的同步控制装置。
第四方面,本申请的实施例提供了一种终端,所述终端包括上述第一方面或者第一方面的多种可能的实现方式中的一种或几种的激光雷达的同步控制装置。
第五方面,本申请的实施例提供了一种激光雷达的同步控制装置,包括:至少一个处理器;用于存储处理器可执行指令的存储器;其中,所述至少一个处理器被配置为执行所述指令时实现上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的激光雷达的同步控制方法。
第六方面,本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的激光雷达的同步控制方法。
第七方面,本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的激光雷达的同步控制方法。
上述第二方面至第七方面的各方面,及各方面的各种可能的实现方式的技术效果,参见上述第一方面。
本申请的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1示出相关技术中一种多面镜扫描方式的激光雷达的结构的示意图。
图2示出利用图1中激光雷达生成相邻帧点云的示意图。
图3示出了相关技术中一种激光雷达同步控制方式的示意图。
图4示出了相关技术中另一种激光雷达同步控制方式的示意图。
图5示出根据本申请一实施例的激光雷达的同步控制装置适用的一种可能的应用场景示意图。
图6示出根据本申请一实施例的一种激光雷达的同步控制装置的结构图。
图7示出根据本申请一实施例的另一种激光雷达的同步控制装置的结构示意图。
图8示出根据本申请一实施例的另一种激光雷达的同步控制装置的结构示意图。
图9示出根据本申请一实施例的一种第一反射面的示意图。
图10示出根据本申请一实施例的一种扫描镜的示意图。
图11示出根据本申请一实施例的基于图10中扫描镜实现同步控制的示意图。
图12示出根据本申请一实施例的一种激光雷达的同步控制方法的流程图。
图13示出根据本申请一实施例的另一种激光雷达的同步控制装置的结构示意图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
图1示出相关技术中一种多面镜扫描方式的激光雷达的结构的示意图,如图1所示,该激光雷达可以包括:激光发射模块、激光接收模块、多面镜(图中以四面镜为例)和控制器;控制器控制激光发射模块发出的探测信号经过多面镜反射到达空间物体,经空间物体反射,形成回波信号,该回波信号经多面镜的反射后到达激光接收模块,随着多面镜的转动,改变探测信号及回波信号的方向,两者的角度范围即为激光雷达的探测视角(field of view,FOV);激光接收模块将接收到的回波信号发送到控制器,控制器通过对回波信号及探测信号进行处理,多面镜转动一周,可以生成多帧点云,其中,一帧点云是指经由一个反射面反射的一组探测信号及对应的回波信号,所生成的数据,示例性地,一组探测信号可以包括一段在时间域上连续的探测信号,也可以包括多段在时间域上连续的探测信号,其中,各段探测信号之间可以在时间域上彼此连续,也可以具有一定间隔。
下面对相关技术中针对上述图1中的激光雷达的同步控制方式进行介绍。
图2示出利用图1中激光雷达生成相邻帧点云的示意图;如图2所示,该激光雷达的多面镜包括反射面A、反射面B、反射面C、反射面D(图中未示出)共四个反射面;随着多面镜的旋转,每当多面镜转动到一反射面可以接收到激光发射模块发射的探测信号的位置时,激光发射模块可以向特定方向发出一组探测信号,该组探测信号经由该反射面反射后,可以到达外部环境,经外部环境反射后的一组回波信号可以通过原光路返回,激光接收模块可以接收该组回波信号,从而完成利用该反射面的一次空间扫描,并可以通过该组探测信号及该组回波信号生成一帧点云,这样,多面镜旋转一周,可以完成四次空间扫描,对应生成四帧点云;如图2(a)所示,当多面镜转动到反射面A可以接收到激光发射模块发射的探测信号的位置时,向反射面A发出一组探测信号,完成利用反射面A的一次空间扫描,经由反射面A反射的一组探测信号及对应的一组回波信号用于生成第M帧点云(M为大于0的整数);如图2(b)所示,当多面镜转动到反射面B可以接收到激光发射模块发射的探测信号的位置时,向反射面B发出一组探测信号,完成利用反射面B的一次空间扫描,经由反射面B反射的一组探测信号及对应的一组回波信号用于生成第M+1帧点云。其中,上述“特定方向”可以是某个固定方向或者某个方向范围内的方向,与反射面的位置有关。
图3示出了相关技术中一种激光雷达同步控制方式的示意图,如图3所示,在上述图2所示的激光雷达的多面镜下方,设置有角度编码器,通过该角度编码器实现多面镜的同步控制:即采用360度角度编码器对多面镜旋转的角度进行测量和反馈,设定某一帧的起始旋转角度点为角度编码器的起始0度角,多面镜从0度开始顺时针或者逆时针旋转,角度编码器会定时测量当前多面镜从起始0度角转过的角度。从角度编码器当前的角度值就可以得到多面镜旋转过的角度,如图3所示,多面镜旋转360度可以生成四帧点云,每一帧点云与该帧 所对应的反射面的起始角度(或者说该帧所对应的反射面与上一帧所对应的反射面相接处对应的角度)之间间隔Bi角度(i代表第几帧,1≤i≤4,Bi<90)设反射面A对应帧的起始旋转角度点为角度编码器的起始0+B1度角,则反射面B对应帧的起始旋转角度点为角度编码器的起始90+B2度角,以此类推,可以确定每一帧点云对应的探测信号发射的起始时刻对应的角度,激光发射模块在该起始时刻,发射探测信号,从而实现所生成相邻两帧点云或者多帧点云之间的扫描空间同步,即图2(a)中第M帧点云与图2(b)中第M+1帧点云分别为利用相应的一个反射面(即反射面A和反射面B)进行空间扫描所生成。
该方式中,仅能实现相邻两帧点云或者多帧点云之间的扫描空间同步,无法实现反射面与其对应点云的生成方式的同步控制,同时,角度编码器成本较高,且在需要高精度的应用场景可能需要光编码器或者更高级的编码器,在一些应用场景下例如车载场景,可靠性不高。
图4示出了相关技术中另一种激光雷达同步控制方式的示意图,如图4所示,在上述图2中的激光雷达中还设置有同步发射模块、同步接收模块以及反射镜(图中未示出),反射镜设置在一特定位置,在多面镜旋转到特定角度(即各反射面相接处对应的角度)时,同步发射模块反射的同步探测信号经多面镜及反射镜的反射,到达同步接收模块;而在多面镜旋转到其他角度时,同步探测信号则无法到达同步接收模块;这样,通过同步发射模块及同步接收模块,监控多面镜是否旋转到上述特定角度,从而得到多面镜每一个扫描面的起始时刻;同步发射模块在上一帧结束时开始发射同步探测信号,只有当多面镜转到上述特定角度时,同步发射模块发射的探测信号才可以经反射镜反射被同步接收模块收到,通过同步接收模块的回波信号,便可以得知每一个反射面对应帧的角度的起始时刻,根据起始时刻通知探测发射模组(图中未示出)进行打光,从而实现多面镜扫描的相邻两帧点云或者多帧点云之间的扫描空间同步。
该方式中,通过检测多面镜旋转到特定角度,仅能实现相邻两帧点云或者多帧点云之间的扫描空间同步,无法实现一反射面与其对应点云的生成方式的同步控制;同时,对多面镜的多个反射面的一致性要求较高,加工难度大,成本高。
为了解决上述技术问题,本申请实施例提供了一种激光雷达的同步控制装置,该同步控制装置可以通过更低成本、更高可靠性的方式实现相邻两帧点云或者多帧点云之间的扫描空间同步;同时,可以实现针对一反射面与其对应点云的生成方式(用于空间扫描的探测信号的发射方式)的同步控制,即针对一帧点云,可确定相应的生成方式,增加了激光雷达控制的灵活性,并能够降低对多面镜的多个反射面的一致性要求。
本申请实施例提供的激光雷达的同步控制装置可以应用于激光雷达或终端等中,示例性地,该激光雷达的同步控制装置可为具有激光雷达同步控制功能的车辆,或者为具有激光雷达同步控制功能的其他部件。该激光雷达的同步控制装置包括但不限于:车载终端、车载控制器、车载模块、车载模组、车载部件、车载芯片、车载单元、车载激光雷达等。
示例性地,该激光雷达的同步控制装置还可以为除了车辆之外的其他具有激光雷达的同步控制功能的终端,或设置在除了车辆之外的其他具有激光雷达的同步控制功能的终端中,或设置于该终端的部件中。该终端可以为智能运输设备、智能家居设备、机器人、无人机、测绘设备、增强现实(augmented reality,AR)游戏设备、虚拟现实技术(virtual reality,VR)游戏设备、医疗设备等其他终端设备。该激光雷达的同步控制装置包括但不限于智能终端或智能终端内的控制器、芯片、激光雷达等传感器、以及其他部件等。
图5示出根据本申请一实施例的激光雷达的同步控制装置适用的一种可能的应用场景示意图。如图5所示,该应用场景可以为自动驾驶场景、智能驾驶或者无人驾驶等,该场景中可以包括至少一辆自车501,该自车中安装有至少一个激光雷达502,该激光雷达502中安装有至少一个激光雷达的同步控制装置,该激光雷达的同步控制装置用于在通过激光雷达502扫描周围环境中的物体时,得到物体(如图中他车503、障碍物504等)与自车501的距离等信息,例如,激光雷达502发射探测信号,然后将接收到的经障碍物504反射回来的回波信号与探测信号进行处理后,可获得障碍物504的有关信息,如距离、方位、高度、速度、姿态、甚至形状等参数,从而可对障碍物504进行探测、跟踪和识别。
需要说明的是,图5中仅以一辆自车、一辆他车、一个激光雷达及一个障碍物示出,应理解,这并不限定应用场景中车辆的数量、激光雷达的数量及障碍物的数量,应用场景中可以包括更多的车辆、更多的激光雷达及更多的障碍物等,此处不再示出。
此外,本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,针对其他相似的或新的应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请提供的激光雷达的同步控制装置进行具体说明。
图6示出根据本申请一实施例的一种激光雷达的同步控制装置的结构图,如图6所示,该装置可以包括:同步信号收发模组601、扫描信号收发模组602、控制器603、和扫描镜604,
其中,所述扫描镜604包括多个反射面,所述多个反射面包含相应的标识,所述多个反射面包含第一反射面605;
所述控制器603用于控制所述同步信号收发模组601发射第一探测信号;
所述同步信号收发模组601用于接收第一回波信号;
所述控制器603用于确定所述第一回波信号包含所述第一探测信号经对应于所述第一反射面605的第一标识606反射的回波信号,控制所述扫描信号收发模组602按照第一方式向所述第一反射面605发射第二探测信号,其中,所述第一标识606对应于所述第一方式。
本申请实施例中,扫描镜604的多个反射面包含相应的标识,同步信号收发模组601发射第一探测信号,并接收第一回波信号;控制器603在确定第一回波信号包含第一探测信号经对应于第一反射面605的第一标识606反射的回波信号时,控制扫描信号收发模组602向第一反射面605发射第二探测信号,从而完成利用第一反射面605的一次空间扫描,并可以生成第一反射面605对应的一帧点云;扫描镜604的多个反射面均包含相应的标识,控制器603可以在确定各反射面的相应标识反射的回波信号时,控制扫描信号收发模组602向各反射面发射第二探测信号,从而完成利用各反射面的一次空间扫描,并可以生成各反射面对应的一帧点云,从而实现了相邻两帧或多帧的扫描空间同步,无需采用角度编码器等硬件;同时,发射第二探测信号的方式(即第一方式)与第一标识606对应,即跟第一反射面605对应,使得扫描信号收发模组能够按照第一反射面605对应的方式向第一反射面605发射第二探测信号,由此实现了第一反射面605与其对应点云的生成方式的同步控制,即针对一帧点云,可确定相应的生成方式,增加了激光雷达控制的灵活性,且降低了对第一反射面与其他反射面的一致性要求,成本更低、可靠性更高。
其中,扫描镜604可以包括3个、4个、6个等多个反射面,本申请实施例对扫描镜604所包括的反射面的数量不作限定;例如,扫描镜604可以为四面镜,第一反射面605可以为 四个反射面中任一反射面。各反射面可以包括一个或多个对应的标识,即第一反射面605可以包括一个或多个对应的标识,第一标识606可以为第一反射面605的任一标识。示例性地,若第一反射面605包括一个对应的标识,控制器603在识别到第一回波信号包括该标识反射的回波信号时,控制扫描信号收发模组602向第一反射面605发射第二探测信号,该第二探测信号可以为一段在时间域上连续的探测信号,从而将该第二探测信号作为一组探测信号,完成利用第一反射面605的一次空间扫描,生成一帧点云。若第一反射面605包括多个对应的标识时,控制器603可以在识别到第一回波信号包括所述第一反射面的各标识反射的回波信号时,控制扫描信号收发模组602向第一反射面605发射第二探测信号,且发射的各标识对应的第二探测信号可以为一段在时间域上连续的探测信号,可以将所发射的多个标识对应的多段第二探测信号共同作为一组探测信号,从而利用该组探测信号,完成利用第一反射面605的一次空间扫描,生成一帧点云。
同步信号收发模组601与扫描信号收发模组602可以独立设置,也可以集成设置,本申请实施例对此不做具体限定。扫描信号收发模组602可以为任意可以实现空间扫描功能的收发模组,同步信号接收模组可以为任意可以实现同步功能的收发模组,可以理解的,“扫描信号收发模组602”及“同步信号收发模组601”为了区分实现不同功能的收发模组,本申请实施例对各收发模组的具体名称不作限定。扫描信号收发模组602的位置及同步信号收发模组601的位置可以基于本领域常规方式设置,从而可以与扫描镜604等部件相互配合,实现空间扫描及同步功能。激光雷达的同步控制装置可以包括一个或多个同步信号收发模组601,也可以包括一个或多个扫描信号收发模组602,本申请实施例对同步信号收发模组601与扫描信号收发模组602的数量不作限定。
图7示出根据本申请一实施例的另一种激光雷达的同步控制装置的结构示意图;如图7所示,该装置中扫描信号收发模组602可以包括扫描信号发射模块6021及扫描信号接收模块6022,同步信号收发模组601可以包括同步信号发射模块6011及同步信号接收模块6012。同步信号发射模块6011与同步信号接收模块6012可以独立设置,也可以集成设置。控制器603可以控制同步信号发射模块6011发射第一探测信号,该第一探测信号可以到达扫描镜604,经扫描镜604反射的第一回波信号,可以到达同步信号接收模块6012,同步信号接收模块6012可以接收该第一回波信号,同步信号接收模块6012可以将接收的第一回波信号发送至控制器603,以确定所述第一回波信号是否包含第一探测信号经对应于所述第一反射面605的第一标识606反射的回波信号,并在第一回波信号包含第一标识606反射的回波信号时,控制扫描信号收发模组602按照第一方式向第一反射面605发射第二探测信号,其中,所述第一标识606对应于第一方式。
扫描信号发射模块6021与扫描信号接收模块6022可以独立设置,也可以集成设置。控制器603可以控制扫描信号发射模块6021按照第一方式发射第二探测信号,该第二探测信号可以到达扫描镜604的第一反射面605,并经第一反射面605反射到达外部环境,经外部环境反射回来的第二回波信号,经第一反射面605再次反射到达扫描信号接收模块6022,扫描信号接收模块6022可以将接收的第二回波信号发送至控制器603,控制器603对经由第一反射面605反射的第二探测信号及第二回波信号进行处理,可以生成一帧点云。
图8示出根据本申请一实施例的另一种激光雷达的同步控制装置的结构示意图;如图8所示,该装置中扫描信号收发模组602可以包括扫描信号发射模块6021及扫描信号接收模块 6022,同步信号收发模组601可以包括同步信号发射模块6011及同步信号接收模块6012,还可以包括反射镜607,反射镜607的数量可以为一个或多个(图中示出一个),经扫描镜604反射的第一回波信号,经过反射镜607的反射可以到达同步信号接收模块6012,这样,通过该反射镜607改变第一回波信号的方向,从而降低了对同步信号接收模块6012的位置要求,提高经济性及适用性。可以理解的是,还可以通过反射镜607改变第一探测信号、第二探测信号、第二回波信号的方向,从而降低对同步信号发射模块6011、扫描信号发射模块6021、扫描信号接收模块6022的位置要求,进一步提高经济性及适用性。
在一种可能的实现方式中,所述第一探测信号与所述第二探测信号的波长范围不同,例如,第一探测信号的波长范围可以为900nm-905nm,第二探测信号的波长范围可以为1550nm-1555nm;从而可以避免第一探测信号与第二探测信号之间相互干扰,保证了相邻两帧或多帧的扫描空间同步及利用反射面进行空间扫描的可靠性及精确度。在一些可能的示例中,第一探测信号和第二探测信号的波长范围也可能存在部分重叠。
示例性地,同步信号发射模块6011(或扫描信号发射模块6021)可以包括一个或多个激光光源,激光光源向外发射探测信号(如,脉冲、连续光),还可以根据激光光源的光斑质量等在该装置中设置准直镜,从而优化所发射的探测信号的方向;同步信号接收模块6012(或扫描信号接收模块6022)可以包括一个或多个激光探测器,从而探测多面镜等反射的回波信号,该激光探测器包括但不限于雪崩光电二极管(avalanche photodiode,APD),单光子雪崩二极管(aingle-photon avalanche diode,SPAD)、硅光电倍增器(silicon photoMultipliers,SiPM)、光电二极管等等。示例性地,激光光源的数量可以与激光探测器的数量相同,激光光源可以与激光探测器一一对应,各激光探测器用于接收对应的激光光源发出的探测信号经物体反射的回波信号。
控制器603可以与同步信号收发模组601、扫描信号收发模组602及扫描镜604电连接,控制器603可以控制同步信号收发模组601发射第一探测信号,并获取同步信号收发模组601接收的第一回波信号;还可以控制扫描信号收发模组602向第一反射面605发射第二探测信号,并获取扫描信号收发模组602接收的第二回波信号,控制器603可以通过对一定时间内经过同一反射面反射的第二探测信号与第二回波信号进行处理生成该反射面对应的一帧点云;示例性地,控制器603可以在控制扫描信号收发模组602完成了用于生成一帧点云的第二探测信号的发射时,或者在完成了一帧点云的生成时,控制同步信号收发模组601发射第一探测信号。
由于各反射面所包含的标识可以区别于该标识所在的反射面,在第一探测信号到达第一反射面605时,经由第一反射面605的第一标识606反射的第一回波信号,与经由非第一标识606部分反射的第一回波信号存在差异,可以根据这种差异,确定第一探测信号经对应于所述第一反射面605的第一标识606反射的回波信号;示例性地,可以预先确定第一探测信号经由第一标识606反射后的第一回波信号的特征,控制器603可以对同步信号收发模组601接收到的第一回波信号的特征与该预先确定的特征进行匹配,若匹配成功,则可确定该第一回波信号经由第一标识606反射。
在控制器603确定第一回波信号为第一探测信号经对应于第一反射面605的第一标识606反射的回波信号的情况下,可以控制扫描信号收发模组602按照第一方式向第一反射面605发射第二探测信号。其中,第一标识606与第一方式的对应关系与第一标识606所在的反射 面、在反射面的位置中的至少一个有关;示例性地,一个反射面可以对应于一个发射第二探测信号的方式,当控制器603确定第一回波信号经由第一标识606反射时,可以控制扫描信号收发模组602按照第一反射面605对应的第一方式向第一反射面605发射第二探测信号,从而实现第一反射面605与其对应点云的生成方式的同步,即针对第一反射面605对应的一帧点云,可确定相应的生成方式。再例如,一个反射面可以对应于多个发射第二探测信号的方式,其中,各方式与第一反射面605上的各预设位置一一对应,该预设位置可以为各标识所在的位置,示例性地,该多个预设位置可以等间隔设置,各标识对应的第二探测信号共同作为一组探测信号,用于生成该反射面对应的一帧点云。可以理解为,某一标识对应的第二探测信号可以用于生成该帧点云的一部分。当控制器603确定第一回波信号经由第一标识606反射时,可以控制扫描信号收发模组602按照第一标识606在第一反射面605的位置(例如该第一标识606对应的预设位置)对应的方式发射第二探测信号,从而实现了针对第一反射面605的一位置点与其对应的部分点云的生成方式的同步,即针对第一反射面605对应的一帧点云的一部分,可确定相应的生成方式,进一步提高同步控制的精度。
在一种可能的实现方式中,所述第一标识606为所述第一反射面605的起始标识,所述第二探测信号的发射时刻是所述第一反射面605对应的帧数据的起始时刻。其中,帧数据可以为一定时间内经由第一反射面605反射的第二探测信号及对应的第二回波信号生成的点云,起始标识表示第一反射面605可以率先被第一探测信号扫描到的标识(如位于反射面的旋转方向边缘的标识),即根据扫描镜604的旋转方向,当转动一定角度时,第一探测信号可以到达第一反射面605,此时,相对于第一反射面605的其他位置,第一探测信号可以率先到达第一标识606,例如,图7所示的扫描镜604按箭头方向顺时针旋转,第一标识606为起始标识。控制器603可以根据第一标识606反射的第一回波信号识别第一标识606,可以将识别第一标识606的时刻(即第一反射面605的起始时刻)作为第一反射面605对应的点云的起始时刻,也可以根据实际需要将第一反射面605对应的点云的起始时刻与识别第一标识606的时刻设定间隔一定时长,这样,通过起始标识标定一反射面的起始,控制器603可以根据识别第一标识606的时刻,在第一反射面605对应的点云的起始时刻控制扫描信号收发模组602工作,即按照第一标识606对应的第一方式向第一反射面605发射第二探测信号,进行空间扫描,得到第一反射面605对应的一帧完整的点云,从而在识别第一标识606的同时,保证了利用第一反射面605进行空间扫描的可靠性,以较低的成本,实现了相邻两帧或多帧的扫描空间同步。
示例性地,第一方式可以表征第二探测信号的属性,包括但不限于:信号类型、波长范围、信号强度、脉冲间隔、发射时刻、发射时长、执行发射工作的扫描信号发射模组及其所配置的激光器的相关信息等中的一个或者多个;针对不同的标识,对应的发射第二探测信号的方式可以相同,也可以不同,对此不作限定。
示例性地,第一方式可以是预设的,也可以是控制器603根据最新生成的点云实时确定的。例如,可以根据第一反射面605的加工粗糙度、面型、镀层、反射率等,基于空间扫描的要求,预先设定对应的扫描信号发射模组(如激光器及探测器等),从而降低对第一反射面605与其他反射面的一致性的要求,降低了成本。再例如,控制器603根据一定时间内经由第一反射面605的前一反射面中反射的第二回波信号及第二探测信号生成的一帧点云,通过该帧点云确定扫描空间中包含目标物体(如上述图5中的障碍物)时,则控制器603可以确 定用于生成下一帧点云对应的第二探测信号的信号强度需要增高,即确定第一反射面605(或第一标识)对应的第二探测信号的发射方式,以便得到分辨率更高的目标物体的信息。再例如,控制器603通过第一反射面605的前一反射面对应的一帧点云,确定扫描空间中包含雾气、雾霾等限制探测距离的物体时,则控制器603可以确定用于生成下一帧点云对应的第二探测信号的波长范围需要增加,即确定第一反射面605(或第一标识)对应的第二探测信号的发射方式,以便增加探测的距离,获得更清晰稳定的点云。这样,当扫描镜604旋转至第一反射面605朝向同步信号收发模组601、控制器603确定第一回波信号包含第一反射面605的第一标识606反射的回波信号时,控制扫描信号收发模组602按照上文确定的第一反射面605对应的第二探测信号的发射方式向第一反射面605发送第二探测信号,以生成第一反射面605对应的一帧点云。
在一种可能的实现方式中,所述第一反射面605还设置有第二标识608;第一标识606与第二标识608为不同的标识;所述控制器603还可以根据所述第一探测信号经所述第一标识606反射的回波信号、所述第一探测信号经所述第二标识608反射的回波信号、及预设转动信息,控制所述扫描镜604转动。
在扫描镜604转动的过程中,扫描镜604的转动信息(如,转动速度、方向等)可能会出现波动,即扫描镜604实际的转动信息与空间扫描预设的转动信息存在差异,这会导致第二探测信号到达第一反射面605的实际位置与预设位置可能存在偏差,随着扫描镜604的转动,在得到第一反射面605对应的一帧点云的时间段内,该偏差可能会随时间逐渐变大,即该时间段的后半段的位置偏差相比前半段位置偏差可能会加大。这样,可以通过第一反射面605上的第一标识606及第二标识608,对扫描镜604的转动信息进行校正,从而在空间扫描过程中实现扫描镜604转动的精确同步控制。
图9示出根据本申请一实施例的一种第一反射面605的示意图;如图9所示,第一反射面605包括第一标识606,还可以包括至少一个第二标识608(图中示出一个),第一标识606与第二标识608为不同的标识;第一标识606与第二标识608的位置在水平方向上存在一定间隔,第一标识606及第二标识608的位置与扫描镜604的角度信息的存在对应关系。设扫描镜604的转动方向为顺时针(从顶部向下的视角),控制器603可以根据第一探测信号经第一标识606反射的回波信号、第一探测信号经第二标识608反射的回波信号确定扫描镜604的实际转动信息,例如实际转动速度。示例性地,控制器603可以控制同步信号收发模组601持续发送第一探测信号,通过识别第一探测信号经第一标识606反射的回波信号,确定第一标识606所对应的扫描镜604的第一角度及识别第一标识606的第一时刻,通过识别第一探测信号经第二标识608反射的回波信号,确定第二标识608所对应的扫描镜604的第二角度及识别第一标识606的第二时刻,进而,根据第一角度、第二角度、第一标识606、第二标识608确定扫描镜604的实际转动速度,将该实际转动速度与空间扫描在第一角度、第二角度之间所对应的预设转动速度进行比较,在二者差别大于阈值时,将扫描镜604的转动速度向预设转动速度调整,从而调节扫描镜604的实时转速,实现空间扫描的过程中扫描镜604转动的精确同步控制。
在一种可能的实现方式中,不同反射面的标识不同。这样,可以通过不同的标识区分不同的反射面,控制器在确定第一回波信号包含第一探测信号经对应于一标识反射的回波信号时,可以通过该标识准确定位到该标识所在的反射面,在实现相邻两帧或多帧的扫描空间同 步的同时,可以针对每一个反射面对应的点云生成方式进行单独控制,实现差异化控制,即实现不同帧点云的差异性的同步控制,进一步提高了同步控制的灵活性;同时,降低了对扫描镜604的各反射面的一致性要求,降低了成本。
示例性地,可以在至少两个反射面上分别设置不同的标识,例如,扫描镜604包括四个反射面,则可以在这四个反射面上均设置标识,该标识与其所在的反射面存在区别,且不同反射面所设置的标识不同;还可以将多个反射面的至少一个反射面本身作为标识,即至少一个反射面无需设置额外的标识,例如,扫描镜604包括四个反射面,则可以在其中三个反射面上分别设置标识,且不同反射面所设置的标识不同,同时将另一反射面本身作为标识;等等,本申请实施例对设置标识方式不作限定,只要能够实现通过该标识,确定该标识对应的反射面即可。
在一种可能的实现方式中,各标识可以设置在反射面的边缘位置。可通过识别标识反射的回波信号,及时、准确判断反射面旋转至该标识所在的反射面,减少或避免标识对空间扫描的影响。例如,如上述图6所示,根据扫描镜604的转动方向可知,第一反射面605的左边边缘可以率先被第一探测信号扫描到,而通常第一反射面605会在此继续转动一定角度后,控制器603控制扫描信号收发模组向第一反射面605发射第二探测信号,进行空间扫描,将第一标识606设置在第一反射面605的左边边缘,可通过识别第一标识606反射的回波信号,及时、准确判断反射面旋转至第一反射面605,减少或避免第一标识606对利用第一反射面605进行空间扫描的影响。
举例来说,图10示出根据本申请一实施例的一种扫描镜604的示意图;如图10所示,该扫描镜604可以为四面镜,其中,反射面A’设置有标识a,反射面B’设置有标识b,标识a与标识b不同,标识a与标识b所对应的发射第二探测信号的方式不同。
图11示出根据本申请一实施例的基于图10中扫描镜604实现同步控制的示意图;如图11所示,控制器603可以在生成第N-1帧(N为大于1的整数)点云之后,即可以在扫描镜604转动到角度r1时,控制同步信号收发模组601周期性地持续发射第一探测信号,同步信号收发模组601接收对应的第一回波信号,在扫描镜604转动到角度r1-r3之间(未到达r3)时,其中,角度r2对应于反射面A’的起始角度,控制器603对经扫描镜604反射的第一回波信号进行处理,此时无法检测到第一探测信号经标识(包括标识a、标识b等)反射的回波信号;在扫描镜604转动到角度r3时,第一探测信号到达标识a,控制器603可以确定同步信号收发模组601所接收的经标识a反射的回波信号,此时,控制器603可以控制扫描信号收发模组602按照标识a所对应的方式向反射面A’发射第二探测信号,相应的,扫描镜604转动到角度r3的时刻即为第N帧点云的起始时刻;此时,控制器603还可以控制同步信号收发模组601停止工作;控制器603可以根据扫描镜604转动的速度,判断扫描镜604转动的角度,在控制器603判断扫描镜604转动到角度r4时,控制器603控制扫描信号收发模组602停止发射第二探测信号,此时即为第N帧点云的结束时刻,至此,完成利用反射面A’的空间扫描,生成对应的第N帧点云;此时,控制器603可以控制同步信号收发模组601再次发射第一探测信号,同步信号收发模组601接收对应的第一回波信号,在扫描镜604转动到角度r4-r6之间(未到达r6)时,其中,角度r5对应于反射面B’的起始角度,控制器603对经扫描镜604反射的第一回波信号进行处理,此时无法检测到第一探测信号经标识(包括标识a、标识b等)反射的回波信号;在扫描镜604转动到角度r6时,第一探测信号到达标 识b,控制器603可以确定同步信号收发模组601所接收的经标识b反射的回波信号,此时,控制器603可以控制扫描信号收发模组602按照标识b所对应的方式向反射面B’发射第二探测信号,相应的,扫描镜604转动到角度r6的时刻即为第N+1帧点云的起始时刻;此时,控制器603还可以控制同步信号收发模组601停止工作;在扫描镜604转动到角度r7时,控制器603控制扫描信号收发模组602停止发射第二探测信号,此时即为第N+1帧点云的结束时刻,至此,完成利用反射面B’的空间扫描,生成对应的第N+1帧点云。这样,通过反射面对应的标识,区分不同的反射面,不同标识对应的发射第二探测信号的方式可以不同;可以在识别到一标识时,确定该标识所在的反射面即将开始空间扫描,根据该标识对应的方式控制扫描信号收发模组602向该标识所在的反射面发射第二探测信号,进行空间扫描,生成一帧点云,从而实现不同反射面与其对应的点云生成方式的差异化控制。
其中,控制器603控制同步信号收发模组601工作的方式,可以根据反射面上所设置的标识的数量确定,例如,若一反射面仅设置有一个标识,控制器603可以在识别到该标识时,控制同步信号收发模组601停止工作;若一反射面设置有多个标识,控制器603可以在识别到该反射面的起始标识及中间标识时,控制同步信号收发模块继续工作,直到识别到该反射面中的最后一个标识(结束标识);这样,当两个反射面的标识数量不同时,可以通过识别到的一反射面的标识的数量,确定该反射面;还可以通过一反射面上的多个标识,获取更多的扫描镜604转动角度、转动速度等信息,进一步提升同步的精度。对于同一个反射面上的起始标识、中间标识、结束标识,可以根据具体的产品设计进行区分和定义。
在一种可能的实现方式中,控制器603可通过第一回波信号的特征集合来判断第一回波信号是否包含所述第一探测信号经对应于所述第一反射面605的第一标识606反射的回波信号。其中,确定第一回波信号包含第一探测信号经对应于所述第一反射面605的第一标识606反射的回波信号的条件可以是:所述第一回波信号的第一特征集合与一预设特征集合匹配;其中,所述预设特征集合与所述第一标识606存在对应关系。示例性地,可以预先提取第一探测信号经由不同反射面的各标识反射的回波信号的预设特征集合,从而可以建立各标识对应的预设特征集合;在同步过程中,控制器603可以提取第一回波信号的第一特征集合;当第一特征集合与第一标识606对应的预设特征集合匹配时,确定第一回波信号包含第一探测信号经该第一标识606反射的回波信号,其中,在建立各标识对应的预设特征集合阶段及同步过程中所发射的第一探测信号相同。这样,可以根据第一回波信号的第一特征集合,识别反射第一回波信号的标识,从而确定该标识所在的反射面。
示例性地,第一特征集合(或预设特征集合)可以包括:第一回波信号的波形特征、第一回波信号对应的图案特征、第一回波信号对应的时间特征中的任意一种或多种。这样,可以根据第一探测信号经不同的标识反射后的回波信号的波形特征、图案特征、时间特征等的差异,识别对应的标识。
在一种可能的实现方式中,所述标识可以通过对反射面进行镀膜、刻蚀、贴膜、改变材料、改变形状中的任意一种或多种方式设置。示例性地,可以通过对一反射面的一区域进行镀膜,将该镀膜作为该反射面的标识;还可以通过对一反射面的一区域进行刻蚀处理,改变该反射面的纹理,将该纹理作为该反射面的标识;还可以在对一反射面的一区域进行贴膜处理,将该贴膜作为该反射面的标识;还可以改变一反射面的一区域的材料,从而使得该区域区别于该反射面,将该区域作为该反射面的标识;还可以改变一反射面的一区域的形状,例 如凸起或凹陷,从而使得该区域区别于该反射面的其他部分,将该区域作为该反射面的标识;通过上述多种方式对反射面进行简单加工,设置标识,使得第一探测信号经标识反射得到的回波信号,具有特殊的波形特征、图案特征、时间特征等特征,从而实现标识与该标识所在反射面的区分。进一步地,可以通过上述多种方式,对不同反射面进行不同的加工,从而在不同反射面上设置不同标识,且加工成本低。经过对反射面进行上述加工,不同反射面上设置的不同标识之间,以及各反射面上设置标识与该反射面之间存在差异,因此,第一探测信号经不同的标识反射后的回波信号之间,以及经标识反射后的回波信号与经该标识所在的反射面反射的回波信号之间,波形特征、图案特征、时间特征等特征存在差异,从而可以利用这种差异,识别不同的标识。
举例来说,波形特征可以包括但不限于:幅度、波长(或频率)、相位等中的任意一种或多种。例如,不同材料对应的反射率不同,第一标识606的材料可以与第一反射面605的材料(或其他标识)不同,第一探测信号经由第一标识606与第一反射面605的非第一标识606部分(或其他标识)反射后,回波信号的幅度存在差异,这样,将第一回波信号的幅度与预设的第一标识606对应的回波信号的幅度进行匹配,从而确定第一标识606。再例如,不同材料对不同的波长的透光率不同,第一标识606的材料可以与第一反射面605的材料(或其他标识)不同,宽谱光源(即包含多个波段的光源)经由第一标识606反射后,宽谱光源的某一波段被吸收,这样,通过同步信号收发模组601发射宽谱光源的第一探测信号,可以将接收到的第一回波信号的中心波长,与预设的第一标识606对应的回波信号的中心波长进行匹配,从而确定第一标识606。再例如,针对不同的材料,第一探测信号经不同材料反射后,相位会发生不同的变化;第一标识606的材料可以与第一反射面605的材料(或其他标识)不同;将接收到的第一回波信息与第一探测信号进行比较,确定实际相位变化,并将该实际相位变化与预设的第一标识606对应的相位变化进行匹配,从而确定第一标识606。
图案特征可以包括:第一回波信号形成的光斑的图案、形状、数量等中的任意一种或多种,例如,通过贴膜或者刻蚀等方式在第一反射面605设置一特定的图案或纹理,且图案或纹理与其他标识不同,第一探测信号经由第一标识606与其他标识反射后,回波信号形成的光斑存在差异,将接收到的第一回波信号形成的光斑图案与第一标识606对应的回波信号形成的光斑图案进行匹配,从而确定第一标识606。再例如,可以通过贴膜、镀膜等在第一反射面605设置一特定形状(例如,可以为圆形、方形、三角形等)的第一标识606,且该形状与其他标识不同,第一探测信号经由第一标识606与其他标识反射后,回波信号形成的光斑形状存在差异,将接收到的第一回波信号的形成的光斑形状与第一标识606对应的回波信号形成的光斑形状进行匹配,从而确定第一标识606。再例如,可以通过贴膜或者刻蚀等方式在第一反射面605设置垂直方向上的图案序列作为第一标识606,该序列中不同的图案按一定间隔排列,不同标识对应的图案序列中各图案的排列间隔相同,且图案的数量不同;同步信号收发模块发射的第一探测信号在垂直方向包括按一定间隔排列的多个激光束,且不同激光束可以到达不同的间隔位置,这样,第一探测信号经由第一标识606与其他标识反射后,回波信号形成的光斑的数量存在差异,将接收到的第一回波信号形成的光斑的数量与第一标识606对应的回波信号形成的光斑的数量进行匹配,从而确定第一标识606。
时间特性可以包括:多个回波信号之间的时间间隔,例如,可以通过贴膜或者刻蚀等方式在第一反射面605设置图案序列作为第一标识606,不同标识对应图案序列中各图案的排 列间隔不同,且图案序列包括至少两个图案,可以根据同一图案序列中相邻的两个图案对应的回波信号的时间,确定该标识对应的时间间隔,这样,第一探测信号经由第一标识606与其他标识反射后,不同标识对应的时间间隔存在差异,将由相邻两个图案反射的第一回波信号确定的时间间隔与第一标识606对应的时间间隔进行匹配,从而确定第一标识606。
基于上述装置实施例的同一发明构思,本申请的实施例还提供了一种激光雷达的同步控制方法。该方法可应用于上述任一实施例的激光雷达的同步控制装置。
图12示出根据本申请一实施例的一种激光雷达的同步控制方法的流程图,该方法可通过上述图6中控制器603执行,如图12所示,该方法可以包括:
步骤1201、控制激光雷达的同步信号收发模组发射第一探测信号。
步骤1202、确定所述同步信号收发模组接收的第一回波信号包含所述第一探测信号经对应于所述激光雷达包含的扫描镜的第一反射面的第一标识反射的回波信号,控制扫描信号收发模组按照第一方式向第一反射面发射第二探测信号,其中,所述第一标识对应于所述第一方式。
本申请实施例中,控制器控制激光雷达的同步信号收发模组发射第一探测信号,在确定第一回波信号包含第一探测信号经对应于第一反射面的第一标识反射的回波信号时,控制扫描信号收发模组发射第二探测信号,从而完成利用第一反射面的一次空间扫描,并可以生成第一反射面对应的一帧点云;扫描镜的多个反射面均包含相应的标识,控制器可以在确定各反射面的相应标识反射的回波信号时,控制扫描信号收发模组向各反射面发射第二探测信号,从而完成利用各反射面的一次空间扫描,并可以生成各反射面对应的一帧点云,从而实现了相邻两帧或多帧的扫描空间同步,无需采用角度编码器等硬件;同时,发射第二探测信号的方式(即第一方式)与第一标识对应,即跟第一反射面对应,使得扫描信号收发模组能够按照第一反射面对应的方式向第一反射面发射第二探测信号,由此实现了第一反射面与其对应点云的生成方式的同步控制,即针对一帧点云,可确定相应的生成方式,增加了激光雷达控制的灵活性,且降低了对第一反射面与其他反射面的一致性要求,成本更低、可靠性更高。
在一种可能的实现方式中,所述激光雷达包含的扫描镜的不同反射面的标识不同。
在一种可能的实现方式中,所述第一回波信号的第一特征集合与一预设特征集合匹配;其中,所述预设特征集合与所述第一标识存在对应关系。
在一种可能的实现方式中,所述第一标识为所述第一反射面的起始标识,所述第二探测信号的发射时刻是所述第一反射面对应的帧数据的起始时刻。
在一种可能的实现方式中,所述第一反射面还设置有第二标识;所述方法还包括:根据所述第一探测信号经所述第一标识反射的回波信号、所述第一探测信号经所述第二标识反射的回波信号、及预设转动信息,控制所述扫描镜转动。
在一种可能的实现方式中,所述第一标识设置在所述第一反射面的边缘位置。
在一种可能的实现方式中,所述第一探测信号与所述第二探测信号的波长范围不同。
在一种可能的实现方式中,所述第一特征集合包括:所述第一回波信号的波形特征、所述第一回波信号对应的图案特征、所述第一回波信号对应的时间特征中的任意一种或多种。
在一种可能的实现方式中,所述第一标识通过对所述第一反射面进行镀膜、刻蚀、贴膜、改变材料、和改变形状中的任意一种或多种方式设置。
本申请实施例中,激光雷达的同步控制方法及其各种可能的实现方式的具体说明及技术 效果可参见上述激光雷达的同步控制装置的相关介绍,此处不再赘述。
本申请的实施例提供了一种激光雷达的同步控制装置,包括:至少一个处理器以及用于存储处理器可执行指令的存储器;其中,所述至少一个处理器被配置为执行所述指令时实现上述激光雷达的同步控制方法。
图13示出根据本申请一实施例的另一种激光雷达的同步控制装置的结构示意图,如图13所示,该激光雷达的同步控制装置可以包括:至少一个处理器1001以及至少一个通信接口1004。可选的,还可以包括通信线路1002以及存储器1003。
处理器1001可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。处理器1001可用于实现本申请实施例的控制器603。
通信线路1002可包括一通路,在上述组件之间传送信息。
通信接口1004,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器1003可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1002与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器1003用于存储执行本申请方案的计算机执行指令,并由处理器1001来控制执行。处理器1001用于执行存储器1003中存储的计算机执行指令,从而实现本申请上述实施例中提供的激光雷达的同步控制方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图13中的CPU0和CPU1。
在具体实现中,作为一种实施例,激光雷达的同步控制装置可以包括多个处理器,例如图13中的处理器1001和处理器1007。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,激光雷达的同步控制装置还可以包括输出设备1005和输入设备1006。输出设备1005和处理器1001通信,可以以多种方式来显示信息。例如,输出设备1005可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1006和处理器1001通信,可以以多种方式接收用户的输入。例如,输入设备1006可以是鼠标、键盘、触摸屏设备或传感设备等。
本申请实施例还提供一种激光雷达,所述激光雷达包括至少一个本申请上述实施例提到的激光雷达的同步控制装置。示例性地,该激光雷达的同步控制装置可以应用于车辆的高级辅助驾驶系统(advanced driver assistance systems,ADAS)和自动驾驶系统(automated driving system,ADS)中,还可以多种驾驶功能(如自适应巡航控制(adaptive cruise control,ACC)和自动紧急制动(advanced emergency braking,AEB))等等,还可以应用于物物通信(device to device communication,D2D)、车与任何事物相通信(vehicle to everything,V2X)、车与车通信(vehicle to vehicle,V2V)、长期演进与车通信(long term evolution-vehicle,LTE-V)、长期演进与机器通信(long term evolution-machine,LTE-M)等场景。
本申请实施例还提供一种终端,所述终端包括至少一个本申请上述实施例提到的激光雷达的同步控制装置。该终端可以为智能运输设备、智能家居设备、机器人、无人机、测绘设备、增强现实(augmented reality,AR)游戏设备、虚拟现实技术(virtual reality,VR)游戏设备、医疗设备等其他终端设备。该激光雷达的同步控制装置包括但不限于智能终端或智能终端内的控制器、芯片、激光雷达等传感器、以及其他部件等。
本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(random Access Memory,RAM)、只读存储器(read only memory,ROM)、可擦式可编程只读存储器(electrically programmable read-only-memory,EPROM或闪存)、静态随机存取存储器(static random-access memory,SRAM)、便携式压缩盘只读存储器(compact disc read-only memory,CD-ROM)、数字多功能盘(digital video disc,DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
这里所描述的计算机可读程序指令或代码可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本申请操作的计算机程序指令可以是汇编指令、指令集架构(instruction set architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机 上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(local area network,LAN)或广域网(wide area network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(field-programmable gate array,FPGA)或可编程逻辑阵列(programmable logic array,PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行相应的功能或动作的硬件(例如电路或专用集成电路(application specific lntegrated circuit,ASIC))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域 的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (22)

  1. 一种激光雷达的同步控制装置,其特征在于,包括:同步信号收发模组、扫描信号收发模组、控制器、和扫描镜,
    所述扫描镜包括多个反射面,所述多个反射面包含相应的标识,所述多个反射面包含第一反射面;
    所述控制器用于控制所述同步信号收发模组发射第一探测信号;
    所述同步信号收发模组用于接收第一回波信号;
    所述控制器用于确定所述第一回波信号包含所述第一探测信号经对应于所述第一反射面的第一标识反射的回波信号,控制所述扫描信号收发模组按照第一方式向所述第一反射面发射第二探测信号,其中,所述第一标识对应于所述第一方式。
  2. 根据权利要求1所述的装置,其特征在于,不同反射面的标识不同。
  3. 根据权利要求1或2所述的装置,其特征在于,所述第一回波信号的第一特征集合与一预设特征集合匹配;
    其中,所述预设特征集合与所述第一标识存在对应关系。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,所述第一标识为所述第一反射面的起始标识,所述第二探测信号的发射时刻是所述第一反射面对应的帧数据的起始时刻。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述第一反射面还设置有第二标识;
    所述控制器还用于:
    根据所述第一探测信号经所述第一标识反射的回波信号、所述第一探测信号经所述第二标识反射的回波信号、及预设转动信息,控制所述扫描镜转动。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,所述第一标识设置在所述第一反射面的边缘位置。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述第一探测信号与所述第二探测信号的波长范围不同。
  8. 根据权利要求3-7任一项所述的装置,其特征在于,所述第一特征集合包括:所述第一回波信号的波形特征、所述第一回波信号对应的图案特征、所述第一回波信号对应的时间特征中的任意一种或多种。
  9. 根据权利要求1-8任一项所述的装置,其特征在于,所述第一标识通过对所述第一反射面进行镀膜、刻蚀、贴膜、改变材料、和改变形状中的任意一种或多种方式设置。
  10. 一种激光雷达的同步控制方法,其特征在于,所述方法包括:
    控制激光雷达的同步信号收发模组发射第一探测信号;
    确定所述同步信号收发模组接收的第一回波信号包含所述第一探测信号经对应于所述激光雷达包含的扫描镜的第一反射面的第一标识反射的回波信号,控制扫描信号收发模组按照第一方式向所述第一反射面发射第二探测信号,其中,所述第一标识对应于所述第一方式。
  11. 根据权利要求10所述的方法,其特征在于,所述激光雷达包含的扫描镜的不同反射面的标识不同。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一回波信号的第一特征集合与一预设特征集合匹配;
    其中,所述预设特征集合与所述第一标识存在对应关系。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第一标识为所述第一反射面的起始标识,所述第二探测信号的发射时刻是所述第一反射面对应的帧数据的起始时刻。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述第一反射面还设置有第二标识;
    所述方法还包括:根据所述第一探测信号经所述第一标识反射的回波信号、所述第一探测信号经所述第二标识反射的回波信号、及预设转动信息,控制所述扫描镜转动。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述第一标识设置在所述第一反射面的边缘位置。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述第一探测信号与所述第二探测信号的波长范围不同。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述第一特征集合包括:所述第一回波信号的波形特征、所述第一回波信号对应的图案特征、所述第一回波信号对应的时间特征中的任意一种或多种。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述第一标识通过对所述第一反射面进行镀膜、刻蚀、贴膜、改变材料、和改变形状中的任意一种或多种方式设置。
  19. 一种激光雷达,其特征在于,所述激光雷达包括权利要求1-9任一项所述的激光雷达的同步控制装置。
  20. 一种终端,其特征在于,所述终端包括权利要求1-9任一项所述的激光雷达的同步控制装置。
  21. 一种激光雷达的同步控制装置,其特征在于,包括:
    至少一个处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述至少一个处理器被配置为执行所述指令时实现权利要求10-18任一项所述的方法。
  22. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求10-18中任一项所述的方法。
PCT/CN2022/082828 2021-04-09 2022-03-24 一种激光雷达的同步控制装置及方法 WO2022213813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22783880.2A EP4318027A1 (en) 2021-04-09 2022-03-24 Synchronous control device and method for lidar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110383460.7A CN115201786A (zh) 2021-04-09 2021-04-09 一种激光雷达的同步控制装置及方法
CN202110383460.7 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022213813A1 true WO2022213813A1 (zh) 2022-10-13

Family

ID=83545167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082828 WO2022213813A1 (zh) 2021-04-09 2022-03-24 一种激光雷达的同步控制装置及方法

Country Status (3)

Country Link
EP (1) EP4318027A1 (zh)
CN (1) CN115201786A (zh)
WO (1) WO2022213813A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203156A (ja) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd 距離測定装置
CN103403577A (zh) * 2011-03-02 2013-11-20 丰田自动车株式会社 激光雷达装置
CN103954971A (zh) * 2014-05-22 2014-07-30 武汉大学 机载彩色三维扫描激光雷达
CN108614254A (zh) * 2018-08-13 2018-10-02 北京经纬恒润科技有限公司 一种激光雷达
US20190154816A1 (en) * 2017-11-22 2019-05-23 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
CN111580115A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达
CN111880186A (zh) * 2020-07-17 2020-11-03 中国工程物理研究院应用电子学研究所 一种多发单收低成本激光雷达装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203156A (ja) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd 距離測定装置
CN103403577A (zh) * 2011-03-02 2013-11-20 丰田自动车株式会社 激光雷达装置
CN103954971A (zh) * 2014-05-22 2014-07-30 武汉大学 机载彩色三维扫描激光雷达
US20190154816A1 (en) * 2017-11-22 2019-05-23 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
CN108614254A (zh) * 2018-08-13 2018-10-02 北京经纬恒润科技有限公司 一种激光雷达
CN111580115A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达
CN111880186A (zh) * 2020-07-17 2020-11-03 中国工程物理研究院应用电子学研究所 一种多发单收低成本激光雷达装置

Also Published As

Publication number Publication date
EP4318027A1 (en) 2024-02-07
CN115201786A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
KR101964971B1 (ko) 라이다 장치
US9046599B2 (en) Object detection apparatus and method
JP2024010030A (ja) Lidarデータ収集及び制御
CN109490825B (zh) 定位导航方法、装置、设备、系统及存储介质
WO2020243962A1 (zh) 物体检测方法、电子设备和可移动平台
CN107728131B (zh) 激光雷达及激光雷达控制方法
WO2019047389A1 (zh) 激光雷达控制方法及激光雷达
CN112534304A (zh) 用于自主地控制系统的感知系统
KR20190011497A (ko) 하이브리드 라이다 스캐너
US11675062B2 (en) Context aware real-time power adjustment for steerable lidar
US20220179053A1 (en) Perception systems for use in autonomously controlling systems
JP2000009422A (ja) 走行車両の距離測定装置
WO2021051726A1 (zh) 点云数据的处理方法、装置、存储介质及激光雷达系统
CN108303702B (zh) 一种相位式激光测距系统及方法
US20190129014A1 (en) Technology to support the coexistence of multiple independent lidar sensors
JP6186863B2 (ja) 測距装置及びプログラム
CN111819602A (zh) 增加点云采样密度的方法、点云扫描系统、可读存储介质
CN111123287A (zh) 机器人定位方法、机器人及计算机可读存储介质
US20200025889A1 (en) Lidar system and operating method thereof
CN108152822B (zh) 激光雷达及激光雷达控制方法
WO2022213813A1 (zh) 一种激光雷达的同步控制装置及方法
WO2018214453A1 (zh) 激光雷达及激光雷达控制方法
US20230090576A1 (en) Dynamic control and configuration of autonomous navigation systems
WO2020142928A1 (zh) 测距装置及点云数据的应用方法、感知系统、移动平台
US20210333399A1 (en) Detection method, detection device, and lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022783880

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022783880

Country of ref document: EP

Effective date: 20231030

NENP Non-entry into the national phase

Ref country code: DE