WO2022213603A1 - 发动机压缩比验证方法、装置、设备及存储介质 - Google Patents

发动机压缩比验证方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022213603A1
WO2022213603A1 PCT/CN2021/129994 CN2021129994W WO2022213603A1 WO 2022213603 A1 WO2022213603 A1 WO 2022213603A1 CN 2021129994 W CN2021129994 W CN 2021129994W WO 2022213603 A1 WO2022213603 A1 WO 2022213603A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
size
tolerance
engine
undetermined
Prior art date
Application number
PCT/CN2021/129994
Other languages
English (en)
French (fr)
Inventor
方天文
郭志杰
肖翔
刘玉铭
王明明
王瑞平
肖逸阁
Original Assignee
浙江吉利控股集团有限公司
义乌吉利动力总成有限公司
宁波吉利罗佑发动机零部件有限公司
极光湾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 义乌吉利动力总成有限公司, 宁波吉利罗佑发动机零部件有限公司, 极光湾科技有限公司 filed Critical 浙江吉利控股集团有限公司
Publication of WO2022213603A1 publication Critical patent/WO2022213603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present application relates to the technical field of engines, and in particular, to a method, device, device and storage medium for verifying the compression ratio of an engine.
  • the engine compression ratio is a complex structural parameter, and the dimension chain involves the cylinder head, cylinder head gasket, cylinder block, piston, connecting rod, etc. itself and the related dimensions and tolerances after assembly.
  • the dimension chain involves the cylinder head, cylinder head gasket, cylinder block, piston, connecting rod, etc. itself and the related dimensions and tolerances after assembly.
  • it is necessary to verify the compression ratio and its tolerance of the engine through manual calculation.
  • This process will consume a lot of time and effort of designers, and has a high risk of error, which affects the design efficiency of the engine.
  • the main purpose of the present application is to provide an engine compression ratio verification method, device, equipment and storage medium, aiming to solve the technical problem of time-consuming and laborious process of engine compression ratio verification in the prior art.
  • the present application provides a method for verifying the compression ratio of an engine, and the method for verifying the compression ratio of an engine includes the following steps:
  • each reference size set includes the size value corresponding to each part
  • the engine compression ratio is verified according to each reference compression ratio, and the verification result is obtained.
  • the engine compression ratio is verified according to each reference compression ratio, and after the verification result is obtained, the method further includes:
  • each reference tolerance set includes the corresponding tolerance value of each part
  • the compression ratio sensitivity analysis results are determined according to the reference verification results of each compression ratio.
  • the engine compression ratio is verified according to each reference compression ratio, and after the verification result is obtained, the method further includes:
  • a plurality of reference dimension sets are generated according to the pending dimensions and the pending tolerances, including:
  • the dimension values corresponding to each part are respectively selected from the undetermined dimension and the limit dimension to construct a reference dimension set, so as to generate multiple reference dimension sets.
  • a plurality of reference dimension sets are generated according to the pending dimensions and the pending tolerances, including:
  • the dimension values corresponding to each part are selected from the undetermined dimension and the reference dimension to construct a reference dimension set, so as to generate multiple reference dimension sets.
  • the preset numerical value generation function includes a random function, and multiple reference coefficients are generated according to the preset numerical value generation function, including:
  • the random function is used to generate corresponding random numbers for each part, and the number of random numbers corresponding to each part is equal to the number of dimensions;
  • the method before generating a plurality of reference size sets according to the undetermined size and the undetermined tolerance, the method further includes:
  • the step of generating a plurality of reference size sets according to the undetermined size and the undetermined tolerance is performed.
  • the present application also proposes an engine compression ratio verification device, the engine compression ratio verification device comprising:
  • an acquisition module configured to acquire pending dimensions and pending tolerances corresponding to multiple parts of the engine respectively;
  • the first calculation module is configured to generate a plurality of reference size sets according to the undetermined size and the undetermined tolerance, and each reference size set respectively includes a size value corresponding to each part;
  • the second calculation module is configured to determine the reference compression ratio corresponding to each reference size set
  • the verification module is configured to verify the engine compression ratio according to each reference compression ratio, and obtain the verification result.
  • the present application also proposes an engine compression ratio verification device, the engine compression ratio verification device comprising: a memory, a processor, and an engine compression ratio verification program stored in the memory and running on the processor , when the engine compression ratio verification program is executed by the processor to implement the steps of the above-mentioned engine compression ratio verification method.
  • the present application also proposes a storage medium on which an engine compression ratio verification program is stored, and when the engine compression ratio verification program is executed by a processor, the above-mentioned engine compression ratio verification method is implemented A step of.
  • the pending dimensions and pending tolerances corresponding to multiple parts of the engine are obtained; then, multiple reference dimension sets are generated according to the pending dimensions and pending tolerances, and each reference dimension set includes the dimension values corresponding to each part; The reference compression ratio corresponding to each reference size set is determined; finally, the engine compression ratio is verified according to each reference compression ratio, and the verification result is obtained.
  • the present application can be expanded according to the pending parameters input by the user to obtain more verification data, and then determine the verification result of the engine according to the verification data; thus, the manual data processing is cancelled, unnecessary errors are avoided, and the verification of the engine compression ratio is improved. efficiency.
  • FIG. 1 is a schematic structural diagram of a device for determining a part size parameter of a hardware operating environment according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of the first embodiment of the engine compression ratio verification method of the application
  • FIG. 3 is a schematic flowchart of the second embodiment of the engine compression ratio verification method of the application.
  • FIG. 4 is a schematic diagram of an embodiment of the compression ratio sensitivity analysis result of the present application.
  • FIG. 5 is a schematic flowchart of a third embodiment of the engine compression ratio verification method of the present application.
  • FIG. 6 is a schematic diagram of the normal distribution of an embodiment of the engine compression ratio of the application.
  • FIG. 7 is a structural block diagram of the first embodiment of the engine compression ratio verification device of the present application.
  • FIG. 1 is a schematic structural diagram of the engine compression ratio verification device of the hardware operating environment involved in the solution of the embodiment of the application.
  • the engine compression ratio verification device may include: a processor 1001 , such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002 , a user interface 1003 , a network interface 1004 , and a memory 1005 .
  • the communication bus 1002 is configured to realize the connection communication between these components.
  • the user interface 1003 may include a display screen (Display), and the optional user interface 1003 may also include a standard wired interface and a wireless interface, and the wired interface for the user interface 1003 may be a USB interface in this application.
  • the network interface 1004 may include a standard wired interface and a wireless interface (eg, a Wireless-Fidelity (WI-FI) interface).
  • WI-FI Wireless-Fidelity
  • the memory 1005 can be a high-speed random access memory (Random Access Memory, RAM) memory, or can be a stable memory (Non-volatile Memory, NVM), such as a disk memory.
  • RAM Random Access Memory
  • NVM Non-volatile Memory
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • FIG. 1 does not constitute a limitation on the engine compression ratio verification device, and may include more or less components than the one shown, or combine some components, or arrange different components .
  • the memory 1005 identified as a computer storage medium may include an operating system, a network communication module, a user interface module, and an engine compression ratio verification program.
  • the network interface 1004 is mainly configured to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly configured to connect to the user equipment;
  • the engine compression ratio verification device passes the
  • the processor 1001 calls the engine compression ratio verification program stored in the memory 1005, and executes the engine compression ratio verification method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of the first embodiment of the engine compression ratio verification method of the present application, and the first embodiment of the engine compression ratio verification method of the present application is proposed.
  • the engine compression ratio verification method includes the following steps:
  • Step S10 acquiring pending dimensions and pending tolerances corresponding to multiple parts of the engine respectively.
  • the execution body of this embodiment can be the aforementioned engine compression ratio verification device, which has functions such as data processing, data communication, and program operation, and the engine compression ratio verification can be a tablet, a computer, or a server.
  • Such computer equipment may also be other equipment with similar functions, which is not limited in this embodiment.
  • the parts of the engine can include parts such as crankcase, piston, crankshaft, connecting rod or cylinder head gasket, and the corresponding types of undetermined dimensions and tolerances can be crankcase height, piston/crankshaft eccentricity, connecting rod center Turning radius, piston ring land height, piston compression height, cylinder gasket thickness, etc.
  • the obtained undetermined size and undetermined tolerance may be specific values, for example, the height dimension of the crankcase is 200 mm, and the tolerance is ⁇ 0.03.
  • the calculation parameters preferentially adopted in this embodiment are basic structural parameters that can be directly controlled during actual processing and production. At present, the calculation parameters can also involve indirect parameters such as engine stroke, displacement, and cylinder head hole volume. That is to say, the engine compression ratio verification equipment can not only obtain the size of the engine parts, but also directly obtain indirect parameters for calculation. Therefore, the present embodiment does not limit the specific types of parts.
  • the engine compression ratio verification equipment can obtain the pending dimensions and pending tolerances input by the user by displaying a human-computer interaction interface on a display device or other device.
  • the engine compression ratio verification device can also read the parameter file stored by the user in the memory or the server, and obtain the corresponding undetermined dimensions and undetermined tolerances from the parameter file.
  • Step S20 generating a plurality of reference size sets according to the undetermined size and the undetermined tolerance, and each reference size set respectively includes size values corresponding to each part.
  • data expansion is performed based on the acquired undetermined size and undetermined tolerance to obtain multiple size values corresponding to each part, and then combine multiple size values corresponding to each part to obtain multiple reference size sets.
  • the limit method can be used for data expansion.
  • the process of generating multiple reference size sets according to the undetermined size and the undetermined tolerance can be: determining the limit deviation corresponding to each part according to the undetermined tolerance; determining each part according to the limit deviation and the undetermined size.
  • Corresponding limit size select the size value corresponding to each part from the undetermined size and limit size to construct a reference size set to generate multiple reference size sets.
  • the existing parameters are: the height of the crankcase is 200mm, and the tolerance is ⁇ 0.03; the center distance of the connecting rod is 135mm, and the tolerance is 0.01; the radius of the crankcase is 43mm, and the tolerance is ⁇ 0.04. Therefore, the limit deviation of the crankcase height is 0.03, the limit dimensions of the crankcase height are 200.03 and 199.97; the limit deviation of the connecting rod center distance is 0.01, then the limit dimensions of the connecting rod center distance are 135.01 and 134.99; The limit deviation is 0.04, and the limit dimensions of the connecting rod center distance are 43.04 and 42.96. Then, the corresponding combinations of the above-mentioned component sizes are combined to obtain a plurality of reference size sets. For example, the reference size set A ⁇ 200, 135.01, 42.96 ⁇ , and the reference size set B ⁇ 200.03, 134.99, 43 ⁇ . According to the theoretical arrangement and combination, a maximum of 27 reference size sets can be obtained from the above three part sizes.
  • the user can set the produced reference size sets. For example, taking the above size parameters as an example, the user can set the number of reference size sets to 15. After the engine compression ratio verification equipment randomly arranges and combines to obtain 15 reference size sets, the combination is not continued.
  • the user can also set the priority of the parts. For example, if the height of the crankcase is the best priority, in the generated 15 reference size sets, the optional dimensions of the height of the crankcase are exhausted.
  • data expansion may also adopt other manners, which are not limited in this embodiment.
  • Step S30 Determine the reference compression ratio corresponding to each reference size set.
  • reference compression ratio corresponding to each reference size set refers to the compression ratio value calculated according to the size parameters of each part included in each reference size set. For specific calculations, refer to the following formula:
  • is the compression ratio
  • V 0 is the displacement of a single cylinder
  • V 1 is the volume of the cylinder head
  • V 2 is the volume of the cylinder head gasket
  • V 3 is the volume enclosed by the piston cylinder at the top dead center
  • V 4 is the volume of the top of the piston
  • s is the stroke
  • d 1 is the diameter of the piston ring bank
  • d 2 is the cylinder diameter
  • d 3 is the bore diameter of the cylinder head gasket
  • h 1 is the height of the piston ring bank
  • h 3 is the compression height of the piston
  • h 3 is the thickness of the cylinder head gasket
  • h 4 is the top end
  • g 0 is the height of the crankcase
  • g 1 is the eccentric distance of the piston
  • g 2 is the eccentric distance of the crankshaft
  • k is the center distance of the connecting rod
  • r is the crank radius.
  • the engine compression ratio verification equipment can calculate the compression ratio of the component size parameter pairs in each reference size set according to the above formulas (1) to (6), so as to determine the reference compression ratio corresponding to each reference size set.
  • the above formula can be calculated from the basic structural parameters of the part to obtain the compression ratio.
  • the selected calculation formula is also different. For example, if the head gasket volume parameter is directly input by the user, the calculation formula for the head gasket volume can be eliminated.
  • Step S40 Verify the engine compression ratio according to each reference compression ratio, and obtain the verification result.
  • the verification result can be expressed in the form of a floating range of the reference compression ratio or in the form of a compression ratio tolerance.
  • the calculated reference compression ratio values include 12.655, 12.356, 12.542, and 12.185; then the verification result can be expressed as [12.185, 12.655], or as 12.42 ⁇ 0.235.
  • the specific form of the verification result may also adopt other forms, which are not limited in this embodiment.
  • the verification result can also be displayed through a human-computer interaction interface.
  • the pending dimensions and pending tolerances corresponding to multiple parts of the engine are obtained respectively; and then multiple reference dimension sets are generated according to the pending dimensions and pending tolerances, and each reference dimension set includes the dimension values corresponding to each part respectively ; Then determine the reference compression ratio corresponding to each reference size set; finally, verify the engine compression ratio according to each reference compression ratio to obtain the verification result.
  • the present application can be expanded according to the pending parameters input by the user to obtain more verification data, and then determine the verification result of the engine according to the verification data; thus, the manual data processing is cancelled, unnecessary errors are avoided, and the verification of the engine compression ratio is improved. efficiency.
  • FIG. 3 is a schematic flowchart of the second embodiment of the engine compression ratio verification method of the present application. Based on the above-mentioned first embodiment, a second embodiment of the engine compression ratio verification method of the present application is proposed.
  • step S40 the method further includes:
  • Step S50 obtaining a tolerance adjustment coefficient, adjusting the to-be-determined tolerance according to the tolerance adjustment coefficient, and obtaining a reference tolerance corresponding to each part.
  • the engine compression ratio is affected by the size of each part. In practice, it is found that the influence of the size fluctuation of each part on the engine compression ratio is also different. Therefore, this embodiment further provides a design reference for the user, and also involves the verification of the sensitivity of the engine compression ratio.
  • the tolerance adjustment coefficient is used to set the adjustment amplitude of the undetermined tolerance, which may be expressed in the form of a numerical value or a percentage.
  • the tolerance adjustment coefficient may be specifically 0.01 or 10%. Assuming the pending tolerance is ⁇ 0.05, if the tolerance adjustment factor is 0.01, the reference tolerance is plus or minus 0.06, and if the tolerance adjustment factor is 10%, the reference tolerance is ⁇ 0.055. In the above example, the tolerance is expanded, and conversely, the tolerance can be reduced.
  • the above values are only examples, and do not constitute a limitation on the tolerance adjustment coefficient, which can be set according to requirements.
  • the tolerance adjustment coefficient may be one, so as to adjust the undetermined tolerance corresponding to each part in the same range.
  • there may also be a plurality of tolerance adjustment coefficients, so as to adjust the pending tolerance corresponding to each part in different ranges.
  • Step S60 generating a plurality of reference tolerance sets according to the undetermined tolerance and the reference tolerance, and each reference tolerance set respectively includes tolerance values corresponding to each part.
  • each reference tolerance set may include a reference tolerance set, and the tolerance value corresponding to each part in the reference tolerance set is an undetermined tolerance of each part.
  • the tolerance value corresponding to one part may be configured as the reference tolerance, and the tolerance values corresponding to the other parts may be configured as the pending tolerance.
  • the corresponding reference tolerances are A, B, C, and D after adjustment according to the tolerance adjustment factor.
  • multiple reference tolerance sets can be expressed as ⁇ a, b, c, d ⁇ , ⁇ A, b, c, d ⁇ , ⁇ a, B, c, d ⁇ , ⁇ a, b, C, d ⁇ , ⁇ a, b, c, D ⁇ .
  • other combinations of reference tolerance sets may also be used, which are not limited in this embodiment.
  • Step S70 Determine the compression ratio reference verification result corresponding to each tolerance set according to the undetermined size.
  • each tolerance set is calculated separately according to the undetermined size to obtain the corresponding compression ratio reference verification result
  • the compression ratio reference verification result may refer to the first embodiment. Firstly, data expansion is performed according to the undetermined size and the corresponding tolerance, and then the compression ratio is calculated separately, so as to obtain the compression ratio reference verification result corresponding to each tolerance set; wherein the representation of the compression ratio reference verification result can be the same as the verification result in the first embodiment. same.
  • Step S80 Determine a compression ratio sensitivity analysis result according to each compression ratio reference verification result.
  • the compression ratio sensitivity analysis result refers to the range in which the tolerance of the compression ratio fluctuates after the tolerance of each part is adjusted to a certain extent.
  • the compression ratio sensitivity analysis results can also be displayed through the human-computer interface. Referring to FIG. 4 , FIG. 4 is a schematic diagram of an embodiment of a compression ratio sensitivity analysis result.
  • the horizontal axis is the category of parts, such as A, B, C, etc.
  • the vertical axis is the floating ratio of the tolerance of the compression ratio.
  • the two cylinders corresponding to each part respectively represent the tolerance fluctuation range of each part.
  • the tolerance fluctuations of the parts are taken as 10% and 20% as an example. It can be seen from Figure 4 that although the tolerances of the various parts are floating in the same proportion, the tolerances on the compression ratio of the engine have different degrees of influence.
  • the present embodiment can also verify a plurality of engine samples, thereby realizing the verification of the production results.
  • the method further includes: acquiring sample sizes corresponding to a plurality of engine samples, and determining the sample compression ratio corresponding to each sample size; determining a compression ratio distribution result according to each sample compression ratio; When the first preset condition is met, the correction coefficient is determined according to the distribution result of the compression ratio, and the step of generating multiple reference size sets according to the undetermined size and the undetermined tolerance is returned; multiple reference size sets are generated according to the undetermined size and the undetermined tolerance, including: Generates multiple reference dimension sets based on correction factors, pending dimensions, and pending tolerances.
  • the engine sample refers to the engine product obtained after actual production. After the user conducts production based on the set dimensions and tolerances, the user will measure the produced sample to obtain the actual measured value of each part of the engine. Values are validated as sample sizes.
  • the calculation process of the sample compression ratio can also refer to the calculation method in the first embodiment. After the compression ratio corresponding to each engine sample is determined, statistics are performed to determine the compression ratio distribution result.
  • the first preset condition may be whether the proportion of samples that meet production requirements reaches a preset value, and the preset value may be 99.9% or the like.
  • the calculated compression ratio can be compared with the preset basic size and tolerance of the compression ratio. If the calculated compression ratio is within the allowable range of the preset basic size and tolerance of the compression ratio, it is considered that Samples meet production requirements.
  • the correction coefficient is used to adjust the emphasis direction of data expansion, which may be a weight ratio. For example, according to the results of the compression ratio distribution, it is found that there is a large deviation in the size of the part A in the sample that does not meet the production requirements, then the expansion probability of the part A in the data expansion is increased by the correction coefficient, so as to generate more optional parts for the part A. Size, the tendency to adjust the verification results, so that the verification process more closely matches the actual production.
  • the correction coefficient may also be in other forms, which are not limited in this embodiment.
  • the tolerances of various parts of the engine are adjusted by the tolerance adjustment coefficient, and data is expanded to calculate the degree of influence of the tolerances of various parts on the compression ratio of the engine, and obtain the compression ratio sensitivity analysis results to provide users with design refer to.
  • the compression ratio can be evaluated in combination with the production samples, and the emphasis direction of data expansion can be adjusted according to the distribution result of the compression ratio, so that the verification result is closer to the actual production.
  • FIG. 5 is a schematic flowchart of the third embodiment of the engine compression ratio verification method of the present application. Based on the above-mentioned first and second embodiments, a third embodiment of the engine compression ratio verification method of the present application is proposed. This embodiment will be described based on the first embodiment.
  • step S20 specifically includes:
  • Step S201 Generate a plurality of reference coefficients according to a preset value generating function.
  • the deviation value of the part is randomly selected within the tolerance range, and through the random selection of the tolerance, the expanded part size can cover the size value that may occur in production.
  • the preset value generation function can be a Cpk function or a Rand function, which is used for the reference coefficient, and the value range of the reference coefficient is between 0 and 1.
  • step S201 may include: acquiring a sample quantity value, and determining the size and quantity corresponding to each part according to the sample quantity value; generating corresponding random numbers for each part through a random function, and the number of random numbers corresponding to each part is equal to Number of dimensions; use random numbers as reference coefficients.
  • the number of samples can be input by the user to specify the number of simulated engine samples, such as 50,000 or 60,000. According to the number of samples required by the user, the corresponding size of each part is determined. According to the way of arrangement and combination, the total amount of samples is related to the number of part sizes and the number of parts, so the minimum number of part sizes can be determined according to the number of samples and the number of parts input by the user.
  • the corresponding relationship between the number of samples and the number of part sizes can also be preset. For example, if the number of samples is 40,000 to 50,000, the number of corresponding part sizes is 4; if the number of samples is 50,000 to 60,000, the number of corresponding part sizes is 5. Therefore, the specific determination method of the sample data can be set according to requirements, which is not limited in this embodiment.
  • Step S202 Determine a plurality of deviation values corresponding to each part according to each reference coefficient and the to-be-determined tolerance.
  • the reference coefficients corresponding to each part may be different or the same.
  • the reference coefficients corresponding to part A are 0.3 and 0.6
  • the reference coefficients corresponding to part B are 0.3 and 0.7.
  • the deviation values corresponding to each part can also be the same or different.
  • the number of deviation values corresponding to each part may be more than 4.
  • the specific number of deviation values may be set according to requirements, which is not limited in this embodiment.
  • Determining the plurality of deviation values corresponding to each part according to each reference coefficient and the undetermined tolerance may specifically include multiplying the reference coefficient and the maximum deviation corresponding to the tolerance, and using the obtained value as the deviation value. For example, if the tolerance of part A is ⁇ 0.05, the deviation values can be 0.015 and 0.03; the tolerance of part B is ⁇ 0.04, the deviation values can be 0.012 and 0.028.
  • Step S203 Determine the reference size corresponding to each part according to each deviation value and the to-be-determined size.
  • determining the reference size corresponding to each part according to each deviation value and the undetermined size may be adding the deviation value and the undetermined size, and using the obtained value as the reference size. For example, if the pending dimension of part A is 200, its reference dimensions can be 200.015 and 2000.03; the pending dimension of part B is 45.6, its reference dimensions can be 45.612 and 45.628.
  • Step S204 Select the size values corresponding to each part from the undetermined size and the reference size to construct a reference size set, so as to generate multiple reference size sets.
  • reference size set is the sample quantity value input by the user.
  • FIG. 6 is a schematic diagram of a normal distribution of an engine compression ratio in an embodiment. As shown in Figure 6, the horizontal axis is the compression ratio, and the vertical axis is the number of samples. The samples are statistically calculated by the normal distribution analysis formula to determine whether the distribution results meet the production requirements.
  • the production requirements can be specifically the samples that meet the tolerance requirements. If the rate reaches 99.98%, etc., the tolerance requirement can be ⁇ 0.25.
  • this embodiment further includes: determining the engine structural parameters according to the undetermined size; determining the theoretical compression ratio according to the engine structural parameters; when the theoretical compression ratio satisfies the second preset condition , and perform the step of generating a plurality of reference dimension sets according to the undetermined size and the undetermined tolerance.
  • the user's preliminary design result can be evaluated, and the specific compression ratio calculation method can refer to the first embodiment. If the undetermined size input by the user does not meet the design requirements, the user is reminded to redesign, and if so, the subsequent steps are performed. For example, assuming that the compression ratio parameter required by the design is 13.5 ⁇ 0.25, if the theoretical compression ratio is 13.45, it is deemed that the design requirements are met, and if the theoretical compression ratio is 13.75, it is deemed that the design requirements are not met.
  • the deviation value of the part is randomly selected within the tolerance range, and through the random selection of the tolerance, the expanded part size can cover the size value that may occur in production. Therefore, the calculated verification result can be closer to the production situation, and the rationality of the verification of the compression ratio is improved.
  • this embodiment may also perform preliminary evaluation on the undetermined size input by the user, so as to improve the verification efficiency.
  • an embodiment of the present application further provides a storage medium, where an engine compression ratio verification program is stored on the storage medium, and when the engine compression ratio verification program is executed by a processor, the engine compression ratio verification method as described above is implemented. step.
  • the storage medium adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the functions brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.
  • FIG. 7 is a structural block diagram of the first embodiment of the engine compression ratio verification device of the present application.
  • An embodiment of the present application also proposes an engine compression ratio verification device.
  • the engine compression ratio verification device includes:
  • the obtaining module 10 is configured to obtain the undetermined dimensions and undetermined tolerances respectively corresponding to the multiple parts of the engine.
  • the first calculation module 20 is configured to generate a plurality of reference size sets according to the undetermined size and the undetermined tolerance, and each reference size set respectively includes a size value corresponding to each part.
  • the second calculation module 30 is configured to determine a reference compression ratio corresponding to each reference size set.
  • the verification module 40 is configured to verify the engine compression ratio according to each reference compression ratio to obtain a verification result.
  • the pending dimensions and pending tolerances corresponding to multiple parts of the engine are obtained respectively; and then multiple reference dimension sets are generated according to the pending dimensions and pending tolerances, and each reference dimension set includes the dimension values corresponding to each part respectively; Then determine the reference compression ratio corresponding to each reference size set; finally, verify the engine compression ratio according to each reference compression ratio, and obtain the verification result.
  • the present application can be expanded according to the pending parameters input by the user to obtain more verification data, and then determine the verification result of the engine according to the verification data; thus, the manual data processing is cancelled, unnecessary errors are avoided, and the verification of the engine compression ratio is improved. efficiency.
  • the engine compression ratio verification device includes a third calculation module, and the third calculation module is configured to obtain a tolerance adjustment coefficient, adjust the to-be-determined tolerance according to the tolerance adjustment coefficient, and obtain a reference tolerance corresponding to each part; according to the to-be-determined tolerance and the reference tolerance to generate multiple reference tolerance sets, each reference tolerance set includes the corresponding tolerance value of each part; determine the compression ratio reference verification result corresponding to each tolerance set according to the undetermined size; determine the compression ratio according to the compression ratio reference verification result Sensitivity analysis results.
  • the third calculation module is configured to obtain a tolerance adjustment coefficient, adjust the to-be-determined tolerance according to the tolerance adjustment coefficient, and obtain a reference tolerance corresponding to each part; according to the to-be-determined tolerance and the reference tolerance to generate multiple reference tolerance sets, each reference tolerance set includes the corresponding tolerance value of each part; determine the compression ratio reference verification result corresponding to each tolerance set according to the undetermined size; determine the compression ratio according to the compression ratio reference verification result Sensitivity analysis results.
  • the engine compression ratio verification device includes a fourth calculation module, and the fourth calculation module is configured to obtain sample sizes corresponding to a plurality of engine samples, and determine the sample compression ratios corresponding to each sample size; Determine the compression ratio distribution result; when the compression ratio distribution result does not meet the first preset condition, determine the correction coefficient according to the compression ratio distribution result; the first calculation module 20 is further configured to generate a plurality of Reference size collection.
  • the first calculation module 20 is further configured to determine the limit deviation corresponding to each part according to the undetermined tolerance; determine the limit size corresponding to each part according to the limit deviation and the undetermined size; respectively select each part from the undetermined size and the limit size.
  • the dimension values corresponding to the parts construct a reference dimension set to generate multiple reference dimension sets.
  • the first calculation module 20 is further configured to generate a plurality of reference coefficients according to a preset numerical value generation function; to determine a plurality of deviation values corresponding to each part according to each reference coefficient and an undetermined tolerance; The dimension determines the reference dimension corresponding to each part; respectively selects the dimension value corresponding to each part from the undetermined dimension and the reference dimension to construct a reference dimension set, so as to generate multiple reference dimension sets.
  • the first calculation module 20 is further configured to obtain a sample quantity value, and determine the size quantity corresponding to each part according to the sample quantity value; generate corresponding random numbers for each part through a random function, and each part corresponds to a corresponding random number.
  • the number of random numbers is equal to the number of dimensions; the random numbers are used as reference coefficients.
  • the engine compression ratio verification device includes a fifth calculation module, and the fifth calculation module is configured to determine the engine structural parameters according to the undetermined size; determine the theoretical compression ratio according to the engine structural parameters; when the theoretical compression ratio satisfies the second preset When conditions are met, the steps of generating a plurality of reference dimension sets based on pending dimensions and pending tolerances are performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种发动机压缩比验证方法、装置、设备及存储介质,涉及发动机技术领域。该方法包括:获取发动机的多个零件分别对应的待定尺寸及待定公差(S10);根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值(S20);确定各参考尺寸集合对应的参考压缩比(S30);根据各参考压缩比对发动机压缩比进行验证,获得验证结果(S40)。

Description

发动机压缩比验证方法、装置、设备及存储介质
相关申请
本申请要求于2021年4月8号申请的、申请号为202110379986.8的中国专利申请的优先权。
技术领域
本申请涉及发动机技术领域,尤其涉及一种发动机压缩比验证方法、装置、设备及存储介质。
背景技术
发动机压缩比是一个复杂的结构参数,尺寸链涉及气缸盖、气缸垫、气缸体、活塞、连杆等本身及装配后的相关尺寸与公差。目前,在发动机设计中,确定各零件尺寸后,还需要通过手工计算对发动机的压缩比及其公差进行验证。由此涉及的零件较多,该过程会耗费设计人员大量时间,费时费力,且出错风险较高,影响发动机的设计效率。
申请内容
本申请的主要目的在于提供一种发动机压缩比验证方法、装置、设备及存储介质,旨在解决现有技术中发动机压缩比验证过程中费时费力的技术问题。
为实现上述目的,本申请提供一种发动机压缩比验证方法,发动机压缩比验证方法包括以下步骤:
获取发动机的多个零件分别对应的待定尺寸及待定公差;
根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;
确定各参考尺寸集合对应的参考压缩比;
根据各参考压缩比对发动机压缩比进行验证,获得验证结果。
在一实施方式中,根据各参考压缩比对发动机压缩比进行验证,获得验证结果之后,所述方法还包括:
获取公差调整系数,根据公差调整系数对待定公差进行调整,获得各零件对应的参考公差;
根据待定公差和参考公差生成多个参考公差集合,各参考公差集合中分别包括各零件对应的公差值;
根据待定尺寸确定各公差集合对应的压缩比参考验证结果;
根据各压缩比参考验证结果确定压缩比敏感分析结果。
在一实施方式中,根据各参考压缩比对发动机压缩比进行验证,获得验证结果之后,所述方法还包括:
获取多个发动机样本对应的样本尺寸,并确定各样本尺寸对应的样本压缩比;
根据各样本压缩比确定压缩比分布结果;
在压缩比分布结果不满足第一预设条件时,根据压缩比分布结果确定修正系数,并返回根据根据待定尺寸和待定公差生成多个参考尺寸集合的步骤;
根据待定尺寸和待定公差生成多个参考尺寸集合,包括:
根据修正系数、待定尺寸和待定公差生成多个参考尺寸集合。
在一实施方式中,根据待定尺寸和待定公差生成多个参考尺寸集合,包括:
根据待定公差确定各零件对应的极限偏差;
根据极限偏差和待定尺寸确定各零件对应的极限尺寸;
从待定尺寸和极限尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
在一实施方式中,根据待定尺寸和待定公差生成多个参考尺寸集合,包括:
根据预设数值生成函数生成多个参考系数;
根据各参考系数和待定公差确定各零件对应的多个偏差值;
根据各偏差值和待定尺寸确定各零件对应的参考尺寸;
从待定尺寸和参考尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
在一实施方式中,预设数值生成函数包括随机函数,根据预设数值生成函数生成多个参考系数,包括:
获取样本数量值,并根据样本数量值确定各零件对应的尺寸数量;
通过随机函数分别为各零件生成对应的随机数,各零件对应的随机数的数量等于尺寸数量;
将随机数作为参考系数。
在一实施方式中,根据待定尺寸和待定公差生成多个参考尺寸集合之前,所述方法还包括:
根据待定尺寸确定发动机结构参数;
根据发动机结构参数确定理论压缩比;
在理论压缩比满足第二预设条件时,执行根据待定尺寸和待定公差生成多个参考尺寸集合的步骤。
此外,为实现上述目的,本申请还提出一种发动机压缩比验证装置,所述发动机压缩比验证装置包括:
获取模块,被配置为获取发动机的多个零件分别对应的待定尺寸及待定公差;
第一计算模块,被配置为根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;
第二计算模块,被配置为确定各参考尺寸集合对应的参考压缩比;
验证模块,被配置为根据各参考压缩比对发动机压缩比进行验证,获得验证结果。
此外,为实现上述目的,本申请还提出一种发动机压缩比验证设备,所述发动机压缩比验证设备包括:存储器、处理器及存储在存储器上并可在处理器上运行的发动机压缩比验证程序,所述发动机压缩比验证程序被处理器执行时实现如上述的发动机压缩比验证方法的步骤。
此外,为实现上述目的,本申请还提出一种存储介质,所述存储介质上存储有发动机压缩比验证程序,所述发动机压缩比验证程序被处理器执行时实现如上述的发动机压缩比验证方法的步骤。
在本申请中,通过获取发动机的多个零件分别对应的待定尺寸及待定公差;再根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;再确定各参考尺寸集合对应的参考压缩比;最后根据各参考压缩比对发动机压缩比进行验证,获得验证结果。本申请能够根据用户输入的待定参数进行扩展,以获取更多的验证数据,再根据验证数据确定发动机的验证结果;从而取消手工处理数据,避免不必要的错误,也提高了发动机压缩比验证的效率。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的零件尺寸参数确定设备的结构示意图;
图2为本申请发动机压缩比验证方法第一实施例的流程示意图;
图3为本申请发动机压缩比验证方法第二实施例的流程示意图;
图4为本申请压缩比敏感分析结果一实施例的示意图;
图5为本申请发动机压缩比验证方法第三实施例的流程示意图;
图6为本申请发动机压缩比一实施例的正态分布示意图;
图7为本申请发动机压缩比验证装置第一实施例的结构框图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的发动机压缩比验证设备结构示意图。
如图1所示,该发动机压缩比验证设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002被配置为实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display),可选用户接口1003还可以包括标准的有线接口、无线接口,对于用户接口1003的有线接口在本申请中可为USB接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(Wireless-Fidelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的存储器(Non-volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对发动机压缩比验证设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,认定为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及发动机压缩比验证程序。
在图1所示的零件尺寸参数确定设备中,网络接口1004主要被配置为连接后台服务器,与所述后台服务器进行数据通信;用户接口1003主要被配置为连接用户设备;发动机压缩比验证设备通过处理器1001调用存储器1005中存储的发动机压缩比验证程序,并执行本申请实施例提供的发动机压缩比验证方法。
基于上述硬件结构,提出本申请发动机压缩比验证方法的实施例。
参照图2,图2为本申请发动机压缩比验证方法第一实施例的流程示意图,提出本申请发动机压缩比验证方法第一实施例。
在第一实施例中,发动机压缩比验证方法包括以下步骤:
步骤S10:获取发动机的多个零件分别对应的待定尺寸及待定公差。
应理解的是,本实施例的执行主体可以为前述的发动机压缩比验证设备,该发动机压缩比验证设备具有数据处理、数据通信及程序运行等功能,发动机压缩比验证可以为平板、电脑或服务器等计算机设备,当然,还可为其他具有相似功能的设备,本实施方式对此不加以限制。
需要说明的是,发动机的零件可以包括曲轴箱、活塞、曲轴、连杆或缸垫等零件,待定尺寸及公差对应的类型可以为曲轴箱高度、活塞/曲轴偏心距、连杆中心距、曲拐半径、活塞环岸高度、活塞压缩高度、缸垫厚度等。
在本实施方式中,获取的待定尺寸及待定公差可以为具体的数值,如,曲轴箱高度尺寸为200mm,公差为±0.03。本实施方式优先采用的计算参数为能够在实际加工生产时可以直接控制的的基本结构参数。当前,计算参数还可以涉及发动机冲程、排量、缸垫孔容积等间接参数,也就是说,发动机压缩比验证设备除了获取发动机的零件尺寸,还可以直接获取间接参数进行计算。因此,本实施方式对零件的具体类型不加以限制。
发动机压缩比验证设备可为通过在显示器等器件上展示人机交互界面,获取用户输入的待定尺寸及待定公差。此外,发动机压缩比验证设备还可以在存储器或服务器中读取用户存储的参数文档,从该参数文档中获取相应的待定尺寸及待定公差。
步骤S20:根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值。
需要说明的是,由于在实际生产加工中存在加工精度的浮动,因此对用户的发动机设计参数进行验证时,需要模拟尺寸的浮动情况,从而反映设计参数对应的生产状况。
在本实施方式中,基于获取的待定尺寸和待定公差进行数据扩充,获得各零件对应的多个尺寸值,再将各零件对应的多个尺寸值进行组合,得到多个参考尺寸集合。
例如,可采用极限法进行数据扩充,具体的,根据待定尺寸和待定公差生成多个参考尺寸集合的过程可以为:根据待定公差确定各零件对应的极限偏差;根据极限偏差和待定尺寸确定各零件对应的极限尺寸;从待定尺寸和极限尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
为更清楚地对该过程进行说明,以下结合实例进行说明。
假设现有的参数为:曲轴箱高度尺寸为200mm,公差为±0.03;连杆中心距尺寸为135mm,公差为0.01;曲拐半径尺寸为43mm,公差为±0.04。因此,曲轴箱高度的极限偏差为0.03,则曲轴箱高度的极限尺寸为200.03和199.97;连杆中心距的极限偏差为0.01,则连杆中心距的极限尺寸为135.01和134.99;曲拐半径的极限偏差为0.04,则连杆中心距的极限尺寸为43.04和42.96。再将上述各零件尺寸对应的组合,获得多个参考尺寸集合。如参考尺寸集合A{200,135.01,42.96}、参考尺寸集合B{200.03,134.99,43}。按照理论的排列组合的方式,上述3个零件尺寸最多可以得到27个参考尺寸集合。
应理解的是,涉及的零件类型越多,得到的参考尺寸集合越多;考虑实际运算情况,用户可以对生产的参考尺寸集合进行设置。如,以上述尺寸参数为例,用户可设置参考尺寸集合的数量为15个,发动机压缩比验证设备再进行随机排列组合得到15个参考尺寸集合后,不再继续组合。此外,用户还可以对零件优先级进行设置,如曲轴箱高度为最好优先级,则在生成的15个参考尺寸集合中,对曲轴箱高度的可选尺寸进行穷举。当然,数据扩充还可以采用其他方式,本实施方式对此不加以限制。
步骤S30:确定各参考尺寸集合对应的参考压缩比。
应理解的是,各参考尺寸集合对应的参考压缩比是指按照各参考尺寸集合中包含的各零件尺寸参 数计算得出的压缩比值。在具体计算时,可参考以下公式:
Figure PCTCN2021129994-appb-000001
Figure PCTCN2021129994-appb-000002
Figure PCTCN2021129994-appb-000003
Figure PCTCN2021129994-appb-000004
Figure PCTCN2021129994-appb-000005
Figure PCTCN2021129994-appb-000006
其中,ξ为压缩比,V 0为单缸排量,V 1为缸盖容积,V 2为缸垫容积,V 3为上止点活塞缸体围成容积,V 4为活塞顶部容积,s为冲程,d 1为活塞环岸直径,d 2为缸径,d 3为缸垫孔径,h 1为活塞环岸高度,h 3为活塞压缩高度,h 3为缸垫厚度,h 4为上止点活塞顶部与结合面距离,g 0为曲轴箱高度,g 1为活塞偏心距,g 2为曲轴偏心距,k为连杆中心距,r为曲拐半径。
发动机压缩比验证设备可根据上述公式(1)~(6),再结合各参考尺寸集合中的零件尺寸参数对的压缩比进行计算,从而确定各参考尺寸集合对应的参考压缩比。上述公式可从零件的基本结构参数开始进行计算,得到压缩比。当然,根据用户输入的尺寸参数不同,选用的计算公式也不同。例如,若为缸垫容积参数由用户直接输入,则可以去除对缸垫容积的计算公式。
步骤S40:根据各参考压缩比对发动机压缩比进行验证,获得验证结果。
需要说明的是,由于本实施方式的目的之一在于对用户输入的待定尺寸和待定公差进行验证,在经过数据扩充,并得到多个参考压缩比后,需要进一步统计,以确定验证结果。该验证结果可以以参考压缩比的浮动范围或者以压缩比公差的形式进行表示。
例如,计算得到的参考压缩比数值包括12.655、12.356、12.542、12.185;则验证结果可以表示[12.185,12.655],或者表示为12.42±0.235。当然,对于验证结果的具体形式还可以采用其他形式,本实施方式对此不加以限制。此外,为便于用户获知验证结果,还可以通过人机交互界面对验证结果进行展示。
在第一实施例中,通过获取发动机的多个零件分别对应的待定尺寸及待定公差;再根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;再确定各参考尺寸集合对应的参考压缩比;最后根据各参考压缩比对发动机压缩比进行验证,获得验证结果。本申请能够根据用户输入的待定参数进行扩展,以获取更多的验证数据,再根据验证数据确定发动机的验证结果;从而取消手工处理数据,避免不必要的错误,也提高了发动机压缩比验证的效率。
参照图3,图3为本申请发动机压缩比验证方法第二实施例的流程示意图,基于上述第一实施例,提出本申请发动机压缩比验证方法的第二实施例。
在第二实施例中,步骤S40之后,所述方法还包括:
步骤S50:获取公差调整系数,根据公差调整系数对待定公差进行调整,获得各零件对应的参考公差。
发动机压缩比受到各零件的尺寸影响,在实际中发现,各零件的尺寸浮动对发动机压缩比的影响也是不同的。因此本实施方式为进一步向用户提供设计参考,还涉及对发动机压缩比敏感度的验证。
需要说明的是,公差调整系数用于设置待定公差的调整幅值,其可以为数值或百分百形式进行表示,例如,公差调整系数可以具体为0.01或10%。假设待定公差为±0.05,若公差调整系数为0.01,则参考公差为正负0.06,若公差调整系数为10%,则参考公差为±0.055。上述示例以扩大公差进行说明,反之,也可以对公差进行缩小。上述数值仅作为示例,而不构成对公差调整系数的限定,其可以根据需求进行设置。
在具体实现时,公差调整系数可以为一个,以对各零件对应的待定公差进行同幅度调整。当然,公差调整系数还可以为多个,以对各零件对应的待定公差进行不同幅度的调整。
步骤S60:根据待定公差和参考公差生成多个参考公差集合,各参考公差集合中分别包括各零件对应的公差值。
为便于后续分析,各参考公差集合中可以包括一基准公差集合,该基准公差集合中各零件对应的公差值为各零件的待定公差。其他的各参考公差集合中可仅将一个零件对应的公差值被配置为参考公差,其余零件对应的公差值则被配置为待定公差。
例如,若存在待定公差a、b、c、d,根据公差调整系数调整后得到相应的参考公差为A、B、C、D。则多个参考公差集合可以表示为{a、b、c、d}、{A、b、c、d}、{a、B、c、d}、{a、b、C、d}、{a、b、c、D}。当然,参考公差集合的组合方式还可以采用其他方式,本实施方式对此不加以限制。
步骤S70:根据待定尺寸确定各公差集合对应的压缩比参考验证结果。
应理解的是,根据待定尺寸对各公差集合进行分别计算,获得对应的压缩比参考验证结果,压缩比参考验证结果可参考第一实施例。先根据待定尺寸及对应的公差进行数据扩充,在分别计算压缩比,从而得到各公差集合对应的压缩比参考验证结果;其中压缩比参考验证结果的表示形式可以与第一实施例中的验证结果相同。
步骤S80:根据各压缩比参考验证结果确定压缩比敏感分析结果。
需要说明的是,压缩比敏感分析结果是指在各零件的公差进行一定幅度的调整后,压缩比的公差随着发生浮动的幅度。此外,为便于用户获知验证结果,还可以通过人机交互界面对压缩比敏感分析结果进行展示。参照图4,图4为压缩比敏感分析结果一实施例的示意图。
在图4中,横轴为零件的类别,如A、B、C等,纵轴为压缩比的公差的浮动比例。各零件对应的两个柱体分别表示各零件的公差浮动范围,在本实施例中,以零件的公差浮动为10%和20%为例。从图4可以看出,尽管各零件的公差浮动相同比例,但对于发动机压缩比的公差影响程度不相同。
在一实施方式中,本实施方式还能够对多个发动机样本进行验证,从而实现对生产结果的验证。在具体实现时,步骤S40之后,还包括:获取多个发动机样本对应的样本尺寸,并确定各样本尺寸对应的样本压缩比;根据各样本压缩比确定压缩比分布结果;在压缩比分布结果不满足第一预设条件时,根据压缩比分布结果确定修正系数,并返回根据根据待定尺寸和待定公差生成多个参考尺寸集合的步骤;根据待定尺寸和待定公差生成多个参考尺寸集合,包括:根据修正系数、待定尺寸和待定公差生成多个参考尺寸集合。
需要说明的是,发动机样本是指实际生产后得到的发动机产品,用户在基于设定的尺寸及公差进行生产后,对生产出的样品进行测量,获得发动机的各零件的实测值,将该实测值作为样本尺寸进行验证。
样本压缩比的计算过程同样可以参照第一实施例中的计算方式,在确定个发动机样本对应的压缩比后,进行统计,确定压缩比分布结果。第一预设条件可以为满足生产要求的样本占比是否达到预设值,该预设值可以为99.9%等。判断样本是否满足生产要求,可以将计算得到的压缩比与预设的压缩比基本尺寸及公差进行对比,若计算得到的压缩比在预设的压缩比基本尺寸及公差的允许范围内,则认为样本满足生产要求。
需要说明的是,修正系数用于调整数据扩充的侧重方向,其可以为权重比。例如,根据压缩比分布结果发现,不满足生产要求的样本中零件A的尺寸存在较大偏差,则通过修正系数提高数据扩充中的零件A的扩充概率,以对零件A生成更多的可选尺寸,调整验证结果的倾向,使验证过程与实际生产更贴合。当然,修正系数还可以为其他形式,本实施方式对此不加以限制。
在第二实施例中,通过公差调整系数对发动机各零件的公差进行调整,并进行数据扩充,从而计算各零件公差对发动机压缩比的影响程度,获得压缩比敏感分析结果,以向用户提供设计参考。此外,本实施例还能结合生产样进行压缩比评估,根据压缩比分布结果调整数据扩充的侧重方向,从而使验证结果更接近实际生产。
参照图5,图5为本申请发动机压缩比验证方法第三实施例的流程示意图,基于上述第一实施例和第二实施例,提出本申请发动机压缩比验证方法的第三实施例。本实施例以第一实施例为基础进行说明。
在第三实施例中,所述步骤S20,具体包括:
步骤S201:根据预设数值生成函数生成多个参考系数。
需要说明的是,由于在实际生产中,各零件尺寸出现处于公差的极限偏差下的情况很少出现,因此由于采用极限法进行统计无法直接反映生产状况。因此,在采用如第一实施例中的极限法进行数据扩充时,可能会降低了设计可能性,提高了设计门槛。因此,本实施方式提出另一种数据扩充方式,以基于统计学对发动机压缩比进行验证。
在本实施方式中,零件的偏差值随机取在公差范围内,通过对公差的随机选择,从而使扩充的零件尺寸能够覆盖生产中可能出现的尺寸值。预设数值生成函数可以为Cpk函数或Rand函数,用于参考 系数,该参考系数的取值范围在0~1之间。
在具体实现时,步骤S201可以包括:获取样本数量值,并根据样本数量值确定各零件对应的尺寸数量;通过随机函数分别为各零件生成对应的随机数,各零件对应的随机数的数量等于尺寸数量;将随机数作为参考系数。
需要说明的是,样本数量值可以由用户输入,用于指定模拟出的发动机样本数量,如50000或者60000。根据用户需要的样本数量确定为各零件对应的尺寸数量。按照排列组合的方式,样本的总量与零件尺寸数和零件数量相关,因此,可以根据用户输入的样本数量和零件数量确定最小的零件尺寸数。当然,还可以预设设置样本数量与零件尺寸数的对应关系。例如,样本数量为40000~50000,对应的零件尺寸数为4;样本数量为50000~60000,对应的零件尺寸数为5。因此,样本数据的具体确定方式可以根据需求进行设置,本实施方式对此不加以限制。
步骤S202:根据各参考系数和待定公差确定各零件对应的多个偏差值。
需要说明的是,各零件所对应的参考系数可以不同也可以相同,例如零件A对应的参考系数为0.3和0.6,零件B对应的参考系数为0.3和0.7。各零件对应的偏差值也可以相同或不同。为了保证统计的有效性,各零件对应的多个偏差值可以在4个以上,当然,偏差值的具体数量可以根据需求进行设置,本实施方式对此不加以限制。
根据各参考系数和待定公差确定各零件对应的多个偏差值具体可以为将参考系数和公差对应的最大偏差进行相乘,将获得的值作为偏差值。例如,零件A的公差为±0.05,则其偏差值可以为0.015和0.03;零件B的公差为±0.04,则其偏差值可以为0.012和0.028。
步骤S203:根据各偏差值和待定尺寸确定各零件对应的参考尺寸。
需要说明的是,根据各偏差值和待定尺寸确定各零件对应的参考尺寸可以为将偏差值和待定尺寸进行相加,将获得的值作为参考尺寸。例如零件A的待定尺寸为200,则其参考尺寸可以为200.015和2000.03;零件B的待定尺寸为45.6,则其参考尺寸可以为45.612和45.628。
步骤S204:从待定尺寸和参考尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
需要说明的是,参考尺寸集合的组合方式可以参考第一实施例,本实施方式在此不再赘述,参考尺寸集合为用户输入的样本数量值。
可以理解的是,通过对各参考尺寸集合对应的压缩比进行计算,获得了大量的发动机压缩比数据。由于各参考尺寸集合中的零件尺寸是能够在实际生产过程中出现的,因此,基于本实施方式的数据扩充方式计算得出的验证结果能够更贴近生产情况。
通过进一步的各参考尺寸集合对应的压缩比进行统计,判断统计结果是否满足生产状态。参照图6,图6为发动机压缩比一实施例的正态分布示意图。如图6所示,横轴为压缩比值,纵轴为样本数量,通过正态分布分析公式对样本进行统计计算,确定该分布结果是否满足生产要求,该生产要求可以具体为满足公差要求的样本率达到如99.98%等,公差要求可以为±0.25。
在一实施方式中,为了提高设计效率,本实施方式在步骤S10之前,还包括:根据待定尺寸确定发动机结构参数;根据发动机结构参数确定理论压缩比;在理论压缩比满足第二预设条件时,执行根据待定尺寸和待定公差生成多个参考尺寸集合的步骤。
可以理解的是,通过对用户输入的待定尺寸进行压缩比计算,可以对用户的初步设计结果进行评估,具体的压缩比计算方式可以参照第一实施例。若用户输入的待定尺寸不满足设计要求,则提醒用户重新设计,若,满足则进行后续步骤。例如,假设设计要求的压缩比参数为13.5±0.25,若理论压缩比为13.45,则认定满足设计要求,若理论压缩比为13.75,则认定不满足设计要求。
在第三实施例中,零件的偏差值随机取在公差范围内,通过对公差的随机选择,从而使扩充的零件尺寸能够覆盖生产中可能出现的尺寸值。由此,使得计算得出的验证结果能够更贴近生产情况,提高压缩比验证的合理性。此外,本实施方式可以还可以对用户输入的待定尺寸进行初步评估,以提高验证效率。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有发动机压缩比验证程序,所述发动机压缩比验证程序被处理器执行时实现如上文所述的发动机压缩比验证方法的步骤。
由于本存储介质采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有功能,在此不再一一赘述。
此外,参照图7,图7为本申请发动机压缩比验证装置第一实施例的结构框图,本申请实施例还提出一种发动机压缩比验证装置。
在本实施例中,发动机压缩比验证装置包括:
获取模块10,被配置为获取发动机的多个零件分别对应的待定尺寸及待定公差。
第一计算模块20,被配置为根据所述待定尺寸和所述待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值。
第二计算模块30,被配置为确定各参考尺寸集合对应的参考压缩比。
验证模块40,被配置为根据各参考压缩比对发动机压缩比进行验证,获得验证结果。
在本实施例中,通过获取发动机的多个零件分别对应的待定尺寸及待定公差;再根据待定尺寸和待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;再确定各参考尺寸集合对应的参考压缩比;最后根据各参考压缩比对发动机压缩比进行验证,获得验证结果。本申请能够根据用户输入的待定参数进行扩展,以获取更多的验证数据,再根据验证数据确定发动机的验证结果;从而取消手工处理数据,避免不必要的错误,也提高了发动机压缩比验证的效率。
在一实施例中,发动机压缩比验证装置包括第三计算模块,第三计算模块被配置为获取公差调整系数,根据公差调整系数对待定公差进行调整,获得各零件对应的参考公差;根据待定公差和参考公差生成多个参考公差集合,各参考公差集合中分别包括各零件对应的公差值;根据待定尺寸确定各公差集合对应的压缩比参考验证结果;根据各压缩比参考验证结果确定压缩比敏感分析结果。
在一实施例中,发动机压缩比验证装置包括第四计算模块,第四计算模块被配置为获取多个发动机样本对应的样本尺寸,并确定各样本尺寸对应的样本压缩比;根据各样本压缩比确定压缩比分布结果;在压缩比分布结果不满足第一预设条件时,根据压缩比分布结果确定修正系数;第一计算模块20还被配置为根据修正系数、待定尺寸和待定公差生成多个参考尺寸集合。
在一实施例中,第一计算模块20还被配置为根据待定公差确定各零件对应的极限偏差;根据极限偏差和待定尺寸确定各零件对应的极限尺寸;从待定尺寸和极限尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
在一实施例中,第一计算模块20还被配置为根据预设数值生成函数生成多个参考系数;根据各参考系数和待定公差确定各零件对应的多个偏差值;根据各偏差值和待定尺寸确定各零件对应的参考尺寸;从待定尺寸和参考尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
在一实施例中,第一计算模块20还被配置为获取样本数量值,并根据样本数量值确定各零件对应的尺寸数量;通过随机函数分别为各零件生成对应的随机数,各零件对应的随机数的数量等于尺寸数量;将随机数作为参考系数。
在一实施例中,发动机压缩比验证装置包括第五计算模块,第五计算模块被配置为根据待定尺寸确定发动机结构参数;根据发动机结构参数确定理论压缩比;在理论压缩比满足第二预设条件时,执行根据待定尺寸和待定公差生成多个参考尺寸集合的步骤。
本申请所述零件尺寸参数确定装置的其他实施例或具体实现方式可参照上述各方法实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为名称。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器镜像(Read Only Memory image,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请 的专利保护范围内。

Claims (10)

  1. 一种发动机压缩比验证方法,所述发动机压缩比验证方法包括以下步骤:
    获取发动机的多个零件分别对应的待定尺寸及待定公差;
    根据所述待定尺寸和所述待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;
    确定各参考尺寸集合对应的参考压缩比;
    根据各参考压缩比对发动机压缩比进行验证,获得验证结果。
  2. 如权利要求1所述的发动机压缩比验证方法,其中,所述根据各参考压缩比对发动机压缩比进行验证,获得验证结果之后,所述方法还包括:
    获取公差调整系数,根据所述公差调整系数对所述待定公差进行调整,获得各零件对应的参考公差;
    根据所述待定公差和所述参考公差生成多个参考公差集合,各参考公差集合中分别包括各零件对应的公差值;
    根据所述待定尺寸确定各公差集合对应的压缩比参考验证结果;
    根据各压缩比参考验证结果确定压缩比敏感分析结果。
  3. 如权利要求1或2所述的发动机压缩比验证方法,其中,所述根据各参考压缩比对发动机压缩比进行验证,获得验证结果之后,所述方法还包括:
    获取多个发动机样本对应的样本尺寸,并确定各样本尺寸对应的样本压缩比;
    根据各样本压缩比确定压缩比分布结果;
    在所述压缩比分布结果不满足第一预设条件时,根据所述压缩比分布结果确定修正系数,并返回所述根据所述根据所述待定尺寸和所述待定公差生成多个参考尺寸集合的步骤;
    所述根据所述待定尺寸和所述待定公差生成多个参考尺寸集合,包括:
    根据所述修正系数、所述待定尺寸和所述待定公差生成多个参考尺寸集合。
  4. 如权利要求1或2所述的发动机压缩比验证方法,其中,所述根据所述待定尺寸和所述待定公差生成多个参考尺寸集合,包括:
    根据所述待定公差确定各零件对应的极限偏差;
    根据所述极限偏差和所述待定尺寸确定各零件对应的极限尺寸;
    从所述待定尺寸和所述极限尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
  5. 如权利要求1或2所述的发动机压缩比验证方法,其中,所述根据所述待定尺寸和所述待定公差生成多个参考尺寸集合,包括:
    根据预设数值生成函数生成多个参考系数;
    根据各参考系数和所述待定公差确定各零件对应的多个偏差值;
    根据各偏差值和所述待定尺寸确定各零件对应的参考尺寸;
    从所述待定尺寸和所述参考尺寸中分别选取各零件对应的尺寸值构建参考尺寸集合,以生成多个参考尺寸集合。
  6. 如权利要求5所述的发动机压缩比验证方法,其中,所述预设数值生成函数包括随机函数,所述根据预设数值生成函数生成多个参考系数,包括:
    获取样本数量值,并根据所述样本数量值确定各零件对应的尺寸数量;
    通过所述随机函数分别为各零件生成对应的随机数,各零件对应的随机数的数量等于所述尺寸数量;
    将所述随机数作为参考系数。
  7. 如权利要求1或2所述的发动机压缩比验证方法,其中,所述根据所述待定尺寸和所述待定公差生成多个参考尺寸集合之前,所述方法还包括:
    根据所述待定尺寸确定发动机结构参数;
    根据所述发动机结构参数确定理论压缩比;
    在所述理论压缩比满足第二预设条件时,执行所述根据所述待定尺寸和所述待定公差生成多个参考尺寸集合的步骤。
  8. 一种发动机压缩比验证装置,所述发动机压缩比验证装置包括:
    获取模块,被配置为获取发动机的多个零件分别对应的待定尺寸及待定公差;
    第一计算模块,被配置为根据所述待定尺寸和所述待定公差生成多个参考尺寸集合,各参考尺寸集合中分别包括各零件对应的尺寸值;
    第二计算模块,被配置为确定各参考尺寸集合对应的参考压缩比;
    验证模块,被配置为根据各参考压缩比对发动机压缩比进行验证,获得验证结果。
  9. 一种发动机压缩比验证设备,其中,所述发动机压缩比验证设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的发动机压缩比验证程序,所述发动机压缩比验证程序被所述处理器执行时实现如权利要求1至7中任一项所述的发动机压缩比验证方法。
  10. 一种存储介质,其中,所述存储介质上存储有发动机压缩比验证程序,所述发动机压缩比验证程序被处理器执行时实现如权利要求1至7中任一项所述的发动机压缩比验证方法。
PCT/CN2021/129994 2021-04-08 2021-11-11 发动机压缩比验证方法、装置、设备及存储介质 WO2022213603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110379986.8 2021-04-08
CN202110379986.8A CN113094903B (zh) 2021-04-08 2021-04-08 发动机压缩比验证方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022213603A1 true WO2022213603A1 (zh) 2022-10-13

Family

ID=76675595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129994 WO2022213603A1 (zh) 2021-04-08 2021-11-11 发动机压缩比验证方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113094903B (zh)
WO (1) WO2022213603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117151418A (zh) * 2023-09-21 2023-12-01 正泰高压电气设备(武汉)有限公司 变压器的尺寸校验标准确定方法、装置及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113094903B (zh) * 2021-04-08 2022-08-19 浙江吉利控股集团有限公司 发动机压缩比验证方法、装置、设备及存储介质
CN114900190B (zh) * 2022-04-24 2024-09-17 国网安徽省电力有限公司 一种多目标融合的差动保护数据压缩方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030074956A1 (en) * 2001-10-22 2003-04-24 Cullen Michael John Diagnostic method for variable compression ratio engine
CN105893686A (zh) * 2016-02-22 2016-08-24 上海交通大学 精确控制压缩比一致性的设计和制造方法
CN105930552A (zh) * 2016-02-22 2016-09-07 上海交通大学 基于数字模拟技术的公差确定方法
CN109014871A (zh) * 2018-07-27 2018-12-18 安徽江淮汽车集团股份有限公司 一种发动机压缩比调控方法及调控装置
CN113094903A (zh) * 2021-04-08 2021-07-09 浙江吉利控股集团有限公司 发动机压缩比验证方法、装置、设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337090B2 (ja) * 2002-12-20 2009-09-30 マツダ株式会社 ピストン設計支援プログラム、設計支援方法及び設計支援装置
US10248742B2 (en) * 2012-12-12 2019-04-02 University Of North Dakota Analyzing flight data using predictive models
CN105912778B (zh) * 2016-02-22 2019-08-09 上海交通大学 理性公差设计驱动的智能制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030074956A1 (en) * 2001-10-22 2003-04-24 Cullen Michael John Diagnostic method for variable compression ratio engine
CN105893686A (zh) * 2016-02-22 2016-08-24 上海交通大学 精确控制压缩比一致性的设计和制造方法
CN105930552A (zh) * 2016-02-22 2016-09-07 上海交通大学 基于数字模拟技术的公差确定方法
CN109014871A (zh) * 2018-07-27 2018-12-18 安徽江淮汽车集团股份有限公司 一种发动机压缩比调控方法及调控装置
CN113094903A (zh) * 2021-04-08 2021-07-09 浙江吉利控股集团有限公司 发动机压缩比验证方法、装置、设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117151418A (zh) * 2023-09-21 2023-12-01 正泰高压电气设备(武汉)有限公司 变压器的尺寸校验标准确定方法、装置及存储介质
CN117151418B (zh) * 2023-09-21 2024-04-16 正泰高压电气设备(武汉)有限公司 变压器的尺寸校验标准确定方法、装置及存储介质

Also Published As

Publication number Publication date
CN113094903B (zh) 2022-08-19
CN113094903A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022213603A1 (zh) 发动机压缩比验证方法、装置、设备及存储介质
US20050114059A1 (en) Point cloud measuring system and method
US20080189081A1 (en) System and method for analyzing geometric deviations of a physical object
CN110287332B (zh) 云环境下仿真模型选择方法与装置
WO2021139103A1 (zh) 加压参数自适应调节方法、装置、计算机设备及存储介质
CN106487939B (zh) 一种确定用户ip子网的方法和装置、一种电子设备
WO2022247443A1 (zh) 数据查询方法、装置、设备和存储介质
CN113515549B (zh) 财务数据查询方法、装置及可读存储介质
CN111339615A (zh) 一种基于两步插值的飞机油箱重心计算与补偿方法
CN112307062B (zh) 数据库聚合查询方法、装置及系统
US8139065B2 (en) Machine-implemented method and electronic device for presenting a dual-axis graph
WO2022267183A1 (zh) 预计算模型的评分方法、装置、设备和存储介质
CN114996303A (zh) 调用数据库的代价因子的校准方法、装置、设备及介质
CN109347691B (zh) 一种用于Web服务的数据采样方法、装置及设备
CN112488528A (zh) 数据集的处理方法、装置、设备和存储介质
CN112907100A (zh) 一种服务需求的测量方法、装置和电子设备
CN110879723B (zh) 基于Pareto最优集的软件服务价值的客观评测方法及装置
CN117540635A (zh) 一种发动机压缩比评估方法、装置及电子设备
CN111553072B (zh) 设备特性曲线的确定方法及装置
CN117670888B (zh) 管道内壁缺陷检测方法、装置、设备及介质
CN116719842A (zh) 基于内存的数据处理方法、设备及存储介质
CN117435509B (zh) 接口数据的动态比对方法、动态比对设备和存储介质
CN117633067A (zh) 中间层数据优化方法、装置、存储介质、产品及电子设备
CN111190940B (zh) 用户访问的离散数据处理方法、装置、设备及介质
JP2018028760A (ja) 情報処理装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935820

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21935820

Country of ref document: EP

Kind code of ref document: A1