WO2022213503A1 - 一种氢化复合物薄膜的制备方法和滤光器 - Google Patents
一种氢化复合物薄膜的制备方法和滤光器 Download PDFInfo
- Publication number
- WO2022213503A1 WO2022213503A1 PCT/CN2021/105226 CN2021105226W WO2022213503A1 WO 2022213503 A1 WO2022213503 A1 WO 2022213503A1 CN 2021105226 W CN2021105226 W CN 2021105226W WO 2022213503 A1 WO2022213503 A1 WO 2022213503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- film layer
- hydrogenated
- materials
- hydrogen
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000003287 optical effect Effects 0.000 title claims abstract description 27
- 150000001875 compounds Chemical class 0.000 title abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 169
- 239000001257 hydrogen Substances 0.000 claims abstract description 62
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 62
- 238000004544 sputter deposition Methods 0.000 claims abstract description 54
- 239000010408 film Substances 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 239000011261 inert gas Substances 0.000 claims abstract description 37
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 230000008033 biological extinction Effects 0.000 claims abstract description 20
- -1 hydrogen ions Chemical class 0.000 claims abstract description 8
- 239000010409 thin film Substances 0.000 claims description 89
- 239000002131 composite material Substances 0.000 claims description 75
- 229910052710 silicon Inorganic materials 0.000 claims description 29
- 239000010703 silicon Substances 0.000 claims description 29
- 229910052732 germanium Inorganic materials 0.000 claims description 21
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 6
- 239000012495 reaction gas Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 12
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000012788 optical film Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 84
- 150000002431 hydrogen Chemical class 0.000 description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 23
- 239000002210 silicon-based material Substances 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 12
- 150000003376 silicon Chemical class 0.000 description 11
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- JIMODRYHNQDMSX-UHFFFAOYSA-N [GeH2].[Si] Chemical compound [GeH2].[Si] JIMODRYHNQDMSX-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004297 night vision Effects 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000003333 near-infrared imaging Methods 0.000 description 1
- LIZIAPBBPRPPLV-UHFFFAOYSA-N niobium silicon Chemical class [Si].[Nb] LIZIAPBBPRPPLV-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- ZCBSOTLLNBJIEK-UHFFFAOYSA-N silane titanium Chemical compound [SiH4].[Ti] ZCBSOTLLNBJIEK-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/288—Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3482—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising silicon, hydrogenated silicon or a silicide
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3649—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/207—Filters comprising semiconducting materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/25—Metals
- C03C2217/257—Refractory metals
- C03C2217/258—Ti, Zr, Hf
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/25—Metals
- C03C2217/257—Refractory metals
- C03C2217/259—V, Nb, Ta
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/25—Metals
- C03C2217/268—Other specific metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
- C03C2218/155—Deposition methods from the vapour phase by sputtering by reactive sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
Definitions
- the application relates to the technical field of optical thin film filters, in particular to a preparation method of a hydrogenated composite thin film and an optical filter.
- the narrow-band band-pass filter in 3D and other near-infrared imaging systems, when the light is incident at a large angle, it is necessary to make the center wavelength of the band-pass filter as small as possible with the angle offset, so that in a relatively small There is less signal loss and high signal-to-noise ratio in a wide field of view range, resulting in a large angle and low offset effect.
- the narrow-band bandpass filter that meets the above-mentioned functional requirements needs to be fabricated by superimposing a coating material with an ultra-high refractive index and a coating material with a medium and low refractive index on each other.
- the high-refractive-index materials used in the production of large-angle and low-offset filters are generally made of hydrogenated silicon materials. Due to foreign patents, it also caused the problem of high product cost. In addition, the offset effect of the hydrogenated silicon material is not good, and the viewing angle is not large enough, so that the large-angle and low-offset effect of the optical filter made of this material is limited.
- the purpose of the embodiments of the present application is to provide a method for preparing a hydrogenated composite thin film and an optical filter, and the method can improve the comprehensive performance of the thin film and reduce the product cost.
- a method for preparing a hydrogenated composite film comprises introducing an inert gas and hydrogen into a reaction chamber, and using a plasma formed by the inert gas to bombard at least two materials and the introduced hydrogen in the reaction chamber, so that at least The two materials are sputtered onto the substrate and react with hydrogen ions generated by hydrogen gas to form a thin film layer of hydrogenated composite.
- the at least two materials include one main material and at least one auxiliary material, the main material includes silicon or germanium; the auxiliary material includes at least one of a semiconductor material, a fourth main group element or a transition element, the main material and The auxiliary materials are different materials.
- the main material is silicon, and the auxiliary material is germanium; or, the main material is silicon, and the auxiliary material is niobium; or, the main material is silicon, and the auxiliary material is titanium.
- the proportion of raw material mass of auxiliary materials is less than 20% of the total raw material mass
- inert gas and hydrogen are introduced into the reaction chamber, and the plasma formed by the inert gas is used to bombard the at least two materials and the introduced hydrogen in the reaction chamber, so that the at least two materials are sputtered on the substrate, and are combined with the plasma formed by the inert gas.
- the hydrogen ions generated by hydrogen are reacted to form, and the hydrogenated composite thin film layer includes: by controlling sputtering parameters, the flow of inert gas and hydrogen, to form a refractive index of 700nm-1800nm wavelength with a refractive index greater than 3.5 and an extinction coefficient less than 0.005 Hydrogenated composite film layer.
- the sputtering parameters include sputtering power, sputtering voltage, sputtering current, sputtering time and sputtering temperature.
- the targets are made of materials, one target can be made of only one material, or one target can be made of two or more materials.
- the flow rate of the inert gas introduced into the reaction chamber is less than 800 standard ml/min.
- the flow rate of hydrogen gas introduced into the reaction chamber is less than 400 standard ml/min.
- the inert gas is argon.
- the application also provides an optical filter, comprising: a substrate, a hydrogenated composite thin film layer prepared by the above-mentioned preparation method of the hydrogenated composite thin film stacked on the substrate, and a first thin film layer; the first thin film layer is lower than that of the hydrogenated composite thin film layer.
- the substrate is provided with multiple hydrogenated composite thin film layers and multiple first thin film layers, and the multiple hydrogenated composite thin film layers and the multiple first thin film layers are alternately arranged.
- the first thin film layer is a medium and low refractive index material layer.
- the first thin film layer is silicon oxide or silicon hydroxide.
- Fig. 1 is the arrangement diagram of the preparation device of the hydrogenated composite film provided by this embodiment
- Fig. 2 is the relation diagram of wavelength and refractive index under different hydrogen conditions provided by the present embodiment
- Fig. 3 is the relation diagram of wavelength and extinction coefficient under different hydrogen conditions provided by the present embodiment
- FIG. 4 is a performance parameter diagram of the single-layer silicon germanium hydride provided by the present embodiment.
- FIG. 5 is a graph of an optical filter designed with silicon germanium hydride as a high refractive index material provided in this embodiment.
- orientation or positional relationship indicated by the terms “inside”, “outside”, etc. is based on the orientation or positional relationship shown in the accompanying drawings, or is usually placed when the product of the application is used.
- the orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the present application.
- the terms “first”, “second”, etc. are only used to differentiate the description and should not be construed to indicate or imply relative importance.
- connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a direct connection
- connection can also be indirectly connected through an intermediate medium, and it can be the internal communication of two elements.
- the filter with large angle and low offset effect is widely used, and can be used in 3D imaging, 3D modeling and other fields.
- the filter with large angle and low offset effect requires that even if the light is incident at a large angle, its center wavelength varies with the angle. It should also be as small as possible, so as to ensure less signal loss and high signal-to-noise ratio in a wide field of view.
- the thin film of this optical filter is mainly fabricated by superimposing and plating a high refractive index hydrogenated silicon material and a lower refractive index.
- the embodiments of the present application provide a method for preparing a hydrogenated composite film, which can prepare a high-refractive index material with a refractive index greater than 3.5 and an extinction coefficient less than 0.005 at a wavelength of 700nm-1800nm.
- High-refractive-index materials and lower-refractive-index materials are alternately plated on glass and other substrates to form optical interference film bandpass, long-wavelength, and short-wavelength filters.
- the narrow-band filter produced by the preparation method of the present application can be applied to all filters that require large angles and low offset effects, such as night vision, 3D imaging, 3D modeling, face recognition, iris recognition, and gesture recognition; It can also be used in sensor systems such as automotive autonomous driving and electrochromic window glass.
- the embodiments of the present application provide a method for preparing a hydrogenated composite film, the method comprising:
- Inert gas Q and reaction gas hydrogen H 2 are introduced into the reaction chamber, and the plasma formed by the inert gas Q is used to bombard at least two materials and the introduced hydrogen H 2 in the reaction chamber, so that the at least two materials are sputtered onto the substrate 101 and react with the hydrogen ions generated by the separation of hydrogen gas H 2 to form a hydrogenated composite thin film layer.
- Inert gas Q and hydrogen H 2 are introduced into the reaction chamber, the inert gas Q forms plasma, the inert gas Q can be argon Ar, and hydrogen H 2 is used as the reaction gas, and the plasma formed by the inert gas Q bombards at least two materials and Hydrogen H 2 causes at least two materials to form atomic clusters and sputters onto the substrate 101 at the same time. At the same time, bombarding hydrogen H 2 generates hydrogen ions that react with the sputtered at least two materials to form hydrogenated complexes on the substrate 101 film layer.
- Target A and target B can be the above two materials, or can be the same target A or target prepared from the two materials.
- Material B that is to say, the two materials can be provided on the target material A and the target material B respectively, or the two materials can be provided on the target material A at the same time, or the two materials can be provided on the target material B at the same time.
- Targets are made of desired materials, and one target can be made of only one material, or one target can be made of two or more materials, which are set according to actual needs.
- the above process is a process of reactive sputtering, and reactive sputtering means that in the presence of a reactive gas, when a material is sputtered, the material will react with the reactive gas to form a compound.
- the reactive gas in this application is hydrogen H 2 .
- hydrogen H 2 is introduced at the same time.
- the material reacts with the hydrogen H 2 to form a hydrogenated composite film layer on the substrate 101 , and the hydrogen H 2 plays an activating role. .
- the coating chamber needs to reach a certain degree of vacuum, then the sputtering source is turned on and hydrogen H 2 is passed in, and hydrogen H 2 is used to hydrogenate the material sputtered on the substrate 101 to obtain a hydrogenated composite film.
- the sputtering source is turned on and hydrogen H 2 is passed in, and hydrogen H 2 is used to hydrogenate the material sputtered on the substrate 101 to obtain a hydrogenated composite film.
- the sputtering source is turned on and hydrogen H 2 is passed in, and hydrogen H 2 is used to hydrogenate the material sputtered on the substrate 101 to obtain a hydrogenated composite film.
- hydrogen H 2 is used to hydrogenate the material sputtered on the substrate 101 to obtain a hydrogenated composite film.
- the inert gas Q and hydrogen H 2 are introduced into the reaction chamber, the inert gas Q forms plasma, the hydrogen H 2 is used as the reaction gas, and the inert gas Q forms the plasma bombardment At least two materials and hydrogen H 2 , so that the at least two materials form atomic clusters and sputter on the substrate 101 at the same time.
- the sputtered at least two materials react to form a thin film layer of the hydrogenated composite on the substrate 101 .
- the hydrogenated composite thin film layer obtained by this method includes at least two materials, and the at least two materials are co-sputtered on the same substrate 101 by sputtering technology, so as to obtain desired material properties.
- a hydrogenated composite thin film layer with a refractive index greater than 3.5 and an extinction coefficient less than 0.005 at a wavelength of 700nm-1800nm can be obtained.
- the performance of the hydrogenated composite thin film layer is compared with the existing ones.
- the hydrogenated silicon material prepared from a single silicon has advantages.
- the hydrogenated composite film prepared by the preparation method of the present application has a higher refractive index for light and a smaller absorption. When the light is incident at a large angle, the central wavelength varies with the angle. The offset is small, so that the large-angle low-offset effect of the optical filter prepared by this preparation method is better.
- it also breaks the limitation that the existing hydrogenated silicon material is subject to foreign patents, which enables the high refractive index material to be more widely used and reduces the product cost.
- At least two materials include one main material and at least one auxiliary material, the main material includes silicon or germanium; the auxiliary material includes at least one of semiconductor materials, the fourth main group element or transition element, and the main material and auxiliary material are different materials, and the proportion of raw material mass of auxiliary materials is less than 20% of the total raw material mass.
- the main material and at least one auxiliary material are simultaneously sputtered onto the substrate 101 in the reaction chamber, and hydrogen H 2 is passed into the reaction chamber to form a hydrogenated composite thin film layer on the substrate 101 .
- the main material includes silicon or germanium;
- the auxiliary material includes at least one of semiconductor material, fourth main group element or transition element, and the raw material mass ratio of the auxiliary material is less than 20% of the total raw material mass.
- the raw material mass of the auxiliary material is less than 20% of the total raw material mass, that is, the raw material mass ratio of the main material is More than 80% of the total raw material mass.
- the mass ratio mentioned here refers to the mass ratio of the material before sputtering, rather than the mass ratio after sputtering onto the substrate 101 to form the hydrogenated composite thin film layer.
- the main material for sputtering includes silicon or germanium.
- the material cost of silicon is lower than that of germanium, so silicon is also more widely used as the main material.
- Auxiliary materials include at least one, that is to say, the combination of main material and auxiliary material is: one main material with one auxiliary material, or one main material with two auxiliary materials, or one main material with three kinds of materials auxiliary materials, etc.
- the auxiliary material includes at least one of a semiconductor material, a fourth main group element or a transition element, that is, no matter how many kinds of auxiliary materials there are, they all come from the semiconductor material, the fourth main group element or a transition element.
- the fourth main group element or transition element refers to the fourth main group element or transition element in the periodic table of chemical elements.
- the main material and the auxiliary material are different materials.
- the main material is silicon
- the auxiliary material cannot be silicon
- the main material is germanium
- the auxiliary material cannot be germanium, so as to ensure simultaneous sputtering of two different materials.
- the main material is silicon
- the auxiliary material is germanium in the fourth main group element.
- a hydrogen germanium silicon thin film layer is formed on 101 .
- the main material is silicon
- the auxiliary material is niobium in the transition element, so that by co-sputtering silicon and niobium, and reacting with hydrogen H 2 , hydrogenated niobium silicon is formed on the substrate 101 film layer.
- the main material is silicon
- the auxiliary material is titanium in transition elements.
- titanium silicon hydride is formed on the substrate 101 film layer.
- the present application is not limited to the above-mentioned three specific embodiments, as long as the main material and at least one auxiliary material can be co-sputtered and subjected to hydrogenation treatment with hydrogen gas, they can all be formed on the substrate 101. Hydrogenated composite film layer.
- the refractive index of 700nm ⁇ 1800nm can be obtained by sputtering greater than 3.5, extinction Hydrogenated composite thin film layers with coefficients less than 0.005.
- the hydrogenated composite thin film layer is made of at least two sputtering materials (main material and at least one auxiliary material), so its performance is better than that of the existing hydrogenated silicon material made of single silicon, such as the existing hydrogenated silicon material.
- the refractive index of the silicon material in the wavelength range of 800nm to 1100nm is greater than 3, and the extinction coefficient is less than 0.0005, while the hydrogenated composite film prepared in the present application has a higher refractive index for light and a smaller absorption under the same wavelength.
- the center wavelength shift with the angle is smaller, so that the optical filter prepared in this way has a better effect of large angle and low shift.
- step S100 specifically includes:
- Plasma is used to bombard at least two materials in the reaction chamber and hydrogen H 2 passing through, so that the materials on the at least two materials are sputtered onto the substrate 101 and react with the hydrogen ions generated by the hydrogen H 2 to form a hydrogenated complex film layer.
- Plasma is formed by passing an inert gas Q into the reaction chamber, and the inert gas Q includes argon, Ar, and the like.
- the sputtering parameters include sputtering power, sputtering time and sputtering temperature.
- the flow rate of the inert gas Q introduced into the reaction chamber is less than 800 standard ml/min, that is, less than 800sccm, and by controlling the flow rate of the inert gas Q introduced into the reaction chamber, a hydrogenated composite film with a preset refractive index and extinction coefficient is obtained.
- Floor the flow rate of the inert gas Q introduced into the reaction chamber.
- the flow rate of hydrogen H2 introduced into the reaction chamber is less than 400 standard ml/min, and the hydrogenated composite film layer with preset refractive index and extinction coefficient is formed by controlling the flow rate of hydrogen H2 introduced into the reaction chamber.
- the flow rate of the inert gas Q, the flow rate of hydrogen H 2 and the sputtering parameters need to be controlled.
- the sputtering parameters include sputtering power, sputtering voltage, sputtering current, sputtering time and sputtering temperature etc., by controlling the above parameters, a hydrogenated composite thin film layer with preset refractive index and extinction coefficient can be obtained.
- the refractive index of the hydrogenated composite thin film layer at the wavelength of 700nm-1800nm can be made greater than 3.5, and the extinction coefficient can be less than 0.005.
- the embodiment of the present application further discloses an optical filter, which includes a substrate 101, a hydrogenated composite thin film layer and a first thin film layer that are laminated on the substrate 101 and are fabricated by using the preparation method of the hydrogenated composite thin film of the above embodiment. , and the refractive index of the first thin film layer is lower than the refractive index of the hydrogenated composite thin film layer.
- the hydrogenated composite thin film layer produced by the above embodiment has a refractive index of more than 3.5 and an extinction coefficient of less than 0.005 at a wavelength of 700nm-1800nm, which belongs to a film with high refractive index and low absorption, and a first layer is laminated on the hydrogenated composite thin film layer.
- Thin film layer, the refractive index of the first thin film layer is less than the refractive index of the hydrogenated composite thin film layer, and a thin film layer alternately plated with high refractive index and low refractive index is formed on the substrate 101 to form optical interference thin film bandpass, long wavelength pass , short-wave filter, etc.
- the first thin film layer may be a layer of medium and low refractive index materials such as silicon oxide, silicon hydroxide and the like.
- the narrow-band filter made by this application can be used in night vision, 3D imaging, 3D modeling, face recognition, iris recognition, gesture recognition and other filters that require a large angle and low offset effect; it can also be used for In sensor systems such as automotive autonomous driving and electrochromic window glass.
- the hydrogenated composite thin film layer and the first thin film layer can be formed on the substrate 101 by means of plating.
- the above-mentioned substrate 101 can be plated with a single-layer hydrogenated composite thin film layer, or can be plated with the first thin film layer.
- a hydrogenated composite thin film layer and a first thin film layer can be plated on the substrate 101, or a multilayered hydrogenated composite thin film layer and a multilayered first thin film layer can be plated, wherein the multilayered hydrogenated composite thin film layer It is alternately arranged with the multi-layer first thin film layer.
- the hydrogenated composite thin film layer can be plated on the substrate 101 first, and then the first thin film layer and the hydrogenated composite thin film layer can be alternately plated.
- the first thin film layer can be plated first, then the hydrogenated composite thin film layer can be plated, and then alternately plated.
- the total thickness of the hydrogenated composite thin film layer and the first thin film layer is less than 8um, such a thickness is relatively thin, and the number of layers stacked on the substrate 101 is less, the present application can be realized with a lower thickness and fewer layers Similar to or even better than the prior art, the present application makes the optical filter have fewer layers and total thicknesses and less angular offset, so as to improve the performance of the optical filter.
- the total thickness of the hydrogenated composite thin film layer and the first thin film layer can be set according to specific needs, which is not specifically limited in the embodiment of the present application.
- the application uses the sputtering coating principle to co-sputter the main material and the auxiliary material according to the composition ratio under the action of the inert gas Q, and reacts with hydrogen H 2 to grow a hydrogenated composite thin film layer, so that the growth
- the hydrogenated composite thin film layer has higher refractive index and lower absorption.
- the obtained hydrogenated composite thin film layer has a refractive index greater than 3.5 and an extinction coefficient less than 0.005 at a wavelength of 700nm-1800nm, and the hydrogenated composite thin film layer designed based on this is used as a high refractive index material.
- Materials with lower refractive index are alternately plated on glass and other substrates to form optical interference film bandpass, long-wavelength, short-wavelength filters, etc., which can be applied to filters that require large angles and low offset effects.
- the following specifically takes the sputtering of silicon and germanium onto the substrate 101 as an example to illustrate the above-mentioned preparation method and the obtained optical filter.
- the present application utilizes the principle of co-sputtering coating, co-sputtering the silicon target and germanium target according to the composition ratio, and co-sputtering under the action of inert gas Q (such as argon, etc.), and reacts with hydrogen H 2 to grow silicon germanium hydride,
- inert gas Q such as argon, etc.
- a plasma generated by an inert gas Q such as argon is used to bombard semiconductor silicon materials and germanium materials in a single crystal or polycrystalline form, so that the silicon materials and germanium materials are nano-scale.
- the size is sputtered onto the glass substrate 101, and hydrogenation treatment is carried out through the reaction of hydrogen H2 gas and the germanium-silicon mixed material in a corresponding proportion, and finally a hydrogen-germanium-silicon film is formed.
- the composition ratio of silicon material and germanium material is adjusted first, usually with relevant parameters such as power, voltage, current, etc. Control, and then use the flow control of the reaction gas hydrogen H2 to prepare a thin film layer with a refractive index greater than 3.5 and an extinction coefficient less than 0.005 at a wavelength of 700nm-1800nm.
- the refractive index n of SiGe at a wavelength of 940 nm is greater than 3.69, and the extinction coefficient k is less than 0.00006.
- the composition ratio of the silicon material and germanium material of the reaction source (the proportion of germanium is controlled within 20%), the inert gas Q (for example, the total flow of argon is usually controlled within 800sccm) and hydrogen H
- the flow value of 2 (the total flow of hydrogen H2 is usually controlled within 400sccm) is an important parameter. If you want to obtain a film with high refractive index and low absorption, it is also necessary to adjust the corresponding parameters such as sputtering rate and sputtering temperature. The specific values of the parameters of different machines will be different.
- a multi-layer overlapping structure is formed with a low-refractive-index silicon oxide film (wherein, the film structure is such as SiGe+SiO+SiGe+SiO+%),
- a large-angle and small-offset bandpass filter with a center wavelength of 940 nm was designed and fabricated.
- Figure 5 is the measured spectral curve of the 0°/31° incident angle of the prepared 940nm bandpass filter, wherein the center wavelength shift of 0° and 31° is less than 11 nm, and the highest transmittance is greater than 97%.
- sputtering technology is used to co-sputter at least two materials (main material and auxiliary material) on the same substrate 101 to obtain the required material properties; by adjusting the coating process parameters, a series of 700 nm -Hydrogenated composite thin film layer with refractive index n greater than 3.5 and extinction coefficient k less than 0.005 at wavelength of 1800 nm, for example, hydrogenated silicon germanium thin film layer can be obtained from silicon and germanium.
- a multi-layer overlapping structure is formed by using a high-refractive-index hydrogenated germanium-silicon film and a material with a lower refractive index (such as silicon oxide, silicon hydroxide and other medium-low refractive index films) to prepare a large-angle incident A bandpass filter with a small offset to the center wavelength.
- the film layer structure is such as the alternating structure of hydrogen germanium silicon + silicon oxide / silicon hydroxide + hydrogen germanium silicon + silicon oxide / silicon hydroxide + .
- the hydrogen germanium silicon thin film prepared in the present application is realized by the composition ratio, wherein the ratio of the germanium composition as an auxiliary material is controlled within 20%.
- germanium-silicon mixed material prepared according to this composition ratio can also be combined with hydrogen H 2 to achieve a high-refractive-index hydrogen-germanium-silicon film by sputtering.
- the present application uses the co-sputtering coating technology to coat a high refractive index silicon germanium film, which can not only replace the hydrogenated silicon material, but also improve the transmittance of the multilayer film, and at the same time, the designed optical filter has fewer layers. , total thickness and less angular offset.
- the performance of the hydrogenated composite thin film provided by the embodiments of the present application has advantages compared with the existing hydrogenated silicon material made of single silicon.
- the hydrogenated composite film prepared in the present application has a higher refractive index and lower absorption of light, and when the light is incident at a large angle, the center wavelength shift with the angle is smaller, so that the optical filter prepared by this method has a large The angle low offset effect is better.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Optical Filters (AREA)
Abstract
本申请提供一种氢化复合物薄膜的制备方法和滤光器,涉及光学薄膜滤光器技术领域,包括在反应室内通入惰性气体和氢气,采用惰性气体形成的等离子体轰击反应室内的至少两种材料和通入的氢气,以使至少两种材料溅射至基片上,并和氢气产生的氢离子反应形成氢化复合物薄膜层。氢化复合物薄膜层至少包括了两种材料,采用溅射技术,将至少两种材料共溅射到同一基片上得到所需的材料性能,可得到700nm-1800nm波长下折射率大于3.5、消光系数小于0.005的氢化复合物薄膜层,氢化复合物薄膜对于光的折射率更高,吸收更小,在光线大角度入射的情况下,中心波长随角度偏移量较小,使得以此制备的滤光器的大角度低偏移效应更好。
Description
相关申请的交叉引用
本申请要求于2021年4月7日提交中国专利局的申请号为2021103752128、名称为“一种氢化复合物薄膜的制备方法和滤光器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本申请涉及光学薄膜滤光器技术领域,具体涉及一种氢化复合物薄膜的制备方法和滤光器。
关于在3D等近红外成像系统中的窄带带通滤光器,在光线大角度入射的情况下,需要使带通滤光器的中心波长随角度偏移量尽量的小,从而使得在一个较广的视场角范围内的信号损失较少、信噪比高,以形成大角度低偏移效应。
而满足上述功能需求的窄带带通滤光器需要采用使超高折射率的镀膜材料和中低折射率的镀膜材料相互叠加镀制的方式制作而成。
目前制作大角度低偏移效应的滤光器所用到的高折射率材料一般都采用氢化硅材料,该氢化硅材料的制作主要受到外国专利保护,也意味着由此所做的产品会一直受制于外国专利,这也造成了产品成本高的问题。并且,氢化硅材料的偏移作用欠佳,视场角也不够大,使得应用该材料制作而成的滤光器的大角度低偏移效应受限。
申请内容
本申请实施例的目的在于提供一种氢化复合物薄膜的制备方法和滤光器,该方法能够提高薄膜的综合性能,降低产品成本。
另外,提供了一种氢化复合物薄膜的制备方法,包括在反应室内通入惰性气体和氢气,采用由惰性气体形成的等离子体轰击反应室内的至少两种材料和通入的氢气,以使至少两种材料溅射至基片上,并与由氢气产生的氢离子反应,形成氢化复合物薄膜层。
可选地,至少两种材料包括一种主材料和至少一种辅材料,主材料包括硅或锗;辅材料包括半导体材料、第四主族元素或过渡元素中的至少一种,主材料和辅材料为不同的材料。
可选地,主材料为硅,辅材料为锗;或者,主材料为硅,辅材料为铌;或者,主材料 为硅,辅材料为钛。
可选地,辅材料的原料质量占比小于总原料质量的20%
可选地,在反应室内通入惰性气体和氢气,采用惰性气体形成的等离子体轰击反应室内的至少两种材料和通入的氢气,以使至少两种材料溅射至基片上,并与由氢气产生的氢离子反应形成,氢化复合物薄膜层包括:通过控制溅射参数、通入惰性气体和氢气的流量,以形成折射率为700nm-1800nm波长下折射率大于3.5、消光系数小于0.005的氢化复合物薄膜层。
可选地,溅射参数包括溅射功率、溅射电压、溅射电流、溅射时间和溅射温度。
可选地,反应室内有一个或多个靶材,靶材由材料制成,一个靶材可仅由一种材料制成,或者一个靶材可由两种或两种以上的材料制成。
可选地,向反应室内通入的惰性气体的流量小于800标准毫升/分钟。
可选地,向反应室内通入的氢气的流量小于400标准毫升/分钟。
可选地,惰性气体为氩气。
本申请还提供了一种滤光器,包括:基片,层叠设在基片上的采用上述的氢化复合物薄膜的制备方法制作的氢化复合物薄膜层,以及第一薄膜层;第一薄膜层的折射率低于氢化复合物薄膜层的折射率。
可选地,基片上设有多层氢化复合物薄膜层和多层第一薄膜层,多层氢化复合物薄膜层和多层第一薄膜层交替设置。
可选地,第一薄膜层为中低折射率材料层。
可选地,第一薄膜层为氧化硅、氢氧化硅。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,应当理解,以下附图仅示出了本申请的部分内容,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本实施例提供的氢化复合物薄膜的制备装置布置图;
图2是本实施例提供的不同氢气条件下的波长和折射率的关系图;
图3是本实施例提供的不同氢气条件下的波长和消光系数的关系图;
图4是本实施例提供的单层氢化锗硅的性能参数图;
图5是本实施例提供的将氢化锗硅作为高折射率材料进行设计的滤光器曲线图。
附图标记
101-基片;A、B-靶材;Q-惰性气体;H
2-氢气。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。
在本申请的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
大角度低偏移效应的滤光器应用广泛,可应用于3D成像、3D建模等领域,大角度低偏移效应的滤光器要求即使光线大角度入射,其中心波长随角度偏移量也尽量的小,这样才能保证在一个较广的视场角内信号损失少、信噪比高。这种滤光器的薄膜主要通过使高折射率的氢化硅材料和较低折射率的相互叠加镀制的方式制作而成。
目前氢化硅材料的制作主要受到外国专利保护,为了摆脱现有技术的卡喉,急需设计一款新的高折射率材料来替换此材料。
在此基础上,本申请实施例提供一种氢化复合物薄膜的制备方法,该方法能够制备出700nm-1800nm波长下的折射率大于3.5、消光系数小于0.005的高折射率材料,并通过将该高折射率材料和较低折射率材料交替镀制在玻璃等基材上,形成光学干涉薄膜带通、长波通、短波通等滤光器。通过本申请的制备方法制作出的窄带滤光器可应用在夜视、3D成像、3D建模、人脸识别、虹膜识别、手势识别等所有需要大角度低偏移效应的滤光器中;也可以用于汽车自动驾驶、电致变色窗玻璃等传感器系统中。
具体地,本申请实施例提供一种氢化复合物薄膜的制备方法,该方法包括:
S100:在反应室内通入惰性气体Q和反应气体氢气H
2,采用由惰性气体Q形成的等离子体轰击反应室内的至少两种材料和通入的氢气H
2,以使至少两种材料溅射至基片101上,并与由氢气H
2分离产生的氢离子反应,形成氢化复合物薄膜层。
向反应室内通入惰性气体Q和氢气H
2,惰性气体Q形成等离子体,惰性气体Q可为 氩气Ar,氢气H
2作为反应气体,由惰性气体Q形成的等离子体轰击至少两种材料和氢气H
2,使至少两种材料形成原子团簇,同时溅射到基片101上,同时,轰击氢气H
2产生氢离子与溅射的至少两种材料反应,在基片101上形成氢化复合物薄膜层。
示例地,如图1所示,反应室内有靶材A和靶材B,靶材A和靶材B可以是上述两种材料,也可以是由两种材料配制的同一款靶材A或靶材B,也就是说,两种材料可以分别设在靶材A和靶材B上,也可以将两种材料同时设在靶材A上,或者两种材料同时设在靶材B上。
将所需的材料制成靶材,一个靶材可仅由一种材料制成,或者一个靶材可由两种或两种以上的材料制成,具体根据实际需要设置。
上述过程为反应溅射的过程,反应溅射是指在存在反应气体的情况下,溅射材料时,材料会与反应气体反应形成化合物。
本申请中的反应气体为氢气H
2,在溅射的过程中同时通入氢气H
2,材料和氢气H
2反应并在基片101上形成氢化复合物薄膜层,氢气H
2起到活化作用。
在溅射时,镀膜腔室内需达到一定的真空度,然后开启溅射源并通入氢气H
2,通过氢气H
2对溅射在基片101上的材料进行氢化处理,得到氢化复合物薄膜层。
在本申请实施例提供的氢化复合物薄膜的制备方法中,向反应室内通入惰性气体Q和氢气H
2,惰性气体Q形成等离子体,氢气H
2作为反应气体,惰性气体Q形成的等离子轰击至少两种材料和氢气H
2,使至少两种材料形成原子团簇同时溅射到基片101上,同时,轰击氢气H
2产生氢离子,也一并被轰击到基片101上,氢离子和溅射的至少两种材料反应,在基片101上形成氢化复合物薄膜层。通过该方法得到的氢化复合物薄膜层,至少包括了两种材料,采用溅射技术将至少两种材料共溅射到同一基片101上,从而得到所需的材料性能。通过调节溅射参数和通入氢气H
2的流量,可得到700nm-1800nm波长下折射率大于3.5、消光系数小于0.005的氢化复合物薄膜层,该氢化复合物薄膜层的性能相较于现有单一的硅制得的氢化硅材料具有优势,通过本申请的制备方法制得的氢化复合物薄膜对于光的折射率更高,吸收更小,在光线大角度入射的情况下,中心波长随角度偏移量较小,使得以此制备方法制备的滤光器的大角度低偏移效应更好。同时,也打破了现有氢化硅材料受制于外国专利的限制,能够使高折射率材料得到更广泛的应用,并降低产品成本。
至少两种材料包括一种主材料和至少一种辅材料,主材料包括硅或锗;辅材料包括半导体材料、第四主族元素或过渡元素中的至少一种,主材料和辅材料为不同的材料,且辅材料的原料质量占比小于总原料质量的20%。
在反应室内向基片101上同时溅射主材料和至少一种辅材料,并向反应室内通入氢气H
2,以在基片101上形成氢化复合物薄膜层。
其中,主材料包括硅或锗;辅材料包括半导体材料、第四主族元素或过渡元素中的至少一种,且辅材料的原料质量占比小于总原料质量的20%。
在向基片101上溅射时,需溅射一种主材料和至少一种辅材料,辅材料的原料质量占比小于总原料质量的20%,也就是说,主材料的原料质量占比大于总原料质量的80%。
需要说明的是,这里所说的质量占比指的是在溅射前材料的质量占比,而不是溅射到基片101上形成氢化复合物薄膜层后的质量占比。
主材料作为溅射的主要材料,其包括硅或锗,硅的材料成本相对锗来说较低,因此硅作为主材料应用也更广泛。
辅材料包括至少一种,也就是说,主材料和辅材料的组合形式有:一种主材料搭配一种辅材料,或一种主材料搭配两种辅材料,或一种主材料搭配三种辅材料等等。
辅材料包括半导体材料、第四主族元素或过渡元素中的至少一种,也就是说,无论辅材料有几种,均来自于半导体材料、第四主族元素或过渡元素中。其中,第四主族元素或过渡元素指的是化学元素周期表中的第四主族元素或过渡元素。
并且,主材料和辅材料为不同的材料,当主材料为硅时,辅材料不能为硅,当主材料为锗时,辅材料不能为锗,以保证同时溅射两种不同的材料。
示例地,在本申请的第一个实施例中,主材料为硅,辅材料为第四主族元素中的锗,这样通过共溅射硅和锗,并和氢气H
2反应,在基片101上形成氢化锗硅薄膜层。
在本申请的第二个实施例中,主材料为硅,辅材料为过渡元素中的铌,这样通过共溅射硅和铌,并和氢气H
2反应,在基片101上形成氢化铌硅薄膜层。
在本申请的第三个实施例中,主材料为硅,辅材料为过渡元素中的钛,这样通过共溅射硅和钛,并和氢气H
2反应,在基片101上形成氢化钛硅薄膜层。
当然,本申请并不限于上述三个具体的实施例,只要是能共溅射符合条件的主材料和至少一种辅材料,并通过氢气H
2进行氢化处理,均可在基片101上形成氢化复合物薄膜层。
通过上述方法制备,在制备过程中通过调节主材料和辅材料的成分配比,并和氢气H
2反应,同时通过控制制备参数,通过溅射方式即可获得700nm~1800nm折射率大于3.5,消光系数小于0.005的氢化复合物薄膜层。该氢化复合物薄膜层由至少两种溅射材料(主材料和至少一种辅材料)制得,因此其性能相较于现有单一的硅制得的氢化硅材料更优,例如现有氢化硅材料在800nm~1100nm波长范围内的折射率均大于3,消光系数均小于0.0005,而本申请制得的氢化复合物薄膜在同条件的波长下对于光的折射率更高,吸收更小,在光线大角度入射的情况下,中心波长随角度偏移量较小,使得以此制备的滤光器的大角度低偏移效应更好。
进一步地,上述步骤S100具体包括:
采用等离子体轰击反应室内的至少两个材料和通入的氢气H
2,以使至少两个材料上的材料溅射至基片101上,并和氢气H
2产生的氢离子反应形成氢化复合物薄膜层。
通过向反应室内通入惰性气体Q形成等离子体,惰性气体Q包括氩气Ar等。
为了形成具有预设折射率和预设消光系数的薄膜层,需要控制溅射参数、通入惰性气体Q和氢气H
2的流量,以形成700nm-1800nm波长下折射率大于3.5、消光系数小于0.005的氢化复合物薄膜层;其中,溅射参数包括溅射功率、溅射时间和溅射温度。
示例地,向反应室内通入的惰性气体Q的流量小于800标准毫升/分钟,也就是小于800sccm,通过控制通入惰性气体Q的流量,以得到预设折射率和消光系数的氢化复合物薄膜层。
向反应室内通入的氢气H
2的流量小于400标准毫升/分钟,通过控制通入氢气H
2的流量,以形成预设折射率和消光系数的氢化复合物薄膜层。
在具体制备时,通入的惰性气体Q的流量、氢气H
2的流量和溅射参数均需控制,溅射参数包括溅射功率、溅射电压、溅射电流、溅射时间和溅射温度等,通过控制上述参数,能得到预设折射率和消光系数的氢化复合物薄膜层。本申请中,通过上述参数的控制,可使氢化复合物薄膜层在700nm-1800nm波长下折射率大于3.5、消光系数小于0.005。
本申请实施例还公开了一种滤光器,包括基片101以及层叠设在基片101上的采用上述实施例的氢化复合物薄膜的制备方法制作的氢化复合物薄膜层和第一薄膜层,且第一薄膜层的折射率低于氢化复合物薄膜层的折射率。
采用上述实施例制作的氢化复合物薄膜层,其700nm-1800nm波长下折射率大于3.5、消光系数小于0.005,属于高折射率、低吸收的薄膜,在该氢化复合物薄膜层上再层叠第一薄膜层,第一薄膜层的折射率小于氢化复合物薄膜层的折射率,在基片101上形成高折射率和低折射率交替镀制的薄膜层,以形成光学干涉薄膜带通、长波通、短波通等滤光器。
第一薄膜层可为氧化硅、氢氧化硅等中低折射率材料层。
用本申请制作的窄带滤光器,可应用在夜视,3D成像、3D建模、人脸识别、虹膜识别、手势识别等所有需要大角度低偏移效应的滤光器;也可以用于汽车自动驾驶、电致变色窗玻璃等传感器系统中。
可采用镀制的方式在基片101上形成氢化复合物薄膜层和第一薄膜层,上述基片101上可以镀制单层氢化复合物薄膜层,也可以和第一薄膜层搭配镀制,如基片101上可镀制一层氢化复合物薄膜层和一层第一薄膜层,也可以镀制多层氢化复合物薄膜层和多层第一薄膜层,其中多层氢化复合物薄膜层和多层第一薄膜层是交替设置,当然,多层镀制时,基片101上可以先镀制氢化复合物薄膜层,然后第一薄膜层再和氢化复合物薄膜层交替镀制,亦可先镀制第一薄膜层再镀制氢化复合物薄膜层,再交替镀制。
示例地,氢化复合物薄膜层与第一薄膜层的总厚度小于8um,这样的厚度较薄,基片101上层叠的层数较少,本申请能够以较低的厚度,较少的层级实现和现有技术同样甚至更优的效果,本申请使滤光器具有较少的层数与总厚度和较少的角度偏移量,以提高滤光器的性能。当然,氢化复合物薄膜层与第一薄膜层的总厚度可根据具体需要设置,本申请实施例对此不做具体限定。
可见,本申请利用溅射镀膜原理,将主材料和辅材料按成分配比通过惰性气体Q作用下进行共溅射,并和氢气H
2进行反应生长出氢化复合物薄膜层,以使生长出来的氢化复合物薄膜层具有较高的折射率和更低的吸收。
得到的氢化复合物薄膜层,在700nm-1800nm波长下折射率大于3.5、消光系数小于0.005,并以此设计出的氢化复合物薄膜层作为高折射率材料,与诸如氧化硅、氢氧化硅等较低折射率材料交替镀制在玻璃等基材上,形成光学干涉薄膜带通、长波通、短波通等滤光器,以应用于需要大角度低偏移效应的滤光器。
下述具体以向基片101上溅射硅和锗为例,说明上述制备方法和得到的滤光器。
本申请利用共溅射镀膜原理,将硅靶和锗靶按成分配比,通过惰性气体Q(诸如氩气等)作用下进行共溅射,并和氢气H
2进行反应生长出氢化锗硅,此方法生长出来的氢化锗硅层具有较高的折射率和更低的吸收。
具体地,在真空溅射镀膜机内,使用由诸如氩气的惰性气体Q产生的等离子体对单晶或多晶形态的半导体硅材料和锗材料进行轰击,使硅材料和锗材料以纳米级尺寸向玻璃基片101上溅射,并通以相应比例的氢气H
2气体和锗硅混合材料反应进行氢化处理,最终形成氢化锗硅薄膜。
在制备高折射率的薄膜时,先通过调节硅材料和锗材料的成分配比,通常用诸如功率、电压、电流等相关参数进行调节,同时对充入的惰性气体Q诸如氩气等进行流量控制,再利用对反应气体氢气H
2的流量控制,制备700nm-1800nm波长下折射率大于3.5,消光系数小于0.005的薄膜层。
不同氢气H
2条件下波长和折射率的关系如图2所示,不同氢气H
2条件下波长和消光系数的关系如图3所示。
优化情况下,如图4所示,氢化锗硅在940nm波长处的折射率n大于3.69、消光系数k小于0.00006。
需要特别指出的是,反应源的硅材料和锗材料的成分配比数值(其中锗成分的比例控制在20%以内)、惰性气体Q(例如氩气总流量通常控制在800sccm内)和氢气H
2的流量值(氢气H
2总体流量通常控制在400sccm内)是重要参数。如果要获得高折射率、吸收小的薄膜,还需要配合调整相应的溅射速率、溅射温度等参数,不同机台的参数具体数值会 有所差异。
基于优化条件下氢化锗硅的相应工艺参数,搭配低折射率的氧化硅薄膜形成多层交叠结构(其中,膜层结构如氢化锗硅+氧化硅+氢化锗硅+氧化硅+…),设计并制备中心波长为940nm的大角度小偏移量的带通滤光器。图5为所制备的940nm带通滤光器的0°/31°入射角的实测光谱曲线,其中0°和31°的中心波长偏移量小于11nm,最高透过率大于97%。
综上,本申请实施例采用溅射技术,将至少两种材料(主材料和辅材料)共同溅射到同一基片101上得到所需的材料性能;通过调整镀膜工艺参数,获得一系列700nm-1800nm波长下折射率n大于3.5、消光系数k小于0.005的氢化复合物薄膜层,例如通过硅和锗可制得氢化硅锗薄膜层。
在膜系设计方面,通过使用高折射率的氢化锗硅薄膜与低于其折射率的材料(例如氧化硅、氢氧化硅等中低折射率薄膜)形成多层交叠结构,制备大角度入射时中心波长具有较小偏移量的带通滤光器。膜层结构如氢化锗硅+氧化硅/氢氧化硅+氢化锗硅+氧化硅/氢氧化硅+…的交替结构。本申请制得的氢化锗硅薄膜,是通过成分配比实现,其中作为辅材料的锗成分的比例控制在20%以内。如果按此成分配比制备出来的锗硅混合材料,也可以和氢气H
2通过溅射方式实现的高折射率的氢化锗硅薄膜。本申请利用共溅射镀膜技术,镀制高折射率的氢化锗硅薄膜,不但能够替换氢化硅材料,而且可以提高多层膜的透过率,同时设计的滤光器具有较少的层数、总厚度和较少的角度偏移量。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本申请实施例提供的氢化复合物薄膜的性能相较于现有单一的硅制得的氢化硅材料具有优势。本申请制得的氢化复合物薄膜对于光的折射率更高,吸收更小,在光线大角度入射的情况下,中心波长随角度偏移量较小,使得以此制备的滤光器的大角度低偏移效应更好。同时,也打破了现有氢化硅材料受制于外国专利的限制,使高折射率材料可得到更广泛的应用,并降低产品成本。
Claims (14)
- 一种氢化复合物薄膜的制备方法,其特征在于,包括:在反应室内通入惰性气体和氢气,采用由所述惰性气体形成的等离子体轰击所述反应室内的至少两种材料和通入的所述氢气,以使至少两种所述材料溅射至基片上,并与由所述氢气产生的氢离子反应,形成氢化复合物薄膜层。
- 根据权利要求1所述的氢化复合物薄膜的制备方法,其特征在于,至少两种所述材料包括一种主材料和至少一种辅材料,所述主材料包括硅或锗;所述辅材料包括半导体材料、第四主族元素或过渡元素中的至少一种,所述主材料和所述辅材料为不同的材料。
- 根据权利要求2所述的氢化复合物薄膜的制备方法,其特征在于,所述主材料为硅,所述辅材料为锗;或者,所述主材料为硅,所述辅材料为铌;或者,所述主材料为硅,所述辅材料为钛。
- 根据权利要求3所述的氢化复合物薄膜的制备方法,其特征在于,所述辅材料的原料质量占比小于总原料质量的20%。
- 根据权利要求1~4任意一项所述的氢化复合物薄膜的制备方法,其特征在于,所述在反应室内通入惰性气体和反应气体氢气,采用所述惰性气体形成的等离子体轰击所述反应室内的至少两种材料和通入的所述氢气,以使至少两种所述材料溅射至所述基片上,并与由所述氢气产生的氢离子反应形成所述氢化复合物薄膜层包括:通过控制溅射参数、通入所述惰性气体和所述氢气的流量,以形成700nm-1800nm波长下折射率大于3.5、消光系数小于0.005的所述氢化复合物薄膜层。
- 根据权利要求5所述的氢化复合物薄膜的制备方法,其特征在于,所述溅射参数包括溅射功率、溅射电压、溅射电流、溅射时间和溅射温度。
- 根据权利要求1~6任一项所述的氢化复合物薄膜的制备方法,其特征在于,所述反应室内有一个或多个靶材,所述靶材由所述材料制成,一个所述靶材可仅由一种所述材料制成,或者一个所述靶材可由两种或两种以上的所述材料制成。
- 根据权利要求1~7任一项所述的氢化复合物薄膜的制备方法,其特征在于,向所述反应室内通入的所述惰性气体的流量小于800标准毫升/分钟。
- 根据权利要求1~8任一项所述的氢化复合物薄膜的制备方法,其特征在于,向所述反应室内通入的所述氢气的流量小于400标准毫升/分钟。
- 根据权利要求1~9任一项所述的氢化复合物薄膜的制备方法,其特征在于,所述惰性气体为氩气。
- 一种滤光器,其特征在于,包括:基片,层叠设在所述基片上的采用如权利要求 1~10任意一项所述的氢化复合物薄膜的制备方法制作的所述氢化复合物薄膜层,以及第一薄膜层;所述第一薄膜层的折射率小于所述氢化复合物薄膜层的折射率。
- 根据权利要求11所述的滤光器,其特征在于,所述基片上设有多层所述氢化复合物薄膜层和多层所述第一薄膜层,多层所述氢化复合物薄膜层和多层所述第一薄膜层交替设置。
- 根据权利要求11~12任一项所述的滤光器,其特征在于,所述第一薄膜层为中低折射率材料层。
- 根据权利要求11~13任一项所述的滤光器,其特征在于,所述第一薄膜层为氧化硅、氢氧化硅等。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227041368A KR20230003068A (ko) | 2021-04-07 | 2021-07-08 | 수소화 복합물 필름 및 광학 필터의 제조 방법 |
US17/997,975 US20230178347A1 (en) | 2021-04-07 | 2021-07-08 | Preparation method of hydrogenated composite film and optical filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110375212.8A CN113109898B (zh) | 2021-04-07 | 2021-04-07 | 一种氢化复合物薄膜的制备方法和滤光器 |
CN202110375212.8 | 2021-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022213503A1 true WO2022213503A1 (zh) | 2022-10-13 |
Family
ID=76714210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/105226 WO2022213503A1 (zh) | 2021-04-07 | 2021-07-08 | 一种氢化复合物薄膜的制备方法和滤光器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230178347A1 (zh) |
KR (1) | KR20230003068A (zh) |
CN (1) | CN113109898B (zh) |
WO (1) | WO2022213503A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109023273A (zh) * | 2018-08-06 | 2018-12-18 | 信阳舜宇光学有限公司 | 一种镀膜设备及镀膜方法 |
CN110058342A (zh) * | 2019-06-05 | 2019-07-26 | 信阳舜宇光学有限公司 | 近红外带通滤光片及其制备方法以及光学传感系统 |
CN110082849A (zh) * | 2019-06-05 | 2019-08-02 | 信阳舜宇光学有限公司 | 近红外窄带滤光片及制作方法 |
CN110109209A (zh) * | 2019-06-05 | 2019-08-09 | 信阳舜宇光学有限公司 | 滤光片以及制造滤光片的方法 |
WO2020139841A2 (en) * | 2018-12-27 | 2020-07-02 | Viavi Solutions Inc. | Optical filter |
CN112198593A (zh) * | 2020-10-12 | 2021-01-08 | 东莞市微科光电科技有限公司 | 一种cwdm滤光片的制作方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107841712B (zh) * | 2017-11-01 | 2018-10-30 | 浙江水晶光电科技股份有限公司 | 高折射率氢化硅薄膜的制备方法、高折射率氢化硅薄膜、滤光叠层和滤光片 |
CN108333661B (zh) * | 2018-03-13 | 2024-01-02 | 湖北五方光电股份有限公司 | 基于硼掺杂氢化硅的低角度偏移滤光片及其制备方法 |
CN110273126A (zh) * | 2019-06-18 | 2019-09-24 | 江苏星浪光学仪器有限公司 | 一种大角度低漂移滤光片的磁控溅射镀膜方法 |
-
2021
- 2021-04-07 CN CN202110375212.8A patent/CN113109898B/zh active Active
- 2021-07-08 KR KR1020227041368A patent/KR20230003068A/ko not_active Application Discontinuation
- 2021-07-08 WO PCT/CN2021/105226 patent/WO2022213503A1/zh active Application Filing
- 2021-07-08 US US17/997,975 patent/US20230178347A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109023273A (zh) * | 2018-08-06 | 2018-12-18 | 信阳舜宇光学有限公司 | 一种镀膜设备及镀膜方法 |
WO2020139841A2 (en) * | 2018-12-27 | 2020-07-02 | Viavi Solutions Inc. | Optical filter |
CN110058342A (zh) * | 2019-06-05 | 2019-07-26 | 信阳舜宇光学有限公司 | 近红外带通滤光片及其制备方法以及光学传感系统 |
CN110082849A (zh) * | 2019-06-05 | 2019-08-02 | 信阳舜宇光学有限公司 | 近红外窄带滤光片及制作方法 |
CN110109209A (zh) * | 2019-06-05 | 2019-08-09 | 信阳舜宇光学有限公司 | 滤光片以及制造滤光片的方法 |
CN112198593A (zh) * | 2020-10-12 | 2021-01-08 | 东莞市微科光电科技有限公司 | 一种cwdm滤光片的制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113109898B (zh) | 2022-05-06 |
KR20230003068A (ko) | 2023-01-05 |
CN113109898A (zh) | 2021-07-13 |
US20230178347A1 (en) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12055739B2 (en) | Optical filter and sensor system | |
JP6764532B2 (ja) | 高屈折率の水素化シリコン薄膜の製造方法 | |
JP4033286B2 (ja) | 高屈折率誘電体膜とその製造方法 | |
WO2020015103A1 (zh) | 3d识别滤光片 | |
CN111796353B (zh) | 光学滤波器及其形成方法 | |
TW201908778A (zh) | 光學濾波器 | |
CN109182972A (zh) | 大尺寸蓝宝石基底多光谱硬质增透膜及其制备方法 | |
WO2001071394A1 (fr) | Article antireflet et procédé de production | |
WO2022213503A1 (zh) | 一种氢化复合物薄膜的制备方法和滤光器 | |
CN111638572B (zh) | 一种3D结构光940nm窄带滤光片及其制备方法 | |
JP2003098340A (ja) | 光学多層干渉膜とその製造方法および光学多層干渉膜を用いたフィルター | |
CN107207331A (zh) | 带层叠膜的玻璃板及多层玻璃 | |
JP2007310335A (ja) | 表面鏡 | |
WO2022124030A1 (ja) | 光学フィルタ | |
CN110579829A (zh) | 近红外滤光片及其制备方法和滤光设备 | |
CN211375107U (zh) | 一种低雾度的叠层滤光片薄膜 | |
JPH03218821A (ja) | 熱線反射ガラス | |
JP2008065014A (ja) | 光学多層膜及びその製造方法 | |
JP3504965B2 (ja) | 透明導電膜付基板及びその製造方法 | |
JPH02137801A (ja) | 反射防止膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21935723 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227041368 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21935723 Country of ref document: EP Kind code of ref document: A1 |