WO2022213415A1 - 半导体设备的测量工装 - Google Patents

半导体设备的测量工装 Download PDF

Info

Publication number
WO2022213415A1
WO2022213415A1 PCT/CN2021/087756 CN2021087756W WO2022213415A1 WO 2022213415 A1 WO2022213415 A1 WO 2022213415A1 CN 2021087756 W CN2021087756 W CN 2021087756W WO 2022213415 A1 WO2022213415 A1 WO 2022213415A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
annular
measuring device
semiconductor equipment
equipment according
Prior art date
Application number
PCT/CN2021/087756
Other languages
English (en)
French (fr)
Inventor
李洁
齐枫
杨振东
Original Assignee
台湾积体电路制造股份有限公司
台积电(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾积体电路制造股份有限公司, 台积电(中国)有限公司 filed Critical 台湾积体电路制造股份有限公司
Publication of WO2022213415A1 publication Critical patent/WO2022213415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the application belongs to the technical field of semiconductor manufacturing, and in particular relates to a measuring tool for semiconductor equipment.
  • Semiconductor equipment such as CVD (Chemical Vapor Deposition, chemical vapor deposition) equipment, usually needs to be shut down for maintenance after running for a certain period of time to ensure the normal operation of semiconductor equipment.
  • Semiconductor equipment usually includes a transfer chamber and a reaction chamber, and semiconductor components such as wafers are placed on a carrier shaft in the reaction chamber by a robotic arm in the transfer chamber.
  • a robotic arm in the transfer chamber.
  • the height of the robot arm and the bearing shaft should be guaranteed. The difference is maintained within the corresponding range.
  • the embodiment of the present application provides a measuring tool for semiconductor equipment, so as to solve the problem that it is difficult to measure the height information of the upper end face of the bearing shaft in the prior art.
  • the present application provides a measuring tool for semiconductor equipment, the measuring tool includes: a measuring device, including a fixed portion and a telescopic portion connected to each other, the telescopic portion can be extended or retracted in a telescopic direction relative to the fixed portion; A displacement device, the measuring device is supported on the displacement device, the displacement device includes a rotating assembly and a translation assembly that are connected to each other, the fixed part is connected with the translation assembly, wherein the rotating assembly can make The measuring device is displaced along an arc-shaped trajectory in a plane perpendicular to the telescopic direction, and the translation assembly can displace the measuring device along a linear trajectory in a plane perpendicular to the telescopic direction.
  • the rotating assembly includes a first annular member and a second annular member that cooperate with each other, the second annular member can rotate relative to the first annular member, the translation assembly and the second annular member Ring connection.
  • one of the first annular member and the second annular member has an annular guide groove and the other has an annular protrusion, and the annular guide groove and the annular protrusion cooperate with each other.
  • the rotating assembly further includes a plurality of rollers, the first annular member has a first annular groove, the second annular member has a second annular groove, the first annular groove The rollers are arranged opposite to the second annular groove, and a plurality of the rollers are sandwiched between the first annular groove and the second annular groove.
  • the position of the translation assembly is configured such that the orthographic projection of the direction towards the second annular member lies in a radial plane of the second annular member; and/or the displacement direction of the translation assembly It is configured to be disposed along the radial direction of the second annular member.
  • the translation assembly includes: a sliding rail, connected with the rotating assembly; a sliding block, connected with the sliding rail, the sliding block can slide relative to the sliding rail, and the fixing part is connected to the sliding rail.
  • the slider is connected.
  • the sliding rail has sliding grooves on opposite sides along the sliding direction of the sliding block, the sliding block has a convex body, and the sliding groove is adapted to the convex body.
  • the slider includes an interconnected slider body and a connecting piece, the slider body is connected to the sliding rail and is slidable relative to the sliding rail, and the connecting piece connects the sliding rail.
  • the slider body and the fixed part are interconnected slider bodies and a connecting piece, the slider body is connected to the sliding rail and is slidable relative to the sliding rail, and the connecting piece connects the sliding rail.
  • the slider body is arranged around at least a part of the sliding rail along a circumferential direction parallel to the sliding direction of the slider, and is provided along the sliding direction of the slider for a predetermined distance.
  • the slide rail has a plurality of weight reduction holes, and the plurality of weight reduction holes are distributed at intervals along the sliding direction of the slider; and/or the measuring device is a depth micrometer.
  • the displacement device is provided with a rotating component and a translation component.
  • the rotating component realizes the displacement of the measuring device along an arc-shaped trajectory in a plane perpendicular to the telescopic direction, and the linear measurement device is linearly measured through the translation component. Displace along a linear trajectory in a plane perpendicular to the telescopic direction, so that the measuring device can reach any position within a preset range, and is suitable for semiconductor equipment with different numbers of bearing shafts, such as 3 or 4 bearing shafts,
  • the height measurement of the carrier shaft is easy to operate and can be adapted to different semiconductor devices.
  • the measuring device is provided with a fixed part and a telescopic part.
  • the distance that the telescopic part extends relative to the fixed part can be measured, so as to reflect the height information of the upper end face of the bearing shaft.
  • the measurement operation is simpler and more convenient.
  • FIG. 1 is a schematic structural diagram of a reaction chamber of a semiconductor device in the prior art
  • FIG. 2 is a schematic structural diagram of a measuring tool for a semiconductor device provided by an embodiment of the present application
  • FIG. 3 is a cross-sectional view of a rotating assembly provided by an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of a rotating assembly provided by another embodiment of the present application.
  • Displacement device 21. Rotating assembly; 211, first annular member; 2111, annular protrusion; 2112, first annular groove; 212, second annular member; 2121, annular guide groove; 2122, second annular groove; 213, roller; 22, translation assembly; 221, slide rail; 2211, chute; 222, slider; 2221, slider body; 22211, convex body; 2222, connecting piece;
  • X telescopic direction
  • 3' reaction chamber
  • 31' stage
  • 4' bearing shaft
  • the semiconductor equipment in the prior art such as CVD equipment, sometimes only needs to stop and maintain the reaction chamber 3 ′, but does not need to maintain the transfer chamber, and thus does not need to deflate the transfer chamber to save energy. time.
  • the relative height of the bearing shaft 4' and the mechanical arm in the transfer chamber does not change, so as to facilitate the normal progress of subsequent related processes. Since the transmission cavity is in a closed state, the robotic arm in it cannot be extended, and the relative height of the robotic arm and the bearing shaft 4' cannot be directly measured.
  • each bearing shaft 4' will not change before and after the maintenance of the reaction chamber 3', and the bottom of the carrier 31' corresponding to the bearing shaft 4' is mostly a movable part, and the bearing shaft 4' is directly measured. ' height will cause inaccurate measurement results, which increases the difficulty of measuring the height of the bearing shaft 4'.
  • the measuring tool includes a measuring device 1 and a displacement device 2 .
  • the measuring device 1 includes a fixed portion 11 and a telescopic portion 12 that are connected to each other, and the telescopic portion 12 can be extended or retracted in the telescopic direction X relative to the fixed portion 11 .
  • the telescopic direction X may be the height direction of the bearing shaft 4', or may be other directions in which dimensions need to be measured, which is not limited here.
  • the distance that the telescopic portion 12 protrudes from the fixed portion 11 can be measured. After the telescopic portion 12 protrudes from the fixed portion 11, it abuts on the upper end surface of the bearing shaft 4 ′, and the bearing shaft 4 ′ can be known by the distance that the telescopic portion 12 extends. ' height information.
  • scale information can be provided on the telescopic portion 12 to directly read the distance that the telescopic portion 12 extends relative to the fixed portion 11 , or it can be measured by other measuring tools.
  • the measuring device 1 is supported on the displacement device 2.
  • the displacement device 2 includes a rotating assembly 21 and a translation assembly 22 connected to each other.
  • the fixed part 11 is connected with the translation assembly 22.
  • the rotating assembly 21 can make the measuring device 1 perpendicular to the telescopic direction.
  • the displacement along the arc-shaped trajectory in the plane of X, the translation assembly 22 can make the measuring device 1 displace along the linear trajectory in the plane perpendicular to the telescopic direction X.
  • the rotating assembly 21 can make the measuring device 1 move along the arc-shaped trajectory in the horizontal plane, and the translation assembly 22 can make the measuring device 1 in the horizontal plane. Displacement along a linear trajectory. That is, the rotating component 21 realizes the rotation of the measuring device 1 around the center of rotation, and the translation component 22 realizes the linear motion of the measuring device 1, so that the measuring device 1 can reach any range within the range that can be covered by translation and rotation in a plane perpendicular to the telescopic direction X. Location. In this way, regardless of the number of the bearing shafts 4', and regardless of the position of the bearing shafts 4', as long as the bearing shafts 4' are within the reachable range of the measuring device 1, the height can be quickly measured.
  • the rotating assembly 21 can be set to be supported on the stage 31', and the fixed part 11 of the measuring device 1 is connected to the translation assembly 22.
  • the stage 31' is a fixed structure and its height will not change. Therefore, the height of the fixed portion 11 does not change, and the height of the end of the telescopic portion 12 relative to the stage 31 ′ does not change even when the telescopic portion 12 protrudes from the fixed portion 11 at the same distance.
  • the rotating assembly 21 is connected with the carrier 31', and the rotation of the rotating assembly 21 drives the translation assembly 22 to rotate, which in turn drives the measuring device 1 to rotate, so that the measuring device 1 rotates with the center of rotation of the rotating assembly 21.
  • the translation component 22 drives the measurement device 1 to translate, it directly drives the measurement device 1 to move in translation.
  • a displacement device 2 is provided, and the displacement device 2 is provided with a rotation component 21 and a translation component 22, and the rotation component 21 realizes that the measurement device 1 is in a plane perpendicular to the telescopic direction X Displacement along the arc-shaped trajectory, through the translation component 22, the linear measuring device 1 is displaced along the linear trajectory in the plane perpendicular to the telescopic direction X, so that the measuring device 1 can reach any position within the corresponding range, and is suitable for different numbers of , such as semiconductor equipment with 3 or 4 bearing shafts 4', the measuring tool has strong adaptability.
  • the measurement tool provided in the embodiment of the present application makes the operation of measuring the height information of the bearing shaft 4' relatively simple and convenient.
  • the specific structure of the rotating assembly 21 is not limited, and may be a disk-shaped structure, a circular ring-shaped structure, or a semicircular structure, etc., which are not limited here.
  • the rotating assembly 21 includes a first annular member 211 and a second annular member 212 that cooperate with each other, and the second annular member 212 can rotate relative to the first annular member 211 and translate in translation.
  • the assembly 22 is connected to the second ring 212 .
  • the first annular member 211 is connected to the carrier 31 ′, and the relative height of the two will not change.
  • the translation assembly 22 and the measuring device 1 are driven. Rotate together to realize the displacement of the measuring device 1 along the arc-shaped track. In this way, the structure of the rotating assembly 21 is relatively simple and light, and the use process is more labor-saving.
  • the first ring member 211 and the second ring member 212 may be sliding fit or rolling fit, which is not limited here.
  • one of the first annular member 211 and the second annular member 212 has an annular guide groove 2121
  • the other has an annular protrusion 2111
  • the annular guide groove 2121 and the annular protrusion 2111 cooperate with each other.
  • the annular guide groove 2121 slides relative to the annular protrusion 2111, and the two have the functions of limiting and guiding, preventing the second annular member 212 from moving relative to the first annular member 212.
  • radial displacement occurs and they are separated from each other, which ensures the accuracy of the movement of the rotating assembly 21 .
  • the rotating assembly 21 further includes a plurality of rollers 213 , the first annular member 211 has a first annular groove 2112 , and the second annular member 212 has a second annular groove
  • the groove 2122 , the first annular groove 2112 and the second annular groove 2122 are disposed opposite to each other, and a plurality of rollers 213 are sandwiched between the first annular groove 2112 and the second annular groove 2122 .
  • the rollers 213 roll between the first annular groove 2112 and the second annular groove 2122 .
  • rollers 213 cooperate with the first annular groove 2112 and the second annular groove 2122 respectively, and have a certain limiting effect on the rotation of the second annular member 212 relative to the first annular member 211 .
  • the rolling motion of the rollers 213 requires less friction to overcome, thus saving more effort.
  • first annular member 211 and the second annular member 212 may be stacked on each other, or the first annular member 211 may be disposed on the outer annular surface of the second annular member 212 .
  • the outer side, or the first ring member 211 is disposed on the inner side of the inner ring surface of the second ring member 212, which is not limited here. It can be understood that, according to the positional relationship between the first annular member 211 and the second annular member 212, the corresponding first annular groove 2112 and the second annular groove 2122 need to be reasonably arranged in the first annular member 211 and the second annular groove respectively. position on the piece 212 to ensure the relevant mating relationship.
  • the orthographic projection of the translation assembly 22 toward the second annular member 212 may be located in the radial plane of the second annular member 212 , or may be located outside the radial plane of the second annular member 212 , there is no restriction here.
  • the position of the translation assembly 22 is configured such that an orthographic projection toward the direction of the second annular member 212 lies within a radial plane of the second annular member 212 . In this way, the measuring tool of the semiconductor equipment occupies a smaller volume, and it is more convenient to adjust the position of the measuring device 1 .
  • the displacement direction of the translation assembly 22 is configured to be disposed along the radial direction of the second annular member 212 . In this way, it is convenient to increase the displacement stroke of the measuring device 1 along the linear track, so that the position adjustment of the measuring device 1 is more flexible.
  • the translation assembly 22 includes a sliding rail 221 and a sliding block 222 , the sliding rail 221 is connected to the rotating assembly 21 , the sliding block 222 is connected to the sliding rail 221 , the sliding block 222 can slide relative to the sliding rail 221 , and the fixed portion 11 is connected to the sliding rail 221 .
  • Slider 222 is connected. Specifically, the slide moves in translation along the slide rail 221 , and drives the fixed portion 11 to move in translation together, so as to realize the displacement of the measuring device 1 along the linear trajectory.
  • the setting translation assembly 22 includes a sliding rail 221 and a sliding block 222, and has a simple structure and convenient operation.
  • the sliding rail 221 is connected with the second annular member 212 .
  • the slide rail 221 may be arranged outside the radial region corresponding to the second annular member 212, or may be arranged inside the radial region corresponding to the second annular member 212.
  • the rails 221 are arranged along the radial direction of the second ring member 212 , and the two ends are respectively connected to the second ring member 212 , which is beneficial to improve the structural compactness of the measurement tool and the flexibility of the measurement device 1 to move the position.
  • the slide rail 221 and the sliding groove 2211 are not limited, and only need to achieve relative movement.
  • the slide rail 221 has slide grooves 2211 on opposite sides along the sliding direction of the slider 222
  • the slide block 222 has convex bodies 22211
  • the slide grooves 2211 are adapted to the convex bodies 22211 .
  • the cooperation of the sliding groove 2211 and the sliding rail 221 has a certain guiding effect on the movement of the sliding block 222 relative to the sliding rail 221 , improving the accuracy of the moving direction of the sliding block 222 , thereby ensuring the positioning accuracy of the measuring device 1 .
  • the measuring device 1 can be designed as a single piece, or can be designed as a plurality of parts that are processed and connected separately, which is not limited here.
  • the slider 222 includes a slider body 2221 and a connecting piece 2222 that are connected to each other.
  • the slider body 2221 is connected to the sliding rail 221 and can slide relative to the sliding rail 221 , and the connecting piece 2222
  • the slider body 2221 and the fixing part 11 are connected.
  • the setting slider 222 includes a slider body 2221 and a connecting piece 2222, which can be separately manufactured and then connected, and the structure of the connecting piece 2222 can be specifically set according to the shape of the fixture and installation requirements, which has higher structural adaptability and is easy to process. .
  • the slider body 2221 can be rotatably engaged with the sliding rail 221, such as through screw engagement or through tooth engagement.
  • the slider body 2221 can also slide fit or roll fit with the slide rail 221 , which is not limited here.
  • the slider body 2221 is surrounded by at least a part of the sliding rail 221 along the circumferential direction parallel to the sliding direction of the slider 222 , and extends a predetermined distance along the sliding direction of the slider 222 .
  • the cross-section of the slide rail 221 perpendicular to the sliding direction of the slider 222 can be set to be rectangular, and the slider 222 can be in contact with one surface along the circumferential direction of the above-mentioned cross-section, or can be in contact with two or three surfaces, and can also be in contact with four surfaces. All surfaces are in contact.
  • the cross-sectional shape of the sliding rail 221 can be reasonably set, so that the sliding block 222 can provide a certain guiding effect for the sliding block 222 during the sliding process of the linear sliding rail 221. , to ensure the accuracy of the movement direction of the slider 222 .
  • the slide rail 221 has a plurality of weight reduction holes, and the plurality of weight reduction holes are distributed at intervals along the sliding direction of the slider 222 .
  • the weight-reducing hole By setting the weight-reducing hole, the weight of the measuring tool can be effectively reduced, making it easier to operate.
  • the measuring device 1 is a depth micrometer, and the measuring accuracy of the depth micrometer is higher, which is beneficial to improve the accuracy of the height adjustment of the bearing shaft 4'.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

本申请提供一种半导体设备的测量工装,包括测量装置和移位装置,测量装置包括相互连接的固定部和伸缩部,伸缩部能够相对于固定部沿伸缩方向伸出或者缩回。移位装置包括相互连接的转动组件和平移组件,测量装置的固定部与平移组件连接。转动组件能够使测量装置在垂直于伸缩方向的平面内沿弧形轨迹移位,平移组件能够使测量装置在垂直于伸缩方向的平面内沿直线形轨迹移位。本申请实施例提供的半导体设备的测量工装,设置移位装置具有转动组件和平移组件,实现测量装置能够到达预设范围内的任意位置,适应于具有不同数量承载轴的半导体设备,操作简单,适应性强,操作方便、快捷。

Description

半导体设备的测量工装
相关申请的交叉引用
本申请要求享有于2021年04月9日提交的名称为“半导体设备的测量工装”的中国专利申请202120728436.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于半导体制造技术领域,尤其涉及一种半导体设备的测量工装。
背景技术
半导体设备,如CVD(Chemical Vapor Deposition,化学气相沉积)设备等,在运行一定的时间以后,通常需要对其进行停机维护保养,以保证半导体设备的正常运行。半导体设备通常包括转送腔和反应腔,通过转送腔内的机械手臂将晶圆等半导体元件放置在反应腔内的承载轴上。为了保证机械手臂转运动作的顺利进行,需要保证机械手臂和承载轴的上端面之间的距离维持在一定的范围内,因此,在半导体设备停机维护的前后,应保证机械手臂和承载轴的高度差维持在对应的范围内。
一般,在需要单独对反应腔进行维护的情况下,要想测量承载轴的上端面的高度信息具有一定的难度。
发明内容
本申请实施例提供了一种半导体设备的测量工装,以解决现有技术中承载轴的上端面的高度信息测量较难的问题。
本申请提供一种半导体设备的测量工装,所述测量工装包括:测量装置,包括相互连接的固定部和伸缩部,所述伸缩部能够相对于所述固定部 沿伸缩方向伸出或者缩回;移位装置,所述测量装置支撑于所述移位装置,所述移位装置包括相互连接的转动组件和平移组件,所述固定部与所述平移组件连接,其中,所述转动组件能够使所述测量装置在垂直于所述伸缩方向的平面内沿弧形轨迹移位,所述平移组件能够使所述测量装置在垂直于所述伸缩方向的平面内沿直线形轨迹移位。
在一些实施例中,所述转动组件包括相互配合的第一环形件和第二环形件,所述第二环形件能够相对于所述第一环形件转动,所述平移组件与所述第二环形件连接。
在一些实施例中,所述第一环形件和所述第二环形件中的一者具有环形导向槽,另一者具有环形凸起,所述环形导向槽和所述环形凸起相互配合。
在一些实施例中,所述转动组件还包括多个滚子,所述第一环形件具有第一环形凹槽,所述第二环形件具有第二环形凹槽,所述第一环形凹槽和所述第二环形凹槽相对设置,多个所述滚子夹设在所述第一环形凹槽和所述第二环形凹槽之间。
在一些实施例中,所述平移组件的位置配置为朝向所述第二环形件方向的正投影位于所述第二环形件的径向平面内;和/或,所述平移组件的移位方向配置为沿所述第二环形件的径向设置。
在一些实施例中,所述平移组件包括:滑轨,与所述转动组件连接;滑块,与所述滑轨连接,所述滑块能够相对于所述滑轨滑动,所述固定部与所述滑块连接。
在一些实施例中,所述滑轨沿所述滑块的滑动方向相对的两侧面上具有滑槽,所述滑块具有凸体,所述滑槽与所述凸体相适配。
在一些实施例中,所述滑块包括相互连接的滑块本体和连接件,所述滑块本体与所述滑轨连接、并能够相对于所述滑轨滑动,所述连接件连接所述滑块本体和所述固定部。
在一些实施例中,所述滑块本体围设在所述滑轨沿平行于所述滑块的滑动方向的周向的至少部分、并沿所述滑块的滑动方向延伸预定距离设置。
在一些实施例中,所述滑轨具有多个减重孔,多个所述减重孔沿所述滑块的滑动方向间隔分布;和/或,所述测量装置为深度千分尺。
本申请实施例提供的半导体设备的测量工装,设置移位装置具有转动组件和平移组件,通过转动组件实现测量装置在垂直于伸缩方向的平面内沿弧形轨迹移位,通过平移组件直线测量装置在垂直于伸缩方向的平面内沿直线形轨迹移位,从而实现测量装置能够到达预设范围内的任意位置,适应于具有不同数量承载轴,如具有3个或者4个承载轴的半导体设备,承载轴的高度测量操作简单,可以适应不同的半导体设备。此外,设置测量装置具有固定部和伸缩部,通过伸缩部相对于固定部的伸出或者缩回,可以测量伸缩部相对于固定部伸出的距离,以此反映承载轴上端面的高度信息,测量操作更加简单、便捷。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术一种半导体设备的反应腔的结构示意图;
图2是本申请一实施例提供的半导体设备的测量工装的结构示意图;
图3是本申请一实施例提供的转动组件的剖视图;
图4是本申请另一实施例提供的转动组件的剖视图。
附图中:
1、测量装置;11、固定部;12、伸缩部;
2、移位装置;21、转动组件;211、第一环形件;2111、环形凸起;2112、第一环形凹槽;212、第二环形件;2121、环形导向槽;2122、第二环形凹槽;213、滚子;22、平移组件;221、滑轨;2211、滑槽;222、滑块;2221、滑块本体;22211、凸体;2222、连接件;
X、伸缩方向;3’、反应腔;31’、载台;4’、承载轴。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合附图对实施例进行详细描述。
如图1所示,现有技术中的半导体设备,如CVD设备等,有时仅需要对反应腔3’进行停机维护,而无需对传送腔进行维护,也就无需对传送腔放气,以节约时间。反应腔3’维护完成后,需要保证其中的承载轴4’与传送腔内的机械手臂的相对高度不发生变化,以便于后续相关工艺的正常进行。由于传送腔处于密闭状态,其中的机械手臂不能伸出,无法直接测量机械手臂与承载轴4’的相对高度。为此,需要保证反应腔3’维护前后,各承载轴4’在维护前后的高度不会发生变化,而承载轴4’对应的载台31’的底部多为活动件,直接测量承载轴4’的高度会造成测量结果的不准确,如此增加了承载轴4’高度测量工作的难度。
有鉴于此,本申请实施例提供一种半导体设备的测量工装,如图2所示,测量工装包括测量装置1和移位装置2。测量装置1包括相互连接的固定部11和伸缩部12,伸缩部12能够相对于固定部11沿伸缩方向X伸出或者缩回。具体地,伸缩方向X可以为承载轴4’的高度方向,也可以是其它需要测量尺寸的方向,这里不做限制。伸缩部12伸出固定部11的距离是可以测量的,伸缩部12伸出固定部11后与承载轴4’的上端面抵接,通过伸缩部12伸出的距离,可以得知承载轴4’的高度信息。
可以理解的是,可以在伸缩部12上设置刻度信息,以直接读取伸缩部12相对于固定部11伸出的距离,也可以通过其他测量工具测出。
测量装置1支撑于移位装置2,移位装置2包括相互连接的转动组件21和平移组件22,固定部11与平移组件22连接,其中,转动组件21能够使测量装置1在垂直于伸缩方向X的平面内沿弧形轨迹移位,平移组件 22能够使测量装置1在垂直于伸缩方向X的平面内沿直线形轨迹移位。
具体地,如图2所示,伸缩方向X为承载轴4’的高度方向时,转动组件21能够使测量装置1在水平面内沿弧形轨迹移位,平移组件22能够使测量装置1在水平面内沿直线形轨迹移位。即转动组件21实现测量装置1绕转动中心转动,而平移组件22实现测量装置1的直线运动,从而测量装置1在垂直于伸缩方向X的平面内可以到达平移和转动能够覆盖的范围内的任意位置。如此一来,无论承载轴4’的数量有多少个,也无论承载轴4’的位置如何,只要其在测量装置1所能到达的范围,即可实现其高度的快速测量。
可以理解的是,可以设置转动组件21支撑在载台31’上,测量装置1的固定部11与平移组件22连接,如此一来,载台31’为固定结构,其高度不会发生变化,因此,固定部11的高度也不会发生变化,伸缩部12相对于固定部11伸出的距离相同的情况下,伸缩部12的端部相对于载台31’的高度也不会变化。也就是说,在对反应腔3’维修前后,伸缩部12与承载轴4’的上端面抵接时,伸缩部12相对于固定部11伸出的距离不变,则承载轴4’的上端面与载台31’的上端面的相对距离也不会变化,从而承载轴4’与转运腔内的机械手臂的相对高度也不变。
需要说明的是,转动组件21与载台31’连接,转动组件21的转动带动平移组件22转动,进而带动测量装置1转动,实现测量装置1随转动组件21的转动中心转动。而当平移组件22带动测量装置1平移时,则直接带动测量装置1平移运动。
本申请实施例提供的半导体设备的测量工装,设置移位装置2,并设置移位装置2具有转动组件21和平移组件22,通过转动组件21实现测量装置1在垂直于伸缩方向X的平面内沿弧形轨迹移位,通过平移组件22直线测量装置1在垂直于伸缩方向X的平面内沿直线形轨迹移位,从而实现测量装置1能够到达对应范围内的任意位置,适应于具有不同数量,如3个或者4个承载轴4’的半导体设备,测量工装具有较强的适应性。此外,本申请实施例提供的测量工装使得承载轴4’的高度信息测量的操作较为简单、便捷。
转动组件21的具体结构不做限制,可以为包括圆盘形的结构,也可以是包括圆环形的结构,还可以是包括半圆形的结构等,这里不做限制。
在一些实施例中,如图2~图4所示,转动组件21包括相互配合的第一环形件211和第二环形件212,第二环形件212能够相对于第一环形件211转动,平移组件22与第二环形件212连接。具体地,第一环形件211与载台31’连接,二者的相对高度不会发生改变,第二环形件212相对于第一环形件211转动的过程中,带动平移组件22和测量装置1一起转动,实现测量装置1沿弧形轨迹移位。如此一来,转动组件21的结构较为简单、轻便,使用的过程中更加省力。
第一环形件211和第二环形件212可以是滑动配合,也可以是滚动配合,这里不做限制。
在一些实施例中,如图3所示,第一环形件211和第二环形件212中的一者具有环形导向槽2121,另一者具有环形凸起2111,环形导向槽2121和环形凸起2111相互配合。第二环形件212相对于第一环形件211转动的过程中,环形导向槽2121相对于环形凸起2111滑动,二者具有限位和导向的作用,防止第二环形件212在相对于第一环形件211转动的过程中发生径向位移而相互脱离,保证了转动组件21运动的准确性。
可选地,在一些实施例中,如图4所示,转动组件21还包括多个滚子213,第一环形件211具有第一环形凹槽2112,第二环形件212具有第二环形凹槽2122,第一环形凹槽2112和第二环形凹槽2122相对设置,多个滚子213夹设在第一环形凹槽2112和第二环形凹槽2122之间。具体地,第一环形件211相对于第二环形件212转动的过程中,滚子213在第一环形凹槽2112和第二环形凹槽2122之间滚动。可以理解的是,滚子213分别与第一环形凹槽2112和第二环形凹槽2122配合,对第二环形件212相对于第一环形件211转动的过程中具有一定的限位作用。此外,滚子213的滚动运动需要克服的摩擦力较小,因此更加省力。
需要说明的是,如图2~图4所示,第一环形件211和第二环形件212可以相互层叠设置,也可以将第一环形件211设置在第二环形件212的外环面的外侧,或者第一环形件211设置在第二环形件212的内环面的内侧, 这里不做限制。可以理解的是,需要根据第一环形件211和第二环形件212的位置关系,合理设置对应的第一环形凹槽2112和第二环形凹槽2122分别在第一环形件211和第二环形件212上的位置,以保证相关的配合关系。
可以理解的是,如图2所示,平移组件22朝向第二环形件212方向的正投影可以位于第二环形件212的径向平面内,也可以位于第二环形件212的径向平面外,这里不做限制。示例性地,如图2所示,平移组件22的位置配置为朝向第二环形件212方向的正投影位于第二环形件212的径向平面内。如此,半导体设备的测量工装占用的体积较小,也更加便于测量装置1的位置调整。
在一些实施例中,如图2所示,平移组件22的移位方向配置为沿第二环形件212的径向设置。如此便于提高测量装置1沿直线轨迹移位的行程,使得测量装置1的位置调整更加灵活。
滑动组件的具体结构不做限制,只需能够带动测量装置1一起移动即可,可以是转动平移,齿轮齿条结构,也可以是滑动平移,还可以是其它的运动形式,这里不做限制。一实施例中,平移组件22包括滑轨221和滑块222,滑轨221与转动组件21连接,滑块222与滑轨221连接,滑块222能够相对于滑轨221滑动,固定部11与滑块222连接。具体地,滑动沿滑轨221平移运动,带动固定部11一起平移运动,实现测量装置1沿直线轨迹的移位。设置平移组件22包括滑轨221和滑块222,结构简单,操作方便。
可以理解的是,对于转动组件21包括第一环形件211和第二环形件212的实施例中,滑轨221与第二环形件212连接。具体地,滑轨221可以设置在第二环形件212对应的径向区域的外部,也可以设置在第二环形件212对应的径向区域的内部,示例性地,如图2所示,滑轨221沿第二环形件212的径向设置,且两端分别与第二环形件212连接,如此设置有利于提高测量工装的结构紧凑性,并提高测量装置1位置移动的灵活性。
滑轨221和滑槽2211的具体结构不做限制,只需要实现相对移动即可。示例性地,如图2所示,滑轨221沿滑块222的滑动方向相对的两侧面上具有滑槽2211,滑块222具有凸体22211,滑槽2211与凸体22211相适配。 设置滑槽2211和滑轨221的配合,对滑块222相对于滑轨221的移动具有一定的导向作用,提高滑块222运动方向的精确性,进而保证测量装置1定位的准确性。
测量装置1可以为一体成型设计,也可以设计为多个零件分别加工后连接而成,这里不做限制。
在一些实施例中,如图2所示,滑块222包括相互连接的滑块本体2221和连接件2222,滑块本体2221与滑轨221连接、并能够相对于滑轨221滑动,连接件2222连接滑块本体2221和固定部11。设置滑块222包括滑块本体2221和连接件2222,二者可以分别制造后再连接,且可以根据固定装置的形状和安装需求具体设置连接件2222的结构,结构适应性更高,且便于加工。
滑块本体2221可以与滑轨221旋转配合,如通过螺纹配合或者通过齿啮合。此外,滑块本体2221也可以与滑轨221滑动配合或者滚动配合,这里不做限制。
在一些实施例中,如图2所示,滑块本体2221围设在滑轨221沿平行于滑块222的滑动方向的周向的至少部分、并沿滑块222的滑动方向延伸预定距离设置。具体地,可以设置滑轨221垂直于滑块222的滑动方向的截面为矩形,滑块222可以沿上述截面周向的一个表面接触,也可以与两个或者三个表面接触,还可以与四个表面均接接触。通过设置滑块222围设在滑轨221的部分表面上,可以合理设置滑轨221的截面形状,以使滑块222在线滑轨221滑移的过程中,为滑块222提供一定的导向作用,保证滑块222运动方向准确性。
在一未示出的实施例中,滑轨221具有多个减重孔,多个减重孔沿滑块222的滑动方向间隔分布。通过设置减重孔,可以有效低降低测量工装的重量,更便于操作。
在一些实施例中,测量装置1为深度千分尺,深度千分尺的测量精度更高,有利于提高承载轴4’高度调整的精准性。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存 在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种半导体设备的测量工装,所述测量工装包括:
    测量装置,包括相互连接的固定部和伸缩部,所述伸缩部能够相对于所述固定部沿伸缩方向伸出或者缩回;
    移位装置,所述测量装置支撑于所述移位装置,所述移位装置包括相互连接的转动组件和平移组件,所述固定部与所述平移组件连接,
    其中,所述转动组件能够使所述测量装置在垂直于所述伸缩方向的平面内沿弧形轨迹移位,所述平移组件能够使所述测量装置在垂直于所述伸缩方向的平面内沿直线形轨迹移位。
  2. 根据权利要求1所述的半导体设备的测量工装,其中,所述转动组件包括相互配合的第一环形件和第二环形件,所述第二环形件能够相对于所述第一环形件转动,所述平移组件与所述第二环形件连接。
  3. 根据权利要求2所述的半导体设备的测量工装,其中,所述第一环形件和所述第二环形件中的一者具有环形导向槽,另一者具有环形凸起,所述环形导向槽和所述环形凸起相互配合。
  4. 根据权利要求2所述的半导体设备的测量工装,其中,所述转动组件还包括多个滚子,所述第一环形件具有第一环形凹槽,所述第二环形件具有第二环形凹槽,所述第一环形凹槽和所述第二环形凹槽相对设置,多个所述滚子夹设在所述第一环形凹槽和所述第二环形凹槽之间。
  5. 根据权利要求2所述的半导体设备的测量工装,其中,所述平移组件的位置配置为朝向所述第二环形件方向的正投影位于所述第二环形件的径向平面内;和/或,
    所述平移组件的移位方向配置为沿所述第二环形件的径向设置。
  6. 根据权利要求1至5任意一项所述的半导体设备的测量工装,其中,所述平移组件包括:
    滑轨,与所述转动组件连接;
    滑块,与所述滑轨连接,所述滑块能够相对于所述滑轨滑动,所述固定部与所述滑块连接。
  7. 根据权利要求6所述的半导体设备的测量工装,其中,所述滑轨沿所述滑块的滑动方向相对的两侧面上具有滑槽,所述滑块具有凸体,所述滑槽与所述凸体相适配。
  8. 根据权利要求6所述的半导体设备的测量工装,其中,所述滑块包括相互连接的滑块本体和连接件,所述滑块本体与所述滑轨连接、并能够相对于所述滑轨滑动,所述连接件连接所述滑块本体和所述固定部。
  9. 根据权利要求8所述的半导体设备的测量工装,其中,所述滑块本体围设在所述滑轨沿平行于所述滑块的滑动方向的周向的至少部分、并沿所述滑块的滑动方向延伸预定距离设置。
  10. 根据权利要求6所述的半导体设备的测量工装,其中,所述滑轨具有多个减重孔,多个所述减重孔沿所述滑块的滑动方向间隔分布;和/或,
    所述测量装置为深度千分尺。
PCT/CN2021/087756 2021-04-09 2021-04-16 半导体设备的测量工装 WO2022213415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120728436.8 2021-04-09
CN202120728436.8U CN213364956U (zh) 2021-04-09 2021-04-09 半导体设备的测量工装

Publications (1)

Publication Number Publication Date
WO2022213415A1 true WO2022213415A1 (zh) 2022-10-13

Family

ID=76137168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087756 WO2022213415A1 (zh) 2021-04-09 2021-04-16 半导体设备的测量工装

Country Status (2)

Country Link
CN (1) CN213364956U (zh)
WO (1) WO2022213415A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091234A (ja) * 1999-09-20 2001-04-06 Sankyu Inc フランジ面の変形量測定装置及び測定方法
CN1779413A (zh) * 2004-10-25 2006-05-31 恩益禧电子股份有限公司 可移动型平面度测量装置
CN202013173U (zh) * 2011-02-15 2011-10-19 深圳市建升精密五金有限公司 平面度检测装置
CN207798030U (zh) * 2018-01-11 2018-08-31 惠州市正胜精工科技有限公司 一种检测环氧树脂板平整度的装置
CN209326594U (zh) * 2018-12-30 2019-08-30 浙江速博机械科技有限公司 一种可转动测量平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091234A (ja) * 1999-09-20 2001-04-06 Sankyu Inc フランジ面の変形量測定装置及び測定方法
CN1779413A (zh) * 2004-10-25 2006-05-31 恩益禧电子股份有限公司 可移动型平面度测量装置
CN202013173U (zh) * 2011-02-15 2011-10-19 深圳市建升精密五金有限公司 平面度检测装置
CN207798030U (zh) * 2018-01-11 2018-08-31 惠州市正胜精工科技有限公司 一种检测环氧树脂板平整度的装置
CN209326594U (zh) * 2018-12-30 2019-08-30 浙江速博机械科技有限公司 一种可转动测量平台

Also Published As

Publication number Publication date
CN213364956U (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US10155309B1 (en) Wafer handling robots with rotational joint encoders
JP4560235B2 (ja) 角度調整テーブル装置
JP4436772B2 (ja) 物体の正確な運動を提供するためのロボット案内組立体
US8011874B2 (en) Transfer apparatus
JP5627599B2 (ja) 搬送アーム、及びこれを備える搬送ロボット
WO2005071690A1 (ja) 回転テーブル装置
KR20200008102A (ko) 반송 로봇, 로봇 시스템, 반송 로봇의 제어 방법 및 기록 매체
CN102152133A (zh) 一种五坐标定位机构
CN108072341A (zh) 坐标测量机
WO2022213415A1 (zh) 半导体设备的测量工装
US8979463B2 (en) Load port apparatus
KR101386304B1 (ko) 직동장치
US20130270071A1 (en) Conveying device
JP2014037027A (ja) 搬送装置
JP2016151292A (ja) 軸継手、回転テーブルおよび真円度測定装置
US11227783B2 (en) Transfer device
JP2005294331A (ja) ウエハスキャン装置
CN114843208B (zh) 一种驱动机构及半导体设备
WO2015133436A1 (ja) テーブル装置、測定装置、工作機械、及び半導体製造装置
JPH09239635A (ja) Xy位置決めテーブル装置
CN116487304A (zh) 工艺腔室内多工位硅片搬运机构
US6463664B1 (en) Multi-axis planar slide system
TWI552828B (zh) 滑台組件
JPH10163299A (ja) ワーク保持θ回転ステージ
WO2024164600A1 (zh) 基板交接机构及曝光台系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935637

Country of ref document: EP

Kind code of ref document: A1