WO2024164600A1 - 基板交接机构及曝光台系统 - Google Patents

基板交接机构及曝光台系统 Download PDF

Info

Publication number
WO2024164600A1
WO2024164600A1 PCT/CN2023/130627 CN2023130627W WO2024164600A1 WO 2024164600 A1 WO2024164600 A1 WO 2024164600A1 CN 2023130627 W CN2023130627 W CN 2023130627W WO 2024164600 A1 WO2024164600 A1 WO 2024164600A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
rotating seat
base
handover mechanism
wafer
Prior art date
Application number
PCT/CN2023/130627
Other languages
English (en)
French (fr)
Inventor
蔡晨
王鹏
王鑫鑫
郎新科
杨博光
姜晓飞
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2024164600A1 publication Critical patent/WO2024164600A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular to a substrate handover mechanism and an exposure platform system.
  • the wafer exposure process uses light to project the pattern on the mask onto the photoresist through an optical system to achieve pattern transfer.
  • the exposure process is one of the important processes in the photolithography process in integrated circuit manufacturing. During exposure, the wafer needs to be placed on the wafer stage through a substrate handover mechanism, and the position accuracy of the wafer on the wafer stage will directly affect the exposure quality.
  • the substrate handover mechanism is generally installed on the wafer stage, and the substrate handover mechanism only has a vertical lifting function, and the circumferential error of the wafer is compensated by the overall rotation of the exposure table. Since the overall structure of the exposure table is relatively complex and occupies a large space, the overall size and mass of the equipment are relatively large. Therefore, if the overall rotation of the exposure table is realized, on the one hand, its rotation accuracy is difficult to control, the cost required to realize the rotation is high, and it is also difficult to realize the overall rotation of the exposure table.
  • the invention provides a substrate handover mechanism and an exposure table system.
  • it is only necessary to adaptively drive a rotating seat in the substrate handover mechanism to rotate, without driving the entire exposure system to rotate as a whole.
  • it is helpful to simplify the rotating structure to reduce the hardware cost or research and development cost required for compensating for the circumferential position error of the wafer, thereby improving the input-output ratio.
  • it makes the overall size and mass of the entire rotating drive structure smaller, thereby achieving higher rotation accuracy.
  • the substrate handover mechanism comprises: a rotating seat, an adsorption assembly, a base and a rotating driving member;
  • the rotating seat is mounted on the base in a manner that it can rotate along its own central axis, and the base is used to be mounted on the workbench of the exposure table system;
  • the adsorption assembly is arranged on the rotating seat for adsorbing the wafer
  • the rotation driving member is arranged on the base and is used to drive the rotating seat to rotate around its own central axis.
  • the base has a circular installation cavity, and the rotating seat is coaxially installed in the installation cavity.
  • the adsorption component includes a suction nozzle, and the suction nozzle is used to adsorb the wafer.
  • the rotating driving member includes a first driving member and a second driving member, the first driving member is arranged on the base, and the second driving member is arranged on the rotating seat, the first driving member is used to apply a driving force to the second driving member in a non-contact manner, and the driving force causes the second driving member to move linearly along a set direction, and the set direction is tangent to the rotation direction of the rotating seat.
  • one end of the rotating seat is located in the installation cavity, and the other end of the rotating seat is provided with a groove, and the adsorption assembly is installed in the groove.
  • the groove partially overlaps with a projection of the mounting cavity.
  • the substrate interface mechanism further comprises a bearing, an outer ring of the bearing is fixedly matched with the inner wall of the mounting cavity, and an inner ring of the bearing is fixedly matched with the outer peripheral surface of the rotating seat.
  • the substrate interface mechanism further comprises an elastic member, which is used to provide a preload force along a radial direction for the inner ring of the bearing, and the preload force causes the inner ring of the bearing to approach the outer ring of the bearing along the radial direction.
  • the substrate interface mechanism also includes a bearing stopper
  • the upper end of the mounting cavity has an annular mounting groove that expands radially
  • the outer ring of the bearing is conformally mounted in the annular mounting groove and abuts against the axial side wall of the annular mounting groove
  • the bearing stopper is arranged on the base and presses the bearing axially into the annular mounting groove.
  • the suction end of the suction nozzle is located on a side away from the base rotating seat along a first direction, and the suction nozzle is arranged on the rotating seat in a manner that it can be raised and lowered along the first direction, and the first direction is parallel to the central axis of the rotating seat itself.
  • the substrate handover mechanism further includes a vertical limiting mechanism, and the vertical limiting mechanism is used to limit the lifting height of the suction nozzle.
  • the adsorption assembly further comprises a plurality of adsorption racks, wherein the adsorption racks comprise a support plate.
  • the support plate is provided with a first air passage, and at least two suction nozzles are installed on a side of the support plate away from the base along a first direction, and the inner cavity of the suction nozzle is communicated with the first air passage.
  • the adsorption rack further includes a suction column, which is connected to the support plate, the suction column extends along a first direction, the support plate extends along a direction perpendicular to the first direction, and a second air channel is provided on the suction column, and the second air channel is connected to the first air channel.
  • the adsorption assembly also includes an adsorption base, each of the adsorption frames is arranged on the adsorption base, and the adsorption base is arranged on the rotating seat in a manner that it can be raised and lowered along a first direction to achieve synchronous lifting and lowering of each suction nozzle, and the adsorption ends of each suction nozzle are arranged in the same plane.
  • an air suction channel is provided on the adsorption base, and the air suction channel is connected to the first air channel corresponding to each adsorption rack.
  • the adsorption assembly further includes a plurality of adsorption bases, each of the adsorption bases is matched with each of the adsorption racks one by one, each of the adsorption bases can be installed on the rotating base so as to be lifted and lowered along the first direction, and each of the adsorption bases is respectively equipped with a vertical driving member for independent lifting and lowering drive.
  • the substrate handover mechanism further includes a rotation limiting mechanism, and the rotation limiting mechanism is used to limit the rotation angle of the rotating seat.
  • the rotation limit mechanism includes a circumferential grating scale and a rotation limit sensor, the circumferential grating scale is arranged on the base to detect the angular displacement of the rotating seat, and the rotation limit sensor is used to receive the angular displacement detected by the circumferential grating scale and to limit the rotation angle of the rotating seat.
  • the present invention also provides an exposure system, wherein the exposure system is equipped with the above-mentioned substrate handover mechanism.
  • the exposure system also includes a wafer stage, and the adsorption component of the substrate handover mechanism can be raised and lowered relative to the wafer stage along the direction of the central axis of the rotating seat, and the adsorption component of the substrate handover mechanism can be rotated relative to the wafer stage with the central axis of the rotating seat as the center, and a through hole is provided on the wafer stage for the adsorption component to pass through when being raised and lowered.
  • the present invention also provides a wafer handover method, comprising the following steps:
  • the adsorption component receives and adsorbs the wafer
  • the substrate handover mechanism includes: a rotating seat, an adsorption assembly, a base and a rotating drive member; the rotating seat is mounted on the base in a manner that it can rotate along its own central axis, and the base is used to be installed on the workbench of the exposure table system; the adsorption assembly is arranged on the rotating seat for adsorbing the wafer; the rotating drive member is arranged on the base for driving the rotating seat to rotate around its own central axis.
  • the substrate handover mechanism and the exposure system only need to adaptively drive the rotating seat in the substrate handover mechanism to rotate when compensating for the circumferential position error of the wafer, without driving the entire exposure system to rotate as a whole.
  • FIG1 is a schematic structural diagram of an exposure system according to an embodiment of the present invention.
  • FIG2 is a schematic diagram of the principle structure of an exposure system according to an embodiment of the present invention.
  • FIG3 is a schematic diagram of the assembly structure of a substrate transfer mechanism and a wafer stage according to an embodiment of the present invention
  • FIG4 is a schematic diagram of the principle structure of a substrate handover mechanism according to an embodiment of the present invention.
  • FIG5 is a schematic structural diagram of a substrate handover mechanism according to an embodiment of the present invention.
  • FIG6 is an exploded structural diagram of a substrate handover mechanism according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an adsorption assembly of a substrate transfer mechanism according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of wafer transfer according to an embodiment of the present invention.
  • the reference numerals are as follows: 10-rotating seat; 11-groove; 12-avoidance groove; 13-mounting ear; 20-adsorption component; 21-suction nozzle; 22-support plate; 221-first air channel; 23-suction column; 231-second air channel; 24-adsorption base; 241-suction channel; 30-base; 31-mounting cavity; 311-mounting slot; 40-rotation driving member; 41-coil; 42-electromagnet; 50-bearing; 60-elastic member; 711-circumferential grating ruler; 712-rotation limit sensor; 721-vertical mechanical limiter; 722-vertical grating ruler; 723-vertical electrical limit sensor; 73-bearing limiter; 74-lifting drive; 741-vertical guide rail; 742-vertical motor; 75-flexible cable; 80-chip holder; 81-through hole; 90-working table; 91-X-direction mechanism; 911-X-direction guide
  • the singular forms “one”, “a”, and “the” include plural objects, the term “or” is usually used to include the meaning of “and/or”, the term “several” is usually used to include the meaning of "at least one”, and the term “at least two” is usually used to include the meaning of "two or more”.
  • the terms “first”, “second”, and “third” are used only for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first”, “second”, and “third” can explicitly or implicitly include one or at least two of the features.
  • connection, coupling, matching or transmission between the two elements can be direct or indirect through an intermediate element, and cannot be understood as indicating or implying the spatial position relationship between the two elements, that is, one element can be in any orientation such as inside, outside, above, below or on one side of another element, unless the content clearly indicates otherwise.
  • the specific meanings of the above terms in the invention can be understood according to specific circumstances.
  • directional terms such as above, below, up, down, upward, downward, left, right, etc. are used with respect to the exemplary embodiments as they are shown in the figures, with the upward or upper direction toward the top of the corresponding figure, and the downward or lower direction toward the bottom of the corresponding figure.
  • the wafer exposure process uses light to project the pattern on the mask onto the photoresist through an optical system to achieve pattern transfer. It is one of the important processes in the photolithography process in integrated circuit manufacturing. During exposure, the wafer needs to be placed on the wafer stage through a substrate transfer mechanism, and the position accuracy of the wafer on the wafer stage will directly affect the exposure quality.
  • the substrate handover mechanism is generally installed on the wafer stage, and the substrate handover mechanism only has a vertical lifting function, and the circumferential error of the wafer is compensated by the overall rotation of the exposure table. Since the overall structure of the exposure table is relatively complex and occupies a large space, the overall size and mass of the equipment are relatively large. Therefore, if the overall rotation of the exposure table is realized, on the one hand, its rotation accuracy is difficult to control, the cost required to realize the rotation is high, and it is also difficult to realize the overall rotation of the exposure table.
  • the present invention proposes a substrate handover mechanism and an exposure table system.
  • the rotating seat 10 in the substrate handover mechanism When compensating for the circumferential position error of the wafer, it is only necessary to adaptively drive the rotating seat 10 in the substrate handover mechanism to rotate, and there is no need to drive the entire exposure system to rotate as a whole.
  • it makes the overall size and mass of the entire rotating drive structure smaller, which is conducive to achieving higher rotation accuracy.
  • the first direction Z, the second direction X and the third direction Y are perpendicular to each other; the radial direction and the axial direction are based on the rotating seat 10, and the axial direction of the rotating seat 10 is parallel to the first direction Z.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides an exposure system, which includes a substrate handover mechanism 100, a wafer stage 80 and a workbench 90;
  • the substrate handover mechanism 100 is disposed on the workbench 90, the substrate handover mechanism is located between the wafer stage 80 and the workbench 90, the substrate handover mechanism 100 partially passes through the wafer stage 80, the wafer stage 80 can move on the workbench 90 in a direction perpendicular to the central axis of the rotating seat 10 itself, and the substrate handover mechanism 100 moves with the wafer stage 80, wherein the specific structure of the substrate handover mechanism 100 is described in detail in the following content.
  • the wafer stage 80 is integrated with the substrate handover mechanism 100, and when the wafer stage 80 moves along the workbench 90, the substrate handover mechanism 100 follows the movement.
  • the wafer stage 80 realizes movement along the second direction X and the third direction Y on the workbench 90 through a sliding mechanism.
  • the workbench 90 is provided with an X-direction mechanism 91 and a Y-direction mechanism 92, wherein the X-direction mechanism 91 includes an X-direction guide rail 911 and an X-direction motor.
  • the wafer table 80 is arranged on the X-direction guide rail 911 and can be driven by the X-direction motor to move in steps along the second direction X with a long stroke;
  • the Y-direction mechanism 92 includes a Y-direction guide rail 921 and a first Y-direction motor 922 and a second Y-direction motor 923.
  • Two Y-direction guide rails 921 are arranged in parallel and extend along a third direction Y, wherein the two ends of the X-direction guide rail 911 are respectively arranged on the two Y-direction guide rails 921 so as to be movable along the third direction Y, and the first Y-direction motor 922 and the second Y-direction motor 923 are respectively used to drive the two ends of the X-direction guide rail 911 so that the X-direction guide rail 911 moves in steps along the third direction Y with a long stroke.
  • a displacement detection mechanism is further provided on the workbench 90 in this embodiment.
  • the displacement detection mechanism adopts a laser interferometer 93.
  • the laser interferometer 93 is provided with two groups respectively facing the wafer stage 80 along the second direction X and the third direction Y, and is used to detect the displacement of the wafer stage 80 along the second direction X and the third direction Y, and then obtain the real-time position of the substrate handover mechanism 100 on the workbench. Since the substrate handover mechanism 100 moves with the wafer stage 80, the position of the substrate handover mechanism 100 can be indirectly obtained.
  • the substrate handover mechanism 100 includes: a rotating seat 10, an adsorption assembly 20, a base 30, a rotating drive member 40 and a bearing 50; the rotating seat 10 is mounted on the base 30 in a manner that it can rotate along its own central axis a; the adsorption assembly 20 includes a suction nozzle 21, and the suction nozzle 21 can be directly or indirectly arranged on the rotating seat 10 through an intermediate connecting member for adsorbing the wafer; the rotating drive member 40 is arranged on the base 30 for driving the rotating seat 10 to rotate around its own central axis a.
  • the adsorption end of the suction nozzle 21 is located on a side of the rotating seat 10 away from the base along the first direction Z.
  • the suction nozzle 21 is arranged on the rotating seat 10 in a manner that it can be raised and lowered along the first direction Z.
  • the first direction Z is parallel to the central axis a of the rotating seat 10.
  • the wafer support table 80 is provided with a through hole for the adsorption component to pass through when it is raised and lowered, and further is a through hole 81 for the suction nozzle 21 to pass through when it is raised and lowered.
  • the suction nozzle 21 is used to absorb the wafer 94.
  • the suction nozzle 21 is raised along the first direction Z, the suction nozzle 21 is lifted upward through the through hole 81, and the suction nozzle 21 is higher than the wafer stage 80 to receive and absorb the wafer 94, and then the suction nozzle 21 is lowered along the first direction Z, and the wafer is placed on the wafer stage 80, and the circumferential installation error of the wafer is detected by the alignment mechanism.
  • the suction nozzle 21 needs to be raised again along the first direction Z, and the rotating seat 10 and the adsorption component 20 are rotated by the rotating driving member 40 to compensate for the circumferential posture of the wafer 94; then the suction nozzle 21 is lowered along the first direction Z, and the wafer 94 with the compensated posture is continuously transferred to the wafer stage, and then the wafer is detected again by the alignment mechanism.
  • the circumferential installation error of the wafer 94 is adjusted by analogy until the circumferential installation error of the wafer meets the requirement.
  • the circumferential installation error of the wafer 94 is extremely small, so the rotation adjustment angle required by the rotating seat 10 and the adsorption assembly 20 is extremely small. Therefore, the displacement of the suction nozzle 21 relative to the wafer stage 80 along the circumferential direction is small, so it is only necessary to appropriately control the inner diameter of the through hole 81 to ensure that the suction nozzle 21 does not interfere with the inner wall of the through hole 81 during the axial movement.
  • the rotating driving member 40 includes a first driving member and a second driving member, the first driving member is arranged on the base 30, and the second driving member is arranged on the rotating seat 10, and the first driving member is used to apply a driving force to the second driving member in a non-contact manner, and the driving force causes the second driving member to move linearly along a set direction, and the set direction is tangent to the rotation direction of the rotating seat 10.
  • the rotating drive member 40 in this embodiment is driven by a linear motor, wherein the first drive member is an electromagnet 42 of the linear motor, the electromagnet 42 is arranged on the base 30, and the second drive member is a coil 41 of the linear motor, the coil 41 is connected to the rotating seat 10, and the movement direction of the coil 41 driven by the electromagnet is tangent to the rotation direction of the rotating seat 10, and the rotating seat 10 is driven to achieve a smaller rotation angle through a small linear motion, and the linear motion of the coil 41 naturally limits the rotation angle of the rotating seat 10.
  • first driving member and the second driving member may both adopt an electromagnet structure, or the first driving member may adopt a permanent magnet and the second driving member may adopt an electromagnet, or other known non-contact driving structures may be adopted, which will not be described in detail here.
  • the rotating drive member 40 may also adopt a rotating motor, whose motor rotor is in transmission cooperation with the rotating seat 10 , and the stator of the motor is fixedly connected to the base 30 to realize the rotation drive of the rotating seat 10 .
  • the substrate handover mechanism and the exposure system when compensating for the circumferential position error of the wafer, only need to adaptively drive the rotating seat 10 in the substrate handover mechanism to rotate, and there is no need to drive the entire exposure system to rotate as a whole.
  • the base 30 has a circular mounting cavity 31, the rotating seat 10 is coaxially mounted in the mounting cavity 31, and the outer ring of the bearing 50 is coaxially mounted with the inner wall of the mounting cavity 31.
  • Fixed fit the inner ring of the bearing 50 is fixedly matched with the outer peripheral surface of the rotating seat 10.
  • the outer ring of the bearing 50 can be fitted with the inner wall of the mounting cavity 31 by interference fit, and similarly, the inner ring of the bearing 50 can be fitted with the outer peripheral surface of the rotating seat 10 by interference fit.
  • the bearing 50 adopts a cross roller bearing, which has excellent rotation accuracy and can meet the requirements of wafer rotation accuracy.
  • the internal structure of the cross roller bearing adopts rollers arranged perpendicularly to each other at 90°, and spacers or isolation blocks are installed between the rollers to prevent the rollers from tilting or the rollers from rubbing against each other, effectively preventing the increase of rotation torque.
  • the bearing will not have one-sided contact or locking of the rollers; at the same time, because the inner and outer rings are divided structures, the gap can be adjusted, and even if pre-pressure is applied, high-precision rotation motion can be obtained; through this installation structure, the high installation accuracy and rotation accuracy of the rotating seat 10 can be guaranteed as a whole.
  • the substrate interface mechanism also includes a bearing stopper 73.
  • the upper end of the mounting cavity 31 has a radially enlarged annular mounting groove 311.
  • the outer ring of the bearing 50 is conformally mounted in the annular mounting groove 311 and abuts against the axial side wall of the annular mounting groove 311.
  • the bearing stopper 73 is arranged on the base 30 and presses the bearing 50 axially into the annular mounting groove 311.
  • the bearing stopper 73 cooperates with one axial side of the annular mounting groove 311 to achieve the purpose of axially limiting the bearing 50.
  • the specific structure of the bearing stopper 73 is not particularly limited here.
  • a plurality of bearing stoppers 73 are provided and are equidistantly arranged around the mounting cavity 31. After each bearing stopper 73 cooperates, it is uniformly pressed on the bearing 50 in the circumferential direction.
  • the bearing stopper 73 can be an annular structure, in which case the bearing stopper 73 can be continuously pressed on the bearing 50 in the circumferential direction.
  • one end of the rotating seat 10 is located in the installation cavity 31, and the other end of the rotating seat 10 is provided with a groove 11.
  • the adsorption assembly 20 is installed in the groove 11. In a plane perpendicular to the central axis of the rotating seat 10, the groove 11 coincides with the projection of the installation cavity 31.
  • the groove 11 is a circular structure as a whole and the groove 11 is coaxial with the rotating seat 10.
  • some avoidance grooves 12 are adaptively opened on the inner wall of the groove 11 to prevent the groove from interfering with the adsorption assembly 20.
  • the substrate handover mechanism further includes an elastic member 60, which is used to provide a preload force along a radial direction for the inner ring of the bearing 50, and the preload force makes the inner ring of the bearing 50 approach the outer ring of the bearing 50 along the radial direction.
  • the elastic member 60 adopts a preload spring, which can be a cylindrical helical spring or other types of spring structures, wherein one end of the elastic member 60 is connected to the base 30, and the other end is connected to the inner ring of the bearing 50, and the elastic member 60 is in a stretched state along a radial direction of the rotating seat 10, thereby pulling the inner ring of the bearing 50 radially, so that the inner circle of the bearing approaches the outer circle of the bearing in the radial direction, and eliminating the gap between the inner and outer rings of the cross roller bearing.
  • a preload spring which can be a cylindrical helical spring or other types of spring structures, wherein one end of the elastic member 60 is connected to the base 30, and the other end is connected to the inner ring of the bearing 50, and the elastic member 60 is in a stretched state along a radial direction of the rotating seat 10, thereby pulling the inner ring of the bearing 50 radially, so that the inner circle of the bearing approaches the outer circle of the bearing in the radial direction, and eliminating the
  • the adsorption assembly 20 also includes a plurality of adsorption racks and an adsorption base 24, the adsorption rack includes a support plate 22 and a suction column 23, the support plate 22 extends in a direction perpendicular to the first direction Z, a first air channel 221 is arranged on the support plate 22 along the second direction X, at least two suction nozzles 21 are installed on the side of the support plate 22 away from the base 30 along the first direction Z, and each suction nozzle 21 is arranged along the length direction of the support plate 22; the suction column 23 extends along the first direction Z, and the suction column 23 is vertically connected to the support plate 22, a second air channel 231 is arranged on the suction column 23, and a sealing member is provided at the connection between the suction column 23 and the support plate 22, so that the second air channel 231 is sealed and connected with the first air channel 221; the inner cavity of the suction nozzle 21 is connected with the first air channel 221.
  • FIG. 5 Please refer to FIG. 5 .
  • four adsorption racks are provided.
  • the extension direction of the support plates 22 in the four adsorption racks is the same.
  • Two suction nozzles 21 are provided on each of the four support plates 22.
  • the number of suction nozzles 21 installed on the adsorption rack and each support plate 22 can be adjusted adaptively based on the use requirements, which will not be described here.
  • the suction nozzle 21 is preferably made of elastic material.
  • the suction nozzle 21 is used for auxiliary adsorption of the wafer.
  • the suction nozzle made of elastic material is particularly suitable for auxiliary adsorption of warped wafers.
  • the support plate 22 is of a rectangular structure as a whole, and correspondingly, the through hole 81 on the wafer support table 80 is opened as a rectangular hole.
  • the outline size of the through hole 81 is larger than the outer size of the support plate 22, so that when the support plate 22 is located in the through hole 81, the support plate 22 is allowed to rotate slightly with the rotating seat 10 without interfering with the inner wall of the through hole 81, and the width of the through hole 81 is larger than the outer diameter of the suction column 23.
  • the suction nozzle 21 is raised, the suction column 23 is located in the through hole 81, and at this time, the suction column 23 is allowed to rotate slightly with the rotating seat 10 without interfering with the inner wall of the through hole 81.
  • each of the adsorption racks is disposed on the adsorption base 24
  • the adsorption base 24 is disposed on the rotating base 10 in a manner that it can be raised and lowered along the first direction Z to achieve
  • the suction base 24 can be an integrated disc-shaped structure or a frame structure for the synchronous lifting of each suction nozzle 21.
  • the suction base 24 adopts a rectangular frame structure, and the suction columns 23 of each suction frame are respectively connected to the four corners of the suction base 24.
  • a crossbeam can be adaptively added between the frames of the suction base 24.
  • the suction base 24 of this structure meets the lightweight design.
  • the suction ends of the corresponding suction nozzles 21 on each suction frame are arranged in the same plane; wherein a lifting drive member 74 is arranged on the base 30, wherein the lifting drive member includes a vertical guide rail 741 and a vertical motor 742, wherein the vertical guide rail 741 extends along the first direction Z, and the suction base 24 is arranged on the vertical guide rail 741 so as to be movable along the first direction Z, and the vertical motor 742 is used to drive the suction base 24 to move along the first direction Z on the vertical guide rail 741, thereby driving each suction frame and the suction nozzle 21 to rise and fall synchronously.
  • two or more vertical guide rails 741 are preferably provided, and the adsorption base 24 is movably provided on each vertical guide rail 741 along the first direction Z, and the auxiliary adsorption of multiple suction nozzles 21 is coordinated to ensure the horizontal and vertical repeat positioning accuracy of the substrate handover mechanism 100 during the handover, thereby ensuring the feasibility of using the rotational movement of the substrate handover mechanism 100 to compensate for the circumferential error of the chip on the wafer.
  • the suction base 24 is provided with a suction channel 241, which is connected to the first air channel 221 corresponding to each suction rack.
  • the suction channel 241 is externally connected to a vacuum pump, and when the vacuum pump sucks air, a negative pressure environment can be formed in the suction channel 241, the first air channel 221, and the second air channel 231, thereby generating a negative pressure environment at the position of the suction nozzle 21 for adsorbing the wafer.
  • the substrate handover mechanism 100 further includes a rotation limiting mechanism and a vertical limiting mechanism;
  • the rotation limit mechanism includes a circumferential grating scale 711 and a rotation limit sensor 712, wherein the circumferential grating scale 711 is arranged on the base 30 to detect the angular displacement of the rotating seat 10, and the rotation limit sensor 712 is used to receive the angular displacement detected by the circumferential grating scale 711, and to limit the rotation angle of the rotating seat 10.
  • the circumferential grating scale 711 and the rotation limit sensor 712 Through the cooperation of the circumferential grating scale 711 and the rotation limit sensor 712, the angular displacement of the rotating seat 10 can be accurately detected, thereby ensuring a higher accuracy during chip rotation compensation.
  • two protruding mounting ears 13 are provided at the outer edge of the rotating seat 10, wherein the limit sensor 712 is installed on one of the mounting ears, and the coil 41 is connected to the other mounting ear, so as to achieve a better spatial layout.
  • the vertical limit mechanism includes a vertical mechanical limit member 721, a vertical grating ruler 722 and a vertical electrical limit sensor 723, wherein the vertical mechanical limit member 721 is arranged on the base 30 to limit the suction nozzle 21.
  • the specific vertical mechanical limiter 721 can be a limit block that limits its raised position by interfering with the adsorption base 24.
  • the vertical grating ruler 722 is arranged on the base 30 and faces the adsorption base 24 along the first direction Z to detect the lifting position of the suction nozzle 21.
  • the vertical electrical limit sensor 723 is used to limit the lifting stroke of the suction nozzle 21. When the stroke is exceeded, the vertical electrical limit sensor 723 controls the vertical motor 742 to stop and realize electrical locking.
  • the substrate handover mechanism 100 ensures the horizontal and vertical repeated positioning accuracy of the substrate handover mechanism 100 during the handover through multiple sets of vertical guides and corresponding limit mechanisms and the auxiliary adsorption of the suction nozzle, thereby ensuring the feasibility of using the rotational movement of the substrate handover mechanism 100 to compensate for the circumferential error of the wafer.
  • a vertical buffer pad is provided at the bottom of the groove 11 of the rotating base 10 in this embodiment to effectively protect the rotating base 10 .
  • a flexible cable 75 is also provided.
  • the suction channel 241 on the adsorption base 24 is connected to the vacuum air pipe.
  • the vacuum air pipe and the cables connected to the electrical equipment on the adsorption base 24 are transferred through the flexible cable 75.
  • the flexible cable is a special motion pipeline component, which is safe and reliable during the vertical lifting process and will not be damaged by friction.
  • a wafer handover method is also provided, the method comprising the following steps:
  • the adsorption component receives and adsorbs the wafer; specifically, the wafer can be placed on the adsorption component through a robot, and the adsorption component vacuum adsorbs the wafer;
  • step S4 Check whether the circumferential position error of the wafer meets the requirements; if it does, the wafer handover is completed; if it does not, the adsorption assembly is raised, the rotating seat rotates and drives the adsorption assembly to rotate to compensate for the circumferential position error of the wafer, and step S3 is re-executed; the detection of the circumferential position error of the wafer on the wafer stage can be detected by an alignment mechanism, and its detection means are existing technologies and will not be repeated here. A corresponding compensation angle can be generated based on the circumferential position error value detected by the alignment mechanism, and then the rotating seat rotates the corresponding compensation angle to compensate the position of the wafer. Specifically, the rotation angle of the rotating seat can be controlled by the cooperation of the circumferential grating ruler and the rotation limit sensor.
  • This embodiment is different from the first embodiment in the number of adsorption bases 24 and the vertical driving method.
  • a plurality of adsorption bases 24 are provided and matched with each adsorption frame one by one.
  • Each adsorption base 24 can be installed on the rotating base 10 to be lifted and lowered along the first direction Z, and each adsorption base 24 is respectively provided with a vertical driving member for independent lifting and lowering drive.
  • the vertical driving member is preferably a linear motor, and each adsorption frame can be driven to lift and lower separately. Then, the vertical position compensation during the handover of the wafer can be performed more flexibly, thereby meeting the adsorption requirements of the large warp wafer and ensuring the feasibility of the handover of the large warp wafer.
  • the bearing 50 adopts an air-floating hydrostatic bearing, which is a type of sliding bearing. Its structure and working principle are similar to those of a liquid sliding bearing, except that it uses gas as a lubricating medium.
  • air-floating hydrostatic bearing ensures a high operating accuracy, effectively reduces sliding resistance, and reduces vibration.
  • the substrate handover mechanism includes: a rotating seat 10, an adsorption assembly 20, a base 30 and a rotating drive member 40;
  • the rotating seat 10 is mounted on the base 30 in a manner that it can rotate along its own central axis a, and the base 30 is used to be installed on the workbench of the exposure table system;
  • the adsorption assembly 20 includes a suction nozzle 21, and the suction nozzle 21 is arranged on the rotating seat 10 for adsorbing the wafer;
  • the rotating drive member 40 is arranged on the base 30 for driving the rotating seat 10 to rotate around its own central axis.
  • the substrate handover mechanism and the exposure system only need to adaptively drive the rotating seat 10 in the substrate handover mechanism to rotate when compensating for the circumferential position error of the wafer, without driving the entire exposure system to rotate as a whole.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明涉及半导体技术领域,提供了一种基板交接机构及曝光台系统,所述基板交接机构包括:转动座、吸附组件、基座以及转动驱动件;所述转动座以可沿自身中轴线转动的方式安装于所述基座上,所述基座用于安装于曝光台系统的工作台上;所述吸附组件设置于所述转动座上用于吸附晶片;所述转动驱动件设置于所述基座上用于驱动所述转动座以自身中轴线为中心转动。如此配置,基板交接机构以及曝光系统,在补偿晶片上片的周向位置误差时,只需要适应性的驱动基板交接机构中的转动座转动即可,不需要驱动整个曝光系统整体转动,利于简化转动结构,提高投入产出比,且利于实现较高的转动精度。

Description

基板交接机构及曝光台系统 技术领域
本发明涉及半导体技术领域,特别涉及一种基板交接机构及曝光台系统。
背景技术
晶片曝光工艺是利用光照将掩模版上的图形经过光学系统后投影到光刻胶上,实现图形转移。曝光工艺是集成电路制造中光刻工艺的重要工序之一。在进行曝光时,需要通过基板交接机构将晶片放置在承片台上,而晶片放置在承片台的位置精度会直接影响曝光质量。
晶片放置在承片台上后,通常需要以垂向方向的中轴线为中心转动晶片以补偿晶片上片的周向位置误差。目前基板交接机构一般安装在承片台上,且基板交接机构只具有垂向升降功能,通过曝光台的整体旋转来实现补偿晶片上片的周向误差。由于曝光台整体结构较为复杂且占据空间较大,设备整体外形尺寸及质量均较大。因此,若实现曝光台整体的转动,一方面其转动精度较难控制,实现转动所需要的成本较高,且实现曝光台整体的转动也比较困难。
因此,亟需一种基板交接机构及曝光台系统,以使得基板交接机构自身具有转动补偿功能,进而使得曝光台不需要整体旋转。
发明内容
发明提供了一种基板交接机构及曝光台系统,在补偿晶片上片的周向位置误差时,只需要适应性的驱动基板交接机构中的转动座转动即可,不需要驱动整个曝光系统整体转动,一方面,利于简化转动结构,以降低由于补偿晶片周向位置误差时所需要的硬件成本或者研发成本,提高投入产出比,另一方面,使得整个转动驱动结构的外形尺寸及质量较小,利于实现较高的转动精度。
所述基板交接机构包括:转动座、吸附组件、基座以及转动驱动件;
所述转动座以可沿自身中轴线为中心转动的方式安装于所述基座上,所述基座用于安装于曝光台系统的工作台上;
所述吸附组件设置于所述转动座上用于吸附晶片;
所述转动驱动件设置于所述基座上用于驱动所述转动座以自身中轴线为中心转动。
可选地,所述基座具有圆形的安装腔,所述转动座同轴安装于所述安装腔内。
可选地,所述吸附组件包括吸嘴,所述吸嘴用于吸附晶片。
可选地,所述转动驱动件包括第一驱动件和第二驱动件,所述第一驱动件设置于所述基座上,所述第二驱动件设置于所述转动座上,所述第一驱动件用于以非接触的方式对所述第二驱动件施以驱动力,所述驱动力使得所述第二驱动件沿设定方向直线运动,所述设定方向与所述转动座的转动方向相切。
可选地,所述转动座的一端位于所述安装腔内,所述转动座的另一端设有凹槽,所述吸附组件安装于所述凹槽内。
可选地,沿垂直于所述转动座的自身中轴线的方向,所述凹槽与所述安装腔的投影部分重合。
可选地,所述基板交接机构还包括轴承,所述轴承的外圈与所述安装腔的内壁固定配合,所述轴承的内圈与所述转动座的外周面固定配合。
可选地,所述基板交接机构还包括弹性件,所述弹性件用于为所述轴承的内圈提供沿一径向方向的预紧力,所述预紧力使得所述轴承的内圈沿该径向方向向所述轴承的外圈靠近。
可选地,所述基板交接机构还包括轴承限位件,所述安装腔的上端具有沿径向扩大的环形安装槽,所述轴承的外圈适形安装于所述环形安装槽内且与所述环形安装槽的轴向侧壁相抵,所述轴承限位件设置于所述基座上并将轴承轴向压于所述环形安装槽内。
可选地,所述吸嘴的吸附端位于沿第一方向远离基座转动座的一侧,所述吸嘴以可沿第一方向升降的方式设置于所述转动座上,所述第一方向与所述转动座的自身中轴线平行。
可选地,所述基板交接机构还包括垂向限位机构,所述垂向限位机构用于限定所述吸嘴的升降高度。
可选地,所述吸附组件还包括若干个吸附架,所述吸附架包括托板,所 述托板上设置有第一气道,所述托板沿第一方向远离所述基座的一侧安装有至少两个所述吸嘴,所述吸嘴的内腔与所述第一气道连通。
可选地,所述吸附架还包括吸柱,所述吸柱与所述托板连接,所述吸柱沿第一方向延伸,所述托板沿垂直于第一方向的方向延伸,所述吸柱上设置有第二气道,所述第二气道与所述第一气道连通。
可选地,所述吸附组件还包括吸附底座,各所述吸附架设置于所述吸附底座上,所述吸附底座以可沿第一方向升降的方式设置于所述转动座上以实现各吸嘴的同步升降,各所述吸嘴的吸附端共面设置。
可选地,所述吸附底座上开设有吸气通道,所述吸气通道与各吸附架对应的所述第一气道连通。
可选地,所述吸附组件还包括多个吸附底座,各所述吸附底座与各个吸附架一一匹配,各所述吸附底座分别可沿第一方向升降的安装在所述转动座上,各所述吸附底座分别配套设置一个垂向驱动件进行单独升降驱动。
可选地,所述基板交接机构还包括转动限位机构,所述转动限位机构用于限定所述转动座的转动角度。
可选地,所述转动限位机构包括周向光栅尺和转动限位传感器,所述周向光栅尺设置于所述基座上用于检测所述转动座的角位移,所述转动限位传感器用于接收所述周向光栅尺检测的角位移,并用于限定所述转动座的转动角度。
本发明还提供了一种曝光系统,所述曝光系统安装有上述所述的基板交接机构。
可选地,所述曝光系统还包括承片台,所述基板交接机构的吸附组件沿所述转动座的自身中轴线所在的方向可相对所述承片台升降,且所述基板交接机构的吸附组件以所述转动座的自身中轴线为中心可相对所述承片台转动,所述承片台上开设有供所述吸附组件升降时穿过的通孔。
本发明还提供了一种晶片交接方法,包括以下步骤:
S1:升高吸附组件,使得吸附组件经过承片台上的通孔伸出;
S2:吸附组件承接并吸附晶片;
S3:降低吸附组件使得晶片放置于承片台上;
S4:检测晶片的周向位置误差是否满足要求;若满足要求,则晶片交接 结束;若不满足要求,升高吸附组件,转动座转动并带动吸附组件转动以补偿晶片的周向位置误差,重新执行步骤S3。
综上所述,所述基板交接机构包括:转动座、吸附组件、基座以及转动驱动件;所述转动座以可沿自身中轴线转动的方式安装于所述基座上,所述基座用于安装于曝光台系统的工作台上;所述吸附组件设置于所述转动座上用于吸附晶片;所述转动驱动件设置于所述基座上用于驱动所述转动座以自身中轴线为中心转动。
如此配置,基板交接机构以及曝光系统,在补偿晶片上片的周向位置误差时,只需要适应性的驱动基板交接机构中的转动座转动即可,不需要驱动整个曝光系统整体转动,一方面,利于简化转动结构,以降低由于补偿晶片周向位置误差时所需要的硬件成本或者研发成本,提高投入产出比,另一方面,使得整个转动驱动结构的外形尺寸及质量较小,利于实现较高的转动精度。
附图说明
图1为本发明的一实施例的曝光系统的结构示意图;
图2为本发明的一实施例的曝光系统的原理结构简图;
图3为本发明的一实施例的基板交接机构与承片台的装配结构示意图;
图4为本发明的一实施例的基板交接机构的原理结构简图;
图5为本发明的一实施例的基板交接机构的结构示意图;
图6为本发明的一实施例的基板交接机构的爆炸结构示意图;
图7为本发明的一实施例的基板交接机构的吸附组件的结构示意图;
图8为本发明的一实施例的晶片交接流程图。
其中,附图标记如下:
10-转动座;11-凹槽;12-避让槽;13-安装耳;
20-吸附组件;21-吸嘴;22-托板;221-第一气道;23-吸柱;231-第二气
道;24-吸附底座;241-吸气通道;
30-基座;31-安装腔;311-安装槽;
40-转动驱动件;41-线圈;42-电磁铁;
50-轴承;
60-弹性件;
711-周向光栅尺;712-转动限位传感器;721-垂向机械限位件;722-垂向
光栅尺;723-垂向电气限位传感器;73-轴承限位件;74-升降驱动件;741-垂向导轨;742-垂向电机;75-柔性线缆;
80-承片台;81-通孔;
90-工作台;91-X向机构;911-X向导轨;92-Y向机构;921-Y向导轨;
922-第一Y向电机;923-第二Y向电机;93-激光干涉仪;94-晶片;
100-基板交接机构;
Z-第一方向;X-第二方向;Y-第三方向;a-转动座的自身中轴线。
具体实施方式
如在发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征。此外,如在发明中所使用的,“安装”、“相连”、“连接”,一元件“设置”于另一元件,应做广义理解,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在发明中的具体含义。此外,诸如上方、下方、上、下、向上、向下、左、右等的方向术语相对于示例性实施方案如它们在图中所示进行使用,向上或上方向朝向对应附图的顶部,向下或下方向朝向对应附图的底部。
晶片曝光工艺是利用光照将掩模版上的图形经过光学系统后投影到光刻胶上,实现图形转移,是集成电路制造中光刻工艺的重要工序之一。在进行 曝光时,需要通过基板交接机构将晶片放置在承片台上,而晶片放置在承片台的位置精度会直接影响曝光质量。
晶片放置在承片台上后,通常需要以垂向方向的中轴线为中心转动晶片以补偿晶片上片的周向位置误差。目前基板交接机构一般安装在承片台上,且基板交接机构只具有垂向升降功能,通过曝光台的整体旋转来实现补偿晶片上片的周向误差。由于曝光台整体结构较为复杂且占据空间较大,设备整体外形尺寸及质量均较大,因此,若实现曝光台整体的转动,一方面其转动精度较难控制,实现转动所需要的成本较高,且实现曝光台整体的转动也比较困难。
因此,本发明提出了一种基板交接机构及曝光台系统,在补偿晶片上片的周向位置误差时,只需要适应性的驱动基板交接机构中的转动座10转动即可,不需要驱动整个曝光系统整体转动,一方面,利于简化转动结构,以降低由于补偿晶片周向位置误差时所需要的硬件成本或者研发成本,提高投入产出比,另一方面,使得整个转动驱动结构的外形尺寸及质量较小,利于实现较高的转动精度。
下述实施例中,第一方向Z、第二方向X和第三方向Y两两垂直;径向和轴向均是以转动座10为基础,转动座10的轴向与第一方向Z平行。
实施例一:
本实施例提供了一种曝光系统,所述曝光系统包括基板交接机构100、承片台80和工作台90;
请参考图1和图2所示,所述基板交接机构100设置于所述工作台90上,所述基板交接机构位于所述承片台80和所述工作台90之间,所述基板交接机构100部分穿过承片台80,所述承片台80在所述工作台90上可沿垂直于所述转动座10自身中轴线的方向运动,基板交接机构100跟随承片台80运动,其中基板交接机构100的具体结构在下述内容中详述。承片台80与基板交接机构100形成一体,当承片台80沿工作台90移动时,基板交接机构100跟随运动。
承片台80通过滑动机构实现在工作台90上沿第二方向X和第三方向Y的运动,具体如图1和图2所示,工作台90上设置有X向机构91和Y向机构92,其中X向机构91包括X向导轨911和X向电机,X向导轨911沿第 二方向X延伸,其中承片台80设置于X向导轨911上并可被X向电机驱动沿第二方向X长行程步进运动;其中Y向机构92包括Y向导轨921以及第一Y向电机922和第二Y向电机923,Y向导轨921平行设置有两个并沿第三方向Y延伸,其中X向导轨911的两端分别以可沿第三方向Y移动的设置于两个所述Y向导轨921上,所述第一Y向电机922和第二Y向电机923分别用于驱动所述X向导轨911的两端,以使得X向导轨911沿第三方向Y长行程步进运动。
为便于检测基板交接机构100沿第二方向X和第三方向Y的移动位置,本实施例中在工作台90上还设置有位移检测机构,位移检测机构采用激光干涉仪93,激光干涉仪93设置有两组分别沿第二方向X和第三方向Y正对所述承片台80,用于检测承片台80沿第二方向X和第三方向Y的位移,进而获取检测基板交接机构100所在工作台上的实时位置,由于基板交接机构100跟随承片台80运动,故可间接的获取基板交接机构100的位置。
请结合图3和图4所示,其中基板交接机构100包括:转动座10、吸附组件20、基座30、转动驱动件40和轴承50;所述转动座10以可沿自身中轴线a转动的方式安装于所述基座30上;所述吸附组件20包括吸嘴21,所述吸嘴21可直接或者通过中间连接件间接的设置于所述转动座10上用于吸附晶片;所述转动驱动件40设置于所述基座30上用于驱动所述转动座10以自身中轴线a为中心转动。
所述吸嘴21的吸附端位于沿第一方向Z远离基座的转动座10的一侧,所述吸嘴21以可沿第一方向Z升降的方式设置于所述转动座10上,所述第一方向Z与所述转动座10的自身中轴线a平行,所述承片台80上开设有供吸附组件升降时穿过的通孔,进一步为供所述吸嘴21升降时穿过的通孔81。
吸嘴21用于吸附晶片94。当吸嘴21沿第一方向Z升高时,则吸嘴21向上经过通孔81抬高,且吸嘴21高于承片台80用于承接并吸附晶片94,然后吸嘴21沿第一方向Z降低,将晶片放置在承片台80上,通过对准机构检测晶片的周向安装误差,若晶片的周向姿态不满足精度要求时,则需要吸嘴21沿第一方向Z再次升高,并通过转动驱动件40转动转动座10及吸附组件20,以对晶片94的周向姿态补偿;然后吸嘴21沿第一方向Z降低,再继续将补偿姿态后的晶片94交接到承片台上,然后再一次通过对准机构检测晶片 的周向安装误差,依次类推,直至晶片的周向安装误差满足要求。在实际的调整过程中,晶片94的周向安装误差极小,故转动座10及吸附组件20所需要的转动调整角度极小,因此,吸嘴21的沿周向相对承片台80产生的位移较小,故只需要适当控制通孔81的内径尺寸即可保证吸嘴21在轴向运动过程中不与通孔81的内壁干涉。
进一步的,所述转动驱动件40包括第一驱动件和第二驱动件,所述第一驱动件设置于所述基座30上,所述第二驱动件设置于所述转动座10上,所述第一驱动件用于以非接触的方式对所述第二驱动件施以驱动力,所述驱动力使得所述第二驱动件沿设定方向直线运动,所述设定方向与所述转动座10的转动方向相切。
请结合图4和图5所示,本实施例中的转动驱动件40采用直线电机驱动,其中第一驱动件为直线电机的电磁铁42,电磁铁42设置于基座30上,第二驱动件为直线电机的线圈41,线圈41与转动座10连接,线圈41被电磁铁驱动的运动方向与转动座10的转动方向相切,通过微小的直线运动带动转动座10实现较小的转动角度,而且线圈41的直线运动也自然限定了转动座10的转动角度。
在其他的可替代的实施例中,第一驱动件和第二驱动件可均采用电磁铁结构,或者第一驱动件采用永磁铁,第二驱动件采用电磁铁,或者也可采用其他的已知的非接触的驱动结构,此处不再一一赘述。
另外,在其他的可替代的实施例中,转动驱动件40也可以采用转动电机,其电机转子与转动座10传动配合,电机的定子与基座30固连,以实现对转动座10的转动驱动。
该结构中,基板交接机构以及曝光系统,在补偿晶片上片的周向位置误差时,只需要适应性的驱动基板交接机构中的转动座10转动即可,不需要驱动整个曝光系统整体转动,一方面,利于简化转动结构,以降低由于补偿晶片周向位置误差时所需要的硬件成本或者研发成本,提高投入产出比,另一方面,使得整个转动驱动结构的外形尺寸及质量较小,利于实现较高的转动精度。
请结合图4至图6所示,所述基座30具有圆形的安装腔31,所述转动座10同轴安装于所述安装腔31内,所述轴承50的外圈与所述安装腔31的内壁 固定配合,所述轴承50的内圈与所述转动座10的外周面固定配合。具体的,所述轴承50的外圈与所述安装腔31的内壁可通过过盈配合,同理,所述轴承50的内圈与所述转动座10的外周面可通过过盈配合。本实施例中,轴承50采用交叉滚子轴承,该轴承具有出色的旋转精度,可以满足晶片转动精度的要求,交叉滚子轴承内部结构采用滚子呈90°相互垂直交叉排列,滚子之间装有间隔保持器或者隔离块,可以防止滚子的倾斜或滚子之间相互摩擦,有效防止了旋转扭矩的增加。另外,该轴承也不会发生滚子的一方接触现象或者锁死现象;同时因为内外环是分割的结构,间隙可以调整,即使被施加预压,也能获得高精度的旋转运动;通过该安装结构,整体上可保证转动座10较高的安装精度和转动精度。
请结合图4和图6所示,进一步的,所述基板交接机构还包括轴承限位件73,所述安装腔31的上端具有沿径向扩大的环形安装槽311,所述轴承50的外圈适形安装于所述环形安装槽311内且与所述环形安装槽311的轴向侧壁相抵,所述轴承限位件73设置于所述基座30上并将轴承50轴向压于所述环形安装槽311内。
轴承限位件73配合环形安装槽311的轴向一侧达到对轴承50的轴向限位的目的,此处对轴承限位件73的具体结构不做特别限定。本实施例中,轴承限位件73设置有多个并围绕安装腔31周向等距间隔设置,各个轴承限位件73配合后均匀的周向压于轴承50上。在其他的可替代的实施例中,例如轴承限位件73可以为环形结构,此时轴承限位件73可周向连续的压于轴承50上。
请继续结合图4至图6所示,进一步的,所述转动座10的一端位于所述安装腔31内,所述转动座10的另一端设有凹槽11,所述吸附组件20安装于所述凹槽11内;在垂直于所述转动座10的自身中轴线的平面内,所述凹槽11与所述安装腔31的投影部分重合。凹槽11整体上呈圆形结构且凹槽11与转动座10同轴,为适应于吸附组件20的结构,在凹槽11的内壁上适应性的开设一些避让槽12以防止凹槽与吸附组件20干涉。通过该结构,一方面利于吸附组件20的安装,降低基板交接机构100的整体高度,进而可适配现有的曝光系统的尺寸,另一方面也利于降低整个降低基板交接机构100的重心,进而提高基板交接机构100的稳定性。
请参考图4和图5所示,所述基板交接机构还包括弹性件60,所述弹性件60用于为所述轴承50的内圈提供沿一径向方向的预紧力,所述预紧力使得所述轴承50的内圈沿该径向方向向所述轴承50的外圈靠近。本实施例中弹性件60采用预紧弹簧,具体可采用圆柱螺旋弹簧或者其他类型的弹簧结构,其中弹性件60的一端与基座30连接,另一端与轴承50的内圈连接,并且弹性件60沿转动座10的一径向方向处于拉伸状态,进而沿径向拉动轴承50的内圈,以使得轴承的内圆在该径向方向上向轴承的外圆靠近,消除交叉滚子轴承的内外圈的间隙。综合而言,通过上述转动驱动件配合相应的转动结构,可以实现10mrad左右的周向往复旋转精密运动。
请参考图5至图7所示,所述吸附组件20还包括若干个吸附架和吸附底座24,所述吸附架包括托板22、吸柱23,所述托板22沿垂直于第一方向Z的方向延伸,所述托板22上沿第二方向X设置有第一气道221,所述托板22沿第一方向Z远离所述基座30的一侧安装有至少两个所述吸嘴21,各吸嘴21沿托板22的长度方向排列设置;所述吸柱23沿第一方向Z延伸,则吸柱23与所述托板22垂直连接,所述吸柱23上设置有第二气道231,吸柱23与所述托板22连接处设置有密封件,以使得所述第二气道231与所述第一气道221密封连通;所述吸嘴21的内腔与所述第一气道221连通。
请参考图5所示,本实施例中设置有四个吸附架,四个吸附架中的托板22的延伸方向相同,四个托板22上各设置有两个吸嘴21。在其他的可替代的实施例中,可基于使用需求适应性的调整吸附架以及每个托板22上安装的吸嘴21的个数,此处不再赘述。其中吸嘴21优选采用弹性材质,吸嘴21用于晶片的辅助吸附,采用弹性材质的吸嘴尤其适用于翘曲晶片的辅助吸附。
其中托板22整体呈矩形结构,相应的,承片台80上的通孔81开设为矩形孔,通孔81的轮廓尺寸大于托板22的外形尺寸,以使得托板22位于通孔81内时,允许托板22随转动座10微小转动后而不与通孔81的内壁产生干涉,且通孔81的宽度尺寸大于吸柱23的外径,当吸嘴21升高时,吸柱23位于通孔81内,则此时也允许吸柱23随转动座10微小转动后而不与通孔81的内壁产生干涉。
请继续参考5和图6所示,各所述吸附架设置于所述吸附底座24上,所述吸附底座24以可沿第一方向Z升降的方式设置于所述转动座10上以实现 各吸嘴21的同步升降,吸附底座24可以为一体式的圆盘形结构,也可以为框架结构,本实施例中吸附底座24采用矩形的框架结构,各吸附架的吸柱23分别连接于吸附底座24的四角处,基于吸附底座24与升降结构的装配方式,可在吸附底座24的框架之间适应性的加设横梁。该结构的吸附底座24满足轻量化设计。各吸附架上对应的吸嘴21的吸附端共面设置;其中基座30上设置有升降驱动件74,其中升降驱动件包括垂向导轨741和垂向电机742,其中垂向导轨741沿第一方向Z延伸,吸附底座24以可沿第一方向Z移动的设置于垂向导轨741上,垂向电机742用于驱动吸附底座24在垂向导轨741上沿第一方向Z移动,进而带动各个吸附架以及吸嘴21同步升降。进一步的,垂向导轨741优选设置有两个或者更多个,吸附底座24同时沿第一方向Z可移动的设置于各个垂向导轨741上,配合多个吸嘴21的辅助吸附,保证了基板交接机构100交接时的水平向及垂向的重复定位精度,进而保证了用基板交接机构100的转动运动来补偿晶片上片的周向误差的可行性。
所述吸附底座24上开设有吸气通道241,所述吸气通道241与各吸附架对应的所述第一气道221连通。吸气通道241外接真空泵,则真空泵吸气时,可使得吸气通道241、第一气道221和第二气道231中形成负压环境,进而使得吸嘴21的位置产生负压环境,以用于吸附晶片。
请参考图4至图6所示,本实施例中,所述基板交接机构100还包括转动限位机构和垂向限位机构;
其中转动限位机构包括周向光栅尺711和转动限位传感器712,其中周向光栅尺711设置于基座30上用于检测转动座10的角位移,所述转动限位传感器712用于接收所述周向光栅尺711检测的角位移,并用于限定转动座10的转动角度,通过周向光栅尺711和转动限位传感器712的配合可精确的检测转动座10转动的角位移,进而保证晶片转动补偿时较高的精度。
为方便转动限位传感器712的安装以及转动驱动件40的线圈41的安装,在转动座10的外沿处具有两个凸出的安装耳13,其中限位传感器712安装于其中一个安装耳上,线圈41与另一个安装耳连接,以达到较好的空间布局的目的。
其中垂向限位机构包括垂向机械限位件721、垂向光栅尺722和垂向电气限位传感器723,其中垂向机械限位件721设置于基座30上用于限定吸嘴21 的升高位置,具体的垂向机械限位件721可以为限位块通过与吸附底座24的干涉实现对其升高位置的限定。垂向光栅尺722设置于基座30上并沿第一方向Z正对吸附底座24用于检测吸嘴21的升降位置,垂向电气限位传感器723用于限定吸嘴21的升降行程,当超出该行程时,垂向电气限位传感器723控制垂向电机742停机,实现电气闭锁。综合的,基板交接机构100通过多组垂向导轨以及相应的限位机构并配合吸嘴的辅助吸附,保证了基板交接机构100交接时的水平向及垂向的重复定位精度,进而保证了用基板交接机构100的转动运动来补偿晶片上片周向误差的可行性。
另外,在吸附底座24的降低过程中,为防止吸附底座24与转动座10之间发生碰撞,本实施例中在转动座10的凹槽11的槽底设置垂向缓冲垫,以对转动座10形成有效防护。
本实施例中还设置柔性线缆75,吸附底座24上的吸气通道241与真空气管连通,真空气管以及与吸附底座24上的电气设备相连的线缆通过柔性线缆75转接,柔性线缆为专用运动管线组件,在垂向升降过程中安全可靠,不会摩擦损坏。
请参考图8所示,本实施例中,基于该曝光台系统,还提供了一种晶片交接方法,该方法包括以下步骤:
S1:升高吸附组件,使得吸附组件经过承片台上的通孔伸出;吸附组件的升降方式以及吸附方式如前述内容所述。
S2:吸附组件承接并吸附晶片;具体的可通过机械手将晶片放置在吸附组件上,吸附组件将晶片真空吸附;
S3:降低吸附组件使得晶片放置于承片台上;可将承片台上的真空启动将晶片吸附于承片台;
S4:检测晶片的周向位置误差是否满足要求;若满足要求,则晶片交接结束;若不满足要求,升高吸附组件,转动座转动并带动吸附组件转动以补偿晶片的周向位置误差,重新执行步骤S3;其中晶片在承片台上的周向位置误差的检测可通过对准机构检测,其检测手段为现有技术,此处不再赘述。可基于对准机构检测到的周向位置误差值生成相应的补偿角度,然后转动座转动相应的补偿角度对晶片进行位置补偿,具体可通过周向光栅尺和转动限位传感器的配合控制转动座转动的转动角度。
实施例二
该实施例中与实施例一的不同在于吸附底座24的个数以及垂向驱动方式,本实施例中,吸附底座24设置有多个并与各个吸附架一一匹配,各吸附底座24可沿第一方向Z升降的安装在转动座10上,且各个吸附底座24分别配套设置一个垂向驱动件进行单独升降驱动,垂向驱动件优选为直线电机,则每个吸附架可分别单独驱动升降,那么可以更为灵活的进行晶片的交接时的垂向位置补偿,进而满足大翘曲晶片的吸附要求,保证大翘曲晶片交接时的可行性。
实施例三
该实施例中与实施例一的不同在于轴承类型的不同,本实施例中轴承50采用气浮静压轴承,其中气浮静压轴承是滑动轴承的一种,其结构和工作原理与液体滑动轴承类似,不同的是采用气体作为润滑介质。当外部压缩气体通过节流器进入轴承间隙,就会在间隙中形成一层具有一定承载和刚度的润滑气膜,依靠该气膜的润滑支承作用将轴浮起在轴承中。通过气浮静压轴承保证较高的运行精度,并有效减小滑动阻力,降低振动。
综上所述,所述基板交接机构包括:转动座10、吸附组件20、基座30以及转动驱动件40;所述转动座10以可沿自身中轴线a转动的方式安装于所述基座30上,所述基座30用于安装于曝光台系统的工作台上;所述吸附组件20包括吸嘴21,所述吸嘴21设置于所述转动座10上用于吸附晶片;所述转动驱动件40设置于所述基座30上用于驱动所述转动座10以自身中轴线为中心转动。
如此配置,基板交接机构以及曝光系统,在补偿晶片上片的周向位置误差时,只需要适应性的驱动基板交接机构中的转动座10转动即可,不需要驱动整个曝光系统整体转动,一方面,利于简化转动结构,以降低由于补偿晶片周向位置误差时所需要的硬件成本或者研发成本,提高投入产出比,另一方面,使得整个转动驱动结构的外形尺寸及质量较小,利于实现较高的转动精度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
上述描述仅是对发明较佳实施例的描述,并非对发明范围的任何限定,发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (21)

  1. 一种基板交接机构,其特征在于,包括:转动座、吸附组件、基座以及转动驱动件;
    所述转动座以可沿自身中轴线为中心转动的方式安装于所述基座上,所述基座用于安装于曝光台系统的工作台上;
    所述吸附组件设置于所述转动座上用于吸附晶片;
    所述转动驱动件设置于所述基座上用于驱动所述转动座以自身中轴线为中心转动。
  2. 如权利要求1所述的基板交接机构,其特征在于,所述基座具有圆形的安装腔,所述转动座同轴安装于所述安装腔内。
  3. 如权利要求1所述的基板交接机构,其特征在于,所述吸附组件包括吸嘴,所述吸嘴用于吸附晶片。
  4. 如权利要求1所述的基板交接机构,其特征在于,所述转动驱动件包括第一驱动件和第二驱动件,所述第一驱动件设置于所述基座上,所述第二驱动件设置于所述转动座上,所述第一驱动件用于以非接触的方式对所述第二驱动件施以驱动力,所述驱动力使得所述第二驱动件沿设定方向直线运动,所述设定方向与所述转动座的转动方向相切。
  5. 如权利要求2所述的基板交接机构,其特征在于,所述转动座的一端位于所述安装腔内,所述转动座的另一端设有凹槽,所述吸附组件安装于所述凹槽内。
  6. 如权利要求5所述的基板交接机构,其特征在于,在垂直于所述转动座的自身中轴线的平面内,所述凹槽与所述安装腔的投影部分重合。
  7. 如权利要求2所述的基板交接机构,其特征在于,所述基板交接机构还包括轴承,所述轴承的外圈与所述安装腔的内壁固定配合,所述轴承的内圈与所述转动座的外周面固定配合。
  8. 如权利要求7所述的基板交接机构,其特征在于,所述基板交接机构还包括弹性件,所述弹性件用于为所述轴承的内圈提供沿一径向方向的预紧力,所述预紧力使得所述轴承的内圈沿该径向方向向所述轴承的外圈靠近。
  9. 如权利要求7所述的基板交接机构,其特征在于,所述基板交接机 构还包括轴承限位件,所述安装腔的上端具有沿径向扩大的环形安装槽,所述轴承的外圈适形安装于所述环形安装槽内且与所述环形安装槽的轴向侧壁相抵,所述轴承限位件设置于所述基座上并将轴承轴向压于所述环形安装槽内。
  10. 如权利要求3所述的基板交接机构,其特征在于,所述吸嘴的吸附端位于沿第一方向远离所述基座的所述转动座的一侧,所述吸嘴以可沿第一方向升降的方式设置于所述转动座上,所述第一方向与所述转动座的自身中轴线平行。
  11. 如权利要求10所述的基板交接机构,其特征在于,所述基板交接机构还包括垂向限位机构,所述垂向限位机构用于限定所述吸嘴的升降高度。
  12. 如权利要求3所述的基板交接机构,其特征在于,所述吸附组件还包括若干个吸附架,所述吸附架包括托板,所述托板上设置有第一气道,所述托板沿第一方向远离所述基座的一侧安装有至少两个所述吸嘴,所述吸嘴的内腔与所述第一气道连通。
  13. 如权利要求12所述的基板交接机构,其特征在于,所述吸附架还包括吸柱,所述吸柱与所述托板连接,所述吸柱沿所述第一方向延伸,所述托板沿垂直于所述第一方向的方向延伸,所述吸柱上设置有第二气道,所述第二气道与所述第一气道连通。
  14. 如权利要求12所述的基板交接机构,其特征在于,所述吸附组件还包括吸附底座,各所述吸附架设置于所述吸附底座上,所述吸附底座以可沿所述第一方向升降的方式设置于所述转动座上以实现各所述吸嘴的同步升降,各所述吸嘴的吸附端共面设置。
  15. 如权利要求14所述的基板交接机构,其特征在于,所述吸附底座上开设有吸气通道,所述吸气通道与各所述吸附架对应的所述第一气道连通。
  16. 如权利要求12所述的基板交接机构,其特征在于,所述吸附组件还包括多个吸附底座,各所述吸附底座与各所述吸附架一一匹配,各所述吸附底座分别可沿所述第一方向升降的安装在所述转动座上,各所述吸附底座分别配套设置一个垂向驱动件进行单独升降驱动。
  17. 如权利要求1所述的基板交接机构,其特征在于,所述基板交接机构还包括转动限位机构,所述转动限位机构用于限定所述转动座的转动角度。
  18. 如权利要求17所述的基板交接机构,其特征在于,所述转动限位机构包括周向光栅尺和转动限位传感器,所述周向光栅尺设置于所述基座上用于检测所述转动座的角位移,所述转动限位传感器用于接收所述周向光栅尺检测的角位移,并用于限定所述转动座的转动角度。
  19. 一种曝光系统,其特征在于,所述曝光系统安装有如权利要求1-18任意一项所述的基板交接机构。
  20. 如权利要求19所述的曝光系统,其特征在于,所述曝光系统还包括承片台,所述基板交接机构的所述吸附组件沿所述转动座的自身中轴线所在的方向可相对所述承片台升降,且所述基板交接机构的所述吸附组件以所述转动座的自身中轴线为中心可相对所述承片台转动,所述承片台上开设有供所述吸附组件升降时穿过的通孔。
  21. 一种晶片交接方法,其特征在于,包括以下步骤:
    S1:升高吸附组件,使得所述吸附组件经过承片台上的通孔伸出;
    S2:所述吸附组件承接并吸附晶片;
    S3:降低吸附组件使得所述晶片放置于所述承片台上;
    S4:检测所述晶片的周向位置误差是否满足要求;若满足要求,则晶片交接结束;若不满足要求,升高所述吸附组件,转动座转动并带动所述吸附组件转动以补偿所述晶片的周向位置误差,重新执行步骤S3。
PCT/CN2023/130627 2023-02-10 2023-11-09 基板交接机构及曝光台系统 WO2024164600A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310099563.X 2023-02-10
CN202310099563.XA CN118483874A (zh) 2023-02-10 2023-02-10 基板交接机构及曝光台系统

Publications (1)

Publication Number Publication Date
WO2024164600A1 true WO2024164600A1 (zh) 2024-08-15

Family

ID=92186476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130627 WO2024164600A1 (zh) 2023-02-10 2023-11-09 基板交接机构及曝光台系统

Country Status (2)

Country Link
CN (1) CN118483874A (zh)
WO (1) WO2024164600A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080225261A1 (en) * 2007-03-13 2008-09-18 Noriyuki Hirayanagi Exposure apparatus and device manufacturing method
CN103676488A (zh) * 2012-09-10 2014-03-26 上海微电子装备有限公司 掩模交接机构及具有该掩模交接机构的掩模台
US20160288291A1 (en) * 2015-03-30 2016-10-06 Strasbaugh, Inc. Method for grinding wafers by shaping resilient chuck covering
CN112309947A (zh) * 2019-07-29 2021-02-02 上海微电子装备(集团)股份有限公司 一种吸附装置、曝光台、光刻设备及吸附方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080225261A1 (en) * 2007-03-13 2008-09-18 Noriyuki Hirayanagi Exposure apparatus and device manufacturing method
CN103676488A (zh) * 2012-09-10 2014-03-26 上海微电子装备有限公司 掩模交接机构及具有该掩模交接机构的掩模台
US20160288291A1 (en) * 2015-03-30 2016-10-06 Strasbaugh, Inc. Method for grinding wafers by shaping resilient chuck covering
CN112309947A (zh) * 2019-07-29 2021-02-02 上海微电子装备(集团)股份有限公司 一种吸附装置、曝光台、光刻设备及吸附方法

Also Published As

Publication number Publication date
CN118483874A (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
KR100636491B1 (ko) 기판 지지체
CN112309947B (zh) 一种吸附装置、曝光台、光刻设备及吸附方法
KR102668071B1 (ko) 기판 처리 장치 및 기판 처리 방법
CN114975207B (zh) 一种带升降真空爪的转台及交接方法
CN110828359B (zh) 预对准装置及硅片预对准方法
JP2011119320A (ja) θZ駆動装置およびそれを備えたステージ装置、検査装置
WO2024164600A1 (zh) 基板交接机构及曝光台系统
TWI847907B (zh) 基板交接機構、曝光台系統及晶片交接方法
TW202433647A (zh) 基板交接機構、曝光台系統及晶片交接方法
US11143529B2 (en) Cantilever linear motion reference device employing two-layer air suspension
CN109962032B (zh) 一种精密调平吸附台
KR102194996B1 (ko) 반도체 소자 제조용 포커싱링의 쿨링시트 부착장치
KR102194993B1 (ko) 반도체소자 제조용 포커싱링에 대한 쿨링시트 부착을 위한 진공챔버
KR20200103849A (ko) 기판 처리 장치 및 기판 처리 방법
KR101090816B1 (ko) 반도체 칩 본딩장치
CN213562136U (zh) 承载装置及检测设备
JPWO2003091970A1 (ja) フラットパネル用基板の貼り合わせ装置
CN111198483B (zh) 光刻预对准装置及预对准方法、光刻设备
KR102153726B1 (ko) 평평한 제품들 간의 상대 정밀 위치의 정렬이 가능한 모션 스테이지
CN219832603U (zh) 一种推顶装置
CN114513085B (zh) 一种四自由度运动台及控制系统
CN117524963B (zh) 一种基于激光的晶圆巡边装置及其控制方法
CN219969124U (zh) 一种真空贴合设备
CN112904676A (zh) 一种垂向交接装置及光刻系统
JPH10163300A (ja) ステージ装置