WO2022213379A1 - 电芯和用电装置 - Google Patents

电芯和用电装置 Download PDF

Info

Publication number
WO2022213379A1
WO2022213379A1 PCT/CN2021/086248 CN2021086248W WO2022213379A1 WO 2022213379 A1 WO2022213379 A1 WO 2022213379A1 CN 2021086248 W CN2021086248 W CN 2021086248W WO 2022213379 A1 WO2022213379 A1 WO 2022213379A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
tab
cavity
sealing
cell according
Prior art date
Application number
PCT/CN2021/086248
Other languages
English (en)
French (fr)
Inventor
李磊
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP21935605.2A priority Critical patent/EP4307415A1/en
Priority to PCT/CN2021/086248 priority patent/WO2022213379A1/zh
Priority to CN202180004775.4A priority patent/CN114207931A/zh
Publication of WO2022213379A1 publication Critical patent/WO2022213379A1/zh
Priority to US18/481,302 priority patent/US20240030528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage, and in particular, to a battery cell and an electrical device having the same.
  • the battery generally includes a casing, an electrode assembly and an electrolyte that are accommodated in the casing, and a tab that is electrically connected to the electrode assembly.
  • the casing includes a cavity for accommodating the electrode assembly and a sealing edge extending from the cavity, the tab part is accommodated in the cavity, and a part extends out of the casing from the sealing edge.
  • the cavity at the accommodating tab is easily collapsed under the action of external force, which affects the appearance of the battery.
  • the collapse of the cavity may cause the tabs to be skewed, and the tabs of different polarities are easily contacted directly after being skewed, causing the risk of short-circuit and fire.
  • the electrode assembly moves in the casing, and the sealing area of the edge seal is easily punched out, leading to risks such as liquid leakage or short-circuit fire, causing the failure of the battery cell and reducing the safety of the battery cell.
  • the present application provides a battery cell, which includes an electrode assembly and a case for accommodating the electrode assembly.
  • the housing includes a cavity and a cover covering the cavity.
  • the cavity includes a flange extending along the boundary of the opening of the cavity.
  • the perimeter of the lid is attached to the flange to form side flaps to close the cavity.
  • the battery core also includes a tab sandwiched between the side wings and extending from the side wings to the outside of the casing.
  • the flanks are provided with a first sealing structure and a second sealing structure. A direction along the edges of the flanks away from the boundary pointing to the boundary is defined as a first direction along which the second seal structure extends beyond the first seal structure.
  • the second sealing structure in the flanks, on the premise that the overall length of the cell is not increased, since the second sealing structure occupies the space of the original cavity for placing the tabs, the external force acting on the cavity can be reduced.
  • the second sealing structure can apply resistance to the electrode assembly, which is beneficial to reduce the possibility of the electrode assembly punching out the seal and reduce the battery cell’s durability.
  • the risk of failure improves the safety performance of the battery cell;
  • the arrangement of the second sealing structure can increase the sealing width of this part, so the sealing strength of this part is correspondingly increased, which is also beneficial to reduce the electrode assembly punching out the seal possibility.
  • the tab is clamped to the first sealing structure.
  • the tab is clamped to the second sealing structure.
  • the tabs include a first tab and a second tab. The first tab is clamped to the first sealing structure, and the second tab is clamped to the second sealing structure.
  • the tabs include a first tab and a second tab.
  • a direction perpendicular to the first direction is defined as the second direction, and the first tab and the second tab are arranged side by side along the second direction.
  • the first sealing structure is disposed between the two second sealing structures.
  • the arrangement of the two second sealing structures further occupies the space used for placing the tabs in the original cavity, and when the electrode assembly moves toward the flanks, the second sealing structures can exert resistance on two edges of the electrode assembly toward the flanks, In addition, the sealing strength in the flanks is further increased, thereby further reducing the possibility of the electrode assembly punching out the sealing.
  • the second sealing structure is disposed between the two first sealing structures.
  • the first tab and the second sealing structure are respectively disposed on two sides of the second tab.
  • the first tab and the second sealing structure are respectively disposed on the same side of the second tab.
  • the second sealing structure is provided between the first tab and the second tab. Therefore, when the electrode assembly moves toward the flanks, the second sealing structure can exert resistance to the middle position of the electrode assembly.
  • the flank is provided with a concave structure
  • the concave structure is formed by the concave edge of the flank away from the boundary toward the cavity.
  • recessed structures are provided at both ends of the flanks.
  • the recessed structure is provided between the first tab and the second tab.
  • two second sealing structures are provided on both sides of the recessed structure.
  • the recessed structure is provided on the second sealing structure.
  • the material of the housing is a multi-layer sheet
  • the multi-layer sheet includes a metal layer and a sealing layer.
  • An intermediate region of the first portion of the multilayer sheet is recessed to form a cavity.
  • the second portion and the first portion of the multilayer sheet are folded relative to each other to close the cavity.
  • the electrode assembly is accommodated in the cavity.
  • the sealing layer of the perimeter of the cover is bonded to the sealing layer of the flange to close the cavity, thereby reducing the risk of liquid leakage.
  • a transition portion is provided between the side wing and the cavity; along the thickness direction of the cell, the thickness of the transition portion is smaller than the thickness of the cavity;
  • the sealing layer of the periphery of the cover is adjacent to the sealing layer of the flange without adhering the sealing layer of the flange.
  • the transition portion is formed by a depression of a portion of the multilayer sheet material constituting the casing adjacent to the cavity, the depression direction of which is consistent with the depression direction of the cavity and the depression depth is shallower than the depression of the cavity depth.
  • the transition portion forms another smaller accommodating space relative to the cavity, and the accommodating space can be used for accommodating the tabs.
  • the electrode assembly includes alternately arranged first pole pieces and second pole pieces, and an isolation film is provided between adjacent first pole pieces and second pole pieces.
  • the isolation film includes a protruding portion disposed beyond the first pole piece, and the protruding portion is disposed in the transition portion. In this way, the size of the isolation film beyond the first pole piece and the second pole piece is further increased, which can further reduce the risk of short-circuit fire caused by the direct contact of the first pole piece and the second pole piece, and improve the space utilization rate inside the casing. .
  • the thickness of the cell is T, where T ⁇ 4mm.
  • the present application can reduce the situation that the casing of the ultra-thin battery cell in the prior art is easily collapsed and the safety performance is reduced due to the relatively increased size of the cavity.
  • the width of the first seal structure is W 1
  • the width of the second seal structure is W 2 .
  • (W 2 -W 1 )/W 2 ⁇ 17%.
  • the present application also provides an electrical device, including a load and any of the above-mentioned battery cells.
  • the battery cell is used for supplying power to the load.
  • FIG. 1 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • FIG. 2 is a disassembled view of the casing of the battery cell shown in FIG. 1 before packaging.
  • FIG. 3 is a cross-sectional view of a multi-layer sheet used for the case of the cell shown in FIG. 1 .
  • FIG. 4 is a schematic structural diagram of the cell shown in FIG. 1 in other embodiments.
  • FIG. 5 is a schematic structural diagram of the cell shown in FIG. 1 in still other embodiments.
  • FIG. 6 is a partial cross-sectional view of the cell shown in FIG. 1 along VI-VI.
  • FIG. 7 is a schematic structural diagram of the cell shown in FIG. 1 in other embodiments.
  • FIG. 8 is a schematic structural diagram of the cell shown in FIG. 1 in other embodiments.
  • FIG. 9 is a schematic structural diagram of the cell shown in FIG. 1 in still other embodiments.
  • FIG. 10 is a schematic structural diagram of a battery cell according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a battery cell according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of the cell shown in FIG. 11 in other embodiments.
  • FIG. 13 is a schematic structural diagram of an electrical device according to an embodiment of the present application.
  • the first pole piece 21 is the first pole piece 21
  • the first adhesive layer 112 is the first adhesive layer 112
  • Second Adhesive Layer 114 Second Adhesive Layer 114
  • the first connection part 121 The first connection part 121
  • the first seal structure 1211 is the first seal structure 1211
  • an embodiment of the present application provides a battery cell 100 , which includes an electrode assembly 20 , an electrolyte (not shown), and a casing 10 for accommodating the electrode assembly 20 and the electrolyte.
  • the electrode assembly 20 includes alternately arranged first pole pieces 21 and second pole pieces 22, and an isolation film 23 (shown in FIG. 6) is provided between the adjacent first pole pieces 21 and the second pole pieces 22 to isolate the The membrane 23 is used to reduce the risk of short circuit due to direct contact between the adjacent first pole pieces 21 and the second pole pieces 22 .
  • FIG. 1 shows that the electrode assembly 20 is obtained by laminating the first pole piece 21 , the isolation film 23 and the second pole piece 22 , that is, the cell 100 is a laminated cell. In other embodiments, the cell 100 may also be a wound cell, which is not limited in this application.
  • the housing 10 includes a cavity 102 and a cover 101 covering the cavity 102 .
  • the electrode assembly 20 is accommodated in the cavity 102 .
  • a flange 1021 extends along the boundary 1020 of the cavity 102 opening.
  • the periphery 1010 of the cover 101 is connected with the flange 1021 to form a first side flap 12 , and the first side flap 12 is used to close the cavity 102 .
  • the cavity 102 includes two opposite first side surfaces 102a and two opposite second side surfaces 102b.
  • the second side surface 102b is connected between the two first side surfaces 102a.
  • the first side wing 12 is connected to one of the first side surfaces 102 a of the cavity 102 .
  • the material of the casing 10 is a multi-layer sheet 110 .
  • the multi-layer sheet 110 may include a metal layer 113 and a sealing layer 115 stacked in sequence, and the sealing layer 115 is adjacent to the electrode assembly 20 .
  • the metal layer 113 is used to prevent the penetration of moisture in the external environment and to prevent damage to the cell 100 caused by external force.
  • the metal layer 113 may be an aluminum foil layer.
  • the sealing layer 115 is used for encapsulation to prevent the multi-layer sheet 110 from being dissolved or swollen by the organic solvent in the electrolyte.
  • the multilayer sheet 110 may further include a protective layer 111 , a first adhesive layer 112 and a second adhesive layer 114 , the protective layer 111 , the first adhesive layer 112 , the metal layer 113 , the second adhesive layer 114
  • the junction layer 114 and the sealing layer 115 are stacked in sequence.
  • the material of the protective layer 111 is polymer resin, which is used to protect the metal layer 113 to prevent the metal layer 113 from being damaged by external force, and can prevent the air infiltration in the external environment, and maintain the interior of the battery cell 100 in a water-free and oxygen-free environment.
  • the first adhesive layer 112 is used for bonding the protective layer 111 and the metal layer 113
  • the second adhesive layer 114 is used for bonding the metal layer 113 and the sealing layer 115 .
  • the multilayer sheet 110 includes a first portion 1101 and a second portion 1102 .
  • the middle area of the first portion 1101 of the multilayer sheet 110 is recessed to form the cavity 102
  • the second portion 1102 of the multilayer sheet 110 is folded relative to the first portion 1101 to form a cover 101 , and the cover 101 is used to seal the cavity 102 .
  • a heat sealing head can be used to apply a certain temperature and pressure to the periphery 1010 of the cover 101 and the flange 1021 of the cavity 102 for heat sealing, so that the sealing layer 115 of the periphery 1010 of the cover 101 is bonded to the convex
  • the sealing layer 115 of the edge 1021 is formed to form the first side wings 12, so as to seal the cavity 102 and reduce the risk of liquid leakage.
  • the first side flap 12 does not need to be folded, that is, the first side flap 12 is substantially perpendicular to the first side surface 102a.
  • this application does not limit.
  • the first side wings 12 can also be folded over to the first side surface 102 a , thereby reducing the size along the length direction of the battery cell 100 , which is beneficial to improve the space utilization and energy density of the battery cell 100 .
  • the battery cell 100 further includes a tab electrically connected to the electrode assembly 20 .
  • the tabs are clamped on the first lateral wing 12 and extend from the first lateral wing 12 to the outside of the housing 10 to connect external components (not shown).
  • the tabs include a first tab 30 and a second tab 40 .
  • the first tab 30 is electrically connected to the first pole piece 21
  • the second tab 40 is electrically connected to the second pole piece 22 . Both the first tab 30 and the second tab 40 extend from the first lateral wing 12 to the outside of the housing 10 .
  • the first flank 12 includes a first sealing structure 1211 and a second sealing structure 1212 connected to the first sealing structure 1211 .
  • the first sealing structure 1211 and the second sealing structure 1212 are both formed by the sealing layer 115 of the periphery 1010 of the cover 101 adhering to the sealing layer 115 of the flange 1021 .
  • the direction in which the edge of the first flank 12 away from the boundary 1020 points to the boundary 1020 is defined as the first direction D 1 .
  • the first direction D 1 is the length direction of the battery cell 100 .
  • the second sealing structure 1212 protrudes beyond the first sealing structure 1211 .
  • the width of the first sealing structure 1211 is W 1
  • the width of the second sealing structure 1212 is W 2
  • W 2 >W 1 it is only necessary to improve the structure of the heat sealing head, and it will not bring additional burden to the whole process.
  • the thickness of the cell 100 (ie, the thickness of the cavity 102 ) is T 1 , and T 1 ⁇ 4 mm, that is, the cell 100 is an ultra-thin cell.
  • the electrode assembly 20 includes two oppositely arranged main planes 20a and a side surface 20b located between the two main planes 20a.
  • the side surface 20b is substantially flat;
  • the core is used, the side surface 20b is curved.
  • the plane on which the tabs lie is parallel to the main plane 20a. That is, the tabs are laid flat in the casing 10 , and the tabs are not bent in the casing 10 , so as to avoid an increase in the thickness of the battery cell 100 due to the bending of the tabs.
  • the thickness of the tabs arranged flat is generally smaller than the thickness of the electrode assembly, and the cavity near where the tabs are placed is prone to collapse under the action of external force due to the small thickness of the tabs, that is, it is easy to cause the appearance of the cavity collapsed, and the tabs were skewed.
  • the electrode assembly and the electrolyte have a greater impact on the edge sealing. Therefore, the edge seal is more likely to be washed away.
  • the second sealing structure 1212 in the first flank 12 , on the premise that the overall size of the battery cell 100 is not increased, since the second sealing structure 1212 occupies the space of the original cavity for placing the tabs, it can Reduce the risk of cavity collapse under external force.
  • the second sealing structure 1212 can apply resistance to the electrode assembly 20, which is beneficial to reduce the electrode assembly
  • the possibility of punching out the seal of the component 20 reduces the risk of failure of the battery cell 100 and improves the safety performance of the battery cell 100 .
  • the provision of the second sealing structure 1212 can increase the sealing width of the portion, and thus the sealing strength of the portion is also increased accordingly, which is also beneficial to reduce the possibility of the electrode assembly 20 punching out the seal.
  • the present application can reduce the problem that the casing of the ultra-thin battery cell in the prior art is easily collapsed and the safety performance is reduced due to the relatively large cavity size.
  • the technical solution of the present application can also be applied to a battery cell 100 with a larger thickness, which is not limited in the present application.
  • W 1 and W 2 satisfy: 20mm ⁇ W 2 ⁇ W 1 ⁇ 0.8mm.
  • the value of W 2 -W 1 is the width of the portion of the second sealing structure 1212 that exceeds the first sealing structure 1211 .
  • W 1 and W 2 satisfy: (W 2 -W 1 )/W 2 ⁇ 17%. According to another embodiment of the present application, (W 2 -W 1 )/W 2 ⁇ 50%.
  • the moving distance of the electrode assembly 20 in the casing 10 can be significantly reduced, and the sealing strength of the second sealing structure 1212 can be significantly increased.
  • a direction perpendicular to the first direction D 1 is defined as the second direction D 2 .
  • the second direction D 2 is the width direction of the battery cell 100 .
  • the first tab 30 and the second tab 40 are arranged side by side along the second direction D 2 .
  • any one of the first tab 30 and the second tab 40 includes an inner tab 31 and an outer tab 32 .
  • the inner tab 31 is electrically connected to the electrode assembly 20.
  • the inner tab 31 of the first tab 30 is electrically connected to the current collector of the first pole piece 21, and the inner tab 31 of the second tab 40 is electrically connected to the first tab 21.
  • the current collector of the diode plate 22 is electrically connected to the first tab 21.
  • the outer tabs 32 are welded to the inner tabs 31 and protrude from the housing 10 from the first sealing structure 1211 and/or the second sealing structure 1212 .
  • the adhesive tape 33 is provided at the welding place between the inner tab 31 and the outer tab 32 , and the adhesive tape 33 is used to prevent the welding marks at the welding place from piercing the housing 10 , thereby avoiding risks such as short circuit or liquid leakage.
  • the thickness of the adhesive paper 33 may be 50-100 ⁇ m.
  • the tab is clamped to the first sealing structure 1211 .
  • both the first tab 30 and the second tab 40 are sandwiched between the first sealing structure 1211 .
  • the tabs are sandwiched between the first sealing structure 1211 , which means that the tabs are sandwiched between the sealing layer 115 of the periphery 1010 of the cover 101 and the sealing layer 115 of the flange 1021 .
  • the tabs can also be clamped on the second sealing structure 1212 .
  • both the first tab 30 and the second tab 40 are sandwiched between the second sealing structure 1212 .
  • the first tab 30 is sandwiched by the first sealing structure 1211
  • the second tab 40 is sandwiched by the second sealing structure 1212 .
  • the number of the second sealing structures 1212 is two.
  • the first sealing structure 1211 is disposed between the two second sealing structures 1212 . Therefore, the arrangement of the two second sealing structures 1212 further occupies the space used for placing the tabs in the original cavity, and when the electrode assembly 20 moves toward the first flank 12 , the second sealing structures 1212 can face the electrode assembly 20 toward the first side wing 12 .
  • Two places on the edge of the first side wing 12 exert resistance; and by arranging the second sealing structure 1212 , the sealing strength is further increased, thereby further reducing the possibility of the electrode assembly 20 punching out the sealing.
  • the widths W 2 of the two second sealing structures 1212 are the same.
  • the widths W 2 of the two second sealing structures 1212 are different.
  • the first tab 30 and one of the second sealing structures 1212 are disposed on the same side of the second tab 40 .
  • the first tab 30 and another second sealing structure 1212 are disposed on both sides of the second tab 40 .
  • a transition portion 120 is disposed between the first side wing 12 and the cavity 102 .
  • the thickness T 2 of the transition portion 120 is smaller than the thickness T 1 of the cavity 102 .
  • the sealing layer 115 of the perimeter 1010 of the cover 101 is adjacent to the sealing layer 115 of the flange 1021, but is not bonded to the sealing layer 115 of the flange 1021.
  • the first flank 12 is further provided with an unconnected portion 122 , and the first sealing structure 1211 and the second sealing structure 1212 are both disposed between the unconnected portion 122 and the transition portion 120 .
  • the sealing layer 115 of the perimeter 1010 of the cover 101 conforms to the sealing layer 115 of the flange 1021 but does not adhere to the sealing layer 115 of the flange 1021 . Defining the width of the unconnected portion 122 along the first direction D 1 as W 3 , then W 3 ⁇ 0.4 mm.
  • the transition portion 120 is formed by a recess of a portion of the multilayer sheet 110 that constitutes the housing 10 adjacent to the cavity 102 , the recessed direction of which is the same as the recessed direction of the cavity 102 and the recessed depth is shallower than the cavity 102 . 102 sag depth.
  • the transition portion 120 forms another smaller accommodating space relative to the cavity 102, and the accommodating space can be used for accommodating the tabs.
  • the transition portion 120 includes a first transition region 1201 and a second transition region 1202 that communicates with the first transition region 1201 .
  • the first transition area 1201 is connected between the first sealing structure 1211 and the cavity 102
  • the second transition area 1202 is located between the second sealing structure 1212 and the cavity 102 .
  • the first transition area 1201 is used for accommodating the welding position of the inner tab 31 and the outer tab 32 and the adhesive tape 33 disposed on the welding position.
  • the isolation film 23 includes a protruding portion 230 disposed beyond the first pole piece 21 .
  • the protruding portion 230 is disposed on the transition portion 120 to fill at least part of the space in the transition portion 120 .
  • the size of the isolation film 23 beyond the first pole piece 21 and the second pole piece 22 is further increased, so that the risk of short-circuit fire caused by the direct contact between the first pole piece 21 and the second pole piece 22 can be further reduced, and the risk of short-circuit fire caused by the direct contact of the first pole piece 21 and the second pole piece 22 can be further increased.
  • Space utilization inside the housing 10 Specifically, the protruding portion 230 of the isolation film 23 may be disposed in the first transition region 1201 .
  • the distance between the end of the second sealing structure 1212 facing the boundary 1020 and the boundary 1020 is the width of the second transition region 1202 along the first direction D 1 .
  • the width of the second transition region 1202 is defined as W 4 , then W 4 ⁇ 0.2 mm.
  • W4 is approximately 1 mm.
  • the first side wing 12 is provided with a recessed structure 123 , and the recessed structure 123 is formed by the recess of the edge of the first side wing 12 away from the boundary toward the cavity 102 .
  • the arrangement of the concave structure 123 enables the battery cell 100 to fully adapt to the internal space of the electrical device 1 , such as electronic devices inside the electrical device 1 .
  • Components can be accommodated in the recessed structure 123 .
  • the cross-sectional shape of the recessed structure 123 along the direction of the main plane 20a of the electrode assembly 20 may be a rectangle or an arc, which is not limited in this application.
  • the number of the recessed structures 123 is two. Along the second direction D 2 , the concave structures 123 are located at both ends of the first lateral wing 12 .
  • the second seal structure 1212 is disposed around the recessed structure 123 .
  • the cross-sectional shape of the recessed structure 123 along the direction of the main plane 20 a of the electrode assembly 20 is a rectangle, and the recessed structure 123 includes a side wall 1231 and a bottom wall 1232 connected to the side wall 1231 .
  • the second sealing structures 1212 are respectively disposed on the side wall 1231 and the bottom wall 1232 .
  • the casing 10 further includes a second side wing 13 .
  • the second side wings 13 are connected to the two second side surfaces 102 b of the cavity 102 for closing the cavity 102 .
  • the second flank 13 is provided with a third sealing structure (not shown).
  • the third sealing structure is also formed by the sealing layer 115 of the periphery 1010 of the cover 101 adhering to the sealing layer 115 of the flange 1021 .
  • the second seal structure 1212 is connected to the third seal structure.
  • the second side flap 13 is not folded, that is, the second side flap 13 is substantially perpendicular to the second side surface 102b.
  • the second side wings 13 can also be folded to the second side surface 102b, thereby reducing the size along the width direction of the battery cell 100, which is beneficial to improve the space utilization and energy density of the battery cell 100.
  • the second portion 1102 of the multilayer sheet 110 is folded relative to the first portion 1101 to form the cover 101 , and the second portion 1102 and the first portion 1101 are folded on the other first side opposite the first side flap 12
  • the surface 102a ie, where the second portion 1102 and the first portion 1101 are folded, corresponds to the tail of the electrode assembly 20 .
  • the second side wings 13 are only connected to one second side surface 102 b of the cavity 102 .
  • the folded part of the second part 1102 and the first part 1101 is located on the other second side surface 102 b opposite to the second side flap 13 .
  • another embodiment of the present application further provides a battery cell 200 , which is different from the above-mentioned battery cell 100 in that the number of the second sealing structures 1212 is only one, and the number of the first sealing structures 1211 is two indivual.
  • the second sealing structure 1212 is disposed between the two first sealing structures 1211 . Therefore, when the electrode assembly 20 moves toward the first flank 12 , the second sealing structure 1212 can exert resistance to the middle position of the electrode assembly 20 toward the edge of the first flank 12 .
  • the second sealing structure 1212 is disposed between the first tab 30 and the second tab 40 .
  • the distance D between the first tab 30 and the second tab 40 must satisfy: D>9.64mm, so that the The second sealing structure 1212 between the first tab 30 and the second tab 40 has a certain size along the second direction D2, so that the second sealing structure 1212 can effectively reduce the collapse of the cavity 102 under the action of external force risk, and the second sealing structure 1212 can apply greater resistance to the electrode assembly 20 when the battery cell 100 is mechanically abused.
  • another embodiment of the present application further provides a battery cell 300 , which is different from the aforementioned battery cell 100 in that the number of the second sealing structures 1212 is three.
  • the first tab 30 and one of the second sealing structures 1212 are disposed on both sides of the second tab 40 .
  • the first tab 30 and the other two second sealing structures 1212 are located on the same side of the second tab 40 .
  • the three second sealing structures 1212 occupy the space of the original cavity for placing the tabs, thereby minimizing the risk of the cavity 102 collapsing under the action of external force.
  • the second sealing structure 1212 can exert resistance to three places on the edge of the electrode assembly 20 , and make the sealing strength stronger, which further reduces the possibility of the electrode assembly 20 breaking the seal. possibility.
  • the number of the first sealing structures 1211 and the second sealing structures 1212 can also be changed according to actual needs, and the plurality of first sealing structures 1211 and the plurality of second sealing structures 1212 are alternately arranged.
  • the concave structure 123 may also be located between the first tab 30 and the second tab 40 .
  • two second sealing structures 1212 are disposed on both sides of the recessed structure 123 .
  • the recessed structure 123 is provided on the unconnected portion 122 and the second sealing structure 1212 .
  • the second sealing structure 1212 is disposed around the recessed structure 123 .
  • the cross-sectional shape of the recessed structure 123 along the direction of the main plane 20 a of the electrode assembly 20 is rectangular, and the recessed structure 123 includes two side walls 1231 and a bottom wall 1232 connected between the two side walls 1231 .
  • the second sealing structures 1212 are respectively disposed on each of the side walls 1231 and the bottom wall 1232 .
  • the width of the recessed structure 123 along the first direction D 1 is defined as W 5 , then W 5 ⁇ 3.04 mm.
  • the battery cells 100 , 200 , and 300 of the present application may be all kinds of primary batteries, secondary batteries, fuel cells, solar cells, and capacitors (eg, supercapacitors).
  • the secondary battery may be a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery.
  • an embodiment of the present application further provides an electrical device 1 .
  • the electrical device 1 includes a load 2 and the above-mentioned battery cell 100 (or the battery cells 200 and 300 ).
  • the battery cell 100 is used to supply power to the load 2 .
  • the electrical device 1 of the present application may be, but not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable phone, a portable fax machine, a portable copier, a portable printer, Headphones, VCRs, LCD TVs, Portable Cleaners, Portable CD Players, Mini CDs, Transceivers, Electronic Notepads, Calculators, Memory Cards, Portable Recorders, Radios, Backup Power, Motors, Automobiles, motorcycles, Power-assisted bicycles, bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the load 2 is an electronic component in the electrical device 1 that is electrically connected to the battery cell 100 and is used to convert electrical energy into other forms of energy.

Abstract

一种电芯,包括电极组件和收容电极组件的壳体。壳体包括腔体和覆盖腔体的盖。腔体包括沿腔体的开口的边界延伸的凸缘。盖的周边与凸缘连接形成侧翼以封闭腔体。电芯还包括夹设于侧翼并从侧翼延伸至壳体外的极耳。侧翼设有第一封印结构和第二封印结构。定义沿侧翼远离边界的边缘指向边界的方向为第一方向,沿第一方向,第二封印结构超出第一封印结构。本申请还提供一种具有上述电芯的用电装置。本申请可减少壳体塌陷的风险并提高电芯的安全性。

Description

电芯和用电装置 技术领域
本申请涉及储能技术领域,尤其涉及一种电芯和具有所述电芯的用电装置。
背景技术
随着电池技术的发展,电池在电子移动设备、电动工具及电动汽车等电子装置中得到广泛应用。电芯通常包括壳体、容置于壳体内的电极组件和电解液、及电连接于电极组件的极耳。在电芯的封装过程中,需要通过封头对上下层的铝塑膜进行热封,从而将电极组件和电解液密封在壳体内。通常而言,壳体包括用于容置电极组件的腔体和自腔体延伸出来的封边,极耳部分容置于腔体内,部分自封边伸出壳体。
然而,腔体于容置极耳处易在外力作用下塌陷,影响电池外观。而且,腔体塌陷可能会导致极耳歪斜,而歪斜后不同极性的极耳容易直接接触,引发短路起火风险。另外,当电芯跌落时,电极组件在壳体内窜动,封边的封印区容易被冲开,导致漏液或短路起火等风险,引发电芯失效,降低电芯的使用安全性。
发明内容
为解决现有技术以上不足之处,有必要提供一种能够降低壳体塌陷的风险并提高安全性的电芯。
另外,还有必要提供一种具有如上电芯的用电装置。
本申请提供了一种电芯,包括电极组件和收容电极组件的壳体。壳体包括腔体和覆盖腔体的盖。腔体包括沿腔体的开口的边界延伸的凸缘。盖的周边与凸缘连接形成侧翼以封闭腔体。电芯还包括夹设于侧翼并从侧翼延伸至壳体外的极耳。侧翼设有第一封印结构和第二封印结构。定义沿侧翼远离边界的边缘指向边界的方向为第一方向,沿第一方向,第二封印结构超出第一封印结构。
本申请通过在侧翼中设置第二封印结构,在电芯的整体长度未增加的前提下,由于第二封印结构占用了原腔体用于放置极耳的空间,因此能够减少腔体在外力作用下塌陷的风险;其次,当电芯发生机械滥用且电极组件朝向侧翼窜动时,第二封印结构可以向电极组件施加阻力,有利于减少电极组件冲开封印的可能性,降低了电芯的失效风险,提高了电芯的安全性能;再次,第二封印结构的设置可使得该部分的封印宽度增大,因此该部分的封印强度也相应增大,这同样有利于减少电极组件冲开封印的可能性。
在一些可能的实现方式中,极耳夹设于第一封印结构。
在一些可能的实现方式中,极耳夹设于第二封印结构。
在一些可能的实现方式中,极耳包括第一极耳和第二极耳。第一极耳夹设于第一封印结构,第二极耳夹设于第二封印结构。
在一些可能的实现方式中,极耳包括第一极耳和第二极耳。定义与第一方向垂直的方向为第二方向,第一极耳和第二极耳沿第二方向并排设置。
在一些可能的实现方式中,沿第二方向,第一封印结构设于两个第二封印结构之间。两个第二封印结构的设置进一步占用了原腔体用于放置极耳的空间,而且当电极组件朝向侧翼窜动时,第二封印结构可对电极组件朝向侧翼的边缘的两处施加阻力,且侧翼内的封印强度进一步增大,从而进一步减少了电极组件冲开封印的可能性。
在一些可能的实现方式中,沿第二方向,第二封印结构设于两个第一封印结构之间。
在一些可能的实现方式中,沿第二方向,第一极耳和第二封印结构分别设于第二极耳的两侧。
在一些可能的实现方式中,沿第二方向,第一极耳和第二封印结构分别设于第二极耳的同一侧。
在一些可能的实现方式中,第二封印结构设于第一极耳和第二极耳之间。因此,当电极组件朝向侧翼窜动时,第二封印结构可对电极组件的中间位置施加阻力。
在一些可能的实现方式中,侧翼设有凹进结构,凹进结构由侧翼远离边界的边缘朝向腔体凹陷形成。凹进结构的设置使得电芯可充分适应用电装置的内部空间。
在一些可能的实现方式中,沿第二方向,凹进结构设置于侧翼的两端。
在一些可能的实现方式中,凹进结构设置于第一极耳和第二极耳之间。
在一些可能的实现方式中,沿第二方向,两个第二封印结构设置于凹进结构的两侧。
在一些可能的实现方式中,沿第一方向,凹进结构设于第二封印结构。
在一些可能的实现方式中,壳体的材料为多层片材,多层片材包括金属层和密封层。多层片材的第一部分的中间区域凹陷形成腔体。多层片材的第二部分与第一部分相对彼此折叠设置,以封闭腔体。电极组件收容于腔体。
在一些可能的实现方式中,盖的周边的密封层粘合凸缘的密封层,以封闭腔体,从而减小漏液风险。
在一些可能的实施方式中,所述侧翼和所述腔体之间设有过渡部;沿所述电芯的厚度方向,所述过渡部的厚度小于所述腔体的厚度;在所述过渡部,所述盖的周边的密封层靠近所述凸缘的密封层而不粘合所述凸缘的密封层。
根据本申请的一个实施方式,过渡部由构成壳体的多层片材材料的与腔体相邻的一部分凹陷形成,其凹陷方向与腔体的凹陷方向一致且凹陷深度浅于腔体的凹陷深度。由此,该过渡部相对于腔体形成另一个较小的容纳空间,该容纳空间可用于收容极耳。
在一些可能的实现方式中,电极组件包括交替设置的第一极片和第二极片,相邻的第一极片和第二极片之间设有隔离膜。隔离膜包括超出第一极片设置的凸出部,且,凸出部设于过渡部。如此,隔离膜超出第一极片和第二极片的尺寸进一步增加,可进一步减少第一极片和第二极片直接接触导致的短路起火的风险,而且提高了壳体内部的空间利用率。
在一些可能的实现方式中,电芯的厚度为T,T≤4mm。本申请能够减少现有技术中的超薄电芯的壳体由于腔体尺寸相对增大而导致容易塌陷且安全性能降低的情况。
在一些可能的实现方式中,沿第一方向,第一封印结构的宽度为W 1,第二封印结构的宽度为W 2。其中,20mm≥W 2-W 1≥0.8mm。通过设置W 2-W 1的值,可使得电极组件在壳体内可窜动的距离显著减小,且第二封印结构的封印强度显著增大,同时也避免了电芯的长度超出范围。
在一些可能的实现方式中,4mm≥W 2-W 1≥0.8mm。
在一些可能的实现方式中,3mm≥W 2-W 1≥1.7mm。
在一些可能的实现方式中,(W 2-W 1)/W 2≥17%。通过设置(W 2-W 1)/W 2的值,可使得电极组件在壳体内可窜动的距离显著减小,且第二封印结构的封印强度显著增大。
本申请还提供了一种用电装置,包括负载和如上所述的任一种电芯。所述电芯用于为所述负载供电。
附图说明
图1为本申请一实施方式的电芯的结构示意图。
图2为图1所示的电芯的壳体在封装前的拆解图。
图3为图1所示的电芯的壳体所使用的多层片材的剖视图。
图4为图1所示的电芯于另一些实施例中的结构示意图。
图5为图1所示的电芯于又一些实施例中的结构示意图。
图6为图1所示的电芯沿VI-VI的部分剖视图。
图7为图1所示的电芯于另一些实施例中的结构示意图。
图8为图1所示的电芯于另一些实施例中的结构示意图。
图9为图1所示的电芯于又一些实施例中的结构示意图。
图10为本申请另一实施方式的电芯的结构示意图。
图11为本申请又一实施方式的电芯的结构示意图。
图12为图11所示的电芯于另一些实施例中的结构示意图。
图13为本申请一实施方式的用电装置的结构示意图。
主要元件符号说明
用电装置        1
负载            2
壳体            10
第一侧翼        12
第二侧翼        13
电极组件        20
主平面          20a
侧面            20b
第一极片        21
第二极片        22
隔离膜          23
第一极耳        30
内极耳          31
外极耳          32
胶纸            33
第二极耳        40
电芯            100、200、300
盖              101
腔体            102
第一侧表面      102a
第二侧表面      102b
多层片材        110
保护层          111
第一粘结层      112
金属层          113
第二粘结层      114
密封层          115
过渡部          120
第一连接部      121
未连接部        122
凹进结构        123
凸出部          230
周边            1010
边界            1020
凸缘            1021
第一部分        1101
第二部分        1102
第一过渡区      1201
第二过渡区      1202
第一封印结构    1211
第二封印结构    1212
侧壁            1231
底壁            1232
第一方向        D 1
第二方向        D 2
厚度方向        D 3
厚度            T 1、T 2
宽度            W 1、W 2、W 3、W 4、W 5
间距            D
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅为本申请一部分实施例,而不是全部的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实 施方式及实施方式中的特征可以相互组合。
请参阅图1,本申请一实施方式提供一种电芯100,包括电极组件20、电解液(图未示)和用于收容电极组件20和电解液的壳体10。电极组件20包括交替设置的第一极片21和第二极片22,相邻的第一极片21和第二极片22之间设有隔离膜23(在图6中示出),隔离膜23用于降低相邻的第一极片21和第二极片22直接接触而短路的风险。图1中示出电极组件20由第一极片21、隔离膜23和第二极片22经叠片后得到,即电芯100为叠片电芯。在其它实施方式中,电芯100也可以为卷绕电芯,本申请并不作限制。
请一并参照图2,壳体10包括腔体102和覆盖腔体102的盖101。电极组件20收容于腔体102。沿腔体102开口的边界1020延伸形成凸缘1021。盖101的周边1010与凸缘1021连接形成第一侧翼12,第一侧翼12用于封闭腔体102。其中,腔体102包括两个相对的第一侧表面102a和两个相对的第二侧表面102b。第二侧表面102b连接于两个第一侧表面102a之间。第一侧翼12连接于腔体102的其中一第一侧表面102a。
请一并参照图3,在一些实施例中,壳体10的材料为多层片材110。多层片材110可包括依次叠设的金属层113和密封层115,密封层115靠近电极组件20。金属层113用于阻止外部环境的水分渗透,并防止外力对电芯100造成损伤,如金属层113具体可以为铝箔层。密封层115用于封装,防止多层片材110被电解液中的有机溶剂溶解或溶胀,密封层115还用于阻止电解液中的电解质与金属层113接触而导致金属层113被腐蚀。在一些实施例中,多层片材110还可包括保护层111、第一粘结层112和第二粘结层114,保护层111、第一粘结层112、金属层113、第二粘结层114和密封层115依次叠设。保护层111的材质为高分子树脂,用于保护金属层113,避免金属层113因外力作用破损,同时能够阻止外部环境的空气渗透,维持电芯100内部处于无水无氧的环境。第一粘结层112用于粘结保护层111和金属层113,第二粘结层114用于粘结金属层113和密封层115。
多层片材110包括第一部分1101和第二部分1102。多层片材110的第一部分1101的中间区域凹陷形成腔体102,多层片材110的第二部分1102相对第一部分1101折叠后形成盖101,盖101用以密封腔体102。制备壳体10时,可利用热封封头在盖101的周边1010和腔体102的凸缘1021处施加一定的温度和压力进行热封,使盖101的周边1010的密封层115粘合凸缘1021的密封层115以形成第一侧翼12,从而封闭腔体102,减小漏液风险。
如图1所示,在热封后,第一侧翼12不需要翻折,即第一侧翼12大致垂直于第一侧表面102a。当然,本申请并不作限制。在其它实施方式中,第一侧翼12也可以翻折至第一侧表面102a上,从而减小沿电芯100的长度方向上的尺寸,有利于提高电芯100的空间利用率和能量密度。
电芯100还包括电连接于电极组件20的极耳。极耳夹设于第一侧翼12,并从第一侧翼12延伸至壳体10外以连接外部元件(图未示)。如图1所示,在一些实施例中,极耳包括第一极耳30和第二极耳40。第一极耳30电连接于第一极片21,第二极耳40电连接于第二极片22。第一极耳30和第二极耳40均从第一侧翼12延伸至壳体10外。
如图1所示,第一侧翼12包括第一封印结构1211和连接第一封印结构1211的第二封印结构1212。第一封印结构1211和第二封印结构1212均为盖101的周边1010的密封层115粘结凸缘1021的密封层115形成。定义第一侧翼12远离边界1020的边缘指向边界1020的方向为第一方向D 1。在第一侧翼12不翻折的情况下,第一方向D 1即为电芯100的长度方向。沿第一方向D 1,第二封印结构1212超出第一封印结构1211。即,沿第一方向D 1,第一封印结构1211的宽度为W 1,第二封印结构1212的宽度为W 2,则W 2>W 1。本申请只需要对热封封头的结构进行改进便可,不会对整个工艺带来额外的负担。
在一些实施例中,电芯100的厚度(即腔体102的厚度)为T 1,T 1≤4mm,即电芯100为超薄电芯。可选地,T≤2mm。电极组件20包括两个相对设置的主平面20a和位于两个主平面20a之间的侧面20b,当电芯100为叠片电芯时,侧面20b大致为平面;当电芯100为卷绕电芯时,侧面20b为曲面。极耳所在平面平行于主平面20a。即,极耳在壳体10内平铺设置,极耳在壳体10内不弯折,从而避免因极耳弯折导致电芯100厚度的增加。
现有技术中,对于厚度较薄的电芯而言,若极耳需平铺设置,则需要相应增加壳体用于收容电极组件的腔体的尺寸以放置极耳。然而,平铺设置的极耳的厚度通常小于电极组件的厚度,而腔体于放置极耳处附近由于极耳的厚度较小导致容易在外力作用下塌陷,即,这容易导致腔体出现外观塌陷,且极耳产生歪斜。而且,当电芯跌落时,由于电极组件和游离的电解液在壳体内的窜动空间变大,导致电极组件和电解液对封边产生更大的冲击。因此,封边处更容易被冲开。
本申请通过在第一侧翼12中设置第二封印结构1212,在电芯100的整体尺寸未增加的前提下,由于第二封印结构1212占用了原腔体用于放置极耳的空间,因此能够减少腔体在外力作用下塌陷的风险。其次,当电芯100发生机械滥用(如跌落、碰撞、挤压等),且电极组件20朝向第一侧翼12窜动时,第二封印结构1212可以向电极组件20施加阻力,有利于减少电极组件20冲开封印的可能性,降低了电芯100的失效风险,提高了电芯100的安全性能。再次,第二封印结构1212的设置可使得该部分的封印宽度增大,因此该部分的封印强度也相应增大,这同样有利于减少电极组件20冲开封印的可能性。
因此,当本申请的电芯100为超薄电芯时,本申请能够减少现有技术中的超薄电芯的壳体由于腔体尺寸相对增大而导致壳体容易塌陷且安全性能降低的情况。当然,本申请技 术方案还可应用于厚度较大的电芯100中,本申请并不作限制。
在一些实施例中,W 1和W 2满足:20mm≥W 2-W 1≥0.8mm。其中,W 2-W 1的值即为第二封印结构1212超出第一封印结构1211的部分的宽度值。通过设置W 2-W 1的值,可使得电极组件20在壳体10内可窜动的距离显著减小,且第二封印结构1212的封印强度显著增大,同时也避免了电芯100的长度超出范围。
可选地,设置3mm≥W 2-W 1≥1.7mm。
在另一些实施例中,W 1和W 2满足:(W 2-W 1)/W 2≥17%。根据本申请的另一个实施方式,(W 2-W 1)/W 2≥50%。
例如,W 2为4.59mm,W 1为1.3mm,即W 2-W 1=3.29mm,(W 2-W 1)/W 2=72%。
例如,W 2为4.0mm,W 1为2.0mm,即W 2-W 1=2.00mm,(W 2-W 1)/W 2=50%。
通过设置(W 2-W 1)/W 2的值,可使得电极组件20在壳体10内可窜动的距离显著减小,且第二封印结构1212的封印强度显著增大。
如图1所示,定义与第一方向D 1垂直的方向为第二方向D 2,在一些情况下,第二方向D 2即为电芯100的宽度方向。第一极耳30和第二极耳40沿第二方向D 2并排设置。进一步地,第一极耳30和第二极耳40中的任一者包括内极耳31和外极耳32。内极耳31电连接于电极组件20,具体地,第一极耳30的内极耳31电连接于第一极片21的集流体,第二极耳40的内极耳31电连接于第二极片22的集流体。外极耳32焊接于内极耳31并从第一封印结构1211和/或第二封印结构1212伸出壳体10。其中,内极耳31和外极耳32的焊接处设有胶纸33,胶纸33用于防止焊接处的焊印刺破壳体10,从而避免短路或漏液等风险。胶纸33的厚度可为50~100μm。
如图1所示,在一些实施例中,极耳夹设于第一封印结构1211。如,第一极耳30和第二极耳40均夹设于第一封印结构1211。应当理解的是,本申请极耳夹设于第一封印结构1211,指的是极耳夹设于盖101的周边1010的密封层115和凸缘1021的密封层115之间。
请参阅图4,在另一些实施例中,极耳也可以夹设于第二封印结构1212。如,第一极耳30和第二极耳40均夹设于第二封印结构1212。
请参阅图5,在又一实施例中,第一极耳30夹设于第一封印结构1211,第二极耳40夹设于第二封印结构1212。
如图1所示,在一些实施例中,第二封印结构1212的数量为两个。沿第二方向D 2,第一封印结构1211设于两个第二封印结构1212之间。因此,两个第二封印结构1212的设置进一步占用了原腔体用于放置极耳的空间,而且当电极组件20朝向第一侧翼12窜动时,第二封印结构1212可对电极组件20朝向第一侧翼12的边缘的两处施加阻力;且通过设置第二封 印结构1212,使得封印强度进一步增大,从而进一步减少了电极组件20冲开封印的可能性。其中,沿第一方向D 1,两个第二封印结构1212的宽度W 2相同。
在另一些实施例中,沿第一方向D 1,两个第二封印结构1212的宽度W 2不同。
如图1所示,在一些实施例中,沿第二方向D 2,第一极耳30和其中一第二封印结构1212设于第二极耳40的同一侧。第一极耳30和另一第二封印结构1212设于第二极耳40的两侧。
请一并参阅图1和图6,在一些实施例中,第一侧翼12和腔体102之间设置有过渡部120。沿电芯100的厚度方向D 3,过渡部120的厚度T 2小于腔体102的厚度T 1。在过渡部120处,盖101的周边1010的密封层115靠近凸缘1021的密封层115,但不粘合凸缘1021的密封层115。如图1所示,在一些实施例中,第一侧翼12还设有未连接部122,第一封印结构1211和第二封印结构1212均设于未连接部122和过渡部120之间。在未连接部122处,盖101的周边1010的密封层115贴合凸缘1021的密封层115,但并粘合凸缘1021的密封层115。定义未连接部122沿第一方向D 1的宽度为W 3,则W 3≥0.4mm。
在一些实施例中,过渡部120由构成壳体10的多层片材110的与腔体102相邻的一部分凹陷形成,其凹陷方向与腔体102的凹陷方向一致且凹陷深度浅于腔体102的凹陷深度。由此,过渡部120相对于腔体102形成另一个较小的容纳空间,该容纳空间可用于收容极耳。
在一些实施例中,过渡部120包括第一过渡区1201和连通第一过渡区1201的第二过渡区1202。第一过渡区1201连接于第一封印结构1211和腔体102之间,第二过渡区1202位于第二封印结构1212和腔体102之间。其中,第一过渡区1201用于容置内极耳31和外极耳32的焊接处及设置于焊接处上的胶纸33。请一并参阅图6,根据本申请的另一个实施例,隔离膜23包括超出第一极片21设置的凸出部230。凸出部230设于过渡部120以填充过渡部120中的至少部分空间。即,隔离膜23超出第一极片21和第二极片22的尺寸进一步增加,如此,可进一步减少第一极片21和第二极片22直接接触导致的短路起火风险,而且还提高了壳体10内部的空间利用率。具体地,隔离膜23的凸出部230可设置于第一过渡区1201中。
如图1所示,其中,第二封印结构1212朝向边界1020的端部与边界1020之间的距离即为第二过渡区1202沿第一方向D 1上的宽度。定义第二过渡区1202的宽度为W 4,则W 4≥0.2mm。可选地,W 4大致为1mm。通过设置第二过渡区1202具有一定的宽度,从而有利于减小电极组件20头部的胶纸进入封印的风险,确保封印的可靠性。
请参阅图7,在另一些实施例中,第一侧翼12设有凹进结构123,凹进结构123由第一侧翼12远离边界的边缘朝向腔体102凹陷形成。当电芯100应用于用电装置1(在图13中示出)时,凹进结构123的设置使得电芯100可充分适应用电装置1的内部空间,如,用电装置1内部的电子元器件可收容于凹进结构123中。其中,凹进结构123沿电极组件20主平面 20a方向上的截面形状可以是矩形,也可以是弧形,本申请并不作限制。
其中,凹进结构123的数量为两个。沿第二方向D 2,凹进结构123位于第一侧翼12的两端。第二封印结构1212围绕凹进结构123设置。如图7所示,凹进结构123沿电极组件20主平面20a方向上的截面形状为矩形,凹进结构123包括侧壁1231和连接于侧壁1231的底壁1232。第二封印结构1212分别设置于侧壁1231和底壁1232上。
请一并参照图8,在另一些实施例中,壳体10还包括第二侧翼13。第二侧翼13连接于腔体102的两个第二侧表面102b,用于封闭腔体102。第二侧翼13中设有第三封印结构(图未示),第三封印结构同样为盖101的周边1010的密封层115粘合凸缘1021的密封层115形成。第二封印结构1212连接第三封印结构。
在热封后,第二侧翼13不翻折,即第二侧翼13大致垂直于第二侧表面102b。当然,本申请并不作限制。在其它实施方式中,第二侧翼13也可以翻折至第二侧表面102b上,从而减小沿电芯100宽度方向上的尺寸,有利于提高电芯100的空间利用率和能量密度。
制备壳体10时,多层片材110的第二部分1102相对第一部分1101折叠后形成盖101,第二部分1102和第一部分1101的折叠处位于与第一侧翼12相对的另一第一侧表面102a,即第二部分1102和第一部分1101的折叠处对应于电极组件20的尾部。
请一并参照图9,在又一些实施例中,第二侧翼13仅连接于腔体102的一个第二侧表面102b。制备壳体10时,第二部分1102和第一部分1101的折叠处位于与第二侧翼13相对的另一第二侧表面102b。
请参阅图10,本申请另一实施方式还提供一种电芯200,与上述电芯100不同之处在于,第二封印结构1212的数量仅为一个,而第一封印结构1211的数量为两个。第二封印结构1212设于两个第一封印结构1211之间。因此,当电极组件20朝向第一侧翼12窜动时,第二封印结构1212可对电极组件20朝向第一侧翼12的边缘的中间位置施加阻力。
在一些实施例中,第二封印结构1212设于第一极耳30和第二极耳40之间。当第二封印结构1212位于第一极耳30和第二极耳40之间时,第一极耳30和第二极耳40之间的间距D需满足:D>9.64mm,从而使得位于第一极耳30和第二极耳40之间的第二封印结构1212沿第二方向D 2上具有一定的尺寸,从而使所述第二封印结构1212可有效减少腔体102在外力作用下塌陷的风险,且当电芯100发生机械滥用时使第二封印结构1212可向电极组件20施加较大的阻力。
请参阅图11,本申请又一实施方式还提供一种电芯300,与上述电芯100不同之处在于,第二封印结构1212的数量为三个。沿第二方向D 2,第一极耳30和其中一第二封印结构1212设于第二极耳40的两侧。第一极耳30与另外两个第二封印结构1212均位于第二极耳40的同一侧。
因此,三处第二封印结构1212占用了原腔体用于放置极耳的空间,从而在最大程度上减少了腔体102在外力作用下塌陷的风险。其次,当电极组件20朝向第一侧翼12窜动时,第二封印结构1212可对电极组件20的边缘的三处施加阻力,且使封印强度更大,进一步减少了电极组件20冲开封印的可能性。
在其它实施例中,第一封印结构1211和第二封印结构1212的数量还可根据实际需求进行变更,且多个第一封印结构1211和多个第二封印结构1212交替设置。
请一并参照图12,在另一些实施例中,凹进结构123还可位于第一极耳30和第二极耳40之间。沿第二方向D 2,两个第二封印结构1212设置于凹进结构123的两侧。
而且,沿第一方向D 1,凹进结构123设于未连接部122和第二封印结构1212。换言之,第二封印结构1212围绕凹进结构123设置。如图11所示,凹进结构123沿电极组件20主平面20a方向上的截面形状为矩形,凹进结构123包括两个侧壁1231和连接于两个侧壁1231之间的底壁1232。第二封印结构1212分别设置于每一侧壁1231和底壁1232上。定义凹进结构123沿第一方向D 1的宽度为W 5,则W 5≤3.04mm。
其中,本申请的电芯100、200、300可以是所有种类的原电池、二次电池、燃料电池、太阳能电池和电容器(例如超级电容器)。特别地,所述二次电池可以为锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池和锂离子聚合物二次电池。
请参阅图13,本申请一实施方式还提供一种用电装置1,用电装置1包括负载2和如上的电芯100(或电芯200、300)。电芯100用于为负载2供电。在一实施方式中,本申请的用电装置1可以是,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。负载2为用电装置1中电连接于电芯100的电子元件,用于把电能转换成其他形式的能。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种电芯,包括电极组件和收容所述电极组件的壳体,所述壳体包括腔体和覆盖所述腔体的盖,所述腔体包括沿所述腔体的开口的边界延伸的凸缘,所述盖的周边与所述凸缘连接形成侧翼以封闭所述腔体;其特征在于,
    所述电芯还包括夹设于所述侧翼并从所述侧翼延伸至所述壳体外的极耳;
    所述侧翼设有第一封印结构和第二封印结构,定义沿所述侧翼远离所述边界的边缘指向所述边界的方向为第一方向,沿所述第一方向,所述第二封印结构超出所述第一封印结构。
  2. 根据权利要求1所述的电芯,其特征在于,所述极耳夹设于所述第一封印结构。
  3. 根据权利要求1所述的电芯,其特征在于,所述极耳夹设于所述第二封印结构。
  4. 根据权利要求1所述的电芯,其特征在于,所述极耳包括第一极耳和第二极耳;所述第一极耳夹设于所述第一封印结构,所述第二极耳夹设于所述第二封印结构。
  5. 根据权利要求1所述的电芯,其特征在于,所述极耳包括第一极耳和第二极耳;定义与所述第一方向垂直的方向为第二方向,所述第一极耳和所述第二极耳沿所述第二方向并排设置。
  6. 根据权利要求5所述的电芯,其特征在于,沿所述第二方向,所述第一封印结构设于两个所述第二封印结构之间。
  7. 根据权利要求5所述的电芯,其特征在于,沿所述第二方向,所述第二封印结构设于两个所述第一封印结构之间。
  8. 根据权利要求5所述的电芯,其特征在于,沿所述第二方向,所述第一极耳和所述第二封印结构分别设于所述第二极耳的两侧。
  9. 根据权利要求5所述的电芯,其特征在于,沿所述第二方向,所述第一极耳和所述第 二封印结构分别设于所述第二极耳的同一侧。
  10. 根据权利要求5所述的电芯,其特征在于,所述第二封印结构设于所述第一极耳和所述第二极耳之间。
  11. 根据权利要求5-10中任一项所述的电芯,其特征在于,所述侧翼设有凹进结构,所述凹进结构由所述侧翼远离所述边界的边缘朝向所述腔体凹陷形成。
  12. 根据权利要求11所述的电芯,其特征在于,沿所述第二方向,所述凹进结构设置于所述侧翼的两端。
  13. 根据权利要求11所述的电芯,其特征在于,所述凹进结构设置于所述第一极耳和所述第二极耳之间。
  14. 根据权利要求11所述的电芯,其特征在于,沿所述第二方向,两个所述第二封印结构设置于所述凹进结构的两侧。
  15. 根据权利要求11所述的电芯,其特征在于,沿所述第一方向,所述凹进结构设于所述第二封印结构。
  16. 根据权利要求1所述的电芯,其特征在于,所述壳体的材料为多层片材,所述多层片材包括金属层和密封层;所述多层片材的第一部分的中间区域凹陷形成所述腔体;所述多层片材的第二部分与所述第一部分相对彼此折叠设置,以封闭所述腔体;所述电极组件收容于所述腔体。
  17. 根据权利要求16所述的电芯,其特征在于,所述盖的周边的密封层粘合所述凸缘的密封层,以封闭所述腔体。
  18. 根据权利要求17所述的电芯,其特征在于,所述侧翼和所述腔体之间设有过渡部;沿所述电芯的厚度方向,所述过渡部的厚度小于所述腔体的厚度;在所述过渡部,所述盖的周边的密封层靠近所述凸缘的密封层而不粘合所述凸缘的密封层。
  19. 根据权利要求18所述的电芯,其特征在于,所述电极组件包括交替设置的第一极片和第二极片,相邻的所述第一极片和所述第二极片之间设有隔离膜;所述隔离膜包括超出所述第一极片设置的凸出部,且,所述凸出部设于所述过渡部。
  20. 根据权利要求1所述的电芯,其特征在于,所述电芯的厚度为T,T≤4mm。
  21. 根据权利要求1所述的电芯,其特征在于,沿所述第一方向,所述第一封印结构的宽度为W 1,所述第二封印结构的宽度为W 2;其中,20mm≥W 2-W 1≥0.8mm。
  22. 根据权利要求21所述的电芯,其特征在于,3mm≥W 2-W 1≥1.7mm。
  23. 根据权利要求21所述的电芯,其特征在于,(W 2-W 1)/W 2≥17%。
  24. 一种用电装置,包括负载和权利要求1-23中任一项所述的电芯,所述电芯用于为所述负载供电。
PCT/CN2021/086248 2021-04-09 2021-04-09 电芯和用电装置 WO2022213379A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21935605.2A EP4307415A1 (en) 2021-04-09 2021-04-09 Battery cell and electrical device
PCT/CN2021/086248 WO2022213379A1 (zh) 2021-04-09 2021-04-09 电芯和用电装置
CN202180004775.4A CN114207931A (zh) 2021-04-09 2021-04-09 电芯和用电装置
US18/481,302 US20240030528A1 (en) 2021-04-09 2023-10-05 Cell and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086248 WO2022213379A1 (zh) 2021-04-09 2021-04-09 电芯和用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/481,302 Continuation US20240030528A1 (en) 2021-04-09 2023-10-05 Cell and electric apparatus

Publications (1)

Publication Number Publication Date
WO2022213379A1 true WO2022213379A1 (zh) 2022-10-13

Family

ID=80659107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086248 WO2022213379A1 (zh) 2021-04-09 2021-04-09 电芯和用电装置

Country Status (4)

Country Link
US (1) US20240030528A1 (zh)
EP (1) EP4307415A1 (zh)
CN (1) CN114207931A (zh)
WO (1) WO2022213379A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498372A (zh) * 2022-11-18 2022-12-20 宁德新能源科技有限公司 电化学装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025155A (zh) * 2015-03-25 2016-10-12 汽车能源供应公司 锂离子二次电池
CN206250224U (zh) * 2016-11-18 2017-06-13 宁德新能源科技有限公司 电芯封装结构
CN207852828U (zh) * 2018-02-10 2018-09-11 微宏动力系统(湖州)有限公司 一种软包电芯
CN209496945U (zh) * 2019-01-15 2019-10-15 东莞新能源科技有限公司 电芯以及电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049614A1 (zh) * 2016-09-14 2018-03-22 深圳市大疆创新科技有限公司 电池及其组装方法,以及使用该电池的无人飞行器
CN212725431U (zh) * 2020-07-16 2021-03-16 湖南立方新能源科技有限责任公司 一种软包圆柱电芯

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025155A (zh) * 2015-03-25 2016-10-12 汽车能源供应公司 锂离子二次电池
CN206250224U (zh) * 2016-11-18 2017-06-13 宁德新能源科技有限公司 电芯封装结构
CN207852828U (zh) * 2018-02-10 2018-09-11 微宏动力系统(湖州)有限公司 一种软包电芯
CN209496945U (zh) * 2019-01-15 2019-10-15 东莞新能源科技有限公司 电芯以及电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498372A (zh) * 2022-11-18 2022-12-20 宁德新能源科技有限公司 电化学装置及电子设备

Also Published As

Publication number Publication date
EP4307415A1 (en) 2024-01-17
CN114207931A (zh) 2022-03-18
US20240030528A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CN113437443B (zh) 电化学装置和电子装置
EP4207477A1 (en) Electrochemical device and electronic device
JP5169820B2 (ja) フィルム外装電気デバイス
EP2083460B1 (en) Battery pack
WO2021110179A1 (zh) 电池、电池组件、电池组及电子装置
KR20040054128A (ko) 파우치형 리튬 이차 전지
KR101596269B1 (ko) 안전성이 향상된 신규한 구조의 전지셀
CN211789341U (zh) 电芯、应用所述电芯的电池及电子装置
WO2023185200A1 (zh) 电化学装置及其制备方法、电子装置
US20220216574A1 (en) Secondary battery, battery module, and device using battery as power supply
CN112510242B (zh) 二次电池及终端设备
JP2013080563A (ja) 積層型二次電池
CN113675535B (zh) 电芯及电子装置
CN212676424U (zh) 电池和使用电池的装置
KR101200469B1 (ko) 차등적 실링 폭을 갖는 이차 전지
US20240030528A1 (en) Cell and electric apparatus
EP3018750B1 (en) Battery cell
WO2022082437A1 (zh) 电池和具有所述电池的电子装置
CN113745744A (zh) 固体电池模组及固体电池单体
KR100731436B1 (ko) 파우치형 리튬 이차 전지
CN215184263U (zh) 电池组及电子装置
TWI692139B (zh) 蓄電裝置
WO2021189263A1 (zh) 电化学装置以及电子装置
WO2021189380A1 (zh) 电化学装置和电子装置
KR20220142251A (ko) 접힌 내부 전극리드를 포함하는 파우치형 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021935605

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021935605

Country of ref document: EP

Effective date: 20231009

NENP Non-entry into the national phase

Ref country code: DE