WO2022210848A1 - Dispersion of conductive particles, production method for same, coating liquid for conductive film formation, and conductive film–coated substrate - Google Patents

Dispersion of conductive particles, production method for same, coating liquid for conductive film formation, and conductive film–coated substrate Download PDF

Info

Publication number
WO2022210848A1
WO2022210848A1 PCT/JP2022/015854 JP2022015854W WO2022210848A1 WO 2022210848 A1 WO2022210848 A1 WO 2022210848A1 JP 2022015854 W JP2022015854 W JP 2022015854W WO 2022210848 A1 WO2022210848 A1 WO 2022210848A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
dispersion
particle size
conductive particles
conductive
Prior art date
Application number
PCT/JP2022/015854
Other languages
French (fr)
Japanese (ja)
Inventor
康佑 港
宏忠 荒金
良 村口
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to KR1020237026259A priority Critical patent/KR20230163356A/en
Priority to CN202280014219.XA priority patent/CN116829254A/en
Publication of WO2022210848A1 publication Critical patent/WO2022210848A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a dispersion containing conductive chain particles, and a coating liquid for forming a conductive film and a substrate with a conductive film prepared using this dispersion.
  • a conductive film is formed on a substrate using a coating liquid containing conductive particles.
  • Transparent conductive films are used in display devices, touch panels, solar cells, and the like.
  • a coating liquid containing chain-like conductive particles is used.
  • Patent Document 1 discloses a coating liquid containing, as a binder component, an alkoxysilane oligomer that easily bonds with chain-like conductive particles in order to improve the strength of the film.
  • Patent Document 2 JP-A-2006-339113 discloses the use of chain-like particles to obtain a film excellent in antistatic and electromagnetic wave shielding properties.
  • Patent Document 2 a step of subjecting a dispersion of conductive primary particles to an ion exchange treatment and then adjusting the pH to arrange the primary particles in a chain form, and adding alcohol to hydrolyze an organosilicon compound to form a primary Chain-like particles are produced by a step of linking particles.
  • the insulating binder component gradually covers the surfaces of the chain-like conductive particles, and when the film is formed, the insulating component exists between the chain-like conductive particles. It becomes difficult to form a conductive path. That is, there is a problem that the conductivity decreases with the lapse of time, and the same conductivity as the film formed by the initial coating liquid cannot be obtained.
  • an object of the present invention is to provide conductive particles that enable a conductive film to have a low resistance.
  • the present invention relates to dispersions of conductive particles containing antimony-doped tin oxide (ATO).
  • the conductive particles contain clusters of chain particles formed by connecting primary particles.
  • the dispersion contains 1 to 20% by weight of the conductive particles, and 0.05% to 0.5% by weight of the cluster forming agent relative to the content of the conductive particles.
  • the volume average particle size is 10 to 50 nm, and the volume basis is 16% cumulatively from the small particle size side.
  • the difference (D 84 ⁇ D 16 ) between the particle diameter D 16 at the time and the particle diameter D 84 at 84% is 3 to 50 nm.
  • a clustering agent is added to cluster the chain-like particles. Acids or polymeric flocculants are used as clustering agents.
  • the method for producing a dispersion of conductive particles according to the present invention includes the steps of preparing a dispersion of chain particles in which primary particles containing ATO are linked, and the mass of the primary particles present in the dispersion. and adding 0.05% to 0.5% by mass of a dispersant relative to the sum of the masses present in chain particles.
  • the present invention is a dispersion of conductive particles containing ATO, wherein the conductive particles contain clusters of chain particles formed by connecting primary particles.
  • This dispersion contains 1 to 20% by mass of the conductive particles, and 0.05 to 0.5% by mass of the cluster forming agent based on the content of the conductive particles.
  • the volume average particle size is 10 to 50 nm, and the cumulative volume is 16% from the small particle size side.
  • the difference (D 84 -D 16 ) between the particle diameter D 16 at the time of 84% and the particle diameter D 84 at the time of 84% is 3 to 50 nm.
  • this particle size difference (D 84 -D 16 ) will be referred to as the width of the particle size distribution.
  • the average particle diameter of the primary particles is preferably 3 to 10 nm.
  • the mass of the cluster forming agent must be 0.05% or more of the content of the conductive particles, and if it exceeds 0.5%, the conductivity may be significantly reduced. .
  • the existence of clusters formed of chain-like particles can be known from the particle size distribution measured by the dynamic light scattering method. That is, when many clusters are present, the volume average particle size is increased and the particle size distribution is broadened. If the volume average particle size and the width of the particle size distribution are within the ranges described above, the effect of the presence of clusters can be obtained. For example, a low resistance can be achieved because the conductive path is well formed. In a coating liquid using such a dispersion liquid, since the area where the conductive particles contact (react with) other components (such as a binder) is small, change over time is suppressed. Since the size of the clusters in the film obtained by this coating liquid is controlled, light scattering (haze) is suppressed and the optical properties are not impaired.
  • Alkoxysilanes are generally represented by “R 1 n —Si(OR 2 ) 4-n [Formula 1]”.
  • R 1 and R 2 are a hydrogen atom, a halogen atom, or an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different.
  • n is an integer of 0-3. Specific examples of alkoxysilanes are shown in Table 1.
  • Chain particles are particles in which three or more primary particles containing ATO as a component are linked in a chain. There may be a portion where the particles are branched and connected. That is, it has a structure in which three or more primary particles are linked at the main chain portion, and branched portions may be present.
  • Primary particles are inorganic particles in a monodisperse state.
  • the average particle size of primary particles is preferably 3 to 10 nm. From an image taken with a transmission electron microscope (TEM), the particle diameter is measured for arbitrary 100 primary particles, and the average value is taken as the average particle diameter of the primary particles. Furthermore, 50 arbitrary particles are selected from this image, and the number of connections of each particle is measured.
  • TEM transmission electron microscope
  • the average value of the number of linkages of 50 particles was taken as the average number of linkages.
  • the average number of connections is preferably 3 or more, particularly preferably 5 or more. If the average number of linkages of the primary particles is small, the effect of improving conductivity may not be sufficiently obtained. If the average particle size is too small, the crystallinity is low, and the primary particles themselves may not have sufficient electrical conductivity. Conversely, if the average particle size is too large, it will be difficult to develop a chain-like structure, and even if a chain-like structure is formed, it will be difficult to effectively form a conductive path, and there is a risk that sufficient conductivity of the film cannot be obtained. be. Elements other than antimony and tin oxide may be contained in the primary particles as long as they do not significantly impair conductivity.
  • a method for producing a dispersion of conductive particles will be described.
  • a dispersion of chain particles formed by connecting primary particles containing ATO is prepared.
  • a dispersion of chain particles can be prepared using a known method such as the method disclosed in JP-A-2006-339113.
  • a cluster forming agent is added in an amount of 0.05% to 0.5% by mass of the conductive particle component (the total amount of the conductive particles present as primary particles and the conductive particles present as chain particles in the dispersion). Added.
  • clusters of chain-like particles are formed.
  • the structure of clusters can be controlled by the concentration, pH, temperature, and stirring time of the chain-like particles in the dispersion.
  • the chain-like particles are two-dimensionally and three-dimensionally connected by the cluster-forming agent to form a three-dimensional cluster.
  • Acids and polymer flocculants can be used as cluster forming agents.
  • polymer flocculants include nonionic, anionic, cationic, amphoteric, polyamine, and dicyandiamide flocculants. Appropriate addition amount varies depending on the type of cluster forming agent.
  • acids include organic acids such as formic acid, acetic acid, citric acid and benzoic acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydroiodic acid and tetrafluoroboric acid. Hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, which are readily soluble in water and readily available industrially, are preferred.
  • a coating liquid is prepared by adding a binder component and a solvent to such a dispersion liquid of conductive particles. That is, the coating liquid of the present invention contains conductive particles containing ATO, an alkoxysilane oligomer (binder component), and a solvent. The conductive particles contain clusters of chain particles formed by connecting primary particles. The coating liquid contains 0.05 to 0.5% by mass of the cluster forming agent based on the content of the conductive particles and 25 to 300% by mass of the alkoxysilane oligomer on the basis of the content of the conductive particles.
  • the volume average particle size is 70 to 600 nm, and the cumulative volume from the small particle size side is 16%.
  • the difference (D 84 ⁇ D 16 ) between the particle diameter D 16 at the time and the particle diameter D 84 at 84% is 60 to 800 nm.
  • Hydrophilic organic solvents such as alcohols, glycols, glycol ethers, ketones, etc., which do not inhibit the structural control of clusters, are suitable. Specific examples include 1-methoxy-2-propanol, diacetone alcohol, ethylene glycol, diethylene glycol, methanol, ethanol, isopropyl alcohol, and acetone.
  • the weight average molecular weight of the alkoxysilane oligomer is preferably 1,000 to 20,000.
  • the alkoxysilane oligomer is a hydrolyzed polymer of the alkoxysilane represented by Formula 1 above, where n is an integer of 0-2. When n is 3, only two-molecular bonds are possible, so oligomers cannot be formed. A smaller n is more preferable, and an alkoxysilane in which n is 0 is most preferable. By using such an alkoxysilane, the amount of organic components that do not easily conduct electricity between clusters is reduced, and high conductivity is obtained.
  • the alkoxysilane oligomer is present in the coating liquid in an amount of 25 to 300% of the content of the conductive particles. That is, the mass ratio of the conductive particles and the alkoxysilane oligomer is in the range of 80:20 to 25:75. If the amount of the alkoxysilane oligomer is too small, the amount of the binder component is too small, and there is a possibility that sufficient film hardness cannot be obtained. On the other hand, if it is too large, the reaction with the surface of the particles forming the clusters in the coating liquid may proceed excessively, resulting in deterioration of the storage stability of the coating liquid.
  • an aqueous dispersion containing ATO particles (primary particles) is prepared (average particle size of ATO particles: 5 nm, solid concentration: 20.0% by mass, pH: 6.9).
  • An amphoteric ion-exchange resin in a mass corresponding to 40% of the solid content of the ATO particles is added to this dispersion, and the mixture is stirred at 25° C. for 2 hours.
  • the amphoteric ion exchange resin is then separated using a wire mesh.
  • the ATO particles are linked in a chain form, and an aqueous dispersion of chain particles is obtained.
  • the aqueous dispersion of chain particles is diluted with pure water so that the solid content concentration is 5% by mass.
  • 0.5 g of hydrochloric acid concentration: 1.0 mass % is added as a cluster forming agent, and the mixture is stirred at 25° C. for 5 minutes.
  • the chain-like particles form clusters, and the dispersion liquid of the conductive particles of the present invention is obtained.
  • a coating liquid is prepared by adding a binder component and a solvent to the dispersion liquid of the conductive particles.
  • a binder component an ethanol dispersion product of an alkoxysilane oligomer having a molecular weight of 4980 (solid concentration: 9.9 mass) obtained by hydrolyzing tetramethoxysilane was used.
  • Tables 2 and 3 show the preparation conditions of the conductive particle dispersion liquid and the coating liquid.
  • the table also shows the results of measuring the following physical properties. In addition, it carried out similarly about the below-mentioned Example and the comparative example.
  • the dispersion is measured using an inductively coupled plasma atomic emission spectrometer to determine the abundance of each element contained in the dispersion. can be used to specify the amount of conductive particles.
  • Pencil Hardness The pencil hardness of the film-coated substrate was measured using a pencil specified in JIS S-6006 and a surface property measuring machine (Tribogear manufactured by Shinto Kagaku Co., Ltd.). A pencil of each hardness was swept over the surface with a load of 500 g according to the operating manual of the measuring machine. The sweep traces were checked, and the highest hardness value at which no scratches were observed was taken as the pencil hardness value.
  • Example 2 polyaluminum chloride (highly basic aluminum chloride PAC#1000 manufactured by Taki Kagaku Co., Ltd.) was used as the cluster forming agent.
  • the solution was diluted with pure water to a concentration of 0.2% by mass, and 5.0 g of this was added.
  • Example 3 In this example, polyethyleneimine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., average molecular weight 600) was used as the cluster forming agent. It was diluted with pure water so that the concentration was 2.0%, and 0.8 g of this was added.
  • Example 4 the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. Further, 1.0 g of hydrochloric acid (concentration: 1.0% by mass) is added, and the mixture is stirred at 25° C. for 5 minutes. Furthermore, tetramethoxysilane was added to fix the cluster structure. Here, 4.9 g of the alkoxysilane oligomer used as the binder component in Example 1 was added and stirred at 25° C. for 1 hour. A dispersion of conductive particles was prepared in the same manner as in Example 1 except for this.
  • Example 5 In this example, the amount of alkoxysilane oligomer added to fix the cluster structure was 24.5 g. A dispersion of conductive particles was prepared in the same manner as in Example 4 except for this.
  • Example 6 the aqueous dispersion of chain particles was diluted with pure water so that the solid content concentration was 20.0% by mass. To 100.0 g of this dispersion, 1.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent.
  • Example 7 the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 15.0% by mass. To 100.0 g of this dispersion, 1.5 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent.
  • Example 8 the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. To 100.0 g of this dispersion, 1.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent.
  • Example 9 the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. To 100.0 g of this dispersion, 1.0 g of phosphoric acid (concentration: 1.0 mass %) was added as a cluster forming agent.
  • Example 10 the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. To 100.0 g of this dispersion, 1.0 g of nitric acid (concentration: 1.0 mass %) was added as a cluster forming agent.
  • Example 1 the clustering agent was added directly to the ATO particles (primary particles) without preparing chain particles. That is, 5.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent to 100.0 g of the same aqueous dispersion of ATO particles (solid concentration: 20.0% by mass) as in Example 1, and the resulting dispersion thickened and became gel-like. Therefore, it was not possible to obtain a dispersion liquid of conductive particles or a coating liquid.
  • hydrochloric acid concentration: 1.0% by mass
  • Example 2 In this comparative example, an aqueous dispersion of chain-like particles was prepared in the same manner as in Example 1, but no cluster forming agent was used. A coating liquid was prepared by adding 15.0 g of the aqueous dispersion of the chain-like particles and adding 48.0 g of pure water.
  • Example 3 In this comparative example, 3.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent. A coating liquid was prepared in the same manner as in Example 1, except that 61.5 g of the conductive particle dispersion liquid and 1.5 g of pure water were added.
  • Comparative Example 4 In this comparative example, 1.0 g of the same polyaluminum chloride as in Example 2 diluted with pure water to a concentration of 5.0% was added as a cluster forming agent.
  • a coating liquid was prepared in the same manner as in Example 1 except that the conductive particle dispersion liquid was 60.6 g and the amount of pure water added was 2.4 g, but aggregation occurred and it could not be used as a paint.
  • Comparative Example 5 In this comparative example, 1.0 g of the same polyethyleneimine as in Example 3 diluted with pure water to a concentration of 5.0% was added as a cluster forming agent.
  • a coating liquid was prepared in the same manner as in Example 1 except that the conductive particle dispersion liquid was 60.6 g and the amount of pure water added was 2.4 g, but aggregation occurred and it could not be used as a paint.

Abstract

The present invention relates to a dispersion of conductive particles that contain antimony-doped tin oxide. The conductive particles include clusters of chain-like particles formed from linked primary particles. The dispersion includes 1–20 mass% of the conductive particles and, relative to the conductive particle content, 0.05%–0.5% by mass of a clustering agent. A particle size distribution found by analyzing the dispersion using a dynamic light scattering particle size analyzer has a volume average particle size of 10–50 nm, and the difference (D84-D16) between the particle size D16 at a cumulative volume of 16% from the small particle size side and the particle size D84 at a cumulative volume of 84% is 3–50 nm. Such conductive particles make it possible to achieve a low-resistance conductive film.

Description

導電粒子の分散液とその製造方法、導電膜形成用の塗布液及び導電被膜付基材Dispersion liquid of conductive particles, method for producing the same, coating liquid for forming conductive film, and base material with conductive film
 本発明は、導電性の鎖状粒子を含む分散液と、この分散液を用いて調製された導電膜形成用の塗布液及び導電被膜付基材に関する。 The present invention relates to a dispersion containing conductive chain particles, and a coating liquid for forming a conductive film and a substrate with a conductive film prepared using this dispersion.
 従来から、導電粒子を含む塗布液を用いて、基板上に導電膜が形成されている。透明な導電膜は表示装置、タッチパネル、太陽電池等に利用されている。導電膜の透明性と低抵抗を両立するために、鎖状導電粒子を含む塗布液が用いられている。例えば、特開2019-157026号公報(特許文献1)には、膜の強度を向上させるために、鎖状導電粒子と結合しやすいアルコキシシランオリゴマーをバインダ成分として含む塗布液が知られている。 Conventionally, a conductive film is formed on a substrate using a coating liquid containing conductive particles. Transparent conductive films are used in display devices, touch panels, solar cells, and the like. In order to achieve both transparency and low resistance of the conductive film, a coating liquid containing chain-like conductive particles is used. For example, Japanese Patent Application Laid-Open No. 2019-157026 (Patent Document 1) discloses a coating liquid containing, as a binder component, an alkoxysilane oligomer that easily bonds with chain-like conductive particles in order to improve the strength of the film.
 また、特開2006-339113号公報(特許文献2)には、鎖状粒子を用いて帯電防止及び電磁波遮蔽に優れた膜を得ることが知られている。特許文献2では、導電性の一次粒子の分散液をイオン交換処理した後でpHを調製して一次粒子を鎖状に配列させる工程と、アルコールを加えて有機珪素化合物を加水分解することにより一次粒子を連結させる工程により鎖状粒子が製造されている。 Also, JP-A-2006-339113 (Patent Document 2) discloses the use of chain-like particles to obtain a film excellent in antistatic and electromagnetic wave shielding properties. In Patent Document 2, a step of subjecting a dispersion of conductive primary particles to an ion exchange treatment and then adjusting the pH to arrange the primary particles in a chain form, and adding alcohol to hydrolyze an organosilicon compound to form a primary Chain-like particles are produced by a step of linking particles.
 特許文献1の塗布液では、絶縁性のバインダ成分が徐々に鎖状導電粒子の表面を覆い、膜を形成した際に鎖状導電粒子間に絶縁性成分が存在する構造になるため、多数の導電パスが形成でき難くなる。すなわち、時間経過とともに導電性が低くなり、初期の塗布液によって形成された膜と同様の導電性が得られない、という課題があった。 In the coating liquid of Patent Document 1, the insulating binder component gradually covers the surfaces of the chain-like conductive particles, and when the film is formed, the insulating component exists between the chain-like conductive particles. It becomes difficult to form a conductive path. That is, there is a problem that the conductivity decreases with the lapse of time, and the same conductivity as the film formed by the initial coating liquid cannot be obtained.
 さらに、近年では、導電膜の低抵抗化が求められており、特許文献1や特許文献2に開示された鎖状導電粒子では、低抵抗化と高硬度を両立することができなかった。 Furthermore, in recent years, there has been a demand for a conductive film with low resistance, and the chain-like conductive particles disclosed in Patent Documents 1 and 2 were unable to achieve both low resistance and high hardness.
 そこで、本発明の目的は、導電膜の低抵抗化を可能にする導電粒子を提供することにある。 Therefore, an object of the present invention is to provide conductive particles that enable a conductive film to have a low resistance.
 本発明はアンチモンドープ酸化スズ(ATO)を含んだ導電粒子の分散液に関する。導電粒子は、一次粒子が連結して形成された鎖状粒子のクラスターを含んでいる。分散液には、導電粒子が1~20質量%含まれているとともに、導電粒子の含有量に対して0.05%~0.5%の質量のクラスター形成剤が含まれている。この分散液を動的光散乱式の粒度分布計で測定した粒子径分布において、体積平均の粒子径が10~50nmであり、体積基準で、粒子径の小さい側から累積して16%になるときの粒子径D16と84%になるときの粒子径D84との差(D84-D16)が3~50nmである。クラスター形成剤は鎖状粒子をクラスター化するために添加されている。クラスター形成剤として酸または高分子凝集剤が用いられる。 The present invention relates to dispersions of conductive particles containing antimony-doped tin oxide (ATO). The conductive particles contain clusters of chain particles formed by connecting primary particles. The dispersion contains 1 to 20% by weight of the conductive particles, and 0.05% to 0.5% by weight of the cluster forming agent relative to the content of the conductive particles. In the particle size distribution of this dispersion measured by a dynamic light scattering type particle size distribution meter, the volume average particle size is 10 to 50 nm, and the volume basis is 16% cumulatively from the small particle size side. The difference (D 84 −D 16 ) between the particle diameter D 16 at the time and the particle diameter D 84 at 84% is 3 to 50 nm. A clustering agent is added to cluster the chain-like particles. Acids or polymeric flocculants are used as clustering agents.
 また、本発明による導電粒子の分散液の製造方法は、ATOを含有する一次粒子が連結した鎖状粒子の分散液を準備する工程と、この分散液中に一次粒子の状態で存在する質量と鎖状粒子の状態で存在する質量の和に対して、0.05%~0.5%の質量の分散剤を添加する工程と、を備えている。 Further, the method for producing a dispersion of conductive particles according to the present invention includes the steps of preparing a dispersion of chain particles in which primary particles containing ATO are linked, and the mass of the primary particles present in the dispersion. and adding 0.05% to 0.5% by mass of a dispersant relative to the sum of the masses present in chain particles.
 本発明は、ATOを含有する導電粒子の分散液であり、導電粒子は、一次粒子が連結して形成された鎖状粒子のクラスターを含んでいる。この分散液には、導電粒子が1~20質量%含まれているとともに、導電粒子の含有量に対して0.05~0.5%の質量のクラスター形成剤が含まれている。この分散液を動的光散乱式の粒度分布計で粒子径分布を測定したとき、体積平均の粒子径が10~50nmであり、体積基準で、粒子径の小さい側から累積して16%になるときの粒子径D16と84%になるときの粒子径D84との差(D84-D16)が3~50nmである。なお、これ以降、この粒子径差(D84-D16)を粒径分布の幅と称す。このとき、一次粒子の平均粒子径は3~10nmが好ましい。 The present invention is a dispersion of conductive particles containing ATO, wherein the conductive particles contain clusters of chain particles formed by connecting primary particles. This dispersion contains 1 to 20% by mass of the conductive particles, and 0.05 to 0.5% by mass of the cluster forming agent based on the content of the conductive particles. When the particle size distribution of this dispersion is measured with a dynamic light scattering type particle size distribution meter, the volume average particle size is 10 to 50 nm, and the cumulative volume is 16% from the small particle size side. The difference (D 84 -D 16 ) between the particle diameter D 16 at the time of 84% and the particle diameter D 84 at the time of 84% is 3 to 50 nm. Hereinafter, this particle size difference (D 84 -D 16 ) will be referred to as the width of the particle size distribution. At this time, the average particle diameter of the primary particles is preferably 3 to 10 nm.
 導電粒子が20質量%を超えると、適切な大きさのクラスターを形成することも、その大きさで安定的に存在させることも困難である。1質量%未満では、導電粒子の量が少なすぎて実用的ではない。また、クラスターを形成させるためには、クラスター形成剤は導電粒子の含有量の0.05%の以上の質量が必要であり、0.5%を超えると導電性が顕著に低下するおそれがある。 When the conductive particles exceed 20% by mass, it is difficult to form clusters of an appropriate size and to make them exist stably at that size. If it is less than 1% by mass, the amount of conductive particles is too small to be practical. In addition, in order to form clusters, the mass of the cluster forming agent must be 0.05% or more of the content of the conductive particles, and if it exceeds 0.5%, the conductivity may be significantly reduced. .
 鎖状粒子で形成されたクラスターがどのように存在しているかは、動的光散乱方式で測定された粒径分布から知ることができる。すなわち、クラスターが多く存在すると、体積平均粒子径が大きくなり、また粒子径分布も広くなる。体積平均粒子径と粒径分布の幅が前述の範囲にあれば、クラスターの存在による効果が得られる。例えば、導電パスが良好に形成されているため低抵抗が実現できる。このような分散液を用いた塗布液では、導電粒子が他成分(バインダなど)と接触(反応)する面積が少ないため、経時変化が抑制される。この塗布液により得られた膜は、クラスターのサイズが制御されているため、光散乱(ヘーズ)が抑制され、光学特性を損なうこともない。 The existence of clusters formed of chain-like particles can be known from the particle size distribution measured by the dynamic light scattering method. That is, when many clusters are present, the volume average particle size is increased and the particle size distribution is broadened. If the volume average particle size and the width of the particle size distribution are within the ranges described above, the effect of the presence of clusters can be obtained. For example, a low resistance can be achieved because the conductive path is well formed. In a coating liquid using such a dispersion liquid, since the area where the conductive particles contact (react with) other components (such as a binder) is small, change over time is suppressed. Since the size of the clusters in the film obtained by this coating liquid is controlled, light scattering (haze) is suppressed and the optical properties are not impaired.
 さらに、導電粒子の含有量に対して3~25%の質量のアルコキシシランを加えることにより、クラスターの構造が固定される。そのため、分散液に撹拌や超音波印加を行ってもクラスターが再分散し難くなる。アルコキシシランの量が少なすぎると、クラスターを固定化できないおそれがある。また、多すぎると、アルコキシシランがクラスターの表面を過剰に覆ってしまい、導電性が低下するおそれがある。アルコキシシランの添加量は、3~15%が好ましい。アルコキシシランは、一般に「R -Si(OR4-n 〔式1〕」で表される。ここで、R1およびR2は水素原子、ハロゲン原子、炭素数1~10の非置換または置換炭化水素基であって、互いに同一でも異なってもよい。また、nは0~3の整数である。アルコキシシランの具体例を表1に示す。 Furthermore, by adding 3 to 25% by mass of alkoxysilane relative to the content of the conductive particles, the structure of the clusters is fixed. Therefore, even if the dispersion liquid is stirred or ultrasonic waves are applied, the clusters are difficult to redisperse. If the amount of alkoxysilane is too small, the clusters may not be immobilized. On the other hand, if the amount is too large, the alkoxysilane may excessively cover the surface of the clusters, resulting in a decrease in electrical conductivity. The amount of alkoxysilane added is preferably 3 to 15%. Alkoxysilanes are generally represented by “R 1 n —Si(OR 2 ) 4-n [Formula 1]”. Here, R 1 and R 2 are a hydrogen atom, a halogen atom, or an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different. Also, n is an integer of 0-3. Specific examples of alkoxysilanes are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、鎖状粒子は、ATOを成分として含む一次粒子が鎖状に3個以上連結した粒子である。粒子が分岐して連結した部分が存在していてもよい。すなわち、主鎖の部分で3個以上の一次粒子が連結した構造であり、分岐部が存在してもかまわない。一次粒子とは、単分散状態の無機粒子である。一次粒子の平均粒子径は3~10nmが好ましい。透過型電子顕微鏡(TEM)で撮影した画像から、任意の100個の一次粒子について粒子径を測定し、その平均値を一次粒子の平均粒子径とする。さらに、この画像から任意の粒子を50個選択し、各粒子の連結数を計測する。50個の粒子の連結数の平均値を平均連結数とした。平均連結数は3以上が好ましく、特に5以上が好ましい。一次粒子の平均連結数が少ないと、導電性の向上効果が十分に得られないおそれがある。平均粒子径が小さすぎると、結晶性が低く、一次粒子そのものの導電性が十分に得られないおそれがある。逆に、平均粒子径が大きすぎると、鎖状構造を発達させることが難しく、鎖状化したとしても導電パスが効果的に形成され難くなり、膜の導電性が十分に得られないおそれがある。一次粒子には、アンチモンや酸化錫以外の元素が、導電性を著しく阻害しない程度であれば含まれていてもよい。 Chain particles are particles in which three or more primary particles containing ATO as a component are linked in a chain. There may be a portion where the particles are branched and connected. That is, it has a structure in which three or more primary particles are linked at the main chain portion, and branched portions may be present. Primary particles are inorganic particles in a monodisperse state. The average particle size of primary particles is preferably 3 to 10 nm. From an image taken with a transmission electron microscope (TEM), the particle diameter is measured for arbitrary 100 primary particles, and the average value is taken as the average particle diameter of the primary particles. Furthermore, 50 arbitrary particles are selected from this image, and the number of connections of each particle is measured. The average value of the number of linkages of 50 particles was taken as the average number of linkages. The average number of connections is preferably 3 or more, particularly preferably 5 or more. If the average number of linkages of the primary particles is small, the effect of improving conductivity may not be sufficiently obtained. If the average particle size is too small, the crystallinity is low, and the primary particles themselves may not have sufficient electrical conductivity. Conversely, if the average particle size is too large, it will be difficult to develop a chain-like structure, and even if a chain-like structure is formed, it will be difficult to effectively form a conductive path, and there is a risk that sufficient conductivity of the film cannot be obtained. be. Elements other than antimony and tin oxide may be contained in the primary particles as long as they do not significantly impair conductivity.
 次に、導電粒子の分散液の製造方法を説明する。まず、ATOを含有する一次粒子が連結して形成された鎖状粒子の分散液を準備する。特開2006-339113号公報に開示された方法など、公知の方法を用いて鎖状粒子の分散液を調製することができる。この分散液に、導電粒子成分(分散液中に一次粒子として存在する導電粒子と鎖状粒子として存在する導電粒子の合計量)の0.05%~0.5%の質量のクラスター形成剤を添加する。これにより、鎖状粒子のクラスターが形成される。分散液中の鎖状粒子の濃度、pH、温度、撹拌時間により、クラスターの構造を制御することができる。クラスター形成剤により鎖状粒子は二次元的、三次元的に連結して、立体的なクラスターを形成する。クラスター形成剤として、酸、高分子凝集剤を用いることができる。高分子凝集剤として、ノニオン系、アニオン系、カチオン系、両性系、ポリアミン系、ジシアンジアミド系などの凝集剤が例示できる。クラスター形成剤の種類により、適切な添加量は異なる。酸として、ギ酸、酢酸、クエン酸、安息香酸などの有機酸、塩酸、硫酸、硝酸、リン酸、ヨウ化水素酸、テトラフルオロホウ酸などの無機酸が例示できる。水に容易に溶解し、工業的に入手しやすい塩酸、硫酸、硝酸、リン酸が好ましい。 Next, a method for producing a dispersion of conductive particles will be described. First, a dispersion of chain particles formed by connecting primary particles containing ATO is prepared. A dispersion of chain particles can be prepared using a known method such as the method disclosed in JP-A-2006-339113. In this dispersion, a cluster forming agent is added in an amount of 0.05% to 0.5% by mass of the conductive particle component (the total amount of the conductive particles present as primary particles and the conductive particles present as chain particles in the dispersion). Added. As a result, clusters of chain-like particles are formed. The structure of clusters can be controlled by the concentration, pH, temperature, and stirring time of the chain-like particles in the dispersion. The chain-like particles are two-dimensionally and three-dimensionally connected by the cluster-forming agent to form a three-dimensional cluster. Acids and polymer flocculants can be used as cluster forming agents. Examples of polymer flocculants include nonionic, anionic, cationic, amphoteric, polyamine, and dicyandiamide flocculants. Appropriate addition amount varies depending on the type of cluster forming agent. Examples of acids include organic acids such as formic acid, acetic acid, citric acid and benzoic acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydroiodic acid and tetrafluoroboric acid. Hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, which are readily soluble in water and readily available industrially, are preferred.
 〈塗布液〉
 このような導電粒子の分散液にバインダ成分と溶剤を加えて、塗布液を調製する。すなわち、本発明の塗布液は、ATOを含有する導電粒子と、アルコキシシランオリゴマー(バインダ成分)と溶剤を含んでいる。導電粒子は一次粒子が連結して形成された鎖状粒子のクラスターを含んでいる。塗布液には、導電粒子の含有量の0.05~0.5%の質量のクラスター形成剤と導電粒子の含有量の25~300%のアルコキシシランオリゴマーが含まれている。この塗布液を動的光散乱式の粒度分布計で測定した粒子径分布において、体積平均の粒子径が70~600nmであり、体積基準で、粒子径の小さい側から累積して16%になるときの粒子径D16と84%になるときの粒子径D84との差(D84-D16)が60~800nmである。導電粒子の分散液にバインダ成分や溶剤が加えられると、クラスター同士がさらにゆるく固められて、大きな構造体(フロキュレート)が形成される。そのため、動的光散乱方式による測定では、前述の分散液に比べ、体積平均粒子径や粒径分布の幅が大きくなる。
<Coating liquid>
A coating liquid is prepared by adding a binder component and a solvent to such a dispersion liquid of conductive particles. That is, the coating liquid of the present invention contains conductive particles containing ATO, an alkoxysilane oligomer (binder component), and a solvent. The conductive particles contain clusters of chain particles formed by connecting primary particles. The coating liquid contains 0.05 to 0.5% by mass of the cluster forming agent based on the content of the conductive particles and 25 to 300% by mass of the alkoxysilane oligomer on the basis of the content of the conductive particles. In the particle size distribution of this coating liquid measured with a dynamic light scattering type particle size distribution meter, the volume average particle size is 70 to 600 nm, and the cumulative volume from the small particle size side is 16%. The difference (D 84 −D 16 ) between the particle diameter D 16 at the time and the particle diameter D 84 at 84% is 60 to 800 nm. When a binder component or a solvent is added to the dispersion liquid of the conductive particles, the clusters are further loosely packed to form a large structure (flocculate). Therefore, in the measurement by the dynamic light scattering method, the volume average particle size and the width of the particle size distribution are larger than those of the above-described dispersion liquid.
 ここで使用する溶剤は、塗布後に乾燥工程等によって除去できればよい。クラスターの構造制御を阻害しないアルコール、グリコール、グリコールエーテル類、ケトン等の親水性の有機溶剤が適している。具体的には、1-メトキシ-2-プロパノール、ジアセトンアルコール、エチレングリコール、ジエチレングリコール、メタノール、エタノール、イソプロピルアルコール、アセトンが例示できる。 The solvent used here only needs to be removed by a drying process or the like after application. Hydrophilic organic solvents such as alcohols, glycols, glycol ethers, ketones, etc., which do not inhibit the structural control of clusters, are suitable. Specific examples include 1-methoxy-2-propanol, diacetone alcohol, ethylene glycol, diethylene glycol, methanol, ethanol, isopropyl alcohol, and acetone.
 アルコキシシランオリゴマーの重量平均分子量は1000~20000が好ましい。アルコキシシランオリゴマーは、前述の「式1」で表されるアルコキシシランの加水分解重合物であり、ここでは、nは0~2の整数である。nが3の場合は、2分子間の結合しかできないため、オリゴマーを形成することができない。nは小さいほど好ましく、nが0のアルコキシシランを用いることが最も好ましい。このようなアルコキシシランを用いれば、クラスター同士の間に電気を通しにくい有機成分が少なくなり、高い導電性が得られる。 The weight average molecular weight of the alkoxysilane oligomer is preferably 1,000 to 20,000. The alkoxysilane oligomer is a hydrolyzed polymer of the alkoxysilane represented by Formula 1 above, where n is an integer of 0-2. When n is 3, only two-molecular bonds are possible, so oligomers cannot be formed. A smaller n is more preferable, and an alkoxysilane in which n is 0 is most preferable. By using such an alkoxysilane, the amount of organic components that do not easily conduct electricity between clusters is reduced, and high conductivity is obtained.
 また、前述の通り、導電粒子の含有量の25~300%のアルコキシシランオリゴマーが塗布液中に存在する。すなわち、導電粒子とアルコキシシランオリゴマーの質量比は、80:20~25:75の範囲にある。アルコキシシランオリゴマーが少ないと、バインダ成分が少なくなり、十分な膜硬度が得られないおそれがある。また、多すぎると、塗布液中でクラスターを構成する粒子の表面との反応が過剰に進み、塗布液の保存安定性が低下するおそれがある。 Also, as described above, the alkoxysilane oligomer is present in the coating liquid in an amount of 25 to 300% of the content of the conductive particles. That is, the mass ratio of the conductive particles and the alkoxysilane oligomer is in the range of 80:20 to 25:75. If the amount of the alkoxysilane oligomer is too small, the amount of the binder component is too small, and there is a possibility that sufficient film hardness cannot be obtained. On the other hand, if it is too large, the reaction with the surface of the particles forming the clusters in the coating liquid may proceed excessively, resulting in deterioration of the storage stability of the coating liquid.
 以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.
 [実施例1]
 はじめに、ATO粒子(一次粒子)を含む水分散液を用意する(ATO粒子の平均粒子径5nm、固形分濃度20.0質量%、pH6.9)。この分散液にATO粒子の固形分量の40%に相当する質量の両性イオン交換樹脂を加えて、25℃で2時間攪拌する。その後、金網を用いて両性イオン交換樹脂を分離する。これにより、ATO粒子が鎖状に連結し、鎖状粒子の水分散液が得られる。
[Example 1]
First, an aqueous dispersion containing ATO particles (primary particles) is prepared (average particle size of ATO particles: 5 nm, solid concentration: 20.0% by mass, pH: 6.9). An amphoteric ion-exchange resin in a mass corresponding to 40% of the solid content of the ATO particles is added to this dispersion, and the mixture is stirred at 25° C. for 2 hours. The amphoteric ion exchange resin is then separated using a wire mesh. As a result, the ATO particles are linked in a chain form, and an aqueous dispersion of chain particles is obtained.
 この鎖状粒子の水分散液の固形分濃度が5質量%になるように、純水で希釈する。この水分散液100.0gに、クラスター形成剤として塩酸(濃度1.0質量%)を0.5g加え、25℃で5分間攪拌する。これにより、鎖状粒子がクラスターを形成し、本発明の導電粒子の分散液が得られる。 The aqueous dispersion of chain particles is diluted with pure water so that the solid content concentration is 5% by mass. To 100.0 g of this aqueous dispersion, 0.5 g of hydrochloric acid (concentration: 1.0 mass %) is added as a cluster forming agent, and the mixture is stirred at 25° C. for 5 minutes. As a result, the chain-like particles form clusters, and the dispersion liquid of the conductive particles of the present invention is obtained.
 〈塗布液〉
 この導電粒子の分散液に、バインダ成分と溶剤を加えて塗布液を調製する。本実施例では、導電粒子の分散液60.3gを25℃で攪拌しながら純水を2.7g添加した。続いてソルミックスAP-11(エタノールを主溶剤とするアルコール混合溶剤)を17.0g添加した。5分間攪拌した後、バインダ成分20.0gを攪拌しながら添加した。さらに、25℃で15分間攪拌した後、濾過することにより、塗布液が得られる。ここでは、バインダ成分として、テトラメトキシシランを加水分解して得られた分子量4980のアルコキシシランオリゴマー(固形分濃度9.9質量)のエタノール分散品を使用した。
<Coating liquid>
A coating liquid is prepared by adding a binder component and a solvent to the dispersion liquid of the conductive particles. In this example, 2.7 g of pure water was added to 60.3 g of a dispersion liquid of conductive particles while stirring at 25°C. Subsequently, 17.0 g of Solmix AP-11 (alcohol mixed solvent containing ethanol as the main solvent) was added. After stirring for 5 minutes, 20.0 g of binder component was added with stirring. Furthermore, after stirring for 15 minutes at 25° C., the coating liquid is obtained by filtering. Here, as the binder component, an ethanol dispersion product of an alkoxysilane oligomer having a molecular weight of 4980 (solid concentration: 9.9 mass) obtained by hydrolyzing tetramethoxysilane was used.
 〈膜付基材〉
 この塗布液を、バーコーター法でガラス基板上に塗布し、80℃で1分間乾燥させた。さらに、130℃の乾燥機内で30分間加熱した。これにより、膜付基材を得た。
<Base material with film>
This coating liquid was applied onto a glass substrate by a bar coater method and dried at 80° C. for 1 minute. Further, it was heated in a dryer at 130°C for 30 minutes. Thus, a film-coated base material was obtained.
 導電粒子の分散液および塗布液の調製条件を表2、表3に示す。また、以下の各物性を測定した結果も同表に示す。なお、後述の実施例や比較例についても同様に行った。 Tables 2 and 3 show the preparation conditions of the conductive particle dispersion liquid and the coating liquid. The table also shows the results of measuring the following physical properties. In addition, it carried out similarly about the below-mentioned Example and the comparative example.
 (1)導電粒子の濃度、導電粒子量の測定
 磁性ルツボに分散液を秤量し、1000℃で一定時間加熱し、加熱前後の重量比から導電粒子の固形分濃度を求めた。
(1) Measurement of Conductive Particle Concentration and Conductive Particle Amount A dispersion liquid was weighed in a magnetic crucible and heated at 1000° C. for a certain period of time, and the solid content concentration of the conductive particles was obtained from the weight ratio before and after heating.
 導電粒子の分散液にATO成分以外の固形分が含まれている場合には、誘導結合プラズマ発光分光分析装置を用いて分散液を測定し、分散液中に含まれる各元素の存在量を求めて導電粒子量を特定することができる。 When the conductive particle dispersion contains solids other than the ATO component, the dispersion is measured using an inductively coupled plasma atomic emission spectrometer to determine the abundance of each element contained in the dispersion. can be used to specify the amount of conductive particles.
 (2)分散液中のクラスター形成剤の含有量
 分散液に遠心分離を行い、導電粒子と上澄みを分離した。ICP発光分光分析装置を用いて、この上澄みに含まれる元素とその含有量を測定する。この結果と、予めクラスター形成剤を同様に分析して得たリファレンスとを対比し、上澄みに含まれるクラスター形成剤と含有量を特定した。
(2) Content of Cluster Forming Agent in Dispersion The dispersion was centrifuged to separate the conductive particles and the supernatant. Elements contained in this supernatant and their contents are measured using an ICP emission spectrometer. This result was compared with a reference previously obtained by similarly analyzing the cluster-forming agent, and the cluster-forming agent contained in the supernatant and its content were specified.
 (3)体積平均粒子径、粒径分布の幅
 動的光散乱方式粒度分布計(MICROTRAC社製NANOTRAC Wave 2-UT151)を用いて分散液を測定し、分散液の平均粒子径と粒径分布の幅(粒子径差:D84-D16)を求めた。
(3) Volume average particle size, width of particle size distribution The dispersion is measured using a dynamic light scattering particle size distribution meter (NANOTRAC Wave 2-UT151 manufactured by MICROTRAC), and the average particle size and particle size distribution of the dispersion are measured. width (particle size difference: D 84 -D 16 ) was determined.
 (4)鉛筆硬度
 膜付基材の鉛筆硬度を、JIS S-6006で規定された鉛筆を用いて、表面性測定機(新東科学株式会社製 トライボギア)により測定した。測定機の操作マニュアルに従って各硬度の鉛筆で表面上を500gの荷重をかけて掃引した。掃引跡を確認し、傷が観察されなかった最も高い硬度の値を鉛筆硬度の値とした。
(4) Pencil Hardness The pencil hardness of the film-coated substrate was measured using a pencil specified in JIS S-6006 and a surface property measuring machine (Tribogear manufactured by Shinto Kagaku Co., Ltd.). A pencil of each hardness was swept over the surface with a load of 500 g according to the operating manual of the measuring machine. The sweep traces were checked, and the highest hardness value at which no scratches were observed was taken as the pencil hardness value.
 (5)表面抵抗と保存安定性
 調製直後の塗布液を用いて作製した膜付基材の表面抵抗を表面抵抗測定機(三菱化学アナリテック社製ハイレスターUX MCP-HT800)を用いて測定した。次に、この塗布液を水温40℃に調整した浴槽の中に24時間静置した。この加温処理後の塗布液を用いて、同様に膜付基材を作製し、表面抵抗を測定した。表面抵抗の変化率(加温処理後の塗布液による膜付基材の表面抵抗値/初期の塗布液による膜付基材の表面抵抗値)に基づいて、保存安定性を評価した。
(5) Surface Resistance and Storage Stability The surface resistance of the film-coated substrate prepared using the coating solution immediately after preparation was measured using a surface resistance measuring instrument (Hiresta UX MCP-HT800 manufactured by Mitsubishi Chemical Analytech). . Next, this coating liquid was allowed to stand for 24 hours in a bath whose water temperature was adjusted to 40°C. Using the coating solution after this heat treatment, a film-coated substrate was produced in the same manner, and the surface resistance was measured. The storage stability was evaluated based on the rate of change in surface resistance (surface resistance value of the film-coated substrate with the coating solution after heating/surface resistance value of the film-coated substrate with the initial coating solution).
 以下の説明では、実施例1と相違する点について記載する。 In the following explanation, points that differ from the first embodiment will be described.
 [実施例2]
 本実施例では、クラスター形成剤としてポリ塩化アルミニウム(多木化学社製 高塩基性塩化アルミニウムPAC♯1000)を使用した。濃度が0.2質量%になるように純水で希釈し、これを5.0g添加した。
[Example 2]
In this example, polyaluminum chloride (highly basic aluminum chloride PAC#1000 manufactured by Taki Kagaku Co., Ltd.) was used as the cluster forming agent. The solution was diluted with pure water to a concentration of 0.2% by mass, and 5.0 g of this was added.
 〈塗布液〉
 導電粒子の分散液63.0gに純水を添加せずに25℃で撹拌した。
<Coating liquid>
Without adding pure water, 63.0 g of the conductive particle dispersion was stirred at 25°C.
 [実施例3]
 本実施例では、クラスター形成剤としてポリエチレンイミン(富士フィルム和光純薬社製 平均分子量600)を使用した。濃度が2.0%になるように純水で希釈し、これを0.8g添加した。
[Example 3]
In this example, polyethyleneimine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., average molecular weight 600) was used as the cluster forming agent. It was diluted with pure water so that the concentration was 2.0%, and 0.8 g of this was added.
 〈塗布液〉
 導電粒子の分散液60.5gに、純水の添加量を2.6gの純水を添加した。
<Coating liquid>
2.6 g of pure water was added to 60.5 g of the conductive particle dispersion.
 [実施例4]
 本実施例では、鎖状粒子の水分散液を、固形分濃度が10.0質量%になるように純水で希釈した。さらに塩酸(濃度1.0質量%)の添加量を1.0gとして、25℃で5分間攪拌する。さらに、クラスター構造を固定化させるためにテトラメトキシシランを添加した。ここでは、実施例1でバインダ成分として使用したアルコキシシランオリゴマーを4.9g添加し、25℃で1時間攪拌した。これ以外は実施例1と同様に導電粒子の分散液を調製した。
[Example 4]
In this example, the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. Further, 1.0 g of hydrochloric acid (concentration: 1.0% by mass) is added, and the mixture is stirred at 25° C. for 5 minutes. Furthermore, tetramethoxysilane was added to fix the cluster structure. Here, 4.9 g of the alkoxysilane oligomer used as the binder component in Example 1 was added and stirred at 25° C. for 1 hour. A dispersion of conductive particles was prepared in the same manner as in Example 1 except for this.
 〈塗布液〉
 また、この分散液を32.3g、純水の添加量を30.7g、溶剤(AP-11)の添加量を18.6g、バインダ成分を18.4gとした。
<Coating liquid>
Also, 32.3 g of this dispersion, 30.7 g of pure water, 18.6 g of solvent (AP-11), and 18.4 g of binder component were added.
 [実施例5]
 本実施例では、クラスター構造を固定化させるために添加するアルコキシシランオリゴマーの量を24.5gとした。これ以外は、実施例4と同様に導電粒子の分散液を調製した。
[Example 5]
In this example, the amount of alkoxysilane oligomer added to fix the cluster structure was 24.5 g. A dispersion of conductive particles was prepared in the same manner as in Example 4 except for this.
 〈塗布液〉
 また、この分散液を38.0g、純水の添加量を25.0g、溶剤(AP-11)の添加量を24.5g、バインダ成分の添加量を12.5gとした。
<Coating liquid>
Also, 38.0 g of this dispersion liquid, 25.0 g of pure water, 24.5 g of the solvent (AP-11), and 12.5 g of the binder component were added.
 [実施例6]
 本実施例では、鎖状粒子の水分散液を、固形分濃度が20.0質量%になるように純水で希釈した。この分散液100.0gに、クラスター形成剤として塩酸(濃度1.0質量%)を1.0g加えた。
[Example 6]
In this example, the aqueous dispersion of chain particles was diluted with pure water so that the solid content concentration was 20.0% by mass. To 100.0 g of this dispersion, 1.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent.
 〈塗布液〉
 導電粒子の分散液を15.2g、純水の添加量を47.9gとした。
<Coating liquid>
The dispersion of conductive particles was 15.2 g, and the amount of pure water added was 47.9 g.
 [実施例7]
 本実施例では、鎖状粒子の水分散液を、固形分濃度が15.0質量%になるように純水で希釈した。この分散液100.0gに、クラスター形成剤として塩酸(濃度1.0質量%)を1.5g加えた。
[Example 7]
In this example, the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 15.0% by mass. To 100.0 g of this dispersion, 1.5 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent.
 〈塗布液〉
 導電粒子の分散液を20.3g、純水の添加量を42.7gとした。
<Coating liquid>
20.3 g of the conductive particle dispersion liquid and 42.7 g of pure water were added.
 [実施例8]
 本実施例では、鎖状粒子の水分散液を、固形分濃度が10.0質量%になるように純水で希釈した。この分散液100.0gに、クラスター形成剤として塩酸(濃度1.0質量%)を1.0g加えた。
[Example 8]
In this example, the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. To 100.0 g of this dispersion, 1.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent.
 〈塗布液〉
 導電粒子の分散液を30.3g、純水の添加量を32.7gとした。
<Coating liquid>
30.3 g of the conductive particle dispersion liquid and 32.7 g of pure water were added.
 [実施例9]
 本実施例では、鎖状粒子の水分散液を、固形分濃度が10.0質量%になるように純水で希釈した。この分散液100.0gに、クラスター形成剤としてリン酸(濃度1.0質量%)を1.0g加えた。
[Example 9]
In this example, the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. To 100.0 g of this dispersion, 1.0 g of phosphoric acid (concentration: 1.0 mass %) was added as a cluster forming agent.
 〈塗布液〉
 導電粒子の分散液を30.3g、純水の添加量を32.7gとした。
<Coating liquid>
30.3 g of the conductive particle dispersion liquid and 32.7 g of pure water were added.
 [実施例10]
 本実施例では、鎖状粒子の水分散液を、固形分濃度が10.0質量%になるように純水で希釈した。この分散液100.0gに、クラスター形成剤として硝酸(濃度1.0質量%)を1.0g加えた。
[Example 10]
In this example, the aqueous dispersion of chain-like particles was diluted with pure water so that the solid content concentration was 10.0% by mass. To 100.0 g of this dispersion, 1.0 g of nitric acid (concentration: 1.0 mass %) was added as a cluster forming agent.
 〈塗布液〉
 導電粒子の分散液を30.3g、純水の添加量を32.7gとした。
<Coating liquid>
30.3 g of the conductive particle dispersion liquid and 32.7 g of pure water were added.
 [比較例1]
 本比較例では、鎖状粒子を調製せずに、ATO粒子(一次粒子)に直接クラスター形成剤を加えた。すなわち、実施例1と同じATO粒子の水分散液(固形分濃度20.0質量%)100.0gに、クラスター形成剤として塩酸(濃度1.0質量%)を5.0g加えたところ分散液が増粘し、ゲル状となった。そのため、導電粒子の分散液や塗布液を得ることができなかった。
[Comparative Example 1]
In this comparative example, the clustering agent was added directly to the ATO particles (primary particles) without preparing chain particles. That is, 5.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent to 100.0 g of the same aqueous dispersion of ATO particles (solid concentration: 20.0% by mass) as in Example 1, and the resulting dispersion thickened and became gel-like. Therefore, it was not possible to obtain a dispersion liquid of conductive particles or a coating liquid.
 [比較例2]
 本比較例では、実施例1と同様に鎖状粒子の水分散液を調製したものの、クラスター形成剤を用いなかった。この鎖状粒子の水分散液を15.0g、純水の添加量を48.0gとして塗布液を調製した。
[Comparative Example 2]
In this comparative example, an aqueous dispersion of chain-like particles was prepared in the same manner as in Example 1, but no cluster forming agent was used. A coating liquid was prepared by adding 15.0 g of the aqueous dispersion of the chain-like particles and adding 48.0 g of pure water.
 [比較例3]
 本比較例では、クラスター形成剤として塩酸(濃度1.0質量%)を3.0g加えた。導電粒子の分散液を61.5g、純水の添加量を1.5gとした以外は、実施例1と同様に塗布液を調製したが、凝集が発生し、塗料として使用できなかった。
[Comparative Example 3]
In this comparative example, 3.0 g of hydrochloric acid (concentration: 1.0% by mass) was added as a cluster forming agent. A coating liquid was prepared in the same manner as in Example 1, except that 61.5 g of the conductive particle dispersion liquid and 1.5 g of pure water were added.
 [比較例4]
 本比較例では、クラスター形成剤として実施例2と同じポリ塩化アルミニウムを純水で希釈し、濃度5.0%としたものを1.0g添加した。
[Comparative Example 4]
In this comparative example, 1.0 g of the same polyaluminum chloride as in Example 2 diluted with pure water to a concentration of 5.0% was added as a cluster forming agent.
 導電粒子の分散液を60.6g、純水の添加量を2.4gとした以外は、実施例1と同様に塗布液を調製したが、凝集が発生し、塗料として使用できなかった。 A coating liquid was prepared in the same manner as in Example 1 except that the conductive particle dispersion liquid was 60.6 g and the amount of pure water added was 2.4 g, but aggregation occurred and it could not be used as a paint.
 [比較例5]
 本比較例では、クラスター形成剤として実施例3と同じポリエチレンイミンを純水で希釈し、濃度5.0%としたものを1.0g添加した。
[Comparative Example 5]
In this comparative example, 1.0 g of the same polyethyleneimine as in Example 3 diluted with pure water to a concentration of 5.0% was added as a cluster forming agent.
 導電粒子の分散液を60.6g、純水の添加量を2.4gとした以外は、実施例1と同様に塗布液を調製したが、凝集が発生し、塗料として使用できなかった。 A coating liquid was prepared in the same manner as in Example 1 except that the conductive particle dispersion liquid was 60.6 g and the amount of pure water added was 2.4 g, but aggregation occurred and it could not be used as a paint.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  アンチモンドープ酸化スズを含有する導電粒子の分散液であって、
     前記導電粒子は、一次粒子が連結して形成された鎖状粒子のクラスターを含み、
     前記分散液には、前記導電粒子が1~20質量%含まれているとともに、前記導電粒子の含有量に対して0.05%~0.5%の質量のクラスター形成剤が含まれており、
     当該分散液を動的光散乱式の粒度分布計で測定した粒子径分布において、体積平均の粒子径が10~50nmであり、体積基準で、粒子径の小さい側から累積して16%になるときの粒子径D16と84%になるときの粒子径D84との差(D84-D16)が3~50nmである分散液。
    A dispersion of conductive particles containing antimony-doped tin oxide,
    The conductive particles include clusters of chain particles formed by connecting primary particles,
    The dispersion contains 1 to 20% by mass of the conductive particles, and a cluster forming agent with a mass of 0.05% to 0.5% based on the content of the conductive particles. ,
    In the particle size distribution of the dispersion measured by a dynamic light scattering type particle size distribution meter, the volume average particle size is 10 to 50 nm, and the volume is 16% cumulatively from the smaller particle size side. A dispersion liquid in which the difference (D 84 −D 16 ) between the particle diameter D 16 at 84% and the particle diameter D 84 at 84% is 3 to 50 nm.
  2.  前記クラスター形成剤が酸または高分子凝集剤である請求項1に記載の分散液。 The dispersion liquid according to claim 1, wherein the cluster forming agent is an acid or a polymer flocculant.
  3.  前記導電粒子の含有量に対して3%~15%の質量のアルコキシシランが含まれることを特徴とする請求項1または2に記載の分散液。 The dispersion according to claim 1 or 2, characterized in that the alkoxysilane is contained in a mass of 3% to 15% with respect to the content of the conductive particles.
  4.  アンチモンドープ酸化スズを含有する一次粒子が連結した鎖状粒子の分散液を準備する工程と、
     前記分散液に一次粒子の状態で存在する質量と鎖状粒子の状態で存在する質量の和に対して0.05%~0.5%の質量のクラスター形成剤を添加する工程と、を備えることを特徴とする導電粒子の分散液の製造方法。
    Preparing a dispersion of chain particles linked with primary particles containing antimony-doped tin oxide;
    adding a mass of a cluster forming agent of 0.05% to 0.5% with respect to the sum of the mass present in the state of primary particles and the mass present in the state of chain particles to the dispersion. A method for producing a dispersion of conductive particles, characterized by:
  5.  アンチモンドープ酸化スズを含有する導電粒子と、アルコキシシランオリゴマーと、溶剤を含む導電膜形成用の塗布液であって、
     前記導電粒子は、一次粒子が連結して形成された鎖状粒子のクラスターを含んでおり、
     当該塗布液には、前記導電粒子が1~20質量%含まれているとともに、前記導電粒子の含有量の0.05~0.5%の質量のクラスター形成剤と前記導電粒子の含有量の25~300%のアルコキシシランオリゴマーが含まれており、
     当該塗布液を動的光散乱式の粒度分布計で測定した粒子径分布において、体積平均の粒子径が70~600nmであり、体積基準で、粒子径の小さい側から累積して16%になるときの粒子径D16と84%になるときの粒子径D84との差(D84-D16)が60~800nmである塗布液。
    A coating liquid for forming a conductive film containing conductive particles containing antimony-doped tin oxide, an alkoxysilane oligomer, and a solvent,
    The conductive particles contain clusters of chain particles formed by connecting primary particles,
    The coating liquid contains 1 to 20% by mass of the conductive particles, and a cluster forming agent with a mass of 0.05 to 0.5% of the content of the conductive particles and a content of the conductive particles. Contains 25-300% alkoxysilane oligomers,
    In the particle size distribution of the coating liquid measured by a dynamic light scattering particle size distribution meter, the volume average particle size is 70 to 600 nm, and the volume is 16% cumulatively from the smaller particle size side. A coating liquid in which the difference (D 84 −D 16 ) between the particle diameter D 16 at the initial stage and the particle diameter D 84 at the 84% stage is 60 to 800 nm.
  6.  請求項5に記載の塗布液による膜が基材上に設けられたことを特徴とする導電被膜付基材。 A base material with a conductive coating, characterized in that a film formed by the coating liquid according to claim 5 is provided on the base material.
PCT/JP2022/015854 2021-03-30 2022-03-30 Dispersion of conductive particles, production method for same, coating liquid for conductive film formation, and conductive film–coated substrate WO2022210848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237026259A KR20230163356A (en) 2021-03-30 2022-03-30 Dispersion of conductive particles and method for producing the same, coating solution for forming a conductive film, and base material with a conductive film
CN202280014219.XA CN116829254A (en) 2021-03-30 2022-03-30 Conductive particle dispersion liquid, method for producing same, coating liquid for forming conductive film, and substrate with conductive coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057036 2021-03-30
JP2021057036A JP7216135B2 (en) 2021-03-30 2021-03-30 Dispersion liquid of conductive particles, method for producing the same, coating liquid for forming conductive film, and base material with conductive film

Publications (1)

Publication Number Publication Date
WO2022210848A1 true WO2022210848A1 (en) 2022-10-06

Family

ID=83456426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015854 WO2022210848A1 (en) 2021-03-30 2022-03-30 Dispersion of conductive particles, production method for same, coating liquid for conductive film formation, and conductive film–coated substrate

Country Status (5)

Country Link
JP (1) JP7216135B2 (en)
KR (1) KR20230163356A (en)
CN (1) CN116829254A (en)
TW (1) TW202301382A (en)
WO (1) WO2022210848A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234940A (en) * 1993-02-10 1994-08-23 Sumitomo Cement Co Ltd Coating material for forming antistatic high-refractive-index film, transparent laminate having antistatic reflection-preventing film, and cathode ray tube
JP2005305392A (en) * 2004-04-26 2005-11-04 Jsr Corp Method for preparing antimony-containing tin oxide particle dispersion and transparent electrically-conductive film
JP2006339113A (en) * 2005-06-06 2006-12-14 Catalysts & Chem Ind Co Ltd Manufacturing method of chain-shaped conductive fine particle, chain-shaped conductive fine particle, paint for transparent conductive coating formation, and base material with transparent conductive coating
JP2012025793A (en) * 2010-07-20 2012-02-09 Jgc Catalysts & Chemicals Ltd Transparent film-forming coating liquid and substrate with transparent film
JP2014058652A (en) * 2012-09-19 2014-04-03 Jgc Catalysts & Chemicals Ltd Transparent film-forming coating liquid and substrate with transparent film
JP2019157026A (en) * 2018-03-15 2019-09-19 マクセルホールディングス株式会社 Coating composition, conductive film, and liquid crystal display panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168790B2 (en) * 2006-02-10 2013-03-27 住友大阪セメント株式会社 Paint, method for producing the same, coating film using the same, and method for producing the coating film
JP2014177552A (en) * 2013-03-14 2014-09-25 Hitachi Maxell Ltd Transparent electroconductive coating composition, transparent electroconductive film, and touch panel function-internalized horizontal electric field-style liquid crystal display panel
JP7096656B2 (en) * 2017-09-29 2022-07-06 マクセル株式会社 Coating composition, conductive film, touch panel and manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234940A (en) * 1993-02-10 1994-08-23 Sumitomo Cement Co Ltd Coating material for forming antistatic high-refractive-index film, transparent laminate having antistatic reflection-preventing film, and cathode ray tube
JP2005305392A (en) * 2004-04-26 2005-11-04 Jsr Corp Method for preparing antimony-containing tin oxide particle dispersion and transparent electrically-conductive film
JP2006339113A (en) * 2005-06-06 2006-12-14 Catalysts & Chem Ind Co Ltd Manufacturing method of chain-shaped conductive fine particle, chain-shaped conductive fine particle, paint for transparent conductive coating formation, and base material with transparent conductive coating
JP2012025793A (en) * 2010-07-20 2012-02-09 Jgc Catalysts & Chemicals Ltd Transparent film-forming coating liquid and substrate with transparent film
JP2014058652A (en) * 2012-09-19 2014-04-03 Jgc Catalysts & Chemicals Ltd Transparent film-forming coating liquid and substrate with transparent film
JP2019157026A (en) * 2018-03-15 2019-09-19 マクセルホールディングス株式会社 Coating composition, conductive film, and liquid crystal display panel

Also Published As

Publication number Publication date
CN116829254A (en) 2023-09-29
JP7216135B2 (en) 2023-01-31
JP2022154143A (en) 2022-10-13
TW202301382A (en) 2023-01-01
KR20230163356A (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP5596609B2 (en) Metal colloid solution and paint using the same
WO2015133453A1 (en) Method for producing silver nanowires, silver nanowires and ink using same
Wu et al. Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals
US8088863B2 (en) Organic-solvent dispersion of fine polysilsesquioxane particle, process for producing the same, aqueous dispersion of fine polysilsesquioxane particle, and process for producing the same
Supplit et al. Corrosion protection of aluminum pigments by sol–gel coatings
KR101877810B1 (en) Coating solution for forming transparent film and substrate coated by transparent film
Duong et al. Surface modification of TiO2 nanotubes by grafting with APTS coupling agents
Giuri et al. GO/PEDOT: PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties
JP7216135B2 (en) Dispersion liquid of conductive particles, method for producing the same, coating liquid for forming conductive film, and base material with conductive film
Tao et al. One-step and low-temperature deposited Ag nanowires/TiOx hybrid transparent conductive thin film and its application in antistatic coating
Matnishyan et al. Synthesis and study of polyaniline nanocomposites with metal oxides
JP2012160290A (en) Method for producing conductive complex
JP3976484B2 (en) Conductive powder organic solvent dispersion and conductive paint
TW201412902A (en) Paste composition for electrode of solar cell
JP2018521939A (en) Tungsten oxide colloidal suspension doped with tungsten and method for preparing the same
JP3979465B2 (en) Conductive powder organic solvent dispersion and conductive paint
CN113462219B (en) Coating liquid for forming conductive film
JP2003020449A (en) Electroconductive coating material and method for forming electroconductive coated film using the same
JP5505900B2 (en) High concentration silica sol
Araki et al. Facile preparation of chitin nanowhisker–gold nanocluster hybrids: effect of feeding ratio and surface amino group contents on gold absorption amount
JP2021161380A (en) Coating liquid for forming conductive film
CN114599749B (en) Inorganic microparticle dispersion
EP4299521A1 (en) Dispersion of exfoliated particles of layered polysilicate compound, and method for producing same
US20240132365A1 (en) Dispersion of exfoliated particles of layered polysilicate compound, and method for producing same
KR100231790B1 (en) Transparent conductive coating composition and its applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014219.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781058

Country of ref document: EP

Kind code of ref document: A1