WO2022210605A1 - Recording paper - Google Patents

Recording paper Download PDF

Info

Publication number
WO2022210605A1
WO2022210605A1 PCT/JP2022/015190 JP2022015190W WO2022210605A1 WO 2022210605 A1 WO2022210605 A1 WO 2022210605A1 JP 2022015190 W JP2022015190 W JP 2022015190W WO 2022210605 A1 WO2022210605 A1 WO 2022210605A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
recording paper
styrene
resin
receiving layer
Prior art date
Application number
PCT/JP2022/015190
Other languages
French (fr)
Japanese (ja)
Inventor
優佳 北村
祐太郎 菅俣
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to JP2023511304A priority Critical patent/JPWO2022210605A1/ja
Publication of WO2022210605A1 publication Critical patent/WO2022210605A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents

Definitions

  • the present invention relates to recording paper.
  • Inkjet printing allows computer-generated full-color images to be printed as-is without the need for a printing plate. Inkjet printing is widely used in many fields because it does not require printing plates and because computer generated images can be easily modified. Inks used in inkjet printing are generally water-based inks, such as those used in home-use inkjet printers, but solvent-based inks are also preferred due to their water resistance and ink fixability. Solvent-based inks are now being used even in indoor exhibitions and the like where water-based inks have been used in the past.
  • JP 2010-234677 A Japanese Patent Application Laid-Open No. 2001-270238
  • the receiving layer containing a vinyl chloride copolymer as in Patent Document 1 has problems such as waviness caused by solvents, blocking, and low weather resistance. Attempts to remedy these problems with additives can adversely affect printability. Further, the pigment coating as disclosed in Patent Document 2 has problems such as easy adhesion of water and dirt, low strength of the receiving layer, low glossiness, and low sharpness of the image.
  • the present invention combines high smoothness and excellent glossiness, has high image density, is excellent in solvent-based ink absorption and drying properties, and is used when printed matter is exposed outdoors for a long period of time. To provide a recording paper which does not require water-resistant and antifouling treatment.
  • the present inventors have made intensive studies. As a result, the present inventors have found that recording paper having the desired properties can be provided, and have completed the present invention. That is, the present invention is as follows.
  • the styrene resin is a copolymer of styrene monomer, ethylene and butadiene; a copolymer of styrene monomer, ⁇ -olefin and butadiene; and a styrene monomer, ethylene, ⁇ -
  • the recording paper according to any one of (1) to (3), comprising at least one selected from the group consisting of copolymers of olefins and butadiene.
  • the arithmetic average roughness (Ra) according to JIS B0601:2003 of the base layer side (back layer side) surface of the recording paper is 0.2 ⁇ m or more (1) to (4).
  • Recording paper according to any one of (6) The recording paper according to any one of (1) to (5), wherein the static friction coefficient according to JIS K7125:1999 of the receiving layer side surface of the recording paper is 0.10 to 0.70. . (7)
  • the surface resistivity of the substrate layer side (back layer side) surface of the recording paper measured according to JIS K6911:2006 is 1 ⁇ 10 8 to 9 ⁇ 10 12 ⁇ .
  • the bending resistance of the recording paper according to JIS L1096:2010 bending resistance A method is 0.3 to 10 mN. recording paper.
  • the present invention has both high smoothness and excellent glossiness, high image density, excellent ink absorption and drying properties, and is waterproof and antifouling even when the printed matter is exposed to the outdoors for a long time. It is possible to provide recording paper that does not require
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet
  • (meth)acrylic refers to both acrylic and methacrylic.
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet of this embodiment.
  • a recording paper 100 shown in FIG. 1 has at least a receiving layer 10 containing a styrene resin on one side of a base layer 20 made of a thermoplastic resin film.
  • the base layer 20 may have a two-layer structure of a core layer 21 and a back layer 22 . That is, the recording paper 100 of this embodiment may have the receiving layer 10, the core layer 21, and the back layer 22 in this order.
  • the inkjet printing layer is provided on the surface of the receiving layer 10 side in FIGS. 1 and 2 .
  • the receiving layer is provided on the base material layer and positioned on the outermost surface of the recording paper of the present embodiment.
  • the receiving layer receives solvent-based inks.
  • the receiving layer contains a styrenic resin.
  • a styrene-based resin By containing a styrene-based resin in the receiving layer, it is possible to improve the absorption and drying properties of the solvent-based ink.
  • Styrenic resins are polymers mainly having structural units derived from styrene, and are homopolymers of styrene monomers or copolymers with other monomer components.
  • the styrene resin only homopolymers of styrene monomers and copolymers of styrene monomers and other monomers are used.
  • the styrene-based resin used in the receiving layer is a homopolymer of a styrene-based monomer, and a copolymer of a styrene-based monomer and another monomer. It preferably includes coalescence.
  • the styrenic resins used in the receptor layer can be used singly or in combination of two or more. Styrenic monomers include, for example, styrene, ⁇ -methylstyrene, p-methylstyrene, p-ethylstyrene, vinyltoluene, vinylxylene, and vinylnaphthalene.
  • Olefins are preferably used as other monomers in the copolymer.
  • Olefins include, for example, ⁇ -olefins; diene-based monomers; and other monomers such as ethylene, propylene and cyclohexene.
  • ⁇ -olefins include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, and 1-decene. is mentioned.
  • diene-based monomers include butadiene, isoprene, and chloroprene.
  • the copolymer may be a binary system or a multi-component system having a ternary or higher monomer component, and may be a random copolymer or a block copolymer. Further, as other monomer components in the copolymer, for example, (meth)acrylic acid, (meth)acrylic acid ester, maleic anhydride, vinyl acetate, acrylonitrile and the like may be used.
  • Styrene-based resins include, for example, styrene homopolymers, styrene/ethylene copolymers, styrene/propylene copolymers, styrene/butadiene copolymers, styrene/butadiene/styrene copolymers, styrene/isoprene copolymers, styrene ⁇ Isoprene-styrene copolymer, styrene-ethylene-butylene copolymer, styrene-ethylene-propylene copolymer, styrene-ethylene-butadiene copolymer, styrene-butadiene-butylene copolymer, styrene-acrylonitrile copolymer , acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene-acryl
  • the styrene-based resin preferably contains a copolymer of a styrene-based monomer and butadiene, a copolymer of styrene-based monomer, ethylene and butadiene; and at least one selected from the group consisting of copolymers of styrenic monomers, ethylene, ⁇ -olefins and butadiene.
  • styrene resin examples include a styrene/ethylene/butadiene copolymer, a styrene/1-butene/butadiene copolymer, a styrene/1-pentene/butadiene copolymer, a styrene/1-hexene/butadiene copolymer, Styrene/4-methyl-1-pentene/butadiene copolymer, styrene/1-heptene/butadiene copolymer, styrene/1-octene/butadiene copolymer, styrene/1-nonene/butadiene copolymer, styrene/ 1-decene/butadiene copolymer, styrene/ethylene/1-butene/butadiene copolymer, styrene/ethylene/1-pentene/butadiene copolymer
  • the content of the styrene-based resin in the receiving layer is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of improving solvent-based ink absorption and drying properties and suppressing waviness after printing. % by mass or more is more preferable.
  • the content of the styrene-based resin is preferably 100% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less, from the viewpoint of interlaminar strength between the core layer and the receiving layer.
  • the content of the copolymer is From the viewpoint of interlaminar strength between layers, the amount is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more relative to the total amount of the styrene resin. From the viewpoint of smoothness, the content of the copolymer is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less relative to the total amount of the styrene resin.
  • the receiving layer may be a resin film using only a styrene-based resin, or may contain a thermoplastic resin other than a styrene-based resin within a range that does not impair the effects of the present invention.
  • the thermoplastic resin other than the styrene resin may be a resin compatible with the styrene resin from the viewpoint of image clarity, or a resin not compatible with the styrene resin from the viewpoint of drying.
  • a resin compatible with a styrene resin refers to a resin that forms a single phase when mixed with a styrene resin in a mass ratio of 1:1 and heated at 230°C.
  • thermoplastic resin in the receiving layer consists only of a styrene-based resin, or when it contains a styrene-based resin and a resin compatible with the styrene-based resin, there is a tendency that bleeding during solvent inkjet printing can be suppressed.
  • thermoplastic resin in the receiving layer contains a styrene resin and a resin that is not compatible with the styrene resin, the solvent easily penetrates through the gaps between the resins, and the solvent-based ink dries. tend to improve.
  • Thermoplastic resins that can be used in combination include, for example, polyethylene-based resins, polypropylene-based resins, and polyolefin-based resins such as ethylene/cyclic olefin copolymers; nylon-6, nylon-6,6, nylon-6,10, and nylon-6. , 12; thermoplastic polyester resins such as polyethylene terephthalate and its copolymers, polyethylene naphthalate and aliphatic polyester; and polycarbonate resins such as aromatic polycarbonate and aliphatic polycarbonate.
  • polyolefin-based resins are preferable as thermoplastic resins that can be used together from the viewpoint of suppressing a decrease in interlaminar strength with the base layer when the adjacent base layer contains a polyolefin-based resin.
  • the receiving layer may contain fillers.
  • examples of usable fillers include inorganic fillers and organic fillers.
  • the base material layer contains a highly solvent-resistant resin such as polyolefin resin
  • the base material layer follows the shrinkage of the receiving layer due to the dissolution of the styrene resin during printing, and curling occurs on the printed surface side.
  • shrinkage of the receiving layer can be suppressed even if the styrene-based resin is dissolved, and curling can be reduced.
  • the receiving layer contains a filler
  • a gap is likely to occur between the receiving layer and the surrounding thermoplastic resin such as a styrene-based resin, which tends to improve the drying property of the solvent-based ink.
  • the receiving layer is a stretched layer that is stretched in at least one direction, the containing of the filler tends to form pores inside the receiving layer, resulting in a stretched porous layer. If the receiving layer is a stretched porous layer, the solvent-based ink absorption and drying properties are further enhanced.
  • inorganic filler examples include calcium carbonate, calcined clay, silica, diatomaceous earth, clay, talc, titanium oxide, barium sulfate, barium titanate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite, wax. Inorganic particles such as lastonite or glass fibers can be used.
  • the average particle size of the inorganic filler as measured by a particle size distribution meter based on laser diffraction is usually 0.01 to 15 ⁇ m, preferably 0.1 to 5 ⁇ m.
  • Organic filler examples include organic particles of polyethylene terephthalate, polybutylene terephthalate, polyamide, polycarbonate, polyethylene naphthalate, polystyrene, melamine resin, polyethylene sulfite, polyimide, polyethyl ether ketone, or polyphenylene sulfite. can.
  • the above inorganic filler and organic filler can be used alone or in combination.
  • the content of the filler in the receptive layer (when an inorganic filler and an organic filler are used together, the total amount thereof) can be, for example, 65% by mass or less, or 55% by mass or less.
  • the content of the filler in the receiving layer is preferably 20% by mass or less, more preferably 10% by mass or less.
  • the content of the filler in the receiving layer is preferably 20% by mass or more, more preferably 30% by mass or more. It is preferably 40% by mass or more, and more preferably 40% by mass or more.
  • the receiving layer may further contain a curing agent, an ink-setting agent, an ultraviolet absorber, a surfactant, or the like, if necessary. These can be contained within a range that does not impair the effects of the present invention.
  • the solvent absorption amount of the receiving layer is preferably 5 ml/m 2 or more, more preferably 10 ml/m 2 or more, and even more preferably 15 ml/m 2 or more.
  • the solvent absorption amount of the receiving layer is preferably 100 ml/m 2 or less, more preferably 90 ml/m 2 or less, and even more preferably 80 ml/m 2 or less. If the solvent absorption amount of the receiving layer is within the above range, the drying property of the solvent-based ink is excellent, so solvent-based ink transfer can be reduced when the recording paper after solvent-inkjet printing is stacked on other paper and stored. tend to be able to A specific method for measuring the amount of solvent absorbed by the receiving layer will be described in Examples.
  • the layer strength of the receiving layer is preferably 0.9 kgf/cm or more, more preferably 1.0 kgf/cm or more, and even more preferably 1.1 kgf/cm or more.
  • the layer strength of the receiving layer is preferably 2.0 kgf/cm or less, more preferably 1.9 kgf/cm or less, and even more preferably 1.8 kgf/cm or less. If the layer strength of the receptive layer is within the above range, the receptive layer is less likely to be scraped by sand or the like when the recording paper is posted outdoors, and the weather resistance is high, so the printed pattern can be maintained for a long period of time. tend to be able to A specific method for measuring the layer strength of the receiving layer will be described in Examples.
  • the thickness of the receiving layer is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and even more preferably 5 ⁇ m or more, from the viewpoint of sufficiently absorbing the solvent.
  • the thickness of the receiving layer is preferably 100 ⁇ m or less, more preferably 90 ⁇ m or less, and even more preferably 80 ⁇ m or less.
  • Specific graft monomers include, for example, maleic anhydride, itaconic anhydride, citraconic anhydride, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, glycidyl (meth)acrylate, Maleic acid monoethyl ester, maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, (meth)acrylamide, maleic acid monoamide, maleic acid diamide, maleic acid-N-mono Ethylamide, maleic acid-N,N-diethylamide, maleic acid-N-monobutylamide, maleic acid-N,N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoethylamide, fumaric acid -N,N-diethy
  • the substrate layer preferably has a large number of pores inside the film. That is, the substrate layer is preferably a porous layer. Also, the porosity calculated by the following formula (1) is preferably 5 to 60%, more preferably 10 to 45%. The presence of the pores improves the light diffusion rate and makes it possible to obtain a base layer with high opacity. Furthermore, the presence of pores tends to suppress dimensional change due to swelling of the solvent in the solvent-based ink, thereby suppressing waviness of the recording paper after solvent ink jet printing.
  • the thickness of the substrate layer is preferably 40-200 ⁇ m, more preferably 50-150 ⁇ m. If the thickness of the base material layer is within the above range, the Gurley bending resistance is high and the curl balance is excellent.
  • the thickness of the core layer can be appropriately determined according to the thickness of the back layer described later.
  • the thickness of the core layer is preferably 40 to 200 ⁇ m, more preferably 50 to 150 ⁇ m, from the viewpoint of obtaining sufficient stiffness.
  • the back layer is provided on the surface of the core layer opposite to the receiving layer.
  • the back layer mainly has a function of promoting the evaporation of the solvent after printing from the receiving layer and suppressing waviness of the paper surface due to the solvent when the recording sheets are stacked and stored. Further, the surface of the back surface layer has moderate surface roughness unlike the receiving layer which has smoothness. When the recording paper is stacked and stored, the occurrence of blocking can be prevented by providing the surface of the back surface layer with a suitable surface roughness.
  • the solid content ratio is preferably 0 to 200 parts by mass of the antistatic agent with respect to 100 parts by mass of the anchoring agent, more preferably. 20 to 150 parts by mass, more preferably 30 to 100 parts by mass.
  • the stretching temperature when stretching is preferably in the range of the glass transition temperature of the thermoplastic resin or higher. Also, when the thermoplastic resin is a crystalline resin, the stretching temperature should be above the glass transition point of the non-crystalline portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin. is preferred, and specifically, a temperature lower than the melting point of the thermoplastic resin by 2 to 60°C is preferred.
  • the substrate layer is preferably subjected to an oxidation treatment to activate its surface.
  • the surface of the receiving layer may be subjected to an oxidation treatment.
  • Oxidation treatment tends to adjust the wettability of the surface and suppress print bleeding.
  • Examples of oxidation treatment include corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, ozone treatment, and the like, and these treatments can be combined.
  • the oxidation treatment is preferably corona discharge treatment or flame treatment, and more preferably corona discharge treatment.
  • the solvent absorption rate of the receiving layer of the recording paper can be measured using a water absorption tester specified in JIS P8140.
  • the solvent absorption speed of the recording paper was determined by contacting the surface of the receiving layer of the test piece with a solvent (diethylene glycol ethyl methyl ether, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) for 5 seconds, calculating the amount of solvent absorption, and calculating the solvent contact time. The value obtained by dividing was taken as the solvent absorption rate (ml/m 2 ⁇ s).
  • the thickness (total thickness) of the recording paper was measured according to JIS K7130:1999 using a constant pressure thickness measuring instrument (trade name: PG-01J, manufactured by Teclock Co., Ltd.).
  • the thickness of each layer in the recording paper can be measured by cooling the sample to be measured with liquid nitrogen to a temperature of -60°C or lower and placing it on a glass plate with a razor blade (manufactured by Sic Japan Co., Ltd.
  • a sample for cross-sectional observation is prepared by cutting at a right angle with a proline blade), and the obtained sample is cross-sectioned using a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-6490). Observation was performed, and the boundary line for each resin composition was determined from the appearance of the composition, and the total thickness of the recording paper was multiplied by the thickness ratio of each layer observed.
  • Gurley hardness> The Gurley bending resistance of the recording paper conforms to JIS L1096:2010 and is measured in the MD direction using a Gurley bending resistance tester (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.; (trade name: GAS-100)).
  • ⁇ Arithmetic mean roughness Ra> The arithmetic mean roughness Ra ( ⁇ m) of the substrate layer side surface of the recording paper (the back layer side when the core layer and the back layer are provided as the substrate layer) is in accordance with JIS B0601: 2003, and the three-dimensional roughness Measurement was performed using a measuring device (manufactured by Kosaka Laboratory Co., Ltd., trade name: SE-3AK) and an analysis device (manufactured by Kosaka Laboratory Co., Ltd., trade name: SPA-11).
  • the surface resistivity of the substrate layer side surface of the recording paper (the back surface layer side when the core layer and the back layer are provided as the substrate layer) is 1 under the conditions of 23° C. and 50% relative humidity. In the case of ⁇ 10 7 ⁇ or more, it was measured using an electrode of the double ring method according to JIS K6911:2006. When the surface resistivity is less than 1 ⁇ 10 7 ⁇ , the resistance (R) obtained by measuring with the 4-probe method in accordance with JIS K7194:1994 is multiplied by the correction factor F to obtain the surface resistivity. and
  • Blocking was evaluated according to the following criteria. 3 (good): can be pulled out smoothly without a peeling sound 2 (acceptable): there is a peeling sound, but the appearance of the base layer after picking up is not impaired (practical lower limit) 1 (improper): there is a loud peeling sound, and the appearance of the substrate layer after picking up is impaired (not suitable for practical use)
  • ⁇ Weather resistance> In applications such as posters, the ink may peel off due to outdoor use, which may pose a problem.
  • weather resistance evaluation results tend to fluctuate due to various factors such as climate and weather when exposure tests are actually performed outdoors.
  • the printed matter was subjected to a weather resistance acceleration treatment (exposure test) under uniform conditions in accordance with JIS K-7350-4, and then subjected to solvent inkjet printing to evaluate ink adhesion. More specifically, the acceleration treatment was performed under the following conditions.
  • a super-accelerated weathering tester manufactured by Daipla Wintes Co., Ltd., trade name "Metal Weather KU-R5N-A", metal halide lamp type
  • Aluminum foil tape "AL-T” (Takeuchi Kogyo Co., Ltd.) (trade name)) was attached to a stainless steel plate (100 mm x 200 mm) and fixed, and this was installed in the tester. The irradiance on the surface of the test piece was set at 90 W/m 2 and the black panel temperature was set at 63°C.
  • Example 1 After melt-kneading the resin composition a described in Table 1 with an extruder set at 230°C, it is supplied to an extrusion die set at 250°C and extruded into a sheet, which is cooled to 60°C with a cooling device. An unstretched sheet was obtained. This unstretched sheet was heated to 135° C. and stretched 5 times in the machine direction by utilizing the difference in peripheral speed of the roll group to obtain a monolayer uniaxially stretched sheet.
  • the resin composition c is melt-kneaded with an extruder set at 230°C, extruded into a sheet shape and laminated on the first surface of the single-layer uniaxially stretched sheet, and at the same time, the resin composition a is heated to 230°C.
  • the mixture was extruded into a sheet and laminated on the second surface of the monolayer uniaxially stretched sheet to obtain a three-layer laminated sheet.
  • the three-layer laminated sheet is cooled to 60°C, heated to about 150°C using a tenter oven, stretched 8.5 times in the horizontal direction, and then heated to 160°C for heat treatment.
  • the uniaxially stretched layer of the resin composition a is the back layer, the thickness is 140 ⁇ m, the resin composition (c/a/a) of each layer, the thickness of each layer ( 20 ⁇ m/100 ⁇ m/20 ⁇ m) and the number of stretching axes of each layer (1 axis/2 axes/1 axis)].
  • the surface of the back layer of the laminated resin film is subjected to surface treatment by corona discharge, and the coating solution b is applied to the corona discharge-treated surface side and dried to form a coating layer having a thickness of 0.1 ⁇ m. After drying in an oven for 60 seconds, the recording paper of Example 1 was obtained.
  • Examples 2 to 6, 10, 11 In the same manner as in Example 1, except that resin composition d, e, f, g, h, j, or k for the receiving layer described in Table 2 was used instead of resin composition c, Recording papers of Examples 2 to 6, 10 and 11 were obtained.
  • Example 7 Example 1 except that the resin composition i of the receiving layer described in Table 2 was used instead of the resin composition c in Example 1, the thickness was 170 ⁇ m, and the thickness of each layer was (50 ⁇ m/100 ⁇ m/20 ⁇ m). Recording paper of Example 7 was obtained in the same manner as above.
  • Example 8 A recording paper of Example 8 was obtained in the same manner as in Example 7, except that the thickness was changed to 130 ⁇ m and the thickness of each layer was changed to (10 ⁇ m/100 ⁇ m/20 ⁇ m).
  • Example 9 A recording paper of Example 9 was obtained in the same manner as in Example 7 except that the thickness was changed to 125 ⁇ m and the thickness of each layer was changed to (5 ⁇ m/100 ⁇ m/20 ⁇ m).
  • the resin composition a was melt-kneaded by an extruder set at 230° C., extruded into a sheet shape, and laminated on the first surface of the monolayer uniaxially stretched sheet to obtain a two-layer laminated sheet.
  • the two-layer laminate sheet is cooled to 60°C, heated to about 150°C using a tenter oven, stretched 8.5 times in the horizontal direction, and then heated to 160°C for heat treatment. to obtain a two-layer laminated stretched sheet.
  • the resin composition d After melt-kneading the resin composition d with an extruder set at 230° C., it is extruded into a sheet and laminated on the surface of the layer side composed of the resin composition b of the two-layer laminated stretched sheet, and three layers are laminated. got a sheet.
  • the uniaxially stretched layer of the resin composition a is the back layer, the thickness is 140 ⁇ m, the resin composition (d/b/a) of each layer, the thickness of each layer ( 20 ⁇ m/100 ⁇ m/20 ⁇ m) and the number of stretching axes for each layer (non-stretching/biaxial/uniaxial)] to obtain a laminated resin film.
  • a coating liquid b was prepared using the same method as in Example 1 described above.
  • the surface of the back layer of the laminated resin film is subjected to surface treatment by corona discharge, and the coating solution b is applied to the corona discharge-treated surface side and dried to form a coating layer having a thickness of 0.1 ⁇ m. After drying in an oven for 60 seconds, the recording paper of Example 12 was obtained.
  • Example 13 After melt-kneading the resin composition a described in Table 1 with an extruder set at 230°C, it is supplied to an extrusion die set at 250°C and extruded into a sheet, which is cooled to 60°C by a cooling device. An unstretched sheet was obtained. Next, the resin composition d was melt-kneaded in an extruder set at 230°C, extruded into a sheet and laminated on the first surface of the non-stretched sheet, and at the same time, the plastic resin composition a was set at 230°C.
  • the mixture was extruded into a sheet and laminated on the second surface of the unstretched sheet to obtain a three-layer laminated sheet.
  • the edge portion was slit, and the unstretched layer of the resin composition a was the back layer, the thickness was 120 ⁇ m, the resin composition (d/a/a) of each layer, and the thickness of each layer (20 ⁇ m/80 ⁇ m/20 ⁇ m). , and the number of stretching axes for each layer (unstretched/unstretched/unstretched)].
  • a coating liquid b was prepared using the same method as in Example 1 described above.
  • the surface of the back layer of the laminated resin film is subjected to surface treatment by corona discharge, and the coating solution b is applied to the corona discharge-treated surface side and dried to form a coating layer having a thickness of 0.1 ⁇ m. After drying in an oven for 60 seconds, the recording paper of Example 13 was obtained.
  • the resin composition b was melt-kneaded by an extruder set at 230° C., extruded into a sheet shape and laminated on the first surface of the monolayer uniaxially stretched sheet to obtain a two-layer laminated sheet.
  • 55 parts by weight of water, 20 parts by weight of fine powder silica ["Mizukasil P-78F” manufactured by Mizusawa Chemical Industry Co., Ltd., average particle size 12.5 ⁇ m] and hydrophobic resin (acrylic resin emulsion) [BASF Japan Co., Ltd. ) manufactured by Acronal YJ-2870D, solid concentration 50% by weight] were mixed and dispersed to prepare a coating solution a.
  • One surface of the two-layer laminated sheet obtained above was subjected to surface treatment by corona discharge, and the corona discharge-treated surface side was coated with coating liquid a and dried to form a coating layer with a thickness of 40 ⁇ m. After drying in an oven for 60 seconds, a recording paper of Comparative Example 1 having a thickness of 140 ⁇ m was obtained.
  • Comparative example 2 The resin composition 1 shown in Table 1 was kneaded and rolled for 5 minutes with two 9-inch test rolls (steam heating type manufactured by Nishimura Koki Co., Ltd.) set at 160 ° C. to obtain a vinyl chloride-based resin having a thickness of 140 ⁇ m. A resin sheet was produced (calendering). The obtained vinyl chloride resin sheet was pressed with a 37t hydraulic molding machine (manufactured by Oji Kikai Co., Ltd.) at a temperature of 170° C. with a maximum pressure of 70 kg/cm 2 to mirror-finish the surface to a thickness of 140 ⁇ m. A recording paper of Comparative Example 2 was obtained.
  • Comparative Example 3 In the same manner as in Example 1, except that the resin composition b was used instead of the resin composition c for the receiving layer, and the resin composition b was used instead of the resin composition a for the substrate layer. A recording paper of Comparative Example 3 was obtained.
  • the recording papers of Examples 1 to 13 in which a receiving layer containing a styrene resin was provided on one side of the base layer made of a thermoplastic resin film, had high smoothness. and excellent glossiness, high image density, excellent ink absorption and drying properties, and does not require waterproofing or antifouling treatment even when printed matter is exposed outdoors for a long time. I found out.
  • the recording paper of Comparative Example 1 which was not provided with a receiving layer containing a styrene resin but was provided with a pigment coating layer, was excellent in ink absorption and drying properties, and was able to prevent waviness and blocking.
  • the glossiness and image density are low, and the fixability of the ink is poor. Therefore, when the printed matter is exposed to the outdoors for a long period of time, water-resistant and antifouling treatment is required.
  • the recording paper of Comparative Example 2 provided with a receiving layer containing a vinyl chloride copolymer, not provided with a receiving layer containing a styrene resin, had excellent glossiness and ink absorbency.
  • the recording paper of Comparative Example 3 which was not provided with a receiving layer containing a styrene resin but was provided with a receiving layer containing a propylene homopolymer, was inferior in ink absorption and drying properties, and solvent ink jet printing was used. It was also inferior to appropriateness.
  • the recording paper according to the present invention has both high smoothness and excellent glossiness, high image density, excellent ink absorption and drying properties, and is waterproof and waterproof even when printed matter is exposed outdoors for a long period of time. This recording paper does not require soiling. Therefore, the recording paper according to the present invention is very useful as a sign, label, sign, poster, advertisement, or the like. Moreover, the recording paper according to the present invention is very useful as a recording paper for solvent inkjet using solvent-based ink.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is recording paper that has both high smoothness and excellent glossiness, that has a high image density and excellent ink absorbability and drying properties, and that does not require waterproofing and antifouling treatments even in a case where printed matter is exposed outdoors for a long period of time. The present invention provides recording paper in which a receiving layer containing a styrene-based resin is provided on one of the surfaces of a base material layer composed of a thermoplastic resin film.

Description

記録用紙Recording sheet
 本発明は、記録用紙に関する。 The present invention relates to recording paper.
 インクジェット印刷は、コンピュータで作製したフルカラー画像を、版を作らずにそのまま印刷することができる。版を作る必要がないこと、コンピュータで作製した画像は変更が容易であることなどから、インクジェット印刷の使用が様々な分野で広がっている。
 インクジェット印刷に使用されるインクは、家庭用インクジェットプリンタに使用されているように、水系インクが一般的であるが、溶剤系インクも耐水性やインク定着性の良さなどから好まれている。これまで水系インクが使用されていたような室内展示等においても、溶剤系インクが使用されるようになってきている。
Inkjet printing allows computer-generated full-color images to be printed as-is without the need for a printing plate. Inkjet printing is widely used in many fields because it does not require printing plates and because computer generated images can be easily modified.
Inks used in inkjet printing are generally water-based inks, such as those used in home-use inkjet printers, but solvent-based inks are also preferred due to their water resistance and ink fixability. Solvent-based inks are now being used even in indoor exhibitions and the like where water-based inks have been used in the past.
 記録用紙では、記録後に溶剤系インク中の溶剤を早期に乾燥することが可能な高い吸収性が求められる。このような溶剤吸収性を実現するために、種々の検討かなされてきた(例えば、特許文献1及び2参照)。 Recording paper is required to have high absorbency so that the solvent in the solvent-based ink can be dried quickly after recording. Various studies have been made to achieve such solvent absorbability (see, for example, Patent Documents 1 and 2).
特開2010-234677号公報JP 2010-234677 A 特開2001-270238号公報Japanese Patent Application Laid-Open No. 2001-270238
 しかし、特許文献1のような塩化ビニル系共重体を含有する受容層では、溶剤による波打ち、ブロッキングの発生、及び耐候性が低いなどの問題がある。これらの問題を添加剤で改善しようとすれば、印刷適性に悪影響が生じる場合がある。また、特許文献2のような顔料コートでは、水や汚れが付着しやすく、受容層強度が低い、光沢性が低い、及び画像の鮮明性が低いなどの問題がある。 However, the receiving layer containing a vinyl chloride copolymer as in Patent Document 1 has problems such as waviness caused by solvents, blocking, and low weather resistance. Attempts to remedy these problems with additives can adversely affect printability. Further, the pigment coating as disclosed in Patent Document 2 has problems such as easy adhesion of water and dirt, low strength of the receiving layer, low glossiness, and low sharpness of the image.
 本発明は上記先行技術の問題を鑑み、高い平滑性と優れた光沢性とを兼ね備え、画像濃度が高く、溶剤系インクの吸収性・乾燥性に優れ、且つ印刷物を屋外に長期間暴露する場合にも耐水・防汚処理を必要としない、記録用紙を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention combines high smoothness and excellent glossiness, has high image density, is excellent in solvent-based ink absorption and drying properties, and is used when printed matter is exposed outdoors for a long period of time. To provide a recording paper which does not require water-resistant and antifouling treatment.
 本発明者は、これらの課題を解決する為に、鋭意検討を進めた結果、熱可塑性樹脂フィルムからなる基材層のいずれか一方の面に、スチレン系樹脂を含む受容層を有する構成をとることによって、所期の特性を有する記録用紙を提供し得ることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の通りである。
In order to solve these problems, the present inventors have made intensive studies. As a result, the present inventors have found that recording paper having the desired properties can be provided, and have completed the present invention.
That is, the present invention is as follows.
(1)熱可塑性樹脂フィルムからなる基材層のいずれか一方の面に、スチレン系樹脂を含む受容層が設けられた、記録用紙。
(2)前記受容層が少なくとも一方向に延伸されていることを特徴とする(1)に記載の記録用紙。
(3)前記受容層の厚みが3μm以上であることを特徴とする(1)又は(2)に記載の記録用紙。
(4)前記スチレン系樹脂が、スチレン系単量体、エチレン及びブタジエンの共重合体;スチレン系単量体、α-オレフィン及びブタジエンの共重合体;及びスチレン系単量体、エチレン、α-オレフィン及びブタジエンの共重合体からなる群から選択される少なくとも1種を含むことを特徴とする(1)~(3)のいずれかに記載の記録用紙。
(5)前記記録用紙の基材層側(裏面層側)表面のJIS B0601:2003による算術平均粗さ(Ra)が、0.2μm以上であることを特徴とする(1)~(4)のいずれかに記載の記録用紙。
(6)前記記録用紙の受容層側表面のJIS K7125:1999による静摩擦係数が、0.10~0.70であることを特徴とする(1)~(5)のいずれかに記載の記録用紙。
(7)前記記録用紙の基材層側(裏面層側)表面のJIS K6911:2006に準拠して測定した表面抵抗率が、1×10~9×1012Ωであることを特徴とする(1)~(6)のいずれかに記載の記録用紙。
(8)前記記録用紙のJIS L1096:2010による曲げ反発A法(ガーレ法)による剛軟度が、0.3~10mNであることを特徴とする(1)~(7)のいずれかに記載の記録用紙。
(1) A recording paper having a receiving layer containing a styrene-based resin provided on one side of a substrate layer made of a thermoplastic resin film.
(2) The recording paper according to (1), wherein the receiving layer is stretched in at least one direction.
(3) The recording paper according to (1) or (2), wherein the receiving layer has a thickness of 3 μm or more.
(4) the styrene resin is a copolymer of styrene monomer, ethylene and butadiene; a copolymer of styrene monomer, α-olefin and butadiene; and a styrene monomer, ethylene, α- The recording paper according to any one of (1) to (3), comprising at least one selected from the group consisting of copolymers of olefins and butadiene.
(5) The arithmetic average roughness (Ra) according to JIS B0601:2003 of the base layer side (back layer side) surface of the recording paper is 0.2 μm or more (1) to (4). Recording paper according to any one of
(6) The recording paper according to any one of (1) to (5), wherein the static friction coefficient according to JIS K7125:1999 of the receiving layer side surface of the recording paper is 0.10 to 0.70. .
(7) The surface resistivity of the substrate layer side (back layer side) surface of the recording paper measured according to JIS K6911:2006 is 1×10 8 to 9×10 12 Ω. The recording paper according to any one of (1) to (6).
(8) According to any one of (1) to (7), the bending resistance of the recording paper according to JIS L1096:2010 bending resistance A method (Gurley method) is 0.3 to 10 mN. recording paper.
 本発明によれば、高い平滑性と優れた光沢性とを兼ね備え、画像濃度が高く、インクの吸収性・乾燥性に優れ、且つ印刷物を屋外に長期間暴露する場合にも耐水・防汚処理を必要としない、記録用紙を提供することができる。 According to the present invention, it has both high smoothness and excellent glossiness, high image density, excellent ink absorption and drying properties, and is waterproof and antifouling even when the printed matter is exposed to the outdoors for a long time. It is possible to provide recording paper that does not require
記録用紙の層構成の一例を示す模式断面図である。1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet; FIG. 記録用紙の層構成の一例を示す模式断面図である。1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet; FIG.
 以下、本発明の記録用紙について詳細に説明する。以下は本発明の一例(代表例)であり、本発明はこれに限定されない。 The recording paper of the present invention will be described in detail below. The following are examples (representative examples) of the present invention, and the present invention is not limited thereto.
 以下の説明において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。 In the following description, the description of "(meth)acrylic" refers to both acrylic and methacrylic.
[記録用紙]
 図1は、本実施形態の記録用紙の層構成の一例を示す模式断面図である。図1に示す記録用紙100は、熱可塑性樹脂フィルムからなる基材層20のいずれか一方の面に、スチレン系樹脂を含む受容層10を少なくとも備える。また、図2に示すように、基材層20は、コア層21及び裏面層22の2層構造を有していてもよい。すなわち、本実施形態の記録用紙100は、受容層10と、コア層21と、裏面層22とをこの順に有していてもよい。インクジェット印刷層は、図1及び図2の受容層10側の面上に設けられる。
[Recording sheet]
FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a recording sheet of this embodiment. A recording paper 100 shown in FIG. 1 has at least a receiving layer 10 containing a styrene resin on one side of a base layer 20 made of a thermoplastic resin film. Moreover, as shown in FIG. 2, the base layer 20 may have a two-layer structure of a core layer 21 and a back layer 22 . That is, the recording paper 100 of this embodiment may have the receiving layer 10, the core layer 21, and the back layer 22 in this order. The inkjet printing layer is provided on the surface of the receiving layer 10 side in FIGS. 1 and 2 .
(受容層)
 受容層は、基材層上に設けられ、本実施形態の記録用紙の最表面に位置する。受容層は、溶剤系インクを受容する。
(receptive layer)
The receiving layer is provided on the base material layer and positioned on the outermost surface of the recording paper of the present embodiment. The receiving layer receives solvent-based inks.
<スチレン系樹脂>
 受容層は、スチレン系樹脂を含有する。受容層がスチレン系樹脂を含有することにより、溶剤系インクの吸収性及び乾燥性を向上させることができる。
<Styrene resin>
The receiving layer contains a styrenic resin. By containing a styrene-based resin in the receiving layer, it is possible to improve the absorption and drying properties of the solvent-based ink.
 スチレン系樹脂は、スチレン由来の構成単位を主に有する重合体であり、スチレン系単量体の単独重合体又は他の単量体成分との共重合体である。
 受容層は、溶剤インクジェット印刷時の滲み抑制の観点から、上記スチレン系樹脂として、スチレン系単量体の単独重合体、並びに、スチレン系単量体及び他の単量体との共重合体のみからなるものであってもよい。一方、受容層は、基材層との層間強度の観点から、上記スチレン系樹脂として、スチレン系単量体の単独重合体、並びに、スチレン系単量体及び他の単量体との共重合体を含むことが好ましい。
 受容層に用いられるスチレン系樹脂は、1種又は2種以上を組み合わせて使用することができる。
 スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、p-エチルスチレン、ビニルトルエン、ビニルキシレン、及びビニルナフタレン等が挙げられる。
Styrenic resins are polymers mainly having structural units derived from styrene, and are homopolymers of styrene monomers or copolymers with other monomer components.
In the receiving layer, from the viewpoint of suppressing bleeding during solvent inkjet printing, as the styrene resin, only homopolymers of styrene monomers and copolymers of styrene monomers and other monomers are used. It may consist of On the other hand, from the viewpoint of interlaminar strength with the substrate layer, the styrene-based resin used in the receiving layer is a homopolymer of a styrene-based monomer, and a copolymer of a styrene-based monomer and another monomer. It preferably includes coalescence.
The styrenic resins used in the receptor layer can be used singly or in combination of two or more.
Styrenic monomers include, for example, styrene, α-methylstyrene, p-methylstyrene, p-ethylstyrene, vinyltoluene, vinylxylene, and vinylnaphthalene.
 共重合体における他の単量体としては、オレフィンが好適に用いられる。オレフィンとしては、例えば、αオレフィン;ジエン系単量体;並びに、エチレン、プロピレン及びシクロヘキセン等のその他の単量体等が挙げられる。α-オレフィンの具体的な例としては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、及び1-デセン等が挙げられる。ジエン系単量体としては、例えば、ブタジエン、イソプレン、及びクロロプレン等が挙げられる。共重合体は、単量体成分が2元系でも3元系以上の多元系でもよく、ランダム共重合体でもブロック共重合体でもよい。
 また、共重合体における他の単量体成分としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、無水マレイン酸、酢酸ビニル、及びアクリロニトリル等を用いてもよい。
Olefins are preferably used as other monomers in the copolymer. Olefins include, for example, α-olefins; diene-based monomers; and other monomers such as ethylene, propylene and cyclohexene. Specific examples of α-olefins include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, and 1-decene. is mentioned. Examples of diene-based monomers include butadiene, isoprene, and chloroprene. The copolymer may be a binary system or a multi-component system having a ternary or higher monomer component, and may be a random copolymer or a block copolymer.
Further, as other monomer components in the copolymer, for example, (meth)acrylic acid, (meth)acrylic acid ester, maleic anhydride, vinyl acetate, acrylonitrile and the like may be used.
 スチレン系樹脂は、例えば、スチレン単独重合体、スチレン・エチレン共重合体、スチレン・プロピレン共重合体、スチレン・ブタジエン共重合体、スチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン共重合体、スチレン・イソプレン・スチレン共重合体、スチレン・エチレン・ブチレン共重合体、スチレン・エチレン・プロピレン共重合体、スチレン・エチレン・ブタジエン共重合体、スチレン・ブタジエン・ブチレン共重合体、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン・アクリル酸エステル共重合体、メタクリル酸エステル・ブタジエン・スチレン共重合体、スチレン・エチレン・ブチレン・ブタジエン共重合体、及びスチレン・エチレン・ブタジエン・スチレン共重合体等が挙げられる。共重合体は、ランダム共重合体でもブロック共重合体でもよい。スチレン系樹脂は水素添加物でもよい。 Styrene-based resins include, for example, styrene homopolymers, styrene/ethylene copolymers, styrene/propylene copolymers, styrene/butadiene copolymers, styrene/butadiene/styrene copolymers, styrene/isoprene copolymers, styrene・Isoprene-styrene copolymer, styrene-ethylene-butylene copolymer, styrene-ethylene-propylene copolymer, styrene-ethylene-butadiene copolymer, styrene-butadiene-butylene copolymer, styrene-acrylonitrile copolymer , acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene-acrylate copolymer, methacrylate-butadiene-styrene copolymer, styrene-ethylene-butylene-butadiene copolymer, and styrene-ethylene-butadiene- Styrene copolymers and the like can be mentioned. The copolymer may be a random copolymer or a block copolymer. The styrenic resin may be a hydrogenated product.
 なかでもスチレン系樹脂は、スチレン系単量体とブタジエンとの共重合体を含むことが好ましく、スチレン系単量体、エチレン及びブタジエンの共重合体;スチレン系単量体、α-オレフィン及びブタジエンの共重合体;及びスチレン系単量体、エチレン、α-オレフィン及びブタジエンの共重合体からなる群から選択される少なくとも1種を含むことがより好ましい。 Among them, the styrene-based resin preferably contains a copolymer of a styrene-based monomer and butadiene, a copolymer of styrene-based monomer, ethylene and butadiene; and at least one selected from the group consisting of copolymers of styrenic monomers, ethylene, α-olefins and butadiene.
 上記スチレン系樹脂は、例えば、スチレン・エチレン・ブタジエン共重合体、スチレン・1-ブテン・ブタジエン共重合体、スチレン・1-ペンテン・ブタジエン共重合体、スチレン・1-ヘキセン・ブタジエン共重合体、スチレン・4-メチル-1-ペンテン・ブタジエン共重合体、スチレン・1-ヘプテン・ブタジエン共重合体、スチレン・1-オクテン・ブタジエン共重合体、スチレン・1-ノネン・ブタジエン共重合体、スチレン・1-デセン・ブタジエン共重合体、スチレン・エチレン・1-ブテン・ブタジエン共重合体、スチレン・エチレン・1-ペンテン・ブタジエン共重合体、スチレン・エチレン・1-ヘキセン・ブタジエン共重合体、スチレン・エチレン・4-メチル-1-ペンテン・ブタジエン共重合体、スチレン・エチレン・1-ヘプテン・ブタジエン共重合体、スチレン・エチレン・1-オクテン・ブタジエン共重合体、スチレン・エチレン・1-ノネン・ブタジエン共重合体、及びスチレン・エチレン・1-デセン・ブタジエン共重合体等が挙げられる。 Examples of the styrene resin include a styrene/ethylene/butadiene copolymer, a styrene/1-butene/butadiene copolymer, a styrene/1-pentene/butadiene copolymer, a styrene/1-hexene/butadiene copolymer, Styrene/4-methyl-1-pentene/butadiene copolymer, styrene/1-heptene/butadiene copolymer, styrene/1-octene/butadiene copolymer, styrene/1-nonene/butadiene copolymer, styrene/ 1-decene/butadiene copolymer, styrene/ethylene/1-butene/butadiene copolymer, styrene/ethylene/1-pentene/butadiene copolymer, styrene/ethylene/1-hexene/butadiene copolymer, styrene/ Ethylene/4-methyl-1-pentene/butadiene copolymer, styrene/ethylene/1-heptene/butadiene copolymer, styrene/ethylene/1-octene/butadiene copolymer, styrene/ethylene/1-nonene/butadiene copolymers, and styrene/ethylene/1-decene/butadiene copolymers.
 受容層におけるスチレン系樹脂の含有量は、溶剤系インクの吸収性及び乾燥性を向上させ、印刷後の波打ちを抑制する観点から、10質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上がさらに好ましい。一方、スチレン系樹脂の含有量は、コア層と受容層との層間強度の観点から、100質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましい。また、スチレン系樹脂がスチレン系単量体の単独重合体、並びに、スチレン系単量体及び他の単量体との共重合体を含む場合の、上記共重合体の含有量は、基材層との層間強度の観点から、スチレン系樹脂全量に対して5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。また、上記共重合体の含有量は、平滑性の観点から、スチレン系樹脂全量に対して30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。 The content of the styrene-based resin in the receiving layer is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of improving solvent-based ink absorption and drying properties and suppressing waviness after printing. % by mass or more is more preferable. On the other hand, the content of the styrene-based resin is preferably 100% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less, from the viewpoint of interlaminar strength between the core layer and the receiving layer. Further, when the styrenic resin contains a homopolymer of a styrenic monomer, and a copolymer of a styrenic monomer and other monomers, the content of the copolymer is From the viewpoint of interlaminar strength between layers, the amount is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more relative to the total amount of the styrene resin. From the viewpoint of smoothness, the content of the copolymer is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less relative to the total amount of the styrene resin.
 受容層は、スチレン系樹脂のみを用いた樹脂フィルムであってもよいし、本発明の効果を阻害しない範囲でスチレン系樹脂以外の熱可塑性樹脂が含有されていてもよい。スチレン系樹脂以外の熱可塑性樹脂は、画像鮮明性の観点から当該スチレン系樹脂と相溶性を有する樹脂であってもよく、乾燥性の観点から当該スチレン系樹脂と相溶性を有しない樹脂であってもよい。ここで、「スチレン系樹脂と相溶性を有する樹脂」とはスチレン系樹脂と1対1の質量比で混合して230℃で加熱した際に単一相を形成する樹脂をいう。受容層中の熱可塑性樹脂がスチレン系樹脂のみからなる場合、又は、スチレン系樹脂と当該スチレン系樹脂と相溶性を有する樹脂とを含む場合、溶剤インクジェット印刷時の滲みを抑制できる傾向がある。また、受容層中の熱可塑性樹脂がスチレン系樹脂と、当該スチレン系樹脂と相溶性を有しない樹脂とを含む場合、樹脂間に生じた隙間を通じて溶剤が浸み込みやすくなり溶剤系インクの乾燥性が向上する傾向がある。
 併用できる熱可塑性樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、エチレン・環状オレフィン共重合体等のポリオレフィン系樹脂;ナイロン-6、ナイロン-6,6、ナイロン-6,10、ナイロン-6,12等のポリアミド系樹脂;ポリエチレンテレフタレートやその共重合体、ポリエチレンナフタレート、脂肪族ポリエステル等の熱可塑性ポリエステル系樹脂;及び芳香族ポリカーボネート、脂肪族ポリカーボネート等のポリカーボネート樹脂等が挙げられる。これらの中でも、隣接する基材層がポリオレフィン系樹脂を含む場合に当該基材層との層間強度低下を抑制する観点から、併用できる熱可塑性樹脂としては、ポリオレフィン系樹脂が好ましい。
The receiving layer may be a resin film using only a styrene-based resin, or may contain a thermoplastic resin other than a styrene-based resin within a range that does not impair the effects of the present invention. The thermoplastic resin other than the styrene resin may be a resin compatible with the styrene resin from the viewpoint of image clarity, or a resin not compatible with the styrene resin from the viewpoint of drying. may Here, "a resin compatible with a styrene resin" refers to a resin that forms a single phase when mixed with a styrene resin in a mass ratio of 1:1 and heated at 230°C. When the thermoplastic resin in the receiving layer consists only of a styrene-based resin, or when it contains a styrene-based resin and a resin compatible with the styrene-based resin, there is a tendency that bleeding during solvent inkjet printing can be suppressed. In addition, when the thermoplastic resin in the receiving layer contains a styrene resin and a resin that is not compatible with the styrene resin, the solvent easily penetrates through the gaps between the resins, and the solvent-based ink dries. tend to improve.
Thermoplastic resins that can be used in combination include, for example, polyethylene-based resins, polypropylene-based resins, and polyolefin-based resins such as ethylene/cyclic olefin copolymers; nylon-6, nylon-6,6, nylon-6,10, and nylon-6. , 12; thermoplastic polyester resins such as polyethylene terephthalate and its copolymers, polyethylene naphthalate and aliphatic polyester; and polycarbonate resins such as aromatic polycarbonate and aliphatic polycarbonate. Among these, polyolefin-based resins are preferable as thermoplastic resins that can be used together from the viewpoint of suppressing a decrease in interlaminar strength with the base layer when the adjacent base layer contains a polyolefin-based resin.
<フィラー>
 受容層は、フィラーを含有してもよい。使用できるフィラーとしては、例えば無機フィラー又は有機フィラー等が挙げられる。基材層がポリオレフィン系樹脂等の耐溶剤性が高い樹脂を含む場合、印刷時のスチレン系樹脂の溶解による受容層の収縮に基材層が追従して、印刷面側にカールが発生することがある。しかし、受容層がフィラーを含有することにより、スチレン系樹脂が溶解しても受容層の収縮を抑制することができ、カール発生を低減させることができる。また、受容層がフィラーを含有すると、スチレン系樹脂など周囲の熱可塑性樹脂との間に隙間が生まれやすく、溶剤系インクの乾燥性が向上する傾向がある。受容層が少なくとも一方向に延伸された延伸層である場合、フィラーの含有により、受容層内部に空孔が形成され、延伸多孔質層となりやすい。受容層が延伸多孔質層であると、溶剤系インクの吸収性及び乾燥性が一層高まる。
<Filler>
The receiving layer may contain fillers. Examples of usable fillers include inorganic fillers and organic fillers. When the base material layer contains a highly solvent-resistant resin such as polyolefin resin, the base material layer follows the shrinkage of the receiving layer due to the dissolution of the styrene resin during printing, and curling occurs on the printed surface side. There is However, by containing a filler in the receiving layer, shrinkage of the receiving layer can be suppressed even if the styrene-based resin is dissolved, and curling can be reduced. In addition, when the receiving layer contains a filler, a gap is likely to occur between the receiving layer and the surrounding thermoplastic resin such as a styrene-based resin, which tends to improve the drying property of the solvent-based ink. When the receiving layer is a stretched layer that is stretched in at least one direction, the containing of the filler tends to form pores inside the receiving layer, resulting in a stretched porous layer. If the receiving layer is a stretched porous layer, the solvent-based ink absorption and drying properties are further enhanced.
<<無機フィラー>>
 無機フィラーとしては、例えば炭酸カルシウム、焼成クレイ、シリカ、けいそう土、白土、タルク、酸化チタン、硫酸バリウム、チタン酸バリウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、又はガラスファイバー等の無機粒子を使用することができる。無機フィラーのレーザー回折による粒度分布計で測定した平均粒径は、通常は0.01~15μmであり、好ましくは0.1~5μmである。
<<Inorganic filler>>
Examples of inorganic fillers include calcium carbonate, calcined clay, silica, diatomaceous earth, clay, talc, titanium oxide, barium sulfate, barium titanate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite, wax. Inorganic particles such as lastonite or glass fibers can be used. The average particle size of the inorganic filler as measured by a particle size distribution meter based on laser diffraction is usually 0.01 to 15 μm, preferably 0.1 to 5 μm.
<<有機フィラー>>
 有機フィラーとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリカーボネート、ポリエチレンナフタレート、ポリスチレン、メラミン樹脂、ポリエチレンサルファイト、ポリイミド、ポリエチルエーテルケトン、又はポリフェニレンサルファイト等の有機粒子を使用することができる。
<<Organic filler>>
Examples of organic fillers that can be used include organic particles of polyethylene terephthalate, polybutylene terephthalate, polyamide, polycarbonate, polyethylene naphthalate, polystyrene, melamine resin, polyethylene sulfite, polyimide, polyethyl ether ketone, or polyphenylene sulfite. can.
 フィラーとしては、上記無機フィラー及び有機フィラーをそれぞれ単独で用いることもできるし、併用することもできる。
 受容層におけるフィラーの含有量(無機フィラーと有機フィラーを併用する場合は、その合計量)は、例えば、65質量%以下、又は、55質量%以下であることができる。また、光沢性又は平滑性を得る観点からは、受容層におけるフィラーの含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。受容層を多孔質層として溶剤系インクの吸収性及び乾燥性を得る観点からは、受容層におけるフィラーの含有量は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。
As the filler, the above inorganic filler and organic filler can be used alone or in combination.
The content of the filler in the receptive layer (when an inorganic filler and an organic filler are used together, the total amount thereof) can be, for example, 65% by mass or less, or 55% by mass or less. From the viewpoint of obtaining glossiness or smoothness, the content of the filler in the receiving layer is preferably 20% by mass or less, more preferably 10% by mass or less. From the viewpoint of obtaining solvent-based ink absorbability and drying properties when the receiving layer is a porous layer, the content of the filler in the receiving layer is preferably 20% by mass or more, more preferably 30% by mass or more. It is preferably 40% by mass or more, and more preferably 40% by mass or more.
<その他の成分>
 受容層は、必要に応じて、硬化剤、インクセット剤、紫外線吸収剤、又は界面活性剤等をさらに含有することができる。これらは本発明の効果を妨げない範囲で含有させることができる。
<Other ingredients>
The receiving layer may further contain a curing agent, an ink-setting agent, an ultraviolet absorber, a surfactant, or the like, if necessary. These can be contained within a range that does not impair the effects of the present invention.
 受容層は、無延伸フィルムであってもよく、延伸フィルムであってもよい。溶剤吸収量や溶剤吸収速度の制御を容易とする観点から、受容層は、少なくとも一方向に延伸された延伸フィルムであることが好ましい。 The receiving layer may be an unstretched film or a stretched film. From the viewpoint of facilitating control of the solvent absorption amount and solvent absorption rate, the receiving layer is preferably a stretched film stretched in at least one direction.
 受容層の表面は、酸化処理が施されていてもよい。酸化処理により、表面の濡れ性を調整でき、印刷の滲みを抑制することができる傾向がある。また、酸化処理により、表面の極性の割合を調整でき、溶剤系インクとの化学的な結合力が得られやすく、記録用紙とインクジェット印刷層との密着性を向上できる傾向がある。
 酸化処理としては、コロナ放電処理、フレーム処理、プラズマ処理、グロー放電処理、オゾン処理等が挙げられ、これらの処理は組み合わせることができる。これらのなかでも、酸化処理としては、コロナ放電処理又はフレーム処理が好ましく、コロナ放電処理がより好ましい。
The surface of the receiving layer may be subjected to oxidation treatment. Oxidation treatment tends to adjust the wettability of the surface and suppress print bleeding. In addition, the oxidation treatment can adjust the polarity ratio of the surface, facilitates obtaining chemical bonding strength with the solvent-based ink, and tends to improve the adhesion between the recording paper and the ink-jet printing layer.
The oxidation treatment includes corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, ozone treatment and the like, and these treatments can be combined. Among these, the oxidation treatment is preferably corona discharge treatment or flame treatment, and more preferably corona discharge treatment.
<受容層の特性>
<<溶剤吸収量>>
 受容層の溶剤吸収量は、5ml/m以上が好ましく、10ml/m以上がより好ましく、15ml/m以上がさらに好ましい。一方、受容層の溶剤吸収量は、100ml/m以下が好ましく、90ml/m以下がより好ましく、80ml/m以下がさらに好ましい。受容層の溶剤吸収量が上記範囲内であれば、溶剤系インクの乾燥性に優れるため、溶剤インクジェット印刷後の記録用紙を他の用紙と重ねて保存したときの溶剤系インク移りを減らすことができる傾向がある。
 なお、受容層における溶剤吸収量の具体的な測定方法は、実施例のところで説明する。
<Characteristics of receptive layer>
<<Amount of solvent absorbed>>
The solvent absorption amount of the receiving layer is preferably 5 ml/m 2 or more, more preferably 10 ml/m 2 or more, and even more preferably 15 ml/m 2 or more. On the other hand, the solvent absorption amount of the receiving layer is preferably 100 ml/m 2 or less, more preferably 90 ml/m 2 or less, and even more preferably 80 ml/m 2 or less. If the solvent absorption amount of the receiving layer is within the above range, the drying property of the solvent-based ink is excellent, so solvent-based ink transfer can be reduced when the recording paper after solvent-inkjet printing is stacked on other paper and stored. tend to be able to
A specific method for measuring the amount of solvent absorbed by the receiving layer will be described in Examples.
<<溶剤吸収速度>>
 受容層の溶剤吸収速度は、10ml/m・s以上が好ましく、20ml/m・s以上がより好ましく、30ml/m・s以上がさらに好ましい。一方、受容層の溶剤吸収速度は、100ml/m・s以下が好ましく、90ml/m・s以下がより好ましく、80ml/m・s以下がさらに好ましい。受容層の溶剤吸収速度が上記範囲内であれば、溶剤系インクが受容層に速やかに浸透することから、複数色の溶剤系インクを重ねても溶剤系インクが混じることがなく、多色印刷を行ったときの滲みが少なくなる傾向がある。
 なお、受容層の溶剤吸収速度の具体的な測定方法は、実施例のところで説明する。
<<Solvent absorption rate>>
The solvent absorption rate of the receiving layer is preferably 10 ml/m 2 ·s or more, more preferably 20 ml/m 2 ·s or more, and even more preferably 30 ml/m 2 ·s or more. On the other hand, the solvent absorption rate of the receiving layer is preferably 100 ml/m 2 ·s or less, more preferably 90 ml/m 2 ·s or less, and even more preferably 80 ml/m 2 ·s or less. If the solvent absorption rate of the receptive layer is within the above range, the solvent-based ink will quickly penetrate into the receptive layer. Bleeding tends to decrease when the
A specific method for measuring the solvent absorption rate of the receiving layer will be described in Examples.
<<層強度>>
 受容層の層強度は、0.9kgf/cm以上が好ましく、1.0kgf/cm以上がより好ましく、1.1kgf/cm以上がさらに好ましい。一方、受容層の層強度は、2.0kgf/cm以下が好ましく、1.9kgf/cm以下がより好ましく、1.8kgf/cm以下がさらに好ましい。受容層の層強度が上記範囲内であれば、記録用紙を屋外に掲示した際に、砂等によって受容層が削られることが少なく、耐候性が高いため、印刷絵柄を長期間維持することができる傾向がある。
 なお、受容層における層強度の具体的な測定方法は、実施例のところで説明する。
<<Layer Strength>>
The layer strength of the receiving layer is preferably 0.9 kgf/cm or more, more preferably 1.0 kgf/cm or more, and even more preferably 1.1 kgf/cm or more. On the other hand, the layer strength of the receiving layer is preferably 2.0 kgf/cm or less, more preferably 1.9 kgf/cm or less, and even more preferably 1.8 kgf/cm or less. If the layer strength of the receptive layer is within the above range, the receptive layer is less likely to be scraped by sand or the like when the recording paper is posted outdoors, and the weather resistance is high, so the printed pattern can be maintained for a long period of time. tend to be able to
A specific method for measuring the layer strength of the receiving layer will be described in Examples.
<<空孔率>>
 受容層が内部に空孔を有する場合の空孔率は、5%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましい。一方、空孔率は、70%以下が好ましい。空孔率が5%以上であることにより、溶剤吸収量が増加し、インク乾燥性が向上する傾向がある。また、空孔率が70%以下であることにより、平滑性及び光沢性が向上する傾向がある。
<<Porosity>>
When the receiving layer has pores inside, the porosity is preferably 5% or more, more preferably 10% or more, and even more preferably 15% or more. On the other hand, the porosity is preferably 70% or less. A porosity of 5% or more tends to increase solvent absorption and improve ink drying properties. Further, when the porosity is 70% or less, smoothness and glossiness tend to be improved.
<<厚み>>
 受容層の厚みは、溶剤を十分に吸収する観点から、3μm以上が好ましく、4μm以上がより好ましく、5μm以上がさらに好ましい。一方、受容層の厚みは、カールバランスの観点から、100μm以下が好ましく、90μm以下がより好ましく、80μm以下がさらに好ましい。
<<Thickness>>
The thickness of the receiving layer is preferably 3 μm or more, more preferably 4 μm or more, and even more preferably 5 μm or more, from the viewpoint of sufficiently absorbing the solvent. On the other hand, from the viewpoint of curl balance, the thickness of the receiving layer is preferably 100 μm or less, more preferably 90 μm or less, and even more preferably 80 μm or less.
(基材層)
 基材層は、熱可塑性樹脂を含有する樹脂フィルムであり、記録用紙の支持体として設けられる。基材層は、単層構造であってもよく、2層又は3層以上の多層構造のものであってもよい。また、基材層の少なくとも一方の面に受容層が積層されるため、受容層との密着性向上のために、基材層はコロナ放電処理されていてもよい
(Base material layer)
The base material layer is a resin film containing a thermoplastic resin, and is provided as a support for recording paper. The substrate layer may have a single-layer structure, or may have a multi-layer structure of two or more layers. In addition, since the receiving layer is laminated on at least one surface of the base layer, the base layer may be subjected to corona discharge treatment in order to improve adhesion to the receiving layer.
 熱可塑性樹脂としては、受容層で挙げた熱可塑性樹脂を用いることができる。なかでも、機械的強度の観点から、熱可塑性樹脂としては、ポリオレフィン系樹脂が好ましい。 As the thermoplastic resin, the thermoplastic resins listed for the receiving layer can be used. Among them, from the viewpoint of mechanical strength, the thermoplastic resin is preferably a polyolefin resin.
<ポリオレフィン系樹脂>
 ポリオレフィン系樹脂の具体的な例としては、ポリプロピレン系樹脂、ポリエチレン系樹脂、及びポリメチル-1-ペンテン等が挙げられる。
<Polyolefin resin>
Specific examples of polyolefin-based resins include polypropylene-based resins, polyethylene-based resins, and polymethyl-1-pentene.
 ポリプロピレン系樹脂としては、主なモノマーにプロピレンが用いられるのであれば特に限定されない。ポリプロピレン系樹脂としては、例えば、プロピレンを単独重合させたアイソタクティック重合体又はシンジオタクティック重合体等が挙げられる。また、ポリプロピレン系樹脂としては、主成分となるプロピレンと、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、又は1-オクテン等のα-オレフィンとの共重合体である、プロピレン-α-オレフィン共重合体等を使用することもできる。共重合体は、モノマー成分が2元系でも3元系以上の多元系でもよく、ランダム共重合体でもブロック共重合体でもよい。また、プロピレン単独重合体とプロピレン共重合体とを併用してもよい。 The polypropylene-based resin is not particularly limited as long as propylene is used as the main monomer. Examples of polypropylene-based resins include isotactic polymers and syndiotactic polymers obtained by homopolymerizing propylene. Further, as the polypropylene resin, propylene as a main component and α-olefin such as ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, or 1-octene It is also possible to use a propylene-α-olefin copolymer, etc., which is a copolymer with. The copolymer may be a binary system or a multi-component system having three or more monomer components, and may be a random copolymer or a block copolymer. Also, a propylene homopolymer and a propylene copolymer may be used in combination.
 ポリエチレン系樹脂としては、例えば密度が0.940~0.965g/cmの高密度ポリエチレン、密度が0.920~0.935g/cmの中密度ポリエチレン、密度が0.900g/cm以上0.920g/cm未満の直鎖線状低密度ポリエチレン、エチレン等を主体とし、プロピレン、ブテン、ヘキセン、ヘプテン、オクテン、4-メチルペンテン-1等のα-オレフィンを共重合させた共重合体、マレイン酸変性エチレン・酢酸ビニル共重合体、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸アルキルエステル共重合体、エチレン・メタクリル酸アルキルエステル共重合体、エチレン・メタクリル酸共重合体の金属塩(金属は亜鉛、アルミニウム、リチウム、ナトリウム、カリウム等)、エチレン・環状オレフィン共重合体、及びマレイン酸変性ポリエチレン等が挙げられる。 Examples of polyethylene-based resins include high density polyethylene with a density of 0.940 to 0.965 g/cm 3 , medium density polyethylene with a density of 0.920 to 0.935 g/cm 3 , and density of 0.900 g/cm 3 or more. Linear low-density polyethylene of less than 0.920 g/cm 3 , a copolymer mainly composed of ethylene, etc., and copolymerized with an α-olefin such as propylene, butene, hexene, heptene, octene, 4-methylpentene-1, etc. , maleic acid-modified ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid alkyl ester copolymer, ethylene-methacrylic acid alkyl ester copolymer, ethylene- Examples thereof include metal salts of methacrylic acid copolymers (metals include zinc, aluminum, lithium, sodium, potassium, etc.), ethylene/cyclic olefin copolymers, and maleic acid-modified polyethylene.
 また、ポリオレフィン系樹脂としては、その樹脂フィルムの接着性又は成形性の向上の観点から、そのグラフト変性物を必要に応じて使用することもできる。
 グラフト変性には公知の手法を用いることができる。具体的には、グラフトモノマーとして不飽和カルボン酸又はその誘導体を用いたグラフト変性物を挙げることができる。上記不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、及びシトラコン酸等を挙げることができる。上記不飽和カルボン酸の誘導体としては、例えば、上記不飽和カルボン酸の酸無水物、エステル化物、アミド化物、イミド化物、及び金属塩等を挙げることができる。
Further, as the polyolefin resin, a graft-modified product thereof can be used as needed from the viewpoint of improving the adhesiveness or moldability of the resin film.
A known technique can be used for graft modification. Specifically, a graft-modified product using an unsaturated carboxylic acid or a derivative thereof as a graft monomer can be mentioned. Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid. Examples of the unsaturated carboxylic acid derivatives include acid anhydrides, esterified products, amidated products, imidized products, and metal salts of the above unsaturated carboxylic acids.
 具体的なグラフトモノマーとしては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル、イタコン酸モノメチルエステル、イタコン酸ジエチルエステル、(メタ)アクリルアミド、マレイン酸モノアミド、マレイン酸ジアミド、マレイン酸-N-モノエチルアミド、マレイン酸-N,N-ジエチルアミド、マレイン酸-N-モノブチルアミド、マレイン酸-N,N-ジブチルアミド、フマル酸モノアミド、フマル酸ジアミド、フマル酸-N-モノエチルアミド、フマル酸-N,N-ジエチルアミド、フマル酸-N-モノブチルアミド、フマル酸-N,N-ジブチルアミド、マレイミド、N-ブチルマレイミド、N-フェニルマレイミド、(メタ)アクリル酸ナトリウム、及び(メタ)アクリル酸カリウム等を挙げることができる。 Specific graft monomers include, for example, maleic anhydride, itaconic anhydride, citraconic anhydride, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, glycidyl (meth)acrylate, Maleic acid monoethyl ester, maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, (meth)acrylamide, maleic acid monoamide, maleic acid diamide, maleic acid-N-mono Ethylamide, maleic acid-N,N-diethylamide, maleic acid-N-monobutylamide, maleic acid-N,N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoethylamide, fumaric acid -N,N-diethylamide, fumaric acid-N-monobutylamide, fumaric acid-N,N-dibutylamide, maleimide, N-butylmaleimide, N-phenylmaleimide, sodium (meth)acrylate, and (meth)acrylic Potassium acid and the like can be mentioned.
 グラフトモノマーは、ポリオレフィン系樹脂に対して、通常0.005~10質量%、好ましくは0.01~5質量%用いることができる。 The graft monomer can be used in an amount of usually 0.005 to 10% by mass, preferably 0.01 to 5% by mass, relative to the polyolefin resin.
 基材層に用いるポリオレフィン系樹脂としては、上記の中から1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。成形性、機械的強度又はコスト等の観点からは、基材層としては、ポリプロピレン系樹脂又はポリエチレン系樹脂の樹脂フィルムであることが好ましく、ポリプロピレン系樹脂の樹脂フィルムであることがより好ましい。なかでも、プロピレン単独重合体が基材層の主原料として取扱いやすく、好ましい。 As the polyolefin resin used for the base material layer, one of the above may be used alone, or two or more may be used in combination. From the viewpoint of moldability, mechanical strength, cost, etc., the substrate layer is preferably a resin film of polypropylene resin or polyethylene resin, and more preferably a resin film of polypropylene resin. Among them, a propylene homopolymer is preferable because it is easy to handle as a main raw material for the base material layer.
 ポリプロピレン系樹脂の樹脂フィルムには、フィルム成形性の観点から、プロピレン単独重合体と融点が同等程度以下の樹脂を併用することが可能である。そのような樹脂としてはポリエチレン系樹脂、具体的には高密度又は低密度のポリエチレンが挙げられる。ポリエチレン系樹脂の含有量は、例えば2~25質量%とすることができる。 From the viewpoint of film moldability, it is possible to use a resin with a melting point equal to or lower than that of a propylene homopolymer in a polypropylene resin film. Such resins include polyethylene-based resins, specifically high density or low density polyethylene. The content of polyethylene-based resin can be, for example, 2 to 25% by mass.
 基材層は、熱可塑性樹脂としてポリオレフィン系樹脂のみを用いた樹脂フィルムであってもよいし、本発明の効果を阻害しない範囲でポリオレフィン系樹脂以外の熱可塑性樹脂が含有されていてもよい。 The base material layer may be a resin film using only a polyolefin-based resin as the thermoplastic resin, or may contain a thermoplastic resin other than the polyolefin-based resin within a range that does not impair the effects of the present invention.
<フィラー>
 基材層は、フィラーを含有してもよい。基材層がフィラーを含有することにより、基材層が延伸フィルムである場合に、延伸によりフィラーを起点とした空孔が形成され多孔質層となる。基材層が多孔質層である場合、基材層及び記録用紙の軽量化が可能となる。さらには、基材層が多孔質層であることにより紙の風合いを有する白色フィルムが得られやすくなる。したがって、基材層中のフィラー含有の有無により、フィルムの白色度又は不透明度の調整が容易となる。
<Filler>
The base material layer may contain a filler. When the base material layer is a stretched film, the base material layer contains a filler, and voids originating from the filler are formed by stretching to form a porous layer. When the substrate layer is a porous layer, it is possible to reduce the weight of the substrate layer and the recording paper. Furthermore, since the substrate layer is a porous layer, it becomes easier to obtain a white film having a texture of paper. Therefore, it becomes easy to adjust the whiteness or opacity of the film depending on the presence or absence of the filler contained in the base material layer.
 基材層に用いることができるフィラーは、受容層で挙げたものと同一のものを用いることができる。フィラーとしては、無機フィラー及び有機フィラーをそれぞれ単独で用いることもできるし、併用することもできる。
 基材層におけるフィラーの含有量(無機フィラーと有機フィラーを併用する場合は、その合計量)は、0~60質量%であることが好ましく、0~50質量%がより好ましい。
As the filler that can be used in the substrate layer, the same fillers as those listed in the receiving layer can be used. As the filler, an inorganic filler and an organic filler can be used alone or in combination.
The content of the filler in the base material layer (the total amount when an inorganic filler and an organic filler are used together) is preferably 0 to 60% by mass, more preferably 0 to 50% by mass.
<その他の成分>
 基材層は、必要に応じて、熱安定剤(酸化防止剤)、光安定剤、分散剤、滑剤、又は核剤等をさらに含有することができる。
 熱安定剤としては、例えば立体障害フェノール系酸化防止剤、リン系酸化防止剤、又はアミン系酸化防止剤等を、通常0.001~1質量%の範囲内で使用することができる。
 光安定剤としては、例えば立体障害アミン系光安定剤、ベンゾトリアゾール系光安定剤、又はベンゾフェノン系光安定剤を、通常0.001~1質量%の範囲内で使用することができる。
 分散剤又は滑剤としては、例えばシランカップリング剤、オレイン酸やステアリン酸等の高級脂肪酸、金属石鹸、ポリアクリル酸、ポリメタクリル酸又はそれらの塩等が挙げられる。これらは、例えばフィラーを分散させる目的で、通常0.01~4質量%の範囲内で使用することができる。
<Other ingredients>
The substrate layer may further contain a heat stabilizer (antioxidant), light stabilizer, dispersant, lubricant, nucleating agent, or the like, if necessary.
As the heat stabilizer, for example, a sterically hindered phenolic antioxidant, a phosphorus antioxidant, an amine antioxidant, or the like can be used, usually within the range of 0.001 to 1% by mass.
As the light stabilizer, for example, a sterically hindered amine light stabilizer, a benzotriazole light stabilizer, or a benzophenone light stabilizer can be used within the range of 0.001 to 1% by mass.
Examples of dispersants or lubricants include silane coupling agents, higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acid, polymethacrylic acid, and salts thereof. For the purpose of dispersing fillers, for example, these can be used within the range of 0.01 to 4% by mass.
 基材層は、無延伸フィルムであってもよく、延伸フィルムであってもよい。記録用紙の強度を高める観点から、基材層は、少なくとも一方向に延伸された延伸フィルムであることが好ましい。
 基材層が多層構造である場合、少なくとも一方向に延伸された延伸フィルムを含むことが好ましく、内部に空孔を有する多孔質延伸フィルムを含むことがより好ましい。延伸フィルムを含む基材層は、機械的強度が高く、厚みの均一性に優れているため、後加工性に優れた記録用紙を得ることができる。
 基材層が多層構造である場合、各層の延伸軸数は、1軸/1軸、1軸/2軸、2軸/1軸、1軸/1軸/2軸、1軸/2軸/1軸、2軸/1軸/1軸、1軸/2軸/2軸、2軸/2軸/1軸、又は2軸/2軸/2軸であってもよい。
The substrate layer may be an unstretched film or a stretched film. From the viewpoint of increasing the strength of the recording paper, the substrate layer is preferably a stretched film stretched in at least one direction.
When the substrate layer has a multilayer structure, it preferably contains a stretched film stretched in at least one direction, and more preferably contains a porous stretched film having pores therein. Since the base layer containing the stretched film has high mechanical strength and excellent thickness uniformity, it is possible to obtain a recording paper having excellent post-processing properties.
When the substrate layer has a multilayer structure, the number of stretching axes of each layer is 1 axis/1 axis, 1 axis/2 axes, 2 axes/1 axis, 1 axis/1 axis/2 axes, 1 axis/2 axes/ It may be 1-axis, 2-axis/1-axis/1-axis, 1-axis/2-axis/2-axis, 2-axis/2-axis/1-axis, or 2-axis/2-axis/2-axis.
<基材層の特性>
<<空孔率>>
 基材層は、空孔をフィルム内部に多数有するものであることが好ましい。すなわち、基材層は多孔質層であることが好ましい。また、次式(1)で算出された空孔率が5~60%であることが好ましく、10~45%であることがより好ましい。空孔の存在により、光拡散率の向上し、不透明度の高い基材層を得ることが可能となる。さらに、空孔の存在により、空孔が溶剤系インク中の溶剤への膨潤による寸法変化を抑制し、溶剤インクジェット印刷後の記録用紙の波打ちの発生を抑制できる傾向がある。
<Characteristics of base material layer>
<<Porosity>>
The substrate layer preferably has a large number of pores inside the film. That is, the substrate layer is preferably a porous layer. Also, the porosity calculated by the following formula (1) is preferably 5 to 60%, more preferably 10 to 45%. The presence of the pores improves the light diffusion rate and makes it possible to obtain a base layer with high opacity. Furthermore, the presence of pores tends to suppress dimensional change due to swelling of the solvent in the solvent-based ink, thereby suppressing waviness of the recording paper after solvent ink jet printing.
Figure JPOXMLDOC01-appb-M000001
(ρは基材層の真密度を示し、ρは基材層の密度を示す)
Figure JPOXMLDOC01-appb-M000001
0 indicates the true density of the substrate layer, ρ indicates the density of the substrate layer)
<<厚み>>
 基材層の厚みは、40~200μmが好ましく、より好ましくは50~150μmである。基材層の厚みが上記範囲内であれば、ガーレ剛軟度が高くなり、またカールバランスに優れる。
<<Thickness>>
The thickness of the substrate layer is preferably 40-200 μm, more preferably 50-150 μm. If the thickness of the base material layer is within the above range, the Gurley bending resistance is high and the curl balance is excellent.
<コア層及び裏面層>
 基材層は、上述したように単層構造であってもよく、2層又は3層以上の多層構造のものであってもよい。基材層が多層構造であると、各層で特性を異ならせて様々な機能を発揮させることができため好ましい。特に、基材層20は、図2に示すようにコア層21及び裏面層22を有することが好ましい。
<Core layer and back layer>
The substrate layer may have a single-layer structure as described above, or may have a multi-layer structure of two or more layers. When the substrate layer has a multi-layer structure, each layer can have different properties to exhibit various functions, which is preferable. In particular, the base material layer 20 preferably has a core layer 21 and a back layer 22 as shown in FIG.
<コア層>
 コア層は、熱可塑性樹脂を含有する樹脂フィルムであり、記録用紙の支持体として設けられる。コア層の組成は基材層の組成と同一である。
<Core layer>
The core layer is a resin film containing a thermoplastic resin and provided as a support for the recording paper. The composition of the core layer is the same as the composition of the substrate layer.
 コア層の厚みは、後述する裏面層の厚さに応じて適宜決定することができる。コア層の厚みとしては、十分なコシを得る観点から、40~200μmが好ましく、より好ましくは50~150μmである。 The thickness of the core layer can be appropriately determined according to the thickness of the back layer described later. The thickness of the core layer is preferably 40 to 200 μm, more preferably 50 to 150 μm, from the viewpoint of obtaining sufficient stiffness.
 コア層の空孔率は、5~60%であることが好ましく、10~45%であることがより好ましい。空孔の存在により、光拡散率が向上し、不透明度の高いコア層を得ることが可能となる。 The porosity of the core layer is preferably 5-60%, more preferably 10-45%. The presence of the pores improves the light diffusion rate, making it possible to obtain a core layer with high opacity.
<裏面層>
 裏面層は、受容層とは反対側のコア層表面に設けられる。裏面層は、主として、記録用紙を重ねて保管する際、印刷後の溶剤が受容層から蒸散することを促進し、溶剤による紙面の波打ちを抑制する機能を有する。また、裏面層表面は、平滑性を備える受容層とは異なり、適度な表面粗さを有している。裏面層表面が適度な表面粗さを有することにより、記録用紙を重ねて保管する際、ブロッキングの発生を防ぐことができる。
<Back layer>
The back layer is provided on the surface of the core layer opposite to the receiving layer. The back layer mainly has a function of promoting the evaporation of the solvent after printing from the receiving layer and suppressing waviness of the paper surface due to the solvent when the recording sheets are stacked and stored. Further, the surface of the back surface layer has moderate surface roughness unlike the receiving layer which has smoothness. When the recording paper is stacked and stored, the occurrence of blocking can be prevented by providing the surface of the back surface layer with a suitable surface roughness.
 また、裏面層は、記録用紙に帯電防止性能を付与することによって印刷工程でのトラブルを発生し難くしてハンドリング性を改善させることができる。
 裏面層が帯電防止性能を有することにより、記録用紙が内部に電荷を有している場合であっても、裏面層面は静電吸着力が低いものとなり、印刷工程でロールへの貼り付きやシート同士のブロッキング等のトラブルが発生し難いものとなる。
In addition, the back layer imparts antistatic properties to the recording paper, thereby making it difficult for troubles to occur in the printing process and improving handling properties.
Because the back layer has antistatic properties, even if the recording paper has an electric charge inside, the back layer surface has a low electrostatic adsorption force, which prevents sticking to the roll and the sheet during the printing process. This makes it difficult for troubles such as mutual blocking to occur.
<裏面層の組成>
 裏面層には、基材層と同様の材料を用いることができる。ただし、裏面層におけるフィラーの含有量(無機フィラーと有機フィラーを併用する場合は、その合計量)は、表面粗さ及び静摩擦係数の観点から、5~60質量%であることが好ましく、10~50質量%がより好ましい。
<Composition of Back Layer>
The same material as the base layer can be used for the back layer. However, the content of the filler in the back layer (the total amount when an inorganic filler and an organic filler are used together) is preferably 5 to 60% by mass from the viewpoint of surface roughness and static friction coefficient, and 10 to 10% by mass. 50% by mass is more preferred.
 裏面層の厚みは、上述したコア層の厚さに応じて適宜決定することができる。裏面層の厚みとしては、適当な表面粗さの発現の観点から、1~50μmが好ましく、1~20μmがより好ましく、さらに好ましくは2~10μmである。 The thickness of the back layer can be appropriately determined according to the thickness of the core layer described above. The thickness of the back layer is preferably 1 to 50 μm, more preferably 1 to 20 μm, and still more preferably 2 to 10 μm, from the viewpoint of developing appropriate surface roughness.
 裏面層の空孔率は、5~60%であることが好ましく、5~50%であることがより好ましく、10~40%であることがより好ましい。空孔の存在により、裏面層の表面粗さを所定の範囲に制御することができる傾向がある。 The porosity of the back layer is preferably 5-60%, more preferably 5-50%, and more preferably 10-40%. Due to the presence of pores, there is a tendency that the surface roughness of the back layer can be controlled within a predetermined range.
 裏面層の表面にはさらに塗布層を設けることもできる。塗布層は、アンカー剤及びポリマー型帯電防止剤等を含むことができる。塗布層がアンカー剤を含むことにより、塗布層の上にインクジェット印刷層を設ける場合、塗布層とインクジェット印刷層との密着性を向上することができる傾向がある。また、塗布層が帯電防止剤を含むことにより、裏面層側の帯電防止性能を向上することができる傾向がある。アンカー剤としては、例えば、ポリイミン系重合体、及びポリアミンポリアミドのエチレンイミン付加物等が挙げられる。また、ポリマー型帯電防止剤としては、アンモニウム塩構造やホスホニウム塩構造を有するもの等が挙げられる。アンカー剤及び帯電防止剤を併用する場合、個々の成分の性能を十分に発揮させる観点から、固形分比率でアンカー剤100質量部に対し、帯電防止剤0~200質量部が好ましく、より好ましくは20~150質量部、さらに好ましくは30~100質量部である。 A coating layer can also be provided on the surface of the back layer. The coating layer can contain an anchoring agent, a polymeric antistatic agent, and the like. By including the anchoring agent in the coating layer, when the inkjet printing layer is provided on the coating layer, there is a tendency that the adhesion between the coating layer and the inkjet printing layer can be improved. In addition, when the coating layer contains an antistatic agent, there is a tendency that the antistatic performance of the back layer side can be improved. Examples of anchoring agents include polyimine-based polymers and ethyleneimine adducts of polyamine polyamides. Polymer-type antistatic agents include those having an ammonium salt structure or a phosphonium salt structure. When an anchoring agent and an antistatic agent are used in combination, from the viewpoint of fully exhibiting the performance of each component, the solid content ratio is preferably 0 to 200 parts by mass of the antistatic agent with respect to 100 parts by mass of the anchoring agent, more preferably. 20 to 150 parts by mass, more preferably 30 to 100 parts by mass.
[記録用紙の特性]
(剛軟度)
 記録用紙はポスター等の掲示物の使用にも適しており、掲示物の使用の用途の場合は貼付時の扱いやすさの観点からある程度の剛性を有していることが好ましい。記録用紙の剛軟度は、0.3mN以上が好ましく、0.4mN以上がより好ましく、0.5mN以上がさらに好ましい。一方、記録用紙の剛軟度は、10mN以下が好ましく、5mN以下がより好ましく、3mN以下がさらに好ましい。記録用紙の剛軟度が上記範囲内であれば、記録用紙自体にコシがあって取り扱いが容易となる。また、被貼付体に貼付する際等にしわが入りにくくなる傾向がある。さらに、印刷後の波打ちを抑制することができる傾向がある。
 本実施形態における剛軟度はJIS L1096:2010による曲げ反発A法(ガーレ法)に基づくものである。
 なお、記録用紙におけるガーレ法による剛軟度の具体的な測定方法は、実施例のところで説明する。
[Characteristics of recording paper]
(bending resistance)
The recording paper is also suitable for use in posters and other notices, and in the case of use for notices, it is preferable that it has a certain degree of rigidity from the viewpoint of ease of handling at the time of pasting. The bending resistance of the recording paper is preferably 0.3 mN or more, more preferably 0.4 mN or more, and even more preferably 0.5 mN or more. On the other hand, the bending resistance of the recording paper is preferably 10 mN or less, more preferably 5 mN or less, and even more preferably 3 mN or less. If the bending resistance of the recording paper is within the above range, the recording paper itself is stiff and easy to handle. In addition, there is a tendency that wrinkles are less likely to occur when sticking to a sticking object. Furthermore, there is a tendency that waviness after printing can be suppressed.
The bending resistance in this embodiment is based on the bending repulsion A method (Gurley method) according to JIS L1096:2010.
A specific method for measuring the bending resistance of recording paper by the Gurley method will be described in Examples.
(光沢度)
 記録用紙の受容層側表面の光沢度は、50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。受容層表面の光沢度が上記下限値以上であれば、少なくとも顔料コート等を用いた記録用紙と比べて十分高い光沢度が得られていると言え、画像が鮮明となり、かつ見栄えが良くなる傾向がある。
 本実施形態における光沢度はJIS P 8142:1993による光沢度に基づくものである。
 なお、記録用紙の受容層側表面の光沢度の具体的な測定方法は、実施例のところで説明する。
(Glossiness)
The glossiness of the receiving layer side surface of the recording paper is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more. If the glossiness of the surface of the receiving layer is equal to or higher than the above lower limit, it can be said that a sufficiently high glossiness is obtained at least as compared with recording paper using a pigment coating or the like, and images tend to be sharp and have good appearance. There is
The glossiness in this embodiment is based on the glossiness according to JIS P 8142:1993.
A specific method for measuring the glossiness of the receiving layer side surface of the recording paper will be described in Examples.
(静摩擦係数)
 記録用紙の受容層側表面の静摩擦係数は、0.10以上が好ましく、0.20以上がより好ましく、0.30以上がさらに好ましい。一方、記録用紙の受容層側表面の静摩擦係数は、0.70以下が好ましく、0.65以下がより好ましく、0.60以下がさらに好ましい。記録用紙の受容層側表面の静摩擦係数が上記範囲内であれば、印刷機における記録用紙の搬送精度が良好となる。なお、摩擦係数は受容層側表面の算術平均粗さにも影響を受け、この算術平均粗さが大きくなると静摩擦係数が低下する傾向がある。
 本実施形態における静摩擦係数はJIS K7125:1999に基づくものである。
 なお、記録用紙の受容層側表面の静摩擦係数の具体的な測定方法は、実施例のところで説明する。
(Static friction coefficient)
The coefficient of static friction of the receiving layer side surface of the recording paper is preferably 0.10 or more, more preferably 0.20 or more, and even more preferably 0.30 or more. On the other hand, the coefficient of static friction of the receiving layer side surface of the recording paper is preferably 0.70 or less, more preferably 0.65 or less, and even more preferably 0.60 or less. If the coefficient of static friction of the receiving layer side surface of the recording paper is within the above range, the conveying accuracy of the recording paper in the printing machine will be good. The coefficient of friction is also affected by the arithmetic mean roughness of the receiving layer side surface, and the coefficient of static friction tends to decrease as the arithmetic mean roughness increases.
The static friction coefficient in this embodiment is based on JIS K7125:1999.
A specific method for measuring the coefficient of static friction of the receiving layer side surface of the recording paper will be described in Examples.
(算術平均粗さ(Ra))
 記録用紙の基材層側表面(基材層としてコア層及び裏面層を設けた場合は裏面層側)の算術平均粗さ(Ra)は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。一方、記録用紙の基材層側表面の算術平均粗さは、1.0μm以下が好ましく、0.9μm以下がより好ましく、0.8μm以下がさらに好ましい。記録用紙の基材層側表面の算術平均粗さ(Ra)が上記範囲内であれば、記録用紙を重ねて保管した際、ブロッキングの発生を抑制することができる傾向がある。
 本実施形態における算術平均粗さ(Ra)はJIS B0601:2003に基づくものである。
 なお、記録用紙の基材層側表面の算術平均粗さ(Ra)の具体的な測定方法は、実施例のところで説明する。
(Arithmetic mean roughness (Ra))
The arithmetic mean roughness (Ra) of the substrate layer side surface of the recording paper (the back surface layer side when the core layer and the back surface layer are provided as the substrate layer) is preferably 0.1 μm or more, and more preferably 0.2 μm or more. It is preferably 0.3 μm or more, and more preferably 0.3 μm or more. On the other hand, the arithmetic mean roughness of the substrate layer side surface of the recording paper is preferably 1.0 μm or less, more preferably 0.9 μm or less, and even more preferably 0.8 μm or less. If the arithmetic mean roughness (Ra) of the surface of the recording paper on the substrate layer side is within the above range, the occurrence of blocking tends to be suppressed when the recording papers are stacked and stored.
The arithmetic mean roughness (Ra) in this embodiment is based on JIS B0601:2003.
A specific method for measuring the arithmetic mean roughness (Ra) of the substrate layer side surface of the recording paper will be described in Examples.
(表面抵抗率)
 記録用紙の基材層側表面(基材層としてコア層及び裏面層を設けた場合は裏面層側)の表面抵抗率は、1×10-1Ω以上が好ましく、1×10Ω以上がより好ましく、1×10Ω以上がさらに好ましい。一方、記録用紙の基材層側表面の表面抵抗率は、9×1012Ω以下が好ましく、5×1012Ω以下がより好ましく、1×1012Ω以下がさらに好ましい。記録用紙の基材層側表面の表面抵抗率が上記範囲内であれば、印刷工程でロールへの貼り付きや記録用紙同士のブロッキング等の発生を抑制することができる傾向がある。
 本実施形態における表面抵抗率はJIS K6911:2006に基づくものである。
 なお、記録用紙の基材層側表面の表面抵抗率の具体的な測定方法は、実施例のところで説明する。
(Surface resistivity)
The surface resistivity of the substrate layer side surface of the recording paper (or the back layer side when a core layer and a back layer are provided as the substrate layer) is preferably 1×10 −1 Ω or more, and preferably 1×10 1 Ω or more. More preferably, it is 1×10 8 Ω or more. On the other hand, the surface resistivity of the substrate layer side surface of the recording paper is preferably 9×10 12 Ω or less, more preferably 5×10 12 Ω or less, and even more preferably 1×10 12 Ω or less. If the surface resistivity of the substrate layer side surface of the recording paper is within the above range, it tends to be possible to suppress the occurrence of sticking to rolls and blocking between recording papers in the printing process.
The surface resistivity in this embodiment is based on JIS K6911:2006.
A specific method for measuring the surface resistivity of the surface of the recording paper on the substrate layer side will be described in Examples.
(厚み)
 本実施形態の記録用紙は、少なくとも受容層及び基材層を含むものであり、記録用紙の全体厚みは40~200μmが好ましい。本実施形態では、紙的な風合をさらに付加させるために受容層と基材層との間に、例えば無機フィラーを8~55質量%含有するプロピレン系樹脂の層等のその他の層をさらに形成してもよい。さらに、その他の層には、延伸性を良好とするために少量のプロピレン系共重合体、高密度ポリエチレン、ポリスチレン、エチレン・酢酸ビニル共重合体の低融点樹脂等を含有させることもできる。
(thickness)
The recording paper of this embodiment includes at least a receiving layer and a substrate layer, and the total thickness of the recording paper is preferably 40 to 200 μm. In the present embodiment, another layer such as a propylene-based resin layer containing 8 to 55% by mass of an inorganic filler is further added between the receiving layer and the substrate layer in order to further add a paper-like texture. may be formed. Further, other layers may contain a small amount of propylene copolymer, high-density polyethylene, polystyrene, low-melting-point resin such as ethylene-vinyl acetate copolymer, etc., in order to improve stretchability.
[記録用紙の製造方法]
 本実施形態の記録用紙は、受容層及び基材層(コア層及び裏面層)をこの順に積層することにより製造することができ、その製造方法は特に限定されない。例えば以下の方法により、受容層、コア層及び裏面層からなる記録用紙を製造することができる。
[Manufacturing method of recording paper]
The recording paper of the present embodiment can be produced by laminating a receiving layer and a substrate layer (core layer and back layer) in this order, and the production method is not particularly limited. For example, a recording paper comprising a receptor layer, a core layer and a back layer can be produced by the following method.
 予めコア層用の樹脂組成物を溶融混練し、これをシート状に押し出し、ロール群の周速差を利用して縦方向に延伸する。次いで、この縦延伸フィルム上に、予め受容層用の樹脂組成物及び裏面層用の樹脂組成物を別々に溶融混練し、所望の層構成になるように、シート状にラミネートし、これを横方向にテンターを用い、特定の温度で延伸する。そして熱処理、冷却により記録用紙を得ることができる。 A resin composition for the core layer is melted and kneaded in advance, extruded into a sheet, and stretched in the longitudinal direction using the difference in peripheral speed between rolls. Next, on this longitudinally stretched film, the resin composition for the receptor layer and the resin composition for the back layer are separately melt-kneaded in advance, laminated into a sheet so as to have a desired layer structure, and then laminated in a sheet form. It is stretched at a specific temperature using a tenter in the direction. Then, a recording paper can be obtained by heat treatment and cooling.
(延伸)
 各層は、積層前に個別に延伸されていてもよいし、積層後にともに延伸されてもよい。また、無延伸層と延伸層とが積層された後に再び延伸されてもよい。
(stretching)
Each layer may be stretched individually prior to lamination or may be stretched together after lamination. Alternatively, the unstretched layer and the stretched layer may be laminated and then stretched again.
 フィルムを延伸する場合の延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次二軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸法、及びテンターオーブンとリニアモーターの組み合わせによる同時二軸延伸法等が挙げられる。また、延伸方法としては、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時二軸延伸(インフレーション成形)法等も使用できる。 Examples of stretching methods for stretching a film include a longitudinal stretching method utilizing a peripheral speed difference between rolls, a transverse stretching method utilizing a tenter oven, a sequential biaxial stretching method combining these methods, a rolling method, and a tenter oven. A simultaneous biaxial stretching method using a combination of pantographs and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor can be used. In addition, as a stretching method, a simultaneous biaxial stretching (inflation molding) method of extruding a molten resin into a tubular shape using a circular die connected to a screw type extruder and then blowing air into it can also be used. .
 延伸を実施するときの延伸温度は、フィルムに使用する熱可塑性樹脂が、非結晶性樹脂の場合は当該熱可塑性樹脂のガラス転移点温度以上の範囲であることが好ましい。また、熱可塑性樹脂が結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂の非結晶部分のガラス転移点以上であって、かつ当該熱可塑性樹脂の結晶部分の融点以下の範囲内であることが好ましく、具体的には熱可塑性樹脂の融点よりも2~60℃低い温度が好ましい。 When the thermoplastic resin used for the film is an amorphous resin, the stretching temperature when stretching is preferably in the range of the glass transition temperature of the thermoplastic resin or higher. Also, when the thermoplastic resin is a crystalline resin, the stretching temperature should be above the glass transition point of the non-crystalline portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin. is preferred, and specifically, a temperature lower than the melting point of the thermoplastic resin by 2 to 60°C is preferred.
 延伸速度は、特に限定されるものではないが、安定した延伸成形の観点から、20~350m/分の範囲内であることが好ましい。
 また、延伸倍率についても、使用する熱可塑性樹脂の特性等を考慮して適宜決定することができる。例えば、プロピレンの単独重合体又はその共重合体を含む樹脂フィルムを一方向に延伸する場合、その延伸倍率は、下限が通常は1.2倍以上であり、好ましくは2倍以上である一方、上限が通常は12倍以下であり、好ましくは10倍以下である。二軸延伸する場合の延伸倍率は、面積延伸倍率で、下限が通常は1.5倍以上であり、好ましくは10倍以上である一方、上限が通常は60倍以下であり、好ましくは50倍以下である。
The stretching speed is not particularly limited, but from the viewpoint of stable stretching molding, it is preferably in the range of 20 to 350 m/min.
In addition, the draw ratio can also be appropriately determined in consideration of the properties of the thermoplastic resin to be used. For example, when a resin film containing a propylene homopolymer or a copolymer thereof is stretched in one direction, the lower limit of the draw ratio is usually 1.2 times or more, preferably 2 times or more. The upper limit is usually 12 times or less, preferably 10 times or less. The draw ratio in the case of biaxial stretching is an area draw ratio, and the lower limit is usually 1.5 times or more, preferably 10 times or more, while the upper limit is usually 60 times or less, preferably 50 times. It is below.
(表面処理)
 基材層は、受容層との密着性を高める観点から、酸化処理が施されて表面が活性化していることが好ましい。また、受容層の表面は酸化処理が施されていてもよい。酸化処理により、表面の濡れ性を調整でき、印刷の滲みを抑制することができる傾向がある。
 酸化処理としては、コロナ放電処理、フレーム処理、プラズマ処理、グロー放電処理、又はオゾン処理等が挙げられ、これら処理は組み合わせることができる。なかでも、酸化処理としては、コロナ放電処理又はフレーム処理が好ましく、コロナ放電処理がより好ましい。
(surface treatment)
From the viewpoint of enhancing adhesion to the receiving layer, the substrate layer is preferably subjected to an oxidation treatment to activate its surface. Moreover, the surface of the receiving layer may be subjected to an oxidation treatment. Oxidation treatment tends to adjust the wettability of the surface and suppress print bleeding.
Examples of oxidation treatment include corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, ozone treatment, and the like, and these treatments can be combined. Among them, the oxidation treatment is preferably corona discharge treatment or flame treatment, and more preferably corona discharge treatment.
 コロナ放電処理を実施する場合の放電量は、好ましくは600J/m(10W・分/m)以上であり、より好ましくは1,200J/m(20W・分/m)以上である一方、好ましくは12,000J/m(200W・分/m)以下であり、より好ましくは10,800J/m(180W・分/m)以下である。フレーム処理を実施する場合の放電量は、好ましくは8,000J/m以上であり、より好ましくは20,000J/m以上である一方、好ましくは200,000J/m以下であり、より好ましくは100,000J/m以下である。 The amount of discharge when performing corona discharge treatment is preferably 600 J/m 2 (10 W·min/m 2 ) or more, more preferably 1,200 J/m 2 (20 W·min/m 2 ) or more. On the other hand, it is preferably 12,000 J/m 2 (200 W·min/m 2 ) or less, more preferably 10,800 J/m 2 (180 W·min/m 2 ) or less. The discharge amount when flame treatment is performed is preferably 8,000 J/m 2 or more, more preferably 20,000 J/m 2 or more, and preferably 200,000 J/m 2 or less. It is preferably 100,000 J/m 2 or less.
 裏面層の表面に塗布層を設ける場合の塗工手段としては、具体的には、グラビア塗工、メイヤーバー塗工、ロール塗工、ブレード塗工、又はサイズプレス塗工等の塗工手段を採用することができる。また、塗工量は一般的には0.01~20g/m、好ましくは0.1~15g/mにすることができる。 Specific examples of coating means for providing a coating layer on the surface of the back layer include gravure coating, Meyer bar coating, roll coating, blade coating, size press coating, and the like. can be adopted. Also, the coating amount can be generally 0.01 to 20 g/m 2 , preferably 0.1 to 15 g/m 2 .
[記録用紙の用途]
 上記のようにして得られる記録用紙は、溶剤と溶剤系インク特有の色材を用いた溶剤系インクに対して、好適に用いることができる。
[Use of recording paper]
The recording paper obtained as described above can be suitably used for a solvent-based ink using a solvent and a coloring material peculiar to the solvent-based ink.
 溶剤系インクに用いられる溶剤としては、例えば、ポリオキシエチレングリコールジアルキルエーテル、ポリオキシエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのグリコールエーテル系溶剤が挙げられる。溶剤系インクに用いられる色材としては、例えば、油溶性染料としてナフトール染料、アゾ染料、金属錯塩染料、アントラキノン染料、キノイミン染料、インジゴ染料、シアニン染料、キノリン染料、ニトロ染料、ニトロソ染料、ベンゾキノン染料、カーボニウム染料、ナフトキノン染料、ナフタルイミド染料、フタロシアニン染料、ペリニン染料等が挙げられる。顔料としては、カーボンブラック、各種色顔料が使用されており、有機顔料として不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料、ペリノン顔料、ニトロ顔料、ニトロソ顔料、ペリレン顔料、及びアニリンブラック等が挙げられる。 Examples of solvents used for solvent-based inks include glycol ether-based solvents such as polyoxyethylene glycol dialkyl ether, polyoxyethylene glycol monoalkyl ether, and polypropylene glycol monoalkyl ether. Examples of coloring materials used in solvent-based inks include oil-soluble dyes such as naphthol dyes, azo dyes, metal complex dyes, anthraquinone dyes, quinoimine dyes, indigo dyes, cyanine dyes, quinoline dyes, nitro dyes, nitroso dyes, and benzoquinone dyes. , carbonium dyes, naphthoquinone dyes, naphthalimide dyes, phthalocyanine dyes, and perine dyes. Carbon black and various color pigments are used as pigments, and organic pigments include insoluble azo pigments, condensed azo pigments, chelate azo pigments, perinone pigments, nitro pigments, nitroso pigments, perylene pigments, and aniline black.
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples. Descriptions of "parts", "%", etc. in the examples are based on mass unless otherwise specified.
[試験方法]
(溶剤吸収量)
 記録用紙の受容層の溶剤吸収量は、JIS P 8140で規定される吸水度試験器を用いて測定することができる。記録用紙の溶剤吸収量は、試験片における受容層の表面に溶剤(富士フイルム和光純薬(株)製ジエチレングリコールエチルメチルエーテル)を60秒間接触させ、余分な溶剤を除去した後に試験片の質量を測定した。次いで、元の試験片の質量から測定した試験片の質量を差し引き、1mあたりに吸収した溶剤の質量を溶剤吸収量(ml/m)とした。
[Test method]
(Amount of solvent absorbed)
The solvent absorption amount of the receiving layer of the recording paper can be measured using a water absorption tester specified in JIS P 8140. The amount of solvent absorbed by the recording paper was determined by contacting the surface of the receptive layer of the test piece with a solvent (diethylene glycol ethyl methyl ether manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) for 60 seconds, removing excess solvent, and measuring the weight of the test piece. It was measured. Then, the mass of the test piece measured was subtracted from the original mass of the test piece, and the mass of the solvent absorbed per 1 m 2 was taken as the solvent absorption amount (ml/m 2 ).
(溶剤吸収速度)
 記録用紙の受容層の溶剤吸収速度は、JIS P 8140で規定される吸水度試験器を用いて測定することができる。記録用紙の溶剤吸収速度は、試験片における受容層の表面に溶剤(富士フイルム和光純薬(株)製、ジエチレングリコールエチルメチルエーテル)を5秒間接触させ、溶剤吸収量を算出し、溶剤接触時間で除した値を溶剤吸収速度(ml/m・s)とした。
(solvent absorption speed)
The solvent absorption rate of the receiving layer of the recording paper can be measured using a water absorption tester specified in JIS P8140. The solvent absorption speed of the recording paper was determined by contacting the surface of the receiving layer of the test piece with a solvent (diethylene glycol ethyl methyl ether, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) for 5 seconds, calculating the amount of solvent absorption, and calculating the solvent contact time. The value obtained by dividing was taken as the solvent absorption rate (ml/m 2 ·s).
<層強度>
 記録用紙の受容層の層強度は、受容層側表面にセロハンテープ(ニチバン(株)製、商品名:CT-18)を貼り付け、JAPAN TAPPI No.18-2(内部結合強さ試験方法)に準じてインターナルボンドテスター(熊谷理機工業(株)社製、商品名)を用い、インクの剥離強度を測定し、2回の測定結果の平均値を層強度とした。
<Layer strength>
The layer strength of the receiving layer of the recording paper was measured by sticking cellophane tape (manufactured by Nichiban Co., Ltd., trade name: CT-18) on the surface of the receiving layer, and measuring JAPAN TAPPI No. 1. Using an internal bond tester (manufactured by Kumagai Riki Kogyo Co., Ltd., trade name) according to 18-2 (internal bond strength test method), the peel strength of the ink is measured, and the average of the two measurement results The value was taken as the layer strength.
<厚み>
 記録用紙の厚み(全厚)は、JIS K7130:1999に準拠し、定圧厚さ測定器((株)テクロック製、商品名:PG-01J)を用いて測定した。また、記録用紙における各層の厚みは、測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃(シック・ジャパン(株)製、商品名:プロラインブレード)を直角に当て切断し断面観察用の試料を作成し、得られた試料を走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)を使用して断面観察を行い、組成外観から樹脂組成物ごとの境界線を判別して、記録用紙の全厚に観察される各層厚み比率を乗算して求めた。
<Thickness>
The thickness (total thickness) of the recording paper was measured according to JIS K7130:1999 using a constant pressure thickness measuring instrument (trade name: PG-01J, manufactured by Teclock Co., Ltd.). In addition, the thickness of each layer in the recording paper can be measured by cooling the sample to be measured with liquid nitrogen to a temperature of -60°C or lower and placing it on a glass plate with a razor blade (manufactured by Sic Japan Co., Ltd. A sample for cross-sectional observation is prepared by cutting at a right angle with a proline blade), and the obtained sample is cross-sectioned using a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-6490). Observation was performed, and the boundary line for each resin composition was determined from the appearance of the composition, and the total thickness of the recording paper was multiplied by the thickness ratio of each layer observed.
<ガーレ剛軟度>
 記録用紙のガーレ剛軟度は、JIS L1096:2010に準拠し、温度23℃湿度50%RHの環境下で、MD方向について、ガーレ剛軟度試験機(大栄科学精器製作所(株)製、商品名:GAS-100)を用いて測定した。
<Gurley hardness>
The Gurley bending resistance of the recording paper conforms to JIS L1096:2010 and is measured in the MD direction using a Gurley bending resistance tester (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.; (trade name: GAS-100)).
<光沢度>
 記録用紙の受容層側表面の光沢度は、JIS P 8142:1993に準拠して測定し、75度鏡面光沢度を測定した。
<Glossiness>
The glossiness of the receiving layer side surface of the recording paper was measured according to JIS P 8142:1993, and the 75 degree specular glossiness was measured.
<静摩擦係数>
 記録用紙の受容層側表面の静摩擦係数は、JIS K7125:1999に準拠し、擦係数試験器(東洋精機(株)製、商品名:TR-2)を用いて、測定した。
<Static friction coefficient>
The static friction coefficient of the receiving layer side surface of the recording paper was measured using a friction coefficient tester (trade name: TR-2 manufactured by Toyo Seiki Co., Ltd.) in accordance with JIS K7125:1999.
<算術平均粗さRa>
 記録用紙の基材層側表面(基材層としてコア層及び裏面層を設けた場合は裏面層側)の算術平均粗さRa(μm)は、JIS B0601:2003に準拠し、三次元粗さ測定装置((株)小坂研究所製、商品名:SE-3AK)、及び解析装置((株)小坂研究所製、商品名:SPA-11)を用いて測定した。
<Arithmetic mean roughness Ra>
The arithmetic mean roughness Ra (μm) of the substrate layer side surface of the recording paper (the back layer side when the core layer and the back layer are provided as the substrate layer) is in accordance with JIS B0601: 2003, and the three-dimensional roughness Measurement was performed using a measuring device (manufactured by Kosaka Laboratory Co., Ltd., trade name: SE-3AK) and an analysis device (manufactured by Kosaka Laboratory Co., Ltd., trade name: SPA-11).
<表面抵抗率>
 記録用紙の基材層側表面(基材層としてコア層及び裏面層を設けた場合は裏面層側)の表面抵抗率は、23℃、相対湿度50%の条件下で、表面抵抗率が1×10Ω以上の場合は、JIS K6911:2006に準拠し2重リング法の電極を用いて測定した。表面抵抗率が1×10Ω未満の場合は、JIS K7194:1994に準拠し、4深針法で測定することによって求めた抵抗(R)に、補正係数Fを乗じてこれを表面抵抗率とした。
<Surface resistivity>
The surface resistivity of the substrate layer side surface of the recording paper (the back surface layer side when the core layer and the back layer are provided as the substrate layer) is 1 under the conditions of 23° C. and 50% relative humidity. In the case of ×10 7 Ω or more, it was measured using an electrode of the double ring method according to JIS K6911:2006. When the surface resistivity is less than 1×10 7 Ω, the resistance (R) obtained by measuring with the 4-probe method in accordance with JIS K7194:1994 is multiplied by the correction factor F to obtain the surface resistivity. and
(印刷適性の評価)
 記録用紙を、温度23℃,相対湿度50%の雰囲気下で1日間保管した後、記録用紙の受容層面に、インクジェット印刷機「SC-S80650」(セイコーエプソン株式会社株式会社製)を用い、ピエゾ素子の駆動波形を最適化した状態でSC10BK70のインクを、解像度:720×1440dpiでベタ印刷を行い、その後、50℃×30秒の熱処理(加熱乾燥)を行った。下記の基準で印刷適性を評価した。
(Evaluation of printability)
After storing the recording paper in an atmosphere of 23 ° C. and 50% relative humidity for 1 day, an inkjet printer "SC-S80650" (manufactured by Seiko Epson Corporation) was applied to the receiving layer surface of the recording paper. Solid printing was performed with SC10BK70 ink at a resolution of 720×1440 dpi with the drive waveform of the element optimized, and then heat treatment (heat drying) was performed at 50° C.×30 seconds. The printability was evaluated according to the following criteria.
<濃度>
 溶剤インクジェット印刷の後、印刷面をポータブル分光濃度計(エックスライト(株)製、商品名「508」)を用いて1試料あたり9箇所の黒色部の印刷濃度を測定し、平均値を求め、濃度を下記の基準で判定した。
 3(良好):1.4以上でインク発色が良好
 2(可):1.4未満、1.2以上で若干の濃度低下が見られるが問題とならない(実用下限)
 1(不可):1.2未満(実用に満たない)
<Density>
After solvent inkjet printing, the printed surface is measured for print density at 9 black areas per sample using a portable spectral densitometer (manufactured by X-Rite Co., Ltd., trade name "508"), and the average value is obtained. Concentration was determined according to the following criteria.
3 (Good): 1.4 or higher, ink color development is good 2 (Acceptable): Less than 1.4, slight decrease in density is observed at 1.2 or higher, but no problem (practical lower limit)
1 (impossible): less than 1.2 (not practical)
<滲み>
 溶剤インクジェット印刷の後、印刷後の記録用紙上の画像の状態をルーペで拡大して目視で観察した。記録用紙の滲みは、観察した画像の状態から、下記の基準で評価した。
 3(良好):画像が鮮明である
 2(可):目視ではインク滲みが不明瞭であるが、ルーペによる観察ではドット面積が広がっている(実用下限)
 1(不可):画像にかすれが生じている(実用に適さない)
<Bleeding>
After the solvent ink jet printing, the state of the printed image on the recording paper was visually observed by enlarging it with a magnifying glass. The blurring of the recording paper was evaluated according to the following criteria based on the state of the observed image.
3 (Good): The image is clear. 2 (Fair): Ink bleeding is unclear visually, but the dot area is widened when observed with a magnifying glass (lower limit for practical use).
1 (impossible): The image is blurred (not suitable for practical use)
<乾燥>
 溶剤インクジェット印刷の後、1時間毎に印刷サンプルを任意に一枚抜出し、ベタ画像部のインクの乾燥状態を指でこすり確認した。乾燥性は下記の基準で評価した。
 3(良好):非常に乾燥が速い(10分以内で乾燥し、指につかない)
 2(可):乾燥が速く、問題とならない(10分超20分以内で乾燥、実用下限)
 1(不可):乾燥がやや遅く問題となる(20分でも乾燥しない、実用に適さない)
<Drying>
After the solvent ink jet printing, one print sample was arbitrarily taken out every hour, and the dried state of the ink in the solid image area was checked by rubbing with a finger. Dryness was evaluated according to the following criteria.
3 (good): Very fast drying (dries within 10 minutes and does not stick to fingers)
2 (Possible): Drying is fast and not a problem (drying within 20 minutes over 10 minutes, practical lower limit)
1 (impossible): Drying is a little slow and becomes a problem (does not dry even in 20 minutes, not suitable for practical use)
<定着>
<<擦過>>
 溶剤インクジェット印刷の後、画像部分を、印刷から1日後に30mm×120mmのサイズに切り取り、学振試験機(スガ試験機社製)にセットした。ドライ条件での評価として、常温下で乾燥したガーゼを荷重215gの錘に取り付け、この錘で印刷した画像部分の表面を100回擦り、インクの剥離具合を目視観察にて評価した。また、ウェット条件での評価として、常温下で20μLの純水を浸みこませたガーゼを荷重215gの錘に取り付け、この錘で印刷した画像部分の表面を100回擦り、インクの剥離具合を目視観察した。擦過は下記の基準で評価した。
 3(良好):擦った画像部分の95%以上が残存
 2(可):擦った画像部分の80%以上が残存(実用下限)
 1(不可):擦った画像部分の残存率が80%未満(実用に適さない)
<Fixation>
<< Scrape >>
After solvent inkjet printing, the image portion was cut into a size of 30 mm×120 mm one day after printing, and set in a Gakushin tester (manufactured by Suga Test Instruments Co., Ltd.). As an evaluation under dry conditions, a piece of gauze dried at room temperature was attached to a weight of 215 g, and the surface of the printed image portion was rubbed 100 times with this weight. As an evaluation under wet conditions, gauze impregnated with 20 μL of pure water at room temperature was attached to a weight of 215 g. Observed. Scratching was evaluated according to the following criteria.
3 (good): 95% or more of the rubbed image remains 2 (good): 80% or more of the rubbed image remains (practical lower limit)
1 (impossible): residual rate of rubbed image portion is less than 80% (not suitable for practical use)
<<インク密着>>
 溶剤インクジェット印刷の後、印刷面に、セロハンテープ(ニチバン社製、商品名:セロテープ(登録商標)CT-18)の粘着面を貼り付け、指で3回擦って十分に密着させた。密着させたセロハンテープを180度方向に300m/minの速度で手剥離した後、小型汎用画像解析装置(ニレコ社製、型式名:LUZEX-AP)を用いて、記録用紙上のインクの残存率を算出した。具体的には、印刷面を撮影して得られた画像に2値化処理を実施し、インクが占める面積の割合を残存率として算出した。インク密着は算出したインクの残存率から、下記の基準で評価した。
 3(良好):インクの残存率が80%以上
 2(可):インクの残存率が50%以上80%未満(実用下限)
 1(不可):インクの残存率が50%未満(実用に適さない)
<<Ink Adhesion>>
After solvent inkjet printing, the adhesive side of cellophane tape (manufactured by Nichiban Co., Ltd., trade name: Cellotape (registered trademark) CT-18) was attached to the printed surface, and rubbed three times with a finger to ensure sufficient adhesion. After manually peeling the adhered cellophane tape at a speed of 300 m / min in the direction of 180 degrees, using a small general-purpose image analysis device (manufactured by Nireco, model name: LUZEX-AP), the residual rate of ink on the recording paper was calculated. Specifically, an image obtained by photographing the printed surface was subjected to binarization processing, and the ratio of the area occupied by the ink was calculated as the residual ratio. The ink adhesion was evaluated according to the following criteria from the calculated ink residual ratio.
3 (good): 80% or more of ink remaining rate 2 (acceptable): 50% or more and less than 80% of ink remaining rate (practical lower limit)
1 (impossible): ink residual rate is less than 50% (not suitable for practical use)
<カール>
 溶剤インクジェット印刷の後、記録用紙を100mm×100mmのサイズに切り取り、23℃、相対湿度50%の条件下で1日間保管した。記録用紙を印刷面を上にして平置きし、端部のカール高さを下記の基準で評価した。
 3(良好):カール高さが-5mm~+10mm
 2(可):カール高さが+11mm~+50mm(実用下限)
 1(不可):カール高さが+51mm以上、もしくは-6mm以下(実用に適さない)
<Curl>
After solvent ink jet printing, the recording paper was cut into a size of 100 mm×100 mm and stored for 1 day at 23° C. and 50% relative humidity. The recording paper was laid flat with the printed surface facing up, and the curl height at the edge was evaluated according to the following criteria.
3 (Good): Curl height -5 mm to +10 mm
2 (Possible): Curl height +11 mm to +50 mm (practical lower limit)
1 (impossible): Curl height is +51 mm or more, or -6 mm or less (not suitable for practical use)
<波打ち>
 記録用紙の受容層面に、溶剤インクジェット印刷機「ラミレスIII:PJ-1634NX」(武藤工業株式会社製)を用いてブラックベタを印刷し、印刷部分の波打ちの発生度合いを目視により下記の基準で評価した。
 3(良好):波打ちの発生が無く、極めて良好なレベル
 2(可):波打ちの発生が僅かである(実用下限)
 1(不可):波打ちの発生が見られる(実用に適さない)
<waves>
On the receiving layer side of the recording paper, a solid black image is printed using a solvent inkjet printer "Ramires III: PJ-1634NX" (Muto Kogyo Co., Ltd.), and the degree of waviness in the printed area is visually evaluated according to the following criteria. did.
3 (Good): No waviness, very good level 2 (Fair): Slight waviness (lower limit for practical use)
1 (impossible): Occurrence of waviness is observed (not suitable for practical use)
<ブロッキング>
 記録用紙を、ロール状に巻回して、温度40℃,相対湿度50%の雰囲気下で1日間保管した後、ロールからの引出時にブロッキングを引き起こすことなくスムースな引き出しが可能であるかを観察した。ブロッキングを下記の基準で評価した。
 3(良好):剥離音がなくスムースに引き出せる
 2(可):剥離音があるが、引き取り後の基材層の外観を損ねていない(実用下限)
 1(不可):大きな剥離音があり、かつ引き取り後の基材層の外観を損ねている(実用に適さない)
<Blocking>
After the recording paper was wound into a roll and stored for one day in an atmosphere of 40° C. and 50% relative humidity, it was observed whether the paper could be pulled out smoothly without causing blocking when pulled out from the roll. . Blocking was evaluated according to the following criteria.
3 (good): can be pulled out smoothly without a peeling sound 2 (acceptable): there is a peeling sound, but the appearance of the base layer after picking up is not impaired (practical lower limit)
1 (improper): there is a loud peeling sound, and the appearance of the substrate layer after picking up is impaired (not suitable for practical use)
<耐候性>
 ポスター等の用途においては、屋外使用によってインクの剥がれが発生し問題となる場合がある。しかし耐候性の評価は、実際に屋外で暴露試験を行うと、気候や天候等の種々の変動因子によって結果が振れやすい。本実施形態では、印刷物に、JIS K-7350-4に準拠して、均一な条件で耐候性の促進処理(暴露試験)を行った後に、溶剤インクジェット印刷し、インク密着の評価を行った。より具体的には、以下の条件で促進処理を行った。
 超促進耐候性試験機(ダイプラ・ウィンテス(株)製、商品名「メタルウェザー KU-R5N-A」、メタルハライドランプ式)及び295~450nmの紫外線光を透過するガラスフィルター「KF-2フィルター」(商品名)を使用した。上記の手順で印刷された記録用紙を90mm×150mmの寸法に切り取って得た試験片を、印刷面側が暴露面となるように、四方をアルミ箔テープ「AL-T」(竹内工業(株)製、商品名)でステンレス板(100mm×200mm)に貼り付けて固定し、これを試験機内に設置した。試験片の面の放射照度を90W/mとし、ブラックパネル温度を63℃とした。温度63℃、相対湿度50%での暴露5時間及び温度30℃、相対湿度98%での暴露3時間を1サイクルとして、促進処理はこれを2サイクル実施した。したがって、印刷面への放射露光量は5.18×106J/mであった。
 次いで、耐候性促進処理を施した試験片を、擦過性の場合と同様に摩擦試験及び評価を行った。
 3(良好):擦った画像部分の95%以上が残存
 2(可):擦った画像部分の80%以上が残存(実用下限)
 1(不可):擦った画像部分の残存率が80%未満(実用に適さない)
<Weather resistance>
In applications such as posters, the ink may peel off due to outdoor use, which may pose a problem. However, weather resistance evaluation results tend to fluctuate due to various factors such as climate and weather when exposure tests are actually performed outdoors. In this embodiment, the printed matter was subjected to a weather resistance acceleration treatment (exposure test) under uniform conditions in accordance with JIS K-7350-4, and then subjected to solvent inkjet printing to evaluate ink adhesion. More specifically, the acceleration treatment was performed under the following conditions.
A super-accelerated weathering tester (manufactured by Daipla Wintes Co., Ltd., trade name "Metal Weather KU-R5N-A", metal halide lamp type) and a glass filter "KF-2 filter" that transmits ultraviolet light of 295 to 450 nm ( product name) was used. Aluminum foil tape "AL-T" (Takeuchi Kogyo Co., Ltd.) (trade name)) was attached to a stainless steel plate (100 mm x 200 mm) and fixed, and this was installed in the tester. The irradiance on the surface of the test piece was set at 90 W/m 2 and the black panel temperature was set at 63°C. Two cycles of accelerated treatment were carried out, one cycle consisting of exposure for 5 hours at a temperature of 63° C. and a relative humidity of 50% and exposure for 3 hours at a temperature of 30° C. and a relative humidity of 98%. The radiation exposure to the printed surface was therefore 5.18 x 106 J/ m2 .
Then, the test piece subjected to the accelerated weather resistance treatment was subjected to a friction test and evaluation in the same manner as in the case of scratch resistance.
3 (good): 95% or more of the rubbed image remains 2 (good): 80% or more of the rubbed image remains (practical lower limit)
1 (impossible): residual rate of rubbed image portion is less than 80% (not suitable for practical use)
[実施例及び比較例]
(実施例1~13及び比較例1~3)
 以下の手順に従って、実施例1~13及び比較例1~3の記録用紙を製造した。表1に記録用紙の製造に用いた樹脂組成物の配合比率(質量部)を示す。
[Examples and Comparative Examples]
(Examples 1 to 13 and Comparative Examples 1 to 3)
Recording papers of Examples 1 to 13 and Comparative Examples 1 to 3 were manufactured according to the following procedure. Table 1 shows the compounding ratio (mass parts) of the resin composition used in the production of the recording paper.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 表1に記載の樹脂組成物aを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。この無延伸シートを135℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸し、単層1軸延伸シートを得た。次いで、樹脂組成物cを230℃に設定した押出機にて溶融混練した後、シート状に押し出して上記単層1軸延伸シートの第1面に積層すると同時に、樹脂組成物aを230℃に設定した1台の押出機にて溶融混練した後、シート状に押し出して上記単層1軸延伸シートの第2面に積層して、3層積層シートを得た。次いで、この3層積層シートを60℃まで冷却し、テンターオーブンを用いて3層積層シートを約150℃に加熱して横方向に8.5倍延伸した後、更に160℃まで加熱して熱処理を行った。次いで60℃に冷却し、耳部をスリットして、樹脂組成物aの1軸延伸層が裏面層であり、肉厚が140μm、各層の樹脂組成物(c/a/a)、各層厚み(20μm/100μm/20μm)、各層延伸軸数(1軸/2軸/1軸)〕の積層樹脂フィルムを得た。
(Example 1)
After melt-kneading the resin composition a described in Table 1 with an extruder set at 230°C, it is supplied to an extrusion die set at 250°C and extruded into a sheet, which is cooled to 60°C with a cooling device. An unstretched sheet was obtained. This unstretched sheet was heated to 135° C. and stretched 5 times in the machine direction by utilizing the difference in peripheral speed of the roll group to obtain a monolayer uniaxially stretched sheet. Next, the resin composition c is melt-kneaded with an extruder set at 230°C, extruded into a sheet shape and laminated on the first surface of the single-layer uniaxially stretched sheet, and at the same time, the resin composition a is heated to 230°C. After melt-kneading with one set extruder, the mixture was extruded into a sheet and laminated on the second surface of the monolayer uniaxially stretched sheet to obtain a three-layer laminated sheet. Next, the three-layer laminated sheet is cooled to 60°C, heated to about 150°C using a tenter oven, stretched 8.5 times in the horizontal direction, and then heated to 160°C for heat treatment. did Then, the uniaxially stretched layer of the resin composition a is the back layer, the thickness is 140 μm, the resin composition (c/a/a) of each layer, the thickness of each layer ( 20 μm/100 μm/20 μm) and the number of stretching axes of each layer (1 axis/2 axes/1 axis)].
 攪拌機を備えた容器中に、ポリエチレンイミン溶液50質量部(日本触媒(株)製、商品名:エポミンP-1000)、下記式で示される第4級アンモニウム塩構造を分子鎖内に含むカチオン系のメタクリル酸エステル共重合体の帯電防止機能を有するポリマー溶液50質量部をこの順に添加し、次いで水で固形分濃度20質量%となる様に希釈し、そのまま20分間攪拌し混合して、分散して塗工液bを調製した。 In a container equipped with a stirrer, 50 parts by mass of a polyethyleneimine solution (manufactured by Nippon Shokubai Co., Ltd., trade name: Epomin P-1000) and a cationic system containing a quaternary ammonium salt structure represented by the following formula in its molecular chain 50 parts by mass of a polymer solution having an antistatic function of a methacrylic acid ester copolymer is added in this order, then diluted with water so that the solid content concentration is 20% by mass, and stirred for 20 minutes to mix and disperse. Then, a coating liquid b was prepared.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記積層樹脂フィルムの裏面層の表面にコロナ放電による表面処理を施して、コロナ放電処理面側に塗工液bを塗布、乾燥して、厚さ0.1μmの塗布層を設け、70℃のオーブンで60秒乾燥後、実施例1の記録用紙を得た。 The surface of the back layer of the laminated resin film is subjected to surface treatment by corona discharge, and the coating solution b is applied to the corona discharge-treated surface side and dried to form a coating layer having a thickness of 0.1 μm. After drying in an oven for 60 seconds, the recording paper of Example 1 was obtained.
(実施例2~6、10、11)
 実施例1において、樹脂組成物cの代わりに表2に記載の受容層の樹脂組成物d、e、f、g、h、j又はkを用いたこと以外は実施例1と同様にして、実施例2~6、10、11の記録用紙を得た。
(Examples 2 to 6, 10, 11)
In the same manner as in Example 1, except that resin composition d, e, f, g, h, j, or k for the receiving layer described in Table 2 was used instead of resin composition c, Recording papers of Examples 2 to 6, 10 and 11 were obtained.
(実施例7)
 実施例1において、樹脂組成物cの代わりに表2に記載の受容層の樹脂組成物iを用い、肉厚を170μm、各層厚みを(50μm/100μm/20μm)としたこと以外は実施例1と同様にして、実施例7の記録用紙を得た。
(Example 7)
Example 1 except that the resin composition i of the receiving layer described in Table 2 was used instead of the resin composition c in Example 1, the thickness was 170 μm, and the thickness of each layer was (50 μm/100 μm/20 μm). Recording paper of Example 7 was obtained in the same manner as above.
(実施例8)
 実施例7において、肉厚を130μm、各層厚みを(10μm/100μm/20μm)としたこと以外は実施例7と同様にして、実施例8の記録用紙を得た。
(Example 8)
A recording paper of Example 8 was obtained in the same manner as in Example 7, except that the thickness was changed to 130 μm and the thickness of each layer was changed to (10 μm/100 μm/20 μm).
(実施例9)
 実施例7において、肉厚を125μm、各層厚みを(5μm/100μm/20μm)としたこと以外は実施例7と同様にして、実施例9の記録用紙を得た。
(Example 9)
A recording paper of Example 9 was obtained in the same manner as in Example 7 except that the thickness was changed to 125 μm and the thickness of each layer was changed to (5 μm/100 μm/20 μm).
(実施例12)
 表1に記載の樹脂組成物bを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。この無延伸シートを135℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸し、単層1軸延伸シートを得た。次いで、樹脂組成物aを230℃に設定した押出機にて溶融混練した後、シート状に押し出して上記単層1軸延伸シートの第1面に積層し、2層積層シートを得た。次いで、この2層積層シートを60℃まで冷却し、テンターオーブンを用いて2層積層シートを約150℃に加熱して横方向に8.5倍延伸した後、更に160℃まで加熱して熱処理を行い、2層積層延伸シートを得た。次いで、樹脂組成物dを230℃に設定した押出機にて溶融混練した後、シート状に押し出して上記2層積層延伸シートの樹脂組成物bからなる層側の面に積層し、3層積層シートを得た。次いで60℃に冷却し、耳部をスリットして、樹脂組成物aの1軸延伸層が裏面層であり、肉厚が140μm、各層の樹脂組成物(d/b/a)、各層厚み(20μm/100μm/20μm)、各層延伸軸数(無延伸/2軸/1軸)〕の積層樹脂フィルムを得た。
(Example 12)
After melt-kneading the resin composition b shown in Table 1 with an extruder set at 230°C, it is supplied to an extrusion die set at 250°C and extruded into a sheet, which is cooled to 60°C by a cooling device. An unstretched sheet was obtained. This unstretched sheet was heated to 135° C. and stretched 5 times in the machine direction by utilizing the difference in peripheral speed of the roll group to obtain a monolayer uniaxially stretched sheet. Next, the resin composition a was melt-kneaded by an extruder set at 230° C., extruded into a sheet shape, and laminated on the first surface of the monolayer uniaxially stretched sheet to obtain a two-layer laminated sheet. Next, the two-layer laminate sheet is cooled to 60°C, heated to about 150°C using a tenter oven, stretched 8.5 times in the horizontal direction, and then heated to 160°C for heat treatment. to obtain a two-layer laminated stretched sheet. Next, after melt-kneading the resin composition d with an extruder set at 230° C., it is extruded into a sheet and laminated on the surface of the layer side composed of the resin composition b of the two-layer laminated stretched sheet, and three layers are laminated. got a sheet. Then, the uniaxially stretched layer of the resin composition a is the back layer, the thickness is 140 μm, the resin composition (d/b/a) of each layer, the thickness of each layer ( 20 μm/100 μm/20 μm) and the number of stretching axes for each layer (non-stretching/biaxial/uniaxial)] to obtain a laminated resin film.
 上述した実施例1と同様の方法を用いて塗工液bを調製した。上記積層樹脂フィルムの裏面層の表面にコロナ放電による表面処理を施して、コロナ放電処理面側に塗工液bを塗布、乾燥して、厚さ0.1μmの塗布層を設け、70℃のオーブンで60秒乾燥後、実施例12の記録用紙を得た。 A coating liquid b was prepared using the same method as in Example 1 described above. The surface of the back layer of the laminated resin film is subjected to surface treatment by corona discharge, and the coating solution b is applied to the corona discharge-treated surface side and dried to form a coating layer having a thickness of 0.1 μm. After drying in an oven for 60 seconds, the recording paper of Example 12 was obtained.
(実施例13)
 表1に記載の樹脂組成物aを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。次いで、樹脂組成物dを230℃に設定した押出機にて溶融混練した後、シート状に押し出して上記無延伸シートの第1面に積層すると同時に、可塑性樹脂組成物aを230℃に設定した1台の押出機にて溶融混練した後、シート状に押し出して無延伸シートの第2面に積層して、3層積層シートを得た。次いで、耳部をスリットして、樹脂組成物aの無延伸層が裏面層であり、肉厚が120μm、各層の樹脂組成物(d/a/a)、各層厚み(20μm/80μm/20μm)、各層延伸軸数(無延伸/無延伸/無延伸)〕の積層樹脂フィルムを得た。
(Example 13)
After melt-kneading the resin composition a described in Table 1 with an extruder set at 230°C, it is supplied to an extrusion die set at 250°C and extruded into a sheet, which is cooled to 60°C by a cooling device. An unstretched sheet was obtained. Next, the resin composition d was melt-kneaded in an extruder set at 230°C, extruded into a sheet and laminated on the first surface of the non-stretched sheet, and at the same time, the plastic resin composition a was set at 230°C. After melt-kneading with one extruder, the mixture was extruded into a sheet and laminated on the second surface of the unstretched sheet to obtain a three-layer laminated sheet. Next, the edge portion was slit, and the unstretched layer of the resin composition a was the back layer, the thickness was 120 μm, the resin composition (d/a/a) of each layer, and the thickness of each layer (20 μm/80 μm/20 μm). , and the number of stretching axes for each layer (unstretched/unstretched/unstretched)].
 上述した実施例1と同様の方法を用いて塗工液bを調製した。上記積層樹脂フィルムの裏面層の表面にコロナ放電による表面処理を施して、コロナ放電処理面側に塗工液bを塗布、乾燥して、厚さ0.1μmの塗布層を設け、70℃のオーブンで60秒乾燥後、実施例13の記録用紙を得た。 A coating liquid b was prepared using the same method as in Example 1 described above. The surface of the back layer of the laminated resin film is subjected to surface treatment by corona discharge, and the coating solution b is applied to the corona discharge-treated surface side and dried to form a coating layer having a thickness of 0.1 μm. After drying in an oven for 60 seconds, the recording paper of Example 13 was obtained.
(比較例1)
 表1に記載の樹脂組成物bを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。この無延伸シートを135℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸し、単層1軸延伸シートを得た。次いで、樹脂組成物bを230℃に設定した押出機にて溶融混練した後、シート状に押し出して上記単層1軸延伸シートの第1面に積層し、2層積層シートを得た。
 一方、水55重量部、微粉末シリカ〔水沢化学工業(株)製「ミズカシルP-78F」、平均粒径12.5μm〕20重量部及び疎水性樹脂(アクリル系樹脂エマルジョン)〔BASFジャパン(株)製「アクロナールYJ-2870D」、固形分濃度50重量%〕25重量部を混合、分散して塗工液aを調製した。
 上記で得た2層積層シートの一方の面にコロナ放電による表面処理を施し、コロナ放電処理面側に塗工液a塗布、乾燥して、厚さ40μmの塗工層を設け、70℃のオーブンで60秒乾燥後、厚み140μmの比較例1の記録用紙を得た。
(Comparative example 1)
After melt-kneading the resin composition b shown in Table 1 with an extruder set at 230°C, it is supplied to an extrusion die set at 250°C and extruded into a sheet, which is cooled to 60°C by a cooling device. An unstretched sheet was obtained. This unstretched sheet was heated to 135° C. and stretched 5 times in the machine direction by utilizing the difference in peripheral speed of the roll group to obtain a monolayer uniaxially stretched sheet. Next, the resin composition b was melt-kneaded by an extruder set at 230° C., extruded into a sheet shape and laminated on the first surface of the monolayer uniaxially stretched sheet to obtain a two-layer laminated sheet.
On the other hand, 55 parts by weight of water, 20 parts by weight of fine powder silica ["Mizukasil P-78F" manufactured by Mizusawa Chemical Industry Co., Ltd., average particle size 12.5 μm] and hydrophobic resin (acrylic resin emulsion) [BASF Japan Co., Ltd. ) manufactured by Acronal YJ-2870D, solid concentration 50% by weight] were mixed and dispersed to prepare a coating solution a.
One surface of the two-layer laminated sheet obtained above was subjected to surface treatment by corona discharge, and the corona discharge-treated surface side was coated with coating liquid a and dried to form a coating layer with a thickness of 40 μm. After drying in an oven for 60 seconds, a recording paper of Comparative Example 1 having a thickness of 140 μm was obtained.
(比較例2)
 表1に記載の樹脂組成物lを160℃に設定した2本の9インチのテストロール(西村工機社製蒸気加熱型)で、5分間混練し圧延して、厚みが140μmの塩化ビニル系樹脂シートを作製した(カレンダー加工)。得られた塩化ビニル系樹脂シートに、37t油圧成型機(王子機械社製)にて、170℃の温度で、最大70kg/cmの圧力をかけプレスし、表面を鏡面に仕上げ、厚み140μmの比較例2の記録用紙を得た。
(Comparative example 2)
The resin composition 1 shown in Table 1 was kneaded and rolled for 5 minutes with two 9-inch test rolls (steam heating type manufactured by Nishimura Koki Co., Ltd.) set at 160 ° C. to obtain a vinyl chloride-based resin having a thickness of 140 µm. A resin sheet was produced (calendering). The obtained vinyl chloride resin sheet was pressed with a 37t hydraulic molding machine (manufactured by Oji Kikai Co., Ltd.) at a temperature of 170° C. with a maximum pressure of 70 kg/cm 2 to mirror-finish the surface to a thickness of 140 μm. A recording paper of Comparative Example 2 was obtained.
(比較例3)
 実施例1において、受容層の樹脂組成物cの代わりに樹脂組成物bを用い、基材層の樹脂組成物aの代わりに樹脂組成物bを用いた以外は実施例1と同様にして、比較例3の記録用紙を得た。
(Comparative Example 3)
In the same manner as in Example 1, except that the resin composition b was used instead of the resin composition c for the receiving layer, and the resin composition b was used instead of the resin composition a for the substrate layer. A recording paper of Comparative Example 3 was obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2及び表3の結果から、熱可塑性樹脂フィルムからなる基材層のいずれか一方の面に、スチレン系樹脂を含む受容層を設けられた実施例1~13の記録用紙は、高い平滑性と優れた光沢性とを兼ね備え、画像濃度が高く、インクの吸収性・乾燥性に優れ、且つ印刷物を屋外に長期間暴露する場合にも耐水・防汚処理を必要としない、記録用紙であることが分かった。 From the results in Tables 2 and 3, the recording papers of Examples 1 to 13, in which a receiving layer containing a styrene resin was provided on one side of the base layer made of a thermoplastic resin film, had high smoothness. and excellent glossiness, high image density, excellent ink absorption and drying properties, and does not require waterproofing or antifouling treatment even when printed matter is exposed outdoors for a long time. I found out.
 一方、スチレン系樹脂を含む受容層を設けられていない、顔料コート層が設けられた比較例1の記録用紙は、インクの吸収性・乾燥性に優れ、波打ちやブロッキングの発生を防止できているものの、光沢性及び画像濃度が低く、またインクの定着性に劣るため印刷物を屋外に長期間暴露する場合に耐水・防汚処理を必要とするものであった。また、スチレン系樹脂を含む受容層を設けられていない、塩化ビニル系共重合体を含有する受容層が設けられた比較例2の記録用紙は、優れた光沢性を有し、インクの吸収性・乾燥性に優れ、画像濃度に優れるものの、波打ちやブロッキングの発生を防止できておらず、耐候性に劣るものであった。さらに、スチレン系樹脂を含む受容層を設けられていない、プロピレン単独重合体を含有する受容層が設けられた比較例3の記録用紙は、インクの吸収性・乾燥性に劣り、且つ溶剤インクジェット印刷適正にも劣るものであった。 On the other hand, the recording paper of Comparative Example 1, which was not provided with a receiving layer containing a styrene resin but was provided with a pigment coating layer, was excellent in ink absorption and drying properties, and was able to prevent waviness and blocking. However, the glossiness and image density are low, and the fixability of the ink is poor. Therefore, when the printed matter is exposed to the outdoors for a long period of time, water-resistant and antifouling treatment is required. In addition, the recording paper of Comparative Example 2 provided with a receiving layer containing a vinyl chloride copolymer, not provided with a receiving layer containing a styrene resin, had excellent glossiness and ink absorbency. • Although it had excellent drying property and excellent image density, the occurrence of waviness and blocking could not be prevented, and the weather resistance was poor. Furthermore, the recording paper of Comparative Example 3, which was not provided with a receiving layer containing a styrene resin but was provided with a receiving layer containing a propylene homopolymer, was inferior in ink absorption and drying properties, and solvent ink jet printing was used. It was also inferior to appropriateness.
 本発明に係る記録用紙は、高い平滑性と優れた光沢性とを兼ね備え、画像濃度が高く、インクの吸収性・乾燥性に優れ、且つ印刷物を屋外に長期間暴露する場合にも耐水・防汚処理を必要としない記録用紙である。このため、本発明に係る記録用紙は、シール、ラベル、サイン、ポスター、広告等の掲示物としてとして非常に有用である。
 また、本発明に係る記録用紙は、溶剤系インクを用いた溶剤インクジェット用記録用紙としての用途に非常に有用である。
The recording paper according to the present invention has both high smoothness and excellent glossiness, high image density, excellent ink absorption and drying properties, and is waterproof and waterproof even when printed matter is exposed outdoors for a long period of time. This recording paper does not require soiling. Therefore, the recording paper according to the present invention is very useful as a sign, label, sign, poster, advertisement, or the like.
Moreover, the recording paper according to the present invention is very useful as a recording paper for solvent inkjet using solvent-based ink.
 本出願は、2021年3月31日に出願された日本特許出願である特願2021-060712号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2021-060712, which is a Japanese patent application filed on March 31, 2021, and all descriptions of the Japanese patent application are incorporated.
 100・・・記録用紙、10・・・受容層、20・・・基材層、21・・・コア層、22・・・裏面層

 
DESCRIPTION OF SYMBOLS 100... Recording paper, 10... Receiving layer, 20... Base material layer, 21... Core layer, 22... Back layer

Claims (8)

  1.  熱可塑性樹脂フィルムからなる基材層のいずれか一方の面に、スチレン系樹脂を含む受容層を設けられた、記録用紙。 A recording paper in which a receiving layer containing a styrene-based resin is provided on either side of a base layer made of a thermoplastic resin film.
  2.  前記受容層が少なくとも一方向に延伸されていることを特徴とする請求項1に記載の記録用紙。 The recording paper according to claim 1, wherein the receiving layer is stretched in at least one direction.
  3.  前記受容層の厚みが3μm以上であることを特徴とする請求項1又は2に記載の記録用紙。 The recording paper according to claim 1 or 2, wherein the receiving layer has a thickness of 3 µm or more.
  4.  前記スチレン系樹脂が、スチレン系単量体、エチレン及びブタジエンの共重合体;スチレン系単量体、α-オレフィン及びブタジエンの共重合体;及びスチレン系単量体、エチレン、α-オレフィン及びブタジエンの共重合体からなる群から選択される少なくとも1種を含むことを特徴とする請求項1~3のいずれか一項に記載の記録用紙。 The styrene-based resin is a copolymer of styrene-based monomer, ethylene and butadiene; a copolymer of styrene-based monomer, α-olefin and butadiene; and a styrene-based monomer, ethylene, α-olefin and butadiene. 4. The recording paper according to any one of claims 1 to 3, comprising at least one selected from the group consisting of copolymers of
  5.  前記記録用紙の基材層側(裏面層側)表面のJIS B0601:2003による算術平均粗さ(Ra)が、0.2μm以上であることを特徴とする請求項1~4のいずれか一項に記載の記録用紙。 The arithmetic mean roughness (Ra) according to JIS B0601:2003 of the base layer side (back layer side) surface of the recording paper is 0.2 μm or more, according to any one of claims 1 to 4. Recording paper described in .
  6.  前記記録用紙の受容層側表面のJIS K7125:1999による静摩擦係数が、0.10~0.70であることを特徴とする請求項1~5のいずれか一項に記載の記録用紙。 The recording paper according to any one of claims 1 to 5, wherein the static friction coefficient of the receiving layer side surface of the recording paper according to JIS K7125:1999 is 0.10 to 0.70.
  7.  前記記録用紙の基材層側(裏面層側)表面のJIS K6911:2006に準拠して測定した表面抵抗率が、1×10~9×1012Ωであることを特徴とする請求項1~6のいずれか一項に記載の記録用紙。 1. The surface resistivity of the base layer side (back layer side) surface of the recording paper measured according to JIS K6911:2006 is 1×10 8 to 9×10 12 Ω. The recording paper according to any one of -6.
  8.  前記記録用紙のJIS L1096:2010による曲げ反発A法(ガーレ法)による剛軟度が、0.3~10mNであることを特徴とする請求項1~7のいずれか一項に記載の記録用紙。

     
    The recording paper according to any one of claims 1 to 7, wherein the bending resistance of the recording paper according to JIS L1096:2010 bending resistance A method (Gurley method) is 0.3 to 10 mN. .

PCT/JP2022/015190 2021-03-31 2022-03-28 Recording paper WO2022210605A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511304A JPWO2022210605A1 (en) 2021-03-31 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060712 2021-03-31
JP2021-060712 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210605A1 true WO2022210605A1 (en) 2022-10-06

Family

ID=83459300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015190 WO2022210605A1 (en) 2021-03-31 2022-03-28 Recording paper

Country Status (2)

Country Link
JP (1) JPWO2022210605A1 (en)
WO (1) WO2022210605A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110287A (en) * 1981-12-24 1983-06-30 Mitsubishi Paper Mills Ltd Sheet for recording
JPH07276785A (en) * 1994-04-08 1995-10-24 Nitto Denko Corp Image receiving material for ink jet recording and surface treatment method
JP2002321443A (en) * 2001-04-25 2002-11-05 Konica Corp Ink jet recording intermediate transferring medium, image forming method using the same and printed matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110287A (en) * 1981-12-24 1983-06-30 Mitsubishi Paper Mills Ltd Sheet for recording
JPH07276785A (en) * 1994-04-08 1995-10-24 Nitto Denko Corp Image receiving material for ink jet recording and surface treatment method
JP2002321443A (en) * 2001-04-25 2002-11-05 Konica Corp Ink jet recording intermediate transferring medium, image forming method using the same and printed matter

Also Published As

Publication number Publication date
JPWO2022210605A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US6562451B2 (en) Coated film
CN110892010B (en) Recording paper and method for manufacturing same
EP3067385B1 (en) Thermoplastic resin film, adhesive sheet, and thermal transfer image-receiving sheet
WO2014092142A1 (en) Recording paper
WO2020145404A1 (en) Recording paper, application for same, and method for manufacturing recording paper
JPS62148292A (en) Image-receiving sheet for thermal transfer recording
WO2022210605A1 (en) Recording paper
JP4357108B2 (en) Image receiving film for printing and thermal transfer
JPH10329413A (en) Recording sheet
US6863934B2 (en) Method of surface treatment of thermoplastic resin film
JP2001225422A (en) Coated film
JP5052759B2 (en) Surface treatment method for thermoplastic resin film and thermoplastic resin film
WO2023249112A1 (en) Recording sheet
JP2004122774A (en) Melting thermal transfer recording paper
JPH11138979A (en) Recording sheet
JP3878580B2 (en) Inkjet recording sheet
JPH10329407A (en) Recording sheet
JP7153744B2 (en) Recording paper, use thereof, and manufacturing method of recording paper
WO2004061528A1 (en) Electrophotographic film and recorded item therefrom
JPH10329411A (en) Recording sheet
JP2002326465A (en) Image acceptive film for thermal transfer
JP2004181935A (en) Sheet for inkjet recording
JPH11192778A (en) Recording sheet
JP2022157125A (en) Laminated film and method for manufacturing the same
JP2023117331A (en) Recording paper, method for manufacturing the same, adhesive label and in-mold label

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511304

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780816

Country of ref document: EP

Kind code of ref document: A1