WO2022210197A1 - Laminate and method for manufacturing same - Google Patents

Laminate and method for manufacturing same Download PDF

Info

Publication number
WO2022210197A1
WO2022210197A1 PCT/JP2022/013674 JP2022013674W WO2022210197A1 WO 2022210197 A1 WO2022210197 A1 WO 2022210197A1 JP 2022013674 W JP2022013674 W JP 2022013674W WO 2022210197 A1 WO2022210197 A1 WO 2022210197A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
film
protective film
base material
polymer
Prior art date
Application number
PCT/JP2022/013674
Other languages
French (fr)
Japanese (ja)
Inventor
絢子 加藤
浩成 摺出寺
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023511081A priority Critical patent/JPWO2022210197A1/ja
Publication of WO2022210197A1 publication Critical patent/WO2022210197A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a laminate comprising a base material that can be used as an optical film or the like and a protective film that protects the base material, and a method for producing the same.
  • Optical films are widely used as components of optical devices such as liquid crystal display devices and organic electroluminescence display devices. Examples include films used as substrates in devices. Specifically, it is common practice to form other layers on such a base material to obtain a component comprising a plurality of layers constituting a device.
  • Optical films are required to have good optical properties and high durability against heat in the usage environment. For example, even when subjected to a heat load such as heating at 200° C. for 10 minutes or heating at 145° C. for 60 minutes, it is desirable not to cause shape change such as shrinkage.
  • a crystalline resin particularly a resin containing a crystalline alicyclic structure-containing polymer, may be used as a material for such an optical film.
  • various treatments such as stretching and heat setting may be performed in order to adjust optical anisotropy, heat resistance and other various properties (for example, Patent Document 1 ⁇ 2).
  • the optical film When processing a crystalline resin film, wrinkles may occur on the surface, causing undesirable phenomena such as damage to the flatness of the film, which may reduce the quality of the product.
  • the optical film may not have sufficient heat resistance. For example, it may not be possible to suppress shape change when subjected to a heat load such as heating at 200° C. for 10 minutes or heating at 145° C. for 60 minutes.
  • an object of the present invention is to provide a base material that suppresses the occurrence of wrinkles, maintains flatness when used as a base material, and has high heat resistance, and a method for producing the same.
  • the base material As a measure for suppressing the generation of wrinkles and maintaining flatness when used as a base material, it is conceivable to make the base material a laminate with a protective film. As a result of investigations by the present inventors on this point, it was found that high wrinkle suppression and heat resistance can be obtained by adopting a substrate and a protective film that have a specific physical property relationship to form a laminate. It was found that such a laminate can be produced by laminating a specific pre-annealing base material and a pre-annealing protective film to form a pre-annealing laminate, which is then annealed in the state of the laminate. The inventors found that it can be obtained, and completed the present invention. That is, the present invention provides the following.
  • a laminate having a long shape comprising a substrate and a protective film provided on one surface of the substrate,
  • the substrate is a resin layer containing a crystalline alicyclic structure-containing polymer
  • a production method comprising: a step of forming a resin layer containing a cyclic structure-containing polymer; and a step of annealing the pre-annealed laminate.
  • the resin containing the crystalline alicyclic structure-containing polymer constituting the base material before annealing is a hydride of a ring-opening polymer of dicyclopentadiene; Method of manufacture as described.
  • a laminate that suppresses the occurrence of wrinkles, maintains flatness when used as a substrate, and can easily supply a substrate with high heat resistance at the time of use, and a method for producing the same are provided. be done.
  • FIG. 1 is a cross-sectional view schematically showing the laminate of the present invention.
  • the term "long-shaped" film refers to a film having a length of 5 times or more, preferably 10 times or more, of its width.
  • the upper limit of the length of the film is not particularly limited, and can be, for example, 100,000 times or less the width.
  • the adhesive is not only an adhesive in a narrow sense (an adhesive having a shear storage elastic modulus of 1 MPa to 500 MPa at 23 ° C. after energy beam irradiation or after heat treatment), but also shear storage at 23 ° C. Adhesives with an elastic modulus of less than 1 MPa are also included.
  • the terms “parallel”, “perpendicular” and “perpendicular” in the directions of the elements are within a range that does not impair the effects of the present invention, such as ⁇ 3°, ⁇ 2° or ⁇ 1°, unless otherwise specified. may contain an error within the range of
  • the laminate of the present invention comprises a substrate and a protective film provided on one surface of the substrate. That is, the laminate includes a substrate and a protective film as layers constituting the laminate.
  • the base material is a film for use as a component of optical devices such as display devices.
  • a protective film is a film that is attached to a substrate for the purpose of protecting the substrate, and that can be peeled off when the substrate is used for manufacturing a device or in any subsequent process.
  • the protective film may be provided in direct contact with the base material, it is usually provided on the base material via an adhesive layer. That is, the base material and the protective film are adhered via the adhesive layer, thereby forming a laminate in which the base material, the adhesive layer and the protective film layer are provided in this order.
  • FIG. 1 is a cross-sectional view schematically showing the laminate of the present invention.
  • the laminate 10 includes a base material 110 and a composite film 120 provided on one surface thereof, and the composite film includes a protective film 121 and an adhesive layer 122 .
  • the protective film is provided only on one of the front surface and the back surface of the substrate, but the present invention is not limited to this. A film may be provided.
  • the protective film 121 is a layer for exhibiting mechanical strength and other desired physical properties as a protective film, while the adhesive layer 122 exhibits the function of adhesion between the substrate 110 and the protective film 121. layer.
  • the adhesive layer 122 is generally thinner and more flexible than the protective film 121, and therefore does not substantially affect the mechanical strength of the composite film 120 as a whole with respect to the in-plane expansion and contraction.
  • the base material is a resin layer containing a crystalline alicyclic structure-containing polymer.
  • the resin may be particularly referred to as resin (a1) in order to distinguish it from common resins.
  • the resin that constitutes the protective film may be particularly referred to as resin (b1).
  • the base material may be a single-layer structure layer or a multi-layer structure layer consisting of a plurality of layers, but is usually a single-layer structure layer.
  • the protective film may also be a layer having a single layer structure, or a layer having a multi-layer structure consisting of a plurality of layers, but is usually a layer having a single layer structure.
  • E's is the storage modulus of the substrate at 180°C
  • E'p is the storage modulus of the protective film at 180°C.
  • elastic modulus means storage elastic modulus unless otherwise specified.
  • the value of E's/E'p is less than 1, preferably 0.95 or less, more preferably 0.90 or less. Although the lower limit of E's/E'p is not particularly limited, it can be 0.1 or more.
  • Each value of E's and E'p is not particularly limited, but can be, for example, 1.0 ⁇ 10 7 Pa or more and 1.0 ⁇ 10 9 Pa or less.
  • the elastic modulus is measured by peeling off the base material and the protective film of the laminate, using each as a sample film, and using a dynamic viscoelasticity measuring device (for example, manufactured by Hitachi High-Tech Science Co., Ltd., product name: DMA7100) at 180 ° C. It can be measured by stretching viscoelasticity measurement.
  • a dynamic viscoelasticity measuring device for example, manufactured by Hitachi High-Tech Science Co., Ltd., product name: DMA7100
  • Fs is the heat shrinkage rate of the base material in the longitudinal direction of the laminate at 180°C for 2 minutes
  • Fp is the heat shrinkage rate of the protective film in the laminate longitudinal direction at 180°C for 2 minutes
  • LB indicates the side length of the sample film before heating
  • LA indicates the side length of the sample film after heating.
  • a positive value of heat shrinkage indicates that the film shrinks due to heating
  • a negative value indicates that the film elongates due to heating.
  • Fs-Fp is the value of the difference between the percentages.
  • the value of Fs-Fp is -0.4% or more, preferably -0.3% or more, while it is 0.4% or less, preferably 0.3% or less.
  • Each value of Fs and Fp is not particularly limited, but can be, for example, -0.3% or more and 0.5% or less.
  • the long laminate comprises a base material that is a layer of the resin (a1) and a protective film, and the base material and the protective film have the above formulas (1) to When (2) is satisfied, the occurrence of wrinkles in the laminate can be suppressed, the laminate can be handled while maintaining its flatness, and the substrate can be easily manufactured as a substrate with high heat resistance. It can be done. Specifically, the curling of the laminate can be suppressed, so that the laminate can be conveyed in a state where it is not curled, and the 200 ° C. 10 minute substrate heat shrinkage rate of the obtained substrate and Physical properties, such as base material heat shrinkage at 145° C. for 60 minutes, which are required to be low as a product, can also be set to favorable low values.
  • the laminate of the present invention preferably has a small amount of curl.
  • the amount of curl was determined by cutting the laminate into a 50 mm ⁇ 50 mm square sample film under an environment of 23 ° C. (room temperature), placing it on a horizontal and flat surface, and raising the four corners of the sample film from the horizontal surface. It is obtained by measuring the amount (amount of curl) and calculating the average value of the four corners.
  • the amount of curl can be preferably 8.5 mm or less, more preferably 7.5 mm or less. Although the lower limit of curl amount is not particularly limited, it is ideally 0.0 mm.
  • the substrate is a layer of resin (a1), that is, a resin layer containing a crystalline alicyclic structure-containing polymer.
  • the base material can be a layer consisting only of the resin (a1). By using the resin (a1) as the base material, the base material can exhibit good mechanical strength, heat resistance, and moldability.
  • a polymer that "has crystallinity” refers to a polymer that has a melting point Tm. "Have a melting point Tm” means that the melting point can be observed with a differential scanning calorimeter (DSC).
  • a polymer having crystallinity may be simply referred to as a "crystalline polymer”.
  • a resin containing a polymer having crystallinity may be simply referred to as a “crystalline resin”.
  • the alicyclic structure-containing polymer is a polymer containing an alicyclic structure in the molecule. It is a polymer containing structures.
  • the alicyclic structure-containing polymer can be a polymer or a hydride thereof that can be obtained by a polymerization reaction using a cyclic olefin as a monomer.
  • One type of the alicyclic structure-containing polymer may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • Examples of the alicyclic structure possessed by the alicyclic structure-containing polymer include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because an optical film having excellent properties such as thermal stability can be easily obtained.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the ratio of structural units having an alicyclic structure to all structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more.
  • Heat resistance can be improved by increasing the ratio of structural units having an alicyclic structure in the alicyclic structure-containing polymer as described above.
  • the remainder other than structural units having an alicyclic structure is not particularly limited and can be appropriately selected according to the purpose of use.
  • Examples of the crystalline alicyclic structure-containing polymer include the following polymers ( ⁇ ) to ( ⁇ ). Among these, the polymer ( ⁇ ) is preferable as the crystalline alicyclic structure-containing polymer because a base material having excellent heat resistance can be easily obtained.
  • Polymer ( ⁇ ) A crystalline addition polymer of cyclic olefin monomers.
  • Polymer ( ⁇ ) A hydride or the like of polymer ( ⁇ ) having crystallinity.
  • the crystalline alicyclic structure-containing polymer includes a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydride of a ring-opening polymer of dicyclopentadiene. It is more preferable to have crystallinity, and particularly preferable is a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity.
  • the ring-opening polymer of dicyclopentadiene means that the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to 100% by weight of polymer.
  • the hydride of the ring-opening polymer of dicyclopentadiene preferably has a high ratio of racemo dyads.
  • the ratio of the racemo diad of repeating units in the hydrogenated ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more.
  • a high proportion of racemo dyads indicates high syndiotactic stereoregularity. Therefore, the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be higher as the ratio of the racemo diad is higher.
  • the ratio of racemo dyads can be determined based on the 13 C-NMR spectrum analysis described in the Examples below.
  • crystalline alicyclic structure-containing polymer a polymer obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
  • the melting point Tm of the crystalline alicyclic structure-containing polymer is preferably 200°C or higher, more preferably 230°C or higher, and preferably 290°C or lower.
  • a crystalline polymer such as a crystalline alicyclic structure-containing polymer has a glass transition temperature Tg.
  • Tg glass transition temperature
  • the specific glass transition temperature Tg of the crystalline polymer is not particularly limited, it is usually 85°C or higher and usually 170°C or lower.
  • the glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is quenched with dry ice. Subsequently, using this polymer as a test sample, a differential scanning calorimeter (DSC) was used to measure the glass transition temperature Tg and melting point Tm of the polymer at a heating rate of 10° C./min (heating mode). measurable.
  • DSC differential scanning calorimeter
  • the weight-average molecular weight (Mw) of the crystalline polymer such as a crystalline alicyclic structure-containing polymer is preferably 1,000 or more, more preferably 2,000 or more, and preferably 1,000,000. 500,000 or less, more preferably 500,000 or less.
  • a crystalline polymer having such a weight-average molecular weight has an excellent balance between moldability and heat resistance.
  • the molecular weight distribution (Mw/Mn) of the crystalline polymer such as a crystalline alicyclic structure-containing polymer is preferably 1.0 or more, more preferably 1.5 or more, and preferably 4.0 or less. , more preferably 3.5 or less.
  • Mn represents the number average molecular weight.
  • a crystalline polymer having such a molecular weight distribution is excellent in moldability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the crystalline polymer can be measured as polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
  • the proportion of the crystalline alicyclic structure-containing polymer in the resin (a1) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the ratio of the crystalline alicyclic structure-containing polymer can be 100% by weight or less.
  • the crystalline alicyclic structure-containing polymer contained in the resin (a1) does not have to be crystallized before manufacturing the base material.
  • the crystalline polymer contained in the base material is preferably crystallized, and preferably has a high degree of crystallinity.
  • a specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher.
  • the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
  • the degree of crystallinity of a crystalline polymer can be measured by a density method, an X-ray diffraction method, or a measurement method using a differential scanning calorimeter.
  • the resin (a1) may contain any component in addition to the crystalline alicyclic structure-containing polymer.
  • optional ingredients include antioxidants; light stabilizers; waxes; nucleating agents; fluorescent brighteners; near-infrared absorber; lubricant; filler; and any polymer other than crystalline polymer;
  • arbitrary components may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the thickness of the substrate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 160 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the resin (b1) i.e., the resin constituting the protective film in the protective film, may have a resin layer containing a crystalline polymer from the viewpoint of easily obtaining a protective film having the specific physical properties described above. preferable.
  • the material constituting the protective film in the protective film can be a material different from the resin (a1) usually constituting the base material. Examples of such materials include a resin capable of exhibiting a lower storage elastic modulus than the one employed as a component of the base material among the examples of the resin (a1) described above, and a polymer containing an alicyclic structure having crystallinity. Resins, including crystalline polymers other than coalescence, and other materials are included.
  • Examples of the crystalline polymer that constitutes the resin (b1) include, among the examples of the polymer that constitutes the resin (a1) described above, a polymer different from that employed as a component of the base material. mentioned.
  • crystalline polymer constituting the resin (b1) include styrenic polymers (e.g., homopolymers of styrene or styrene derivatives or copolymers thereof with other polymerizable monomers); Cellulosic polymers such as triacyl cellulose; Polyolefins such as polyethylene and polypropylene; Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; Polyarylene sulfides such as polyphenylene sulfide; Polyvinyl alcohol; polysulfone; polyarylsulfone; polyvinyl chloride; acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; polyimide; These polymers may be homopolymers or copolymers.
  • styrenic polymers e.g., homopolymers of styrene or styrene derivatives or copolymers thereof with other polymerizable
  • examples of polystyrene-based polymers having crystallinity include those described in JP-A-2011-118137.
  • the resin (b1) may contain optional components in addition to the polymer.
  • optional components that can be contained in the resin (b1) include the same components as examples of optional components that can be contained in the resin (a1).
  • the resin (b1) may contain a polymer singly or in combination of two or more at any ratio.
  • the proportion of the polymer in 100% by weight of the resin (b1) is preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 85% by weight or more, and is usually 100% by weight or less. may be
  • the glass transition temperature of the resin (b1) is preferably 60°C or higher, more preferably 70°C or higher, and preferably 180°C or lower, more preferably 170°C or lower.
  • the glass transition temperature of the resin (b1) is at least the lower limit, the heat resistance of the laminate can be effectively improved.
  • the glass transition temperature is equal to or lower than the upper limit, moldability can be improved.
  • the surface of the protective film on the side in contact with the adhesive layer may be subjected to surface treatment such as corona treatment or plasma treatment. That is, one surface of the protective film can be surface-treated and an adhesive layer can be formed on the surface.
  • surface treatment such as corona treatment or plasma treatment. That is, one surface of the protective film can be surface-treated and an adhesive layer can be formed on the surface.
  • the thickness of the protective film in the laminate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 150 ⁇ m or less, more preferably 140 ⁇ m or less.
  • the protective film in the laminate of the present invention is a layer of a resin containing a crystalline polymer
  • the polymer constituting the protective film may be crystallized with a degree of crystallinity above a certain level.
  • a specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher.
  • the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
  • Adhesive layer When the laminate of the present invention is provided with an adhesive layer, examples of adhesives constituting the adhesive layer include those using various polymers as base polymers. Examples of such base polymers include acrylic polymers, urethane polymers, polyester polymers, rubber polymers, epoxy polymers, and silicone polymers. In addition, the adhesive may contain optional components such as a polymerization initiator, a curing agent, an ultraviolet absorber, a colorant, and an antistatic agent in combination with the base polymer. Adhesives include adhesives (pressure sensitive adhesives).
  • a commercially available product can be used as the adhesive.
  • the adhesive layer can be constructed by using them.
  • the adhesive layer may have a single layer structure or a multilayer structure.
  • the thickness of the adhesive layer is not particularly limited, and can be in the range of, for example, 3 ⁇ m to 30 ⁇ m, such as 5 ⁇ m to 20 ⁇ m.
  • the laminate of the invention can be produced by any method. From the viewpoint of easily producing a laminate that satisfies the requirements defined by formulas (1) and (2), the laminate of the present invention can be produced by a production method including the following steps (1) and (2). preferable.
  • the manufacturing method will be described below as a method for manufacturing the laminate of the present invention.
  • Step (1) A step of laminating the pre-annealed base material and the pre-annealed protective film to obtain a pre-annealed laminate comprising the pre-annealed base material and the pre-annealed protective film.
  • Step (2) A step of annealing the pre-annealed laminate.
  • Examples of the material of the pre-annealing base material used in step (1) are the same as those listed above as examples of the resin (a1), which is the material constituting the base material of the laminate of the present invention.
  • the pre-annealed substrate and pre-annealed protective film may have different storage modulus and thermal shrinkage than the substrate and protective film in the laminate, they are at this point represented by formulas (1)-(2) above. does not have to be satisfied.
  • the method for preparing the base material before annealing is not particularly limited, and it can be prepared by any film manufacturing method.
  • the substrate before annealing can be prepared by employing a known molding method such as a melt extrusion method and molding the resin (a1) into a long film shape.
  • a commercially available product may be used as the base material before annealing.
  • a film obtained by molding the resin (a1) by a molding method such as a melt extrusion method, or a commercially available film of the resin (a1) can be used as it is as a base material before annealing.
  • these films may be used as raw films, optionally subjected to any treatment, and then used as the base material before annealing.
  • a raw film may be subjected to a process of stretching to obtain a film having desired retardation, dimensions and other properties, which may be used as a pre-annealing substrate.
  • the stretching may be followed by a step of promoting crystallization of the resin (a1).
  • the stretching direction there are no restrictions on the stretching direction, and examples include the longitudinal direction, width direction, and oblique direction.
  • the oblique direction means a direction perpendicular to the thickness direction and neither parallel nor perpendicular to the width direction.
  • the stretching direction may be one direction or two or more directions. Therefore, as the stretching method, for example, a method of uniaxially stretching the original film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the original film in the width direction (horizontal uniaxial stretching method), etc. Uniaxial stretching method.
  • a simultaneous biaxial stretching method in which the original film is stretched in the longitudinal direction and in the width direction at the same time a sequential biaxial stretching method in which the original film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction, etc.
  • Examples of modes of uniaxial stretching include fixed-end uniaxial stretching and free-end uniaxial stretching.
  • the fixed-end uniaxial stretching method is a stretching method in which the ends in the direction perpendicular to the stretching direction of the raw film are fixed, and the free-end uniaxial stretching method fixes the ends in the direction perpendicular to the stretching direction of the raw film. It is a drawing method performed without stretching.
  • the longitudinal uniaxial stretching method is often free-end uniaxial stretching, and the transverse uniaxial stretching method is often fixed-end uniaxial stretching.
  • the draw ratio can be adjusted as appropriate so that the substrate in the laminate has desired retardation, dimensions and other properties. Specifically, it is preferably 1-fold or more, more preferably 1.01-fold or more, preferably 15-fold or less, more preferably 11-fold or less.
  • the stretching is biaxial stretching, it is preferable that the area ratio, that is, the product of the stretching ratios in two directions is within such a range.
  • the stretching temperature is preferably "Tg + 5°C” or higher, more preferably “Tg + 10°C” or higher, preferably “Tg + 100°C” or lower, more preferably “Tg + 90°C” or lower.
  • Tg represents the glass transition temperature of the polymer being stretched.
  • the stretching temperature is equal to or higher than the lower limit of the above range, the original film can be sufficiently softened and stretched uniformly.
  • the stretching temperature is equal to or lower than the upper limit of the above range, it is possible to suppress the hardening of the original film due to the progress of crystallization of the polymer, so that the stretching can be performed smoothly, and the stretching causes a large birefringence. can be expressed.
  • usually the haze of the resulting substrate can be reduced to increase transparency.
  • the crystallization promotion step can be performed by heating the film after the stretching step. Such heating can be done while the film dimensions are controlled and maintained at the stretched dimensions, or by shrinking the stretched dimensions by a controlled fraction.
  • the ratio of dimensional change when the film is shrunk is preferably 0.90 times or more and less than 1 time.
  • the product of the area magnification that is, the magnification of the dimensional change in the two directions is preferably within such a range.
  • the reduction ratio is the ratio of the size after reduction to the size before reduction being 1.
  • the heating temperature in the crystallization promoting step is usually higher than the glass transition temperature Tg of the crystalline polymer and lower than the melting point Tm of the crystalline polymer. More specifically, the heating temperature is preferably Tg° C. or higher, more preferably Tg+10° C. or higher, and preferably Tm ⁇ 10° C. or lower, more preferably Tm ⁇ 20° C. or lower. By setting the heating temperature within this range, crystallization of the crystalline polymer can be rapidly progressed while suppressing white turbidity due to progress of crystallization.
  • the heat treatment time is preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 30 minutes or shorter, more preferably 15 minutes or shorter.
  • Pre-annealing protective film and adhesive layer Examples of the material of the pre-annealing protective film used in step (1) are the same as those listed above as examples of the resin (b1), which is the material constituting the protective film of the laminate of the present invention.
  • the method for preparing the protective film before annealing is not particularly limited, and it can be prepared by any film manufacturing method.
  • a pre-annealing protective film can be prepared by employing a known molding method such as a melt extrusion method and molding the resin (b1) into a long film shape.
  • a commercially available product may be used as the pre-annealing protective film.
  • the pre-annealing protective film may be a stretched film, but may also be a film that has not been stretched.
  • an adhesive layer may be provided on the surface of the protective film before annealing to form a composite film.
  • the adhesive layer can be formed by applying an adhesive to the surface of the pre-annealing protective film.
  • the applied adhesive layer can be further subjected to a curing treatment as necessary to obtain an adhesive layer having desired physical properties.
  • the adhesive layer can be provided by transferring a layer of an adhesive film to the surface of the protective film before annealing.
  • Examples of coating methods for coating the adhesive include wire bar coating, spray coating, roll coating, gravure coating, die coating, curtain coating, slide coating, and extrusion coating. be done.
  • Examples of adhesive curing treatments include drying treatments, examples of which include vacuum drying, heat drying, and combinations thereof.
  • the pre-annealing base material is a resin layer containing a crystalline alicyclic structure-containing polymer
  • the polymer constituting the pre-annealing base material can be crystallized with a degree of crystallinity above a certain level.
  • a specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher.
  • the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
  • the pre-annealing protective film is a layer of a resin containing a crystalline polymer
  • the polymer constituting the pre-annealing protective film can be crystallized with a degree of crystallinity above a certain level.
  • a specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher.
  • the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
  • the storage elastic modulus and thermal shrinkage of the pre-annealed base material and pre-annealed protective film are such that the storage elastic modulus and thermal shrinkage of the base material and protective film in the product laminate are the desired values described above. and preparation conditions can be adjusted accordingly.
  • the storage elastic modulus and thermal shrinkage of the pre-annealed base material and the pre-annealed protective film and their ratios themselves are not particularly limited, but values within the following ranges are preferred.
  • the storage elastic modulus pE's at 180°C of the base material before annealing and the storage elastic modulus pE'p at 180°C of the protective film before annealing are in a specific range of their ratio pE's/pE'p. is preferred.
  • the value of pE's/pE'p is preferably less than 1, more preferably 0.95 or less, even more preferably 0.90 or less.
  • the lower limit of pE's/pE'p is not particularly limited, it can be 0.1 or more.
  • Each value of pE's and pE'p is not particularly limited, but can be, for example, 1.0 ⁇ 10 7 Pa or more and 1.0 ⁇ 10 9 Pa or less.
  • the thermal shrinkage rate pFs (%) of the base material before annealing in the longitudinal direction of the laminate at 180 ° C. 2 minutes and the thermal shrinkage rate pFp (%) of the protective film in the longitudinal direction of the laminate at 180 ° C. 2 minutes before annealing are
  • the difference pFs-pFp is preferably a value within a specific range.
  • the value of pFs ⁇ pFp is preferably ⁇ 1.0% or more, more preferably ⁇ 0.8% or more, while preferably 1.0% or less, more preferably 0.8% or less. be.
  • Each value of pFs and pFp is not particularly limited, but can be, for example, -0.3% or more and 1.0% or less.
  • the laminate of the present invention comprising a substrate and a protective film that satisfy the above formulas (1) and (2) can be easily manufactured. can be manufactured to
  • Step (1) can be carried out by stacking a long pre-annealed base material and a pre-annealed protective film on top of each other with their longitudinal directions aligned, and pressurizing them. Pressurization can be performed continuously by a device such as a nip roll that presses a long film.
  • the protective film before annealing constitutes a composite film with an adhesive layer
  • the surface of the composite film on the side of the adhesive layer is laminated to the surface of the substrate before annealing, thereby providing the substrate before annealing and the protection before annealing.
  • a pre-annealed laminate in which the film is bonded via an adhesive layer can be obtained.
  • Step (2) The annealing treatment in step (2) can be performed by heating the pre-annealed laminate while restraining it in at least one of its in-plane directions.
  • the pre-annealed laminate can be constrained, for example, by constraining the pre-annealed laminate in its longitudinal direction, width direction, or both directions.
  • Annealing treatment involving restraint in the longitudinal direction of the pre-annealed laminate can be performed using, for example, a roll support type film dryer.
  • the roll support type dryer is equipped with an upstream nip roll, a downstream nip roll, and an oven provided between them, and by adjusting the peripheral speed ratio between the upstream nip roll and the downstream nip roll, A long film is transported under tension, passed through the oven in between, and guided by only unconstrained rolls that support the film from below in the oven. It is an apparatus capable of heating the film without restraint in the width direction of the film.
  • Annealing treatment can be performed by conveying the pre-annealed laminate in a direction along its longitudinal direction, continuously introducing it into a dryer, and heating it.
  • the tension applied to the film is preferably 3 N/m or more and 25 N/m or less.
  • Annealing treatment involving restraint in the longitudinal direction of the pre-annealed laminate can be performed, for example, using an apparatus having the same structure as the apparatus used for stretching. More specifically, a device such as a tenter-type stretching machine that can control both the longitudinal and width dimensions of a long film and continuously heat the film is used, and the film is stretched in the stretching machine. Annealing can be performed by conveying and heating the film while it is gripped and the dimensions in the longitudinal and width directions of the film are maintained unchanged.
  • the heating temperature in the annealing treatment is usually higher than the glass transition temperature Tg of the crystalline polymer and lower than the melting point Tm of the crystalline polymer. More specifically, the heating temperature is preferably Tg+20° C. or higher, more preferably Tg+40° C. or higher, and preferably Tm ⁇ 20° C. or lower, more preferably Tm ⁇ 40° C. or lower.
  • the heating time is preferably 5 seconds or longer, more preferably 10 seconds or longer, while preferably 30 minutes or shorter, more preferably 15 minutes or shorter.
  • the pre-annealed base material which is a resin film containing a crystalline alicyclic structure-containing polymer
  • the flatness is likely to be impaired, and such a phenomenon is , especially when the pre-annealed substrate is stretched at a high areal ratio prior to annealing.
  • simply providing the protective film does not reduce the damage to the flatness, and the resulting substrate may not exhibit sufficient heat resistance due to the annealing treatment.
  • the materials of the pre-annealed base material and the pre-annealed protective film and the treatment conditions prior to the annealing treatment are changed to the above formulas (1) and ( A laminated body having good flatness and heat resistance can be easily produced by preparing a laminated body before annealing in a state appropriately adjusted so as to satisfy 2) and subjecting this to an annealing treatment.
  • the method for producing a laminate of the present invention may further include optional steps in addition to the steps (1) and (2).
  • optional steps include a step of forming an additional layer such as a conductive layer on the surface of the substrate included in the laminate, and a step of winding the laminate to obtain a roll.
  • the laminate of the present invention can be used as it is as a constituent element of an optical device, or a constituent element of other electronic and electrical parts that are not limited to optical devices.
  • the protective film can be peeled off from the laminate of the present invention, and the remaining substrate can be used as a component of optical devices or other electronic and electrical components.
  • components of optical devices include substrate films, retardation films, polarizing films, and light diffusion sheets in display devices such as liquid crystal display devices and organic electroluminescence display devices and other devices.
  • the substrate film can be used particularly effectively as a touch panel substrate film and a flexible display substrate film by taking advantage of its flexibility.
  • it is preferably used as a constituent element of light-condensing sheets, optical cards, and the like.
  • Examples of other electronic components and components of electrical components include films for flexible printed circuit boards, film capacitors, high frequency circuit board films, antenna substrate films, battery separator films, and release films.
  • the laminate can maintain good flatness, undergo little change in shape due to heat load, and curl less in a high-temperature environment. Therefore, it can be used particularly useful as a base material for manufacturing an optical element (for example, a conductive layer included in a touch panel) whose formation process is performed at high temperature.
  • an optical element for example, a conductive layer included in a touch panel
  • the substrate in the laminate of the present invention can also be used particularly effectively as a retardation layer after peeling from the laminate.
  • the substrate in the laminate of the present invention can further be used as a protective film for protecting a polarizer, taking advantage of its high flatness and heat resistance.
  • Glass transition temperature Tg and melting point Tm Glass transition temperature Tg and melting point Tm
  • DSC differential scanning calorimeter
  • the thickness of the film was measured using a contact thickness gauge (Code No. 543-390, manufactured by MITUTOYO).
  • Thermal shrinkage rate In the measurement of the thermal shrinkage rate (pFs and pFp) of the pre-annealed base material and the pre-annealed protective film, each film was cut out in an environment of 23 ° C. (room temperature) to obtain a square sample film with a size of 120 mm ⁇ 120 mm. .
  • the thermal shrinkage rate of the protective film was measured in the state of the composite film with the adhesive layer.
  • Each side of the square of the sample film was oriented parallel to the longitudinal direction or width direction of the film.
  • This sample film was heated under predetermined heating conditions, then cooled to 23°C (room temperature), and then the lengths of the four sides of the sample film were measured.
  • Two heating conditions 145° C. for 60 minutes and 200° C. for 10 minutes, were used for the measurement of the base material before annealing and the protective film before annealing.
  • the heating conditions were 180° C. for 2 minutes. Further measurements on the substrate after annealing were performed at 145° C. for 60 minutes and 200° C. for 10 minutes.
  • the thermal shrinkage rate of the sample film was calculated based on the following formula (I).
  • LB indicates the side length of the sample film before heating
  • LB is 120 mm in this measurement
  • LA indicates the side length of the sample film after heating.
  • Thermal shrinkage rate (%) [(L B -L A )/L B ] ⁇ 100 (I)
  • a positive value for the thermal shrinkage ratio indicates that the film shrinks due to heating, and a negative value indicates that the film elongates due to heating.
  • the average value of the shrinkage rate of the two sides along the transport direction of the film (that is, the longitudinal direction of the long film) is taken as the heat shrinkage rate in the transport direction of the film, that is, the heat shrinkage rate in the longitudinal direction of the long film. adopted. Also, the average value of the heat shrinkage rates of the two sides along the width direction of the film was adopted as the heat shrinkage rate in the width direction of the long film. Furthermore, for the base material and protective film after annealing, the value of Fs - Fp was obtained from the heat shrinkage rate Fs (%) in the longitudinal direction of the base material and the heat shrinkage rate Fp (%) in the longitudinal direction of the protective film. .
  • the annealed laminate was cut into a square piece of 300 mm ⁇ 300 mm, and the substrate and the protective film were peeled off.
  • the base material was spread on a horizontal and flat desk, and the smoothness of the surface of the base material was visually evaluated according to the following criteria.
  • Good No corrugated sheet-like wrinkles with streaks along the conveying direction, practically no problem.
  • Acceptable Slight corrugated sheet-like wrinkles having streaks along the conveying direction, but no problem in practical use.
  • Poor There are corrugated sheet-like wrinkles with streaks along the conveying direction, which poses a practical problem.
  • crystallinity The crystallinity of the base material before annealing and the protective film before annealing was measured by the following method, using these as sample films cut into appropriate sizes.
  • the density of the sample film was measured using a helium gas replacement type dry automatic density meter "AccuPyc 1340" (manufactured by Micromeritics). About 3 g of the sample film was cut into strips having a width of 30 mm or less, rolled into a container of 10 cm 3 , and measured while maintaining the temperature at 25°C. Density was determined from 10 replicate measurements.
  • D (g/cm 3 ) represents the determined density of the sample film. Da indicates the complete amorphous density (g/cm 3 ) of the polymer forming the sample film. Db indicates the full crystal density (g/cm 3 ) of the polymer forming the sample film.
  • 53 J/g was used as the melting enthalpy (J/g) when the degree of crystallinity was 100%.
  • Crystallinity of polyamide film The crystallinity of the sample film, which is a polyamide film, was measured by the X-ray diffraction method.
  • a solution was prepared by dissolving 0.014 parts of a tetrachlorotungstenphenylimide (tetrahydrofuran) complex in 0.70 parts of toluene. To this solution, 0.061 part of a 19% diethylaluminum ethoxide/n-hexane solution was added and stirred for 10 minutes to prepare a catalyst solution. This catalyst solution was placed in a pressure-resistant reactor to initiate ring-opening polymerization reaction. Thereafter, the mixture was allowed to react for 4 hours while maintaining the temperature at 53° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The obtained ring-opening polymer of dicyclopentadiene had a number average molecular weight (Mn) and a weight average molecular weight (Mw) of 8,750 and 28,100, respectively. was 3.21.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • a filter aid ("Radiolite (registered trademark) #1500” manufactured by Showa Kagaku Kogyo Co., Ltd.) is added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Co., Ltd.) is used as an adsorbent.
  • TCP-HX PP pleated cartridge filter
  • the hydride contained in the reaction solution and the solution were separated using a centrifugal separator and dried under reduced pressure at 60° C. for 24 hours to obtain a crystalline hydride of a ring-opening polymer of dicyclopentadiene 28. 5 copies were obtained.
  • This hydride had a hydrogenation rate of 99% or more, a glass transition temperature Tg of 93° C., a melting point (Tm) of 267° C., and a ratio of racemo diad of 89%.
  • An antioxidant tetrakis[methylene-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate]methane was added to 100 parts of the hydride of the resulting ring-opening polymer of dicyclopentadiene. ; After mixing 1.1 parts of "Irganox (registered trademark) 1010" manufactured by BASF Japan Co., Ltd., a twin-screw extruder equipped with four die holes with an inner diameter of 3 mm ⁇ (product name "TEM-37B", manufactured by Toshiba Machine Co., Ltd. ).
  • a mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant is formed into strands by hot-melt extrusion molding, and then chopped with a strand cutter to form a pellet-shaped crystalline resin (resin A). got
  • the operating conditions of the twin-screw extruder were as follows.
  • the extruded film was supplied to a simultaneous biaxial stretching machine and subjected to a simultaneous biaxial stretching process.
  • the stretching ratio was 3.5 times in the longitudinal direction and 2.9 times in the width direction, and the stretching temperature was 115°C.
  • the film was subjected to a crystallization promotion step. To promote crystallization, the film is held in a stretching machine and heated to a temperature of 240°C for 15 seconds to reduce the film dimensions to 0.94 times in the longitudinal direction and 0.96 times in the width direction. It was done by After completion of the crystallization promoting step, the film was cooled to a temperature of 100° C.
  • a commercially available SPS (syndiotactic polystyrene) film having a thickness of 35 ⁇ m (manufactured by Kurashiki Boseki Co., Ltd., product name “Oidys (registered trademark) HNL”) was pulled out from a film roll, and one side was subjected to discharge treatment (corona treatment).
  • a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.) was used for the discharge treatment, and the discharge conditions were an output of 500 W, an electrode length of 1.35 m, and a conveying speed of 10 m/min.
  • an acrylic pressure-sensitive adhesive (Fujimori Kogyo "Mastak series") as an adhesive was applied using a die coater so that the dry film thickness was 10 ⁇ m, The adhesive was dried by passing through a drying oven at 100°C.
  • a composite film having a protective film, which is an SPS film, and an adhesive layer formed on one surface thereof was obtained as a long film with a width of 1100 mm.
  • the heat shrinkage rate and crystallinity of the pre-annealed protective film were measured.
  • the pre-annealed laminate obtained in (1-3) was conveyed in the direction along its longitudinal direction, continuously introduced into a dryer, and subjected to annealing by heating.
  • a dryer a roll support type dryer was used. This dryer includes an upstream nip roll, a downstream nip roll, and an oven provided between them.
  • tension is applied to the film between the nip rolls.
  • the oven the film is conveyed in a state in which the film It is a device that can heat a film without restraint in the width direction.
  • the heating temperature in the annealing treatment was 200° C.
  • the heating time was 2 minutes
  • the transfer tension was 13N.
  • Example 2 A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes. - In the preparation of the composite film containing the protective film before annealing in (1-2), instead of the 35 ⁇ m thick SPS film, a 75 ⁇ m thick SPS film (manufactured by Kurashiki Boseki Co., Ltd., product name “Oidys (registered trademark) CN”) was used.
  • Example 3 A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes. - In the preparation of the base material before annealing in (1-1), the dimensions of the T-die opening and the operating conditions of the molding machine were changed, and the thickness of the extruded film was changed to 430 ⁇ m. Further, the draw ratio was changed from 3.5 times to 2.6 times in the longitudinal direction and from 2.9 times to 3.3 times in the width direction. However, the reduction ratio in the crystallization promoting step is the same as in Example 1. The width direction dimension of the obtained pre-annealed base material is also 1100 mm, which is the same as in Example 1.
  • Example 4 A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes. - In the preparation of the base material before annealing in (1-1), the size of the T-die opening and the operating conditions of the molding machine were changed, and the thickness of the extruded film was changed to 1000 ⁇ m.
  • Example 5 (5-1. Base material before annealing) Resin A produced in Production Example 1 was molded using a hot-melt extrusion film molding machine equipped with a T-die to obtain a long extruded film (thickness: 48 ⁇ m) with a width of approximately 1,350 mm.
  • the extruded film was supplied to a transverse stretching machine using a tenter method and subjected to fixed-end uniaxial stretching.
  • the draw ratio was 1.0 times in the longitudinal direction and 1.35 times in the width direction.
  • the extruded film was preheated at a temperature of 120°C prior to stretching and then stretched at a stretching temperature of 140°C.
  • the film was subjected to a crystallization promotion step. Acceleration of crystallization was carried out by holding the film in a stretching machine, conveying the film in a state in which the film dimension was maintained without changing, and heating the film to a temperature of 160° C. for 30 seconds. After completion of the crystallization promoting step, the film was cooled to a temperature of 100° C.
  • an acrylic pressure-sensitive adhesive (Fujimori Kogyo "Mastak series") as an adhesive was applied using a die coater so that the dry film thickness was 10 ⁇ m, The adhesive was dried by passing through a drying oven at 100°C. As a result, a composite film having a protective film that is a PET film and an adhesive layer formed on one surface thereof was obtained as a long film with a width of 1100 mm. The thermal shrinkage rate and crystallinity of the obtained pre-annealed protective film were measured.
  • the pre-annealed laminate obtained in (5-3) was conveyed in the direction along its longitudinal direction, continuously introduced into a dryer, and subjected to annealing by heating.
  • a transverse stretching machine was used as the drying machine, and the film was held in the stretching machine, and the film was conveyed and heated while the dimensions in the longitudinal direction and the width direction of the film were kept unchanged.
  • the heating temperature in the annealing treatment was 170° C., and the heating time was 5 minutes. As a result of such annealing treatment, a laminate including the substrate and the protective film was obtained.
  • the laminate obtained in (5-4) was evaluated for the elastic modulus of each layer, the thermal shrinkage of each layer, the crystallinity of each layer, the smoothness of the surface, and the amount of curl.
  • Example 6 A laminate was obtained and evaluated in the same manner as in Example 5 except for the following changes. - In the preparation of the base material before annealing in (5-1), the dimensions of the T-die opening and the operating conditions of the molding machine were changed, and the thickness of the extruded film was changed to 42 ⁇ m. Furthermore, the draw ratio in the width direction was changed from 1.35 times to 1.2 times (longitudinal direction was unchanged at 1.0 times). However, the reduction ratio in the crystallization promoting step is the same as in Example 5. The width direction dimension of the obtained pre-annealed base material is also 1100 mm, which is the same as in Example 1.
  • Example 1 A laminate was obtained and evaluated in the same manner as in (1-1) and (1-3) to (1-5) of Example 1, except for the following changes. ⁇ In (1-3), the composite film containing the protective film before annealing was used instead of the one obtained in (1-2) in Example 5 (5-2).
  • Example 2 A laminate was obtained by the same operation as in Example 1, except for the following changes. ⁇ In the preparation of the composite film containing the protective film before annealing in (1-2), instead of the SPS film with a thickness of 35 ⁇ m, a commercially available alicyclic structure-containing polymer film (manufactured by Nippon Zeon Co., Ltd., trade name “ ZeonorFilmTM ZF16”, thickness 146 ⁇ m) was used.
  • a commercially available alicyclic structure-containing polymer film manufactured by Nippon Zeon Co., Ltd., trade name “ ZeonorFilmTM ZF16”, thickness 146 ⁇ m
  • the extruded film was heat-treated using a roll support type dryer.
  • the heating temperature was 180° C., and the heating time was 5 minutes.
  • Discharge treatment (corona treatment) was performed on one side of the heat-treated film.
  • a corona treatment apparatus manufactured by Kasuga Denki Co., Ltd. was used for the discharge treatment, and the discharge conditions were an output of 500 W, an electrode length of 1.35 m, and a conveying speed of 10 m/min.
  • an acrylic pressure-sensitive adhesive (Fujimori Kogyo "Mastak series") as an adhesive was applied using a die coater so that the dry film thickness was 10 ⁇ m, The adhesive was dried by passing through a drying oven at 100°C. As a result, a composite film having a protective film made of a polyamide film and an adhesive layer formed on one surface thereof was obtained as a long film with a width of 1100 mm. The thermal shrinkage rate and crystallinity of the obtained pre-annealed protective film were measured.
  • Example 4 A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes. - In the preparation of the composite film containing the pre-annealed protective film in (1-2), the same substrate as the pre-annealed substrate obtained in (1-1) was used in place of the SPS film having a thickness of 35 ⁇ m. That is, in (1-2), a long composite film comprising the pre-annealed substrate obtained in (1-1) and an adhesive layer formed on one surface thereof is prepared and used. (1-3) and subsequent steps were performed.
  • Laminate 110 Base material 120: Composite film 121 Protective film 122: Adhesive layer

Abstract

The present invention provides a laminate that comprises a substrate and a protective film provided on one of the surfaces of the substrate, and that has an elongated shape. The substrate is a layer of a resin including a crystalline alicyclic-structure-containing polymer. The substrate and the protective film satisfy the relationships E's/E'p<1 and -0.4≤Fs-Fp≤0.4. In the aforementioned relationships, E's is the storage modulus of the substrate at 180°C, E'p is the storage modulus of the protective film at 180°C, Fs is the heat shrinkage rate (%) of the substrate in the longitudinal direction of the laminate for 2 minutes at 180°C, and Fp is the heat shrinkage rate (%) of the protective film in the longitudinal direction of the laminate for 2 minutes at 180°C. The present invention also provides a method for manufacturing a laminate, the method including a process for annealing a pre-annealing laminate.

Description

積層体及びその製造方法Laminate and its manufacturing method
 本発明は、光学フィルム等としての用途に用いうる基材と、当該基材を保護する保護フィルムとを備える積層体、及びその製造方法に関する。 The present invention relates to a laminate comprising a base material that can be used as an optical film or the like and a protective film that protects the base material, and a method for producing the same.
 液晶表示装置、有機エレクトロルミネッセンス表示装置等の光学的な装置の構成要素として、光学フィルムが広く用いられる。その例としては、装置において基材として用いられるフィルムが挙げられる。具体的には、かかる基材の上に、他の層を形成し、装置を構成する複数の層を備える構成要素を得ることが一般的に行われている。 Optical films are widely used as components of optical devices such as liquid crystal display devices and organic electroluminescence display devices. Examples include films used as substrates in devices. Specifically, it is common practice to form other layers on such a base material to obtain a component comprising a plurality of layers constituting a device.
 光学フィルムは、良好な光学的特性が求められ、且つ使用環境における熱に対する耐久性が高いことが求められる。例えば、200℃10分間の加熱、又は145℃60分間の加熱といった熱負荷を受けた場合でも、収縮等の形状変化を発生させないことが望まれる。 Optical films are required to have good optical properties and high durability against heat in the usage environment. For example, even when subjected to a heat load such as heating at 200° C. for 10 minutes or heating at 145° C. for 60 minutes, it is desirable not to cause shape change such as shrinkage.
 そのような観点から、かかる光学フィルムの材料として、結晶性を有する樹脂、特に結晶性を有する脂環式構造含有重合体を含む樹脂が用いられる場合がある。かかる結晶性を有する樹脂を用いる場合、光学異方性、耐熱性及びその他のさまざまな特性を調整するため、延伸、熱固定等の様々な処理が施される場合がある(例えば、特許文献1~2)。 From such a point of view, a crystalline resin, particularly a resin containing a crystalline alicyclic structure-containing polymer, may be used as a material for such an optical film. When using a resin having such crystallinity, various treatments such as stretching and heat setting may be performed in order to adjust optical anisotropy, heat resistance and other various properties (for example, Patent Document 1 ~2).
国際公開第2016/067893号(対応公報:米国特許出願公開第2017/306113号明細書)International Publication No. 2016/067893 (corresponding publication: US Patent Application Publication No. 2017/306113) 特開2021-24086号公報Japanese Patent Application Laid-Open No. 2021-24086
 結晶性を有する樹脂のフィルムの処理に際しては、その表面にシワが発生し、フィルムの平面性が毀損される等の不所望な現象が発生し、製品の品質が低下する場合がある。また、光学フィルムは、その処理のしかたによっては、十分な耐熱性が得られない場合がある。例えば、200℃10分間の加熱、又は145℃60分間の加熱といった熱負荷を受けた場合の形状変化の抑制が達成されない場合がある。 When processing a crystalline resin film, wrinkles may occur on the surface, causing undesirable phenomena such as damage to the flatness of the film, which may reduce the quality of the product. Moreover, depending on the method of processing, the optical film may not have sufficient heat resistance. For example, it may not be possible to suppress shape change when subjected to a heat load such as heating at 200° C. for 10 minutes or heating at 145° C. for 60 minutes.
 したがって、本発明の目的は、シワの発生が抑制され、基材としての使用に際しての平面性が維持され、且つ耐熱性が高い基材、及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a base material that suppresses the occurrence of wrinkles, maintains flatness when used as a base material, and has high heat resistance, and a method for producing the same.
 シワの発生を抑制し基材としての使用に際しての平面性を維持するための方策としては、基材を、保護フィルムとの積層体とすることが考えられる。この点について本発明者が検討を行ったところ、基材と保護フィルムとして、特定の物性の関係を有するものを採用し積層体を構成することにより、高いシワ抑制及び耐熱性が得られるものを製造しうることを見出し、且つ、そのような積層体は、特定のアニール前基材及びアニール前保護フィルムを貼合しアニール前積層体とし、それを積層体の状態のままアニール処理することにより得られること見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
As a measure for suppressing the generation of wrinkles and maintaining flatness when used as a base material, it is conceivable to make the base material a laminate with a protective film. As a result of investigations by the present inventors on this point, it was found that high wrinkle suppression and heat resistance can be obtained by adopting a substrate and a protective film that have a specific physical property relationship to form a laminate. It was found that such a laminate can be produced by laminating a specific pre-annealing base material and a pre-annealing protective film to form a pre-annealing laminate, which is then annealed in the state of the laminate. The inventors found that it can be obtained, and completed the present invention.
That is, the present invention provides the following.
 〔1〕 基材、及び前記基材の一方の表面に設けられた保護フィルムを備え、長尺状の形状を有する積層体であり、
 前記基材は、結晶性を有する脂環式構造含有重合体を含む樹脂の層であり、
 前記基材及び前記保護フィルムが、下記式(1)~(2)を満たす、積層体:
 E’s/E’p<1   (1)
 -0.4≦Fs-Fp≦0.4   (2)
 但し、
 E’sは、前記基材の180℃における貯蔵弾性率であり、
 E’pは、前記保護フィルムの180℃における貯蔵弾性率であり、
 Fsは、前記基材の180℃2分における積層体長手方向の熱収縮率(%)であり、
 Fpは、前記保護フィルムの180℃2分における積層体長手方向の熱収縮率(%)である。
 〔2〕 前記保護フィルムが、結晶性を有する重合体を含む樹脂の層である、〔1〕に記載の積層体。
 〔3〕 前記基材を構成する前記結晶性を有する脂環式構造含有重合体を含む樹脂が、ジシクロペンタジエンの開環重合体の水素化物である、〔1〕又は〔2〕に記載の積層体。
 〔4〕 〔1〕~〔3〕のいずれか1項に記載の積層体の製造方法であって、
 アニール前基材及びアニール前保護フィルムを貼合し、前記アニール前基材及び前記アニール前保護フィルムを備えるアニール前積層体を得る工程であって、前記アニール前基材は、結晶性を有する脂環式構造含有重合体を含む樹脂の層である工程、及び
 前記アニール前積層体をアニール処理する工程
 を含む製造方法。
 〔5〕 前記アニール前保護フィルムが、結晶性を有する重合体を含む樹脂の層である、〔4〕に記載の製造方法。
 〔6〕 前記アニール前基材を構成する前記結晶性を有する脂環式構造含有重合体を含む樹脂が、ジシクロペンタジエンの開環重合体の水素化物である、〔4〕又は〔5〕に記載の製造方法。
 〔7〕 前記アニール処理が、前記アニール前積層体を、その面内方向のうちの少なくとも1の方向において拘束した状態で加熱することを含む、〔4〕~〔6〕のいずれか1項に記載の製造方法。
[1] A laminate having a long shape, comprising a substrate and a protective film provided on one surface of the substrate,
The substrate is a resin layer containing a crystalline alicyclic structure-containing polymer,
A laminate in which the substrate and the protective film satisfy the following formulas (1) to (2):
E's/E'p<1 (1)
-0.4≤Fs-Fp≤0.4 (2)
however,
E's is the storage modulus of the base material at 180°C,
E'p is the storage modulus of the protective film at 180°C,
Fs is the thermal shrinkage rate (%) of the base material in the longitudinal direction of the laminate at 180 ° C. for 2 minutes,
Fp is the heat shrinkage rate (%) of the protective film in the longitudinal direction of the laminate at 180° C. for 2 minutes.
[2] The laminate according to [1], wherein the protective film is a resin layer containing a crystalline polymer.
[3] The resin according to [1] or [2], wherein the resin containing the crystalline alicyclic structure-containing polymer constituting the base material is a hydride of a ring-opening polymer of dicyclopentadiene. laminate.
[4] A method for producing a laminate according to any one of [1] to [3],
A step of bonding a pre-annealed base material and a pre-annealed protective film to obtain a pre-annealed laminate comprising the pre-annealed base material and the pre-annealed protective film, wherein the pre-annealed base material is a crystalline fat. A production method comprising: a step of forming a resin layer containing a cyclic structure-containing polymer; and a step of annealing the pre-annealed laminate.
[5] The production method of [4], wherein the pre-annealing protective film is a resin layer containing a crystalline polymer.
[6] to [4] or [5], wherein the resin containing the crystalline alicyclic structure-containing polymer constituting the base material before annealing is a hydride of a ring-opening polymer of dicyclopentadiene; Method of manufacture as described.
[7] Any one of [4] to [6], wherein the annealing includes heating the pre-annealed laminate while restraining it in at least one of its in-plane directions. Method of manufacture as described.
 本発明によれば、シワの発生が抑制され、基材としての使用に際しての平面性が維持され、且つ耐熱性が高い基材を用時に容易に供給しうる積層体、及びその製造方法が提供される。 According to the present invention, a laminate that suppresses the occurrence of wrinkles, maintains flatness when used as a substrate, and can easily supply a substrate with high heat resistance at the time of use, and a method for producing the same are provided. be done.
図1は、本発明の積層体を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the laminate of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and can be arbitrarily modified without departing from the scope of the claims of the present invention and their equivalents.
 以下の説明において、「長尺状」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, the term "long-shaped" film refers to a film having a length of 5 times or more, preferably 10 times or more, of its width. A film that is long enough to be wound into a roll and stored or transported. The upper limit of the length of the film is not particularly limited, and can be, for example, 100,000 times or less the width.
 接着剤とは、別に断らない限り、狭義の接着剤(エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。 Unless otherwise specified, the adhesive is not only an adhesive in a narrow sense (an adhesive having a shear storage elastic modulus of 1 MPa to 500 MPa at 23 ° C. after energy beam irradiation or after heat treatment), but also shear storage at 23 ° C. Adhesives with an elastic modulus of less than 1 MPa are also included.
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。 In the following description, the terms “parallel”, “perpendicular” and “perpendicular” in the directions of the elements are within a range that does not impair the effects of the present invention, such as ±3°, ±2° or ±1°, unless otherwise specified. may contain an error within the range of
 〔積層体の概要〕
 本発明の積層体は、基材、及び基材の一方の表面に設けられた保護フィルムを備える。即ち、積層体は、それを構成する層として、基材及び保護フィルムを備える。
[Outline of laminate]
The laminate of the present invention comprises a substrate and a protective film provided on one surface of the substrate. That is, the laminate includes a substrate and a protective film as layers constituting the laminate.
 基材は、表示装置等の光学的な装置の構成要素として使用するためのフィルムである。一方保護フィルムは基材を保護する目的で基材と貼合されるフィルムであり、基材を装置の製造に用いる際又はその後の任意の工程において剥離しうるものである。 The base material is a film for use as a component of optical devices such as display devices. On the other hand, a protective film is a film that is attached to a substrate for the purpose of protecting the substrate, and that can be peeled off when the substrate is used for manufacturing a device or in any subsequent process.
 保護フィルムは、基材に直接接して設けられていてもよいが、通常は、接着層を介して基材に設けられる。即ち、基材と保護フィルムとが、接着層を介して接着され、それにより、基材、接着層及び保護フィルム層がこの順に設けられた積層体を構成しうる。 Although the protective film may be provided in direct contact with the base material, it is usually provided on the base material via an adhesive layer. That is, the base material and the protective film are adhered via the adhesive layer, thereby forming a laminate in which the base material, the adhesive layer and the protective film layer are provided in this order.
 図1は、本発明の積層体を概略的に示す断面図である。図1において、積層体10は、基材110と、その一方の表面に設けられた複合フィルム120を備え、複合フィルムは、保護フィルム121及び接着層122を備える。この例では、保護フィルムは基材のおもて面及びうら面のうちの一方の表面のみに設けられているが、本発明はこれに限られず、例えば基材の両面に1層ずつの保護フィルムが設けられていてもよい。 FIG. 1 is a cross-sectional view schematically showing the laminate of the present invention. In FIG. 1 , the laminate 10 includes a base material 110 and a composite film 120 provided on one surface thereof, and the composite film includes a protective film 121 and an adhesive layer 122 . In this example, the protective film is provided only on one of the front surface and the back surface of the substrate, but the present invention is not limited to this. A film may be provided.
 図1において、保護フィルム121は、保護フィルムとしての機械的強度及びその他の所望の物性を発現するための層であり、一方接着層122は基材110と保護フィルム121との接着の機能を発現する層である。接着層122は、通常は、保護フィルム121に比べて薄く、且つ柔軟であり、従って複合フィルム120全体の面内方向の伸縮に関する機械的強度に関しては実質的に影響しない層である。 In FIG. 1, the protective film 121 is a layer for exhibiting mechanical strength and other desired physical properties as a protective film, while the adhesive layer 122 exhibits the function of adhesion between the substrate 110 and the protective film 121. layer. The adhesive layer 122 is generally thinner and more flexible than the protective film 121, and therefore does not substantially affect the mechanical strength of the composite film 120 as a whole with respect to the in-plane expansion and contraction.
 基材は、結晶性を有する脂環式構造含有重合体を含む樹脂の層である。以下の説明において、一般的な樹脂と区別して説明するために、当該樹脂を特に樹脂(a1)という場合がある。一方、保護フィルムを構成する樹脂を特に樹脂(b1)という場合がある。 The base material is a resin layer containing a crystalline alicyclic structure-containing polymer. In the following description, the resin may be particularly referred to as resin (a1) in order to distinguish it from common resins. On the other hand, the resin that constitutes the protective film may be particularly referred to as resin (b1).
 積層体において、基材は単層構造の層であってもよく、複数の層からなる複層構造の層であってもよいが、通常単層構造の層である。保護フィルムも、単層構造の層であってもよく、複数の層からなる複層構造の層であってもよいが、通常単層構造の層である。 In the laminate, the base material may be a single-layer structure layer or a multi-layer structure layer consisting of a plurality of layers, but is usually a single-layer structure layer. The protective film may also be a layer having a single layer structure, or a layer having a multi-layer structure consisting of a plurality of layers, but is usually a layer having a single layer structure.
 〔積層体の物性〕
 積層体を構成する基材及び保護フィルムは、下記式(1)~(2)を満たす。
 E’s/E’p<1   (1)
 -0.4≦Fs-Fp≦0.4   (2)
[Physical properties of laminate]
The base material and protective film constituting the laminate satisfy the following formulas (1) and (2).
E's/E'p<1 (1)
-0.4≤Fs-Fp≤0.4 (2)
 式中、E’sは、前記基材の180℃における貯蔵弾性率であり、E’pは、前記保護フィルムの180℃における貯蔵弾性率である。以下の説明において、別に断らない限り、弾性率とは貯蔵弾性率を意味する。E’s/E’pの値は、1未満であり、好ましくは0.95以下であり、より好ましくは0.90以下である。E’s/E’pの下限は特に限定されないが0.1以上としうる。E’s及びE’pのそれぞれの値は、特に限定されないが例えば1.0×10Pa以上1.0×10Pa以下としうる。弾性率の測定は、積層体の基材と保護フィルムとを剥離してそれぞれを試料フィルムとし、動的粘弾性測定装置(例えば日立ハイテクサイエンス社製、製品名:DMA7100)を用いて180℃において伸縮粘弾性測定を行うことにより測定しうる。 In the formula, E's is the storage modulus of the substrate at 180°C, and E'p is the storage modulus of the protective film at 180°C. In the following description, elastic modulus means storage elastic modulus unless otherwise specified. The value of E's/E'p is less than 1, preferably 0.95 or less, more preferably 0.90 or less. Although the lower limit of E's/E'p is not particularly limited, it can be 0.1 or more. Each value of E's and E'p is not particularly limited, but can be, for example, 1.0×10 7 Pa or more and 1.0×10 9 Pa or less. The elastic modulus is measured by peeling off the base material and the protective film of the laminate, using each as a sample film, and using a dynamic viscoelasticity measuring device (for example, manufactured by Hitachi High-Tech Science Co., Ltd., product name: DMA7100) at 180 ° C. It can be measured by stretching viscoelasticity measurement.
 式中、Fsは、前記基材の180℃2分における積層体長手方向の熱収縮率であり、Fpは、前記保護フィルムの180℃2分における積層体長手方向の熱収縮率である。Fs及びFpは、積層体の熱収縮率は、積層体の基材と保護フィルムとを剥離して、それぞれを23℃(室温)の環境下で切り出して、積層体の長手方向又は幅方向に平行な方向の辺を有する正方形の試料フィルムとし、当該試料フィルムの加熱による辺の長さの変化を測定することにより求められる百分率の値である。より具体的には、熱収縮率は、下記式(I)に従って求めうる。
 熱収縮率(%)=[(L-L)/L]×100 (I)
In the formula, Fs is the heat shrinkage rate of the base material in the longitudinal direction of the laminate at 180°C for 2 minutes, and Fp is the heat shrinkage rate of the protective film in the laminate longitudinal direction at 180°C for 2 minutes. Fs and Fp are the thermal shrinkage ratios of the laminate. It is a percentage value obtained by measuring the change in the length of a side of a square sample film having parallel sides when the sample film is heated. More specifically, the thermal shrinkage rate can be obtained according to the following formula (I).
Thermal shrinkage rate (%) = [(L B -L A )/L B ]×100 (I)
 式中Lは加熱前の試料フィルムの辺の長さを示し、Lは加熱後の試料フィルムの辺の長さを示す。熱収縮率の正の値である場合は、加熱によりフィルムが収縮することを示し、負の値である場合は、加熱によりフィルムが伸長することを示す。積層体長手方向の熱収縮率を求める場合は、試料フィルムの、積層体長手方向に平行な辺における長さから熱収縮率を求める。 In the formula, LB indicates the side length of the sample film before heating, and LA indicates the side length of the sample film after heating. A positive value of heat shrinkage indicates that the film shrinks due to heating, and a negative value indicates that the film elongates due to heating. When determining the thermal shrinkage in the longitudinal direction of the laminate, the thermal shrinkage is determined from the length of the side of the sample film parallel to the longitudinal direction of the laminate.
 Fs-Fpの値は、百分率同士の差の値である。Fs-Fpの値は-0.4%以上であり、好ましくは-0.3%以上であり、一方0.4%以下であり、好ましくは0.3%以下である。Fs及びFpのそれぞれの値は、特に限定されないが例えば-0.3%以上0.5%以下としうる。 The value of Fs-Fp is the value of the difference between the percentages. The value of Fs-Fp is -0.4% or more, preferably -0.3% or more, while it is 0.4% or less, preferably 0.3% or less. Each value of Fs and Fp is not particularly limited, but can be, for example, -0.3% or more and 0.5% or less.
 本発明者が見出したところによれば、長尺状の積層体が、樹脂(a1)の層である基材と、保護フィルムとを備え、且つ基材及び保護フィルムが前記式(1)~(2)を満たす場合、積層体におけるシワの発生を抑制し、積層体を、その平面性を維持した状態でハンドリングすることができ、且つ基材を、耐熱性が高い基材として容易に製造しうるものとすることができる。具体的には、積層体のカールを抑制することができ、それにより積層体がカールしない状態での搬送を行うことができ、且つ、得られる基材の200℃10分基材熱収縮率及び145℃60分基材熱収縮率といった、製品として低い値であることが求められる物性についても、良好な低い値とすることができる。 According to the findings of the present inventors, the long laminate comprises a base material that is a layer of the resin (a1) and a protective film, and the base material and the protective film have the above formulas (1) to When (2) is satisfied, the occurrence of wrinkles in the laminate can be suppressed, the laminate can be handled while maintaining its flatness, and the substrate can be easily manufactured as a substrate with high heat resistance. It can be done. Specifically, the curling of the laminate can be suppressed, so that the laminate can be conveyed in a state where it is not curled, and the 200 ° C. 10 minute substrate heat shrinkage rate of the obtained substrate and Physical properties, such as base material heat shrinkage at 145° C. for 60 minutes, which are required to be low as a product, can also be set to favorable low values.
 本発明の積層体は、そのカール量が小さいことが好ましい。カール量は、23℃(室温)の環境下で、積層体を切り出し、50mm×50mmの正方形の試料フィルムとし、水平で平坦な面上に載置し、試料フィルムの四隅が水平面から浮き上がっている量(カール量)を測定し、四隅の平均値を求めることにより求められる。カール量は、好ましくは8.5mm以下、より好ましくは7.5mm以下としうる。カール量の下限は特に限定されないが理想的には0.0mmである。 The laminate of the present invention preferably has a small amount of curl. The amount of curl was determined by cutting the laminate into a 50 mm × 50 mm square sample film under an environment of 23 ° C. (room temperature), placing it on a horizontal and flat surface, and raising the four corners of the sample film from the horizontal surface. It is obtained by measuring the amount (amount of curl) and calculating the average value of the four corners. The amount of curl can be preferably 8.5 mm or less, more preferably 7.5 mm or less. Although the lower limit of curl amount is not particularly limited, it is ideally 0.0 mm.
 〔基材〕
 基材は、樹脂(a1)即ち結晶性を有する脂環式構造含有重合体を含む樹脂の層である。基材は樹脂(a1)のみからなる層としうる。基材が樹脂(a1)であることにより、基材は良好な機械的強度、耐熱性、及び成形性を発現することができる。
〔Base material〕
The substrate is a layer of resin (a1), that is, a resin layer containing a crystalline alicyclic structure-containing polymer. The base material can be a layer consisting only of the resin (a1). By using the resin (a1) as the base material, the base material can exhibit good mechanical strength, heat resistance, and moldability.
 「結晶性を有する」重合体とは、融点Tmを有する重合体をいう。「融点Tmを有する」とは、示差走査熱量計(DSC)で融点を観測できることをいう。以下の説明において、結晶性を有する重合体を、単に「結晶性重合体」という場合がある。また、結晶性を有する重合体を含む樹脂を、単に「結晶性樹脂」という場合がある。脂環式構造含有重合体は、分子内に脂環式構造を含む重合体であり、特に結晶性を有する脂環式構造含有重合体は、結晶性重合体のうち、分子内に脂環式構造を含む重合体である。 A polymer that "has crystallinity" refers to a polymer that has a melting point Tm. "Have a melting point Tm" means that the melting point can be observed with a differential scanning calorimeter (DSC). In the following description, a polymer having crystallinity may be simply referred to as a "crystalline polymer". Also, a resin containing a polymer having crystallinity may be simply referred to as a “crystalline resin”. The alicyclic structure-containing polymer is a polymer containing an alicyclic structure in the molecule. It is a polymer containing structures.
 脂環式構造含有重合体は、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物でありうる。脂環式構造含有重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The alicyclic structure-containing polymer can be a polymer or a hydride thereof that can be obtained by a polymerization reaction using a cyclic olefin as a monomer. One type of the alicyclic structure-containing polymer may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 脂環式構造含有重合体が有する脂環式構造の例としては、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる光学フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。 Examples of the alicyclic structure possessed by the alicyclic structure-containing polymer include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because an optical film having excellent properties such as thermal stability can be easily obtained. The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
 脂環式構造含有重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。
 また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
In the alicyclic structure-containing polymer, the ratio of structural units having an alicyclic structure to all structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more. . Heat resistance can be improved by increasing the ratio of structural units having an alicyclic structure in the alicyclic structure-containing polymer as described above.
In addition, in the alicyclic structure-containing polymer, the remainder other than structural units having an alicyclic structure is not particularly limited and can be appropriately selected according to the purpose of use.
 結晶性を有する脂環式構造含有重合体の例としては、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる基材が得られ易いことから、結晶性を有する脂環式構造含有重合体としては、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物等であって、結晶性を有するもの。
Examples of the crystalline alicyclic structure-containing polymer include the following polymers (α) to (δ). Among these, the polymer (β) is preferable as the crystalline alicyclic structure-containing polymer because a base material having excellent heat resistance can be easily obtained.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer and having crystallinity.
Polymer (β): A hydride of polymer (α) and having crystallinity.
Polymer (γ): A crystalline addition polymer of cyclic olefin monomers.
Polymer (δ): A hydride or the like of polymer (γ) having crystallinity.
 具体的には、結晶性を有する脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、更に好ましくは100重量%の重合体をいう。 Specifically, the crystalline alicyclic structure-containing polymer includes a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydride of a ring-opening polymer of dicyclopentadiene. It is more preferable to have crystallinity, and particularly preferable is a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity. Here, the ring-opening polymer of dicyclopentadiene means that the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to 100% by weight of polymer.
 ジシクロペンタジエンの開環重合体の水素化物は、ラセモ・ダイアッドの割合が高いことが好ましい。具体的には、ジシクロペンタジエンの開環重合体の水素化物における繰り返し単位のラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは70%以上、特に好ましくは85%以上である。ラセモ・ダイアッドの割合が高いことは、シンジオタクチック立体規則性が高いことを表す。よって、ラセモ・ダイアッドの割合が高いほど、ジシクロペンタジエンの開環重合体の水素化物の融点が高い傾向がある。ラセモ・ダイアッドの割合は、後述する実施例に記載の13C-NMRスペクトル分析に基づいて決定できる。 The hydride of the ring-opening polymer of dicyclopentadiene preferably has a high ratio of racemo dyads. Specifically, the ratio of the racemo diad of repeating units in the hydrogenated ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more. A high proportion of racemo dyads indicates high syndiotactic stereoregularity. Therefore, the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be higher as the ratio of the racemo diad is higher. The ratio of racemo dyads can be determined based on the 13 C-NMR spectrum analysis described in the Examples below.
 結晶性を有する脂環式構造含有重合体としては、国際公開第2018/062067号に開示されている製造方法により得られる重合体を用いうる。 As the crystalline alicyclic structure-containing polymer, a polymer obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
 結晶性を有する脂環式構造含有重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Tmを有する結晶性重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた基材を得ることができる。 The melting point Tm of the crystalline alicyclic structure-containing polymer is preferably 200°C or higher, more preferably 230°C or higher, and preferably 290°C or lower. By using a crystalline polymer having such a melting point Tm, it is possible to obtain a substrate having a better balance between moldability and heat resistance.
 通常、結晶性を有する脂環式構造含有重合体等の結晶性重合体は、ガラス転移温度Tgを有する。結晶性重合体の具体的なガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。 Usually, a crystalline polymer such as a crystalline alicyclic structure-containing polymer has a glass transition temperature Tg. Although the specific glass transition temperature Tg of the crystalline polymer is not particularly limited, it is usually 85°C or higher and usually 170°C or lower.
 重合体のガラス転移温度Tg及び融点Tmは、以下の方法によって測定できる。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷する。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定しうる。 The glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is quenched with dry ice. Subsequently, using this polymer as a test sample, a differential scanning calorimeter (DSC) was used to measure the glass transition temperature Tg and melting point Tm of the polymer at a heating rate of 10° C./min (heating mode). measurable.
 結晶性を有する脂環式構造含有重合体等の結晶性重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する結晶性重合体は、成形加工性と耐熱性とのバランスに優れる。 The weight-average molecular weight (Mw) of the crystalline polymer such as a crystalline alicyclic structure-containing polymer is preferably 1,000 or more, more preferably 2,000 or more, and preferably 1,000,000. 500,000 or less, more preferably 500,000 or less. A crystalline polymer having such a weight-average molecular weight has an excellent balance between moldability and heat resistance.
 結晶性を有する脂環式構造含有重合体等の結晶性重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する結晶性重合体は、成形加工性に優れる。結晶性重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。 The molecular weight distribution (Mw/Mn) of the crystalline polymer such as a crystalline alicyclic structure-containing polymer is preferably 1.0 or more, more preferably 1.5 or more, and preferably 4.0 or less. , more preferably 3.5 or less. Here, Mn represents the number average molecular weight. A crystalline polymer having such a molecular weight distribution is excellent in moldability. The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the crystalline polymer can be measured as polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
 樹脂(a1)における結晶性を有する脂環式構造含有重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性を有する脂環式構造含有重合体の割合を前記範囲の下限値以上とすることにより、基材の耐熱性を効果的に高めることができる。結晶性重合体の割合の上限は、100重量%以下でありうる。 The proportion of the crystalline alicyclic structure-containing polymer in the resin (a1) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. By setting the ratio of the crystalline alicyclic structure-containing polymer to at least the lower limit of the above range, the heat resistance of the substrate can be effectively increased. The upper limit of the proportion of crystalline polymer can be 100% by weight or less.
 樹脂(a1)に含まれる結晶性を有する脂環式構造含有重合体は、基材を製造するよりも前においては、結晶化していなくてもよい。しかし、本発明の積層体において基材を構成している状態において、当該基材に含まれる結晶性重合体は、結晶化していることが好ましく、高い結晶化度を有することが好ましい。高い結晶化度を有することにより、耐熱性等の本発明の効果をより良好に発現しうる。具体的な結晶化度の範囲は、好ましくは20%以上、より好ましくは25%以上、特に好ましくは30%以上である。結晶化度の上限は、特に限定されないが95%以下としうる。結晶性重合体の結晶化度は、密度法、X線回折法又は示差走査熱量計による測定法によって測定しうる。 The crystalline alicyclic structure-containing polymer contained in the resin (a1) does not have to be crystallized before manufacturing the base material. However, in the state where the base material is formed in the laminate of the present invention, the crystalline polymer contained in the base material is preferably crystallized, and preferably has a high degree of crystallinity. By having a high degree of crystallinity, the effects of the present invention, such as heat resistance, can be exhibited more favorably. A specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher. Although the upper limit of the crystallinity is not particularly limited, it can be 95% or less. The degree of crystallinity of a crystalline polymer can be measured by a density method, an X-ray diffraction method, or a measurement method using a differential scanning calorimeter.
 樹脂(a1)は、結晶性を有する脂環式構造含有重合体に加えて、任意の成分を含みうる。任意の成分の例としては、酸化防止剤;光安定剤;ワックス;核剤;蛍光増白剤;紫外線吸収剤;無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;及び、結晶性重合体以外の任意の重合体;などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The resin (a1) may contain any component in addition to the crystalline alicyclic structure-containing polymer. Examples of optional ingredients include antioxidants; light stabilizers; waxes; nucleating agents; fluorescent brighteners; near-infrared absorber; lubricant; filler; and any polymer other than crystalline polymer; Moreover, arbitrary components may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
 基材の厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは160μm以下、より好ましくは150μm以下である。 The thickness of the substrate is preferably 5 µm or more, more preferably 10 µm or more, and preferably 160 µm or less, more preferably 150 µm or less.
 〔保護フィルム〕
 樹脂(b1)即ち保護フィルムにおける保護フィルムを構成する樹脂は、上に述べた特定の物性を備える保護フィルムを容易に得る観点からは、結晶性を有する重合体を含む樹脂の層を備えることが好ましい。但し、特に式(1)の条件を満たす観点から、保護フィルムにおける保護フィルムを構成する材料は、通常は基材を構成する樹脂(a1)とは異なる材料としうる。かかる材料の例としては、上に述べた樹脂(a1)の例示のうち基材の構成要素として採用するものよりも低い貯蔵弾性率を発現しうる樹脂、結晶性を有する脂環式構造含有重合体以外の結晶性重合体を含む樹脂、及びその他の材料が挙げられる。
〔Protective film〕
The resin (b1), i.e., the resin constituting the protective film in the protective film, may have a resin layer containing a crystalline polymer from the viewpoint of easily obtaining a protective film having the specific physical properties described above. preferable. However, especially from the viewpoint of satisfying the condition of formula (1), the material constituting the protective film in the protective film can be a material different from the resin (a1) usually constituting the base material. Examples of such materials include a resin capable of exhibiting a lower storage elastic modulus than the one employed as a component of the base material among the examples of the resin (a1) described above, and a polymer containing an alicyclic structure having crystallinity. Resins, including crystalline polymers other than coalescence, and other materials are included.
 樹脂(b1)を構成する結晶性重合体の例としては、上に述べた樹脂(a1)を構成する重合体の例示のうち、基材の構成要素として採用するものとは別種の重合体が挙げられる。 Examples of the crystalline polymer that constitutes the resin (b1) include, among the examples of the polymer that constitutes the resin (a1) described above, a polymer different from that employed as a component of the base material. mentioned.
 樹脂(b1)を構成する結晶性重合体のさらなる例としては、スチレン系重合体(例、スチレン又はスチレン誘導体の単独重合体又はこれと重合しうる他の単量体との共重合体);トリアシルセルロース等のセルロース系重合体;ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリフェニレンサルファイドなどのポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;ポリエーテルスルホン;ポリスルホン;ポリアリールスルホン;ポリ塩化ビニル;ポリメチルメタクリレート、ポリアクリロニトリルなどの、アクリル系重合体;ポリイミド;ポリアミドが挙げられる。これらの重合体は、単独重合体であっても、共重合体であってもよい。 Further examples of the crystalline polymer constituting the resin (b1) include styrenic polymers (e.g., homopolymers of styrene or styrene derivatives or copolymers thereof with other polymerizable monomers); Cellulosic polymers such as triacyl cellulose; Polyolefins such as polyethylene and polypropylene; Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; Polyarylene sulfides such as polyphenylene sulfide; Polyvinyl alcohol; polysulfone; polyarylsulfone; polyvinyl chloride; acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; polyimide; These polymers may be homopolymers or copolymers.
 特に、結晶性を有するポリスチレン系重合体の例としては、特開2011-118137号公報に記載されるものが挙げられる。 In particular, examples of polystyrene-based polymers having crystallinity include those described in JP-A-2011-118137.
 樹脂(b1)は、重合体に加えて任意の成分を含みうる。樹脂(b1)に含まれうる任意の成分の例としては、樹脂(a1)に含まれうる任意の成分の例と同様の成分が挙げられる。樹脂(b1)は、重合体を、一種単独で含んでいてもよく、二種以上の任意の比率の組み合わせで含んでいてもよい。樹脂(b1)100重量%における重合体の割合は、好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは85重量%以上であり、通常100重量%以下であり、100重量%であってもよい。 The resin (b1) may contain optional components in addition to the polymer. Examples of optional components that can be contained in the resin (b1) include the same components as examples of optional components that can be contained in the resin (a1). The resin (b1) may contain a polymer singly or in combination of two or more at any ratio. The proportion of the polymer in 100% by weight of the resin (b1) is preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 85% by weight or more, and is usually 100% by weight or less. may be
 樹脂(b1)のガラス転移温度は、好ましくは60℃以上、より好ましくは70℃以上であり、好ましくは180℃以下、より好ましくは170℃以下である。樹脂(b1)のガラス転移温度が、前記下限値以上であることにより、積層体の耐熱性を効果的に向上させうる。また、ガラス転移温度が前記上限値以下であることにより、成形性を向上させうる。 The glass transition temperature of the resin (b1) is preferably 60°C or higher, more preferably 70°C or higher, and preferably 180°C or lower, more preferably 170°C or lower. When the glass transition temperature of the resin (b1) is at least the lower limit, the heat resistance of the laminate can be effectively improved. In addition, when the glass transition temperature is equal to or lower than the upper limit, moldability can be improved.
 保護フィルムが、接着層と組み合わされ複合フィルムを構成する場合、保護フィルムの、接着層に接する側の表面は、コロナ処理、プラズマ処理などの表面処理が施された面としうる。即ち、保護フィルムの一方の表面に表面処理を施し、当該表面の上に接着層を形成しうる。そのような表面処理を行うことにより、保護フィルムと接着層との接着性を高め、その結果、基材を用時に保護フィルムから剥離する際に、糊残りの無い良好な剥離を容易に達成することができる。 When the protective film is combined with the adhesive layer to form a composite film, the surface of the protective film on the side in contact with the adhesive layer may be subjected to surface treatment such as corona treatment or plasma treatment. That is, one surface of the protective film can be surface-treated and an adhesive layer can be formed on the surface. By performing such a surface treatment, the adhesion between the protective film and the adhesive layer is enhanced, and as a result, when the substrate is peeled off from the protective film at the time of use, good peeling without adhesive residue can be easily achieved. be able to.
 積層体における保護フィルムの厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは150μm以下、より好ましくは140μm以下である。 The thickness of the protective film in the laminate is preferably 5 μm or more, more preferably 10 μm or more, and preferably 150 μm or less, more preferably 140 μm or less.
 本発明の積層体における保護フィルムが、結晶性を有する重合体を含む樹脂の層である場合、保護フィルムを構成する重合体はある程度以上の結晶化度にて結晶化したものとし得る。具体的な結晶化度の範囲は、好ましくは20%以上、より好ましくは25%以上、特に好ましくは30%以上である。結晶化度の上限は、特に限定されないが95%以下としうる。 When the protective film in the laminate of the present invention is a layer of a resin containing a crystalline polymer, the polymer constituting the protective film may be crystallized with a degree of crystallinity above a certain level. A specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher. Although the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
 〔接着層〕
 本発明の積層体が接着層を備える場合、接着層を構成する接着剤としては、各種の重合体をベースポリマーとしたものが挙げられる。かかるベースポリマーの例としては、アクリル系重合体、ウレタン系重合体、ポリエステル系重合体、ゴム系重合体、エポキシ系重合体、シリコーン系重合体が挙げられる。また、接着剤は、前記のベースポリマーに組み合わせて、重合開始剤、硬化剤、紫外線吸収剤、着色剤、帯電防止剤等の任意の成分を含みうる。
 接着剤には、粘着剤(感圧性接着剤)が包含される。
[Adhesive layer]
When the laminate of the present invention is provided with an adhesive layer, examples of adhesives constituting the adhesive layer include those using various polymers as base polymers. Examples of such base polymers include acrylic polymers, urethane polymers, polyester polymers, rubber polymers, epoxy polymers, and silicone polymers. In addition, the adhesive may contain optional components such as a polymerization initiator, a curing agent, an ultraviolet absorber, a colorant, and an antistatic agent in combination with the base polymer.
Adhesives include adhesives (pressure sensitive adhesives).
 接着剤としては、市販品を利用しうる。また、接着性を有するフィルムとして各種の接着層が市販されているので、それを利用して接着層を構成しうる。接着層は、単層構造を有していてもよく、複層構造を有していてもよい。 A commercially available product can be used as the adhesive. In addition, since various adhesive layers are commercially available as films having adhesiveness, the adhesive layer can be constructed by using them. The adhesive layer may have a single layer structure or a multilayer structure.
 接着層の厚みは、特に限定されず、例えば3μm~30μm、例えば5μm~20μmの範囲としうる。 The thickness of the adhesive layer is not particularly limited, and can be in the range of, for example, 3 μm to 30 μm, such as 5 μm to 20 μm.
 〔積層体の製造方法〕
 本発明の積層体は、任意の方法で製造されうる。式(1)~(2)で規定される要件を満たす積層体を容易に製造する観点から、本発明の積層体は、下記工程(1)~(2)を含む製造方法により製造することが好ましい。以下において、当該製造方法を、本発明の積層体の製造方法として説明する。
 工程(1):アニール前基材及びアニール前保護フィルムを貼合し、アニール前基材及びアニール前保護フィルムを備えるアニール前積層体を得る工程。
 工程(2):アニール前積層体をアニール処理する工程。
[Method for manufacturing laminate]
The laminate of the invention can be produced by any method. From the viewpoint of easily producing a laminate that satisfies the requirements defined by formulas (1) and (2), the laminate of the present invention can be produced by a production method including the following steps (1) and (2). preferable. The manufacturing method will be described below as a method for manufacturing the laminate of the present invention.
Step (1): A step of laminating the pre-annealed base material and the pre-annealed protective film to obtain a pre-annealed laminate comprising the pre-annealed base material and the pre-annealed protective film.
Step (2): A step of annealing the pre-annealed laminate.
 〔アニール前基材〕
 工程(1)において用いるアニール前基材の材料の例としては、本発明の積層体の基材を構成する材料である樹脂(a1)の例として上に挙げたものと同じものが挙げられる。但し、アニール前基材及びアニール前保護フィルムは、積層体における基材及び保護フィルムと異なる貯蔵弾性率及び熱収縮率を有しうるので、これらはこの時点で前記式(1)~(2)を満たしていなくてもよい。
[Base material before annealing]
Examples of the material of the pre-annealing base material used in step (1) are the same as those listed above as examples of the resin (a1), which is the material constituting the base material of the laminate of the present invention. However, since the pre-annealed substrate and pre-annealed protective film may have different storage modulus and thermal shrinkage than the substrate and protective film in the laminate, they are at this point represented by formulas (1)-(2) above. does not have to be satisfied.
 アニール前基材の調製方法は特に限定されず、任意のフィルム製造方法により調製しうる。具体的には、溶融押出法等の既知の成形方法を採用し、樹脂(a1)を長尺状のフィルムの形状に成形することにより、アニール前基材を調製しうる。又は、アニール前基材としては、入手可能な市販品を利用してもよい。 The method for preparing the base material before annealing is not particularly limited, and it can be prepared by any film manufacturing method. Specifically, the substrate before annealing can be prepared by employing a known molding method such as a melt extrusion method and molding the resin (a1) into a long film shape. Alternatively, a commercially available product may be used as the base material before annealing.
 樹脂(a1)を溶融押出法等の成形方法により成形したフィルム、又は市販の樹脂(a1)であるフィルムは、そのままアニール前基材として用いうる。又は、これらのフィルムを原反フィルムとして、これに必要に応じて任意の処理を施した上でアニール前基材として用いてもよい。例えば、原反フィルムを、延伸の工程に供し、所望の位相差、寸法及びその他の性質を有するフィルムとし、これをアニール前基材として使用してもよい。さらに、所望の性質を得るため、延伸の後に、樹脂(a1)の結晶化促進の工程を行いうる。 A film obtained by molding the resin (a1) by a molding method such as a melt extrusion method, or a commercially available film of the resin (a1) can be used as it is as a base material before annealing. Alternatively, these films may be used as raw films, optionally subjected to any treatment, and then used as the base material before annealing. For example, a raw film may be subjected to a process of stretching to obtain a film having desired retardation, dimensions and other properties, which may be used as a pre-annealing substrate. Furthermore, in order to obtain desired properties, the stretching may be followed by a step of promoting crystallization of the resin (a1).
 延伸方向に制限はなく、例えば、長手方向、幅方向、斜め方向などが挙げられる。ここで、斜め方向とは、厚み方向に対して垂直な方向であって、幅方向に平行でもなく垂直でもない方向を表す。また、延伸方向は、一方向でもよく、二以上の方向でもよい。よって、延伸方法としては、例えば、原反フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、原反フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;原反フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、原反フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法等の、二軸延伸法;原反フィルムを斜め方向に延伸する方法(斜め延伸法);及びこれらの組み合わせが挙げられる。 There are no restrictions on the stretching direction, and examples include the longitudinal direction, width direction, and oblique direction. Here, the oblique direction means a direction perpendicular to the thickness direction and neither parallel nor perpendicular to the width direction. Moreover, the stretching direction may be one direction or two or more directions. Therefore, as the stretching method, for example, a method of uniaxially stretching the original film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the original film in the width direction (horizontal uniaxial stretching method), etc. Uniaxial stretching method. A simultaneous biaxial stretching method in which the original film is stretched in the longitudinal direction and in the width direction at the same time, a sequential biaxial stretching method in which the original film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction, etc. Biaxial stretching method; method of stretching the raw film in an oblique direction (diagonal stretching method); and combinations thereof.
 一軸延伸法の態様の例としては、固定端一軸延伸法及び自由端一軸延伸法が挙げられる。固定端一軸延伸法は、原反フィルム延伸方向と直交する方向の端部を固定して行う延伸方法であり、自由端一軸延伸法は、原反フィルム延伸方向と直交する方向の端部を固定せずに行う延伸方法である。縦一軸延伸法は多くの場合自由端一軸延伸であり、横一軸延伸法は多くの場合固定端一軸延伸である。 Examples of modes of uniaxial stretching include fixed-end uniaxial stretching and free-end uniaxial stretching. The fixed-end uniaxial stretching method is a stretching method in which the ends in the direction perpendicular to the stretching direction of the raw film are fixed, and the free-end uniaxial stretching method fixes the ends in the direction perpendicular to the stretching direction of the raw film. It is a drawing method performed without stretching. The longitudinal uniaxial stretching method is often free-end uniaxial stretching, and the transverse uniaxial stretching method is often fixed-end uniaxial stretching.
 延伸倍率は、積層体において基材が所望の位相差、寸法及びその他の性質を有するよう適宜調整しうる。具体的には、好ましくは1倍以上、より好ましくは1.01倍以上であり、好ましくは15倍以下、より好ましくは11倍以下である。延伸が二軸延伸である場合、面倍率即ち二方向の延伸倍率の積が、かかる範囲内であることが好ましい。 The draw ratio can be adjusted as appropriate so that the substrate in the laminate has desired retardation, dimensions and other properties. Specifically, it is preferably 1-fold or more, more preferably 1.01-fold or more, preferably 15-fold or less, more preferably 11-fold or less. When the stretching is biaxial stretching, it is preferable that the area ratio, that is, the product of the stretching ratios in two directions is within such a range.
 延伸温度は、好ましくは「Tg+5℃」以上、より好ましくは「Tg+10℃」以上であり、好ましくは「Tg+100℃」以下、より好ましくは「Tg+90℃」以下である。ここで、「Tg」は延伸される重合体のガラス転移温度を表す。延伸温度が前記範囲の下限値以上である場合、原反フィルムを十分に軟化させて延伸を均一に行うことができる。また、延伸温度が前記範囲の上限値以下である場合、重合体の結晶化の進行による原反フィルムの硬化を抑制できるので、延伸を円滑に行うことができ、また、延伸によって大きな複屈折を発現させることができる。さらに、通常は、得られる基材のヘイズを小さくして透明性を高めることができる。 The stretching temperature is preferably "Tg + 5°C" or higher, more preferably "Tg + 10°C" or higher, preferably "Tg + 100°C" or lower, more preferably "Tg + 90°C" or lower. Here, "Tg" represents the glass transition temperature of the polymer being stretched. When the stretching temperature is equal to or higher than the lower limit of the above range, the original film can be sufficiently softened and stretched uniformly. In addition, when the stretching temperature is equal to or lower than the upper limit of the above range, it is possible to suppress the hardening of the original film due to the progress of crystallization of the polymer, so that the stretching can be performed smoothly, and the stretching causes a large birefringence. can be expressed. In addition, usually the haze of the resulting substrate can be reduced to increase transparency.
 結晶化促進工程は、延伸の工程の後に、フィルムを加熱することにより行いうる。かかる加熱は、フィルムの寸法を制御し延伸後の寸法を維持した状態で、又は延伸後の寸法から制御された僅かな倍率に縮小させて行いうる。フィルムを縮小させる場合の寸法変化の割合は、好ましくは0.90倍以上、1倍未満としうる。フィルムを二方向に縮小させる場合は、面倍率即ち二方向の寸法変化の倍率の積が、かかる範囲内であることが好ましい。縮小の倍率は、縮小前の寸法を1とした場合における、縮小後の寸法の割合である。 The crystallization promotion step can be performed by heating the film after the stretching step. Such heating can be done while the film dimensions are controlled and maintained at the stretched dimensions, or by shrinking the stretched dimensions by a controlled fraction. The ratio of dimensional change when the film is shrunk is preferably 0.90 times or more and less than 1 time. When the film is shrunk in two directions, the product of the area magnification, that is, the magnification of the dimensional change in the two directions is preferably within such a range. The reduction ratio is the ratio of the size after reduction to the size before reduction being 1.
 結晶化促進工程での加熱温度は、通常、結晶性重合体のガラス転移温度Tg以上、結晶性重合体の融点Tm以下である。より詳細には、加熱温度は、好ましくはTg℃以上、より好ましくはTg+10℃以上であり、好ましくはTm-10℃以下、より好ましくはTm-20℃以下である。加熱温度をかかる範囲内とすることにより、結晶化の進行による白濁を抑制しながら、速やかに結晶性重合体の結晶化を進行させることができる。 The heating temperature in the crystallization promoting step is usually higher than the glass transition temperature Tg of the crystalline polymer and lower than the melting point Tm of the crystalline polymer. More specifically, the heating temperature is preferably Tg° C. or higher, more preferably Tg+10° C. or higher, and preferably Tm−10° C. or lower, more preferably Tm−20° C. or lower. By setting the heating temperature within this range, crystallization of the crystalline polymer can be rapidly progressed while suppressing white turbidity due to progress of crystallization.
 加熱処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは15分以下である。 The heat treatment time is preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 30 minutes or shorter, more preferably 15 minutes or shorter.
 〔アニール前保護フィルム及び接着層〕
 工程(1)において用いるアニール前保護フィルムの材料の例としては、本発明の積層体の保護フィルムを構成する材料である樹脂(b1)の例として上に挙げたものと同じものが挙げられる。
[Pre-annealing protective film and adhesive layer]
Examples of the material of the pre-annealing protective film used in step (1) are the same as those listed above as examples of the resin (b1), which is the material constituting the protective film of the laminate of the present invention.
 アニール前保護フィルムの調製方法は特に限定されず、任意のフィルム製造方法により調製しうる。具体的には、溶融押出法等の既知の成形方法を採用し、樹脂(b1)を長尺状のフィルムの形状に成形することにより、アニール前保護フィルムを調製しうる。又は、アニール前保護フィルムとしては、入手可能な市販品を利用してもよい。アニール前保護フィルムは、延伸されたフィルムであってもよいが、特に延伸の処理が施されていないフィルムであってもよい。 The method for preparing the protective film before annealing is not particularly limited, and it can be prepared by any film manufacturing method. Specifically, a pre-annealing protective film can be prepared by employing a known molding method such as a melt extrusion method and molding the resin (b1) into a long film shape. Alternatively, a commercially available product may be used as the pre-annealing protective film. The pre-annealing protective film may be a stretched film, but may also be a film that has not been stretched.
 工程(1)に先立って、アニール前保護フィルムの表面に接着層を設け、複合フィルムを構成しうる。接着層の形成方法としては、アニール前保護フィルムの表面に接着剤を塗工することにより行いうる。塗工した接着剤の層は、必要に応じてさらに硬化処理に供し、所望の物性を有する接着層としうる。又は、アニール前保護フィルムの表面に、接着性を有するフィルムの層を転写することによっても、接着層を設けうる。 Prior to step (1), an adhesive layer may be provided on the surface of the protective film before annealing to form a composite film. The adhesive layer can be formed by applying an adhesive to the surface of the pre-annealing protective film. The applied adhesive layer can be further subjected to a curing treatment as necessary to obtain an adhesive layer having desired physical properties. Alternatively, the adhesive layer can be provided by transferring a layer of an adhesive film to the surface of the protective film before annealing.
 接着剤を塗工する場合の塗工方法の例としては、ワイヤーバーコート法、スプレー法、ロールコート法、グラビアコート法、ダイコート法、カーテンコート法、スライドコート法、及びエクストルージョンコート法が挙げられる。接着剤の硬化処理の例としては、乾燥処理が挙げられ、その例としては、減圧乾燥、加熱乾燥及びこれらの組み合わせが挙げられる。 Examples of coating methods for coating the adhesive include wire bar coating, spray coating, roll coating, gravure coating, die coating, curtain coating, slide coating, and extrusion coating. be done. Examples of adhesive curing treatments include drying treatments, examples of which include vacuum drying, heat drying, and combinations thereof.
 〔アニール前基材及びアニール前保護フィルムの物性〕
 アニール前基材は、結晶性を有する脂環式構造含有重合体を含む樹脂の層であるので、アニール前基材を構成する重合体はある程度以上の結晶化度にて結晶化したものとし得る。具体的な結晶化度の範囲は、好ましくは20%以上、より好ましくは25%以上、特に好ましくは30%以上である。結晶化度の上限は、特に限定されないが95%以下としうる。
[Physical properties of base material before annealing and protective film before annealing]
Since the pre-annealing base material is a resin layer containing a crystalline alicyclic structure-containing polymer, the polymer constituting the pre-annealing base material can be crystallized with a degree of crystallinity above a certain level. . A specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher. Although the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
 アニール前保護フィルムが、結晶性を有する重合体を含む樹脂の層である場合、アニール前保護フィルムを構成する重合体はある程度以上の結晶化度にて結晶化したものとし得る。具体的な結晶化度の範囲は、好ましくは20%以上、より好ましくは25%以上、特に好ましくは30%以上である。結晶化度の上限は、特に限定されないが95%以下としうる。 When the pre-annealing protective film is a layer of a resin containing a crystalline polymer, the polymer constituting the pre-annealing protective film can be crystallized with a degree of crystallinity above a certain level. A specific crystallinity range is preferably 20% or higher, more preferably 25% or higher, and particularly preferably 30% or higher. Although the upper limit of the crystallinity is not particularly limited, it can be 95% or less.
 アニール前基材及びアニール前保護フィルムの貯蔵弾性率及び熱収縮率は、製品たる積層体における基材及び保護フィルムの貯蔵弾性率及び熱収縮率が上に述べた所望の値となるよう、材料及び調製条件を適宜調整しうる。アニール前基材及びアニール前保護フィルムの貯蔵弾性率及び熱収縮率並びにそれらの比率自体は、特に限定されないが、以下の範囲の値であることが好ましい。 The storage elastic modulus and thermal shrinkage of the pre-annealed base material and pre-annealed protective film are such that the storage elastic modulus and thermal shrinkage of the base material and protective film in the product laminate are the desired values described above. and preparation conditions can be adjusted accordingly. The storage elastic modulus and thermal shrinkage of the pre-annealed base material and the pre-annealed protective film and their ratios themselves are not particularly limited, but values within the following ranges are preferred.
 アニール前基材の180℃における貯蔵弾性率pE’sと、アニール前保護フィルムの180℃における貯蔵弾性率pE’pは、それらの比pE’s/pE’pが特定の範囲の値であることが好ましい。pE’s/pE’pの値は、好ましくは1未満であり、より好ましくは0.95以下であり、さらにより好ましくは0.90以下である。pE’s/pE’pの下限は特に限定されないが0.1以上としうる。pE’s及びpE’pのそれぞれの値は、特に限定されないが例えば1.0×10Pa以上1.0×10Pa以下としうる。 The storage elastic modulus pE's at 180°C of the base material before annealing and the storage elastic modulus pE'p at 180°C of the protective film before annealing are in a specific range of their ratio pE's/pE'p. is preferred. The value of pE's/pE'p is preferably less than 1, more preferably 0.95 or less, even more preferably 0.90 or less. Although the lower limit of pE's/pE'p is not particularly limited, it can be 0.1 or more. Each value of pE's and pE'p is not particularly limited, but can be, for example, 1.0×10 7 Pa or more and 1.0×10 9 Pa or less.
 また、アニール前基材の180℃2分における積層体長手方向の熱収縮率pFs(%)及びアニール前保護フィルムの180℃2分における積層体長手方向の熱収縮率pFp(%)は、それらの差pFs-pFpが特定の範囲の値であることが好ましい。pFs-pFpの値は、好ましくは-1.0%以上であり、より好ましくは-0.8%以上であり、一方好ましくは1.0%以下であり、より好ましくは0.8%以下である。pFs及びpFpのそれぞれの値は、特に限定されないが例えば-0.3%以上1.0%以下としうる。 In addition, the thermal shrinkage rate pFs (%) of the base material before annealing in the longitudinal direction of the laminate at 180 ° C. 2 minutes and the thermal shrinkage rate pFp (%) of the protective film in the longitudinal direction of the laminate at 180 ° C. 2 minutes before annealing are The difference pFs-pFp is preferably a value within a specific range. The value of pFs−pFp is preferably −1.0% or more, more preferably −0.8% or more, while preferably 1.0% or less, more preferably 0.8% or less. be. Each value of pFs and pFp is not particularly limited, but can be, for example, -0.3% or more and 1.0% or less.
 pE’s/pE’pの値及びpFs-pFpの値が上記好ましい範囲内であることにより、前記式(1)及び(2)を満たす基材及び保護フィルムを備える本発明の積層体を容易に製造することができる。 When the value of pE's/pE'p and the value of pFs-pFp are within the above preferred ranges, the laminate of the present invention comprising a substrate and a protective film that satisfy the above formulas (1) and (2) can be easily manufactured. can be manufactured to
 〔工程(1)〕
 工程(1)は、長尺状のアニール前基材とアニール前保護フィルムとを、長手方向を揃えて重ね合わせて、これらを加圧することにより行いうる。加圧は、ニップロール等の、長尺状のフィルムを加圧する装置で連続的に行いうる。アニール前保護フィルムが接着層を伴い複合フィルムを構成している場合、複合フィルムの接着層側の表面を、アニール前基材の表面と貼合し、それにより、アニール前基材とアニール前保護フィルムとが、接着層を介して貼合されたアニール前積層体を得うる。
[Step (1)]
Step (1) can be carried out by stacking a long pre-annealed base material and a pre-annealed protective film on top of each other with their longitudinal directions aligned, and pressurizing them. Pressurization can be performed continuously by a device such as a nip roll that presses a long film. When the protective film before annealing constitutes a composite film with an adhesive layer, the surface of the composite film on the side of the adhesive layer is laminated to the surface of the substrate before annealing, thereby providing the substrate before annealing and the protection before annealing. A pre-annealed laminate in which the film is bonded via an adhesive layer can be obtained.
 〔工程(2)〕
 工程(2)におけるアニール処理は、アニール前積層体を、その面内方向のうちの少なくとも1の方向において拘束した状態で加熱することにより行いうる。アニール前積層体の拘束は、例えば、アニール前積層体を、その長手方向、幅方向、またはこれらの両方の方向において拘束することにより行いうる。
[Step (2)]
The annealing treatment in step (2) can be performed by heating the pre-annealed laminate while restraining it in at least one of its in-plane directions. The pre-annealed laminate can be constrained, for example, by constraining the pre-annealed laminate in its longitudinal direction, width direction, or both directions.
 アニール前積層体の長手方向の拘束を伴うアニール処理は、例えば、ロールサポート方式のフィルム乾燥機を用いて行いうる。ロールサポート方式の乾燥機は、上流側のニップロールと、下流側のニップロールと、その間に設けられたオーブンを備え、上流側ニップロールと下流側ニップロールとの周速比を調整することにより、ニップロール間のフィルムに張力を付与した状態で長尺のフィルムを搬送し、その間でオーブン内を通過させ、オーブン内ではフィルムを下側から支持する非拘束的なロールのみでフィルムを誘導することにより、オーブン内で、フィルム幅方向の拘束を伴わない状態でのフィルム加熱を行いうる装置である。アニール前積層体を、その長手方向に沿った方向に搬送し、乾燥機に連続的に導入し、加熱することにより、アニール処理を行いうる。この場合フィルムに付与する張力は、好ましくは3N/m以上、25N/m以下としうる。 Annealing treatment involving restraint in the longitudinal direction of the pre-annealed laminate can be performed using, for example, a roll support type film dryer. The roll support type dryer is equipped with an upstream nip roll, a downstream nip roll, and an oven provided between them, and by adjusting the peripheral speed ratio between the upstream nip roll and the downstream nip roll, A long film is transported under tension, passed through the oven in between, and guided by only unconstrained rolls that support the film from below in the oven. It is an apparatus capable of heating the film without restraint in the width direction of the film. Annealing treatment can be performed by conveying the pre-annealed laminate in a direction along its longitudinal direction, continuously introducing it into a dryer, and heating it. In this case, the tension applied to the film is preferably 3 N/m or more and 25 N/m or less.
 アニール前積層体の長手方向の拘束を伴うアニール処理は、例えば、延伸の処理に用いる装置と同様の構造を有する装置を用いて行いうる。より具体的には、テンター方式の延伸機等、長尺状のフィルムの長手方向及び幅方向の両方の寸法を制御して連続的にフィルムを加熱しうる装置を用い、かかる延伸機内においてフィルムを把持しフィルムの長手方向及び幅方向の寸法を変化させず維持した状態でフィルムを搬送し加熱することにより、アニール処理を行いうる。 Annealing treatment involving restraint in the longitudinal direction of the pre-annealed laminate can be performed, for example, using an apparatus having the same structure as the apparatus used for stretching. More specifically, a device such as a tenter-type stretching machine that can control both the longitudinal and width dimensions of a long film and continuously heat the film is used, and the film is stretched in the stretching machine. Annealing can be performed by conveying and heating the film while it is gripped and the dimensions in the longitudinal and width directions of the film are maintained unchanged.
 アニール処理における加熱温度は、通常、結晶性重合体のガラス転移温度Tg以上、結晶性重合体の融点Tm以下である。より詳細には、加熱温度は、好ましくはTg+20℃以上、より好ましくはTg+40℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。加熱時間は好ましくは5秒間以上、より好ましくは10秒間以上であり、一方好ましくは30分間以下、より好ましくは15分間以下である。加熱温度及び時間をかかる範囲内とすることにより、良好なアニール処理を達成することができ、アニール後の基材及び保護フィルムを備える、本発明の積層体を得ることができる。 The heating temperature in the annealing treatment is usually higher than the glass transition temperature Tg of the crystalline polymer and lower than the melting point Tm of the crystalline polymer. More specifically, the heating temperature is preferably Tg+20° C. or higher, more preferably Tg+40° C. or higher, and preferably Tm−20° C. or lower, more preferably Tm−40° C. or lower. The heating time is preferably 5 seconds or longer, more preferably 10 seconds or longer, while preferably 30 minutes or shorter, more preferably 15 minutes or shorter. By setting the heating temperature and time within the ranges that require good annealing treatment, it is possible to obtain the laminate of the present invention comprising the base material and the protective film after annealing.
 結晶性を有する脂環式構造含有重合体を含む樹脂のフィルムであるアニール前基材を、保護フィルムを伴わない単独の状態でアニール処理した場合、平面性が毀損されやすく、そのような現象は、アニール前基材が、アニール処理に先立ち、高い面倍率で延伸されている場合において特に顕著である。かかる平面性の毀損を低減するための方策としては、基材を、アニール処理に先立ち保護フィルムとの積層体とすることが考えられる。しかしながら、保護フィルムを単に設けただけでは、平面性の毀損は低減し難く、また得られる基材において、アニール処理による耐熱性発現が不十分な場合がある。 When the pre-annealed base material, which is a resin film containing a crystalline alicyclic structure-containing polymer, is annealed alone without a protective film, the flatness is likely to be impaired, and such a phenomenon is , especially when the pre-annealed substrate is stretched at a high areal ratio prior to annealing. As a measure for reducing such deterioration of flatness, it is conceivable to laminate the base material with a protective film prior to annealing treatment. However, simply providing the protective film does not reduce the damage to the flatness, and the resulting substrate may not exhibit sufficient heat resistance due to the annealing treatment.
 ここで、本発明者が見出したところによれば、アニール前基材及びアニール前保護フィルムの材料及びアニール処理に先立つ処理条件を、アニール後の基材及び保護フィルムが前記式(1)及び(2)を満たすものとなるように適宜調整した状態でアニール前積層体とし、これをアニール処理することにより、良好な平面性及び耐熱性を有する積層体を容易に製造することができる。 Here, according to the present inventors, the materials of the pre-annealed base material and the pre-annealed protective film and the treatment conditions prior to the annealing treatment are changed to the above formulas (1) and ( A laminated body having good flatness and heat resistance can be easily produced by preparing a laminated body before annealing in a state appropriately adjusted so as to satisfy 2) and subjecting this to an annealing treatment.
 〔任意の工程〕
 本発明の積層体の製造方法は、前記工程(1)~(2)に加えて、更に任意の工程を含みうる。かかる任意の工程の例としては、積層体に含まれる基材の表面に導電層等の追加の層を形成する工程、及び積層体を巻き取って巻回体を得る工程が挙げられる。
[Optional step]
The method for producing a laminate of the present invention may further include optional steps in addition to the steps (1) and (2). Examples of such optional steps include a step of forming an additional layer such as a conductive layer on the surface of the substrate included in the laminate, and a step of winding the laminate to obtain a roll.
 〔積層体の用途〕
 本発明の積層体は、そのまま、光学的な装置の構成要素又は、光学的な装置に限られないその他の電子部品及び電気部品の構成要素として使用しうる。又は、本発明の積層体から保護フィルムを剥離し、残余の基材を、光学的な装置の構成要素又はその他の電子部品及び電気部品の構成要素として使用しうる。
 光学的な装置の構成要素の例としては、液晶表示装置、有機エレクトロルミネッセンス表示装置等の表示装置及びその他の装置における、基板フィルム、位相差フィルム、偏光フィルム、及び光拡散シートが挙げられる。基板フィルムは、その可撓性を生かして、タッチパネル基板フィルム及びフレキシブルディスプレイ基板フィルムとして特に有用に用いうる。また、集光シート及び光カード等の構成要素としての用途も好ましく挙げられる。
 その他の電子部品及び電気部品の構成要素の例としては、フレキシブルプリント基板用フィルム、フィルムコンデンサー、高周波回路基板フィルム、アンテナ基板フィルム、電池セパレーター用フィルム、及び離型フィルムが挙げられる。
 積層体は、平面性を良好に維持することができ、熱負荷に対する形状変化が少なく、且つ高温環境下におけるカール量が少ない。したがって、形成工程が高温下で行われる光学要素(例えば、タッチパネルに含まれる導電層)を製造するための基材として、特に有用に用いうる。本発明の積層体における基材はまた、所望の位相差を設けることにより、積層体から剥離した後に位相差層として特に有用に使用しうる。本発明の積層体における基材はさらに、その高い平面性及び耐熱性を生かして、偏光子を保護する保護フィルムとして使用しうる。
[Application of laminate]
The laminate of the present invention can be used as it is as a constituent element of an optical device, or a constituent element of other electronic and electrical parts that are not limited to optical devices. Alternatively, the protective film can be peeled off from the laminate of the present invention, and the remaining substrate can be used as a component of optical devices or other electronic and electrical components.
Examples of components of optical devices include substrate films, retardation films, polarizing films, and light diffusion sheets in display devices such as liquid crystal display devices and organic electroluminescence display devices and other devices. The substrate film can be used particularly effectively as a touch panel substrate film and a flexible display substrate film by taking advantage of its flexibility. In addition, it is preferably used as a constituent element of light-condensing sheets, optical cards, and the like.
Examples of other electronic components and components of electrical components include films for flexible printed circuit boards, film capacitors, high frequency circuit board films, antenna substrate films, battery separator films, and release films.
The laminate can maintain good flatness, undergo little change in shape due to heat load, and curl less in a high-temperature environment. Therefore, it can be used particularly useful as a base material for manufacturing an optical element (for example, a conductive layer included in a touch panel) whose formation process is performed at high temperature. By providing a desired retardation, the substrate in the laminate of the present invention can also be used particularly effectively as a retardation layer after peeling from the laminate. The substrate in the laminate of the present invention can further be used as a protective film for protecting a polarizer, taking advantage of its high flatness and heat resistance.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples shown below, and can be arbitrarily modified without departing from the scope of the claims of the present invention and their equivalents.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。 In the following explanation, "%" and "parts" representing amounts are based on weight unless otherwise specified. In addition, unless otherwise specified, the operations described below were performed under normal temperature and pressure conditions.
 〔評価方法〕
 (重合体の重量平均分子量Mw及び数平均分子量Mn)
 重合体の重量平均分子量Mw及び数平均分子量Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。測定時のカラム温度は、40℃とした。
〔Evaluation method〕
(Polymer weight average molecular weight Mw and number average molecular weight Mn)
The weight average molecular weight Mw and number average molecular weight Mn of the polymer were measured as polystyrene equivalent values using a gel permeation chromatography (GPC) system ("HLC-8320" manufactured by Tosoh Corporation). During the measurement, an H-type column (manufactured by Tosoh Corporation) was used as the column, and tetrahydrofuran was used as the solvent. The column temperature during measurement was 40°C.
 (重合体の水素化率の測定方法)
 重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定した。
(Method for measuring hydrogenation rate of polymer)
The hydrogenation rate of the polymer was measured by 1 H-NMR measurement at 145° C. using ortho-dichlorobenzene-d 4 as a solvent.
 (ガラス転移温度Tg及び融点Tm)
 重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷した。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定した。
(Glass transition temperature Tg and melting point Tm)
The polymer was melted by heating and the melted polymer was quenched with dry ice. Subsequently, using this polymer as a test sample, a differential scanning calorimeter (DSC) was used to measure the glass transition temperature Tg and melting point Tm of the polymer at a heating rate of 10° C./min (heating mode). It was measured.
 (開環重合体水素添加物におけるラセモ・ダイアッドの割合)
 オルトジクロロベンゼン-d/1,2,4-トリクロロベンゼン(TCB)-d(混合比(質量基準)1/2)を溶媒として、200℃でinverse-gated decoupling法を適用して13C-NMR測定を行い、ラセモ・ダイアッドの割合を求めた。具体的には、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、ラセモ・ダイアッドの割合を求めた。
(Proportion of racemo diad in hydrogenated ring-opening polymer)
Using ortho-dichlorobenzene-d 4 /1,2,4-trichlorobenzene (TCB)-d 3 (mixing ratio (mass basis) 1/2) as a solvent, 13 C was applied at 200 ° C. by inverse-gated decoupling method. - NMR measurement was performed to determine the ratio of racemo dyads. Specifically, a 43.35 ppm signal from the meso dyad and a 43.43 ppm signal from the racemo dyad were identified using the ortho-dichlorobenzene-d4 peak at 127.5 ppm as the reference shift. Based on the intensity ratio of these signals, the ratio of racemo dyads was determined.
 (膜厚)
 フィルムの厚みは、接触式厚さ計(MITUTOYO社製、Code No.543-390)を用いて測定した。
(film thickness)
The thickness of the film was measured using a contact thickness gauge (Code No. 543-390, manufactured by MITUTOYO).
 (熱収縮率)
 アニール前基材及びアニール前保護フィルムの熱収縮率(pFs及びpFp)の測定では、23℃(室温)の環境下で、各フィルムを切り出し、120mm×120mmの大きさの正方形の試料フィルムとした。一方アニール処理後の積層体の各層である基材及び保護フィルムの熱収縮率(Fs及びFp)の測定では、23℃(室温)の環境下で、積層体を切り出し120mm×120mmの大きさの正方形の切片とし、基材と複合フィルムとを剥離して、それぞれを試料フィルムとした。接着層が熱収縮率に与える影響は無視できる程度に小さいため、保護フィルムについては、接着層を伴った複合フィルムの状態のまま熱収縮率の測定を行った。試料フィルムの正方形の各辺は、フィルムの長手方向又は幅方向に平行な方向とした。
(Thermal shrinkage rate)
In the measurement of the thermal shrinkage rate (pFs and pFp) of the pre-annealed base material and the pre-annealed protective film, each film was cut out in an environment of 23 ° C. (room temperature) to obtain a square sample film with a size of 120 mm × 120 mm. . On the other hand, in the measurement of the thermal shrinkage rate (Fs and Fp) of the base material and the protective film, which are each layer of the laminate after annealing, the laminate was cut out in an environment of 23 ° C. (room temperature) and a size of 120 mm × 120 mm. A square section was taken, and the base material and the composite film were peeled off to obtain a sample film. Since the effect of the adhesive layer on the thermal shrinkage rate is negligible, the thermal shrinkage rate of the protective film was measured in the state of the composite film with the adhesive layer. Each side of the square of the sample film was oriented parallel to the longitudinal direction or width direction of the film.
 この試料フィルムを、所定の加熱条件にて加熱し、その後23℃(室温)まで冷却し、その後試料フィルムの四辺の長さを測定した。加熱条件は、アニール前基材及びアニール前保護フィルムの測定では145℃60分間及び200℃10分間の2種類とした。アニール処理後の基材及び保護フィルムの測定では加熱条件は180℃2分間とした。アニール処理後の基材の測定ではさらに、145℃60分間及び200℃10分間の測定も行った。 This sample film was heated under predetermined heating conditions, then cooled to 23°C (room temperature), and then the lengths of the four sides of the sample film were measured. Two heating conditions, 145° C. for 60 minutes and 200° C. for 10 minutes, were used for the measurement of the base material before annealing and the protective film before annealing. In the measurement of the substrate and protective film after annealing, the heating conditions were 180° C. for 2 minutes. Further measurements on the substrate after annealing were performed at 145° C. for 60 minutes and 200° C. for 10 minutes.
 測定された四辺それぞれの長さを基に、下記式(I)に基づいて、試料フィルムの熱収縮率を算出した。式(I)において、Lは、加熱前の試料フィルムの辺の長さを示し、本測定においてLは120mmであり、Lは、加熱後の試料フィルムの辺の長さを示す。
 熱収縮率(%)=[(L-L)/L]×100 (I)
 熱収縮率が正の値である場合は、加熱によりフィルムが収縮することを示し、負の値である場合は、加熱によりフィルムが伸長することを示す。
Based on the measured length of each of the four sides, the thermal shrinkage rate of the sample film was calculated based on the following formula (I). In formula (I), LB indicates the side length of the sample film before heating, LB is 120 mm in this measurement, and LA indicates the side length of the sample film after heating.
Thermal shrinkage rate (%) = [(L B -L A )/L B ]×100 (I)
A positive value for the thermal shrinkage ratio indicates that the film shrinks due to heating, and a negative value indicates that the film elongates due to heating.
 フィルムの搬送方向(すなわち、長尺のフィルムの長手方向)に沿った2辺の収縮率の平均値を、フィルムの搬送方向の熱収縮率、すなわち長尺のフィルムの長手方向における熱収縮率として採用した。また、フィルムの幅方向に沿った2辺の熱収縮率の平均値を、長尺のフィルムの幅方向における熱収縮率として採用した。さらにアニール処理後の基材及び保護フィルムについては、基材の長手方向における熱収縮率Fs(%)及び保護フィルムの長手方向における熱収縮率Fp(%)から、Fs-Fpの値を求めた。 The average value of the shrinkage rate of the two sides along the transport direction of the film (that is, the longitudinal direction of the long film) is taken as the heat shrinkage rate in the transport direction of the film, that is, the heat shrinkage rate in the longitudinal direction of the long film. adopted. Also, the average value of the heat shrinkage rates of the two sides along the width direction of the film was adopted as the heat shrinkage rate in the width direction of the long film. Furthermore, for the base material and protective film after annealing, the value of Fs - Fp was obtained from the heat shrinkage rate Fs (%) in the longitudinal direction of the base material and the heat shrinkage rate Fp (%) in the longitudinal direction of the protective film. .
 (弾性率)
 23℃(室温)の環境下で、アニール処理後の積層体を切り出し、長さ20mm×幅5mmの大きさの長方形の切片とし、基材と複合フィルムとを剥離して、それぞれを試料フィルムとした。接着層が弾性率に与える影響は無視できる程度に小さいため、保護フィルムについては、接着層を伴った複合フィルムの状態のまま弾性率の測定を行った。試料フィルムの長方形の長さ方向の辺は長尺の積層体の長手方向と平行な方向とした。
 動的粘弾性測定装置(日立ハイテクサイエンス社製、製品名:DMA7100)を用いて周波数1Hz、昇温速度毎分5℃、温度範囲25~220℃で伸縮粘弾性測定を行い、180℃の貯蔵弾性率E’s及びE’pを採用した。
(elastic modulus)
In an environment of 23 ° C. (room temperature), cut the laminate after annealing into rectangular pieces with a size of 20 mm in length × 5 mm in width, peel off the base material and the composite film, and use each as a sample film. did. Since the effect of the adhesive layer on the elastic modulus is negligibly small, the elastic modulus of the protective film was measured in the form of a composite film with the adhesive layer. The sides of the rectangle of the sample film in the longitudinal direction were parallel to the longitudinal direction of the long laminate.
Using a dynamic viscoelasticity measuring device (manufactured by Hitachi High-Tech Science, product name: DMA7100), perform stretching viscoelasticity measurement at a frequency of 1 Hz, a temperature increase rate of 5 ° C. per minute, and a temperature range of 25 to 220 ° C. Storage at 180 ° C. The elastic moduli E's and E'p were taken.
 (平面の平滑性)
 アニール処理後の積層体を切り出し、300mm×300mmの正方形の切片とし、基材と保護フィルムとを剥離した。基材を水平で平坦な机の上面に広げ、目視により基材の表面の平滑性を以下の基準により評価した。
 良:搬送方向に沿った筋を有する波板状のシワがなく、実用上問題なし。
 可:搬送方向に沿った筋を有する波板状のシワが僅かにあるが、実用上問題なし。
 不可:搬送方向に沿った筋を有する波板状のシワがあり、実用上問題となる。
(flat smoothness)
The annealed laminate was cut into a square piece of 300 mm×300 mm, and the substrate and the protective film were peeled off. The base material was spread on a horizontal and flat desk, and the smoothness of the surface of the base material was visually evaluated according to the following criteria.
Good: No corrugated sheet-like wrinkles with streaks along the conveying direction, practically no problem.
Acceptable: Slight corrugated sheet-like wrinkles having streaks along the conveying direction, but no problem in practical use.
Poor: There are corrugated sheet-like wrinkles with streaks along the conveying direction, which poses a practical problem.
 (アニール処理後の積層体のカール量)
 23℃(室温)の環境下で、アニール処理後の積層体を切り出し、50mm×50mmの正方形の試料フィルムとした。試料フィルムを水平で平坦な机の上面に載置した。載置に際しては、試料フィルムを観察して、収縮して凹型の形状となっていると思われる側の面を上側とした。試料フィルムの四隅が机の上面から浮き上がっている量(カール量)を定規で測定し、四隅の平均値を試料フィルムのカール量とした。
(Curl amount of laminate after annealing)
In an environment of 23° C. (room temperature), the laminate after annealing was cut out to obtain a square sample film of 50 mm×50 mm. The sample film was placed on the top of a horizontal, flat desk. When placing, the sample film was observed, and the surface on the side that seemed to have shrunk and formed a concave shape was set as the upper side. The amount (curl amount) of the four corners of the sample film lifted from the top surface of the desk was measured with a ruler, and the average value of the four corners was taken as the curl amount of the sample film.
 (結晶化度)
 アニール前基材及びアニール前保護フィルムの結晶化度は、これらを適当な大きさに切り出し試料フィルムとして、以下の手法により測定した。
 アニール処理後の積層体の各層である基材及び保護フィルムの結晶化度は、積層体を適当な大きさに切り出し、基材と保護フィルムとを剥離し、保護フィルムに付着した接着層をメチルエチルケトンなどの有機溶媒を用いて拭き取り、十分乾燥したものを試料フィルムとして、以下の手法により測定した。
(crystallinity)
The crystallinity of the base material before annealing and the protective film before annealing was measured by the following method, using these as sample films cut into appropriate sizes.
The degree of crystallinity of the substrate and the protective film, which are each layer of the laminate after annealing, is measured by cutting the laminate into an appropriate size, peeling off the substrate and the protective film, and removing the adhesive layer attached to the protective film with methyl ethyl ketone. It was wiped off with an organic solvent such as , and a sample film which was sufficiently dried was measured by the following method.
 (基材フィルム・PETフィルムの結晶化度)
 ヘリウムガス置換型の乾式自動密度計「AccuPyc 1340」(Micromeritics社製)を用いて試料フィルムの密度を測定した。試料フィルム約3gを幅30mm以下の短冊状に切り、丸めて10cmの容器に入れ、25℃に維持して測定した。10回の繰り返し測定から密度を決定した。
(Crystallinity of base film/PET film)
The density of the sample film was measured using a helium gas replacement type dry automatic density meter "AccuPyc 1340" (manufactured by Micromeritics). About 3 g of the sample film was cut into strips having a width of 30 mm or less, rolled into a container of 10 cm 3 , and measured while maintaining the temperature at 25°C. Density was determined from 10 replicate measurements.
 結晶化度x(%)を次式によって計算した。
 x=(1/Da-1/D)/(1/Da-1/Dc)×100
 前記式において、xは結晶化度を表す。D(g/cm)は、決定された試料フィルムの密度を表す。Daは試料フィルムを形成する重合体の完全非晶密度(g/cm)を示す。Dbは、試料フィルムを形成する重合体の完全結晶密度(g/cm)を示す。
Crystallinity x (%) was calculated by the following formula.
x=(1/Da−1/D)/(1/Da−1/Dc)×100
In the above formula, x represents the degree of crystallinity. D (g/cm 3 ) represents the determined density of the sample film. Da indicates the complete amorphous density (g/cm 3 ) of the polymer forming the sample film. Db indicates the full crystal density (g/cm 3 ) of the polymer forming the sample film.
 完全非晶密度Daとして、下記の値を用いた。
・製造例1で製造されたジシクロペンタジエン開環重合体水素化物の完全非晶密度Da=1.0157g/cm
・ポリエチレンテレフタレート(PET)の完全非晶密度Da=1.335g/cm
The following values were used as the complete amorphous density Da.
- Full amorphous density Da of the hydrogenated dicyclopentadiene ring-opening polymer produced in Production Example 1 = 1.0157 g/cm 3
・ Completely amorphous density of polyethylene terephthalate (PET) Da = 1.335 g / cm 3
 完全結晶密度Dcとしては、下記の値を用いた。
・製造例1で製造されたジシクロペンタジエン開環重合体水素化物の完全結晶密度Dc=1.0857g/cm
・PETの完全結晶密度Dc=1.455g/cm
The following values were used as the complete crystal density Dc.
- Complete crystal density Dc of the hydrogenated dicyclopentadiene ring-opening polymer produced in Production Example 1 = 1.0857 g/cm 3
・Perfect crystal density of PET Dc = 1.455 g/cm 3
 (SPSフィルムの結晶化度)
 示差走査熱量計(DSC)を用い、試料フィルムを50℃から20℃/分の昇温速度で300℃まで昇温したときの結晶化エンタルピーと融解エンタルピーを測定し次式により算出した。
 結晶化度(%)={〔融解エンタルピー(J/g)-結晶化エンタルピー(J/g)〕/結晶化度100%のときの融解エンタルピー(J/g)}×100
 ここで、結晶化度100%のときの融解エンタルピー(J/g)として、53J/gを用いた。
(Crystallinity of SPS film)
Using a differential scanning calorimeter (DSC), the enthalpy of crystallization and the enthalpy of melting were measured when the sample film was heated from 50° C. to 300° C. at a heating rate of 20° C./min, and calculated according to the following equations.
Crystallinity (%) = {[melting enthalpy (J/g) - crystallization enthalpy (J/g)]/melting enthalpy at 100% crystallinity (J/g)} x 100
Here, 53 J/g was used as the melting enthalpy (J/g) when the degree of crystallinity was 100%.
 (ポリアミドフィルムの結晶化度)
 ポリアミドフィルムである試料フィルムの結晶化度はX線回折法により測定した。
(Crystallinity of polyamide film)
The crystallinity of the sample film, which is a polyamide film, was measured by the X-ray diffraction method.
 〔製造例1:結晶性樹脂〕
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
[Production Example 1: Crystalline resin]
After sufficiently drying the metal pressure-resistant reactor, the atmosphere was replaced with nitrogen. In this metal pressure-resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (the content of endo bodies is 99% or more) (30 parts as the amount of dicyclopentadiene), and 1- Add 1.9 parts of hexene and heat to 53°C.
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。この触媒溶液を耐圧反応器に入れて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750及び28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。 A solution was prepared by dissolving 0.014 parts of a tetrachlorotungstenphenylimide (tetrahydrofuran) complex in 0.70 parts of toluene. To this solution, 0.061 part of a 19% diethylaluminum ethoxide/n-hexane solution was added and stirred for 10 minutes to prepare a catalyst solution. This catalyst solution was placed in a pressure-resistant reactor to initiate ring-opening polymerization reaction. Thereafter, the mixture was allowed to react for 4 hours while maintaining the temperature at 53° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The obtained ring-opening polymer of dicyclopentadiene had a number average molecular weight (Mn) and a weight average molecular weight (Mw) of 8,750 and 28,100, respectively. was 3.21.
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。  0.037 parts of 1,2-ethanediol was added as a terminator to 200 parts of the obtained solution of the ring-opening polymer of dicyclopentadiene, heated to 60° C., and stirred for 1 hour to terminate the polymerization reaction. let me 1 part of a hydrotalcite-like compound (“Kyoward (registered trademark) 2000” manufactured by Kyowa Chemical Industry Co., Ltd.) was added thereto, heated to 60° C., and stirred for 1 hour. After that, 0.4 part of a filter aid ("Radiolite (registered trademark) #1500" manufactured by Showa Kagaku Kogyo Co., Ltd.) is added, and a PP pleated cartridge filter ("TCP-HX" manufactured by ADVANTEC Toyo Co., Ltd.) is used as an adsorbent. The solution was filtered off. 
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。 To 200 parts of the solution of the ring-opening polymer of dicyclopentadiene after filtration (polymer amount: 30 parts), 100 parts of cyclohexane was added, 0.0043 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium was added, and hydrogen was added. A hydrogenation reaction was carried out at a pressure of 6 MPa and 180° C. for 4 hours. As a result, a reaction liquid containing a hydride of a ring-opening polymer of dicyclopentadiene was obtained. This reaction solution was a slurry solution due to deposition of hydride.
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は267℃、ラセモ・ダイアッドの割合は89%であった。 The hydride contained in the reaction solution and the solution were separated using a centrifugal separator and dried under reduced pressure at 60° C. for 24 hours to obtain a crystalline hydride of a ring-opening polymer of dicyclopentadiene 28. 5 copies were obtained. This hydride had a hydrogenation rate of 99% or more, a glass transition temperature Tg of 93° C., a melting point (Tm) of 267° C., and a ratio of racemo diad of 89%.
 得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合後、内径3mmΦのダイ穴を4つ備えた二軸押出し機(製品名「TEM-37B」、東芝機械社製)に投入した。ジシクロペンタジエンの開環重合体の水素化物及び酸化防止剤の混合物を、熱溶融押出し成形によりストランド状に成形した後、ストランドカッターにて細断して、ペレット形状の結晶性樹脂(樹脂A)を得た。前記の二軸押出し機の運転条件は、以下の通りであった。 An antioxidant (tetrakis[methylene-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate]methane) was added to 100 parts of the hydride of the resulting ring-opening polymer of dicyclopentadiene. ; After mixing 1.1 parts of "Irganox (registered trademark) 1010" manufactured by BASF Japan Co., Ltd., a twin-screw extruder equipped with four die holes with an inner diameter of 3 mmΦ (product name "TEM-37B", manufactured by Toshiba Machine Co., Ltd. ). A mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant is formed into strands by hot-melt extrusion molding, and then chopped with a strand cutter to form a pellet-shaped crystalline resin (resin A). got The operating conditions of the twin-screw extruder were as follows.
 ・バレル設定温度=270~280℃
 ・ダイ設定温度=250℃
 ・スクリュー回転数=145rpm
・Barrel setting temperature = 270-280℃
・Die setting temperature = 250°C
・Screw rotation speed = 145 rpm
 〔実施例1〕
 (1-1.アニール前基材)
 製造例1で製造した樹脂A 100部に、アンチブロッキング剤(シリカ粒子、アドマテックス社製、製品名:「アドマファインシリカSC4053-SQ」)0.05部を混合した後、Tダイを備える熱溶融押出フィルム成形機を用いて成形し、およそ幅1200mmの長尺の押出フィルム(厚み500μm)を得た。前記のフィルム成形機の運転条件は、以下の通りであった。
 ・バレル設定温度=280℃~300℃
 ・ダイ温度=270℃
 ・キャストロール温度=80℃
[Example 1]
(1-1. Base material before annealing)
100 parts of resin A produced in Production Example 1 was mixed with 0.05 parts of an anti-blocking agent (silica particles, manufactured by Admatechs, product name: "ADMAFINE SILICA SC4053-SQ"), and then heated with a T die. Molding was performed using a melt extrusion film molding machine to obtain a long extruded film (thickness: 500 μm) with a width of approximately 1200 mm. The operating conditions of the film forming machine were as follows.
・Barrel setting temperature = 280°C to 300°C
・Die temperature = 270°C
・Cast roll temperature = 80°C
 押出フィルムを同時二軸延伸機に供給し、同時二軸延伸工程に供した。延伸倍率は長手方向3.5倍、幅方向2.9倍とし、延伸温度は115℃とした。延伸工程の後に、フィルムを結晶化促進工程に供した。結晶化促進は、延伸機においてフィルムを把持した状態を維持し、フィルムを15秒間、温度240℃に加熱し、フィルム寸法を、長手方向0.94倍、幅方向0.96倍に縮小することにより行った。結晶化促進工程終了後、温度100℃以下までフィルムを冷却し、スリット加工によりフィルム幅方向両端部を切除し、アニール前基材を、幅1100mmの長尺のフィルムとして得た。得られたアニール前基材の熱収縮率、膜厚、及び結晶化度を測定した。 The extruded film was supplied to a simultaneous biaxial stretching machine and subjected to a simultaneous biaxial stretching process. The stretching ratio was 3.5 times in the longitudinal direction and 2.9 times in the width direction, and the stretching temperature was 115°C. After the stretching step, the film was subjected to a crystallization promotion step. To promote crystallization, the film is held in a stretching machine and heated to a temperature of 240°C for 15 seconds to reduce the film dimensions to 0.94 times in the longitudinal direction and 0.96 times in the width direction. It was done by After completion of the crystallization promoting step, the film was cooled to a temperature of 100° C. or lower, and both ends in the width direction of the film were cut by slitting to obtain a pre-annealed base material as a long film having a width of 1100 mm. The heat shrinkage rate, film thickness, and crystallinity of the obtained base material before annealing were measured.
 (1-2.アニール前保護フィルムを含む複合フィルム)
 市販の、厚み35μmのSPS(シンジオタクチックポリスチレン)フィルム(倉敷紡績社製、製品名「Oidys(登録商標)HNL」)をフィルムロールから引出して、片面に放電処理(コロナ処理)を施した。放電処理には、コロナ処理装置(春日電機社製)を用い、放電条件は、出力500W、電極長1.35m、搬送速度10m/minとした。
(1-2. Composite film containing protective film before annealing)
A commercially available SPS (syndiotactic polystyrene) film having a thickness of 35 μm (manufactured by Kurashiki Boseki Co., Ltd., product name “Oidys (registered trademark) HNL”) was pulled out from a film roll, and one side was subjected to discharge treatment (corona treatment). A corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.) was used for the discharge treatment, and the discharge conditions were an output of 500 W, an electrode length of 1.35 m, and a conveying speed of 10 m/min.
 フィルムの放電処理を施した側の表面に、接着剤としてのアクリル系粘着剤(藤森工業製「マスタックシリーズ」)を、乾燥膜厚が10μmになるようにダイコーターを用いて塗工し、100℃の乾燥オーブン中を通過させて接着剤を乾燥させた。これにより、SPSフィルムである保護フィルムと、その一方の表面上に形成された接着層とを備える複合フィルムを、幅1100mmの長尺のフィルムとして得た。アニール前保護フィルムの熱収縮率及び結晶化度を測定した。 On the surface of the film subjected to the discharge treatment, an acrylic pressure-sensitive adhesive (Fujimori Kogyo "Mastak series") as an adhesive was applied using a die coater so that the dry film thickness was 10 μm, The adhesive was dried by passing through a drying oven at 100°C. As a result, a composite film having a protective film, which is an SPS film, and an adhesive layer formed on one surface thereof was obtained as a long film with a width of 1100 mm. The heat shrinkage rate and crystallinity of the pre-annealed protective film were measured.
 (1-3.アニール前積層体)
 (1-1)で得たアニール前基材の一方の表面と、(1-2)で得た複合フィルムの接着層側の表面とを、長手方向を揃えてニップロールで貼合し、アニール前基材及びアニール前保護フィルムを備える長尺のアニール前積層体を作製した。
(1-3. Laminate before annealing)
One surface of the pre-annealed base material obtained in (1-1) and the adhesive layer side surface of the composite film obtained in (1-2) are aligned in the longitudinal direction and laminated with nip rolls, before annealing. A long pre-annealed laminate comprising a substrate and a pre-annealed protective film was produced.
 (1-4.積層体)
 (1-3)で得たアニール前積層体を、その長手方向に沿った方向に搬送し、乾燥機に連続的に導入し、加熱することにより、アニール処理を行った。乾燥機としては、ロールサポート方式の乾燥機を用いた。この乾燥機は、上流側のニップロールと、下流側のニップロールと、その間に設けられたオーブンを備え、上流側ニップロールと下流側ニップロールとの周速比を調整することにより、ニップロール間のフィルムに張力を付与した状態で長尺のフィルムを搬送し、その間でオーブン内を通過させ、オーブン内ではフィルムを下側から支持する非拘束的なロールのみでフィルムを誘導することにより、オーブン内で、フィルム幅方向の拘束を伴わない状態でのフィルム加熱を行いうる装置である。アニール処理における加熱温度は200℃、加熱時間は2分間、搬送張力は13Nとした。かかるアニール処理の結果、基材及び保護フィルムを備える積層体を得た。
(1-4. Laminate)
The pre-annealed laminate obtained in (1-3) was conveyed in the direction along its longitudinal direction, continuously introduced into a dryer, and subjected to annealing by heating. As a dryer, a roll support type dryer was used. This dryer includes an upstream nip roll, a downstream nip roll, and an oven provided between them. By adjusting the peripheral speed ratio between the upstream nip roll and the downstream nip roll, tension is applied to the film between the nip rolls. In the oven, the film is conveyed in a state in which the film It is a device that can heat a film without restraint in the width direction. The heating temperature in the annealing treatment was 200° C., the heating time was 2 minutes, and the transfer tension was 13N. As a result of such annealing treatment, a laminate including the substrate and the protective film was obtained.
 (1-5.評価)
 (1-4)で得た積層体について、各層の弾性率、各層の熱収縮率、各層の結晶化度、表面の平滑性、及びカール量を評価した。
(1-5. Evaluation)
The laminate obtained in (1-4) was evaluated for the elastic modulus of each layer, the thermal shrinkage of each layer, the crystallinity of each layer, the smoothness of the surface, and the amount of curl.
 〔実施例2〕
 下記の変更点の他は、実施例1と同じ操作により積層体を得て評価した。
 ・(1-2)のアニール前保護フィルムを含む複合フィルムの調製において、厚み35μmのSPSフィルムに代えて、厚み75μmのSPSフィルム(倉敷紡績社製、製品名「Oidys(登録商標)CN」)を用いた。
[Example 2]
A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes.
- In the preparation of the composite film containing the protective film before annealing in (1-2), instead of the 35 μm thick SPS film, a 75 μm thick SPS film (manufactured by Kurashiki Boseki Co., Ltd., product name “Oidys (registered trademark) CN”) was used.
 〔実施例3〕
 下記の変更点の他は、実施例1と同じ操作により積層体を得て評価した。
 ・(1-1)のアニール前基材の調製において、Tダイの開口の寸法及び成形機の操作条件を変更し、押出フィルムの厚みを430μmに変更した。さらに延伸倍率を、長手方向は3.5倍から2.6倍に、幅方向は2.9倍から3.3倍に変更した。但し結晶化促進工程における縮小率は、実施例1から変更無い。得られたアニール前基材の幅方向寸法も1100mmであり実施例1から変更無い。
[Example 3]
A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes.
- In the preparation of the base material before annealing in (1-1), the dimensions of the T-die opening and the operating conditions of the molding machine were changed, and the thickness of the extruded film was changed to 430 µm. Further, the draw ratio was changed from 3.5 times to 2.6 times in the longitudinal direction and from 2.9 times to 3.3 times in the width direction. However, the reduction ratio in the crystallization promoting step is the same as in Example 1. The width direction dimension of the obtained pre-annealed base material is also 1100 mm, which is the same as in Example 1.
 〔実施例4〕
 下記の変更点の他は、実施例1と同じ操作により積層体を得て評価した。
 ・(1-1)のアニール前基材の調製において、Tダイの開口の寸法及び成形機の操作条件を変更し、押出フィルムの厚みを1000μmに変更した。
[Example 4]
A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes.
- In the preparation of the base material before annealing in (1-1), the size of the T-die opening and the operating conditions of the molding machine were changed, and the thickness of the extruded film was changed to 1000 µm.
 〔実施例5〕
 (5-1.アニール前基材)
 製造例1で製造した樹脂Aを、Tダイを備える熱溶融押出フィルム成形機を用いて成形し、およそ幅1350mmの長尺の押出フィルム(厚み48μm)を得た。前記のフィルム成形機の運転条件は、以下の通りであった。
 ・バレル設定温度=280℃~300℃
 ・ダイ温度=270℃
 ・キャストロール温度=80℃
[Example 5]
(5-1. Base material before annealing)
Resin A produced in Production Example 1 was molded using a hot-melt extrusion film molding machine equipped with a T-die to obtain a long extruded film (thickness: 48 μm) with a width of approximately 1,350 mm. The operating conditions of the film forming machine were as follows.
・Barrel setting temperature = 280°C to 300°C
・Die temperature = 270°C
・Cast roll temperature = 80°C
 押出フィルムをテンター法を用いる横延伸機に供給し、固定端一軸延伸に供した。延伸倍率は、長手方向1.0倍、幅方向1.35倍とした。延伸に先立ち押出フィルムを温度120℃で予熱し、その後延伸温度140℃で延伸を行った。延伸工程の後に、フィルムを結晶化促進工程に供した。結晶化促進は、延伸機内においてフィルムを把持しフィルム寸法を変化させず維持した状態でフィルムを搬送し、フィルムを30秒間、温度160℃に加熱することにより行った。結晶化促進工程終了後、温度100℃以下までフィルムを冷却し、スリット加工によりフィルム幅方向両端部を切除し、アニール前基材を、幅1100mmの長尺のフィルムとして得た。得られたアニール前基材の熱収縮率、膜厚及び結晶化度を測定した。 The extruded film was supplied to a transverse stretching machine using a tenter method and subjected to fixed-end uniaxial stretching. The draw ratio was 1.0 times in the longitudinal direction and 1.35 times in the width direction. The extruded film was preheated at a temperature of 120°C prior to stretching and then stretched at a stretching temperature of 140°C. After the stretching step, the film was subjected to a crystallization promotion step. Acceleration of crystallization was carried out by holding the film in a stretching machine, conveying the film in a state in which the film dimension was maintained without changing, and heating the film to a temperature of 160° C. for 30 seconds. After completion of the crystallization promoting step, the film was cooled to a temperature of 100° C. or lower, and both ends in the width direction of the film were cut by slitting to obtain a pre-annealed base material as a long film having a width of 1100 mm. The thermal shrinkage rate, film thickness and crystallinity of the obtained pre-annealed base material were measured.
 (5-2.アニール前保護フィルムを含む複合フィルム)
 市販のPETフィルム(東レ社製、製品名「ルミラーS10」、厚み125μm)をフィルムロールから引出して、片面に放電処理(コロナ処理)を施した。放電処理には、コロナ処理装置(春日電機社製)を用い、放電条件は、出力500W、電極長1.35m、搬送速度10m/minとした。
(5-2. Composite film including protective film before annealing)
A commercially available PET film (manufactured by Toray Industries, Inc., product name “Lumirror S10”, thickness 125 μm) was pulled out from the film roll, and one side was subjected to discharge treatment (corona treatment). A corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.) was used for the discharge treatment, and the discharge conditions were an output of 500 W, an electrode length of 1.35 m, and a conveying speed of 10 m/min.
 フィルムの放電処理を施した側の表面に、接着剤としてのアクリル系粘着剤(藤森工業製「マスタックシリーズ」)を、乾燥膜厚が10μmになるようにダイコーターを用いて塗工し、100℃の乾燥オーブン中を通過させて接着剤を乾燥させた。これにより、PETフィルムである保護フィルムと、その一方の表面上に形成された接着層とを備える複合フィルムを、幅1100mmの長尺のフィルムとして得た。得られたアニール前保護フィルムの熱収縮率及び結晶化度を測定した。 On the surface of the film subjected to the discharge treatment, an acrylic pressure-sensitive adhesive (Fujimori Kogyo "Mastak series") as an adhesive was applied using a die coater so that the dry film thickness was 10 μm, The adhesive was dried by passing through a drying oven at 100°C. As a result, a composite film having a protective film that is a PET film and an adhesive layer formed on one surface thereof was obtained as a long film with a width of 1100 mm. The thermal shrinkage rate and crystallinity of the obtained pre-annealed protective film were measured.
 (5-3.アニール前積層体)
 (5-1)で得たアニール前基材の一方の表面と、(5-2)で得た複合フィルムの接着層側の表面とを、長手方向を揃えてニップロールで貼合し、アニール前基材及びアニール前保護フィルムを備える長尺のアニール前積層体を作製した。
(5-3. Laminate before annealing)
One surface of the pre-annealed substrate obtained in (5-1) and the adhesive layer side surface of the composite film obtained in (5-2) are aligned in the longitudinal direction and laminated with nip rolls, and before annealing A long pre-annealed laminate comprising a substrate and a pre-annealed protective film was produced.
 (5-4.積層体)
 (5-3)で得たアニール前積層体を、その長手方向に沿った方向に搬送し、乾燥機に連続的に導入し、加熱することにより、アニール処理を行った。乾燥機としては、横延伸機を用い、延伸機内においてフィルムを把持しフィルムの長手方向及び幅方向の寸法を変化させず維持した状態でフィルムを搬送し加熱することにより行った。アニール処理における加熱温度は170℃、加熱時間は5分間とした。かかるアニール処理の結果、基材及び保護フィルムを備える積層体を得た。
(5-4. Laminate)
The pre-annealed laminate obtained in (5-3) was conveyed in the direction along its longitudinal direction, continuously introduced into a dryer, and subjected to annealing by heating. A transverse stretching machine was used as the drying machine, and the film was held in the stretching machine, and the film was conveyed and heated while the dimensions in the longitudinal direction and the width direction of the film were kept unchanged. The heating temperature in the annealing treatment was 170° C., and the heating time was 5 minutes. As a result of such annealing treatment, a laminate including the substrate and the protective film was obtained.
 (5-5.評価)
 (5-4)で得た積層体について、各層の弾性率、各層の熱収縮率、各層の結晶化度、表面の平滑性、及びカール量を評価した。
(5-5. Evaluation)
The laminate obtained in (5-4) was evaluated for the elastic modulus of each layer, the thermal shrinkage of each layer, the crystallinity of each layer, the smoothness of the surface, and the amount of curl.
 〔実施例6〕
 下記の変更点の他は、実施例5と同じ操作により積層体を得て評価した。
 ・(5-1)のアニール前基材の調製において、Tダイの開口の寸法及び成形機の操作条件を変更し、押出フィルムの厚みを42μmに変更した。さらに延伸倍率を、幅方向は1.35倍から1.2倍に変更した(長手方向は1.0倍で変更なし)。但し結晶化促進工程における縮小率は、実施例5から変更無い。得られたアニール前基材の幅方向寸法も1100mmであり実施例1から変更無い。
[Example 6]
A laminate was obtained and evaluated in the same manner as in Example 5 except for the following changes.
- In the preparation of the base material before annealing in (5-1), the dimensions of the T-die opening and the operating conditions of the molding machine were changed, and the thickness of the extruded film was changed to 42 µm. Furthermore, the draw ratio in the width direction was changed from 1.35 times to 1.2 times (longitudinal direction was unchanged at 1.0 times). However, the reduction ratio in the crystallization promoting step is the same as in Example 5. The width direction dimension of the obtained pre-annealed base material is also 1100 mm, which is the same as in Example 1.
 〔比較例1〕
 下記の変更点の他は、実施例1の(1-1)及び(1-3)~(1-5)と同じ操作により積層体を得て評価した。
 ・(1-3)において、アニール前保護フィルムを含む複合フィルムとして、(1-2)で得たものに代えて、実施例5の(5-2)で得たものを用いた。
[Comparative Example 1]
A laminate was obtained and evaluated in the same manner as in (1-1) and (1-3) to (1-5) of Example 1, except for the following changes.
· In (1-3), the composite film containing the protective film before annealing was used instead of the one obtained in (1-2) in Example 5 (5-2).
 〔比較例2〕
 下記の変更点の他は、実施例1と同じ操作により積層体を得た。
 ・(1-2)のアニール前保護フィルムを含む複合フィルムの調製において、厚み35μmのSPSフィルムに代えて、市販の、脂環式構造含有重合体のフィルム(日本ゼオン株式会社製、商品名「ZeonorFilm(商標) ZF16」、厚み146μm)を用いた。
[Comparative Example 2]
A laminate was obtained by the same operation as in Example 1, except for the following changes.
・In the preparation of the composite film containing the protective film before annealing in (1-2), instead of the SPS film with a thickness of 35 μm, a commercially available alicyclic structure-containing polymer film (manufactured by Nippon Zeon Co., Ltd., trade name “ ZeonorFilm™ ZF16”, thickness 146 μm) was used.
 得られた積層体についての評価を試みたが、基材と保護フィルムとが剥離不能であり、評価を行うことができなかった。 An attempt was made to evaluate the obtained laminate, but the base material and the protective film could not be separated, so the evaluation could not be performed.
 〔比較例3〕
 (C3-1.アニール前保護フィルムを含む複合フィルム)
 ポリアミド(ダイセル・エポニック社製、製品名「トロガミドCX7323」)のペレットを、Tダイを備える熱溶融押出しフィルム成形機を用いて成形し、およそ幅1100mmの長尺の押出フィルム(厚み118μm)を得た。前記のフィルム成形機の運転条件は、以下の通りであった。
 ・バレル設定温度=260℃~280℃
 ・ダイ温度=250℃
 ・キャストロール温度=110℃
[Comparative Example 3]
(C3-1. Composite film containing pre-annealing protective film)
Pellets of polyamide (manufactured by Daicel-Eponic Co., Ltd., product name "Trogamid CX7323") are molded using a hot-melt extrusion film molding machine equipped with a T-die to obtain a long extruded film (thickness 118 μm) with a width of about 1100 mm. rice field. The operating conditions of the film forming machine were as follows.
・Barrel setting temperature = 260°C to 280°C
・Die temperature = 250°C
・Cast roll temperature = 110°C
 押出フィルムに、ロールサポート方式の乾燥機を用いて加熱処理を行った。加熱温度は180℃、加熱時間は5分間とした。加熱処理後のフィルムの片面に放電処理(コロナ処理)を施した。放電処理には、コロナ処理装置(春日電機社製)を用い、放電条件は、出力500W、電極長1.35m、搬送速度10m/minとした。 The extruded film was heat-treated using a roll support type dryer. The heating temperature was 180° C., and the heating time was 5 minutes. Discharge treatment (corona treatment) was performed on one side of the heat-treated film. A corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.) was used for the discharge treatment, and the discharge conditions were an output of 500 W, an electrode length of 1.35 m, and a conveying speed of 10 m/min.
 フィルムの放電処理を施した側の表面に、接着剤としてのアクリル系粘着剤(藤森工業製「マスタックシリーズ」)を、乾燥膜厚が10μmになるようにダイコーターを用いて塗工し、100℃の乾燥オーブン中を通過させて接着剤を乾燥させた。これにより、ポリアミドフィルムである保護フィルムと、その一方の表面上に形成された接着層とを備える複合フィルムを、幅1100mmの長尺のフィルムとして得た。得られたアニール前保護フィルムの熱収縮率及び結晶化度を測定した。 On the surface of the film subjected to the discharge treatment, an acrylic pressure-sensitive adhesive (Fujimori Kogyo "Mastak series") as an adhesive was applied using a die coater so that the dry film thickness was 10 μm, The adhesive was dried by passing through a drying oven at 100°C. As a result, a composite film having a protective film made of a polyamide film and an adhesive layer formed on one surface thereof was obtained as a long film with a width of 1100 mm. The thermal shrinkage rate and crystallinity of the obtained pre-annealed protective film were measured.
 (C3-2.積層体)
 下記の変更点の他は、実施例1の(1-1)及び(1-3)~(1-5)と同じ操作により積層体を得て評価した。
 ・(1-3)において、アニール前保護フィルムを含む複合フィルムとして、(1-2)で得たものに代えて、(C3-1)で得たものを用いた。
(C3-2. Laminate)
A laminate was obtained and evaluated in the same manner as in (1-1) and (1-3) to (1-5) of Example 1, except for the following changes.
· In (1-3), the composite film containing the protective film before annealing was used instead of the one obtained in (1-2), obtained in (C3-1).
 〔比較例4〕
 下記の変更点の他は、実施例1と同じ操作により積層体を得て評価した。
 ・(1-2)のアニール前保護フィルムを含む複合フィルムの調製において、厚み35μmのSPSフィルムに代えて、(1-1)で得たアニール前基材と同じものを用いた。即ち、(1-2)では、(1-1)で得たアニール前基材と、その一方の表面上に形成された接着層とを備える、長尺の複合フィルムを調製し、これを用いて(1-3)以降の工程を行った。
[Comparative Example 4]
A laminate was obtained and evaluated in the same manner as in Example 1 except for the following changes.
- In the preparation of the composite film containing the pre-annealed protective film in (1-2), the same substrate as the pre-annealed substrate obtained in (1-1) was used in place of the SPS film having a thickness of 35 µm. That is, in (1-2), a long composite film comprising the pre-annealed substrate obtained in (1-1) and an adhesive layer formed on one surface thereof is prepared and used. (1-3) and subsequent steps were performed.
 〔比較例5〕
 アニール前保護フィルムを含む複合フィルムを使用せず、実施例1の(1-1)で得たアニール前基材をそのまま、実施例(1-4)以降の工程に供し評価した。
[Comparative Example 5]
Without using the composite film containing the pre-annealed protective film, the pre-annealed base material obtained in (1-1) of Example 1 was directly subjected to the steps after Example (1-4) and evaluated.
 実施例及び比較例の結果を表1~表4に示す。 The results of Examples and Comparative Examples are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から明らかな通り、本願実施例では、積層体のシワの発生が抑制され、積層体から剥離された基材の平面性が維持され、且つ基材の200℃10分熱収縮率及び145℃60分熱収縮率といった耐熱性に関する指標が、いずれも比較例に比べて良好であった。このことから、本発明の積層体によれば、平面性が高く耐熱性が高い基材を用時に容易に供給しうることが分かる。 As is clear from the above results, in the Examples of the present application, the occurrence of wrinkles in the laminate was suppressed, the flatness of the substrate peeled from the laminate was maintained, and the thermal shrinkage rate of the substrate at 200 ° C. 10 minutes and All indexes relating to heat resistance such as heat shrinkage at 145° C. for 60 minutes were better than those of the comparative examples. From this, it can be seen that, according to the laminate of the present invention, a substrate having high flatness and high heat resistance can be easily supplied at the time of use.
10:積層体
110:基材
120:複合フィルム
121保護フィルム
122:接着層
10: Laminate 110: Base material 120: Composite film 121 Protective film 122: Adhesive layer

Claims (7)

  1.  基材、及び前記基材の一方の表面に設けられた保護フィルムを備え、長尺状の形状を有する積層体であり、
     前記基材は、結晶性を有する脂環式構造含有重合体を含む樹脂の層であり、
     前記基材及び前記保護フィルムが、下記式(1)~(2)を満たす、積層体:
     E’s/E’p<1   (1)
     -0.4≦Fs-Fp≦0.4   (2)
     但し、
     E’sは、前記基材の180℃における貯蔵弾性率であり、
     E’pは、前記保護フィルムの180℃における貯蔵弾性率であり、
     Fsは、前記基材の180℃2分における積層体長手方向の熱収縮率(%)であり、
     Fpは、前記保護フィルムの180℃2分における積層体長手方向の熱収縮率(%)である。
    A laminate having a long shape, comprising a substrate and a protective film provided on one surface of the substrate,
    The substrate is a resin layer containing a crystalline alicyclic structure-containing polymer,
    A laminate in which the substrate and the protective film satisfy the following formulas (1) to (2):
    E's/E'p<1 (1)
    -0.4≤Fs-Fp≤0.4 (2)
    however,
    E's is the storage modulus of the base material at 180°C,
    E'p is the storage modulus of the protective film at 180°C,
    Fs is the thermal shrinkage rate (%) of the base material in the longitudinal direction of the laminate at 180 ° C. for 2 minutes,
    Fp is the heat shrinkage rate (%) of the protective film in the longitudinal direction of the laminate at 180° C. for 2 minutes.
  2.  前記保護フィルムが、結晶性を有する重合体を含む樹脂の層である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the protective film is a resin layer containing a crystalline polymer.
  3.  前記基材を構成する前記結晶性を有する脂環式構造含有重合体を含む樹脂が、ジシクロペンタジエンの開環重合体の水素化物である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the resin containing the crystalline alicyclic structure-containing polymer constituting the base material is a hydride of a ring-opening polymer of dicyclopentadiene.
  4.  請求項1~3のいずれか1項に記載の積層体の製造方法であって、
     アニール前基材及びアニール前保護フィルムを貼合し、前記アニール前基材及び前記アニール前保護フィルムを備えるアニール前積層体を得る工程であって、前記アニール前基材は、結晶性を有する脂環式構造含有重合体を含む樹脂の層である工程、及び
     前記アニール前積層体をアニール処理する工程
     を含む製造方法。
    A method for producing a laminate according to any one of claims 1 to 3,
    A step of bonding a pre-annealed base material and a pre-annealed protective film to obtain a pre-annealed laminate comprising the pre-annealed base material and the pre-annealed protective film, wherein the pre-annealed base material is a crystalline fat. A production method comprising: a step of forming a resin layer containing a cyclic structure-containing polymer; and a step of annealing the pre-annealed laminate.
  5.  前記アニール前保護フィルムが、結晶性を有する重合体を含む樹脂の層である、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the pre-annealing protective film is a resin layer containing a crystalline polymer.
  6.  前記アニール前基材を構成する前記結晶性を有する脂環式構造含有重合体を含む樹脂が、ジシクロペンタジエンの開環重合体の水素化物である、請求項4又は5に記載の製造方法。 The production method according to claim 4 or 5, wherein the resin containing the crystalline alicyclic structure-containing polymer that constitutes the pre-annealing base material is a hydride of a ring-opening polymer of dicyclopentadiene.
  7.  前記アニール処理が、前記アニール前積層体を、その面内方向のうちの少なくとも1の方向において拘束した状態で加熱することを含む、請求項4~6のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 4 to 6, wherein the annealing includes heating the pre-annealed laminate while restraining it in at least one of its in-plane directions.
PCT/JP2022/013674 2021-03-30 2022-03-23 Laminate and method for manufacturing same WO2022210197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511081A JPWO2022210197A1 (en) 2021-03-30 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058412 2021-03-30
JP2021-058412 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210197A1 true WO2022210197A1 (en) 2022-10-06

Family

ID=83456752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013674 WO2022210197A1 (en) 2021-03-30 2022-03-23 Laminate and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2022210197A1 (en)
TW (1) TW202248016A (en)
WO (1) WO2022210197A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094485A1 (en) * 2015-11-30 2017-06-08 日本ゼオン株式会社 Multilayer film, manufacturing method, circular-polarizing plate, antireflective film, and organic electroluminescence display device
JP2019098523A (en) * 2017-11-28 2019-06-24 日本ゼオン株式会社 Multilayer film for conductive film, and conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094485A1 (en) * 2015-11-30 2017-06-08 日本ゼオン株式会社 Multilayer film, manufacturing method, circular-polarizing plate, antireflective film, and organic electroluminescence display device
JP2019098523A (en) * 2017-11-28 2019-06-24 日本ゼオン株式会社 Multilayer film for conductive film, and conductive film

Also Published As

Publication number Publication date
TW202248016A (en) 2022-12-16
JPWO2022210197A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI773665B (en) Biaxially oriented polypropylene film
TWI711539B (en) Biaxially stretched laminated polypropylene film
TWI619600B (en) Biaxially oriented polyester film for demolding
EP3922668A1 (en) Polyester film and use thereof
JP6828437B2 (en) Adhesive film and adhesive film roll
JP7235151B2 (en) biaxially oriented polypropylene film
JP5819930B2 (en) Non-flattened film and manufacturing process thereof
US11899167B2 (en) Polyester film, laminated film, and use thereof
JP6586721B2 (en) Laminated film, method for producing laminated film, and method for producing polarizing plate
JP2012173487A (en) Optical film and method for manufacturing optical film
WO2018142983A1 (en) Biaxially oriented polypropylene-based film
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
JP7435448B2 (en) Laminated film and its uses
WO2022210197A1 (en) Laminate and method for manufacturing same
JP5525764B2 (en) Release film, protective film for polarizing plate using the release film, and polarizing plate using protective film for the polarizing plate
TWI730966B (en) Multilayer laminated film
JP2012173486A (en) Optical film and method for manufacturing optical film
TW202001308A (en) Polarizing film, polarizing film with adhesive layer, and image display device
JP6587901B2 (en) Uniaxially stretched multi-layer easily adhesive film and optical member using the same
JPWO2018142959A1 (en) Optical film, manufacturing method, and multilayer film
TWI737873B (en) Manufacturing method of optical film
WO2022163416A1 (en) Optical film, production method therefor, and polarizing film
TWI736727B (en) Manufacturing method of optical film, polarizing plate and display device
JP5664182B2 (en) Polyester film for releasing liquid crystal and method for producing the same
TW202323044A (en) Multilayer stretched film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780411

Country of ref document: EP

Kind code of ref document: A1