WO2022209788A1 - Electric component and method for producing electric component - Google Patents

Electric component and method for producing electric component Download PDF

Info

Publication number
WO2022209788A1
WO2022209788A1 PCT/JP2022/011063 JP2022011063W WO2022209788A1 WO 2022209788 A1 WO2022209788 A1 WO 2022209788A1 JP 2022011063 W JP2022011063 W JP 2022011063W WO 2022209788 A1 WO2022209788 A1 WO 2022209788A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
base film
circuit member
electrical equipment
electrical component
Prior art date
Application number
PCT/JP2022/011063
Other languages
French (fr)
Japanese (ja)
Inventor
宏晃 小嶋
辰雄 平林
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2022209788A1 publication Critical patent/WO2022209788A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern

Definitions

  • the present disclosure relates to an electrical component and a method of manufacturing the electrical component.
  • This application claims priority based on Japanese Patent Application No. 2021-055051 filed in Japan on March 29, 2021, and incorporates all the contents described in the Japanese application.
  • Patent Literature 1 discloses a printed wiring board, which is a circuit member having a wiring pattern formed on an insulating base material.
  • the wiring pattern in Patent Document 1 is formed by printing a conductive ink containing metal nanoparticles on an insulating substrate.
  • Patent Document 2 discloses an electrical component in which a plastic layer is formed on a circuit member.
  • the circuit member of U.S. Pat. No. 6,200,005 comprises a substrate film containing an electrically insulating material and conductive traces printed on the substrate film. Conductive traces correspond to wiring patterns.
  • JP 2018-74055 A Japanese Patent Publication No. 2020-517120
  • An electrical component of the present disclosure includes a circuit member and a resin member integrated with the circuit member.
  • the circuit member includes a base film made of an insulating resin and a wiring pattern provided on the base film.
  • the wiring pattern includes a wiring portion formed on the base film and a plating layer formed on the surface of the wiring portion.
  • the wiring portion includes a plurality of copper particles, a binder made of thermosetting resin, and an antioxidant, and the plating layer is made of copper.
  • a method for manufacturing an electrical component according to the present disclosure includes a step A of fabricating a circuit member including a base film made of an insulating resin and wiring patterns provided on the base film; and a step B of integrating.
  • the step A includes a step A1 of preparing the base film, a step A2 of preparing a conductive paste containing a plurality of copper particles, a binder made of a thermosetting resin, and an antioxidant; A step A3 of printing the conductive paste on the material film in a wiring pattern, a step A4 of forming a wiring portion by hardening the binder by heat treatment, and a step A4 of forming a wiring portion, and plating the surface of the wiring portion with copper. and Step A5 of forming a layer.
  • FIG. 1 is a schematic plan view of an electrical component described in Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in Embodiment 1.
  • FIG. FIG. 3 is an enlarged view schematically showing the surface of the wiring portion of the electrical equipment described in Embodiment 1.
  • FIG. 4A and 4B are explanatory diagrams illustrating a part of the manufacturing process of the electrical equipment described in the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating a part of the manufacturing process of the electrical equipment described in the first embodiment.
  • FIG. 6 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in Embodiment 2.
  • FIG. FIG. 7 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in Embodiment 3.
  • FIG. FIG. 8 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in the fourth embodiment.
  • Patent Document 1 describes that silver, gold, copper, or the like can be used as the metal nanoparticles forming the wiring pattern.
  • the metal that can be used for the metal nanoparticles is essentially silver.
  • the copper nanoparticles are generally coated with a polymer material to prevent aggregation and oxidation.
  • a polymer material In order to decompose this coating and sinter the copper nanoparticles together, it is necessary to heat-treat the printed wiring pattern at a high temperature of 200° C. or higher. At this time, there is a problem that oxidation of the copper nanoparticles is likely to be accelerated and a problem that the substrate may be damaged.
  • one object of the present disclosure is to provide an electrical component having a wiring pattern made of copper and a method for manufacturing the same.
  • the electrical equipment of the present disclosure is made of copper and has a wiring pattern with excellent conductivity. Therefore, ion migration is less likely to occur in the electrical component of the present disclosure.
  • the method for manufacturing an electrical component according to the present disclosure can manufacture an electrical component whose wiring pattern is made of copper.
  • An electrical component includes a circuit member and a resin member integrated with the circuit member.
  • the circuit member includes a base film made of an insulating resin and a wiring pattern provided on the base film.
  • the wiring pattern includes a wiring portion formed on the base film and a plating layer formed on the surface of the wiring portion.
  • the wiring portion includes a plurality of copper particles, a binder made of thermosetting resin, and an antioxidant, and the plating layer is made of copper.
  • a plurality of copper particles are integrated with a thermosetting resin binder. Therefore, the contact between the copper particles in the wiring portion is good, and the wiring portion has high conductivity. Moreover, since the wiring portion contains an antioxidant, the copper particles are less likely to be oxidized during and after the manufacturing of the wiring portion. Therefore, the conductivity of the wiring portion is likely to be maintained for a long period of time.
  • the surface of the wiring part is covered with a copper plating layer.
  • the plating layer supplements the conductivity of the wiring portion and improves the conductivity of the wiring pattern.
  • Ion migration is less likely to occur in wiring patterns made of copper. Therefore, the quality of the electrical equipment is likely to be maintained over a long period of time. Also, since copper is cheaper than silver, the manufacturing cost of electrical equipment is low.
  • the electrical component according to the embodiment further comprising an additional member for adding at least one of decorativeness, electromagnetic properties, mechanical properties, and chemical properties to the electrical component, the additional member comprising: It may be integrated with at least one of the circuit member and the resin member.
  • Additional members with decorative properties are, for example, those with colors and patterns.
  • the electromagnetic properties are, for example, electromagnetic shielding properties.
  • Mechanical properties are, for example, impact resistance and cushioning properties.
  • Chemical properties are, for example, translucency, water repellency, chemical resistance, and weather resistance.
  • the base film may be made of a thermoplastic resin.
  • the circuit member is integrated with the resin member as defined in the electrical component manufacturing method described later. At that time, the circuit members are exposed to heat. If the substrate film of the circuit member is made of a thermoplastic resin, the shape of the circuit member can be changed when the resin member is integrated with the circuit member.
  • the base film may have a thickness of 0.025 mm or more and 1 mm or less.
  • the thickness of the base film is 0.025 mm or more, cracks and wrinkles are less likely to occur in the base film when the circuit member and the resin member are integrated. If the thickness of the base film is 1 mm or less, the base film can be easily deformed into a desired shape when integrating the circuit member and the resin member.
  • the heat shrinkage rate of the base film in an air atmosphere at 150° C. for 30 minutes may be 5% or less.
  • the base film has a predetermined heat resistance.
  • Heat resistance in the present disclosure is defined by the thermal shrinkage rate of the base film in a heated atmosphere.
  • the heat-resistant substrate film defined in Mode ⁇ 5> is less likely to be damaged by the heat treatment.
  • each of the plurality of copper particles may be scaly.
  • each copper particle is scaly, the contact area between adjacent copper particles increases. Therefore, the conductivity of the wiring pattern is improved.
  • the plurality of copper particles may have an average particle diameter of 1 ⁇ m or more and 20 ⁇ m or less.
  • the wiring portion of the electrical component of the embodiment is formed on the base film by printing. If the average particle size of the plurality of copper particles is within the above range, the wiring portion can be formed by printing. Printing is for example screen printing, flexographic printing, gravure printing, gravure offset printing, dispenser printing or inkjet printing.
  • the specific surface area of the copper particles will be considerably smaller than the specific surface area of the copper nanoparticles. If the specific surface area of the copper particles is reduced, the copper particles are less likely to be oxidized, and the influence of the oxidation of the copper particles on the electrical conductivity of the wiring portion is reduced.
  • the plating layer may have a thickness of 0.01 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the plating layer is 0.01 ⁇ m or more, the conductivity of the wiring pattern can be sufficiently secured. If the thickness of the plating layer is 50 ⁇ m or less, the time required for forming the plating layer is short, so the productivity of electrical equipment is improved. Furthermore, it is desirable that the thickness of the plating layer is 1 ⁇ m or more and 10 ⁇ m or less.
  • thermosetting resin is at least one selected from the group consisting of phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, polyurethane resin, and silicone resin. May contain seeds.
  • thermosetting resin constituting the binder is one of the thermosetting resins listed above, the adhesion between the wiring portion and the base film is improved. As a result, the wiring portion is less likely to peel off from the substrate.
  • the insulating resin is polycarbonate resin, polystyrene resin, acrylonitrile-butadiene-styrene resin, liquid crystal polymer resin, polytetrafluoroethylene resin, polyethylene naphthalate resin, polyethylene terephthalate resin, nylon. At least one selected from the group consisting of resin, polyphenylene sulfide resin, polyphenylene ether resin, modified polyphenylene ether resin, syndiotactic polystyrene resin, and cycloolefin polymer resin may be included.
  • the insulating resins listed above are thermoplastic resins. If the base film is a thermoplastic resin, the shape of the base film can be greatly changed during the production of electrical equipment.
  • the electrical component according to the embodiment may further include a protective layer covering a portion of the wiring pattern, and the protective layer may include at least one of a coverlay and a solder resist.
  • the protective layer protects the wiring pattern electrically and physically. Coverlays are suitable for protecting bent portions of circuit members. Solder resist is suitable for protecting flat portions of circuit members.
  • a method for manufacturing an electrical component includes a step A of fabricating a circuit member including a base film made of an insulating resin and a wiring pattern provided on the base film; and a step B of integrating the resin member with the member.
  • the step A includes a step A1 of preparing the base film, a step A2 of preparing a conductive paste containing a plurality of copper particles, a binder made of a thermosetting resin, and an antioxidant; A step A3 of printing the conductive paste on the material film in a wiring pattern, a step A4 of forming a wiring portion by hardening the binder by heat treatment, and a step A4 of forming a wiring portion, and plating the surface of the wiring portion with copper. and Step A5 of forming a layer.
  • the electrical component according to the embodiment can be manufactured.
  • the conductive paste which is the material of the wiring portion, contains a thermosetting resin binder.
  • the wiring portion is formed by hardening the binder by heat treatment. At this time, the binder shrinks and the copper particles come into sufficient contact with each other. As a result, the conductivity of the wiring portion is ensured.
  • the temperature of the heat treatment for hardening the binder is lower than the temperature for firing the nanoparticles in Patent Document 1. Therefore, the copper particles are less likely to oxidize and the base film is less likely to be damaged by the heat treatment of the binder. Furthermore, since the conductive paste contains an antioxidant, the copper particles are less likely to be oxidized during heat treatment of the binder.
  • a copper plating layer is formed on the surface of the wiring portion.
  • the plating layer made of copper supplements the conductivity of the wiring portion and improves the conductivity of the wiring pattern.
  • the method for manufacturing the electrical component includes a step B of integrating the circuit member with the resin member.
  • the circuit members are exposed to heat. Since the binder contained in the wiring portion of the circuit member is a thermosetting resin, the wiring portion is less likely to be damaged by the heat in step B. Moreover, since the wiring portion contains an antioxidant, the copper particles contained in the wiring portion are less likely to be oxidized by the heat in step B.
  • the electrical component can be formed into a desired shape if the base film of the circuit member is made of a thermoplastic resin.
  • the shape of the electrical component can be formed in the shape of a vehicle panel that includes the interior lights of the vehicle.
  • Process A in the manufacturing method of the above electrical equipment is an additive method in which a structure is added on the base film.
  • the additive method significantly reduces waste generation compared to the subtractive method.
  • the subtractive method is a method of forming a wiring pattern by removing unnecessary copper foil with chemicals such as etching.
  • a resin member is added to the circuit member.
  • the method for manufacturing an electrical component does not include a step of removing the structure with a chemical solution. Therefore, the above method for manufacturing an electrical component can reduce the environmental load during manufacturing of the electrical component.
  • the electrical equipment 1 of Embodiment 1 shown in FIG. 1 is used as an interior panel of a vehicle.
  • the electrical equipment 1 includes a circuit member 2 and a resin member 3 integrated with the circuit member 2 .
  • the circuit member 2 is an electric circuit including wiring patterns 21 .
  • the resin member 3 constitutes an interior panel.
  • the electrical equipment 1 of this example further includes an additional member 4 , a protective layer 5 and a mounting component 6 .
  • the configuration of the electrical component 1 of this example will be described in detail below.
  • FIG. 2 is a diagram schematically showing the vertical relationship of each component of the electrical component 1 shown in FIG.
  • the circuit member 2 includes a base film 20 and wiring patterns 21 provided on the base film 20 .
  • the base film 20 is a film made of an insulating resin.
  • the insulating resin forming the base film 20 is preferably a thermoplastic resin.
  • the circuit member 2 is integrated with the resin member 3 when the electrical component 1 is manufactured. At that time, the circuit member 2 is exposed to heat. If the substrate film 20 is made of a thermoplastic resin, the shape of the circuit member 2 can be changed when the resin member 3 is integrated with the circuit member 2 .
  • Thermoplastic resins include polycarbonate resin, polystyrene resin, acrylonitrile-butadiene styrene resin, liquid crystal polymer resin, polytetrafluoroethylene resin, polyethylene resin. Phthalate resin, polyethylene terephthalate resin, nylon resin, polyphenylene sulfide resin, polyphenylene ether resin, modified polyphenylene ether resin, syndiotactic polystyrene It contains at least one selected from resins and cycloolefin polymer resins.
  • liquid crystal polymer resins polytetrafluoroethylene resins, polyethylene naphthalate resins, nylon resins, polyphenylene sulfide resins, polyphenylene ether resins, modified polyphenylene ether resins, syndiotactic polystyrene resins, and cycloolefin polymer resins have excellent dielectric properties. ing. Therefore, by forming the base film 20 from these thermoplastic resins, the electrical component 1 suitable for high-speed and high-frequency applications can be obtained. In addition, these thermoplastic resins are difficult to shrink by heat treatment. Therefore, when the shape of the base film 20 is deformed, the base film 20 can be easily deformed into a desired shape.
  • the thickness of the base film 20 is preferably 0.025 mm or more and 1 mm or less, for example. If the thickness of the base film 20 is 0.025 mm or more, when the circuit member 2 and the resin member 3 are integrated, the base film 20 is less likely to crack or wrinkle. If the thickness of the base film 20 is 1 mm or less, the base film 20 can be easily deformed into a desired shape when integrating the circuit member 2 and the resin member 3 .
  • the base film 20 preferably has a predetermined heat resistance.
  • the heat resistance of the base film 20 in this example is defined by the heat shrinkage rate of the base film 20 in an air atmosphere of 150° C. ⁇ 30 minutes of 5% or less.
  • the thermal shrinkage rate of the base film 20 is determined by ⁇ (length of the base film 20 before heating ⁇ length of the base film 20 after heating)/length of the base film 20 before heating ⁇ 100. .
  • a more preferable heat shrinkage rate is 3% or less. If the heat shrinkage rate in the heating atmosphere is 5% or less, it is possible to suppress damage to the base film 20 during manufacturing of the electrical component 1 of the embodiment.
  • both the heat shrinkage of the base film in MD and the heat shrinkage of the base film in TD are preferably 5% or less, more preferably 3% or less. preferable.
  • the wiring pattern 21 includes a wiring portion 211 formed on the base film 20 and a plating layer 212 formed on the surface of the wiring portion 211 .
  • the wiring portion 211 has the same shape as the wiring pattern 21 when the wiring pattern 21 is viewed from above as shown in FIG.
  • FIG. 3 is an enlarged view schematically showing the surface of the wiring portion 211.
  • wiring portion 211 includes a plurality of copper particles 21p and binder 21b. Furthermore, the wiring part 211 contains an antioxidant.
  • the cross-sectional area of the wiring part 211 is appropriately selected so as to satisfy the conductivity required for the wiring pattern 21 .
  • the cross-sectional area of the wiring part 211 is 0.0001 mm 2 or more and 0.5 mm 2 or less.
  • the thickness of the wiring portion 211 is, for example, 10 ⁇ m or more and 50 ⁇ m or less. If the thickness of the wiring portion 211 is 10 ⁇ m or more, the contact between the copper particles 21p contained in the wiring portion 211 is sufficiently ensured. If the thickness of the wiring part 211 is 50 ⁇ m or less, the wiring part 211 can be easily formed by printing.
  • the copper particles 21p of this example are particles of pure copper or a copper alloy.
  • the average particle diameter of the copper particles 21p is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the wiring portion 211 of the electrical component 1 of this example is formed on the base film 20 by printing. If the average particle size of the plurality of copper particles 21p is within the above range, the wiring portion 211 can be formed by printing.
  • the lower limit of the average particle size of the copper particles 21p may be 2 ⁇ m, or even 3 ⁇ m.
  • the upper limit of the average particle size of the copper particles 21p may be 18 ⁇ m, or even 15 ⁇ m. Therefore, the average particle size of the copper particles 21p may be 2 ⁇ m or more and 18 ⁇ m or less, and further 3 ⁇ m or more and 15 ⁇ m or less.
  • the average particle size of the copper particles 21p can be obtained by microscopically observing a cross section perpendicular to the thickness direction of the wiring portion 211. First, microscopic images of five or more fields of view are acquired from the cross section of the wiring portion 211 . Each microscopic image is binarized to determine the particle size of all particles in the image.
  • the particle size of the copper particles 21p to be measured is the length of the major axis direction of the copper particles 21p in the cross section. The length in the major axis direction is the same as the length of the long side of the quadrangle circumscribing the copper particles 21p.
  • the average value of all particle sizes is the average particle size of the copper particles 21p.
  • the shape of the copper particles 21p is not particularly limited.
  • the copper particles 21p may be spherical or irregularly shaped.
  • the copper particles 21p of this example are scaly particles.
  • the aspect ratio of the scaly particles that is, the ratio of the length of the scaly particles in the long axis direction to the length in the short axis direction is preferably 2.5 or more and 5.0 or less. If each copper particle 21p is scale-like, it is likely that the copper particles 21p are stacked in the thickness direction of the wiring portion 211 .
  • the copper particles 21p stacked in the thickness direction are likely to come into surface contact with each other, and the contact area between the copper particles 21p increases. As a result, the conductivity of the wiring pattern 21 is improved.
  • the content of the copper particles 21p in the wiring portion 211 is preferably 50% by mass or more and 90% by mass or less. If the content of copper particles 21p is 50% by mass or more, the conductivity of wiring portion 211 is sufficiently ensured. If the content of copper particles 21p is 90% by mass or less, a sufficient amount of binder 21b is arranged in the gaps between the plurality of copper particles 21p. As a result, the plurality of copper particles 21p are strongly integrated. A more preferable content of the copper particles 21p is 60% by mass or more and 85% by mass or less. A more preferable content of the copper particles 21p is 65% by mass or more and 80% by mass or less.
  • the mass ratio of the copper particles 21p in the wiring portion 211 is obtained as follows. First, the microscopic images of five or more fields of view in the cross section orthogonal to the thickness direction of the wiring portion 211 are binarized. The area ratio of the copper particles 21p in each microscope image is obtained. The area ratios in all fields of view are averaged, and the average value is regarded as the volume ratio of the copper particles 21p in the wiring part 211 . By multiplying the volume ratio of the copper particles 21p by the specific gravity of copper and by multiplying the volume ratio of the binder 21b by the specific gravity of the binder 21b, the mass ratio of the copper particles 21p in the wiring part 211 is obtained.
  • the binder 21b is a thermosetting resin that integrates the multiple copper particles 21p.
  • Thermosetting resins include, for example, phenol resins, urea resins, melanin resins, epoxy resins, unsaturated polyester resins, polyurethane resins, and silicone resins. ) is a resin. These thermosetting resins improve the adhesion between the wiring portion 211 and the base film 20 . As a result, the wiring part 211 is difficult to separate from the base film 20 .
  • Phenol resin is particularly preferable as the thermosetting resin that constitutes the binder 21b. Phenolic resin has reducing properties. Therefore, the phenol resin suppresses oxidation of the copper particles 21p. Furthermore, as the phenol resin, a resol type phenol resin is preferable. Resol-type phenolic resins are self-reactive and do not require curing agents.
  • the antioxidant is a chemical substance that suppresses oxidation of the copper particles 21p.
  • the antioxidant may be dispersed in the binder 21b or contained in the copper particles 21p.
  • Antioxidants are, for example, amine antioxidants, phenolic antioxidants, and phenylamine antioxidants.
  • polyol-based solvents such as ethylene glycol and polyethylene glycol having reducing properties may be contained.
  • the plating layer 212 covers the surface of the wiring portion 211 . More specifically, the plating layer 212 covers the portion of the wiring portion 211 excluding the portion in close contact with the base film 20 .
  • the plating layer 212 is composed of copper.
  • the plating layer 212 is formed by electroless plating, electrolytic plating, or the like.
  • the plating layer 212 made of copper supplements the conductivity of the wiring portion 211 and improves the conductivity of the wiring pattern 21 . Therefore, the resistivity of the plating layer 212 is preferably 50 ⁇ cm or less, more preferably 30 ⁇ cm or less.
  • the thickness of the plating layer 212 is preferably 0.01 ⁇ m or more and 50 ⁇ m or less. If the thickness of the plating layer 212 is 0.01 ⁇ m or more, the electrical conductivity of the wiring pattern 21 can be sufficiently secured. If the plating layer 212 is 50 ⁇ m or less, the time required to form the plating layer 212 is short, so the productivity of the electrical component 1 is improved.
  • the lower thickness limit may be 1 ⁇ m, 1.5 ⁇ m, or 2 ⁇ m.
  • the upper thickness limit may be 10 ⁇ m, 7.5 ⁇ m, or 5 ⁇ m. Therefore, the thickness of the plating layer 212 may be 1 ⁇ m or more and 10 ⁇ m or less, 1.5 ⁇ m or more and 7.5 ⁇ m or less, or 2 ⁇ m or more and 5 ⁇ m or less.
  • Protective layer 5 includes at least one of a coverlay and a solder resist.
  • the wiring pattern 21 is electrically and physically protected by the protective layer 5 .
  • a coverlay is an insulating film with an adhesive layer. The coverlay is suitable for protecting the wiring pattern 21 provided at the bent portion of the circuit member 2 .
  • the solder resist is obtained by curing the undiluted solution applied on the circuit member 2 . Solder resist is suitable for protecting the wiring pattern 21 provided on the flat portion of the circuit member 2 .
  • the mounted component 6 is an electrical component that is attached to the circuit member 2 later.
  • Mounted components 6 are, for example, LED lights, IC chips, and capacitors.
  • the resin member 3 integrated with the circuit member 2 is a member that supports the circuit member 2 . Moreover, the resin member 3 is a member that plays a role of maintaining the shape of the electrical component 1 .
  • the resin member 3 may be block-shaped or panel-shaped.
  • the resin member 3 may also serve as an exterior panel or an interior panel of the machine on which the electrical component 1 is mounted. For example, as shown in FIG. 1, there is a form in which the circuit member 2 constitutes the wiring of the interior light, and the resin member 3 has the shape of the interior panel in the vicinity of the interior light.
  • the resin member 3 may be a cover for closing an opening provided in an instrument panel or an armrest, or an operation panel provided with switches for a power window or a display.
  • the resin member 3 is made of insulating resin with excellent strength and durability.
  • acrylonitrile-butadiene-styrene resin, polypropylene resin, polystyrene resin, polycarbonate resin, vinyl chloride resin, acrylic resin, or the like is suitable.
  • the resin member 3 is integrated with the first surface 20A or the second surface 20B of the circuit member 2, as shown in FIG. 20 A of 1st surfaces are surfaces in which the wiring pattern 21 in the circuit member 2 is provided.
  • the second surface 20B is the surface opposite to the first surface 20A.
  • the resin member 3 of this example is integrated with the second surface 20B of the circuit member 2 .
  • At least one of a primer and an adhesive may exist between the resin member 3 and the circuit member 2 .
  • the primer and adhesive strengthen the bonding between the resin member 3 and the circuit member 2 .
  • the primer is mainly composed of, for example, polyurethane resin or acrylic resin.
  • the adhesive is, for example, an acrylic adhesive.
  • the additional member 4 is a member that adds characteristics to the electrical component 1 .
  • the properties are, for example, at least one of decorative properties, electromagnetic properties, mechanical properties, and chemical properties.
  • the additional member 4 having decorativeness is, for example, colored or patterned.
  • the electromagnetic properties are, for example, electromagnetic shielding properties.
  • Mechanical properties are, for example, impact resistance and cushioning properties.
  • Chemical properties are translucency, water repellency, chemical resistance, and weather resistance.
  • the additional member 4 may be composed of an organic material such as an insulating resin, metal, or an inorganic material such as ceramics. Of course, the additional member 4 may be a composite of insulating resin and metal. The material of the additional member 4 is appropriately selected according to the properties required for the additional member 4 .
  • the additional member 4 is integrated with at least one of the circuit member 2 and the resin member 3 .
  • the additional member 4 of this example is integrated with the resin member 3 .
  • ⁇ Summary ⁇ In the wiring portion 211 of the electrical component 1 of this example, as shown in FIG. 3, a plurality of copper particles 21p are integrated with a thermosetting resin binder 21b. Therefore, the contact between the copper particles 21p in the wiring portion 211 is good, and the conductivity of the wiring portion 211 is high. Moreover, since the wiring portion 211 contains an antioxidant, the copper particles 21p are less likely to be oxidized during and after the manufacturing of the wiring portion 211 . Therefore, the wiring portion 211 has excellent conductivity.
  • the surface of the wiring portion 211 is covered with a copper plating layer 212, as shown in FIG. Therefore, the copper particles 21p (FIG. 3) in the wiring portion 211 are less likely to be oxidized.
  • the plating layer 212 secures the conductivity of the wiring pattern 21 together with the wiring portion 211 . Therefore, the conductivity of the wiring portion 211 is likely to be maintained for a long period of time.
  • Ion migration is less likely to occur in the wiring pattern 21 made of copper. Therefore, the quality of the electrical equipment 1 is likely to be maintained over a long period of time. Moreover, since copper is cheaper than silver, the manufacturing cost of the electrical equipment 1 is reduced.
  • the electrical component 1 of this example includes a resin member 3.
  • the resin member 3 maintains the shape of the electrical component 1 and suppresses damage to the circuit member 2 .
  • the electrical component 1 of this example includes an additional member 4.
  • the additional member 4 imparts decorativeness and functionality to the electrical equipment 1 . Therefore, the application of the electrical equipment 1 is expanded.
  • the electrical equipment 1 of Embodiment 1 is produced, for example, by the following steps. - Process A for producing the circuit member 2 - Step B of integrating the resin member 3 with the circuit member 2 - Step C of integrating the additional member 4 with at least one of the circuit member 2 or the resin member 3
  • Process B or Process C may be performed first.
  • Process B and process C may be performed simultaneously.
  • the step C is omitted.
  • Process A includes the following processes A1 to A6. - Step A1 of preparing the base film 20 Step A2 of preparing a conductive paste containing a plurality of copper particles 21p, a binder 21b made of a thermosetting resin, and an antioxidant - Step A3 of printing a conductive paste in a wiring pattern on the base film 20 - Step A4 of forming the wiring portion 211 by hardening the binder 21b by heat treatment - Step A5 of forming the plating layer 212 by plating the surface of the wiring portion 211 with copper - Step A6 of forming a protective layer 5 covering a part of the wiring pattern 21
  • the base film 20 prepared in step A1 is the base film 20 described in the electrical component 1 item.
  • a surface treatment is, for example, plasma irradiation, corona irradiation, or UV irradiation applied to the surface of the base film 20 .
  • the surface treatment may be a primer treatment applied to the surface of the base film 20 .
  • primers include polyurethane primers and acrylic primers.
  • the conductive paste prepared in step A2 contains the copper particles 21p, the binder 21b, and the antioxidant described in the item of the electrical component 1.
  • the conductive paste may contain a volatile solvent. The solvent adjusts the viscosity of the conductive paste.
  • a conductive paste is printed on the base film 20.
  • Printing is for example screen printing, flexographic printing, gravure printing, gravure offset printing, dispenser printing or inkjet printing. If the average particle size of the copper particles 21p contained in the conductive paste is 1 ⁇ m or more and 20 ⁇ m or less, the tip of the nozzle used in inkjet printing and dispenser printing is less likely to be clogged with the copper particles 21p. Therefore, the conductive paste can be printed without problems even by inkjet printing and dispenser printing.
  • step A4 the conductive paste printed in the form of a wiring pattern is heat-treated.
  • the wiring part 211 is formed by hardening the binder 21b of the conductive paste by this heat treatment.
  • the base film 20 is also exposed to heat together with the conductive paste. Therefore, the heat treatment temperature is preferably 150° C. or lower. This temperature is lower than the temperature for firing the nanoparticles in Patent Document 1.
  • the firing temperature is, for example, 200° C. or higher. If the heat treatment temperature is 150° C. or less, the copper particles 21p are less likely to be oxidized and the base film 20 is less likely to be damaged.
  • a copper plating layer 212 is formed on the surface of the wiring portion 211.
  • Plating may be electroless plating or electrolytic plating.
  • a protective layer 5 containing at least one of a coverlay and a solder resist is formed.
  • a method for forming a coverlay and a method for forming a solder resist are known.
  • the surface of the circuit member 2 is screen-printed with a UV-curable solder resist.
  • the protective layer 5 is formed by irradiating the solder resist with UV.
  • Process B is performed, for example, by insert molding or vacuum pressure molding. Process B can also be implemented by adhesion or the like.
  • the process B carried out by insert molding will be explained based on FIG. In FIG. 4, the circuit member 2 and the additional member 4 are arranged inside the mold 8 . At this time, a gap is formed between the circuit member 2 and the additional member 4 . A resin, which is a raw material of the resin member 3, is injected into this gap. As a result, the circuit member 2 and the additional member 4 are integrated by the resin member 3 . In this example, process B and process C are performed simultaneously.
  • a circuit member 2 on which mounted components 6 are mounted is used.
  • the mounting component 6 may be attached to the circuit member 2 after the circuit member 2 and the additional member 4 are integrated with the resin member 3 .
  • a mold 9 for vacuum and pressure molding includes a chamber 90 and a movable mold 91 .
  • Circuit member 2 is supported within chamber 90 .
  • An upper space and a lower space are separated with the circuit member 2 interposed therebetween.
  • the resin member 3 along the shape of the movable mold 91 is arranged in the movable mold 91 .
  • the circuit member 2 is heated by a heater or the like, and the space between the circuit member 2 and the movable molding die 91 is evacuated. Since the inside of the chamber 90 is partitioned by the circuit member 2, the space above the circuit member 2 is not evacuated.
  • the movable molding die 91 is moved upward to integrate the circuit member 2 and the resin member 3 together. At this time, the circuit member 2 deforms into a shape along the shape of the resin member 3 .
  • Process C is performed by insert molding, vacuum pressure molding, or the like. Process C can also be implemented by adhesion or the like. Step C can be carried out independently of Step B, can be carried out after Step B, or can be carried out before Step B.
  • Embodiment 2 an electrical component 1 in which the positions of the resin member 3 and the additional member 4 with respect to the circuit member 2 are different from those in Embodiment 1 will be described with reference to FIG.
  • the wiring portion and the plated layer are collectively referred to as a wiring pattern 21, and illustration of the protective layer is also omitted. This point also applies to FIGS. 7 and 8, which will be described later.
  • the additional member 4 is integrated with the first surface 20A of the circuit member 2 .
  • the resin member 3 is integrated with the second surface 20B of the circuit member 2 .
  • the additional member 4 is made of a translucent material and the mounting component 6 is an LED light, lighting of the LED light can be confirmed from the outside of the additional member 4 .
  • the electrical component 1 of this example is produced by, for example, insert-molding the resin member 3 on the second surface 20B of the circuit member 2 and then insert-molding the additional member 4 on the first surface 20A of the circuit member 2 .
  • the first surface 20A is covered with the additional member 4, so the protective layer covering the wiring pattern 21 may be omitted.
  • the resin member 3 may be integrated with the first surface 20A and the additional member 4 may be integrated with the second surface 20B.
  • Embodiment 3 an electrical component 1 having an arrangement different from that in Embodiments 1 and 2 will be described with reference to FIG.
  • the additional member 4 and the resin member 3 are integrated in order from the second surface 20B of the circuit member 2 .
  • the electrical component 1 of this example is manufactured by insert-molding the additional member 4 between the second surface 20B of the circuit member 2 and the plate-like resin member 3, for example.
  • Embodiment 4 an electrical component 1 having an arrangement different from that in Embodiments 1 to 3 will be described with reference to FIG.
  • the resin member 3 and the additional member 4 are integrated in order from the first surface 20A of the circuit member 2 .
  • the electrical component 1 of this example is manufactured by insert-molding the resin member 3 between the first surface 20A of the circuit member 2 and the plate-shaped additional member 4, for example.
  • the first surface 20A is covered with the resin member 3 and the additional member 4, so the protective layer covering the wiring pattern 21 may be omitted.
  • circuit member 20 base film 21 wiring pattern 211 wiring portion 212 plating layer 20A first surface 20B second surface 21b binder 21p copper particles 3 resin member 4 additional member 5 protective layer 6 mounting component 8 gold mold 9 mold 90 chamber, 91 movable mold

Abstract

An electric component which is provided with a circuit member and a resin member that is integrated with the circuit member, wherein: the circuit member is provided with a base material film that is configured from an insulating resin, and a wiring pattern that is provided on the base material film; the wiring pattern is provided with a wiring part that is formed on the base material film, and a plating layer that is formed on the surface of the wiring part; the wiring part contains a plurality of copper particles, a binder that is configured from a thermosetting resin, and an antioxidant; and the plating layer is configured from copper.

Description

電装品、及び電装品の製造方法Electrical equipment and method for manufacturing electrical equipment
 本開示は、電装品、及び電装品の製造方法に関する。
 本出願は、2021年3月29日付の日本国出願の特願2021-055051に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to an electrical component and a method of manufacturing the electrical component.
This application claims priority based on Japanese Patent Application No. 2021-055051 filed in Japan on March 29, 2021, and incorporates all the contents described in the Japanese application.
 絶縁性樹脂によって構成される基材と、その基材の上に設けられた配線パターンとを備える回路部材が知られている。例えば、特許文献1には、絶縁性基材の上に配線パターンを形成した回路部材であるプリント配線板が開示されている。特許文献1における配線パターンは、金属ナノ粒子を含む導電性インクを絶縁性基材の上に印刷することで形成されている。 A circuit member is known that includes a base material made of an insulating resin and a wiring pattern provided on the base material. For example, Patent Literature 1 discloses a printed wiring board, which is a circuit member having a wiring pattern formed on an insulating base material. The wiring pattern in Patent Document 1 is formed by printing a conductive ink containing metal nanoparticles on an insulating substrate.
 特許文献2には、回路部材にプラスチック層を形成した電装品が開示されている。特許文献2の回路部材は、電気絶縁材料を含む基材フィルムと、基材フィルムの上に印刷された導電トレースとを備える。導電トレースは配線パターンに相当する。 Patent Document 2 discloses an electrical component in which a plastic layer is formed on a circuit member. The circuit member of U.S. Pat. No. 6,200,005 comprises a substrate film containing an electrically insulating material and conductive traces printed on the substrate film. Conductive traces correspond to wiring patterns.
特開2018-74055号公報JP 2018-74055 A 特表2020-517120号公報Japanese Patent Publication No. 2020-517120
 本開示の電装品は、回路部材と、前記回路部材に一体化されている樹脂部材とを備える。前記回路部材は、絶縁性樹脂によって構成されている基材フィルムと、前記基材フィルムに設けられた配線パターンとを備える。前記配線パターンは、前記基材フィルムの上に形成された配線部と、前記配線部の表面に形成されためっき層とを備える。前記配線部は、複数の銅粒子と、熱硬化性樹脂によって構成されたバインダと、酸化防止剤とを含み、前記めっき層は、銅によって構成されている。 An electrical component of the present disclosure includes a circuit member and a resin member integrated with the circuit member. The circuit member includes a base film made of an insulating resin and a wiring pattern provided on the base film. The wiring pattern includes a wiring portion formed on the base film and a plating layer formed on the surface of the wiring portion. The wiring portion includes a plurality of copper particles, a binder made of thermosetting resin, and an antioxidant, and the plating layer is made of copper.
 本開示の電装品の製造方法は、絶縁性樹脂によって構成された基材フィルムと、前記基材フィルムに設けられた配線パターンとを備える回路部材を作製する工程Aと、前記回路部材に樹脂部材を一体化する工程Bとを備える。前記工程Aは、前記基材フィルムを用意する工程A1と、複数の銅粒子と、熱硬化性樹脂によって構成されたバインダと、酸化防止剤とを含む導電ペーストを用意する工程A2と、前記基材フィルムの上に前記導電ペーストを配線パターン状に印刷する工程A3と、熱処理によって前記バインダを硬化させることで配線部を形成する工程A4と、前記配線部の表面に銅をめっきすることでめっき層を形成する工程A5とを含む。 A method for manufacturing an electrical component according to the present disclosure includes a step A of fabricating a circuit member including a base film made of an insulating resin and wiring patterns provided on the base film; and a step B of integrating. The step A includes a step A1 of preparing the base film, a step A2 of preparing a conductive paste containing a plurality of copper particles, a binder made of a thermosetting resin, and an antioxidant; A step A3 of printing the conductive paste on the material film in a wiring pattern, a step A4 of forming a wiring portion by hardening the binder by heat treatment, and a step A4 of forming a wiring portion, and plating the surface of the wiring portion with copper. and Step A5 of forming a layer.
図1は、実施形態1に記載される電装品の概略平面図である。FIG. 1 is a schematic plan view of an electrical component described in Embodiment 1. FIG. 図2は、実施形態1に記載される電装品の各構成の上下関係を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in Embodiment 1. FIG. 図3は、実施形態1に記載される電装品の配線部の表面を模式的に示す拡大図である。FIG. 3 is an enlarged view schematically showing the surface of the wiring portion of the electrical equipment described in Embodiment 1. FIG. 図4は、実施形態1に記載される電装品の製造工程の一部を説明する説明図である。4A and 4B are explanatory diagrams illustrating a part of the manufacturing process of the electrical equipment described in the first embodiment. 図5は、実施形態1に記載される電装品の製造工程の一部を説明する説明図である。FIG. 5 is an explanatory diagram illustrating a part of the manufacturing process of the electrical equipment described in the first embodiment. 図6は、実施形態2に記載される電装品の各構成の上下関係を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in Embodiment 2. FIG. 図7は、実施形態3に記載される電装品の各構成の上下関係を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in Embodiment 3. FIG. 図8は、実施形態4に記載される電装品の各構成の上下関係を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing the vertical relationship of each component of the electrical equipment described in the fourth embodiment.
[本開示が解決しようとする課題]
 特許文献1には、配線パターンを構成する金属ナノ粒子として、銀や金、銅などが使用可能であると記載されている。しかし、特許文献1の実施形態に記載されるように、金属ナノ粒子に使用可能な金属は実質的に銀である。
[Problems to be Solved by the Present Disclosure]
Patent Document 1 describes that silver, gold, copper, or the like can be used as the metal nanoparticles forming the wiring pattern. However, as described in an embodiment of US Pat. No. 6,200,000, the metal that can be used for the metal nanoparticles is essentially silver.
 銀によって構成された配線パターンを備える回路部材ではイオンマイグレーションが生じ易いという問題がある。回路部材にイオンマイグレーションが生じると、回路部材の機能が損なわれる恐れがある。また、銀によって構成された配線パターンを備える回路部材には高コストであるという問題もある。そのため、配線パターンを主に銅で構成したいというニーズがある。銅は、低コストで、かつイオンマイグレーションを生じさせ難い。しかし、銅には、焼成時に酸化し易く、その結果、配線パターンの導電性が低下し易いという問題がある。 There is a problem that ion migration is likely to occur in circuit members with wiring patterns made of silver. If ion migration occurs in the circuit member, the function of the circuit member may be impaired. Another problem is that circuit members having wiring patterns made of silver are expensive. Therefore, there is a need to configure wiring patterns mainly of copper. Copper is low cost and less likely to cause ion migration. However, copper has a problem that it is easily oxidized during baking, and as a result, the conductivity of the wiring pattern is easily lowered.
 配線パターンの印刷に銅ナノ粒子を使用する場合、一般的に銅ナノ粒子は、凝集抑制・酸化防止のための高分子材料でコーティングされる。このコーティングを分解し、銅ナノ粒子同士を焼結させるために、印刷された配線パターンを200℃以上の高温で熱処理する必要がある。このとき、銅ナノ粒子の酸化が促進され易いという問題や基材が損傷する可能性があるという問題がある。  When using copper nanoparticles to print wiring patterns, the copper nanoparticles are generally coated with a polymer material to prevent aggregation and oxidation. In order to decompose this coating and sinter the copper nanoparticles together, it is necessary to heat-treat the printed wiring pattern at a high temperature of 200° C. or higher. At this time, there is a problem that oxidation of the copper nanoparticles is likely to be accelerated and a problem that the substrate may be damaged.
 上記事情に鑑み、本開示は、銅によって構成された配線パターンを備える電装品とその製造方法を提供することを目的の一つとする。 In view of the above circumstances, one object of the present disclosure is to provide an electrical component having a wiring pattern made of copper and a method for manufacturing the same.
[本開示の効果]
 本開示の電装品は、銅によって構成され、導電性に優れる配線パターンを備える。そのため、本開示の電装品では、イオンマイグレーションが生じ難い。
[Effect of the present disclosure]
The electrical equipment of the present disclosure is made of copper and has a wiring pattern with excellent conductivity. Therefore, ion migration is less likely to occur in the electrical component of the present disclosure.
 本開示の電装品の製造方法は、配線パターンが銅によって構成された電装品を作製できる。 The method for manufacturing an electrical component according to the present disclosure can manufacture an electrical component whose wiring pattern is made of copper.
[本開示の実施形態の説明]
 最初に本開示の実施形態の内容を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
<1>実施形態に係る電装品は、回路部材と、前記回路部材に一体化されている樹脂部材とを備える。前記回路部材は、絶縁性樹脂によって構成されている基材フィルムと、前記基材フィルムに設けられた配線パターンとを備える。前記配線パターンは、前記基材フィルムの上に形成された配線部と、前記配線部の表面に形成されためっき層とを備える。前記配線部は、複数の銅粒子と、熱硬化性樹脂によって構成されたバインダと、酸化防止剤とを含み、前記めっき層は、銅によって構成されている。 <1> An electrical component according to an embodiment includes a circuit member and a resin member integrated with the circuit member. The circuit member includes a base film made of an insulating resin and a wiring pattern provided on the base film. The wiring pattern includes a wiring portion formed on the base film and a plating layer formed on the surface of the wiring portion. The wiring portion includes a plurality of copper particles, a binder made of thermosetting resin, and an antioxidant, and the plating layer is made of copper.
 実施形態に係る電装品の配線部では、複数の銅粒子を熱硬化性樹脂のバインダによって一体化している。そのため、配線部における銅粒子同士の接触が良好で、配線部の導電性が高い。また、配線部には酸化防止剤が含まれているため、配線部の製造時、及び製造後に銅粒子が酸化し難い。そのため、配線部の導電性が長期にわたって維持され易い。 In the wiring portion of the electrical component according to the embodiment, a plurality of copper particles are integrated with a thermosetting resin binder. Therefore, the contact between the copper particles in the wiring portion is good, and the wiring portion has high conductivity. Moreover, since the wiring portion contains an antioxidant, the copper particles are less likely to be oxidized during and after the manufacturing of the wiring portion. Therefore, the conductivity of the wiring portion is likely to be maintained for a long period of time.
 配線部の表面は銅のめっき層によって覆われている。めっき層は、配線部の導電性を補い、配線パターンの導電性を向上させる。 The surface of the wiring part is covered with a copper plating layer. The plating layer supplements the conductivity of the wiring portion and improves the conductivity of the wiring pattern.
 銅によって構成される配線パターンでは、イオンマイグレーションが生じ難い。従って、電装品の品質が長期にわたって維持され易い。また、銅は銀に比べて安価であるため、電装品の製造コストが低くなる。 Ion migration is less likely to occur in wiring patterns made of copper. Therefore, the quality of the electrical equipment is likely to be maintained over a long period of time. Also, since copper is cheaper than silver, the manufacturing cost of electrical equipment is low.
<2>実施形態に係る電装品において、前記電装品に対して、装飾性、電磁気的特性、機械的特性、及び化学的特性の少なくとも一つを付加する追加部材を備え、前記追加部材は、前記回路部材及び前記樹脂部材の少なくとも一方に一体化されていても良い。 <2> The electrical component according to the embodiment, further comprising an additional member for adding at least one of decorativeness, electromagnetic properties, mechanical properties, and chemical properties to the electrical component, the additional member comprising: It may be integrated with at least one of the circuit member and the resin member.
 装飾性を有する追加部材は、例えば色彩や模様などが施されたものである。電磁気的特性は、例えば電磁シールド性である。機械的特性は、例えば耐衝撃性やクッション性である。化学的特性は、例えば透光性や撥水性、耐薬品性、耐候性である。電装品が追加部材を備えることで、追加部材の特性、例えば装飾性や機能性が電装品に付与される。そのため、電装品の用途が広がる。 Additional members with decorative properties are, for example, those with colors and patterns. The electromagnetic properties are, for example, electromagnetic shielding properties. Mechanical properties are, for example, impact resistance and cushioning properties. Chemical properties are, for example, translucency, water repellency, chemical resistance, and weather resistance. By providing the electrical equipment with the additional member, the characteristics of the additional member, such as decorativeness and functionality, are imparted to the electrical equipment. Therefore, the application of electrical equipment is expanded.
<3>実施形態に係る電装品において、前記基材フィルムは、熱可塑性樹脂によって構成されていても良い。 <3> In the electrical component according to the embodiment, the base film may be made of a thermoplastic resin.
 後述する電装品の製造方法に規定されるように、回路部材は樹脂部材と一体化される。その際、回路部材が熱にさらされる。回路部材の基材フィルムが熱可塑性樹脂によって構成されていれば、回路部材に樹脂部材を一体化する際、回路部材の形状を変化させることができる。 The circuit member is integrated with the resin member as defined in the electrical component manufacturing method described later. At that time, the circuit members are exposed to heat. If the substrate film of the circuit member is made of a thermoplastic resin, the shape of the circuit member can be changed when the resin member is integrated with the circuit member.
<4>実施形態に係る電装品において、前記基材フィルムの厚さが0.025mm以上1mm以下であっても良い。 <4> In the electrical component according to the embodiment, the base film may have a thickness of 0.025 mm or more and 1 mm or less.
 基材フィルムの厚さが0.025mm以上であれば、回路部材と樹脂部材とを一体化する際、基材フィルムに割れやシワなどが発生し難い。基材フィルムの厚さが1mm以下であれば、回路部材と樹脂部材とを一体化する際、基材フィルムを所望の形状に変形させ易い。 If the thickness of the base film is 0.025 mm or more, cracks and wrinkles are less likely to occur in the base film when the circuit member and the resin member are integrated. If the thickness of the base film is 1 mm or less, the base film can be easily deformed into a desired shape when integrating the circuit member and the resin member.
<5>実施形態に係る電装品において、150℃×30分の大気雰囲気における前記基材フィルムの熱収縮率が5%以下であっても良い。 <5> In the electrical component according to the embodiment, the heat shrinkage rate of the base film in an air atmosphere at 150° C. for 30 minutes may be 5% or less.
 後述する電装品の製造方法に規定されるように、回路部材は複数回にわたって熱にさらされる。例えば、バインダを硬化させるための熱処理などによって回路部材に熱が加わる。そのため、基材フィルムは所定の耐熱性を有することが好ましい。本開示における耐熱性は、加熱雰囲気における基材フィルムの熱収縮率によって規定される。上記形態<5>に規定する耐熱性を備える基材フィルムは、上記熱処理によって損傷し難い。基材フィルムが方向性フィルムの場合、MD(machine direction)における基材フィルムの熱収縮率と、TD(transverse direction)における基材フィルムの熱収縮率が共に5%以下であることが好ましい。 As stipulated in the electrical component manufacturing method described later, circuit members are exposed to heat multiple times. For example, heat is applied to the circuit member by heat treatment for hardening the binder. Therefore, it is preferable that the base film has a predetermined heat resistance. Heat resistance in the present disclosure is defined by the thermal shrinkage rate of the base film in a heated atmosphere. The heat-resistant substrate film defined in Mode <5> is less likely to be damaged by the heat treatment. When the base film is a directional film, the heat shrinkage of the base film in MD (machine direction) and the heat shrinkage of the base film in TD (transverse direction) are both preferably 5% or less.
<6>実施形態に係る電装品において、前記複数の銅粒子のそれぞれは鱗片状であっても良い。 <6> In the electrical component according to the embodiment, each of the plurality of copper particles may be scaly.
 各銅粒子が鱗片状であれば、隣接する銅粒子同士の接触面積が大きくなる。そのため、配線パターンの導電性が向上する。 If each copper particle is scaly, the contact area between adjacent copper particles increases. Therefore, the conductivity of the wiring pattern is improved.
<7>実施形態に係る電装品において、前記複数の銅粒子の平均粒径は1μm以上20μm以下であっても良い。 <7> In the electrical component according to the embodiment, the plurality of copper particles may have an average particle diameter of 1 μm or more and 20 μm or less.
 後述する電装品の製造方法に規定されるように、実施形態の電装品の配線部は印刷によって基材フィルム上に形成される。複数の銅粒子の平均粒径が上記範囲内であれば、印刷によって配線部を形成することができる。印刷は、例えばスクリーン印刷、フレキソ印刷、グラビア印刷、グラビアオフセット印刷、ディスペンサー印刷、又はインクジェット印刷である。 As stipulated in the electrical component manufacturing method described later, the wiring portion of the electrical component of the embodiment is formed on the base film by printing. If the average particle size of the plurality of copper particles is within the above range, the wiring portion can be formed by printing. Printing is for example screen printing, flexographic printing, gravure printing, gravure offset printing, dispenser printing or inkjet printing.
 複数の銅粒子の平均粒径が上記範囲内であれば、銅粒子の比表面積が、銅ナノ粒子の比表面積よりもかなり小さくなる。銅粒子の比表面積が小さくなれば、銅粒子が酸化され難くなるため、配線部の導電性に及ぼす銅粒子の酸化の影響が小さくなる。 If the average particle size of the plurality of copper particles is within the above range, the specific surface area of the copper particles will be considerably smaller than the specific surface area of the copper nanoparticles. If the specific surface area of the copper particles is reduced, the copper particles are less likely to be oxidized, and the influence of the oxidation of the copper particles on the electrical conductivity of the wiring portion is reduced.
<8>実施形態に係る電装品において、前記めっき層の厚さは0.01μm以上50μm以下であっても良い。 <8> In the electrical equipment according to the embodiment, the plating layer may have a thickness of 0.01 μm or more and 50 μm or less.
 めっき層の厚さが0.01μm以上であれば、配線パターンの導電性を十分に確保できる。めっき層の厚さが50μm以下であれば、めっき層を形成するための時間が短くてすむので、電装品の生産性が向上する。更には、めっき層の厚さは1μm以上10μm以下であることが望ましい。 If the thickness of the plating layer is 0.01 μm or more, the conductivity of the wiring pattern can be sufficiently secured. If the thickness of the plating layer is 50 μm or less, the time required for forming the plating layer is short, so the productivity of electrical equipment is improved. Furthermore, it is desirable that the thickness of the plating layer is 1 μm or more and 10 μm or less.
<9>実施形態に係る電装品において、前記熱硬化性樹脂は、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、及びシリコーン樹脂からなる群から選択される少なくとも1種を含んでいても良い。 <9> In the electrical component according to the embodiment, the thermosetting resin is at least one selected from the group consisting of phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, polyurethane resin, and silicone resin. May contain seeds.
 バインダを構成する熱硬化性樹脂が上記列挙される熱硬化性樹脂であれば、配線部と基材フィルムとの密着性が向上する。その結果、基材から配線部が剥離し難い。 If the thermosetting resin constituting the binder is one of the thermosetting resins listed above, the adhesion between the wiring portion and the base film is improved. As a result, the wiring portion is less likely to peel off from the substrate.
<10>実施形態に係る電装品において、前記絶縁性樹脂は、ポリカーボネート樹脂、ポリスチレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、液晶ポリマー樹脂、ポリテトラフルオロエチレン樹脂、ポリエチレンナフタレート樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、シンジオタクチックポリスチレン樹脂、及びシクロオレフィンポリマー樹脂からなる群から選択される少なくとも1種を含んでいても良い。 <10> In the electrical equipment according to the embodiment, the insulating resin is polycarbonate resin, polystyrene resin, acrylonitrile-butadiene-styrene resin, liquid crystal polymer resin, polytetrafluoroethylene resin, polyethylene naphthalate resin, polyethylene terephthalate resin, nylon. At least one selected from the group consisting of resin, polyphenylene sulfide resin, polyphenylene ether resin, modified polyphenylene ether resin, syndiotactic polystyrene resin, and cycloolefin polymer resin may be included.
 上記列挙される絶縁性樹脂は熱可塑性樹脂である。基材フィルムが熱可塑性樹脂であれば、電装品の製造時に基材フィルムの形状を大きく変化させられる。 The insulating resins listed above are thermoplastic resins. If the base film is a thermoplastic resin, the shape of the base film can be greatly changed during the production of electrical equipment.
<11>実施形態に係る電装品において、前記配線パターンの一部を覆う保護層を備え、前記保護層は、カバーレイ及びソルダーレジストの少なくとも一方を含んでいても良い。 <11> The electrical component according to the embodiment may further include a protective layer covering a portion of the wiring pattern, and the protective layer may include at least one of a coverlay and a solder resist.
 保護層によって配線パターンが電気的・物理的に保護される。カバーレイは、回路部材の曲げ箇所の保護に好適である。ソルダーレジストは、回路部材の平坦箇所の保護に好適である。 The protective layer protects the wiring pattern electrically and physically. Coverlays are suitable for protecting bent portions of circuit members. Solder resist is suitable for protecting flat portions of circuit members.
<12>実施形態に係る電装品の製造方法は、絶縁性樹脂によって構成された基材フィルムと、前記基材フィルムに設けられた配線パターンとを備える回路部材を作製する工程Aと、前記回路部材に樹脂部材を一体化する工程Bとを備える。前記工程Aは、前記基材フィルムを用意する工程A1と、複数の銅粒子と、熱硬化性樹脂によって構成されたバインダと、酸化防止剤とを含む導電ペーストを用意する工程A2と、前記基材フィルムの上に前記導電ペーストを配線パターン状に印刷する工程A3と、熱処理によって前記バインダを硬化させることで配線部を形成する工程A4と、前記配線部の表面に銅をめっきすることでめっき層を形成する工程A5とを含む。 <12> A method for manufacturing an electrical component according to an embodiment includes a step A of fabricating a circuit member including a base film made of an insulating resin and a wiring pattern provided on the base film; and a step B of integrating the resin member with the member. The step A includes a step A1 of preparing the base film, a step A2 of preparing a conductive paste containing a plurality of copper particles, a binder made of a thermosetting resin, and an antioxidant; A step A3 of printing the conductive paste on the material film in a wiring pattern, a step A4 of forming a wiring portion by hardening the binder by heat treatment, and a step A4 of forming a wiring portion, and plating the surface of the wiring portion with copper. and Step A5 of forming a layer.
 上記電装品の製造方法によれば、実施形態に係る電装品を作製できる。
 上記電装品の製造方法では、配線部の材料となる導電ペーストに熱硬化性樹脂のバインダが含まれている。このバインダが熱処理によって硬化することで、配線部が形成される。このとき、バインダが収縮し、銅粒子同士が十分に接触する。その結果、配線部の導電性が確保される。
According to the method for manufacturing an electrical component, the electrical component according to the embodiment can be manufactured.
In the method for manufacturing an electrical component, the conductive paste, which is the material of the wiring portion, contains a thermosetting resin binder. The wiring portion is formed by hardening the binder by heat treatment. At this time, the binder shrinks and the copper particles come into sufficient contact with each other. As a result, the conductivity of the wiring portion is ensured.
 ここで、バインダを硬化させるための熱処理の温度は、特許文献1におけるナノ粒子を焼成する温度よりも低い。従って、バインダの熱処理によって銅粒子が酸化し難いし、基材フィルムが損傷し難い。さらに、導電ペーストには酸化防止剤が含まれているので、バインダの熱処理時に銅粒子が酸化され難い。 Here, the temperature of the heat treatment for hardening the binder is lower than the temperature for firing the nanoparticles in Patent Document 1. Therefore, the copper particles are less likely to oxidize and the base film is less likely to be damaged by the heat treatment of the binder. Furthermore, since the conductive paste contains an antioxidant, the copper particles are less likely to be oxidized during heat treatment of the binder.
 上記電装品の製造方法では、配線部の表面に銅のめっき層が形成される。銅からなるめっき層は、配線部の導電性を補い、配線パターンの導電性を向上させる。 In the method for manufacturing the electrical component, a copper plating layer is formed on the surface of the wiring portion. The plating layer made of copper supplements the conductivity of the wiring portion and improves the conductivity of the wiring pattern.
 上記電装品の製造方法は、回路部材を樹脂部材と一体化する工程Bを備える。この工程Bでは回路部材が熱にさらされる。回路部材の配線部に含まれるバインダは熱硬化性樹脂であるため、工程Bの熱によって配線部が損傷し難い。また、配線部には酸化防止剤が含まれているので、配線部に含まれる銅粒子は、工程Bの熱によって酸化し難い。 The method for manufacturing the electrical component includes a step B of integrating the circuit member with the resin member. In this step B, the circuit members are exposed to heat. Since the binder contained in the wiring portion of the circuit member is a thermosetting resin, the wiring portion is less likely to be damaged by the heat in step B. Moreover, since the wiring portion contains an antioxidant, the copper particles contained in the wiring portion are less likely to be oxidized by the heat in step B.
 上記電装品の製造方法の工程Bでは、回路部材の基材フィルムが熱可塑性樹脂によって構成されていれば、電装品の形状を所望の形状にできる。例えば、電装品の形状を、車両の室内灯を含む車載パネルの形状に形成することができる。 In the process B of the manufacturing method for the electrical component, the electrical component can be formed into a desired shape if the base film of the circuit member is made of a thermoplastic resin. For example, the shape of the electrical component can be formed in the shape of a vehicle panel that includes the interior lights of the vehicle.
 上記電装品の製造方法における工程Aは、基材フィルム上に構成を追加していくアディティブ法である。アディティブ法では、サブトラクティブ法に比べて、廃液の発生が大幅に低減される。サブトラクティブ法は、エッチングなどの薬液によって不要な銅箔を取り除くことで配線パターンを形成する方法である。また、工程Bにおいても、回路部材に樹脂部材を付加している。つまり、上記電装品の製造方法では、薬液によって構成を取り除く工程を含んでいない。従って、上記電装品の製造方法は、電装品の製造時の環境負荷を低減できる。  Process A in the manufacturing method of the above electrical equipment is an additive method in which a structure is added on the base film. The additive method significantly reduces waste generation compared to the subtractive method. The subtractive method is a method of forming a wiring pattern by removing unnecessary copper foil with chemicals such as etching. Also in the process B, a resin member is added to the circuit member. In other words, the method for manufacturing an electrical component does not include a step of removing the structure with a chemical solution. Therefore, the above method for manufacturing an electrical component can reduce the environmental load during manufacturing of the electrical component.
[本開示の実施形態の詳細]
 以下、図面を適宜参照して、本開示の実施の形態を詳細に説明する。図中の同一符号は、同一名称物を示す。
[Details of the embodiment of the present disclosure]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings as appropriate. The same reference numerals in the drawings indicate the same names.
<実施形態1>
 図1に示される実施形態1の電装品1は、車両の内装パネルとして利用される。電装品1は、回路部材2と、回路部材2に一体化されている樹脂部材3とを備える。回路部材2は、配線パターン21を含む電気回路である。樹脂部材3は、内装パネルを構成する。本例の電装品1は更に、追加部材4と保護層5と実装部品6を備える。以下、本例の電装品1の構成を詳細に説明する。
<Embodiment 1>
The electrical equipment 1 of Embodiment 1 shown in FIG. 1 is used as an interior panel of a vehicle. The electrical equipment 1 includes a circuit member 2 and a resin member 3 integrated with the circuit member 2 . The circuit member 2 is an electric circuit including wiring patterns 21 . The resin member 3 constitutes an interior panel. The electrical equipment 1 of this example further includes an additional member 4 , a protective layer 5 and a mounting component 6 . The configuration of the electrical component 1 of this example will be described in detail below.
 ≪回路部材≫
 回路部材2の説明にあたっては図2を主に参照する。図2は、図1に示される電装品1の各構成の上下関係を模式的に示す図である。図2に示されるように、回路部材2は、基材フィルム20と、基材フィルム20に設けられた配線パターン21とを備える。
≪Circuit material≫
In describing the circuit member 2, FIG. 2 is mainly referred to. FIG. 2 is a diagram schematically showing the vertical relationship of each component of the electrical component 1 shown in FIG. As shown in FIG. 2 , the circuit member 2 includes a base film 20 and wiring patterns 21 provided on the base film 20 .
  (基材フィルム)
 基材フィルム20は、絶縁性樹脂によって構成されたフィルムである。基材フィルム20を構成する絶縁性樹脂は熱可塑性樹脂であることが好ましい。後述するように、電装品1の製造時、回路部材2は樹脂部材3と一体化される。その際、回路部材2が熱にさらされる。基材フィルム20が熱可塑性樹脂によって構成されていれば、回路部材2に樹脂部材3を一体化する際、回路部材2の形状を変化させることができる。
(Base film)
The base film 20 is a film made of an insulating resin. The insulating resin forming the base film 20 is preferably a thermoplastic resin. As will be described later, the circuit member 2 is integrated with the resin member 3 when the electrical component 1 is manufactured. At that time, the circuit member 2 is exposed to heat. If the substrate film 20 is made of a thermoplastic resin, the shape of the circuit member 2 can be changed when the resin member 3 is integrated with the circuit member 2 .
 熱可塑性樹脂は、ポリカーボネート(polycarbonate)樹脂、ポリスチレン(polystyrene)樹脂、アクリロニトリル・ブタジエン・スチレン(acrylonitrile-butadiene styrene)樹脂、液晶ポリマー(Liquid Crystal Polymer)樹脂、ポリテトラフルオロエチレン(polytetrafluoroethylene)樹脂、ポリエチレンナフタレート(polyethylene naphthalate)樹脂、ポリエチレンテレフタレート(polyethylene terephthalate)樹脂、ナイロン(nylon)樹脂、ポリフェニレンサルファイド(Poly Phenylene Sulfide)樹脂、ポリフェニレンエーテル(Polyphenyleneether)樹脂、変性ポリフェニレンエーテル樹脂、シンジオタクチックポリスチレン(syndiotactic polystyrene)樹脂、及びシクロオレフィンポリマー(Cycloolefin polymer)樹脂から選択される少なくとも1種を含む。 Thermoplastic resins include polycarbonate resin, polystyrene resin, acrylonitrile-butadiene styrene resin, liquid crystal polymer resin, polytetrafluoroethylene resin, polyethylene resin. Phthalate resin, polyethylene terephthalate resin, nylon resin, polyphenylene sulfide resin, polyphenylene ether resin, modified polyphenylene ether resin, syndiotactic polystyrene It contains at least one selected from resins and cycloolefin polymer resins.
 特に、液晶ポリマー樹脂、ポリテトラフルオロエチレン樹脂、ポリエチレンナフタレート樹脂、ナイロン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、シンジオタクチックポリスチレン樹脂、及びシクロオレフィンポリマー樹脂は、誘電特性に優れている。従って、これらの熱可塑性樹脂によって基材フィルム20が構成されることで、高速・高周波用途に適した電装品1が得られる。また、これらの熱可塑性樹脂は熱処理によって収縮し難い。従って、基材フィルム20の形状を変形させたときに、所望の形状に基材フィルム20を変形させ易い。 In particular, liquid crystal polymer resins, polytetrafluoroethylene resins, polyethylene naphthalate resins, nylon resins, polyphenylene sulfide resins, polyphenylene ether resins, modified polyphenylene ether resins, syndiotactic polystyrene resins, and cycloolefin polymer resins have excellent dielectric properties. ing. Therefore, by forming the base film 20 from these thermoplastic resins, the electrical component 1 suitable for high-speed and high-frequency applications can be obtained. In addition, these thermoplastic resins are difficult to shrink by heat treatment. Therefore, when the shape of the base film 20 is deformed, the base film 20 can be easily deformed into a desired shape.
 基材フィルム20の厚さは、例えば0.025mm以上1mm以下であることが好ましい。基材フィルム20の厚さが0.025mm以上であれば、回路部材2と樹脂部材3とを一体化する際、基材フィルム20に割れやシワなどが発生し難い。基材フィルム20の厚さが1mm以下であれば、回路部材2と樹脂部材3とを一体化する際、基材フィルム20を所望の形状に変形させ易い。 The thickness of the base film 20 is preferably 0.025 mm or more and 1 mm or less, for example. If the thickness of the base film 20 is 0.025 mm or more, when the circuit member 2 and the resin member 3 are integrated, the base film 20 is less likely to crack or wrinkle. If the thickness of the base film 20 is 1 mm or less, the base film 20 can be easily deformed into a desired shape when integrating the circuit member 2 and the resin member 3 .
 基材フィルム20は所定の耐熱性を有することが好ましい。本例における基材フィルム20の耐熱性は、150℃×30分の大気雰囲気における基材フィルム20の熱収縮率が5%以下であることによって規定される。基材フィルム20の熱収縮率は、{(加熱前の基材フィルム20の長さ―加熱後の基材フィルム20の長さ)/加熱前の基材フィルム20の長さ}×100によって求める。より好ましい熱収縮率は3%以下である。上記加熱雰囲気における熱収縮率が5%以下であれば、実施形態の電装品1の製造時に基材フィルム20が損傷することを抑制できる。基材フィルム20が方向性フィルムの場合、MDにおける基材フィルムの熱収縮率と、TDにおける基材フィルムの熱収縮率が共に5%以下であることが好ましく、3%以下であることがより好ましい。 The base film 20 preferably has a predetermined heat resistance. The heat resistance of the base film 20 in this example is defined by the heat shrinkage rate of the base film 20 in an air atmosphere of 150° C.×30 minutes of 5% or less. The thermal shrinkage rate of the base film 20 is determined by {(length of the base film 20 before heating−length of the base film 20 after heating)/length of the base film 20 before heating}×100. . A more preferable heat shrinkage rate is 3% or less. If the heat shrinkage rate in the heating atmosphere is 5% or less, it is possible to suppress damage to the base film 20 during manufacturing of the electrical component 1 of the embodiment. When the base film 20 is a directional film, both the heat shrinkage of the base film in MD and the heat shrinkage of the base film in TD are preferably 5% or less, more preferably 3% or less. preferable.
  (配線パターン)
 配線パターン21は、基材フィルム20の上に形成された配線部211と、配線部211の表面に形成されためっき層212とを備える。配線部211は、図1に示されるように配線パターン21を上面視したときに、配線パターン21と同一の形状を備える。
(wiring pattern)
The wiring pattern 21 includes a wiring portion 211 formed on the base film 20 and a plating layer 212 formed on the surface of the wiring portion 211 . The wiring portion 211 has the same shape as the wiring pattern 21 when the wiring pattern 21 is viewed from above as shown in FIG.
 図3は、配線部211の表面を模式的に示す拡大図である。図3に示されるように、配線部211は、複数の銅粒子21pとバインダ21bとを含む。更に配線部211は酸化防止剤を含む。配線部211の断面積は、配線パターン21に要求される導電性を満たすように、適宜選択される。例えば、配線部211の断面積は、0.0001mm以上0.5mm以下である。配線部211の厚さは、例えば10μm以上50μm以下である。配線部211の厚さが10μm以上であれば、配線部211に含まれる銅粒子21p同士の接触が十分に確保される。配線部211の厚さが50μm以下であれば、印刷によって配線部211を形成し易い。 FIG. 3 is an enlarged view schematically showing the surface of the wiring portion 211. As shown in FIG. As shown in FIG. 3, wiring portion 211 includes a plurality of copper particles 21p and binder 21b. Furthermore, the wiring part 211 contains an antioxidant. The cross-sectional area of the wiring part 211 is appropriately selected so as to satisfy the conductivity required for the wiring pattern 21 . For example, the cross-sectional area of the wiring part 211 is 0.0001 mm 2 or more and 0.5 mm 2 or less. The thickness of the wiring portion 211 is, for example, 10 μm or more and 50 μm or less. If the thickness of the wiring portion 211 is 10 μm or more, the contact between the copper particles 21p contained in the wiring portion 211 is sufficiently ensured. If the thickness of the wiring part 211 is 50 μm or less, the wiring part 211 can be easily formed by printing.
 本例の銅粒子21pは、純銅又は銅合金の粒子である。銅粒子21pの平均粒径は1μm以上20μm以下であることが好ましい。後述する電装品の製造方法に規定されるように、本例の電装品1の配線部211は印刷によって基材フィルム20上に形成される。複数の銅粒子21pの平均粒径が上記範囲内であれば、印刷によって配線部211を形成することができる。銅粒子21pの平均粒径の下限は、2μm、更には3μmであっても良い。また、銅粒子21pの平均粒径の上限は、18μm、更には15μmであっても良い。従って、銅粒子21pの平均粒径は、2μm以上18μm以下、更には3μm以上15μm以下であっても良い。 The copper particles 21p of this example are particles of pure copper or a copper alloy. The average particle diameter of the copper particles 21p is preferably 1 μm or more and 20 μm or less. As specified in the manufacturing method of the electrical component described later, the wiring portion 211 of the electrical component 1 of this example is formed on the base film 20 by printing. If the average particle size of the plurality of copper particles 21p is within the above range, the wiring portion 211 can be formed by printing. The lower limit of the average particle size of the copper particles 21p may be 2 μm, or even 3 μm. Moreover, the upper limit of the average particle size of the copper particles 21p may be 18 μm, or even 15 μm. Therefore, the average particle size of the copper particles 21p may be 2 μm or more and 18 μm or less, and further 3 μm or more and 15 μm or less.
 銅粒子21pの平均粒径は、配線部211の厚さ方向に直交する断面を顕微鏡観察することで得られる。まず、配線部211の断面から5視野以上の顕微鏡画像を取得する。各顕微鏡画像を二値化処理し、画像中の全ての粒子の粒径を求める。測定される銅粒子21pの粒径は、断面における銅粒子21pの長軸方向の長さである。長軸方向の長さは、銅粒子21pに外接する四角形の長辺の長さと同じである。全ての粒径の平均値が、銅粒子21pの平均粒径である。 The average particle size of the copper particles 21p can be obtained by microscopically observing a cross section perpendicular to the thickness direction of the wiring portion 211. First, microscopic images of five or more fields of view are acquired from the cross section of the wiring portion 211 . Each microscopic image is binarized to determine the particle size of all particles in the image. The particle size of the copper particles 21p to be measured is the length of the major axis direction of the copper particles 21p in the cross section. The length in the major axis direction is the same as the length of the long side of the quadrangle circumscribing the copper particles 21p. The average value of all particle sizes is the average particle size of the copper particles 21p.
 銅粒子21pの形状は特に問われない。銅粒子21pは、球形でも良いし異形でも良い。本例の銅粒子21pは、鱗片状粒子である。鱗片状粒子のアスペクト比、即ち鱗片状粒子の長軸方向の長さと短軸方向の長さとの比は、2.5以上5.0以下であることが好ましい。各銅粒子21pが鱗片状であれば、配線部211の厚さ方向に銅粒子21pが積層された状態となり易い。厚さ方向に積層した銅粒子21p同士は面接触し易く、銅粒子21p同士の接触面積が大きくなる。その結果、配線パターン21の導電性が向上する。 The shape of the copper particles 21p is not particularly limited. The copper particles 21p may be spherical or irregularly shaped. The copper particles 21p of this example are scaly particles. The aspect ratio of the scaly particles, that is, the ratio of the length of the scaly particles in the long axis direction to the length in the short axis direction is preferably 2.5 or more and 5.0 or less. If each copper particle 21p is scale-like, it is likely that the copper particles 21p are stacked in the thickness direction of the wiring portion 211 . The copper particles 21p stacked in the thickness direction are likely to come into surface contact with each other, and the contact area between the copper particles 21p increases. As a result, the conductivity of the wiring pattern 21 is improved.
 配線部211における銅粒子21pの含有量は、50質量%以上90質量%以下であることが好ましい。銅粒子21pの含有量が50質量%以上であれば、配線部211の導電性が十分に確保される。銅粒子21pの含有量が90質量%以下であれば、複数の銅粒子21pの隙間に十分な量のバインダ21bが配置される。その結果、複数の銅粒子21pが強固に一体化される。より好ましい銅粒子21pの含有量は60質量%以上85質量%以下である。更に好ましい銅粒子21pの含有量は65質量%以上80質量%以下である。 The content of the copper particles 21p in the wiring portion 211 is preferably 50% by mass or more and 90% by mass or less. If the content of copper particles 21p is 50% by mass or more, the conductivity of wiring portion 211 is sufficiently ensured. If the content of copper particles 21p is 90% by mass or less, a sufficient amount of binder 21b is arranged in the gaps between the plurality of copper particles 21p. As a result, the plurality of copper particles 21p are strongly integrated. A more preferable content of the copper particles 21p is 60% by mass or more and 85% by mass or less. A more preferable content of the copper particles 21p is 65% by mass or more and 80% by mass or less.
 配線部211における銅粒子21pの質量割合は、以下のようにして求められる。まず、配線部211の厚さ方向に直交する断面における5視野以上の顕微鏡画像を二値化処理する。各顕微鏡画像に占める銅粒子21pの面積割合を求める。全ての視野における面積割合を平均し、その平均値を配線部211における銅粒子21pの体積割合とみなす。銅粒子21pの体積割合に銅の比重をかけると共に、バインダ21bの体積割合にバインダ21bの比重をかけ、配線部211における銅粒子21pの質量割合を求める。 The mass ratio of the copper particles 21p in the wiring portion 211 is obtained as follows. First, the microscopic images of five or more fields of view in the cross section orthogonal to the thickness direction of the wiring portion 211 are binarized. The area ratio of the copper particles 21p in each microscope image is obtained. The area ratios in all fields of view are averaged, and the average value is regarded as the volume ratio of the copper particles 21p in the wiring part 211 . By multiplying the volume ratio of the copper particles 21p by the specific gravity of copper and by multiplying the volume ratio of the binder 21b by the specific gravity of the binder 21b, the mass ratio of the copper particles 21p in the wiring part 211 is obtained.
 バインダ21bは、複数の銅粒子21pを一体化する熱硬化性樹脂である。熱硬化性樹脂は、例えばフェノール(phenol)樹脂、ユリア(Urea)樹脂、メラミン(melanin)樹脂、エポキシ(epoxy)樹脂、不飽和ポリエステル(unsaturated polyester)樹脂、ポリウレタン(polyurethane)樹脂、及びシリコーン(silicone)樹脂である。これらの熱硬化性樹脂は、配線部211と基材フィルム20との密着性を向上させる。その結果、基材フィルム20から配線部211が剥離し難い。 The binder 21b is a thermosetting resin that integrates the multiple copper particles 21p. Thermosetting resins include, for example, phenol resins, urea resins, melanin resins, epoxy resins, unsaturated polyester resins, polyurethane resins, and silicone resins. ) is a resin. These thermosetting resins improve the adhesion between the wiring portion 211 and the base film 20 . As a result, the wiring part 211 is difficult to separate from the base film 20 .
 バインダ21bを構成する熱硬化性樹脂として、特にフェノール樹脂が好ましい。フェノール樹脂は還元性を有している。そのため、フェノール樹脂は、銅粒子21pの酸化を抑制する。さらにフェノール樹脂として、レゾール型フェノール樹脂が好ましい。レゾール型フェノール樹脂は自己反応性を有するため、硬化剤を必要としない。 Phenol resin is particularly preferable as the thermosetting resin that constitutes the binder 21b. Phenolic resin has reducing properties. Therefore, the phenol resin suppresses oxidation of the copper particles 21p. Furthermore, as the phenol resin, a resol type phenol resin is preferable. Resol-type phenolic resins are self-reactive and do not require curing agents.
 酸化防止剤は、銅粒子21pの酸化を抑制する化学物質である。酸化防止剤は、バインダ21b中に分散されていても良いし、銅粒子21pに含まれていても良い。酸化防止剤は例えば、アミン系酸化防止剤、フェノール系酸化防止剤、及びフェニルアミン系酸化防止剤である。その他、還元性を有するエチレングリコールやポリエチレングリコールなどのポリオール系溶剤が含まれていても良い。 The antioxidant is a chemical substance that suppresses oxidation of the copper particles 21p. The antioxidant may be dispersed in the binder 21b or contained in the copper particles 21p. Antioxidants are, for example, amine antioxidants, phenolic antioxidants, and phenylamine antioxidants. In addition, polyol-based solvents such as ethylene glycol and polyethylene glycol having reducing properties may be contained.
 図2に示されるように、めっき層212は、配線部211の表面を覆う。より具体的には、めっき層212は、配線部211のうち、基材フィルム20に密着する部分を除く部分を覆う。めっき層212は銅によって構成される。めっき層212は、無電解めっきや電解めっきなどによって形成される。 As shown in FIG. 2 , the plating layer 212 covers the surface of the wiring portion 211 . More specifically, the plating layer 212 covers the portion of the wiring portion 211 excluding the portion in close contact with the base film 20 . The plating layer 212 is composed of copper. The plating layer 212 is formed by electroless plating, electrolytic plating, or the like.
 銅からなるめっき層212は、配線部211の導電性を補い、配線パターン21の導電性を向上させる。従って、めっき層212の抵抗率は、50μΩ・cm以下であることが好ましく、30μΩ・cm以下であることがより好ましい。 The plating layer 212 made of copper supplements the conductivity of the wiring portion 211 and improves the conductivity of the wiring pattern 21 . Therefore, the resistivity of the plating layer 212 is preferably 50 μΩ·cm or less, more preferably 30 μΩ·cm or less.
 めっき層212の厚さは0.01μm以上50μm以下であることが望ましい。めっき層212の厚さが0.01μm以上であれば、配線パターン21の導電性を十分に確保できる。めっき層212が50μm以下であれば、めっき層212を形成するための時間が短くてすむので、電装品1の生産性が向上する。厚さの下限は1μm、1.5μm、又は2μmであっても良い。厚さの上限は10μm、7.5μm、又は5μmであっても良い。従って、めっき層212の厚さは、1μm以上10μm以下、1.5μm以上7.5μm以下、又は2μm以上5μm以下であっても良い。 The thickness of the plating layer 212 is preferably 0.01 μm or more and 50 μm or less. If the thickness of the plating layer 212 is 0.01 μm or more, the electrical conductivity of the wiring pattern 21 can be sufficiently secured. If the plating layer 212 is 50 μm or less, the time required to form the plating layer 212 is short, so the productivity of the electrical component 1 is improved. The lower thickness limit may be 1 μm, 1.5 μm, or 2 μm. The upper thickness limit may be 10 μm, 7.5 μm, or 5 μm. Therefore, the thickness of the plating layer 212 may be 1 μm or more and 10 μm or less, 1.5 μm or more and 7.5 μm or less, or 2 μm or more and 5 μm or less.
 ≪保護層≫
 図1、図2に示されるように、配線パターン21の一部は保護層5に覆われている。保護層5は、カバーレイ及びソルダーレジストの少なくとも一方を含む。保護層5によって配線パターン21が電気的・物理的に保護される。カバーレイは、接着剤層を有する絶縁フィルムである。カバーレイは、回路部材2の曲げ箇所に設けられる配線パターン21の保護に好適である。ソルダーレジストは、回路部材2上に塗布した原液を硬化させたものである。ソルダーレジストは、回路部材2の平坦箇所に設けられる配線パターン21の保護に好適である。
≪Protective layer≫
As shown in FIGS. 1 and 2, part of the wiring pattern 21 is covered with the protective layer 5 . Protective layer 5 includes at least one of a coverlay and a solder resist. The wiring pattern 21 is electrically and physically protected by the protective layer 5 . A coverlay is an insulating film with an adhesive layer. The coverlay is suitable for protecting the wiring pattern 21 provided at the bent portion of the circuit member 2 . The solder resist is obtained by curing the undiluted solution applied on the circuit member 2 . Solder resist is suitable for protecting the wiring pattern 21 provided on the flat portion of the circuit member 2 .
 ≪実装部品≫
 実装部品6は、回路部材2に後付けされる電気部品である。実装部品6は、例えばLEDライト、ICチップ、及びコンデンサである。
≪Mounted parts≫
The mounted component 6 is an electrical component that is attached to the circuit member 2 later. Mounted components 6 are, for example, LED lights, IC chips, and capacitors.
 ≪樹脂部材≫
 回路部材2に一体化された樹脂部材3は、回路部材2を支持する部材である。また、樹脂部材3は、電装品1の形状を保つ役割を担う部材である。樹脂部材3はブロック状でも良いし、パネル状であっても良い。樹脂部材3は、電装品1が搭載される機械の外装パネルや内装パネルを兼ねていても良い。例えば、図1に示されるように、回路部材2が室内灯の配線を構成し、樹脂部材3が室内灯近傍の内装パネルの形状を有している形態が挙げられる。その他、樹脂部材3が、インストルメントパネルやアームレストに設けられる開口部を閉じるカバーや、パワーウィンドウやディスプレイのスイッチ類が設けられる操作パネルである形態が挙げられる。
≪Resin member≫
The resin member 3 integrated with the circuit member 2 is a member that supports the circuit member 2 . Moreover, the resin member 3 is a member that plays a role of maintaining the shape of the electrical component 1 . The resin member 3 may be block-shaped or panel-shaped. The resin member 3 may also serve as an exterior panel or an interior panel of the machine on which the electrical component 1 is mounted. For example, as shown in FIG. 1, there is a form in which the circuit member 2 constitutes the wiring of the interior light, and the resin member 3 has the shape of the interior panel in the vicinity of the interior light. In addition, the resin member 3 may be a cover for closing an opening provided in an instrument panel or an armrest, or an operation panel provided with switches for a power window or a display.
 樹脂部材3は、強度と耐久性に優れる絶縁性樹脂によって構成される。例えば、アクリロニトリルブタジエンスチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、又はアクリル樹脂などが好適である。 The resin member 3 is made of insulating resin with excellent strength and durability. For example, acrylonitrile-butadiene-styrene resin, polypropylene resin, polystyrene resin, polycarbonate resin, vinyl chloride resin, acrylic resin, or the like is suitable.
 樹脂部材3は、図2に示されるように、回路部材2の第一面20A、又は第二面20Bに一体化されている。第一面20Aは、回路部材2における配線パターン21が設けられる面である。第二面20Bは、第一面20Aと反対側の面である。本例の樹脂部材3は、回路部材2の第二面20Bに一体化されている。 The resin member 3 is integrated with the first surface 20A or the second surface 20B of the circuit member 2, as shown in FIG. 20 A of 1st surfaces are surfaces in which the wiring pattern 21 in the circuit member 2 is provided. The second surface 20B is the surface opposite to the first surface 20A. The resin member 3 of this example is integrated with the second surface 20B of the circuit member 2 .
 樹脂部材3と回路部材2との間には、プライマー及び接着剤の少なくとも一方が存在しても良い。プライマー及び接着剤は、樹脂部材3と回路部材2との接合を強固にする。プライマーは、例えばポリウレタン系樹脂、又はアクリル系樹脂を主成分とする。接着剤は、例えばアクリル系接着剤である。 At least one of a primer and an adhesive may exist between the resin member 3 and the circuit member 2 . The primer and adhesive strengthen the bonding between the resin member 3 and the circuit member 2 . The primer is mainly composed of, for example, polyurethane resin or acrylic resin. The adhesive is, for example, an acrylic adhesive.
 ≪追加部材≫
 追加部材4は、電装品1に特性を付加する部材である。特性は例えば、装飾性、電磁気的特性、機械的特性、及び化学的特性の少なくとも一つである。装飾性を有する追加部材4は、例えば色彩や模様などが施されたものである。例えば、電装品1を車両の内装パネルに使用する場合、追加部材4によって内装の質感が向上する。電磁気的特性は、例えば電磁シールド性である。機械的特性は、例えば耐衝撃性やクッション性である。化学的特性は、透光性や撥水性、耐薬品性、耐候性である。所定の特性を有する追加部材4によれば、追加部材4に備わる特性が電装品1に付与される。例えば電磁シールドとして機能する追加部材4であれば、電装品1に対して別途電磁シールドを設ける必要がなくなる。
≪Additional parts≫
The additional member 4 is a member that adds characteristics to the electrical component 1 . The properties are, for example, at least one of decorative properties, electromagnetic properties, mechanical properties, and chemical properties. The additional member 4 having decorativeness is, for example, colored or patterned. For example, when the electrical component 1 is used for an interior panel of a vehicle, the additional member 4 improves the texture of the interior. The electromagnetic properties are, for example, electromagnetic shielding properties. Mechanical properties are, for example, impact resistance and cushioning properties. Chemical properties are translucency, water repellency, chemical resistance, and weather resistance. By using the additional member 4 having the predetermined property, the electrical component 1 is provided with the property of the additional member 4 . For example, if the additional member 4 functions as an electromagnetic shield, there is no need to separately provide an electromagnetic shield for the electrical equipment 1 .
 追加部材4は、絶縁性樹脂などの有機材料によって構成されていても良いし、金属によって構成されていても良いし、セラミックスなどの無機材料によって構成されていても良い。もちろん、追加部材4は、絶縁性樹脂と金属との複合体などであっても良い。追加部材4の材質は、追加部材4に求められる特性に応じて適宜選択される。 The additional member 4 may be composed of an organic material such as an insulating resin, metal, or an inorganic material such as ceramics. Of course, the additional member 4 may be a composite of insulating resin and metal. The material of the additional member 4 is appropriately selected according to the properties required for the additional member 4 .
 追加部材4は、回路部材2及び樹脂部材3の少なくとも一方に一体化されている。本例の追加部材4は、樹脂部材3に一体化されている。 The additional member 4 is integrated with at least one of the circuit member 2 and the resin member 3 . The additional member 4 of this example is integrated with the resin member 3 .
 ≪まとめ≫
 本例の電装品1の配線部211では、図3に示されるように、複数の銅粒子21pを熱硬化性樹脂のバインダ21bによって一体化している。そのため、配線部211における銅粒子21p同士の接触が良好で、配線部211の導電性が高い。また、配線部211には酸化防止剤が含まれているため、配線部211の製造時、及び製造後に銅粒子21pが酸化し難い。そのため、配線部211は導電性に優れる。
≪Summary≫
In the wiring portion 211 of the electrical component 1 of this example, as shown in FIG. 3, a plurality of copper particles 21p are integrated with a thermosetting resin binder 21b. Therefore, the contact between the copper particles 21p in the wiring portion 211 is good, and the conductivity of the wiring portion 211 is high. Moreover, since the wiring portion 211 contains an antioxidant, the copper particles 21p are less likely to be oxidized during and after the manufacturing of the wiring portion 211 . Therefore, the wiring portion 211 has excellent conductivity.
 配線部211の表面は、図2に示されるように、銅のめっき層212によって覆われている。従って、配線部211における銅粒子21p(図3)が酸化され難い。また、めっき層212は、配線部211と共に配線パターン21の導電性を確保する。従って、配線部211の導電性が長期にわたって維持され易い。 The surface of the wiring portion 211 is covered with a copper plating layer 212, as shown in FIG. Therefore, the copper particles 21p (FIG. 3) in the wiring portion 211 are less likely to be oxidized. In addition, the plating layer 212 secures the conductivity of the wiring pattern 21 together with the wiring portion 211 . Therefore, the conductivity of the wiring portion 211 is likely to be maintained for a long period of time.
 銅によって構成される配線パターン21では、イオンマイグレーションが生じ難い。従って、電装品1の品質が長期にわたって維持され易い。また、銅は銀に比べて安価であるため、電装品1の製造コストが低くなる。 Ion migration is less likely to occur in the wiring pattern 21 made of copper. Therefore, the quality of the electrical equipment 1 is likely to be maintained over a long period of time. Moreover, since copper is cheaper than silver, the manufacturing cost of the electrical equipment 1 is reduced.
 本例の電装品1は樹脂部材3を備える。樹脂部材3は電装品1の形状を保ち、回路部材2の損傷を抑制する。 The electrical component 1 of this example includes a resin member 3. The resin member 3 maintains the shape of the electrical component 1 and suppresses damage to the circuit member 2 .
 本例の電装品1は追加部材4を備える。追加部材4は、電装品1に装飾性及び機能性を付与する。そのため、電装品1の用途が広がる。 The electrical component 1 of this example includes an additional member 4. The additional member 4 imparts decorativeness and functionality to the electrical equipment 1 . Therefore, the application of the electrical equipment 1 is expanded.
 ≪電装品の製造方法≫
 実施形態1の電装品1は、例えば以下の工程によって作製される。
・回路部材2を作製する工程A
・回路部材2に樹脂部材3を一体化する工程B
・回路部材2又は樹脂部材3の少なくとも一方に追加部材4を一体化する工程C
≪Manufacturing method of electrical equipment≫
The electrical equipment 1 of Embodiment 1 is produced, for example, by the following steps.
- Process A for producing the circuit member 2
- Step B of integrating the resin member 3 with the circuit member 2
- Step C of integrating the additional member 4 with at least one of the circuit member 2 or the resin member 3
 工程Bと工程Cはどちらが先に行われても良い。工程Bと工程Cとが同時に行われても良い。ここで、本例とは異なり、電装品1が追加部材4を備えない場合、工程Cは省略される。 Either Process B or Process C may be performed first. Process B and process C may be performed simultaneously. Here, unlike this example, when the electrical component 1 does not include the additional member 4, the step C is omitted.
  (工程A)
 工程Aは、以下の工程A1から工程A6を含む。
 ・基材フィルム20を用意する工程A1
 ・複数の銅粒子21pと、熱硬化性樹脂によって構成されたバインダ21bと、酸化防止剤とを含む導電ペーストを用意する工程A2
 ・基材フィルム20の上に導電ペーストを配線パターン状に印刷する工程A3
 ・熱処理によってバインダ21bを硬化させることで配線部211を形成する工程A4
 ・配線部211の表面に銅をめっきすることでめっき層212を形成する工程A5
 ・配線パターン21の一部を覆う保護層5を形成する工程A6
(Step A)
Process A includes the following processes A1 to A6.
- Step A1 of preparing the base film 20
Step A2 of preparing a conductive paste containing a plurality of copper particles 21p, a binder 21b made of a thermosetting resin, and an antioxidant
- Step A3 of printing a conductive paste in a wiring pattern on the base film 20
- Step A4 of forming the wiring portion 211 by hardening the binder 21b by heat treatment
- Step A5 of forming the plating layer 212 by plating the surface of the wiring portion 211 with copper
- Step A6 of forming a protective layer 5 covering a part of the wiring pattern 21
 工程A1において用意する基材フィルム20は、電装品1の項目で説明した基材フィルム20である。基材フィルム20と配線パターン21との密着性を向上させるため、基材フィルム20に表面処理を施すことが好ましい。表面処理は例えば、基材フィルム20の表面に施すプラズマ照射、コロナ照射、又はUV照射である。その他、表面処理は、基材フィルム20の表面に施すプライマー処理でも良い。プライマーは、例えばポリウレタン系プライマー、及びアクリル系プライマーである。 The base film 20 prepared in step A1 is the base film 20 described in the electrical component 1 item. In order to improve the adhesion between the base film 20 and the wiring pattern 21, it is preferable to subject the base film 20 to a surface treatment. The surface treatment is, for example, plasma irradiation, corona irradiation, or UV irradiation applied to the surface of the base film 20 . Alternatively, the surface treatment may be a primer treatment applied to the surface of the base film 20 . Examples of primers include polyurethane primers and acrylic primers.
 工程A2において用意する導電ペーストは、電装品1の項目で説明した銅粒子21pとバインダ21bと酸化防止剤とを含む。導電ペーストは、揮発性の溶媒を含んでいても良い。溶媒によって導電ペーストの粘度が調整される。 The conductive paste prepared in step A2 contains the copper particles 21p, the binder 21b, and the antioxidant described in the item of the electrical component 1. The conductive paste may contain a volatile solvent. The solvent adjusts the viscosity of the conductive paste.
 工程A3では、基材フィルム20上に導電ペーストが印刷される。印刷は例えば、スクリーン印刷、フレキソ印刷、グラビア印刷、グラビアオフセット印刷、ディスペンサー印刷、又はインクジェット印刷である。導電ペーストに含まれる銅粒子21pの平均粒径が1μm以上20μm以下であれば、インクジェット印刷、及びディスペンサー印刷で使用されるノズルの先端に銅粒子21pが詰まり難い。従って、インクジェット印刷、及びディスペンサー印刷であっても、導電ペーストを問題なく印刷できる。 In step A3, a conductive paste is printed on the base film 20. Printing is for example screen printing, flexographic printing, gravure printing, gravure offset printing, dispenser printing or inkjet printing. If the average particle size of the copper particles 21p contained in the conductive paste is 1 μm or more and 20 μm or less, the tip of the nozzle used in inkjet printing and dispenser printing is less likely to be clogged with the copper particles 21p. Therefore, the conductive paste can be printed without problems even by inkjet printing and dispenser printing.
 工程A4では、配線パターン状に印刷された導電ペーストが熱処理される。この熱処理によって導電ペーストのバインダ21bが硬化することで、配線部211が形成される。このとき、導電ペーストと共に基材フィルム20も熱にさらされる。従って、熱処理の温度は150℃以下であることが好ましい。この温度は、特許文献1におけるナノ粒子を焼成する温度よりも低い。焼成温度は例えば200℃以上である。熱処理の温度が150℃以下であれば、銅粒子21pが酸化し難いし、基材フィルム20が損傷し難い。 In step A4, the conductive paste printed in the form of a wiring pattern is heat-treated. The wiring part 211 is formed by hardening the binder 21b of the conductive paste by this heat treatment. At this time, the base film 20 is also exposed to heat together with the conductive paste. Therefore, the heat treatment temperature is preferably 150° C. or lower. This temperature is lower than the temperature for firing the nanoparticles in Patent Document 1. The firing temperature is, for example, 200° C. or higher. If the heat treatment temperature is 150° C. or less, the copper particles 21p are less likely to be oxidized and the base film 20 is less likely to be damaged.
 工程A5において、配線部211の表面に銅のめっき層212が形成される。めっきは、無電解めっきでも良いし、電解めっきでも良い。 In step A5, a copper plating layer 212 is formed on the surface of the wiring portion 211. Plating may be electroless plating or electrolytic plating.
 工程A6において、カバーレイ及びソルダーレジストの少なくとも一方を含む保護層5を形成する。カバーレイの形成方法、及びソルダーレジストの形成方法は公知である。例えばソルダーレジストの場合、回路部材2の表面にUV硬化型のソルダーレジストをスクリーン印刷する。次いで、ソルダーレジストにUVを照射することで、保護層5が形成される。 In step A6, a protective layer 5 containing at least one of a coverlay and a solder resist is formed. A method for forming a coverlay and a method for forming a solder resist are known. For example, in the case of a solder resist, the surface of the circuit member 2 is screen-printed with a UV-curable solder resist. Then, the protective layer 5 is formed by irradiating the solder resist with UV.
  (工程B)
 工程Bは、例えばインサート成形、又は真空圧空成形などによって実施される。工程Bは、接着などによっても実施可能である。
(Step B)
Process B is performed, for example, by insert molding or vacuum pressure molding. Process B can also be implemented by adhesion or the like.
 インサート成形によって実施される工程Bを図4に基づいて説明する。図4では、金型8の内部に回路部材2と追加部材4を配置する。このとき、回路部材2と追加部材4との間に隙間が形成されている。この隙間に樹脂部材3の原料となる樹脂を注入する。その結果、回路部材2と追加部材4とが樹脂部材3によって一体化された状態となる。この例では、工程Bと工程Cとが同時に行われる。 The process B carried out by insert molding will be explained based on FIG. In FIG. 4, the circuit member 2 and the additional member 4 are arranged inside the mold 8 . At this time, a gap is formed between the circuit member 2 and the additional member 4 . A resin, which is a raw material of the resin member 3, is injected into this gap. As a result, the circuit member 2 and the additional member 4 are integrated by the resin member 3 . In this example, process B and process C are performed simultaneously.
 図4に示す例では、実装部品6が搭載された回路部材2が用いられている。実装部品6は、回路部材2と追加部材4とが樹脂部材3によって一体化された後に、回路部材2に取付けられても良い。 In the example shown in FIG. 4, a circuit member 2 on which mounted components 6 are mounted is used. The mounting component 6 may be attached to the circuit member 2 after the circuit member 2 and the additional member 4 are integrated with the resin member 3 .
 真空圧空成形によって実施される工程Bを図5に基づいて説明する。真空圧空成形の金型9は、チャンバー90と可動成形型91とを備える。回路部材2は、チャンバー90内に支持される。回路部材2を挟んで上方の空間と下方の空間とは区画されている。 The process B carried out by vacuum pressure forming will be explained based on FIG. A mold 9 for vacuum and pressure molding includes a chamber 90 and a movable mold 91 . Circuit member 2 is supported within chamber 90 . An upper space and a lower space are separated with the circuit member 2 interposed therebetween.
 図5の上段に示されるように、可動成形型91には、可動成形型91の形状に沿った樹脂部材3が配置されている。この状態から、回路部材2をヒータなどで加熱すると共に、回路部材2と可動成形型91との間を真空引きする。チャンバー90内は回路部材2によって仕切られているため、回路部材2よりも上方の空間は真空引きされない。次いで、図5の下段に示されるように、可動成形型91を上方に移動させ、回路部材2と樹脂部材3とを一体化する。このとき、回路部材2は、樹脂部材3の形状に沿った形状に変形する。 As shown in the upper part of FIG. 5 , the resin member 3 along the shape of the movable mold 91 is arranged in the movable mold 91 . From this state, the circuit member 2 is heated by a heater or the like, and the space between the circuit member 2 and the movable molding die 91 is evacuated. Since the inside of the chamber 90 is partitioned by the circuit member 2, the space above the circuit member 2 is not evacuated. Next, as shown in the lower part of FIG. 5, the movable molding die 91 is moved upward to integrate the circuit member 2 and the resin member 3 together. At this time, the circuit member 2 deforms into a shape along the shape of the resin member 3 .
  (工程C)
 工程Cは、工程Bと同様、インサート成形又は真空圧空成形などによって実施される。工程Cは、接着などによっても実施可能である。工程Cは、工程Bと独立して実施することもできるし、工程Bの後に実施することもできるし、工程Bの前に実施することもできる。
(Process C)
Process C, like process B, is performed by insert molding, vacuum pressure molding, or the like. Process C can also be implemented by adhesion or the like. Step C can be carried out independently of Step B, can be carried out after Step B, or can be carried out before Step B.
<実施形態2>
 実施形態2では、回路部材2に対する樹脂部材3と追加部材4の位置が実施形態1と異なる電装品1を図6に基づいて説明する。図6では、配線部とめっき層を一まとめにして配線パターン21としており、保護層の図示も省略している。この点は、後述する図7、図8でも同様である。
<Embodiment 2>
In Embodiment 2, an electrical component 1 in which the positions of the resin member 3 and the additional member 4 with respect to the circuit member 2 are different from those in Embodiment 1 will be described with reference to FIG. In FIG. 6, the wiring portion and the plated layer are collectively referred to as a wiring pattern 21, and illustration of the protective layer is also omitted. This point also applies to FIGS. 7 and 8, which will be described later.
 図6に示される電装品1では、回路部材2の第一面20Aに追加部材4が一体化されている。また、回路部材2の第二面20Bに樹脂部材3が一体化されている。追加部材4が透光性材料で構成され、実装部品6がLEDライトであれば、追加部材4の外側からLEDライトの点灯を確認できる。本例の電装品1は、例えば回路部材2の第二面20Bに樹脂部材3をインサート成形した後、回路部材2の第一面20Aに追加部材4をインサート成形することで作製される。ここで、本例の電装品1では、第一面20Aが追加部材4に覆われているため、配線パターン21を覆う保護層はなくても構わない。  In the electrical component 1 shown in FIG. 6, the additional member 4 is integrated with the first surface 20A of the circuit member 2 . Moreover, the resin member 3 is integrated with the second surface 20B of the circuit member 2 . If the additional member 4 is made of a translucent material and the mounting component 6 is an LED light, lighting of the LED light can be confirmed from the outside of the additional member 4 . The electrical component 1 of this example is produced by, for example, insert-molding the resin member 3 on the second surface 20B of the circuit member 2 and then insert-molding the additional member 4 on the first surface 20A of the circuit member 2 . Here, in the electrical component 1 of this example, the first surface 20A is covered with the additional member 4, so the protective layer covering the wiring pattern 21 may be omitted.
 実施形態2の変形例として、第一面20Aに樹脂部材3が一体化され、第二面20Bに追加部材4が一体化されていても良い。 As a modification of the second embodiment, the resin member 3 may be integrated with the first surface 20A and the additional member 4 may be integrated with the second surface 20B.
<実施形態3>
 実施形態3では、実施形態1,2とは異なる配置を備える電装品1を図7に基づいて説明する。
<Embodiment 3>
In Embodiment 3, an electrical component 1 having an arrangement different from that in Embodiments 1 and 2 will be described with reference to FIG.
 図7に示される電装品1では、回路部材2の第二面20Bから順に、追加部材4と樹脂部材3とが一体化されている。本例の電装品1は、例えば回路部材2の第二面20Bと、板状の樹脂部材3との間に、追加部材4をインサート成形することで作製される。 In the electrical component 1 shown in FIG. 7, the additional member 4 and the resin member 3 are integrated in order from the second surface 20B of the circuit member 2 . The electrical component 1 of this example is manufactured by insert-molding the additional member 4 between the second surface 20B of the circuit member 2 and the plate-like resin member 3, for example.
<実施形態4>
 実施形態4では、実施形態1から実施形態3とは異なる配置を備える電装品1を図8に基づいて説明する。
<Embodiment 4>
In Embodiment 4, an electrical component 1 having an arrangement different from that in Embodiments 1 to 3 will be described with reference to FIG.
 図8に示される電装品1では、回路部材2の第一面20Aから順に、樹脂部材3と追加部材4とが一体化されている。本例の電装品1は、例えば回路部材2の第一面20Aと、板状の追加部材4との間に、樹脂部材3をインサート成形することで作製される。ここで、本例の電装品1では、第一面20Aが樹脂部材3と追加部材4とに覆われているため、配線パターン21を覆う保護層はなくても構わない。 In the electrical component 1 shown in FIG. 8 , the resin member 3 and the additional member 4 are integrated in order from the first surface 20A of the circuit member 2 . The electrical component 1 of this example is manufactured by insert-molding the resin member 3 between the first surface 20A of the circuit member 2 and the plate-shaped additional member 4, for example. Here, in the electrical component 1 of this example, the first surface 20A is covered with the resin member 3 and the additional member 4, so the protective layer covering the wiring pattern 21 may be omitted.
 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
1 電装品
2 回路部材
 20 基材フィルム、21 配線パターン
 211 配線部、212 めっき層
 20A 第一面、20B 第二面
 21b バインダ、21p 銅粒子
3 樹脂部材
4 追加部材
5 保護層
6 実装部品
8 金型
9 金型
 90 チャンバー、91 可動成形型
1 electrical component 2 circuit member 20 base film 21 wiring pattern 211 wiring portion 212 plating layer 20A first surface 20B second surface 21b binder 21p copper particles 3 resin member 4 additional member 5 protective layer 6 mounting component 8 gold mold 9 mold 90 chamber, 91 movable mold

Claims (12)

  1.  回路部材と、
     前記回路部材に一体化されている樹脂部材とを備え、
     前記回路部材は、
      絶縁性樹脂によって構成されている基材フィルムと、
      前記基材フィルムに設けられた配線パターンとを備え、
     前記配線パターンは、
      前記基材フィルムの上に形成された配線部と、
      前記配線部の表面に形成されためっき層とを備え、
     前記配線部は、
      複数の銅粒子と、
      熱硬化性樹脂によって構成されたバインダと、
      酸化防止剤とを含み、
     前記めっき層は、銅によって構成されている、
     電装品。
    a circuit member;
    and a resin member integrated with the circuit member,
    The circuit member is
    a base film made of an insulating resin;
    A wiring pattern provided on the base film,
    The wiring pattern is
    a wiring portion formed on the base film;
    A plating layer formed on the surface of the wiring portion,
    The wiring part is
    a plurality of copper particles;
    a binder made of a thermosetting resin;
    an antioxidant and
    The plating layer is made of copper,
    electrical equipment.
  2.  前記電装品に対して、装飾性、電磁気的特性、機械的特性、及び化学的特性の少なくとも一つを付与する追加部材を備え、
     前記追加部材は、前記回路部材及び前記樹脂部材の少なくとも一方に一体化されている請求項1に記載の電装品。
    An additional member that imparts at least one of decorativeness, electromagnetic properties, mechanical properties, and chemical properties to the electrical equipment,
    2. The electrical equipment according to claim 1, wherein said additional member is integrated with at least one of said circuit member and said resin member.
  3.  前記基材フィルムは、熱可塑性樹脂によって構成される請求項1又は請求項2に記載の電装品。 The electrical component according to claim 1 or claim 2, wherein the base film is made of a thermoplastic resin.
  4.  前記基材フィルムの厚さが0.025mm以上1mm以下である請求項1から請求項3のいずれか1項に記載の電装品。 The electrical component according to any one of claims 1 to 3, wherein the base film has a thickness of 0.025 mm or more and 1 mm or less.
  5.  150℃×30分の大気雰囲気における前記基材フィルムの熱収縮率が5%以下である請求項1から請求項4のいずれか1項に記載の電装品。 The electrical component according to any one of claims 1 to 4, wherein the heat shrinkage of the base film in an air atmosphere at 150°C for 30 minutes is 5% or less.
  6.  前記複数の銅粒子のそれぞれは鱗片状である請求項1から請求項5のいずれか1項に記載の電装品。 The electrical equipment according to any one of claims 1 to 5, wherein each of the plurality of copper particles is scale-shaped.
  7.  前記複数の銅粒子の平均粒径は1μm以上20μm以下である請求項1から請求項6のいずれか1項に記載の電装品。 The electrical equipment according to any one of claims 1 to 6, wherein the average particle size of the plurality of copper particles is 1 µm or more and 20 µm or less.
  8.  前記めっき層の厚さは0.01μm以上50μm以下である請求項1から請求項7のいずれか1項に記載の電装品。 The electrical component according to any one of claims 1 to 7, wherein the plating layer has a thickness of 0.01 µm or more and 50 µm or less.
  9.  前記熱硬化性樹脂は、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、及びシリコーン樹脂からなる群から選択される少なくとも1種を含む請求項1から請求項8のいずれか1項に記載の電装品。 9. The thermosetting resin contains at least one selected from the group consisting of phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, polyurethane resin, and silicone resin. The electrical equipment according to any one of items 1 and 2.
  10.  前記絶縁性樹脂は、ポリカーボネート樹脂、ポリスチレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、液晶ポリマー樹脂、ポリテトラフルオロエチレン樹脂、ポリエチレンナフタレート樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、シンジオタクチックポリスチレン樹脂、及びシクロオレフィンポリマー樹脂からなる群から選択される少なくとも1種を含む請求項1から請求項9のいずれか1項に記載の電装品。 The insulating resin includes polycarbonate resin, polystyrene resin, acrylonitrile-butadiene-styrene resin, liquid crystal polymer resin, polytetrafluoroethylene resin, polyethylene naphthalate resin, polyethylene terephthalate resin, nylon resin, polyphenylene sulfide resin, polyphenylene ether resin, modified 10. The electrical equipment according to any one of claims 1 to 9, comprising at least one selected from the group consisting of polyphenylene ether resin, syndiotactic polystyrene resin, and cycloolefin polymer resin.
  11.  前記配線パターンの一部を覆う保護層を備え、
     前記保護層は、カバーレイ及びソルダーレジストの少なくとも一方を含む請求項1から請求項10のいずれか1項に記載の電装品。
    A protective layer covering a portion of the wiring pattern,
    The electrical equipment according to any one of claims 1 to 10, wherein the protective layer includes at least one of a coverlay and a solder resist.
  12.  絶縁性樹脂によって構成された基材フィルムと、前記基材フィルムに設けられた配線パターンとを備える回路部材を作製する工程Aと、
     前記回路部材に樹脂部材を一体化する工程Bとを備え、
     前記工程Aは、
      前記基材フィルムを用意する工程A1と、
      複数の銅粒子と、熱硬化性樹脂によって構成されたバインダと、酸化防止剤とを含む導電ペーストを用意する工程A2と、
      前記基材フィルムの上に前記導電ペーストを配線パターン状に印刷する工程A3と、
      熱処理によって前記バインダを硬化させることで配線部を形成する工程A4と、
      前記配線部の表面に銅をめっきすることでめっき層を形成する工程A5とを含む、
     電装品の製造方法。
    A step A of producing a circuit member comprising a base film made of an insulating resin and a wiring pattern provided on the base film;
    A step B of integrating a resin member with the circuit member,
    The step A is
    A step A1 of preparing the base film;
    Step A2 of preparing a conductive paste containing a plurality of copper particles, a binder made of a thermosetting resin, and an antioxidant;
    A step A3 of printing the conductive paste in the form of a wiring pattern on the base film;
    A step A4 of forming a wiring portion by hardening the binder by heat treatment;
    A step A5 of forming a plating layer by plating copper on the surface of the wiring part,
    Manufacturing method of electrical equipment.
PCT/JP2022/011063 2021-03-29 2022-03-11 Electric component and method for producing electric component WO2022209788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-055051 2021-03-29
JP2021055051A JP2022152324A (en) 2021-03-29 2021-03-29 Electrical component and manufacturing method of electrical component

Publications (1)

Publication Number Publication Date
WO2022209788A1 true WO2022209788A1 (en) 2022-10-06

Family

ID=83456212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011063 WO2022209788A1 (en) 2021-03-29 2022-03-11 Electric component and method for producing electric component

Country Status (2)

Country Link
JP (1) JP2022152324A (en)
WO (1) WO2022209788A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229601A (en) * 1986-03-28 1987-10-08 古河電気工業株式会社 Resin curing type conductive paste and manufacture of conductive circuit board
JPH07142819A (en) * 1993-11-12 1995-06-02 Dainippon Printing Co Ltd One-piece printed wiring board molded product
WO2016013473A1 (en) * 2014-07-24 2016-01-28 学校法人福岡大学 Printed wiring board and method for manufacturing same
JP2019189680A (en) * 2018-04-19 2019-10-31 東洋インキScホールディングス株式会社 Conductive composition for molding film, molding film, molded body, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229601A (en) * 1986-03-28 1987-10-08 古河電気工業株式会社 Resin curing type conductive paste and manufacture of conductive circuit board
JPH07142819A (en) * 1993-11-12 1995-06-02 Dainippon Printing Co Ltd One-piece printed wiring board molded product
WO2016013473A1 (en) * 2014-07-24 2016-01-28 学校法人福岡大学 Printed wiring board and method for manufacturing same
JP2019189680A (en) * 2018-04-19 2019-10-31 東洋インキScホールディングス株式会社 Conductive composition for molding film, molding film, molded body, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2022152324A (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US5220488A (en) Injection molded printed circuits
CN106574135B (en) Molecular ink
US20090191358A1 (en) Method for Generation of Metal Surface Structures and Apparatus Therefor
KR102282488B1 (en) Application specific electronics packaging systems, methods and devices
WO1987001557A1 (en) Manufacture of electrical circuits
CN113473742A (en) Method for manufacturing electronic product, related device and product
KR101693974B1 (en) Method for preparing multi-layer printed circuit board using conductive copper ink and light sintering, and the multi-layer printed circuit board prepared therefrom
KR20140088169A (en) Conductive pattern formation method
WO2016063907A1 (en) Film-like printed circuit board, and production method therefor
EP1531654B1 (en) Three-dimensionally formed circuit sheet, component and method for manufacturing the same
US20120073863A1 (en) Anodized heat-radiating substrate and method of manufacturing the same
KR20190098959A (en) Print electronics
Martins et al. Advances in printing and electronics: From engagement to commitment
WO2022209788A1 (en) Electric component and method for producing electric component
CN102469691A (en) Printed circuit board and method of manufacturing the same
CN104883865A (en) High-efficient low-cost electromagnetic shielding film and manufacturing method thereof
JP7386844B2 (en) Overmolded printed electronic components and their manufacturing method
EP0424796A2 (en) Injection molded printed circuits
CN103313504A (en) Film-free flexible printed circuit board and production method thereof
CN110708940A (en) Electromagnetic wave shielding film, method for producing same, and printed wiring board with electromagnetic wave shielding film
JP2016086013A (en) Film-like printed circuit board and method for manufacturing the same
WO2023145577A1 (en) Electrical component and method for manufacturing electrical component
KR101859979B1 (en) 3D substrate using ink composition for flash light sintering and manufacturing equipment thereof
JP6885413B2 (en) Manufacturing method of conductive pattern substrate
JP2021192960A (en) Molded film and its manufacturing method, and molded body and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780009

Country of ref document: EP

Kind code of ref document: A1