WO2022209772A1 - 超音波プローブ、超音波診断装置、及び超音波プローブの製造方法 - Google Patents

超音波プローブ、超音波診断装置、及び超音波プローブの製造方法 Download PDF

Info

Publication number
WO2022209772A1
WO2022209772A1 PCT/JP2022/010981 JP2022010981W WO2022209772A1 WO 2022209772 A1 WO2022209772 A1 WO 2022209772A1 JP 2022010981 W JP2022010981 W JP 2022010981W WO 2022209772 A1 WO2022209772 A1 WO 2022209772A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic probe
conductor layer
acoustic matching
conductive
layer
Prior art date
Application number
PCT/JP2022/010981
Other languages
English (en)
French (fr)
Inventor
宇利 長谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202280026283.XA priority Critical patent/CN117157014A/zh
Priority to JP2023510840A priority patent/JPWO2022209772A1/ja
Priority to EP22779993.9A priority patent/EP4319198A1/en
Publication of WO2022209772A1 publication Critical patent/WO2022209772A1/ja
Priority to US18/477,995 priority patent/US20240023932A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • B06B1/0692Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF with a continuous electrode on one side and a plurality of electrodes on the other side

Definitions

  • the present invention relates to an ultrasonic probe, an ultrasonic diagnostic apparatus, and a method for manufacturing an ultrasonic probe.
  • ultrasonic diagnostic equipment using ultrasonic images has been put into practical use.
  • This type of ultrasonic diagnostic apparatus transmits ultrasonic beams from an ultrasonic probe toward a subject, receives ultrasonic echoes from the subject with the ultrasonic probe, and electrically processes the received signals. produces an ultrasound image.
  • Patent Document 1 describes an ultrasonic probe aimed at suppressing a decrease in sensitivity when the element pitch of piezoelectric elements is made fine.
  • Patent Document 1 states that when the drive frequency of the piezoelectric element exceeds 15 MHz, the element pitch is preferably 150 ⁇ m or less. However, further high frequency driving is not mentioned.
  • An object of the present invention is to provide an ultrasonic probe that can be driven at high frequencies, a method for manufacturing the same, and an ultrasonic diagnostic apparatus.
  • An ultrasonic probe of one aspect of the present invention is an ultrasonic probe including a plurality of piezoelectric elements arranged in a first direction, comprising: a support member that supports the plurality of piezoelectric elements; and a conductive member disposed adjacent to the acoustic matching portion and above the plurality of piezoelectric elements, wherein the plurality of piezoelectric elements are arranged above the support member.
  • the conductive member is configured by a laminated body in which a first conductive portion, a piezoelectric portion, and a second conductive portion are sequentially laminated, and the conductive member is at least one end in a second direction that intersects the first direction of the acoustic matching portion.
  • the ratio of thickness to width is 1.6 or less.
  • An ultrasonic diagnostic apparatus includes the above ultrasonic probe.
  • a method for manufacturing an ultrasonic probe includes a plurality of piezoelectric elements arranged in a first direction, and a width, which is the length of the piezoelectric element in the first direction, is a default value.
  • a direction intersecting the first direction is defined as a second direction
  • a direction perpendicular to the first direction and the second direction is defined as a third direction, and is perpendicular to the third direction
  • an ultrasonic probe that can be driven at high frequencies, a manufacturing method thereof, and an ultrasonic diagnostic apparatus.
  • FIG. 1 is a schematic plan view showing a schematic configuration of an ultrasonic probe 100, which is an embodiment of the ultrasonic probe of the present invention
  • FIG. FIG. 2 is a schematic cross-sectional view taken along the line AA in FIG. 1
  • FIG. 2 is a schematic cross-sectional view taken along line BB and line CC of FIG. 1
  • FIG. 2 is a schematic cross-sectional view taken along line DD of FIG. 1
  • FIG. 6 is a schematic cross-sectional view taken along line A1-A1 in FIG. 5
  • FIG. 6 is a schematic cross-sectional view taken along A2-A2 and A3-A3 arrows in FIG.
  • FIG. 5 It is a plane schematic diagram which shows the state after completion
  • FIG. 9 is a schematic cross-sectional view taken along line A1-A1 in FIG. 8;
  • FIG. 9 is a schematic cross-sectional view taken along the line A4-A4 in FIG. 8;
  • It is a plane schematic diagram which shows the state after completion
  • FIG. 12 is a schematic cross-sectional view taken along line A1-A1 in FIG. 11; 11A and 11B are schematic cross-sectional views taken along A2-A2 and A3-A3 arrows in FIG.
  • FIG. 11 It is a plane schematic diagram which shows the state after completion
  • 14A and 14B are schematic cross-sectional views taken along A2-A2 and A3-A3 arrows in FIG. 14;
  • FIG. 15 is a schematic cross-sectional view taken along the line A4-A4 in FIG. 14;
  • FIG. 18 is a schematic cross-sectional view taken along A2-A2 and A3-A3 arrows in FIG. 17;
  • FIG. 18 is a schematic cross-sectional view taken along the line A4-A4 in FIG.
  • FIG. 17 It is a plane schematic diagram which shows the state after completion
  • FIG. 2 is a diagram showing a first modification of the ultrasonic probe 100, and is a schematic cross-sectional view corresponding to the cross section taken along the line AA in FIG. 1.
  • FIG. 2 is a diagram showing a second modification of the ultrasonic probe 100, and is a schematic cross-sectional view corresponding to the cross section taken along the line AA in FIG. 1.
  • FIG. 1 is a schematic plan view showing the schematic configuration of an ultrasonic probe 100, which is one embodiment of the ultrasonic probe of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along the lines BB and CC of FIG.
  • FIG. 4 is a schematic cross-sectional view taken along line DD in FIG.
  • the ultrasonic probe 100 is an image generation device included in an ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus includes a device that generates and records an ultrasonic image while bringing the ultrasonic probe 100 close to the outer surface of the subject, and an ultrasonic probe 100 that is built into the tip of the insertion portion of the endoscope. It includes a device that generates and records an ultrasonic image while being brought close to the organ of the specimen.
  • the right direction of the paper surface of FIG. 1 is described as the front direction Fr of the ultrasonic probe 100, and the left direction of the paper surface of FIG. 1 is described as the rear direction Rr of the ultrasonic probe 100.
  • It is described as the front-rear direction FR. 1 is referred to as the rightward direction R of the ultrasonic probe 100, and the downward direction of the paper surface of FIG. 1 is referred to as the leftward direction L of the ultrasonic probe 100; and described.
  • a direction perpendicular to the front-rear direction FR and the left-right direction LR is referred to as an up-down direction UD.
  • the vertical direction UD the direction from the front to the back of the paper surface of FIG. 1 is described as the downward direction D of the ultrasonic probe 100, and the direction from the back to the front of the paper surface of FIG. do.
  • the ultrasonic probe 100 includes a backing material 50, a front FPC (flexible printed circuit) 60Fr and a rear FPC 60Rr (see FIG. 1) supported by the backing material 50, and supported by the backing material 50 and arranged in the horizontal direction LR.
  • a plurality (eight in the example of FIG. 1) of piezoelectric elements 10 see FIGS. 3 and 4
  • an acoustic matching section 20 provided thereon corresponding to each piezoelectric element 10
  • a first conductor layer 32F and a first conductor layer 32R see FIG.
  • the first conductor layer 32F, the first conductor layer 32R, the second conductor layer 31F, and the second conductor layer 31R are each made of a conductive material such as a metal or a metal compound.
  • the front FPC 60Fr and the rear FPC 60Rr are fixed to the backing material 50 with an adhesive Ad such as epoxy resin while being spaced apart in the front-rear direction FR.
  • an electrode pattern forming region 61Fr is provided at the rear end of the front FPC 60Fr.
  • An electrode pattern formation region 61Rr is provided at the front end of the rear FPC 60Rr.
  • line electrodes 72 corresponding to the piezoelectric elements 10 are arranged in the horizontal direction LR in the electrode pattern forming region 61Fr. Further, as shown in the BB section of FIG. 3, in the electrode pattern forming region 61Rr, line electrodes 71 corresponding to the respective piezoelectric elements 10 are arranged in the horizontal direction LR.
  • each piezoelectric element 10 has a first conductive portion 12 made of a conductive material, a piezoelectric portion 11 made of a piezoelectric material, and a second conductive portion made of a conductive material above a backing material 50. 13 are laminated in sequence.
  • the first conductive portion 12 is fixed to the surface (lower surface) of the piezoelectric portion 11 on the side of the backing material 50 by vapor deposition or the like, and the second conductive portion 12 is attached to the surface (upper surface) of the piezoelectric portion 11 opposite to the backing material 50 side.
  • a portion 13 is fixed by vapor deposition or the like.
  • the first conductive portion 12 functions as a signal electrode of the piezoelectric element 10 .
  • the second conductive portion 13 functions as a ground electrode for taking a reference potential with respect to the potential of the first conductive portion 12 .
  • the first conductive portion 12 of the piezoelectric element 10 is arranged above the line electrode 71 and the line electrode 72 corresponding to the piezoelectric element 10, and is made of conductive material such as silver (not shown). These line electrodes 71 and 72 are electrically connected to each other by a conductive material.
  • the front FPC 60Fr and the rear FPC 60Rr are provided with connectors (not shown) connected to the line electrodes 71 and 72, and these connectors are electrically connected to the main body of the ultrasonic diagnostic apparatus.
  • the potential of the first conductive portion 12 of the piezoelectric element 10 can be controlled or the potential of the first conductive portion 12 of the piezoelectric element 10 can be controlled from the main body of the ultrasonic diagnostic apparatus via the line electrode 71 and the line electrode 72. It is possible to obtain it.
  • the acoustic matching section 20, the first conductor layer 32F, and the first conductor layer 32R are arranged on the second conductor section 13 of the corresponding piezoelectric element 10.
  • the acoustic matching section 20 is fixed onto the second conductive section 13 by adhesion or the like.
  • the first conductor layer 32 ⁇ /b>F is arranged adjacent to the acoustic matching section 20 on the front side of the acoustic matching section 20 .
  • the first conductor layer 32 ⁇ /b>R is arranged adjacent to the acoustic matching section 20 behind the acoustic matching section 20 .
  • the first conductive layer 32F and the first conductive layer 32R corresponding to each piezoelectric element 10 are electrically connected to the second conductive portion 13 of the piezoelectric element 10 and function as ground electrodes.
  • a portion including the piezoelectric element 10 and the corresponding acoustic matching section 20, first conductor layer 32F, and first conductor layer 32R is referred to as a detection unit.
  • a gap is formed between a detection unit and an adjacent detection unit, and these detection units are separated from each other via this gap. As shown in FIGS. 3 and 4, the gaps between the detection units adjacent to each other are filled with an insulating filler 40, thereby fixing the positions of the plurality of detection units.
  • the width D1 of the detection unit in the horizontal direction LR is uniform over the vertical direction UD.
  • the piezoelectric element 10, the acoustic matching section 20, the first conductor layer 32F, and the first conductor layer 32R that constitute the detection unit have the same width in the left-right direction LR.
  • the width D2 of the insulating filler 40 in the horizontal direction LR is uniform over the vertical direction UD.
  • the total value of the width D1 and the width D2 is the arrangement pitch P of the plurality of piezoelectric elements 10 . From the viewpoint of obtaining a high-definition ultrasonic image and suppressing the generation of grating noise, it is effective to reduce the array pitch P.
  • the second conductor layer 31F has an elongated rectangular shape extending in the left-right direction LR. It is arranged across the eight first conductor layers 32F. That is, the second conductor layer 31F is electrically connected to the first conductor layer 32F corresponding to each piezoelectric element 10, and functions as a ground electrode.
  • the second conductor layer 31R has an elongated rectangular shape extending in the left-right direction LR. It is arranged across the eight first conductor layers 32R. That is, the second conductor layer 31R is electrically connected to the first conductor layer 32R corresponding to each piezoelectric element 10, and functions as a ground electrode. The second conductor layer 31F and the second conductor layer 31R are connected to a ground (not shown).
  • a first conductor layer 32F corresponding to the piezoelectric element 10 and a second conductor layer 31F disposed on the first conductor layer 32F are connected to the piezoelectric element 10.
  • a conductive member 30 ⁇ /b>Fr having a multi-layer structure is arranged on the second conductive portion 13 of the piezoelectric element 10 adjacent to the corresponding acoustic matching portion 20 .
  • the first conductor layer 32R corresponding to the piezoelectric element 10 and the second conductor layer 31R arranged on the first conductor layer 32R are adjacent to the acoustic matching section 20 corresponding to the piezoelectric element 10.
  • a conductive member 30Rr having a multi-layer structure is arranged on the second conductive portion 13 of the piezoelectric element 10. As shown in FIG.
  • the backing material 50 supports the plurality of piezoelectric elements 10 and absorbs ultrasonic waves emitted downward D from the piezoelectric elements 10 .
  • the backing material 50 is made of, for example, a rubber material such as ferrite rubber.
  • the piezoelectric body portion 11 of the piezoelectric element 10 is made of a piezoelectric material.
  • piezoelectric materials include piezoelectric ceramics such as PZT (lead zirconate titanate), and polymer materials such as PVDF (polyvinylidene fluoride).
  • the acoustic matching unit 20 is for matching the acoustic impedance between the piezoelectric body 11 of the piezoelectric element 10 and the subject to facilitate the incidence of ultrasonic waves into the subject.
  • the acoustic matching section 20 can be made of a material having an acoustic impedance smaller than the acoustic impedance of the piezoelectric section 11 and larger than the acoustic impedance of the subject.
  • the acoustic matching section 20 can be formed by laminating a plurality of layers made of such materials.
  • the piezoelectric A layer structure is formed in which the acoustic impedance decreases stepwise from the body part 11 toward the subject.
  • the first conductor layer 32F, the first conductor layer 32R, the second conductor layer 31F, and the second conductor layer 31R are not limited as long as they are conductive materials, but are made of silver. is preferred.
  • the first conductor layer 32F, the first conductor layer 32R, the second conductor layer 31F, and the second conductor layer 31R are each smaller than the acoustic impedance of the piezoelectric section 11 and higher than the acoustic impedance of the subject. It is preferably made of a conductive material with a large value of acoustic impedance.
  • the insulating filler 40 is made of an insulating resin material or the like.
  • resin materials include silicone resins and epoxy resins.
  • the ultrasonic probe 100 may have an acoustic lens fixed to the upper surfaces of the conductive member 30Fr, the conductive member 30Rr, the acoustic matching section 20, and the insulating filler 40.
  • a pulse-like or continuous-wave voltage is applied between the first conductive portions 12 of the plurality of piezoelectric elements 10 and the conductive members 30Rr and 30Fr connected to the second conductive portions 13 of the plurality of piezoelectric elements 10, respectively.
  • each piezoelectric body portion 11 expands and contracts to generate a pulse-like or continuous wave-like ultrasonic wave.
  • these ultrasonic waves enter the subject through the acoustic matching section 20, they are combined to form an ultrasonic beam and propagate within the subject.
  • ultrasonic echoes propagated and reflected in the subject are incident on the respective piezoelectric bodies 11 via the acoustic matching section 20, the respective piezoelectric bodies 11 are deformed.
  • a signal voltage is generated between the conductive portion 12 and the second conductive portion 13 .
  • the signal voltages generated in the plurality of piezoelectric elements 10 are extracted from between the first conductive portion 12 of each piezoelectric element 10 and the conductive members 30Fr and 30Rr, and received as reception signals.
  • An ultrasound image is generated.
  • first conductor layer 32R and first conductor layer 32F As described above, it is effective to reduce the array pitch P from the viewpoint of obtaining a high-definition ultrasonic image and suppressing the generation of grating noise.
  • the gaps between the detection units are formed by cutting using a dicing saw, which will be described later in the manufacturing process.
  • the minimum width of a dicing blade mounted on a dicing saw is about 15 ⁇ m. That is, since the width D2 shown in FIGS. 3 and 4 cannot be made smaller than 15 ⁇ m, it is necessary to reduce the width D1 of the detection units in order to reduce the arrangement pitch P.
  • the width D1 becomes smaller, for example, the adhesion area between the piezoelectric element 10 and the acoustic matching section 20 and the adhesion area between the piezoelectric element 10 and the backing material 50 become smaller. Therefore, it is effective to prevent the ultrasonic probe 100 from being placed in a high-temperature environment during the manufacturing process in order to alleviate the thermal strain caused by the difference in the coefficient of thermal expansion between the members forming the detection unit. Also, in order to ensure the performance of the ultrasonic probe 100, it is important not to expose the ultrasonic probe 100 to a high-temperature environment during the manufacturing process.
  • the hardness of the first conductor layer 32R and the first conductor layer 32F in the detection unit is equal to that of the acoustic matching part. 20 and the hardness of the piezoelectric element 10 in some cases.
  • the first conductor layer 32R and the first conductor layer 32F may be smaller in volume than the acoustic matching section 20 and the piezoelectric element 10, respectively. Therefore, when the width D1 becomes smaller, the bonding area between the first conductor layers 32R and 32F and other components becomes smaller.
  • the bonding area between the first conductor layer 32R and the first conductor layer 32F and other components can be reduced, and the first conductor layer 32R and the first conductor can be If the hardness of the layer 32F becomes small, the first conductor layer 32R and the first conductor layer 32F will be affected by the force acting from the dicing blade and the cooling and cutting waste removal in the dicing process for forming the detection unit. There is a possibility that the acoustic matching section 20 and the piezoelectric element 10 may also fall down due to being dragged by the water flow.
  • the thickness (Fig. 3, the ratio (HF/D1) of the thickness HF) is set to 1.6 or less (in other words, the thickness HF is set to 1.6 times or less than the width D1), thereby reducing the width D1. It was found that even if the hardness of the first conductor layer 32F is reduced, the first conductor layer 32F can be prevented from tilting in the left-right direction LR.
  • the ratio (HF/D1) 1.6 or less, even if the width D1 is set to a small value of 25 ⁇ m or more and less than 40 ⁇ m (equivalent to the ultrasonic probe 100 capable of driving from 20 MHz to 23 MHz), , the tilting of the first conductor layer 32F in the left-right direction LR can be suppressed.
  • the Shore D hardness of the first conductor layer 32F (JIS (Japanese Industrial Standards) Z 2246 D type testing machine (Durometer Type D ) is in the range of 80 or more and 85 or less, that is, even if the ultrasonic probe 100 is not placed in a high-temperature environment during the manufacturing process, the left and right sides of the first conductor layer 32F It was found that tilting in the direction LR can be suppressed.
  • the thickness of the first conductor layer 32R which is the length in the vertical direction UD (Fig. 3
  • the ratio (HR/D1) of the thickness HR shown in 1 to 1.6 or less in other words, setting the thickness HR to 1.6 times or less than the width D1
  • the width D1 is reduced
  • the ratio (HR/D1) is set to 1.6 or less, even if the width D1 is set to a small value of 25 ⁇ m or more and less than 40 ⁇ m (equivalent to the ultrasonic probe 100 capable of driving from 20 MHz to 23 MHz), , the tilting of the first conductor layer 32R in the left-right direction LR can be suppressed.
  • the ratio (HR/D1) is 1.6 or less, even if the Shore D hardness of the first conductor layer 32R is in the range of 80 or more and 85 or less, that is, the ultrasonic probe 100 is It has been found that even if the first conductor layer 32R is not placed in a high-temperature environment, it is possible to suppress the tilting of the first conductor layer 32R in the left-right direction LR.
  • the Shore D hardness of the acoustic matching portion 20 is greater than 85.
  • each of the first conductor layer 32F and the first conductor layer 32R is made of a heat-cured silver paste from the viewpoint of conductivity and ease of manufacture.
  • a heat-hardened silver paste for example, a silver paste "LOCTITE ABLESTIK 2902" manufactured by Loctite can be preferably used, but the paste is not limited to this.
  • This silver paste has a Shore D hardness of 80 when firing at 65° C. for 2 hours is employed as a firing condition for obtaining sufficient conductivity.
  • the ultrasonic probe 100 described above is manufactured by sequentially performing the following first to seventh steps.
  • the manufacturing process of the ultrasonic probe 100 will be described below with reference to FIGS. 5 to 20.
  • FIG. In the following, an outline of each step is first described, and then examples of each step are described.
  • FIG. 5 is a schematic plan view showing a state after completion of the first step.
  • FIG. 6 is a schematic cross-sectional view taken along line A1-A1 in FIG.
  • FIG. 7 is a schematic cross-sectional view taken along A2-A2 and A3-A3 arrows in FIG.
  • the piezoelectric element 10S is a base of the plurality of piezoelectric elements 10, and as shown in FIGS. 6 and 7, is a laminate obtained by laminating a first conductive portion 12S, a piezoelectric portion 11S, and a second conductive portion 13S. is.
  • "C91H" manufactured by Fuji Ceramics Co., Ltd. was used as the piezoelectric material, and this piezoelectric material was polished to a thickness of 60 ⁇ m using a polishing sheet to form the piezoelectric body portion 11S of the piezoelectric element 10S.
  • a first conductive portion 12S made of a titanium film and a gold film was formed on one surface of the piezoelectric portion 11S by sputtering deposition.
  • a second conductive portion 13S made of a titanium film and a gold film was formed on the other surface of the piezoelectric portion 11S by sputtering vapor deposition. After trimming the piezoelectric element 10S thus formed to a desired size using a dicing saw, ultrasonic cleaning and plasma cleaning were performed to complete the sheet-like piezoelectric element 10S.
  • silver paste "LOCTITE ABLESTIK 2902" manufactured by LOCTITE was applied using a dispenser to each of the electrode pattern formation region 61Fr of the front FPC board 60Fr and the electrode pattern formation region 61Rr of the rear FPC board 60Rr.
  • the piezoelectric element 10S is placed on the silver paste in a state in which the first conductive portion 12S is in contact with the silver paste, and the silver paste is cured by heat treatment (at 65° C. for 2 hours).
  • the FPC board 60Fr and the rear FPC board 60Rr were joined.
  • a sheet-like acoustic matching portion 20S perpendicular to the up-down direction UD is formed in the central portion of the upper surface of the piezoelectric element 10S shown in FIG. 5 in the front-rear direction FR.
  • 9 is a schematic cross-sectional view taken along line A1-A1 in FIG. 8.
  • FIG. 10 is a schematic cross-sectional view taken along the line A4-A4 in FIG. 8.
  • FIG. The example of FIG. 10 shows the case where the acoustic matching section 20S is a laminate of a first layer 21, a second layer 22, and a third layer 23. As shown in FIG.
  • a first layer 21 having a thickness of 25 ⁇ m was formed from a mixture of epoxy resin “Epotek-330” manufactured by Epoxy Technology and iron powder having a particle size of 5 ⁇ m.
  • a second layer 22 having a thickness of 30 ⁇ m was formed from a mixture of epoxy resin “Epotek-330” manufactured by Epoxy Technology and alumina powder having a particle size of 5 ⁇ m.
  • a third layer 23 having a thickness of 20 ⁇ m was formed from epoxy resin “Epotek-330” manufactured by Epoxy Technology. After the first step, the upper surface of the piezoelectric element 10S is coated with D.I. E. R.
  • the first layer 21 is placed thereon, and the first layer 21 is coated with D.I. E. R. (registered trademark) 332, the second layer 22 is placed thereon, and the second layer 22 is coated with D.I. E. R. (registered trademark) 332 is applied, the third layer 23 is placed thereon, and then pressure is applied from the third layer 23 side to form the acoustic matching section 20S having a three-layer structure, and the acoustic matching section 20S and the piezoelectric Adhesion with the element 10S was performed.
  • a conductive material is applied to the area adjacent to the front side of the acoustic matching section 20S on the upper surface of the piezoelectric element 10S in the state shown in FIG. 11, a first conductor layer 32FS extending in the left-right direction LR and a first conductor layer 32FS extending in the left-right direction LR are formed by applying a conductive material to the surface and hardening the conductive material by heat treatment.
  • 32RS. 12 is a schematic cross-sectional view taken along line A1-A1 in FIG. 11.
  • FIG. 13A and 13B are schematic cross-sectional views taken along A2-A2 and A3-A3 arrows in FIG.
  • the thickness HR which is the length in the vertical direction UD of the first conductor layer 32RS shown in FIG.
  • the first conductor layer 32RS is formed so as to be Also, the thickness HF, which is the length in the vertical direction UD of the first conductor layer 32FS shown in FIG. , forming the first conductor layer 32FS.
  • a silver paste "LOCTITE ABLESTIK 2902" manufactured by LOCTITE was applied using a dispenser.
  • a dispenser was used to apply a silver paste “LOCTITE ABLESTIK 2902” manufactured by LOCTITE, next to the rear side of the acoustic matching portion 20S in the piezoelectric element 10S after the second step. After that, the silver paste was cured by heat treatment (at 65° C. for 2 hours) to form the first conductor layer 32FS and the first conductor layer 32RS.
  • FIG. 14 is a schematic plan view showing a state after completion of the fourth step. As shown in FIG. 14, by moving the dicing blade from the rearward direction Rr toward the forward direction Fr, the piezoelectric element in which the acoustic matching portion 20S, the first conductor layer 32FS, and the first conductor layer 32RS are formed. A 10S cut is performed.
  • FIG. 15 is a schematic cross-sectional view taken along A2-A2 and A3-A3 arrows in FIG. 16 is a schematic cross-sectional view taken along the line A4-A4 in FIG. 14.
  • FIG. 15 and 16 the cutting area 40a reaches the backing material 50. As shown in FIGS.
  • the piezoelectric element 10S on which the acoustic matching section 20S, the first conductor layer 32FS, and the first conductor layer 32RS are formed in the third step is cut into a plurality of pieces in the left-right direction LR to form 256 piezoelectric elements.
  • a device 10 was formed. Dicing conditions were as follows. Dicing conditions: Pitch (arrangement pitch P in FIG.
  • FIG. 17 is a schematic plan view showing a state after completion of the fifth step.
  • FIG. 18 is a schematic cross-sectional view taken along A2-A2 and A3-A3 arrows in FIG. 19 is a schematic cross-sectional view taken along the line A4-A4 in FIG. 17.
  • FIG. (Example) The cutting region 40a formed in the fourth step was filled with silicone resin "RTV630" manufactured by Momentive. By evacuating the inside of the vacuum chamber using a rotary pump for about 10 minutes, the inside of the cutting area 40a was filled without air bubbles.
  • the thickness of the first conductive layer 32F and the first conductive layer 32R in the vertical direction UD does not substantially change.
  • the upper surfaces of the conductor layer 32F and the first conductor layer 32R are very slightly scraped. That is, even after the sixth step, the thicknesses of the first conductor layers 32F and 32R are substantially the same as after the third step (1.6 times or less of the width D1). ). Also, this sixth step is not essential and may be omitted. (Example)
  • the upper surfaces of the first conductor layer 32F and the first conductor layer 32R after the fifth step were cut by the dicing saw used in the fourth step to activate them.
  • a second conductor layer 31F is formed on the upper surfaces of the plurality of activated first conductor layers 32F, straddling them.
  • a second conductor layer 31R is formed on the upper surfaces of the plurality of activated first conductor layers 32R, straddling them.
  • a silver paste "LOCTITE ABLESTIK 2902" manufactured by LOCTITE was applied to the upper surfaces of the plurality of activated first conductor layers 32F using a dispenser.
  • a silver paste "LOCTITE ABLESTIK 2902" manufactured by LOCTITE was applied to the upper surfaces of the plurality of activated first conductor layers 32R using a dispenser.
  • the silver paste was cured by heat treatment (at 65° C. for 2 hours) to form the second conductor layer 31F and the second conductor layer 31R.
  • the second conductor layer 31F and the second conductor layer 31F are separated from the second conductor layer 31F by the dicing saw used in the fourth step so that the upper surfaces of the second conductor layer 31F and the second conductor layer 31R are aligned with the upper surface of the acoustic matching section 20.
  • the upper surface of the body layer 31R was cut.
  • FIG. 21 is a view showing a first modified example of the ultrasonic probe 100, and is a schematic cross-sectional view corresponding to the cross section taken along line AA in FIG.
  • the first conductor layer 32R of the conductive member 30Rr having a multilayer structure is removed, and only the second conductor layer 31R is formed on the rear side of the acoustic matching section 20. It is the same as FIG. 2 except for points.
  • the second conductor layer 31R may be formed on the rear side of the acoustic matching section 20 so as to straddle the plurality of piezoelectric elements 10 in the seventh step.
  • FIG. 22 is a diagram showing a second modification of the ultrasonic probe 100, and is a schematic cross-sectional view corresponding to the cross section taken along the line AA in FIG.
  • the modification shown in FIG. 22 is similar to that shown in FIG. 2 except that the conductive member 30Rr with a multilayer structure is removed and the acoustic matching section 20 is formed up to the region where the conductive member 30Rr with a multilayer structure was formed. is the same as When manufacturing the ultrasonic probe of the modification shown in FIG. 22, in the second step (FIG.
  • the acoustic matching section 20S is formed up to the region where the first conductor layer 32RS was formed, and then , forming only the first conductor layer 32FS in the third step (FIG. 11), then performing the fourth step (FIG. 14) and the fifth step (FIG. 17), and then in the seventh step, forming the acoustic matching portion
  • a second conductor layer 31F may be formed on the front side of 20 .
  • FIG. 23 is a diagram showing verification results of the ultrasonic probe manufactured according to the embodiment of the manufacturing process described above. The contents of Examples 1 to 4, Reference Examples 1 and 2, and Comparative Examples 1 and 2 shown in FIG. 23 are described below.
  • Example 1 An ultrasonic probe corresponding to 23 MHz driving having the configuration shown in FIGS. 1 to 4 was manufactured.
  • the total number of piezoelectric elements 10 was 256, and the width D1 of the piezoelectric elements 10 was 25 ⁇ m.
  • the ratio (HR/D1) of the first conductor layer 32R formed in the third step is 0.4, and the ratio (HF/D1) of the first conductor layer 32F formed in the third step is 0.4. did.
  • Example 2 An ultrasonic probe was fabricated in the same manner as in Example 1, except that the ratio (HF/D1) of the first conductor layer 32F formed in the third step was changed to 1.4.
  • Example 3 An ultrasonic probe having a modified configuration shown in FIG. 22 was manufactured.
  • the total number of piezoelectric elements 10 is 256, and the width D1 of the piezoelectric elements 10 is 25 ⁇ m.
  • the ratio (HF/D1) of the first conductor layer 32F formed in the third step was set to 1.4.
  • Example 4 An ultrasonic probe was fabricated in the same manner as in Example 1, except that the ratio (HF/D1) of the first conductor layer 32F formed in the third step was changed to 1.6.
  • the "tilt/tilt rate” shown in FIG. 23 indicates the ratio of the detection units that have fallen or tilted in the left-right direction among the 256 detection units.
  • "OK” in the evaluation shown in FIG. 23 indicates that the detection unit does not fall or tilt at all, and that the product is a good product with no problem in performance.
  • the evaluation "NG” shown in FIG. 23 indicates that the detection unit is tilted or tilted and cannot be used as a product.
  • An ultrasonic probe having a plurality of piezoelectric elements (piezoelectric elements 10) arranged in a first direction (horizontal direction LR), a support member (backing material 50) that supports the plurality of piezoelectric elements; an acoustic matching section (acoustic matching section 20) arranged on the plurality of piezoelectric elements; a conductive member (conductive member 30Fr, conductive member 30Rr) arranged on the plurality of piezoelectric elements adjacent to the acoustic matching portion, In each of the plurality of piezoelectric elements, a first conductive portion (first conductive portion 12), a piezoelectric body portion (piezoelectric body portion 11), and a second conductive portion (second conductive portion 13) are sequentially arranged above the support member.
  • the conductive member includes a conductive layer having a multi-layer structure disposed on at least one end side in a second direction (front-rear direction FR) that intersects the first direction of the acoustic matching portion,
  • the conductor layers having the multilayer structure include a plurality of first conductor layers (first conductor layers 32F and 32R) respectively bonded to the second conductor portions of the piezoelectric element, and the plurality of A second conductor layer (second conductor layer 31F, second conductor layer 31R) that is laminated on the first conductor layer of and electrically connects the plurality of first conductor layers,
  • the ultrasonic probe wherein the ratio of the thickness (HF, HR) to the width (D1), which is the length in the first direction, of the first conductor layer is 1.6 or less.
  • An ultrasonic diagnostic apparatus comprising the ultrasonic probe according to any one of (1) to (6).
  • An ultrasonic probe having a plurality of piezoelectric elements (piezoelectric elements 10) arranged in a first direction (horizontal direction LR), and having a predetermined value (D1) as a width, which is the length of the piezoelectric element in the first direction.
  • a direction intersecting the first direction is defined as a second direction (front-rear direction FR), a direction perpendicular to the first direction and the second direction is defined as a third direction (vertical direction UD), A sheet that is perpendicular to the third direction and in which a first conductive portion (first conductive portion 12S), a piezoelectric portion (piezoelectric portion 11S), and a second conductive portion (second conductive portion 13S) are sequentially laminated.
  • a step of fixing the laminated body (piezoelectric element 10S) to the support member (backing material 50) (first step, FIG.
  • a step of forming an acoustic matching portion (acoustic matching portion 20S) in a partial region in the second direction of the upper surface of the laminate opposite to the supporting member side (second step, FIG. 8); , A first conductor having a thickness (HF, HR) in the third direction that is 1.6 times or less than the default value on at least one end side of the acoustic matching portion in the second direction on the upper surface of the laminate.
  • a step of forming a layer (first conductor layer 32FS, first conductor layer 32RS) (third step, FIG.
  • a step of dividing the laminate in which the acoustic matching portion and the first conductor layer are formed into a plurality of pieces in the first direction by cutting to form the plurality of piezoelectric elements (fourth step, FIG. 14).
  • a second conductor layer (second conductor a step of forming a layer 31F and a second conductive layer 31R (seventh step, FIG. 20).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

高周波駆動に対応できる超音波プローブとその製造方法及び超音波診断装置を提供する。 超音波プローブ(100)は、複数の圧電素子(10)の上に配置された音響整合部(20)と、音響整合部(20)に隣接して複数の圧電素子(10)の上に配置された導電部材(30Fr)と、を備え、導電部材(30Fr)は、音響整合部(20)の前後方向FRの前側に配置された複数層構造の導電体層を含み、この複数層構造の導電体層は、圧電素子(10)の第2導電部(13)にそれぞれ接合された複数の第1導電体層(32F)と、複数の第1導電体層(32F)の上に積層され、複数の第1導電体層(32F)を電気的に接続する第2導電体層(31F)を含み、第1導電体層(32F)は、左右方向LRの幅D1に対する上下方向UDの厚さHFの比が1.6以下である。

Description

超音波プローブ、超音波診断装置、及び超音波プローブの製造方法
 本発明は、超音波プローブ、超音波診断装置、及び超音波プローブの製造方法に関する。
 医療分野において、超音波画像を用いた超音波診断装置が実用化されている。この種の超音波診断装置は、超音波プローブから被検体に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波プローブで受信し、その受信信号を電気的に処理することにより超音波画像が生成される。
 超音波診断の分野では、その観察対象の広がりに伴い、これまで以上に高精細な超音波画像のニーズが高まっている。高精細な超音波画像の取得には、高周波の超音波の送受信が必要であるが、超音波周波数に応じて圧電素子の素子ピッチを細かくしないと、グレーティングローブの発生により、超音波画像の品質に影響を与える。
 特許文献1には、圧電素子の素子ピッチを細かくした場合の感度低下を抑制することを目的とする超音波探触子が記載されている。
国際公開第2018/070159号
 特許文献1には、圧電素子の駆動周波数が15MHzを超える場合、素子ピッチが150μm以下となることが好ましい旨記載されている。しかし、更なる高周波駆動については言及されていない。
 本発明の目的は、高周波駆動に対応できる超音波プローブとその製造方法及び超音波診断装置を提供することにある。
 本発明の一態様の超音波プローブは、第1方向に配列された複数の圧電素子を有する超音波プローブであって、上記複数の圧電素子を支持する支持部材と、上記複数の圧電素子の上に配置された音響整合部と、上記音響整合部に隣接して上記複数の圧電素子の上に配置された導電部材と、を備え、上記複数の圧電素子は、それぞれ、上記支持部材の上方に第1導電部と圧電体部と第2導電部が順次積層された積層体により構成され、上記導電部材は、上記音響整合部の上記第1方向と交差する方向である第2方向の少なくとも一端側に配置された複数層構造の導電体層を含み、上記複数層構造の導電体層は、上記圧電素子の上記第2導電部にそれぞれ接合された複数の第1導電体層と、上記複数の第1導電体層の上に積層され、上記複数の第1導電体層を電気的に接続する第2導電体層を含み、上記第1導電体層は、上記第1方向の長さである幅に対する厚さの比が1.6以下であるものである。
 本発明の一態様の超音波診断装置は、上記超音波プローブを備えるものである。
 本発明の一態様の超音波プローブの製造方法は、第1方向に配列された複数の圧電素子を有し、上記圧電素子の上記第1方向の長さである幅が既定値である超音波プローブの製造方法であって、上記第1方向と交差する方向を第2方向とし、上記第1方向と上記第2方向に垂直な方向を第3方向とし、上記第3方向に垂直であり、且つ、第1導電部と圧電体部と第2導電部が順次積層されたシート状の積層体を支持部材に固着する工程と、上記積層体の上記支持部材側と反対側の面である上面の上記第2方向の一部の領域に、音響整合部を形成する工程と、上記積層体の上記上面における、上記音響整合部の上記第2方向の少なくとも一端側に、上記第3方向の厚さが上記既定値の1.6倍以下の第1導電体層を形成する工程と、上記音響整合部及び上記第1導電体層が形成された上記積層体を、切削によって上記第1方向に複数に分割して、上記複数の圧電素子を形成する工程と、上記複数に分割された上記第1導電体層の上にその複数の第1導電体層に跨る第2導電体層を形成する工程と、を備えるものである。
 本発明によれば、高周波駆動に対応できる超音波プローブとその製造方法及び超音波診断装置を提供できる。
本発明の超音波プローブの一実施形態である超音波プローブ100の概略構成を示す平面模式図である。 図1のA-A矢視の断面模式図である。 図1のB-B矢視及びC-C矢視の断面模式図である。 図1のD-D矢視の断面模式図である。 第一工程の終了後の状態を示す平面模式図である。 図5のA1-A1矢視の断面模式図である。 図5のA2-A2矢視及びA3-A3矢視の断面模式図である。 第一工程の次の第二工程の終了後の状態を示す平面模式図である。 図8のA1-A1矢視の断面模式図である。 図8のA4-A4矢視の断面模式図である。 第二工程の次の第三工程の終了後の状態を示す平面模式図である。 図11のA1-A1矢視の断面模式図である。 図11のA2-A2矢視及びA3-A3矢視の断面模式図である。 第三工程の次の第四工程の終了後の状態を示す平面模式図である。 図14のA2-A2矢視及びA3-A3矢視の断面模式図である。 図14のA4-A4矢視の断面模式図である。 第四工程の次の第五工程の終了後の状態を示す平面模式図である。 図17のA2-A2矢視及びA3-A3矢視の断面模式図である。 図17のA4-A4矢視の断面模式図である。 第五工程の後に行われる第七工程の終了後の状態を示す平面模式図である。 超音波プローブ100の第一変形例を示す図であり、図1のA-A矢視の断面に対応する断面模式図である。 超音波プローブ100の第二変形例を示す図であり、図1のA-A矢視の断面に対応する断面模式図である。 超音波プローブの検証結果を示す図である。
 図1は、本発明の超音波プローブの一実施形態である超音波プローブ100の概略構成を示す平面模式図である。図2は、図1のA-A矢視の断面模式図である。図3は、図1のB-B矢視及びC-C矢視の断面模式図である。図4は、図1のD-D矢視の断面模式図である。超音波プローブ100は、超音波診断装置に含まれる画像生成用のデバイスである。超音波診断装置には、被検体の外表面に超音波プローブ100を近接させながら超音波画像を生成して記録する装置と、内視鏡の挿入部先端に内蔵された超音波プローブ100を被検体の臓器に近接させながら超音波画像を生成して記録する装置等が含まれる。
 本明細書では、図1における紙面の右方向を超音波プローブ100の前方向Frと記載し、図1における紙面の左方向を超音波プローブ100の後方向Rrと記載し、これらを総称して前後方向FRと記載する。また、図1における紙面の上方向を超音波プローブ100の右方向Rと記載し、図1における紙面の下方向を超音波プローブ100の左方向Lと記載し、これらを総称して左右方向LRと記載する。また、前後方向FR及び左右方向LRに垂直な方向を上下方向UDと記載する。上下方向UDのうち、図1の紙面手前から奥に向かう方向を超音波プローブ100の下方向Dと記載し、図1の紙面奥から手前に向かう方向を超音波プローブ100の上方向Uと記載する。
[超音波プローブの全体構成]
 超音波プローブ100は、バッキング材50と、バッキング材50に支持された前側FPC(Flexible printed circuits)60Fr及び後側FPC60Rr(図1参照)と、バッキング材50に支持され且つ左右方向LRに配列された複数(図1の例では8個)の圧電素子10(図3及び図4参照)と、各圧電素子10に対応してその上に設けられた音響整合部20(図4参照)と、各圧電素子10に対応してその上に設けられた第1導電体層32F及び第1導電体層32R(図3参照)と、全ての圧電素子10に共通して設けられた第2導電体層31F及び第2導電体層31R(図1及び図3参照)と、を備える。第1導電体層32F、第1導電体層32R、第2導電体層31F、及び第2導電体層31Rは、それぞれ、金属又は金属化合物等の導電性材料により構成されている。
 図1及び図2に示すように、前側FPC60Frと後側FPC60Rrは、前後方向FRに間隔を開けて並んだ状態にて、エポキシ樹脂等の接着剤Adによってバッキング材50に固着されている。図1に示すように、前側FPC60Frの後端部には、電極パターン形成領域61Frが設けられている。また、後側FPC60Rrの前端部には、電極パターン形成領域61Rrが設けられている。
 図3のC-C断面に示すように、電極パターン形成領域61Frには、各圧電素子10と対応するライン電極72が左右方向LRに配列されている。また、図3のB-B断面に示すように、電極パターン形成領域61Rrには、各圧電素子10と対応するライン電極71が左右方向LRに配列されている。
 図3及び図4に示すように、複数の圧電素子10は、バッキング材50の上方に、既定の配列ピッチPで左右方向LRに配列されている。各圧電素子10は、バッキング材50の上方に、導電性材料により構成された第1導電部12と、圧電材料により構成された圧電体部11と、導電性材料により構成された第2導電部13とが順次積層された積層体により構成されている。圧電体部11のバッキング材50側の面(下面)には第1導電部12が蒸着等によって固着され、圧電体部11のバッキング材50側と反対側の面(上面)には第2導電部13が蒸着等によって固着されている。第1導電部12は、圧電素子10の信号電極として機能する。第2導電部13は、第1導電部12の電位に対する基準電位をとるためのグランド用電極として機能する。
 図2及び図3に示すように、圧電素子10の第1導電部12は、この圧電素子10に対応するライン電極71及びライン電極72の上方に配置されており、図示省略の銀等の導電性材料によって、これらライン電極71及びライン電極72と電気的に接続されている。前側FPC60Frと後側FPC60Rrには、ライン電極71及びライン電極72と接続された図示省略のコネクタが設けられており、このコネクタと超音波診断装置の本体とが電気的に接続される。したがって、超音波診断装置の本体から、ライン電極71及びライン電極72を経由して、圧電素子10の第1導電部12の電位を制御したり、圧電素子10の第1導電部12の電位を取得したりすることができるようになっている。
 図2に示すように、音響整合部20、第1導電体層32F、及び第1導電体層32Rは、対応する圧電素子10の第2導電部13の上に配置されている。音響整合部20は、第2導電部13の上に接着などによって固着されている。第1導電体層32Fは、音響整合部20の前側に音響整合部20に隣接して配置されている。第1導電体層32Rは、音響整合部20の後側に音響整合部20に隣接して配置されている。各圧電素子10に対応する第1導電体層32F及び第1導電体層32Rは、その圧電素子10の第2導電部13と電気的に接続されており、グランド用電極として機能する。
 圧電素子10と、これに対応する音響整合部20、第1導電体層32F、及び第1導電体層32Rと、を含む部分を検知ユニットと記載する。検知ユニットと、隣り合う検知ユニットの間には隙間が形成され、この隙間を介してこれらの検知ユニットが互いに分離されている。そして、図3及び図4に示されるように、互いに隣り合う検知ユニットの間の隙間には、絶縁性充填材40が充填されており、これにより複数の検知ユニットの位置が固定されている。
 検知ユニットの左右方向LRの幅D1は上下方向UDにわたって均一である。換言すると、検知ユニットを構成する圧電素子10、音響整合部20、第1導電体層32F、及び第1導電体層32Rの各々の左右方向LRの幅は同じである。絶縁性充填材40の左右方向LRの幅D2は上下方向UDにわたって均一である。幅D1と幅D2の合計値が、複数の圧電素子10の配列ピッチPとなる。高精細の超音波画像の取得とグレーティングノイズの発生抑制の観点から、この配列ピッチPを小さくすることが有効である。
 図1及び図3に示すように、第2導電体層31Fは、左右方向LRに延びる細長い矩形状であり、各圧電素子10の上に配置された第1導電体層32Fの上に、これら8個の第1導電体層32Fに跨って配置されている。すなわち、第2導電体層31Fは、各圧電素子10に対応する第1導電体層32Fと電気的に接続されており、グランド用電極として機能する。
 図1及び図3に示すように、第2導電体層31Rは、左右方向LRに延びる細長い矩形状であり、各圧電素子10の上に配置された第1導電体層32Rの上に、これら8個の第1導電体層32Rに跨って配置されている。すなわち、第2導電体層31Rは、各圧電素子10に対応する第1導電体層32Rと電気的に接続されており、グランド用電極として機能する。第2導電体層31Fと第2導電体層31Rは、図示省略のグランドに接続される。
 図1及び図2に示したように、圧電素子10に対応する第1導電体層32Fとこの第1導電体層32Fの上に配置された第2導電体層31Fは、その圧電素子10に対応する音響整合部20に隣接してその圧電素子10の第2導電部13の上に配置された複数層構造の導電部材30Frを構成している。また、圧電素子10に対応する第1導電体層32Rとこの第1導電体層32Rの上に配置された第2導電体層31Rは、その圧電素子10に対応する音響整合部20に隣接してその圧電素子10の第2導電部13の上に配置された複数層構造の導電部材30Rrを構成している。
[超音波プローブの各構成要素の詳細]
 バッキング材50は、複数の圧電素子10を支持すると共に、圧電素子10から下方向Dへ放出される超音波を吸収するものである。バッキング材50は、例えばフェライトゴム等のゴム材により形成される。
 圧電素子10の圧電体部11は、圧電材料により形成される。圧電材料としては、例えば、PZT(チタン酸ジルコン酸鉛)等の圧電セラミクス、または、PVDF(ポリフッ化ビニリデン)等の高分子材料等が挙げられる。
 音響整合部20は、圧電素子10の圧電体部11と被検体との音響インピーダンスを整合して被検体内に超音波を入射しやすくするためのものである。音響整合部20は、圧電体部11の音響インピーダンスより小さく、且つ、被検体の音響インピーダンスより大きい値の音響インピーダンスを有する材料により形成することができる。また、このような材料により形成された複数の層を積層することにより音響整合部20を形成することもできる。例えば、圧電素子10の第2導電部13の上に配置された音響整合層の上に、この音響整合層よりも低い音響インピーダンスを有する材料により形成された音響整合層を積層することで、圧電体部11から被検体に向かって、段階的に音響インピーダンスが小さくなる層構造が形成される。
 第1導電体層32F、第1導電体層32R、第2導電体層31F、及び第2導電体層31Rは、それぞれ、導電性材料であれば限定はされないが、銀により構成されていることが好ましい。第1導電体層32F、第1導電体層32R、第2導電体層31F、及び第2導電体層31Rは、それぞれ、圧電体部11の音響インピーダンスより小さく、且つ、被検体の音響インピーダンスより大きい値の音響インピーダンスを有する導電材料により形成されることが好ましい。
 絶縁性充填材40は、絶縁性を有する樹脂材料等により形成される。樹脂材料としては、例えば、シリコーン樹脂あるいはエポキシ樹脂等が挙げられる。
 図1では図示省略されているが、超音波プローブ100には、導電部材30Fr、導電部材30Rr、音響整合部20、及び絶縁性充填材40の上面に、音響レンズが固着される場合がある。
[超音波プローブの動作]
 複数の圧電素子10の第1導電部12と、複数の圧電素子10の第2導電部13に接続された導電部材30Rr及び導電部材30Frとの間に、パルス状あるいは連続波状の電圧をそれぞれ印加することで、それぞれの圧電体部11が伸縮してパルス状あるいは連続波状の超音波が発生する。これらの超音波は、音響整合部20を介して被検体内に入射されると、互いに合成されて超音波ビームを形成し、被検体内を伝搬する。被検体内を伝搬して反射した超音波エコーが、音響整合部20を介してそれぞれの圧電体部11に入射されると、それぞれの圧電体部11が変形し、この変形に応じて第1導電部12と第2導電部13の間に信号電圧が発生する。複数の圧電素子10において発生した信号電圧は、それぞれの圧電素子10の第1導電部12と導電部材30Fr及び導電部材30Rrの間から取り出されて、受信信号として受信され、この受信信号を基に超音波画像が生成される。
[第1導電体層32R及び第1導電体層32Fの好ましい形態]
 前述したように、高精細の超音波画像の取得とグレーティングノイズの発生抑制の観点から、配列ピッチPを小さくすることが有効である。上記の検知ユニット同士の隙間は、後述の製造工程において説明するダイシングソーを用いた切削によって形成される。現状、ダイシングソーに搭載されるダイシングブレードの幅は15μm程度が下限である。すなわち、図3及び図4に示した幅D2を15μmよりも小さくできない以上、配列ピッチPを小さくするためには、検知ユニットの幅D1を小さくする必要がある。
 幅D1が小さくなると、例えば、圧電素子10と音響整合部20との接着面積及び圧電素子10とバッキング材50との接着面積等が小さくなる。そのため、検知ユニットを構成する部材間の熱膨張係数の違いによる熱ひずみを緩和するために、超音波プローブ100が製造過程において高温環境下に置かれないようにすることが有効となる。また、超音波プローブ100の性能を確保するためにも、製造工程中に超音波プローブ100が高温環境に晒されないようにすることが重要である。このように超音波プローブ100が製造過程において高温環境下に置かれないようにした場合には、検知ユニットのうち、第1導電体層32R及び第1導電体層32Fの硬度が、音響整合部20及び圧電素子10の硬度よりも小さくなる場合がある。
 また、検知ユニットのうち、第1導電体層32R及び第1導電体層32Fは、それぞれ、音響整合部20及び圧電素子10よりも体積が小さくてよい。このため、幅D1が小さくなると、第1導電体層32R及び第1導電体層32Fと他の構成要素との接合面積が小さくなる。
 このように、幅D1を小さくすることで、第1導電体層32R及び第1導電体層32Fと他の構成要素との接合面積が小さくなったり、第1導電体層32R及び第1導電体層32Fの硬度が小さくなったりすると、検知ユニットを形成するためのダイシング工程において、第1導電体層32R及び第1導電体層32Fが、ダイシングブレードから作用する力および、冷却及び切削くず除去のための水流によって左右方向LRに倒れ、それに引きずられて音響整合部20や圧電素子10も倒れる可能性がある。
 検証の結果、第1導電体層32Fの左右方向LRの長さである幅(図3に示した幅D1)に対する、第1導電体層32Fの上下方向UDの長さである厚さ(図3に示した厚さHF)の比(HF/D1)を1.6以下にする(換言すると、厚さHFを幅D1の1.6倍以下にする)ことで、幅D1が小さくなったり、第1導電体層32Fの硬度が小さくなったりしても、第1導電体層32Fの左右方向LRへの倒れを抑制できることを見出した。具体的には、比(HF/D1)を1.6以下にすることで、幅D1を25μm以上40μm未満という小さな値(20MHzから23MHz駆動が可能な超音波プローブ100に相当)にしたとしても、第1導電体層32Fの左右方向LRへの倒れを抑制できることが分かった。また、比(HF/D1)を1.6以下にすることで、第1導電体層32FのショアーD硬度(JIS(日本工業規格) Z 2246に規定されているD形試験機(デュロメータ タイプD)で計測される硬度)が80以上85以下の範囲であっても、すなわち、製造過程において超音波プローブ100が高温環境下に置かれない場合であっても、第1導電体層32Fの左右方向LRへの倒れを抑制できることが分かった。
 同様に、第1導電体層32Rの左右方向LRの長さである幅(図3に示した幅D1)に対する、第1導電体層32Rの上下方向UDの長さである厚さ(図3に示した厚さHR)の比(HR/D1)を1.6以下にする(換言すると、厚さHRを幅D1の1.6倍以下にする)ことで、幅D1が小さくなったり、第1導電体層32Rの硬度が小さくなったりしても、第1導電体層32Rの左右方向LRへの倒れを抑制できることを見出した。具体的には、比(HR/D1)を1.6以下にすることで、幅D1を25μm以上40μm未満という小さな値(20MHzから23MHz駆動が可能な超音波プローブ100に相当)にしたとしても、第1導電体層32Rの左右方向LRへの倒れを抑制できることが分かった。また、比(HR/D1)を1.6以下にすることで、第1導電体層32RのショアーD硬度が80以上85以下の範囲であっても、すなわち、製造過程において超音波プローブ100が高温環境下に置かれない場合であっても、第1導電体層32Rの左右方向LRへの倒れを抑制できることが分かった。
 なお、音響整合部20として一般的に用いられる材料及び構造を考えると、音響整合部20のショアーD硬度は、85よりも大きくなる。
 第1導電体層32Fと第1導電体層32Rの各々は、導電性能と製造容易性等の観点から、熱処理硬化銀ペーストにより構成することが好ましい。熱処理硬化銀ペーストとして、例えば、LOCTITE社製の銀ペースト“LOCTITE ABLESTIK 2902”を好ましく用いることができるが、これに限定されるものではない。この銀ペーストは、導電性を十分に得るための焼成条件として65℃で2時間焼成する条件を採用した場合のショアーD硬度が80である。
[超音波プローブの製造工程]
 以上説明してきた超音波プローブ100は、次の第一工程から第七工程を順次行うことで製造される。以下、図5から図20を参照して、超音波プローブ100の製造工程を説明する。以下では、各工程の概要をまず記載し、その後、各工程の実施例を記載している。
<第一工程>
 (概要)
 上下方向UDに垂直なシート状の圧電素子10Sを形成し、形成した圧電素子10Sと、前側FPC基板60Fr及び後側FPC基板60Rrとを導電性材料により接合する。更に、前側FPC基板60Fr及び後側FPC基板60Rrと圧電素子10Sとの接合体を、接着剤Adによってバッキング材50に固着する。図5は、第一工程の終了後の状態を示す平面模式図である。図6は、図5のA1-A1矢視の断面模式図である。図7は、図5のA2-A2矢視及びA3-A3矢視の断面模式図である。圧電素子10Sは、複数の圧電素子10の元となるものであり、図6及び図7に示すように、第1導電部12Sと圧電体部11Sと第2導電部13Sとを積層した積層体である。
 (実施例)
 圧電材料として富士セラミックス社製の“C91H”を用い、研磨シートを用いて、この圧電材料を厚さ60μmまで研磨して、圧電素子10Sのうちの圧電体部11Sを形成した。この圧電体部11Sの一方の面に、スパッタ蒸着によって、チタン膜及び金膜からなる第1導電部12Sを形成した。この圧電体部11Sの他方の面に、スパッタ蒸着によって、チタン膜及び金膜からなる第2導電部13Sを形成した。このようにして形成した圧電素子10Sを、ダイシングソーを用いて所望サイズにトリミングした後、超音波洗浄とプラズマ洗浄を行って、シート状の圧電素子10Sを完成させた。
 また、前側FPC基板60Frの電極パターン形成領域61Fr及び後側FPC基板60Rrの電極パターン形成領域61Rrのそれぞれに、ディスペンサーを用いて、LOCTITE社製の銀ペースト“LOCTITE ABLESTIK 2902”を塗布した。この銀ペーストの上に、第1導電部12Sが銀ペーストと接触する状態にて圧電素子10Sを配置し、熱処理(65℃で2時間)による銀ペーストの硬化を行って、圧電素子10Sと前側FPC基板60Fr及び後側FPC基板60Rrとの接合を行った。
<第二工程>
 (概要)
 図8に示すように、図5に示す圧電素子10Sの上面における前後方向FRの中央部に、上下方向UDに垂直なシート状の音響整合部20Sを形成する。図9は、図8のA1-A1矢視の断面模式図である。図10は、図8のA4-A4矢視の断面模式図である。図10の例では、音響整合部20Sを、第一層21、第二層22、及び第三層23の積層体とした場合を示している。
 (実施例)
 Epoxy Technology社製のエポキシ樹脂“Epotek-330”と5μm粒径の鉄粉との混合物によって、厚さ25μmの第一層21を形成した。
 Epoxy Technology社製のエポキシ樹脂“Epotek-330”と5μm粒径のアルミナ粉との混合物によって、厚さ30μmの第二層22を形成した。
 Epoxy Technology社製のエポキシ樹脂“Epotek-330”によって、厚さ20μmの第三層23を形成した。
 第一工程後の圧電素子10Sの上面に、エポキシ樹脂として、D.E.R.(登録商標) 332を塗布し、その上に第一層21を配置し、その第一層21にD.E.R.(登録商標) 332を塗布し、その上に第二層22を配置し、その第二層22にD.E.R.(登録商標) 332を塗布し、その上に第三層23を配置し、その後、第三層23側から加圧して、3層構造の音響整合部20Sの形成と、音響整合部20Sと圧電素子10Sとの接着を行った。
<第三工程>
 (概要)
 図8に示す状態の圧電素子10Sの上面における音響整合部20Sの前側の隣接領域に、導電性材料を塗布し、図8に示す圧電素子10Sの上面における音響整合部20Sの後側の隣接領域に、導電性材料を塗布し、これら導電性材料を熱処理により硬化させて、図11に示すように、左右方向LRに延びる第1導電体層32FSと、左右方向LRに延びる第1導電体層32RSを形成する。図12は、図11のA1-A1矢視の断面模式図である。図13は、図11のA2-A2矢視及びA3-A3矢視の断面模式図である。
 第三工程では、図13に示した第1導電体層32RSの上下方向UDの長さである厚さHRが、超音波プローブ100の設計値によって決まる前述の幅D1の1.6倍以下となるように、第1導電体層32RSを形成する。また、図13に示した第1導電体層32FSの上下方向UDの長さである厚さHFが、超音波プローブ100の設計値によって決まる前述の幅D1の1.6倍以下となるように、第1導電体層32FSの形成を行う。
 (実施例)
 第二工程後の圧電素子10Sにおける音響整合部20Sの前側の隣に、ディスペンサーを用いて、LOCTITE社製の銀ペースト“LOCTITE ABLESTIK 2902”を塗布した。
 第二工程後の圧電素子10Sにおける音響整合部20Sの後側の隣に、ディスペンサーを用いて、LOCTITE社製の銀ペースト“LOCTITE ABLESTIK 2902”を塗布した。
 その後、熱処理(65℃で2時間)による銀ペーストの硬化を行って、第1導電体層32FSと第1導電体層32RSを形成した。
<第四工程>
 (概要)
 第三工程によって音響整合部20S、第1導電体層32FS、及び第1導電体層32RSが上面に形成された圧電素子10Sを、切削によって左右方向LRに複数に分割して、複数の圧電素子10を形成する。図14は、第四工程の終了後の状態を示す平面模式図である。図14に示すように、ダイシングブレードを後方向Rrから前方向Frに向かって移動させることで、音響整合部20S、第1導電体層32FS、及び第1導電体層32RSが形成された圧電素子10Sの切削が行われる。ダイシングブレードの左右方向LRの位置を変えながら切削を繰り返すことで、幅D1の検知ユニットが左右方向LRに配列ピッチPにて複数配列された状態が得られる。図14に示す切削領域40aは、ダイシングブレードによって切削された領域を示す。
 図15は、図14のA2-A2矢視及びA3-A3矢視の断面模式図である。図16は、図14のA4-A4矢視の断面模式図である。図15及び図16に示すように、切削領域40aは、バッキング材50にまで達している。これにより、複数のライン電極71間の電気的な分離と、複数のライン電極72間の電気的な分離も行われる。
 (実施例)
 第三工程によって音響整合部20S、第1導電体層32FS、及び第1導電体層32RSが上面に形成された圧電素子10Sを、切削によって左右方向LRに複数に分割して、256個の圧電素子10を形成した。ダイシング条件は以下の通りとした。
 ダイシング条件:
  ピッチ(図14における配列ピッチP):40μm
  切削回数:280
  送り速度:1.5mm/sec
  回転速度:30,000rpm
 ダイシングブレード:
  15μm幅
  Z09-SD2500-Y1-60 51.0×0.015(ディスコ社製)
 ダイシングソー:
  DAD 323(ディスコ社製)
 なお、第1導電体層32FS及び第1導電体層32RSは、ショアーD硬度が低いため、ダイシング時におけるダイシングブレードにかかる負荷を軽減でき、ダイシングブレードの寿命を延ばすことができる。また、柔らかい第1導電体層32FS及び第1導電体層32RSにより、ダイシング時のチッピング対策も行うことができる。
<第五工程>
 (概要)
 第四工程で形成された切削領域40aを絶縁性充填材40によって埋める。図17は、第五工程の終了後の状態を示す平面模式図である。図18は、図17のA2-A2矢視及びA3-A3矢視の断面模式図である。図19は、図17のA4-A4矢視の断面模式図である。
 (実施例)
 第四工程で形成された切削領域40aに、Momentive社製のシリコーン樹脂“RTV630”を充填した。ロータリーポンプを用いた真空チャンバー内部で10分程度真空引きをすることで、切削領域40a内部の気泡がないように充填を行った。
<第六工程>
 (概要)
 図17における第1導電体層32Fと第1導電体層32Rの上面を活性化する。左右方向LRに並ぶ複数の第1導電体層32Fとこれらの間にある絶縁性充填材40の上面を、ダイシングブレードによって切削することで、複数の第1導電体層32Fの上面の活性化がなされる。同様に、左右方向LRに並ぶ複数の第1導電体層32Rとこれらの間にある絶縁性充填材40の上面を、ダイシングブレードによって切削することで、複数の第1導電体層32Rの上面の活性化がなされる。
 第六工程では、第1導電体層32F及び第1導電体層32Rの上下方向UDの厚さ(図15に示した厚さHR及び厚さHF)が実質的に変化しない程度に、第1導電体層32F及び第1導電体層32Rの上面が極僅かに削れられる。つまり、第六工程の終了後も、第1導電体層32F及び第1導電体層32Rの厚さは、第三工程の終了後の状態と実質的に同じ(幅D1の1.6倍以下)である。また、この第六工程は必須ではなく省略してもよい。
 (実施例)
 第五工程後の第1導電体層32Fと第1導電体層32Rの上面を、第四工程で用いたダイシングソーによって切削して活性化を行った。
<第七工程>
 (概要)
 図20に示すように、活性化された複数の第1導電体層32Fの上面に、これらに跨った第2導電体層31Fを形成する。また、活性化された複数の第1導電体層32Rの上面に、これらに跨った第2導電体層31Rを形成する。
 (実施例)
 活性化された複数の第1導電体層32Fの上面に、ディスペンサーを用いて、LOCTITE社製の銀ペースト“LOCTITE ABLESTIK 2902”を塗布した。
 活性化された複数の第1導電体層32Rの上面に、ディスペンサーを用いて、LOCTITE社製の銀ペースト“LOCTITE ABLESTIK 2902”を塗布した。
 その後、熱処理(65℃で2時間)による銀ペーストの硬化を行って、第2導電体層31Fと第2導電体層31Rを形成した。
 その後、第2導電体層31Fと第2導電体層31Rの上面が音響整合部20の上面と一致するように、第四工程で用いたダイシングソーによって、第2導電体層31Fと第2導電体層31Rの上面を切削した。
[第一変形例]
 図21は、超音波プローブ100の第一変形例を示す図であり、図1のA-A矢視の断面に対応する断面模式図である。図21に示す変形例は、複数層構造の導電部材30Rrのうちの第1導電体層32Rが削除され、音響整合部20の後側には、第2導電体層31Rのみが形成されている点を除いては、図2と同じである。図21に示す変形例の超音波プローブを製造する際には、上記の第三工程(図11)において、第1導電体層32RSを形成せずに、第四工程(図14)と第五工程(図17)を行い、その後、第七工程において、音響整合部20の後側に、複数の圧電素子10に跨って、第2導電体層31Rを形成すればよい。
[第二変形例]
 図22は、超音波プローブ100の第二変形例を示す図であり、図1のA-A矢視の断面に対応する断面模式図である。図22に示す変形例は、複数層構造の導電部材30Rrが削除され、複数層構造の導電部材30Rrが形成されていた領域まで音響整合部20が形成されている点を除いては、図2と同じである。図22に示す変形例の超音波プローブを製造する際には、上記の第二工程(図8)において、第1導電体層32RSを形成していた領域まで音響整合部20Sを形成し、その後、第三工程(図11)において第1導電体層32FSのみを形成し、その後、第四工程(図14)と第五工程(図17)を行い、その後、第七工程において、音響整合部20の前側に第2導電体層31Fを形成すればよい。
[検証結果]
 図23は、上述した製造工程の実施例にしたがって作製した超音波プローブの検証結果を示す図である。以下、図23に示した実施例1~4、参考例1,2、比較例1,2の内容を記載する。
(実施例1)
 図1~図4に示す構成の23MHz駆動に対応する超音波プローブを作製した。圧電素子10の総数は256とし、圧電素子10の幅D1は25μmとした。第三工程にて形成する第1導電体層32Rの比(HR/D1)は0.4、第三工程にて形成する第1導電体層32Fの比(HF/D1)は0.4とした。
(実施例2)
 第三工程にて形成する第1導電体層32Fの比(HF/D1)を1.4に変更した点を除いては、実施例1と同様に超音波プローブを作製した。
(実施例3)
 図22に示す変形例の構成の超音波プローブを作製した。圧電素子10の総数を256、圧電素子10の幅D1を25μmとした。第三工程にて形成する第1導電体層32Fの比(HF/D1)を1.4とした。
(実施例4)
 第三工程にて形成する第1導電体層32Fの比(HF/D1)を1.6に変更した点を除いては、実施例1と同様に超音波プローブを作製した。
(参考例1)
 圧電素子10の幅D1を40μmに変更し、第三工程にて形成する第1導電体層32Rの比(HR/D1)を2.6に変更し、第三工程にて形成する第1導電体層32Fの比(HF/D1)を2.6に変更した点を除いては、実施例1と同様に超音波プローブを作製した。
(参考例2)
 圧電素子10の幅D1を63μmに変更し、第三工程にて形成する第1導電体層32Rの比(HR/D1)を2.3に変更し、第三工程にて形成する第1導電体層32Fの比(HF/D1)を2.3に変更した点を除いては、実施例1と同様に超音波プローブを作製した。
(比較例1)
 第三工程にて形成する第1導電体層32Fの比(HF/D1)を1.8に変更した点を除いては、実施例1と同様に超音波プローブを作製した。
(比較例2)
 第三工程にて形成する第1導電体層32Fの比(HF/D1)を1.7に変更した点を除いては、実施例1と同様に超音波プローブを作製した。
 図23に示した“傾き・倒れ率”は、256個の検知ユニットのうち、左右方向に倒れた又は傾いた検知ユニットの割合を示す。図23に示した評価の“OK”は検知ユニットの倒れ又は傾きが全く無く、性能に問題がない良品であることを示す。図23に示した評価の“NG”は検知ユニットの倒れ又は傾きが発生しており、製品として使用不可であることを示す。
 実施例1~4と比較例1,2を比較してわかるように、比(HF/D1)が1.6を超えると倒れ又は傾きが発生する。また、実施例1の結果に示すように、比(HR/D1)と比(HF/D1)を0.4にした場合には傾き又は倒れは発生しないため、比較例1,2における傾き又は倒れの発生要因は、比(HF/D1)の値に起因していることが分かる。この検証結果から、比(HF/D1)を1.6以下にすることで、倒れ又は傾きを防げることが分かった。なお、第1導電体層32Fと第1導電体層32Rは、同じ材料且つ同じ製造工程で形成されていることから、比(HR/D1)についても、1.6以下にすることで、倒れ又は傾きを防ぐことができる。
 参考例1,2の結果によれば、幅D1が大きい場合には、比(HF/D1)と比(HR/D1)が1.6を超えていても、傾き又は倒れは発生しない。これは、第1導電体層32F及び第1導電体層32Rの各々と他の構成要素との接合面積が大きくなることが1つの要因である。しかし、このように幅D1が大きい場合でも、比(HF/D1)と比(HR/D1)を1.6以下にすれば、倒れ又は傾きはより発生しない方向となる。したがって、幅D1の大きさに関らず、比(HF/D1)と比(HR/D1)を1.6以下にすることが、倒れ又は傾きを防止するうえで有効である。図23の結果から、比(HF/D1)と比(HR/D1)を1.6以下にすることで、幅D1を40μmより小さい値としても、傾き又は倒れを防ぐことができる。この結果、高周波駆動に対応できる超音波プローブを効率よく製造することが可能となる。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
 第1方向(左右方向LR)に配列された複数の圧電素子(圧電素子10)を有する超音波プローブ(超音波プローブ100)であって、
 上記複数の圧電素子を支持する支持部材(バッキング材50)と、
 上記複数の圧電素子の上に配置された音響整合部(音響整合部20)と、
 上記音響整合部に隣接して上記複数の圧電素子の上に配置された導電部材(導電部材30Fr、導電部材30Rr)と、を備え、
 上記複数の圧電素子は、それぞれ、上記支持部材の上方に第1導電部(第1導電部12)と圧電体部(圧電体部11)と第2導電部(第2導電部13)が順次積層された積層体により構成され、
 上記導電部材は、上記音響整合部の上記第1方向と交差する方向である第2方向(前後方向FR)の少なくとも一端側に配置された複数層構造の導電体層を含み、
 上記複数層構造の導電体層は、上記圧電素子の上記第2導電部にそれぞれ接合された複数の第1導電体層(第1導電体層32F、第1導電体層32R)と、上記複数の第1導電体層の上に積層され、上記複数の第1導電体層を電気的に接続する第2導電体層(第2導電体層31F、第2導電体層31R)を含み、
 上記第1導電体層は、上記第1方向の長さである幅(D1)に対する厚さ(HF、HR)の比が1.6以下である超音波プローブ。
(2)
 (1)記載の超音波プローブであって、
 上記第1導電体層は、ショアーD硬度が80以上85以下の範囲の熱処理硬化銀ペーストによって形成される超音波プローブ。
(3)
 (1)又は(2)記載の超音波プローブであって、
 上記第1導電体層の幅は、25μm以上40μm未満である超音波プローブ。
(4)
 (1)から(3)のいずれかに記載の超音波プローブであって、
 上記複数の圧電素子それぞれの、上記第1方向の長さである幅と上記第1導電体層の幅とは同じ長さである超音波プローブ。
(5)
 (1)から(4)のいずれかに記載の超音波プローブであって、
 上記導電部材は、上記第2方向の両端側に配置される超音波プローブ。
(6)
 (1)から(5)のいずれかに記載の超音波プローブであって、
 上記第1導電体層のショアーD硬度は、上記音響整合部のショアーD硬度よりも小さい超音波プローブ。
(7)
 (1)から(6)いずれかに記載の超音波プローブを備える超音波診断装置。
(8)
 第1方向(左右方向LR)に配列された複数の圧電素子(圧電素子10)を有し、上記圧電素子の上記第1方向の長さである幅が既定値(D1)である超音波プローブ(超音波プローブ100)の製造方法であって、
 上記第1方向と交差する方向を第2方向(前後方向FR)とし、上記第1方向と上記第2方向に垂直な方向を第3方向(上下方向UD)とし、
 上記第3方向に垂直であり、且つ、第1導電部(第1導電部12S)と圧電体部(圧電体部11S)と第2導電部(第2導電部13S)が順次積層されたシート状の積層体(圧電素子10S)を支持部材(バッキング材50)に固着する工程(第一工程、図5)と、
 上記積層体の上記支持部材側と反対側の面である上面の上記第2方向の一部の領域に、音響整合部(音響整合部20S)を形成する工程(第二工程、図8)と、
 上記積層体の上記上面における、上記音響整合部の上記第2方向の少なくとも一端側に、上記第3方向の厚さ(HF、HR)が上記既定値の1.6倍以下の第1導電体層(第1導電体層32FS、第1導電体層32RS)を形成する工程(第三工程、図11)と、
 上記音響整合部及び上記第1導電体層が形成された上記積層体を、切削によって上記第1方向に複数に分割して、上記複数の圧電素子を形成する工程(第四工程、図14)と、
 上記複数に分割された上記第1導電体層(第1導電体層32F、第1導電体層32R)の上にその複数の第1導電体層に跨る第2導電体層(第2導電体層31F、第2導電体層31R)を形成する工程(第七工程、図20)と、を備える超音波プローブの製造方法。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年4月1日出願の日本特許出願(特願2021-063176)に基づくものであり、その内容は本出願の中に参照として援用される。
10S,10 圧電素子
11S,11 圧電体部
12S,12 第1導電部
13S,13 第2導電部
20S,20 音響整合部
21 第一層
22 第二層
23 第三層
30Fr,30Rr 導電部材
31F,31R 第2導電体層
32F,32FS,32RS,32R 第1導電体層
40a 切削領域
40 絶縁性充填材
50 バッキング材
60Fr 前側FPC
60Rr 後側FPC
61Fr,61Rr 電極パターン形成領域
71,72 ライン電極
100 超音波プローブ

Claims (8)

  1.  第1方向に配列された複数の圧電素子を有する超音波プローブであって、
     前記複数の圧電素子を支持する支持部材と、
     前記複数の圧電素子の上に配置された音響整合部と、
     前記音響整合部に隣接して前記複数の圧電素子の上に配置された導電部材と、を備え、
     前記複数の圧電素子は、それぞれ、前記支持部材の上方に第1導電部と圧電体部と第2導電部が順次積層された積層体により構成され、
     前記導電部材は、前記音響整合部の前記第1方向と交差する方向である第2方向の少なくとも一端側に配置された複数層構造の導電体層を含み、
     前記複数層構造の導電体層は、前記圧電素子の前記第2導電部にそれぞれ接合された複数の第1導電体層と、前記複数の第1導電体層の上に積層され、前記複数の第1導電体層を電気的に接続する第2導電体層を含み、
     前記第1導電体層は、前記第1方向の長さである幅に対する厚さの比が1.6以下である超音波プローブ。
  2.  請求項1記載の超音波プローブであって、
     前記第1導電体層は、ショアーD硬度が80以上85以下の範囲の熱処理硬化銀ペーストによって形成される超音波プローブ。
  3.  請求項1又は2記載の超音波プローブであって、
     前記第1導電体層の幅は、25μm以上40μm未満である超音波プローブ。
  4.  請求項1から3のいずれか一項に記載の超音波プローブであって、
     前記複数の圧電素子それぞれの、前記第1方向の長さである幅と前記第1導電体層の幅とは同じ長さである超音波プローブ。
  5.  請求項1から4のいずれか一項に記載の超音波プローブであって、
     前記導電部材は、前記第2方向の両端側に配置される超音波プローブ。
  6.  請求項1から5のいずれか一項に記載の超音波プローブであって、
     前記第1導電体層のショアーD硬度は、前記音響整合部のショアーD硬度よりも小さい超音波プローブ。
  7.  請求項1から6いずれか一項に記載の超音波プローブを備える超音波診断装置。
  8.  第1方向に配列された複数の圧電素子を有し、前記圧電素子の前記第1方向の長さである幅が既定値である超音波プローブの製造方法であって、
     前記第1方向と交差する方向を第2方向とし、前記第1方向と前記第2方向に垂直な方向を第3方向とし、
     前記第3方向に垂直であり、且つ、第1導電部と圧電体部と第2導電部が順次積層されたシート状の積層体を支持部材に固着する工程と、
     前記積層体の前記支持部材側と反対側の面である上面の前記第2方向の一部の領域に、音響整合部を形成する工程と、
     前記積層体の前記上面における、前記音響整合部の前記第2方向の少なくとも一端側に、前記第3方向の厚さが前記既定値の1.6倍以下の第1導電体層を形成する工程と、
     前記音響整合部及び前記第1導電体層が形成された前記積層体を、切削によって前記第1方向に複数に分割して、前記複数の圧電素子を形成する工程と、
     前記複数に分割された前記第1導電体層の上に当該複数の第1導電体層に跨る第2導電体層を形成する工程と、を備える超音波プローブの製造方法。
PCT/JP2022/010981 2021-04-01 2022-03-11 超音波プローブ、超音波診断装置、及び超音波プローブの製造方法 WO2022209772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280026283.XA CN117157014A (zh) 2021-04-01 2022-03-11 超声波探头、超声波诊断装置及超声波探头的制造方法
JP2023510840A JPWO2022209772A1 (ja) 2021-04-01 2022-03-11
EP22779993.9A EP4319198A1 (en) 2021-04-01 2022-03-11 Ultrasonic probe, ultrasonic diagnosis device, and method for manufacturing ultrasonic probe
US18/477,995 US20240023932A1 (en) 2021-04-01 2023-09-29 Ultrasound probe, ultrasound diagnostic apparatus, and manufacturing method of ultrasound probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063176 2021-04-01
JP2021-063176 2021-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,995 Continuation US20240023932A1 (en) 2021-04-01 2023-09-29 Ultrasound probe, ultrasound diagnostic apparatus, and manufacturing method of ultrasound probe

Publications (1)

Publication Number Publication Date
WO2022209772A1 true WO2022209772A1 (ja) 2022-10-06

Family

ID=83456138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010981 WO2022209772A1 (ja) 2021-04-01 2022-03-11 超音波プローブ、超音波診断装置、及び超音波プローブの製造方法

Country Status (5)

Country Link
US (1) US20240023932A1 (ja)
EP (1) EP4319198A1 (ja)
JP (1) JPWO2022209772A1 (ja)
CN (1) CN117157014A (ja)
WO (1) WO2022209772A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070159A1 (ja) 2016-10-13 2018-04-19 富士フイルム株式会社 超音波探触子および超音波探触子の製造方法
JP2021063176A (ja) 2019-10-15 2021-04-22 東洋紡株式会社 発泡成形用熱可塑性ポリエステルエラストマー樹脂組成物、発泡成形体、および発泡成形体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070159A1 (ja) 2016-10-13 2018-04-19 富士フイルム株式会社 超音波探触子および超音波探触子の製造方法
JP2021063176A (ja) 2019-10-15 2021-04-22 東洋紡株式会社 発泡成形用熱可塑性ポリエステルエラストマー樹脂組成物、発泡成形体、および発泡成形体の製造方法

Also Published As

Publication number Publication date
US20240023932A1 (en) 2024-01-25
CN117157014A (zh) 2023-12-01
JPWO2022209772A1 (ja) 2022-10-06
EP4319198A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US9812634B2 (en) Method of making thick film transducer arrays
JP5643667B2 (ja) 超音波トランスデューサ、超音波プローブおよび超音波トランスデューサの製造方法
JP7376008B2 (ja) 高周波超音波トランスデューサ
US9321082B2 (en) Ultrasonic transducer, manufacturing method thereof, and ultrasonic probe
JP6663031B2 (ja) 超音波探触子および超音波探触子の製造方法
US9839411B2 (en) Ultrasound diagnostic apparatus probe having laminated piezoelectric layers oriented at different angles
WO2022209772A1 (ja) 超音波プローブ、超音波診断装置、及び超音波プローブの製造方法
JP5230248B2 (ja) 超音波探触子、超音波探触子の製造方法、および超音波検査装置
JP2010154382A (ja) 超音波プローブの圧電振動子、超音波プローブ、超音波診断装置及び超音波プローブにおける圧電振動子の製造方法
JP2005198261A (ja) 超音波プローブ及び超音波診断装置
JP3280677B2 (ja) 超音波プローブおよびその製造方法
JP7487403B2 (ja) 超音波探触子、超音波内視鏡、積層体、及び超音波探触子の製造方法
JP5075668B2 (ja) 超音波探触子、超音波探触子の製造方法、超音波探触子の製造装置、および超音波検査装置
JP2007013944A (ja) 超音波プローブ及び超音波プローブ製造方法
JP5268421B2 (ja) 超音波トランスデューサの製造方法、超音波プロ−ブの製造方法
JP7419165B2 (ja) 超音波振動子、超音波プローブ及び超音波振動子の電極構造
JP5377742B2 (ja) 超音波プローブおよび超音波トランスデューサ
JP5349141B2 (ja) 超音波プローブ
JP2017502592A (ja) 超音波トランスデューサスタック
JPH06253394A (ja) 配列型の超音波探触子
JP2005296127A (ja) 超音波プローブ及び超音波診断装置
JPH08173423A (ja) 超音波プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022779993

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779993

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE