WO2022209604A1 - Aluminum fiber structure and aluminum composite material - Google Patents

Aluminum fiber structure and aluminum composite material Download PDF

Info

Publication number
WO2022209604A1
WO2022209604A1 PCT/JP2022/009679 JP2022009679W WO2022209604A1 WO 2022209604 A1 WO2022209604 A1 WO 2022209604A1 JP 2022009679 W JP2022009679 W JP 2022009679W WO 2022209604 A1 WO2022209604 A1 WO 2022209604A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
fiber structure
aluminum fiber
alumina
fibers
Prior art date
Application number
PCT/JP2022/009679
Other languages
French (fr)
Japanese (ja)
Inventor
英輝 森内
昭康 小柳津
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to CN202280025251.8A priority Critical patent/CN117083403A/en
Priority to KR1020237030797A priority patent/KR20230142789A/en
Priority to JP2023510737A priority patent/JPWO2022209604A1/ja
Priority to EP22779828.7A priority patent/EP4317901A1/en
Publication of WO2022209604A1 publication Critical patent/WO2022209604A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4234Metal fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/60Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/40Layer in a composite stack of layers, workpiece or article

Definitions

  • the present invention relates to an aluminum fiber structure and an aluminum composite material.
  • JP2011-007365A shows an example in which an aluminum fiber structure made of aluminum fibers is used as the metal fiber structure.
  • the aluminum fiber structure disclosed in Japanese Patent Laid-Open Publication No. 2011-007365 is made by filling aluminum fibers having an average fiber thickness of 50 to 200 ⁇ m and an average fiber length of 20 to 1000 mm into a mold having a predetermined shape. , The filled aluminum fibers are compressed to form a compression molded body having a bulk density of 30% or more, and the compression molded body is heated at 600 to 650 ° C. in an inert gas atmosphere to diffusion bond the entangled aluminum fibers. It is produced by forming a porous sintered molded body by pressing and then hydrophilizing the surface of the aluminum fiber.
  • the aluminum fiber structure disclosed in Japanese Patent Laid-Open No. 2011-007365 has a large linear expansion coefficient, so when it is combined with glass or ceramic, for example, the linear expansion coefficient of these glasses or ceramics is relatively small, there is a problem that separation may occur due to the difference in coefficient of linear expansion between the two when the temperature of the surrounding environment changes significantly.
  • the present invention has been made in consideration of such points, and provides an aluminum fiber structure having a small coefficient of linear expansion, and providing an aluminum fiber structure that maintains its properties even when the temperature of the surrounding environment changes significantly.
  • An object of the present invention is to provide an aluminum composite material that is less prone to peeling between a body and the composite material.
  • the aluminum fiber structure of the present invention is An aluminum fiber structure in which aluminum fibers are partially bound together, An alumina layer is formed on the surface of the aluminum fiber, A plurality of protrusions of alumina having a height greater than the thickness of the alumina layer are formed on the surface of the aluminum fiber or the alumina layer.
  • the aluminum composite material of the present invention is An aluminum composite material in which the above-described aluminum fiber structure and a composite material are combined, The protrusion of the alumina and at least part of the composite material are in contact with each other.
  • FIG. 1 is a schematic configuration diagram that schematically shows a first example of the configuration of an aluminum composite material according to an embodiment of the present invention
  • FIG. FIG. 4 is a schematic configuration diagram schematically showing a second example of the configuration of the aluminum composite material according to the embodiment of the invention
  • FIG. 5 is a schematic configuration diagram schematically showing a third example of the configuration of the aluminum composite material according to the embodiment of the invention
  • FIG. 5 is a schematic configuration diagram schematically showing a fourth example of the configuration of the aluminum composite material according to the embodiment of the invention
  • FIG. 6 is a schematic configuration diagram schematically showing a fifth example of the configuration of the aluminum composite material according to the embodiment of the invention
  • 1 is a photograph of the surface of an aluminum fiber structure of an aluminum composite according to an embodiment of the present invention
  • 7 is a photograph showing a cut surface when the aluminum fiber structure shown in FIG. 6 is cut.
  • 8 is a photograph showing an enlarged part of the cross section of the aluminum fiber structure shown in FIG. 7;
  • BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows roughly the manufacturing method of the aluminum fiber structure of the aluminum composite material by embodiment of this invention.
  • FIG. 1 to 5 are schematic configuration diagrams schematically showing various examples of configurations of aluminum composite materials according to embodiments of the present invention.
  • FIG. 6 is a photograph of the surface of the aluminum fiber structure of the aluminum composite material according to the present embodiment.
  • 7 is a photograph showing a cut surface when the aluminum fibrous structure shown in FIG. 6 is cut
  • FIG. 8 is a photograph showing an enlarged part of the cross section of the aluminum fibrous structure shown in FIG. is.
  • 9A and 9B are explanatory diagrams schematically showing a method of manufacturing an aluminum fiber structure made of an aluminum composite material according to the present embodiment.
  • the aluminum composite material 1 as a first example is an aluminum fiber structure 10 completely impregnated with a resin 70 .
  • the material of the resin 70 is not particularly limited, but examples include epoxy, polyolefin, styrenic polymer, polyether, polyurea, acrylic polymer, polyurethane, polyester, polyamide, polysiloxane, polysaccharide, poly Peptides, polynucleotides, polyvinyl alcohol, polyacrylamide, etc., as well as mixtures thereof are used.
  • the two aluminum fiber structures 10 are completely impregnated with the resin 70, so that the aluminum fiber structures 10 are positioned near each of the front side and the back side of the resin 70. .
  • the aluminum fiber structure 10 does not protrude outward from the front and back surfaces of the resin 70 .
  • the aluminum composite material 2 as a second example is an aluminum fiber structure 10 partially impregnated with a resin 70 .
  • the aluminum fiber structures 10 are positioned near the front side and the back side of the resin 70, respectively.
  • the aluminum fiber structure 10 protrudes outward from the front and back surfaces of the resin 70, respectively.
  • two aluminum fiber structures 10 are made of a metal paste other than aluminum, such as silver paste, copper paste, nickel paste, silver solder, copper solder, They are adhered by an adhesive layer 80 made of an adhesive such as tin or solder.
  • a metal part 90 such as a copper plate is bonded to one surface of the aluminum fiber structure 10 using an adhesive such as a metal paste other than aluminum. It is adhered by layer 80 .
  • a metal component 90 is formed on one surface of an aluminum fiber structure 10 by an adhesive layer 80 made of an adhesive such as a metal paste other than aluminum.
  • An alumina plate 100 is bonded to the other surface of the aluminum fiber structure 10 with an adhesive layer 110 made of an adhesive such as glass (for example, water glass, fritted glass, glass paste). .
  • the configuration of the aluminum fiber structure 10 will be described.
  • the aluminum fibers 20 are partially bonded to each other, and the alumina layer 30 is formed on the surface of the aluminum fibers 20. It is Further, as shown in FIG. 8, on the surface of the aluminum fiber 20 or the alumina layer 30, a plurality of protrusions 40 of alumina having a height greater than the thickness of the alumina layer 30 are formed.
  • reference numeral 22 indicates a portion of the surface of the aluminum fiber 20 where the alumina layer 30 and the protrusions 40 are not formed.
  • the portion where the alumina layer 30 is formed tends to expand or contract due to temperature change, while the portion where the plurality of alumina protrusions 40 is formed expands or contracts due to temperature change. Hateful.
  • the coefficient of linear expansion of the entire aluminum fiber structure 10 is partially uneven, the coefficient of linear expansion can be reduced as a whole.
  • the aluminum fiber 20 has a length within the range of 0.2 to 15 mm and a diameter within the range of 0.01 to 0.100 mm.
  • the length of the aluminum fiber 20 can be confirmed by actually measuring it through photographic observation using an SEM, an optical microscope, or the like.
  • the alumina layer 30 is formed by oxidizing the aluminum fibers 20 in the atmosphere.
  • Alumina layer 30 is generally uniformly formed on the surfaces of aluminum fibers 20 .
  • the thickness of such alumina layer 30 is in the range of 10 nm to 10 ⁇ m, preferably 100 nm to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • the projections 40 are formed from the material eluted from the aluminum fibers 20 by sintering the aluminum fibers 20 at 700°C or higher. A method of sintering the aluminum fibers 20 to produce the aluminum fiber structure 10 will be described later. If the sintering temperature for the aluminum fibers 20 is lower than 700° C., a sufficient amount of alumina is not eluted from the aluminum fibers 20, and projections 40 with a sufficient height cannot be obtained.
  • the height of the protrusions 40 with respect to the surface of the aluminum fibers 20 or the alumina layer 30 is greater than the thickness of the alumina layer 30 .
  • the height of the projections 40 with respect to the surface of the aluminum fiber 20 or alumina layer 30 is 10 nm to 10 ⁇ m, preferably 100 nm to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m. This increases the bonding strength between the aluminum fibers 20 and the projections 40 .
  • the height of the protrusions 40 with respect to the surface of the aluminum fiber 20 or the alumina layer 30 is too small, specifically smaller than 10 nm, the difference between the thickness of the alumina layer 30 and the height of the protrusions 40 does not increase, and the aluminum fiber structure 10 cannot be partially biased in the coefficient of linear expansion.
  • the height of the protrusions 40 relative to the surface of the aluminum fibers 20 or the alumina layer 30 is too large, specifically, when it is greater than 10 ⁇ m, there is a problem that large gaps are formed between the aluminum fibers 20.
  • the total coverage of the portions covered by the protrusions 40 on the surface of the aluminum fiber 20 is preferably 20% or more, and 40% or more. It is even more preferable to have Almost the entire surface of the aluminum fiber 20 is covered with an alumina layer 30, and projections 40 are partially formed on the alumina layer 30. As shown in FIG.
  • the coverage rate of the portion covered by the projections 40 on the surface of the aluminum fiber 20 is the portion covered by the projections 40 in the cross section of the aluminum fiber structure 10 (specifically, from the point where the mountain of the projections 40 starts to descend ) can be calculated by dividing the length of the alumina layer 30 by the total length of the alumina layer 30 .
  • the plurality of projections 40 are in contact across the alumina layer 30 of the plurality of aluminum fibers 20 .
  • the aluminum fibers 20 are connected to each other by the projections 40, the aluminum fibers 20 are less likely to move relative to each other, so that the linear expansion coefficient of the aluminum fiber structure 10 can be further reduced.
  • the composite material for example, the resin 70, the adhesive layer 80, the adhesive layer 110, etc. described above
  • the composite material that enters the gaps of the aluminum fiber structure 10 forms the projections 40. come into contact.
  • the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is within the range of 20% to 90%.
  • Such a space factor of the aluminum fibers 20 is calculated by calculating the ratio of the area occupied by the aluminum fibers 20 to the inner area of the outer edge of the aluminum fiber structure 10 on the cut surface when the aluminum fiber structure 10 is cut. can ask.
  • the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 can achieve both lightness and strength. That is, when the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is less than 20%, sufficient strength cannot be obtained, and the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is 90%.
  • the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is 20% or more, the amount of the aluminum fibers 20 is sufficient, so that appropriate homogeneity can be obtained. Moreover, if the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is 90% or less, desired flexibility can be obtained in addition to appropriate homogeneity.
  • a plasma resistant layer may be formed on the surfaces of the alumina layer 30 and the protrusions 40 .
  • the plasma resistant layer may contain metal oxide or aluminum nitride.
  • Metal oxides include, for example, at least one of zirconium oxide, yttrium oxide, magnesium oxide, zinc oxide, sapphire, and quartz glass.
  • a composite material of the aluminum fiber structure 10 and the plasma resistant layer can be provided, and the composite material has excellent plasma resistance.
  • Such a composite material of the aluminum fibrous structure 10 and the plasma-resistant layer is manufactured by applying a glaze containing zirconia, yttria, etc. to the alumina layer 30 and the protrusions 40 of the aluminum fibrous structure 10 and then heating it at a high temperature. be able to.
  • the aluminum fibers 20 are molded into a sheet inside a molding container 50 and pressed. As a result, the aluminum fibers 20 can be brought into close contact with each other. Further, as shown in FIG. 9(b), the aluminum fibers 20 are sintered by heating them at 700° C. or higher inside the sintering equipment 60. As shown in FIG. This forms the aluminum fiber structure 10 .
  • alumina is eluted from the aluminum fibers 20 , and the eluted alumina is solidified at room temperature to form the projections 40 . Also, by exposing the aluminum fiber structure 10 to the atmosphere, the aluminum fibers 20 are oxidized to form the alumina layer 30 .
  • the aluminum fibers 20 are partially bonded to each other, and the alumina layer 30 is formed on the surfaces of the aluminum fibers 20 . Further, on the surface of the aluminum fiber 20 or the alumina layer 30, a plurality of protrusions 40 of alumina having a height greater than the thickness of the alumina layer 30 are formed.
  • the portion where the alumina layer 30 is formed tends to expand or contract due to temperature change, while the portion where the plurality of alumina projections 40 are formed expands or contracts due to temperature change. Since the coefficient of linear expansion of the entire aluminum fiber structure 10 is partially uneven, the coefficient of linear expansion can be reduced as a whole.
  • aluminum composite materials 1, 2, and 3 in which such an aluminum fiber structure 10 and a composite material composed of a composite material different from aluminum (for example, a resin 70, an adhesive layer 80, an adhesive layer 110, etc.) are combined.
  • 4, 5 there is contact between the alumina protrusions 40 and at least a portion of the composite material. Even when the temperature of the surrounding environment changes significantly, separation between the aluminum fiber structure 10 and the composite material is less likely to occur. More specifically, the composite material that has entered the gaps of the aluminum fiber structure 10 is caught on the protrusions 40 of the aluminum fiber structure 10, so that even if the composite material is difficult to adhere to aluminum, the aluminum fiber structure will adhere to the composite material. 10 can be strongly adhered.
  • the resin 70 entering the gaps of the aluminum fiber structure 10 is caught on the projections 40 of the aluminum fiber structure 10, and thus the resin 70 is difficult to adhere to the aluminum. Even in this case, the aluminum fiber structure 10 can be strongly adhered to the resin 70 .
  • the adhesive that has entered the gaps of the aluminum fiber structure 10 is caught on the projections 40 of the aluminum fiber structure 10, and the adhesion layer 80
  • the aluminum fiber structure 10 can be firmly adhered. This makes it difficult for the two aluminum fiber structures 10 to separate from each other in the aluminum composite material 3 according to the third example.
  • the aluminum fiber structure 10 is less likely to peel off from the metal component 90 such as a copper plate.
  • the adhesion between the metal component 90 and the adhesive layer 80 is weak, the linear expansion coefficient of the aluminum fiber structure 10 is small. Hard to peel off.
  • the adhesive that has entered the gaps of the aluminum fiber structure 10 is caught on the protrusions 40 of the aluminum fiber structure 10, and the aluminum fibers are attached to the adhesive layers 80 and 110, respectively.
  • the structure 10 can be strongly adhered. This makes it difficult for the aluminum fiber structure 10 to peel off from each of the metal component 90 and the alumina plate 100 . In this case, even if there is a difference in the coefficient of linear expansion between the metal component 90 and the alumina plate 100, the coefficient of linear expansion of the aluminum fiber structure 10 is small. Separation is less likely to occur between the structure 10 and between the alumina plate 100 and the aluminum fiber structure 10 .
  • Example 1 An aluminum fibrous structure was manufactured by the following procedure. First, a plurality of aluminum fibers made of A1070, having a fiber diameter of 50 ⁇ m and an average length of 2 mm were formed into a sheet. After that, the aluminum fibers were sintered by heating them at 700° C. inside the sintering equipment. This produced an aluminum fiber structure.
  • Example 2 to 4 Aluminum fiber structures were produced in the same manner as in Example 1, except that the aluminum fibers were sintered by heating them at 750°C, 800°C, and 850°C, respectively, inside the sintering equipment.
  • the cut surfaces of the aluminum fiber structures produced according to Examples 2 to 4 were cut and confirmed with a microscope, an alumina layer was formed on the surface of the aluminum fibers, and alumina was formed on the surface of the alumina layer or the aluminum fibers. It was found that a plurality of protrusions of alumina having a height greater than the thickness of the layer were formed.
  • Table 1 The physical properties of the aluminum fibrous structures produced according to Examples 2 to 4 are shown in Table 1 below.
  • Examples 5 to 8 The fiber diameter and average length of each of the plurality of aluminum fibers are shown in Table 1, and the aluminum fibers are sintered by heating at the temperature shown in Table 1 (800 ° C. or 900 ° C.) inside the sintering equipment.
  • An aluminum fibrous structure was produced in the same manner as in Example 1 except for the above.
  • an alumina layer was formed on the surfaces of the aluminum fibers, and alumina was formed on the surfaces of the alumina layers or the aluminum fibers. It was found that a plurality of protrusions of alumina having a height greater than the thickness of the layer were formed.
  • the physical properties of the aluminum fibrous structures produced according to Examples 5 to 8 are shown in Table 1 below.
  • Example 9 Aluminum fibers were formed into a sheet as in Example 1, and then sintered by heating the aluminum fibers at 900° C. inside a sintering facility. A glaze containing yttria was applied to the surface of the aluminum fiber structure, and then heated at a high temperature. When the cut surface of the aluminum fiber structure thus produced was checked under a microscope, an alumina layer was formed on the surface of the aluminum fiber, and the thickness of the alumina layer was observed on the surface of the alumina layer or the aluminum fiber. It was found that a plurality of protrusions of alumina having a height greater than the height were formed.
  • Example 10 Aluminum fibers were formed into a sheet as in Example 1, and then sintered by heating the aluminum fibers at 900° C. inside a sintering facility. Then, after applying a glaze containing zirconia to the surface of the aluminum fiber structure, the structure was heated at a high temperature. When the cut surface of the aluminum fiber structure thus produced was checked under a microscope, an alumina layer was formed on the surface of the aluminum fiber, and the thickness of the alumina layer was observed on the surface of the alumina layer or the aluminum fiber. It was found that a plurality of protrusions of alumina having a height greater than the height were formed.
  • a plasma-resistant layer containing zirconium oxide was formed on the surfaces of the alumina layer and the protrusions.
  • Table 1 Each physical property value of the manufactured aluminum fibrous structure according to Example 10 is as shown in Table 1 below.
  • Aluminum fiber structures according to Comparative Examples 1 and 2 were produced in the same manner as in Example 1, except that the aluminum fibers were sintered by heating them at 680° C. and 600° C., respectively, inside the sintering equipment. Microscopic examination of the cut surfaces of the produced aluminum fiber structures according to Comparative Examples 1 and 2 revealed that an alumina layer was formed on the surfaces of the aluminum fibers. It was found that no protrusions of alumina were formed on the surface.
  • the physical property values of the manufactured aluminum fibrous structures according to Comparative Examples 1 and 2 are shown in Table 1 below.
  • the coverage rate refers to the coverage rate of the protrusions on the surface of the aluminum fiber in the cross section when the aluminum fiber structure is cut. It was calculated by dividing the length of the alumina layer at the covered portion (specifically, the portion from the point where the mountain of the protrusion starts to descend to the point where it ends) by the total length of the alumina layer.
  • the coverage is 0%, which means that no protrusions of alumina are formed.
  • the space factor refers to the space factor of the aluminum fibers in the aluminum fiber structure, and the inside of the outer edge of the aluminum fiber structure on the cut surface when the aluminum fiber structure is cut.
  • the linear expansion coefficients of the aluminum fibrous structures according to Examples 1 to 10 were all 22.0 or less, whereas the linear expansion coefficients of the aluminum fibrous structures according to Comparative Examples 1 to 3 were all greater than 23.0. became. From the above results, it can be seen that the linear expansion coefficient of the aluminum fiber structure can be reduced when the aluminum fibers are sintered by heating them at 700° C. or higher inside the sintering equipment.
  • Example 11 An aluminum composite material as shown in FIG. 2 was produced by bonding two aluminum fiber structures with a resin.
  • the aluminum composite material according to Example 11 has an aluminum fiber structure partially impregnated with a resin. Specifically, by partially impregnating the resin into the two aluminum fiber structures, the aluminum fiber structures are positioned near each of the front side and the back side of the resin. Aluminum fiber structures protrude outward from the front and back surfaces of the resin, respectively.
  • the aluminum fiber structure the aluminum fiber structure according to Example 1 was used, and each aluminum fiber structure had a thickness of 3.0 mm and a space factor of 75%. Epoxy resin was used as the resin for the adhesive layer, and the thickness of this adhesive layer was 125 ⁇ m.
  • Example 12 An aluminum composite material as shown in FIG. 3 was produced by bonding two aluminum fiber structures with an adhesive layer made of a silver paste adhesive.
  • the aluminum fiber structure the aluminum fiber structure according to Example 1 was used, and each aluminum fiber structure had a thickness of 3.0 mm and a space factor of 75%.
  • the thickness of the adhesive layer made of the silver paste adhesive was 12 ⁇ m.
  • Example 13 An aluminum composite material as shown in FIG. 4 was produced by adhering a copper plate to one surface of an aluminum fiber structure with an adhesive layer made of a copper paste adhesive.
  • the aluminum fiber structure the aluminum fiber structure according to Example 3 was used, and each aluminum fiber structure had a thickness of 1.0 mm and a space factor of 72%.
  • the thickness of the adhesive layer made of copper paste adhesive was 48 ⁇ m.
  • the copper plate used was made of C1100, had a thickness of 5.0 mm, and had a space factor of 100%.
  • Example 14 By bonding a copper plate to one surface of an aluminum fibrous structure with an adhesive layer made of a copper paste adhesive, and bonding an alumina plate to the other surface of the aluminum fibrous structure with an adhesive layer made of a glass paste adhesive.
  • An aluminum composite material as shown in FIG. 5 was produced.
  • the aluminum fiber structure the aluminum fiber structure according to Example 3 was used, and each aluminum fiber structure had a thickness of 1.0 mm and a space factor of 72%.
  • the thickness of the adhesive layer made of copper paste adhesive was 48 ⁇ m.
  • the copper plate used was made of C1100, had a thickness of 0.5 mm, and had a space factor of 100%.
  • the thickness of the adhesive layer made of the glass paste adhesive was 27 ⁇ m.
  • the alumina plate used had a thickness of 1.0 mm and a space factor of 100%.
  • Example 4 Compared to Example 14, instead of the aluminum fiber structure, a copper plate was bonded to one surface of an aluminum plate with an adhesive layer made of a copper paste adhesive, and an alumina plate was bonded to the other surface of the aluminum plate with a glass paste adhesive.
  • An aluminum composite material as shown in FIG. 5 was produced by bonding with an adhesive layer consisting of.
  • An aluminum plate having a thickness of 1.0 mm and a space factor of 100% was used.
  • the thickness of the adhesive layer made of copper paste adhesive was 43 ⁇ m.
  • the copper plate used was made of C1100, had a thickness of 0.5 mm, and had a space factor of 100%.
  • the thickness of the adhesive layer made of the glass paste adhesive was 34 ⁇ m.
  • the alumina plate used had a thickness of 1.0 mm and a space factor of 100%.
  • An alumina composite material was produced by adhering a copper plate to one surface of an alumina plate with an adhesive layer made of a glass paste adhesive.
  • An alumina plate having a thickness of 1.0 mm and a space factor of 100% was used.
  • the thickness of the adhesive layer made of the glass paste adhesive was 32 ⁇ m.
  • the copper plate used was made of C1100, had a thickness of 0.5 mm, and had a space factor of 100%.
  • Adhesion and adhesion strength were evaluated for the aluminum composite materials and alumina composite materials according to Examples 11-14 and Comparative Examples 4-5.
  • heat shock test 500 cycles between -40 ° C. and 120 ° C., holding time total 30 minutes
  • peeling occurred was visually observed.
  • peeling occurred partially or the composite member lifted it was evaluated as "x”.
  • the adhesive strength the rate of change in adhesive strength was calculated before and after the heat shock test was performed on the aluminum composite materials and alumina composite materials according to Examples 11 to 14 and Comparative Examples 4 and 5.

Abstract

This aluminum composite material (1, 2, 3, 4, 5) is obtained by combining an aluminum fiber structure (10) and a composite material (70, 80, 110). With respect to the aluminum fiber structure (10), aluminum fibers (20) are partially bonded with each other, and an alumina layer 30 is formed on the surface of each one of the aluminum fibers (20). A plurality of alumina projections (40), each of which has a height that is greater than the thickness of the alumina layer (30), is formed on the surfaces of the aluminum fibers (20) or the alumina layer (30). The alumina projections (40) and at least a part of the composite material (70, 80, 110) are in contact with each other.

Description

アルミニウム繊維構造体およびアルミニウム複合材Aluminum fiber structures and aluminum composites
 本発明は、アルミニウム繊維構造体およびアルミニウム複合材に関する。 The present invention relates to an aluminum fiber structure and an aluminum composite material.
 従来から、熱交換器において伝熱を行う媒体として金属繊維から成形される金属繊維構造体が用いられる場合がある。日本国特許公開公報の特開2011-007365号公報(JP2011-007365A)には、金属繊維構造体としてアルミニウム繊維から形成されるアルミニウム繊維構造体が用いられる例が示されている。 Conventionally, a metal fiber structure molded from metal fibers may be used as a medium for heat transfer in heat exchangers. Japanese Patent Laid-Open Publication No. 2011-007365 (JP2011-007365A) shows an example in which an aluminum fiber structure made of aluminum fibers is used as the metal fiber structure.
 日本国特許公開公報の特開2011-007365号公報に開示されるアルミニウム繊維構造体は、平均繊維太さ50~200μm、平均繊維長20~1000mmのアルミニウム繊維を所定形状の金型内に充填し、充填されたアルミニウム繊維を圧縮して嵩密度30%以上の圧縮成形体を形成し、圧縮成形体を不活性ガス雰囲気下において600~650℃で加熱することにより交絡するアルミニウム繊維を拡散接合させて多孔質焼結成形体を形成し、その後、アルミニウム繊維の表面を親水化することにより製造される。 The aluminum fiber structure disclosed in Japanese Patent Laid-Open Publication No. 2011-007365 is made by filling aluminum fibers having an average fiber thickness of 50 to 200 μm and an average fiber length of 20 to 1000 mm into a mold having a predetermined shape. , The filled aluminum fibers are compressed to form a compression molded body having a bulk density of 30% or more, and the compression molded body is heated at 600 to 650 ° C. in an inert gas atmosphere to diffusion bond the entangled aluminum fibers. It is produced by forming a porous sintered molded body by pressing and then hydrophilizing the surface of the aluminum fiber.
 日本国特許公開公報の特開2011-007365号公報に開示されるアルミニウム繊維構造体は、線膨張係数が大きいため、例えばガラスやセラミックと複合化した場合に、これらのガラスやセラミックの線膨張係数が比較的小さいことにより、周辺環境の温度が大きく変化した際に両者の線膨張係数の差により剥離が生じるおそれがあるという問題があった。 The aluminum fiber structure disclosed in Japanese Patent Laid-Open No. 2011-007365 has a large linear expansion coefficient, so when it is combined with glass or ceramic, for example, the linear expansion coefficient of these glasses or ceramics is relatively small, there is a problem that separation may occur due to the difference in coefficient of linear expansion between the two when the temperature of the surrounding environment changes significantly.
 本発明は、このような点を考慮してなされたものであり、線膨張係数が小さいアルミニウム繊維構造体を提供すること、および、周辺環境の温度が大きく変化した場合であってもアルミニウム繊維構造体および複合材料の間で剥離が生じにくいアルミニウム複合材を提供することを目的とする。 The present invention has been made in consideration of such points, and provides an aluminum fiber structure having a small coefficient of linear expansion, and providing an aluminum fiber structure that maintains its properties even when the temperature of the surrounding environment changes significantly. An object of the present invention is to provide an aluminum composite material that is less prone to peeling between a body and the composite material.
 本発明のアルミニウム繊維構造体は、
 アルミニウム繊維同士が部分的に結着しているアルミニウム繊維構造体であって、
 前記アルミニウム繊維の表面にアルミナ層が形成されており、
 前記アルミニウム繊維または前記アルミナ層の表面には、前記アルミナ層の厚さより高さが大きい複数のアルミナの突起が形成されていることを特徴とする。
The aluminum fiber structure of the present invention is
An aluminum fiber structure in which aluminum fibers are partially bound together,
An alumina layer is formed on the surface of the aluminum fiber,
A plurality of protrusions of alumina having a height greater than the thickness of the alumina layer are formed on the surface of the aluminum fiber or the alumina layer.
 本発明のアルミニウム複合材は、
 上述したアルミニウム繊維構造体と、複合材料とが複合したアルミニウム複合材であって、
 前記アルミナの前記突起と前記複合材料の少なくとも一部とが接触していることを特徴とする。
The aluminum composite material of the present invention is
An aluminum composite material in which the above-described aluminum fiber structure and a composite material are combined,
The protrusion of the alumina and at least part of the composite material are in contact with each other.
本発明の実施の形態によるアルミニウム複合材の構成の第1の例を概略的に示す概略構成図である。1 is a schematic configuration diagram that schematically shows a first example of the configuration of an aluminum composite material according to an embodiment of the present invention; FIG. 本発明の実施の形態によるアルミニウム複合材の構成の第2の例を概略的に示す概略構成図である。FIG. 4 is a schematic configuration diagram schematically showing a second example of the configuration of the aluminum composite material according to the embodiment of the invention; 本発明の実施の形態によるアルミニウム複合材の構成の第3の例を概略的に示す概略構成図である。FIG. 5 is a schematic configuration diagram schematically showing a third example of the configuration of the aluminum composite material according to the embodiment of the invention; 本発明の実施の形態によるアルミニウム複合材の構成の第4の例を概略的に示す概略構成図である。FIG. 5 is a schematic configuration diagram schematically showing a fourth example of the configuration of the aluminum composite material according to the embodiment of the invention; 本発明の実施の形態によるアルミニウム複合材の構成の第5の例を概略的に示す概略構成図である。FIG. 6 is a schematic configuration diagram schematically showing a fifth example of the configuration of the aluminum composite material according to the embodiment of the invention; 本発明の実施の形態によるアルミニウム複合材のアルミニウム繊維構造体の表面を撮影した写真である。1 is a photograph of the surface of an aluminum fiber structure of an aluminum composite according to an embodiment of the present invention; 図6に示すアルミニウム繊維構造体を切断したときの切断面を示す写真である。7 is a photograph showing a cut surface when the aluminum fiber structure shown in FIG. 6 is cut. 図7に示すアルミニウム繊維構造体の断面の一部を拡大して示す写真である。8 is a photograph showing an enlarged part of the cross section of the aluminum fiber structure shown in FIG. 7; 本発明の実施の形態によるアルミニウム複合材のアルミニウム繊維構造体の製造方法を概略的に示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows roughly the manufacturing method of the aluminum fiber structure of the aluminum composite material by embodiment of this invention.
 以下、図面を参照して本発明の実施の形態について説明する。図1乃至図5は、本発明の実施の形態によるアルミニウム複合材の構成の様々な例を概略的に示す概略構成図である。また、図6は、本実施の形態によるアルミニウム複合材のアルミニウム繊維構造体の表面を撮影した写真である。また、図7は、図6に示すアルミニウム繊維構造体を切断したときの切断面を示す写真であり、図8は、図7に示すアルミニウム繊維構造体の断面の一部を拡大して示す写真である。また、図9は、本実施の形態によるアルミニウム複合材のアルミニウム繊維構造体の製造方法を概略的に示す説明図である。 Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 are schematic configuration diagrams schematically showing various examples of configurations of aluminum composite materials according to embodiments of the present invention. FIG. 6 is a photograph of the surface of the aluminum fiber structure of the aluminum composite material according to the present embodiment. 7 is a photograph showing a cut surface when the aluminum fibrous structure shown in FIG. 6 is cut, and FIG. 8 is a photograph showing an enlarged part of the cross section of the aluminum fibrous structure shown in FIG. is. 9A and 9B are explanatory diagrams schematically showing a method of manufacturing an aluminum fiber structure made of an aluminum composite material according to the present embodiment.
 本実施の形態によるアルミニウム複合材1、2、3、4、5は、アルミニウム繊維構造体10と、アルミニウムとは異なる材料から構成される複合材料とが複合したものである。このようなアルミニウム複合材1、2、3、4、5の様々な例について図1乃至図5を用いて説明する。 The aluminum composite materials 1, 2, 3, 4, and 5 according to the present embodiment are composites of the aluminum fiber structure 10 and a composite material composed of a material different from aluminum. Various examples of such aluminum composite materials 1, 2, 3, 4 and 5 will be described with reference to FIGS. 1 to 5. FIG.
 図1に示すように、第1の例としてのアルミニウム複合材1は、アルミニウム繊維構造体10の中に樹脂70が完全に含侵されたものである。樹脂70の材料としては、特に限定されるものではないが、例として、エポキシ、ポリオレフィン、スチレン系ポリマー、ポリエーテル、ポリ尿素、アクリル系ポリマー、ポリウレタン、ポリエステル、ポリアミド、ポリシロキサン、ポリサッカライド、ポリペプチド、ポリヌクレオチド、ポリビニルアルコール、ポリアクリルアミド等、ならびにそれらの混合物が用いられる。具体的には、2つのアルミニウム繊維構造体10の中に樹脂70が完全に含侵されることにより、樹脂70における表側および裏側の各々の近傍の箇所にアルミニウム繊維構造体10が位置するようになる。なお、樹脂70の表面および裏面からアルミニウム繊維構造体10は外側に突出しない。 As shown in FIG. 1, the aluminum composite material 1 as a first example is an aluminum fiber structure 10 completely impregnated with a resin 70 . The material of the resin 70 is not particularly limited, but examples include epoxy, polyolefin, styrenic polymer, polyether, polyurea, acrylic polymer, polyurethane, polyester, polyamide, polysiloxane, polysaccharide, poly Peptides, polynucleotides, polyvinyl alcohol, polyacrylamide, etc., as well as mixtures thereof are used. Specifically, the two aluminum fiber structures 10 are completely impregnated with the resin 70, so that the aluminum fiber structures 10 are positioned near each of the front side and the back side of the resin 70. . Note that the aluminum fiber structure 10 does not protrude outward from the front and back surfaces of the resin 70 .
 図2に示すように、第2の例としてのアルミニウム複合材2は、アルミニウム繊維構造体10の中に樹脂70が部分的に含侵されたものである。具体的には、2つのアルミニウム繊維構造体10の中に樹脂70が部分的に含侵されることにより、樹脂70における表側および裏側の各々の近傍の箇所にアルミニウム繊維構造体10が位置するようになり、これらの樹脂70の表面および裏面からそれぞれアルミニウム繊維構造体10が外側に突出するようになる。 As shown in FIG. 2, the aluminum composite material 2 as a second example is an aluminum fiber structure 10 partially impregnated with a resin 70 . Specifically, by partially impregnating the resin 70 into the two aluminum fiber structures 10, the aluminum fiber structures 10 are positioned near the front side and the back side of the resin 70, respectively. Thus, the aluminum fiber structure 10 protrudes outward from the front and back surfaces of the resin 70, respectively.
 図3に示すように、第3の例としてのアルミニウム複合材3は、2つのアルミニウム繊維構造体10がアルミニウム以外の金属ペースト、例えば、銀ペースト、銅ペースト、ニッケルペースト、銀ロウ、銅ロウ、スズ、半田等の接着剤から構成される接着層80により接着されたものである。 As shown in FIG. 3, in the aluminum composite material 3 as the third example, two aluminum fiber structures 10 are made of a metal paste other than aluminum, such as silver paste, copper paste, nickel paste, silver solder, copper solder, They are adhered by an adhesive layer 80 made of an adhesive such as tin or solder.
 図4に示すように、第4の例としてのアルミニウム複合材4は、アルミニウム繊維構造体10の一方の面に銅板等の金属部品90がアルミニウム以外の金属ペースト等の接着剤から構成される接着層80により接着されたものである。 As shown in FIG. 4, in the aluminum composite material 4 as a fourth example, a metal part 90 such as a copper plate is bonded to one surface of the aluminum fiber structure 10 using an adhesive such as a metal paste other than aluminum. It is adhered by layer 80 .
 図5に示すように、第5の例としてのアルミニウム複合材4は、アルミニウム繊維構造体10の一方の面に金属部品90がアルミニウム以外の金属ペースト等の接着剤から構成される接着層80により接着されるとともに、アルミニウム繊維構造体10の他方の面にアルミナ板100がガラス(例えば、水ガラス、フリットガラス、ガラスペースト)等の接着剤から構成される接着層110により接着されたものである。 As shown in FIG. 5, in the aluminum composite material 4 as the fifth example, a metal component 90 is formed on one surface of an aluminum fiber structure 10 by an adhesive layer 80 made of an adhesive such as a metal paste other than aluminum. An alumina plate 100 is bonded to the other surface of the aluminum fiber structure 10 with an adhesive layer 110 made of an adhesive such as glass (for example, water glass, fritted glass, glass paste). .
 次に、アルミニウム繊維構造体10の構成について説明する。図6乃至図8に示すように、本実施の形態によるアルミニウム繊維構造体10は、アルミニウム繊維20同士が部分的に結着しているものであり、アルミニウム繊維20の表面にアルミナ層30が形成されている。また、図8に示すように、アルミニウム繊維20またはアルミナ層30の表面には、アルミナ層30の厚さより高さが大きい複数のアルミナの突起40が形成されている。なお、図8において、アルミニウム繊維20の表面におけるアルミナ層30や突起40が形成されていない箇所を参照符号22で示す。 Next, the configuration of the aluminum fiber structure 10 will be described. As shown in FIGS. 6 to 8, in the aluminum fiber structure 10 according to the present embodiment, the aluminum fibers 20 are partially bonded to each other, and the alumina layer 30 is formed on the surface of the aluminum fibers 20. It is Further, as shown in FIG. 8, on the surface of the aluminum fiber 20 or the alumina layer 30, a plurality of protrusions 40 of alumina having a height greater than the thickness of the alumina layer 30 are formed. In FIG. 8, reference numeral 22 indicates a portion of the surface of the aluminum fiber 20 where the alumina layer 30 and the protrusions 40 are not formed.
 このようなアルミニウム繊維構造体10において、アルミナ層30が形成されている部分は温度変化により膨張または収縮しやすい一方、複数のアルミナの突起40が形成されている部分は温度変化により膨張または収縮しにくい。このように、アルミニウム繊維構造体10全体では部分的に線膨張係数に偏りがあるため、全体的に線膨張係数を小さくすることができる。 In such an aluminum fiber structure 10, the portion where the alumina layer 30 is formed tends to expand or contract due to temperature change, while the portion where the plurality of alumina protrusions 40 is formed expands or contracts due to temperature change. Hateful. As described above, since the coefficient of linear expansion of the entire aluminum fiber structure 10 is partially uneven, the coefficient of linear expansion can be reduced as a whole.
 アルミニウム繊維20は、長さが0.2~15mmの範囲内の大きさであり直径が0.01~0.100mmの範囲内の大きさものである。アルミニウム繊維20の長さは、SEM、光学顕微鏡等を用いた写真観察によって実測することで確認することができる。 The aluminum fiber 20 has a length within the range of 0.2 to 15 mm and a diameter within the range of 0.01 to 0.100 mm. The length of the aluminum fiber 20 can be confirmed by actually measuring it through photographic observation using an SEM, an optical microscope, or the like.
 アルミナ層30は、アルミニウム繊維20が大気雰囲気下で酸化することにより形成されるものである。アルミナ層30は概してアルミニウム繊維20の表面に均一に形成される。このようなアルミナ層30の厚さは10nm~10μm、好ましくは100nm~7μm、更に好ましくは1μm~5μmの範囲内の大きさである。 The alumina layer 30 is formed by oxidizing the aluminum fibers 20 in the atmosphere. Alumina layer 30 is generally uniformly formed on the surfaces of aluminum fibers 20 . The thickness of such alumina layer 30 is in the range of 10 nm to 10 μm, preferably 100 nm to 7 μm, more preferably 1 μm to 5 μm.
 突起40は、アルミニウム繊維20を700℃以上で焼結することにより当該アルミニウム繊維20から溶出されたものから形成される。アルミニウム繊維20を焼結してアルミニウム繊維構造体10を製造する方法については後述する。なお、アルミニウム繊維20に対する焼結温度が700℃よりも小さい場合には、アルミニウム繊維20から十分な量のアルミナが溶出せず、十分な高さの突起40を得ることができない。 The projections 40 are formed from the material eluted from the aluminum fibers 20 by sintering the aluminum fibers 20 at 700°C or higher. A method of sintering the aluminum fibers 20 to produce the aluminum fiber structure 10 will be described later. If the sintering temperature for the aluminum fibers 20 is lower than 700° C., a sufficient amount of alumina is not eluted from the aluminum fibers 20, and projections 40 with a sufficient height cannot be obtained.
 また、上述したように、アルミニウム繊維20またはアルミナ層30の表面に対する突起40の高さはアルミナ層30の厚さより大きくなっている。具体的には、アルミニウム繊維20またはアルミナ層30の表面に対する突起40の高さは10nm~10μm、好ましくは100nm~7μm、更に好ましくは1μm~5μmの範囲内の大きさである。このことにより、アルミニウム繊維20と突起40との接着強度が大きくなる。ここで、アルミニウム繊維20またはアルミナ層30の表面に対する突起40の高さが小さ過ぎる場合には、具体的には10nmよりも小さい場合には、アルミナ層30の厚さと突起40の高さとの差が大きくならず、アルミニウム繊維構造体10に部分的な線膨張係数の偏りを形成することができないという問題がある。また、アルミニウム繊維20またはアルミナ層30の表面に対する突起40の高さが大き過ぎる場合には、具体的には10μmよりも大きい場合には、アルミニウム繊維20間に大きな空隙が形成されてしまうという問題がある。 Also, as described above, the height of the protrusions 40 with respect to the surface of the aluminum fibers 20 or the alumina layer 30 is greater than the thickness of the alumina layer 30 . Specifically, the height of the projections 40 with respect to the surface of the aluminum fiber 20 or alumina layer 30 is 10 nm to 10 μm, preferably 100 nm to 7 μm, more preferably 1 μm to 5 μm. This increases the bonding strength between the aluminum fibers 20 and the projections 40 . Here, if the height of the protrusions 40 with respect to the surface of the aluminum fiber 20 or the alumina layer 30 is too small, specifically smaller than 10 nm, the difference between the thickness of the alumina layer 30 and the height of the protrusions 40 does not increase, and the aluminum fiber structure 10 cannot be partially biased in the coefficient of linear expansion. In addition, when the height of the protrusions 40 relative to the surface of the aluminum fibers 20 or the alumina layer 30 is too large, specifically, when it is greater than 10 μm, there is a problem that large gaps are formed between the aluminum fibers 20. There is
 図7および図8に示すようなアルミニウム繊維構造体10の断面において、アルミニウム繊維20の表面における突起40により被覆される箇所の被覆率は合計で20%以上であることが好ましく、40%以上であることが更に好ましい。アルミニウム繊維20の表面はほぼ全体がアルミナ層30で被覆されており、部分的にこのアルミナ層30に突起40が形成されている。アルミニウム繊維20の表面における突起40により被覆される箇所の被覆率は、アルミニウム繊維構造体10の断面において、突起40により覆われる箇所(具体的には、突起40の山の上りはじめる地点から下り終わるまでの地点までの箇所)のアルミナ層30の長さを、アルミナ層30の全長で割ることにより算出することができる。アルミニウム繊維20の表面における突起40の被覆率が20%よりも小さい場合は、アルミニウム繊維構造体10における突起40が占める割合が比較的小さいので、アルミニウム繊維構造体10の線膨張係数が小さくならないという問題がある。 In the cross section of the aluminum fiber structure 10 as shown in FIGS. 7 and 8, the total coverage of the portions covered by the protrusions 40 on the surface of the aluminum fiber 20 is preferably 20% or more, and 40% or more. It is even more preferable to have Almost the entire surface of the aluminum fiber 20 is covered with an alumina layer 30, and projections 40 are partially formed on the alumina layer 30. As shown in FIG. The coverage rate of the portion covered by the projections 40 on the surface of the aluminum fiber 20 is the portion covered by the projections 40 in the cross section of the aluminum fiber structure 10 (specifically, from the point where the mountain of the projections 40 starts to descend ) can be calculated by dividing the length of the alumina layer 30 by the total length of the alumina layer 30 . When the coverage of the protrusions 40 on the surface of the aluminum fiber 20 is less than 20%, the proportion of the protrusions 40 in the aluminum fiber structure 10 is relatively small, so the coefficient of linear expansion of the aluminum fiber structure 10 does not decrease. There's a problem.
 また、複数の突起40のうち少なくとも一部の突起40は、複数のアルミニウム繊維20のアルミナ層30にまたがって接触している。この場合は、アルミニウム繊維20同士が突起40により繋がれるため、アルミニウム繊維20同士が互いに対して移動し難くなり、よってアルミニウム繊維構造体10の線膨張係数をより一層小さくすることができる。また、アルミニウム繊維構造体10と複合材料(例えば、上述した樹脂70、接着層80、接着層110等)とが複合したときに、アルミニウム繊維構造体10の隙間に入り込んだ複合材料が突起40と接触するようになる。 In addition, at least some of the plurality of projections 40 are in contact across the alumina layer 30 of the plurality of aluminum fibers 20 . In this case, since the aluminum fibers 20 are connected to each other by the projections 40, the aluminum fibers 20 are less likely to move relative to each other, so that the linear expansion coefficient of the aluminum fiber structure 10 can be further reduced. Further, when the aluminum fiber structure 10 and the composite material (for example, the resin 70, the adhesive layer 80, the adhesive layer 110, etc. described above) are combined, the composite material that enters the gaps of the aluminum fiber structure 10 forms the projections 40. come into contact.
 また、本実施の形態によるアルミニウム繊維構造体10におけるアルミニウム繊維20の占積率は20%~90%の範囲内の大きさである。このようなアルミニウム繊維20の占積率は、アルミニウム繊維構造体10を切断したときの切断面におけるアルミニウム繊維構造体10の外縁の内側の面積に対するアルミニウム繊維20が占める面積の割合を算出することにより求めることができる。アルミニウム繊維構造体10におけるアルミニウム繊維20の占積率が20%~90%の範囲内の大きさであることにより、アルミニウム繊維構造体10の軽量性および強度を両立させることができる。すなわち、アルミニウム繊維構造体10におけるアルミニウム繊維20の占積率が20%より小さい場合は十分な強度を得ることができず、また、アルミニウム繊維構造体10におけるアルミニウム繊維20の占積率が90%よりも大きい場合は軽量化を図ることができないという問題がある。また、アルミニウム繊維構造体10におけるアルミニウム繊維20の占積率が20%以上の場合には、アルミニウム繊維20の量が十分であるため適度な均質性が得られる。また、アルミニウム繊維構造体10におけるアルミニウム繊維20の占積率が90%以下であれば、適度な均質性に加え、所望の可撓性が得られる。 Further, the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 according to the present embodiment is within the range of 20% to 90%. Such a space factor of the aluminum fibers 20 is calculated by calculating the ratio of the area occupied by the aluminum fibers 20 to the inner area of the outer edge of the aluminum fiber structure 10 on the cut surface when the aluminum fiber structure 10 is cut. can ask. By setting the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 within the range of 20% to 90%, the aluminum fiber structure 10 can achieve both lightness and strength. That is, when the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is less than 20%, sufficient strength cannot be obtained, and the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is 90%. If it is larger than , there is a problem that weight reduction cannot be achieved. Moreover, when the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is 20% or more, the amount of the aluminum fibers 20 is sufficient, so that appropriate homogeneity can be obtained. Moreover, if the space factor of the aluminum fibers 20 in the aluminum fiber structure 10 is 90% or less, desired flexibility can be obtained in addition to appropriate homogeneity.
 また、本実施の形態によるアルミニウム繊維構造体10において、アルミナ層30および突起40の表面に耐プラズマ層が形成されていてもよい。ここで、耐プラズマ層は、金属酸化物または窒化アルミニウムを含んでいてもよい。金属酸化物は、例えば酸化ジルコニウム、酸化イットリウム、酸化マグネシウム、酸化亜鉛、サファイア、石英ガラスのうち少なくともいずれか1つを含む。この場合は、アルミニウム繊維構造体10と耐プラズマ層との複合材料を提供することができ、複合材料は耐プラズマ性に優れたものとなる。このようなアルミニウム繊維構造体10と耐プラズマ層との複合材料は、アルミニウム繊維構造体10のアルミナ層30や突起40にジルコニアやイットリア等を含む釉薬を塗布した後に高温で加熱することにより製造することができる。 Further, in the aluminum fiber structure 10 according to the present embodiment, a plasma resistant layer may be formed on the surfaces of the alumina layer 30 and the protrusions 40 . Here, the plasma resistant layer may contain metal oxide or aluminum nitride. Metal oxides include, for example, at least one of zirconium oxide, yttrium oxide, magnesium oxide, zinc oxide, sapphire, and quartz glass. In this case, a composite material of the aluminum fiber structure 10 and the plasma resistant layer can be provided, and the composite material has excellent plasma resistance. Such a composite material of the aluminum fibrous structure 10 and the plasma-resistant layer is manufactured by applying a glaze containing zirconia, yttria, etc. to the alumina layer 30 and the protrusions 40 of the aluminum fibrous structure 10 and then heating it at a high temperature. be able to.
 図9(a)に示すように、アルミニウム繊維20を成形容器50の内部にてシート状に成形し、プレスする。このことにより、アルミニウム繊維20間を密着させることができる。更に、図9(b)に示すように、焼結設備60の内部でアルミニウム繊維20を700℃以上で加熱することにより焼結させる。このことによりアルミニウム繊維構造体10が形成される。なお、アルミニウム繊維20の加熱方法としては、熱風等によりアルミニウム繊維20の表面を加熱する方法があるが、このような方法に限定されない。アルミニウム繊維20の加熱方法として、電気加熱法が用いられてもよい。また、上述したように、アルミニウム繊維20を700℃以上で焼結すると、当該アルミニウム繊維20からアルミナが溶出し、溶出したアルミナが常温下で固化することにより突起40となる。また、アルミニウム繊維構造体10を大気雰囲気下におくことにより、アルミニウム繊維20が酸化してアルミナ層30が形成される。 As shown in FIG. 9(a), the aluminum fibers 20 are molded into a sheet inside a molding container 50 and pressed. As a result, the aluminum fibers 20 can be brought into close contact with each other. Further, as shown in FIG. 9(b), the aluminum fibers 20 are sintered by heating them at 700° C. or higher inside the sintering equipment 60. As shown in FIG. This forms the aluminum fiber structure 10 . As a method of heating the aluminum fibers 20, there is a method of heating the surface of the aluminum fibers 20 with hot air or the like, but the method is not limited to such a method. As a method for heating the aluminum fibers 20, an electric heating method may be used. Further, as described above, when the aluminum fibers 20 are sintered at 700° C. or higher, alumina is eluted from the aluminum fibers 20 , and the eluted alumina is solidified at room temperature to form the projections 40 . Also, by exposing the aluminum fiber structure 10 to the atmosphere, the aluminum fibers 20 are oxidized to form the alumina layer 30 .
 以上をまとめると、本実施の形態のアルミニウム繊維構造体10によれば、アルミニウム繊維20同士が部分的に結着しており、アルミニウム繊維20の表面にアルミナ層30が形成されておる。また、アルミニウム繊維20またはアルミナ層30の表面には、アルミナ層30の厚さより高さが大きい複数のアルミナの突起40が形成されている。このようなアルミニウム繊維構造体10では、アルミナ層30が形成されている部分は温度変化により膨張または収縮しやすい一方、複数のアルミナの突起40が形成されている部分は温度変化により膨張または収縮しにくくなり、アルミニウム繊維構造体10全体では部分的に線膨張係数に偏りがあるため、全体的に線膨張係数を小さくすることができる。 In summary, according to the aluminum fiber structure 10 of the present embodiment, the aluminum fibers 20 are partially bonded to each other, and the alumina layer 30 is formed on the surfaces of the aluminum fibers 20 . Further, on the surface of the aluminum fiber 20 or the alumina layer 30, a plurality of protrusions 40 of alumina having a height greater than the thickness of the alumina layer 30 are formed. In such an aluminum fiber structure 10, the portion where the alumina layer 30 is formed tends to expand or contract due to temperature change, while the portion where the plurality of alumina projections 40 are formed expands or contracts due to temperature change. Since the coefficient of linear expansion of the entire aluminum fiber structure 10 is partially uneven, the coefficient of linear expansion can be reduced as a whole.
 また、このようなアルミニウム繊維構造体10とアルミニウムとは異なる複合材料(例えば、樹脂70、接着層80、接着層110等)から構成される複合材料とが複合したアルミニウム複合材1、2、3、4、5によれば、アルミナの突起40と複合材料の少なくとも一部とが接触している。周辺環境の温度が大きく変化した場合であってもアルミニウム繊維構造体10および複合材料の間で剥離が生じにくくなる。より詳細には、アルミニウム繊維構造体10の隙間に入り込んだ複合材料がアルミニウム繊維構造体10の突起40に引っ掛かることにより、アルミニウムと接着しにくい複合材料であっても当該複合材料にアルミニウム繊維構造体10を強固に接着させることができる。 In addition, aluminum composite materials 1, 2, and 3 in which such an aluminum fiber structure 10 and a composite material composed of a composite material different from aluminum (for example, a resin 70, an adhesive layer 80, an adhesive layer 110, etc.) are combined. , 4, 5, there is contact between the alumina protrusions 40 and at least a portion of the composite material. Even when the temperature of the surrounding environment changes significantly, separation between the aluminum fiber structure 10 and the composite material is less likely to occur. More specifically, the composite material that has entered the gaps of the aluminum fiber structure 10 is caught on the protrusions 40 of the aluminum fiber structure 10, so that even if the composite material is difficult to adhere to aluminum, the aluminum fiber structure will adhere to the composite material. 10 can be strongly adhered.
 例えば、第1、第2の例によるアルミニウム複合材1では、アルミニウム繊維構造体10の隙間に入り込んだ樹脂70がアルミニウム繊維構造体10の突起40に引っ掛かることにより、樹脂70がアルミニウムと接着しにくい場合であっても樹脂70にアルミニウム繊維構造体10を強固に接着させることができる。 For example, in the aluminum composite materials 1 according to the first and second examples, the resin 70 entering the gaps of the aluminum fiber structure 10 is caught on the projections 40 of the aluminum fiber structure 10, and thus the resin 70 is difficult to adhere to the aluminum. Even in this case, the aluminum fiber structure 10 can be strongly adhered to the resin 70 .
 また、第3、第4の例によるアルミニウム複合材3、4によれば、アルミニウム繊維構造体10の隙間に入り込んだ接着剤がアルミニウム繊維構造体10の突起40に引っ掛かることにより、接着層80にアルミニウム繊維構造体10を強固に接着させることができる。このことにより、第3の例によるアルミニウム複合材3では2つのアルミニウム繊維構造体10同士が剥がれにくくなる。また、第4の例によるアルミニウム複合材4では銅板等の金属部品90からアルミニウム繊維構造体10が剥がれにくくなる。また、金属部品90と接着層80との間で接着が弱い場合でも、アルミニウム繊維構造体10の線膨張係数が小さいため、金属部品90が膨張してもアルミニウム繊維構造体10が金属部品90から剥がれにくくなる。 In addition, according to the aluminum composite materials 3 and 4 according to the third and fourth examples, the adhesive that has entered the gaps of the aluminum fiber structure 10 is caught on the projections 40 of the aluminum fiber structure 10, and the adhesion layer 80 The aluminum fiber structure 10 can be firmly adhered. This makes it difficult for the two aluminum fiber structures 10 to separate from each other in the aluminum composite material 3 according to the third example. Further, in the aluminum composite material 4 according to the fourth example, the aluminum fiber structure 10 is less likely to peel off from the metal component 90 such as a copper plate. In addition, even if the adhesion between the metal component 90 and the adhesive layer 80 is weak, the linear expansion coefficient of the aluminum fiber structure 10 is small. Hard to peel off.
 また、第5の例によるアルミニウム複合材5によれば、アルミニウム繊維構造体10の隙間に入り込んだ接着剤がアルミニウム繊維構造体10の突起40に引っ掛かることにより、接着層80、110にそれぞれアルミニウム繊維構造体10を強固に接着させることができる。このことにより、金属部品90およびアルミナ板100の各々からアルミニウム繊維構造体10が剥がれにくくなる。この場合は、金属部品90とアルミナ板100との間で線膨張係数に差があっても、アルミニウム繊維構造体10の線膨張係数が小さいため、アルミニウム複合材5全体では金属部品90とアルミニウム繊維構造体10との間やアルミナ板100とアルミニウム繊維構造体10との間で剥離が生じにくくなる。 Further, according to the aluminum composite material 5 according to the fifth example, the adhesive that has entered the gaps of the aluminum fiber structure 10 is caught on the protrusions 40 of the aluminum fiber structure 10, and the aluminum fibers are attached to the adhesive layers 80 and 110, respectively. The structure 10 can be strongly adhered. This makes it difficult for the aluminum fiber structure 10 to peel off from each of the metal component 90 and the alumina plate 100 . In this case, even if there is a difference in the coefficient of linear expansion between the metal component 90 and the alumina plate 100, the coefficient of linear expansion of the aluminum fiber structure 10 is small. Separation is less likely to occur between the structure 10 and between the alumina plate 100 and the aluminum fiber structure 10 .
 以下、本発明について実施例および比較例を用いてより詳細に説明する。 Hereinafter, the present invention will be described in more detail using examples and comparative examples.
<実施例1>
 アルミニウム繊維構造体を以下の手順にて製造した。まず、材質がA1070であり繊維径が50μm、平均長さが2mmである複数のアルミニウム繊維をシート状に成形した。その後、焼結設備の内部でアルミニウム繊維を700℃で加熱することにより焼結させた。このことによりアルミニウム繊維構造体が作製された。
<Example 1>
An aluminum fibrous structure was manufactured by the following procedure. First, a plurality of aluminum fibers made of A1070, having a fiber diameter of 50 μm and an average length of 2 mm were formed into a sheet. After that, the aluminum fibers were sintered by heating them at 700° C. inside the sintering equipment. This produced an aluminum fiber structure.
 作製されたアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成され、このアルミナ層またはアルミニウム繊維の表面に、アルミナ層の厚さよりも高さが大きい複数のアルミナの突起が形成されていることが分かった。また、アルミニウム繊維構造体の断面において、アルミニウム繊維の表面におけるアルミナ層と突起の合計の被覆率は24%であり、アルミニウム繊維構造体におけるアルミニウム繊維の占積率は75%であった。このようなアルミニウム繊維構造体の各物性値は下記の表1に示す通りである。 When the cut surface of the produced aluminum fiber structure was checked with a microscope, an alumina layer was formed on the surface of the aluminum fiber, and the alumina layer or the surface of the aluminum fiber had a thickness greater than the thickness of the alumina layer. It was found that a plurality of protrusions of alumina having a large diameter were formed. In addition, in the cross section of the aluminum fiber structure, the total coverage of the alumina layer and the protrusions on the surface of the aluminum fiber was 24%, and the space factor of the aluminum fiber in the aluminum fiber structure was 75%. Each physical property of the aluminum fiber structure is shown in Table 1 below.
<実施例2~4>
 焼結設備の内部でアルミニウム繊維をそれぞれ750℃、800℃、850℃で加熱することにより焼結させたこと以外は実施例1と同様の方法によりアルミニウム繊維構造体を作製した。作製された実施例2~4に係るアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成され、このアルミナ層またはアルミニウム繊維の表面に、アルミナ層の厚さよりも高さが大きい複数のアルミナの突起が形成されていることが分かった。作製された実施例2~4に係るアルミニウム繊維構造体の各物性値は下記の表1に示す通りである。
<Examples 2 to 4>
Aluminum fiber structures were produced in the same manner as in Example 1, except that the aluminum fibers were sintered by heating them at 750°C, 800°C, and 850°C, respectively, inside the sintering equipment. When the cut surfaces of the aluminum fiber structures produced according to Examples 2 to 4 were cut and confirmed with a microscope, an alumina layer was formed on the surface of the aluminum fibers, and alumina was formed on the surface of the alumina layer or the aluminum fibers. It was found that a plurality of protrusions of alumina having a height greater than the thickness of the layer were formed. The physical properties of the aluminum fibrous structures produced according to Examples 2 to 4 are shown in Table 1 below.
<実施例5~8>
 複数のアルミニウム繊維の各々の繊維径および平均長さを表1に示すものし、焼結設備の内部でアルミニウム繊維を表1に示す温度(800℃または900℃)で加熱することにより焼結させたこと以外は実施例1と同様の方法によりアルミニウム繊維構造体を作製した。作製された実施例5~8に係るアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成され、このアルミナ層またはアルミニウム繊維の表面に、アルミナ層の厚さよりも高さが大きい複数のアルミナの突起が形成されていることが分かった。作製された実施例5~8に係るアルミニウム繊維構造体の各物性値は下記の表1に示す通りである。
<Examples 5 to 8>
The fiber diameter and average length of each of the plurality of aluminum fibers are shown in Table 1, and the aluminum fibers are sintered by heating at the temperature shown in Table 1 (800 ° C. or 900 ° C.) inside the sintering equipment. An aluminum fibrous structure was produced in the same manner as in Example 1 except for the above. When the cut surfaces of the aluminum fiber structures produced according to Examples 5 to 8 were cut and confirmed with a microscope, an alumina layer was formed on the surfaces of the aluminum fibers, and alumina was formed on the surfaces of the alumina layers or the aluminum fibers. It was found that a plurality of protrusions of alumina having a height greater than the thickness of the layer were formed. The physical properties of the aluminum fibrous structures produced according to Examples 5 to 8 are shown in Table 1 below.
<実施例9>
 実施例1のようにアルミニウム繊維をシート状に成形し、その後、焼結設備の内部でアルミニウム繊維を900℃で加熱することにより焼結させた。そして、アルミニウム繊維構造体の表面にイットリアを含む釉薬を塗布した後に高温で加熱した。このようにして作製されたアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成され、このアルミナ層またはアルミニウム繊維の表面に、アルミナ層の厚さよりも高さが大きい複数のアルミナの突起が形成されていることが分かった。また、このようなアルミニウム繊維構造体では、アルミナ層および突起の表面に酸化イットリウムを含む耐プラズマ層が形成された。作製された実施例9に係るアルミニウム繊維構造体の各物性値は下記の表1に示す通りである。
<Example 9>
Aluminum fibers were formed into a sheet as in Example 1, and then sintered by heating the aluminum fibers at 900° C. inside a sintering facility. A glaze containing yttria was applied to the surface of the aluminum fiber structure, and then heated at a high temperature. When the cut surface of the aluminum fiber structure thus produced was checked under a microscope, an alumina layer was formed on the surface of the aluminum fiber, and the thickness of the alumina layer was observed on the surface of the alumina layer or the aluminum fiber. It was found that a plurality of protrusions of alumina having a height greater than the height were formed. Moreover, in such an aluminum fibrous structure, a plasma-resistant layer containing yttrium oxide was formed on the surface of the alumina layer and the protrusions. Each physical property value of the manufactured aluminum fibrous structure according to Example 9 is as shown in Table 1 below.
<実施例10>
 実施例1のようにアルミニウム繊維をシート状に成形し、その後、焼結設備の内部でアルミニウム繊維を900℃で加熱することにより焼結させた。そして、アルミニウム繊維構造体の表面にジルコニアを含む釉薬を塗布した後に高温で加熱した。このようにして作製されたアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成され、このアルミナ層またはアルミニウム繊維の表面に、アルミナ層の厚さよりも高さが大きい複数のアルミナの突起が形成されていることが分かった。また、このようなアルミニウム繊維構造体では、アルミナ層および突起の表面に酸化ジルコニウムを含む耐プラズマ層が形成された。作製された実施例10に係るアルミニウム繊維構造体の各物性値は下記の表1に示す通りである。
<Example 10>
Aluminum fibers were formed into a sheet as in Example 1, and then sintered by heating the aluminum fibers at 900° C. inside a sintering facility. Then, after applying a glaze containing zirconia to the surface of the aluminum fiber structure, the structure was heated at a high temperature. When the cut surface of the aluminum fiber structure thus produced was checked under a microscope, an alumina layer was formed on the surface of the aluminum fiber, and the thickness of the alumina layer was observed on the surface of the alumina layer or the aluminum fiber. It was found that a plurality of protrusions of alumina having a height greater than the height were formed. Also, in such an aluminum fibrous structure, a plasma-resistant layer containing zirconium oxide was formed on the surfaces of the alumina layer and the protrusions. Each physical property value of the manufactured aluminum fibrous structure according to Example 10 is as shown in Table 1 below.
<比較例1~2>
 焼結設備の内部でアルミニウム繊維をそれぞれ680℃、600℃で加熱することにより焼結させたこと以外は実施例1と同様の方法により比較例1~2に係るアルミニウム繊維構造体を作製した。作製された比較例1~2に係るアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成されているが、このアルミナ層またはアルミニウム繊維の表面にアルミナの突起は形成されていないことが分かった。作製された比較例1~2に係るアルミニウム繊維構造体の各物性値は下記の表1に示す通りである。
<比較例3>
 比較例3として、材質がA1070であるアルミニウムの板状体を用いた。
<Comparative Examples 1 and 2>
Aluminum fiber structures according to Comparative Examples 1 and 2 were produced in the same manner as in Example 1, except that the aluminum fibers were sintered by heating them at 680° C. and 600° C., respectively, inside the sintering equipment. Microscopic examination of the cut surfaces of the produced aluminum fiber structures according to Comparative Examples 1 and 2 revealed that an alumina layer was formed on the surfaces of the aluminum fibers. It was found that no protrusions of alumina were formed on the surface. The physical property values of the manufactured aluminum fibrous structures according to Comparative Examples 1 and 2 are shown in Table 1 below.
<Comparative Example 3>
As Comparative Example 3, a plate-like body made of aluminum whose material is A1070 was used.
<評価>
 実施例1~10および比較例1~3に係るアルミニウム繊維構造体について40℃における線膨張係数を測定した。調査結果を以下の表1および表2に示す。なお、表1および表2において、被覆率は、アルミニウム繊維構造体を切断したときの断面における、アルミニウム繊維の表面における突起部の被覆率のことをいい、アルミニウム繊維構造体の断面において、突起により覆われる箇所(具体的には、突起の山の上りはじめる地点から下り終わるまでの地点までの箇所)のアルミナ層の長さを、アルミナ層の全長で割ることにより算出した。なお、比較例1~3では被覆率が0%となっているが、これはアルミナの突起が形成されていないことを意味する。また、表1および表2において、占積率は、アルミニウム繊維構造体におけるアルミニウム繊維の占積率のことをいい、アルミニウム繊維構造体を切断したときの切断面におけるアルミニウム繊維構造体の外縁の内側の面積に対するアルミニウム繊維が占める面積の割合とした。
<Evaluation>
The coefficient of linear expansion at 40° C. was measured for the aluminum fibrous structures according to Examples 1-10 and Comparative Examples 1-3. The survey results are shown in Tables 1 and 2 below. In Tables 1 and 2, the coverage rate refers to the coverage rate of the protrusions on the surface of the aluminum fiber in the cross section when the aluminum fiber structure is cut. It was calculated by dividing the length of the alumina layer at the covered portion (specifically, the portion from the point where the mountain of the protrusion starts to descend to the point where it ends) by the total length of the alumina layer. Incidentally, in Comparative Examples 1 to 3, the coverage is 0%, which means that no protrusions of alumina are formed. In Tables 1 and 2, the space factor refers to the space factor of the aluminum fibers in the aluminum fiber structure, and the inside of the outer edge of the aluminum fiber structure on the cut surface when the aluminum fiber structure is cut. The ratio of the area occupied by aluminum fibers to the area of .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~10に係るアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成され、このアルミナ層またはアルミニウム繊維の表面に、アルミナ層の厚さよりも高さが大きい複数のアルミナの突起が形成されていることが分かった。一方、比較例1~3に係るアルミニウム繊維構造体を切断したときの切断面を顕微鏡で確認したところ、アルミニウム繊維の表面にアルミナ層が形成されていたが、このアルミナ層またはアルミニウム繊維の表面にアルミナの突起が形成されていないことが分かった。また、実施例1~10および比較例1~3に係るアルミニウム繊維構造体の線膨張係数を測定した。実施例1~10に係るアルミニウム繊維構造体の線膨張係数は全て22.0以下であったのに対し、比較例1~3に係るアルミニウム繊維構造体の線膨張係数は全て23.0より大きくなった。以上の結果から、焼結設備の内部でアルミニウム繊維をそれぞれ700℃以上で加熱することにより焼結させた場合には、アルミニウム繊維構造体の線膨張係数を小さくすることができることが分かる。 When the cut surfaces of the aluminum fiber structures according to Examples 1 to 10 were checked under a microscope, an alumina layer was formed on the surface of the aluminum fibers, and the thickness of the alumina layer was formed on the surface of the alumina layer or the aluminum fibers. It was found that a plurality of protrusions of alumina having a height greater than the height were formed. On the other hand, when the cut surfaces obtained by cutting the aluminum fiber structures according to Comparative Examples 1 to 3 were checked under a microscope, an alumina layer was formed on the surface of the aluminum fibers. It was found that no protrusions of alumina were formed. Also, the linear expansion coefficients of the aluminum fibrous structures according to Examples 1 to 10 and Comparative Examples 1 to 3 were measured. The linear expansion coefficients of the aluminum fibrous structures according to Examples 1 to 10 were all 22.0 or less, whereas the linear expansion coefficients of the aluminum fibrous structures according to Comparative Examples 1 to 3 were all greater than 23.0. became. From the above results, it can be seen that the linear expansion coefficient of the aluminum fiber structure can be reduced when the aluminum fibers are sintered by heating them at 700° C. or higher inside the sintering equipment.
<実施例11>
 2つのアルミニウム繊維構造体を樹脂により接着することにより図2に示すようなアルミニウム複合材を作製した。実施例11に係るアルミニウム複合材は、アルミニウム繊維構造体の中に樹脂が部分的に含侵されたものである。具体的には、2つのアルミニウム繊維構造体の中に樹脂が部分的に含侵されることにより、樹脂における表側および裏側の各々の近傍の箇所にアルミニウム繊維構造体が位置するようになり、これらの樹脂の表面および裏面からそれぞれアルミニウム繊維構造体が外側に突出している。アルミニウム繊維構造体としては、実施例1に係るアルミニウム繊維構造体を用い、各々のアルミニウム繊維構造体の厚さは3.0mm、占積率は75%であった。また、接着層としての樹脂としてエポキシ樹脂を用い、この接着層の厚さは125μmであった。
<Example 11>
An aluminum composite material as shown in FIG. 2 was produced by bonding two aluminum fiber structures with a resin. The aluminum composite material according to Example 11 has an aluminum fiber structure partially impregnated with a resin. Specifically, by partially impregnating the resin into the two aluminum fiber structures, the aluminum fiber structures are positioned near each of the front side and the back side of the resin. Aluminum fiber structures protrude outward from the front and back surfaces of the resin, respectively. As the aluminum fiber structure, the aluminum fiber structure according to Example 1 was used, and each aluminum fiber structure had a thickness of 3.0 mm and a space factor of 75%. Epoxy resin was used as the resin for the adhesive layer, and the thickness of this adhesive layer was 125 μm.
<実施例12>
 2つのアルミニウム繊維構造体を銀ペーストの接着剤からなる接着層により接着することにより図3に示すようなアルミニウム複合材を作製した。アルミニウム繊維構造体としては、実施例1に係るアルミニウム繊維構造体を用い、各々のアルミニウム繊維構造体の厚さは3.0mm、占積率は75%であった。また、銀ペーストの接着剤からなる接着層の厚さは12μmであった。
<Example 12>
An aluminum composite material as shown in FIG. 3 was produced by bonding two aluminum fiber structures with an adhesive layer made of a silver paste adhesive. As the aluminum fiber structure, the aluminum fiber structure according to Example 1 was used, and each aluminum fiber structure had a thickness of 3.0 mm and a space factor of 75%. The thickness of the adhesive layer made of the silver paste adhesive was 12 μm.
<実施例13>
 アルミニウム繊維構造体の一方の面に銅板を銅ペーストの接着剤からなる接着層により接着することにより図4に示すようなアルミニウム複合材を作製した。アルミニウム繊維構造体としては、実施例3に係るアルミニウム繊維構造体を用い、各々のアルミニウム繊維構造体の厚さは1.0mm、占積率は72%であった。また、銅ペーストの接着剤からなる接着層の厚さは48μmであった。また、銅板としては材質がC1100、厚みが5.0mm、占積率が100%のものを用いた。
<Example 13>
An aluminum composite material as shown in FIG. 4 was produced by adhering a copper plate to one surface of an aluminum fiber structure with an adhesive layer made of a copper paste adhesive. As the aluminum fiber structure, the aluminum fiber structure according to Example 3 was used, and each aluminum fiber structure had a thickness of 1.0 mm and a space factor of 72%. The thickness of the adhesive layer made of copper paste adhesive was 48 μm. The copper plate used was made of C1100, had a thickness of 5.0 mm, and had a space factor of 100%.
<実施例14>
 アルミニウム繊維構造体の一方の面に銅板を銅ペーストの接着剤からなる接着層により接着するとともにアルミニウム繊維構造体の他方の面にアルミナ板をガラスペーストの接着剤からなる接着層により接着することにより図5に示すようなアルミニウム複合材を作製した。アルミニウム繊維構造体としては、実施例3に係るアルミニウム繊維構造体を用い、各々のアルミニウム繊維構造体の厚さは1.0mm、占積率は72%であった。また、銅ペーストの接着剤からなる接着層の厚さは48μmであった。また、銅板としては材質がC1100、厚みが0.5mm、占積率が100%のものを用いた。また、ガラスペーストの接着剤からなる接着層の厚さは27μmであった。また、アルミナ板としては厚みが1.0mm、占積率が100%のものを用いた。
<Example 14>
By bonding a copper plate to one surface of an aluminum fibrous structure with an adhesive layer made of a copper paste adhesive, and bonding an alumina plate to the other surface of the aluminum fibrous structure with an adhesive layer made of a glass paste adhesive. An aluminum composite material as shown in FIG. 5 was produced. As the aluminum fiber structure, the aluminum fiber structure according to Example 3 was used, and each aluminum fiber structure had a thickness of 1.0 mm and a space factor of 72%. The thickness of the adhesive layer made of copper paste adhesive was 48 μm. The copper plate used was made of C1100, had a thickness of 0.5 mm, and had a space factor of 100%. The thickness of the adhesive layer made of the glass paste adhesive was 27 μm. The alumina plate used had a thickness of 1.0 mm and a space factor of 100%.
<比較例4>
 実施例14と比較してアルミニウム繊維構造体ではなくアルミニウム板の一方の面に銅板を銅ペーストの接着剤からなる接着層により接着するとともにアルミニウム板の他方の面にアルミナ板をガラスペーストの接着剤からなる接着層により接着することにより図5に示すようなアルミニウム複合材を作製した。アルミニウム板として、厚さが1.0mm、占積率が100%のものを用いた。また、銅ペーストの接着剤からなる接着層の厚さは43μmであった。また、銅板としては材質がC1100、厚みが0.5mm、占積率が100%のものを用いた。また、ガラスペーストの接着剤からなる接着層の厚さは34μmであった。また、アルミナ板としては厚みが1.0mm、占積率が100%のものを用いた。
<Comparative Example 4>
Compared to Example 14, instead of the aluminum fiber structure, a copper plate was bonded to one surface of an aluminum plate with an adhesive layer made of a copper paste adhesive, and an alumina plate was bonded to the other surface of the aluminum plate with a glass paste adhesive. An aluminum composite material as shown in FIG. 5 was produced by bonding with an adhesive layer consisting of. An aluminum plate having a thickness of 1.0 mm and a space factor of 100% was used. The thickness of the adhesive layer made of copper paste adhesive was 43 μm. The copper plate used was made of C1100, had a thickness of 0.5 mm, and had a space factor of 100%. The thickness of the adhesive layer made of the glass paste adhesive was 34 μm. The alumina plate used had a thickness of 1.0 mm and a space factor of 100%.
<比較例5>
 アルミナ板の一方の面に銅板をガラスペーストの接着剤からなる接着層により接着することによりアルミナ複合材を作製した。アルミナ板として、厚さが1.0mm、占積率が100%のものを用いた。また、ガラスペーストの接着剤からなる接着層の厚さは32μmであった。また、銅板としては材質がC1100、厚みが0.5mm、占積率が100%のものを用いた。
<Comparative Example 5>
An alumina composite material was produced by adhering a copper plate to one surface of an alumina plate with an adhesive layer made of a glass paste adhesive. An alumina plate having a thickness of 1.0 mm and a space factor of 100% was used. The thickness of the adhesive layer made of the glass paste adhesive was 32 μm. The copper plate used was made of C1100, had a thickness of 0.5 mm, and had a space factor of 100%.
<評価>
 実施例11~14および比較例4~5に係るアルミニウム複合材やアルミナ複合材について接着性および接着強度の評価を行った。接着性については、実施例11~14および比較例4~5に係るアルミニウム複合材やアルミナ複合材に対してヒートショック試験(-40℃および120℃の間でサイクル数500回、保持時間は合計30分)を行い、剥離が生じるか否かを目視にて行った。剥離が生じなかった場合は「○」、剥離が部分的に生じたり複合部材の浮きが生じたりした場合は「×」として評価した。また、接着強度については、実施例11~14および比較例4~5に係るアルミニウム複合材やアルミナ複合材に対して上記のヒートショック試験を行う前後で接着強度の変化率を算出した。このような接着強度の測定はJIS K 6854-2:1999(ISO8510-2:1990)に準拠して引っ張り強度を測定した。ヒートショック試験の前後での接着強度の変化率が10%未満である場合は「◎」、30%未満である場合は「○」、30%以上である場合は「×」として評価した。評価結果を以下の表3に示す。
<Evaluation>
Adhesion and adhesion strength were evaluated for the aluminum composite materials and alumina composite materials according to Examples 11-14 and Comparative Examples 4-5. For adhesion, heat shock test (500 cycles between -40 ° C. and 120 ° C., holding time total 30 minutes), and whether or not peeling occurred was visually observed. When no peeling occurred, it was evaluated as "O", and when peeling occurred partially or the composite member lifted, it was evaluated as "x". As for the adhesive strength, the rate of change in adhesive strength was calculated before and after the heat shock test was performed on the aluminum composite materials and alumina composite materials according to Examples 11 to 14 and Comparative Examples 4 and 5. Such adhesion strength was measured by measuring tensile strength according to JIS K 6854-2:1999 (ISO8510-2:1990). When the rate of change in adhesive strength before and after the heat shock test was less than 10%, it was evaluated as "⊚"; when it was less than 30%, it was evaluated as "◯"; The evaluation results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の評価結果に示されるように、アルミニウム複合材としてアルミニウム繊維構造体を用いた場合には接着性および接着強度が良好なものとなった。具体的には、剥離が生じにくく、また周辺環境の温度の変化によっても接着強度が変化しにくくなった。一方、アルミニウム複合材としてアルミニウム繊維構造体ではなくアルミニウム板やアルミナ板を用いた場合は、接着性および接着強度がアルミニウム繊維構造体を用いる場合と比較して劣る結果となった。このように、アルミニウム複合材としてアルミニウム繊維構造体を用いた場合には、周辺環境の温度が大きく変化した場合であってもアルミニウム繊維構造体および複合材料の間で剥離が生じにくくなった。  As shown in the evaluation results in Table 3, when the aluminum fiber structure was used as the aluminum composite material, the adhesiveness and adhesive strength were good. Specifically, peeling is less likely to occur, and the adhesive strength is less likely to change due to temperature changes in the surrounding environment. On the other hand, when an aluminum plate or an alumina plate was used instead of the aluminum fiber structure as the aluminum composite material, the adhesiveness and bonding strength were inferior to those when the aluminum fiber structure was used. Thus, when the aluminum fibrous structure was used as the aluminum composite material, even when the temperature of the surrounding environment changed significantly, separation between the aluminum fibrous structure and the composite material was less likely to occur. 

Claims (11)

  1.  アルミニウム繊維同士が部分的に結着しているアルミニウム繊維構造体であって、
     前記アルミニウム繊維の表面にアルミナ層が形成されており、
     前記アルミニウム繊維または前記アルミナ層の表面には、前記アルミナ層の厚さより高さが大きい複数のアルミナの突起が形成されている、アルミニウム繊維構造体。
    An aluminum fiber structure in which aluminum fibers are partially bound together,
    An alumina layer is formed on the surface of the aluminum fiber,
    An aluminum fiber structure, wherein a plurality of protrusions of alumina having a height greater than the thickness of the alumina layer are formed on the surface of the aluminum fiber or the alumina layer.
  2.  複数の前記突起のうち少なくとも一部の前記突起は、複数の前記アルミニウム繊維の前記アルミナ層にまたがって接触している、請求項1記載のアルミニウム繊維構造体。 The aluminum fiber structure according to claim 1, wherein at least some of the plurality of projections are in contact across the alumina layer of the plurality of aluminum fibers.
  3.  前記アルミニウム繊維または前記アルミナ層の前記表面に対する前記突起の高さが10nm~10μmの範囲内の大きさである、請求項1または2記載のアルミニウム繊維構造体。 The aluminum fiber structure according to claim 1 or 2, wherein the height of said protrusions with respect to said surface of said aluminum fibers or said alumina layer is in the range of 10 nm to 10 µm.
  4.  前記アルミナ層の厚さは10nm~10μmの範囲内の大きさである、請求項1乃至3のいずれか一項に記載のアルミニウム繊維構造体。 The aluminum fibrous structure according to any one of claims 1 to 3, wherein the alumina layer has a thickness in the range of 10 nm to 10 µm.
  5.  前記アルミニウム繊維構造体の断面における前記アルミニウム繊維の表面に前記突起が20%以上被覆されていることを特徴とする、請求項1乃至3のいずれか一項に記載のアルミニウム繊維構造体。 The aluminum fibrous structure according to any one of claims 1 to 3, characterized in that 20% or more of the projections cover the surfaces of the aluminum fibers in the cross section of the aluminum fibrous structure.
  6.  前記アルミニウム繊維構造体の断面における前記アルミニウム繊維の表面に前記突起が合計で40%以上被覆されていることを特徴とする、請求項1乃至5のいずれか一項に記載のアルミニウム繊維構造体。 The aluminum fibrous structure according to any one of claims 1 to 5, characterized in that a total of 40% or more of the projections cover the surfaces of the aluminum fibers in the cross section of the aluminum fibrous structure.
  7.  前記アルミナ層および前記突起の表面に耐プラズマ層が形成されている、請求項1乃至6のいずれか一項に記載のアルミニウム繊維構造体。 The aluminum fibrous structure according to any one of claims 1 to 6, wherein a plasma-resistant layer is formed on the surfaces of the alumina layer and the protrusions.
  8.  前記耐プラズマ層は金属酸化物または窒化アルミニウムを含む、請求項7記載のアルミニウム繊維構造体。 The aluminum fiber structure according to claim 7, wherein said plasma-resistant layer contains metal oxide or aluminum nitride.
  9.  前記突起は前記アルミニウム繊維を700℃以上で焼結することにより当該アルミニウム繊維から溶出されたものから形成される、請求項1乃至8のいずれか一項に記載のアルミニウム繊維構造体。 The aluminum fibrous structure according to any one of claims 1 to 8, wherein the protrusions are formed from substances eluted from the aluminum fibers by sintering the aluminum fibers at 700°C or higher.
  10.  前記アルミニウム繊維構造体における前記アルミニウム繊維の占積率が20%~90%の範囲内である、請求項1乃至9のいずれか一項に記載のアルミニウム繊維構造体。 The aluminum fibrous structure according to any one of claims 1 to 9, wherein the space factor of the aluminum fibers in the aluminum fibrous structure is in the range of 20% to 90%.
  11.  請求項1乃至10のいずれか一項にアルミニウム繊維構造体と、複合材料とが複合したアルミニウム複合材であって、
     前記アルミナの前記突起と前記複合材料の少なくとも一部とが接触している、アルミニウム複合材。
    An aluminum composite material in which the aluminum fiber structure according to any one of claims 1 to 10 and a composite material are combined,
    An aluminum composite, wherein the protrusions of the alumina are in contact with at least a portion of the composite.
PCT/JP2022/009679 2021-03-30 2022-03-07 Aluminum fiber structure and aluminum composite material WO2022209604A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280025251.8A CN117083403A (en) 2021-03-30 2022-03-07 Aluminum fiber structure and aluminum composite material
KR1020237030797A KR20230142789A (en) 2021-03-30 2022-03-07 Aluminum fiber structures and aluminum composites
JP2023510737A JPWO2022209604A1 (en) 2021-03-30 2022-03-07
EP22779828.7A EP4317901A1 (en) 2021-03-30 2022-03-07 Aluminum fiber structure and aluminum composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-058011 2021-03-30
JP2021058011 2021-03-30
JP2021-058012 2021-03-30
JP2021058012 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209604A1 true WO2022209604A1 (en) 2022-10-06

Family

ID=83458626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009679 WO2022209604A1 (en) 2021-03-30 2022-03-07 Aluminum fiber structure and aluminum composite material

Country Status (5)

Country Link
EP (1) EP4317901A1 (en)
JP (1) JPWO2022209604A1 (en)
KR (1) KR20230142789A (en)
TW (1) TWI809764B (en)
WO (1) WO2022209604A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278891A (en) * 1990-03-28 1991-12-10 Ndc Co Ltd Oxygen enriching filter apparatus
JPH06218519A (en) * 1992-03-04 1994-08-09 Pechiney Rech Group Interet Economique Regie Par Ordonnance Du 23 Septembre 1967 Production of composite material member obtained by casting plate having insert coated with thin metal film
JPH06228601A (en) * 1993-02-04 1994-08-16 Ndc Co Ltd Granular material of aluminum or its alloy
JPH0780289A (en) * 1993-06-24 1995-03-28 Ndc Co Ltd Offensive smell adsorbing filter material
JPH07147889A (en) * 1993-11-26 1995-06-13 Ndc Co Ltd Thawing board
JPH0867990A (en) * 1994-08-26 1996-03-12 Hitachi Ltd Heat-shielding coating excellent in adhesion
JP2001062302A (en) * 1999-06-23 2001-03-13 Ibiden Co Ltd Catalyst carrier and production thereof
JP2009260168A (en) * 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd Heat-dissipating structure, heat radiating device, and manufacturing method for the heat-dissipating structure
JP2009266983A (en) * 2008-04-24 2009-11-12 Sumitomo Electric Ind Ltd Heat dissipation structure and manufacturing method therefor, and heat radiator using heat-dissipating structure
JP2011007365A (en) 2009-06-23 2011-01-13 Taisei Kogyo Kk Aluminum fiber porous sintered molding and method of manufacturing the same
JP4787253B2 (en) * 2005-06-30 2011-10-05 有限会社K2R Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
CN102618968A (en) * 2011-12-30 2012-08-01 洛阳理工学院 Aluminum fiber covered by ceramic membrane structure and preparation method thereof
JP2014194074A (en) * 2013-03-01 2014-10-09 Mitsubishi Materials Corp Porous aluminum sintered compact
JP2016014508A (en) * 2014-07-02 2016-01-28 三菱マテリアル株式会社 Porous aluminum heat exchange member
JP2016013521A (en) * 2014-07-02 2016-01-28 三菱マテリアル株式会社 Porous aluminum adsorbent, and desiccant air conditioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673707B2 (en) * 2012-12-27 2015-02-18 三菱マテリアル株式会社 Aluminum porous body and method for producing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278891A (en) * 1990-03-28 1991-12-10 Ndc Co Ltd Oxygen enriching filter apparatus
JPH06218519A (en) * 1992-03-04 1994-08-09 Pechiney Rech Group Interet Economique Regie Par Ordonnance Du 23 Septembre 1967 Production of composite material member obtained by casting plate having insert coated with thin metal film
JPH06228601A (en) * 1993-02-04 1994-08-16 Ndc Co Ltd Granular material of aluminum or its alloy
JPH0780289A (en) * 1993-06-24 1995-03-28 Ndc Co Ltd Offensive smell adsorbing filter material
JPH07147889A (en) * 1993-11-26 1995-06-13 Ndc Co Ltd Thawing board
JPH0867990A (en) * 1994-08-26 1996-03-12 Hitachi Ltd Heat-shielding coating excellent in adhesion
JP2001062302A (en) * 1999-06-23 2001-03-13 Ibiden Co Ltd Catalyst carrier and production thereof
JP4787253B2 (en) * 2005-06-30 2011-10-05 有限会社K2R Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
JP2009260168A (en) * 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd Heat-dissipating structure, heat radiating device, and manufacturing method for the heat-dissipating structure
JP2009266983A (en) * 2008-04-24 2009-11-12 Sumitomo Electric Ind Ltd Heat dissipation structure and manufacturing method therefor, and heat radiator using heat-dissipating structure
JP2011007365A (en) 2009-06-23 2011-01-13 Taisei Kogyo Kk Aluminum fiber porous sintered molding and method of manufacturing the same
CN102618968A (en) * 2011-12-30 2012-08-01 洛阳理工学院 Aluminum fiber covered by ceramic membrane structure and preparation method thereof
JP2014194074A (en) * 2013-03-01 2014-10-09 Mitsubishi Materials Corp Porous aluminum sintered compact
JP2016014508A (en) * 2014-07-02 2016-01-28 三菱マテリアル株式会社 Porous aluminum heat exchange member
JP2016013521A (en) * 2014-07-02 2016-01-28 三菱マテリアル株式会社 Porous aluminum adsorbent, and desiccant air conditioning device

Also Published As

Publication number Publication date
TW202248589A (en) 2022-12-16
KR20230142789A (en) 2023-10-11
TWI809764B (en) 2023-07-21
JPWO2022209604A1 (en) 2022-10-06
EP4317901A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
KR100740522B1 (en) Alumina member and manufacturing method thereof
WO2010095536A1 (en) Method for producing resin-based composite
JP2013179269A (en) Ceramic electronic component and manufacturing method of the same
EP3038824B1 (en) Multilayered silver films for joining electrical and mechanical components
JP2012522709A (en) Metal ceramic substrate
CN109562598A (en) Metal-carbon particle composite material and its manufacturing method
US20170332491A1 (en) Low-warpage ceramic carrier plate and method for production
WO2022209604A1 (en) Aluminum fiber structure and aluminum composite material
CN113383204A (en) Clamp for firing
JPH0936277A (en) Substrate for power module and its manufacture
CN117083403A (en) Aluminum fiber structure and aluminum composite material
JP6068642B2 (en) Method for manufacturing silicon target structure and silicon target structure
JPS6081071A (en) Metal sheet material for ceramic bonding
JPWO2019188915A1 (en) Anisotropic graphite, anisotropic graphite composite and its manufacturing method
JPH08335651A (en) Substrate for power module
JP2011241099A (en) Joined body of ceramics material and metallic material, and joining method
JP2018121025A (en) Multilayer electronic component
JP2018056489A (en) Electronic component
JP5477223B2 (en) Bonded body of ceramic material and metal material
JP5732814B2 (en) Joining method of ceramic and metal materials
WO2018070374A1 (en) Middle member
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
JP2012091974A (en) Joined body of ceramic material and metallic material and method for manufacturing the same
KR102191344B1 (en) Heat radiation sheet and EMI shielding-Heat radiation composite sheet comprising the same
JP2018123011A (en) Production method of inorganic porous sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510737

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237030797

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030797

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280025251.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022779828

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779828

Country of ref document: EP

Effective date: 20231030