JPH08335651A - Substrate for power module - Google Patents

Substrate for power module

Info

Publication number
JPH08335651A
JPH08335651A JP7142286A JP14228695A JPH08335651A JP H08335651 A JPH08335651 A JP H08335651A JP 7142286 A JP7142286 A JP 7142286A JP 14228695 A JP14228695 A JP 14228695A JP H08335651 A JPH08335651 A JP H08335651A
Authority
JP
Japan
Prior art keywords
brazing material
heat sink
ceramic substrate
power module
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7142286A
Other languages
Japanese (ja)
Other versions
JP3180621B2 (en
Inventor
Toshiyuki Nagase
敏之 長瀬
Koji Hoshino
孝二 星野
Yoshio Kanda
義雄 神田
Akifumi Hatsuka
昌文 初鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP14228695A priority Critical patent/JP3180621B2/en
Publication of JPH08335651A publication Critical patent/JPH08335651A/en
Application granted granted Critical
Publication of JP3180621B2 publication Critical patent/JP3180621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

PURPOSE: To absorb thermal deformation so as to prevent the warp or breakage of a ceramic substrate without spoiling its radiating property. CONSTITUTION: A metallic thin plate 14 is directly joined to a ceramic substrate 13, and further a second welding material, a plastic porous metallic layer 17, a second welding material 12, and a heat sink 18 are successively stacked on the plate 14 and joined to each other respectively. The heat sink 18 has a thermal expansion coefficient different from that of the ceramic substrate 13. The substrate 13 is made of Al2 O3 , and the plate 14 is made of Cu, further the layer 17 is formed of porous sintered body including Cu with a porosity of 20 to 50%. In addition, the heat sink 18 is made of Cu and the second welding material 12 is made of Ag-Cu welding substance, then the layer 17 is filled with a silicone grease.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大電力半導体が発生する
熱を放散するためのヒートシンクを有するパワーモジュ
ール用基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power module substrate having a heat sink for dissipating heat generated by a high power semiconductor.

【0002】[0002]

【従来の技術】従来、この種のパワーモジュール用基板
として、Niめっきを施したCuやAlにより形成され
た大型のヒートシンクをSn−Pb系、Pb−In系、
Ag−Sn系等のはんだを用いてセラミック基板の裏面
に金属薄板を介して積層接着する方法が知られている。
しかし、上記はんだを用いた積層接着方法では、はんだ
層の熱抵抗が大きいため、セラミック基板とヒートシン
クを直接積層接着する方法が提案されている。この直接
積層接着する方法としては、セラミック基板及びヒート
シンクをAl23及びCuによりそれぞれ形成した場
合、セラミック基板とヒートシンクとを重ねた状態でこ
れらに荷重0.5〜2kgf/cm2を加え、N2雰囲気
中で1065℃に加熱するいわゆるDBC法(Direct B
onding Copper 法)、又はセラミック基板とヒートシン
クとの間にAg−Cu−Tiろう材の箔を挟んだ状態で
これらに荷重0.5〜2kgf/cm2を加え、真空中
で800〜900℃に加熱するいわゆる活性金属法があ
る。しかし、上記直接積層接着する方法では、セラミッ
ク基板とヒートシンクとの熱膨張係数が異なるため、パ
ワーモジュール基板に反りを生じたり、熱サイクルによ
りセラミック基板に割れを生じたりする問題点があっ
た。これらの点を解消するために、ヒートシンクのセラ
ミック基板との接着面に格子状の溝を形成してヒートシ
ンクをセラミック基板に積層接着する方法が知られてい
る。
2. Description of the Related Art Conventionally, as a power module substrate of this type, a large heat sink made of Ni-plated Cu or Al is used as a Sn-Pb-based, Pb-In-based heat sink.
A method of laminating and bonding to the back surface of a ceramic substrate via a thin metal plate using a solder such as Ag—Sn system is known.
However, in the above-mentioned laminated bonding method using solder, a method of directly laminating and bonding the ceramic substrate and the heat sink has been proposed because the thermal resistance of the solder layer is large. As a method of directly laminating and bonding, when the ceramic substrate and the heat sink are formed of Al 2 O 3 and Cu, respectively, a load of 0.5 to 2 kgf / cm 2 is applied to the ceramic substrate and the heat sink in a stacked state, The so-called DBC method (Direct B method of heating to 1065 ° C. in an N 2 atmosphere)
onding copper method) or a state in which a foil of Ag-Cu-Ti brazing material is sandwiched between a ceramic substrate and a heat sink, and a load of 0.5 to 2 kgf / cm 2 is applied to these, and the temperature is set to 800 to 900 ° C in vacuum. There is a so-called active metal method of heating. However, in the method of directly laminating and bonding, the ceramic substrate and the heat sink have different thermal expansion coefficients, so that there is a problem in that the power module substrate is warped or the ceramic substrate is cracked due to a thermal cycle. In order to solve these problems, a method is known in which lattice-shaped grooves are formed on the surface of the heat sink that is bonded to the ceramic substrate and the heat sink is laminated and bonded to the ceramic substrate.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の溝
を有するヒートシンクを積層接着する方法では、溝の形
成により接着時に反りは多少防ぐことはできるが、セラ
ミック基板が大型化すると上記溝だけでは反りを防止す
ることができない不具合があり、また熱サイクル時に積
層接着部でセラミック基板の割れを防ぐことは難しかっ
た。これらの点を解消するために溝を多くすると接着面
積が減少して、熱抵抗の上昇となる問題点がある。本発
明の目的は、放熱特性を損なわずに、熱変形を吸収して
セラミック基板の反りや割れを防止できるパワーモジュ
ール用基板を提供することにある。
However, in the conventional method of laminating and bonding a heat sink having a groove as described above, it is possible to prevent warpage at the time of bonding by forming a groove, but when the ceramic substrate becomes large, the above-mentioned groove alone is used. There is a problem that the warp cannot be prevented, and it is difficult to prevent the ceramic substrate from cracking at the laminated bonding portion during the thermal cycle. If the number of grooves is increased in order to eliminate these points, there is a problem that the adhesive area is reduced and the thermal resistance is increased. An object of the present invention is to provide a power module substrate capable of absorbing thermal deformation and preventing warpage or cracking of a ceramic substrate without impairing heat dissipation characteristics.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成を、実施例に対応する図1及び図3を用
いて説明する。本発明のパワーモジュール用基板は、図
1又は図3に示すようにセラミック基板13に直接又は
第1ろう材51を介して積層接着された金属薄板14
と、金属薄板14に第2ろう材12と可塑性多孔質金属
層17と第2ろう材12とを介して積層接着されセラミ
ック基板13と異なる熱膨張係数を有するヒートシンク
18とを備えたものである。
The structure of the present invention for achieving the above object will be described with reference to FIGS. 1 and 3 corresponding to the embodiments. As shown in FIG. 1 or 3, the power module substrate of the present invention is a thin metal plate 14 laminated and adhered to a ceramic substrate 13 directly or through a first brazing material 51.
And a heat sink 18 having a thermal expansion coefficient different from that of the ceramic substrate 13 laminated and adhered to the thin metal plate 14 via the second brazing material 12, the plastic porous metal layer 17, and the second brazing material 12. .

【0005】以下、本発明を詳述する。 (a)金属薄板のセラミック基板への積層接着 金属薄板はCu又はAlにより形成され、セラミック基
板はAl23又はAlNにより形成される。金属薄板が
Cuにより形成され、セラミック基板がAl23により
形成される場合には、セラミック基板と金属薄板とを重
ねた状態でこれらに荷重0.5〜2kgf/cm2を加
え、N2雰囲気中で1065〜1075℃に加熱するD
BC法、又はセラミック基板と金属薄板との間に第1ろ
う材であるAg−Cu−Tiろう材の箔を挟んだ状態で
これらに荷重0.5〜2kgf/cm2を加え、真空中
で800〜900℃に加熱する活性金属法により、金属
薄板がセラミック基板に積層接着される。
The present invention will be described in detail below. (a) Lamination adhesion of metal thin plate to ceramic substrate The metal thin plate is made of Cu or Al, and the ceramic substrate is made of Al 2 O 3 or AlN. When the metal thin plate is made of Cu and the ceramic substrate is made of Al 2 O 3 , a load of 0.5 to 2 kgf / cm 2 is applied to the ceramic substrate and the metal thin plate in a stacked state, and N 2 D heated to 1065 to 1075 ° C in the atmosphere
A load of 0.5 to 2 kgf / cm 2 is applied to these by the BC method or with a foil of Ag-Cu-Ti brazing filler metal, which is the first brazing filler metal, sandwiched between the ceramic substrate and the thin metal plate, and in a vacuum. A thin metal plate is laminated and adhered to the ceramic substrate by the active metal method of heating at 800 to 900 ° C.

【0006】また金属薄板がCuにより形成され、セラ
ミック基板がAlNにより形成される場合には、予めセ
ラミック基板を1000〜1400℃で酸化処理してそ
の表面にAl23層を最適な厚さで形成した後、上記と
同様のDBC法又は活性金属法によりセラミック基板に
金属薄板が積層接着される。更に金属薄板がAlにより
形成され、セラミック基板がAl23又はAlNにより
形成される場合には、セラミック基板と金属薄板との間
に第1ろう材であるAl−Siろう材の箔を挟んだ状態
でこれらに荷重0.5〜2kgf/cm2を加え、真空
中で600〜650℃に加熱することにより、金属薄板
がセラミック基板に積層接着される。
When the thin metal plate is made of Cu and the ceramic substrate is made of AlN, the ceramic substrate is previously subjected to an oxidation treatment at 1000 to 1400 ° C. and an Al 2 O 3 layer having an optimum thickness is formed on the surface thereof. Then, the thin metal plates are laminated and adhered to the ceramic substrate by the DBC method or the active metal method similar to the above. Further, when the metal thin plate is made of Al and the ceramic substrate is made of Al 2 O 3 or AlN, a foil of Al-Si brazing material as the first brazing material is sandwiched between the ceramic substrate and the metal thin plate. In such a state, a load of 0.5 to 2 kgf / cm 2 is applied to these and heated to 600 to 650 ° C. in a vacuum, whereby the thin metal plates are laminated and bonded to the ceramic substrate.

【0007】(b)可塑性多孔質金属層 可塑性多孔質金属層は下記の方法により製造される。先
ず平均粒径5〜100μmの金属粉と、水溶性樹脂バイ
ンダと、非水溶性炭化水素系有機溶剤と、界面活性剤
と、水とを混練した後、可塑剤を添加して更に混練して
得られた金属粉含有スラリーをドクタブレード法により
成形体にする。次いでこの成形体を5〜100℃で0.
25〜4時間保持して上記成形体中の可塑剤を揮発させ
発泡させた後、50〜200℃で0.5〜1時間保持し
乾燥して薄板状多孔質成形体にする。次にこの多孔質成
形体を所定の雰囲気中で500〜1060℃で0.5〜
4時間加熱して保持し、スケルトン構造を有する気孔率
90〜93%、厚さ0.5〜5mmの薄板状多孔質焼結
体にする。更にこの多孔質焼結体を厚さ0.2〜3mm
に圧延することにより、気孔率が20〜50%の可塑性
多孔質金属層が得られる。
(B) Plastic Porous Metal Layer The plastic porous metal layer is produced by the following method. First, a metal powder having an average particle size of 5 to 100 μm, a water-soluble resin binder, a water-insoluble hydrocarbon organic solvent, a surfactant and water are kneaded, and then a plasticizer is added and further kneaded. The obtained metal powder-containing slurry is formed into a compact by the doctor blade method. Then, this molded body was subjected to 0.
After holding for 25 to 4 hours to volatilize the plasticizer in the above-mentioned molded article to foam, it is kept at 50 to 200 ° C for 0.5 to 1 hour and dried to obtain a thin plate-like porous molded article. Next, the porous molded body is subjected to 0.5 to 0.5 at 500 to 1060 ° C. in a predetermined atmosphere.
It is heated and held for 4 hours to obtain a thin plate-like porous sintered body having a skeleton structure and a porosity of 90 to 93% and a thickness of 0.5 to 5 mm. Furthermore, this porous sintered body has a thickness of 0.2 to 3 mm.
Rolling to give a plastic porous metal layer having a porosity of 20 to 50%.

【0008】Cuの可塑性多孔質金属層では金属粉とし
て平均粒径5〜100μmのCu粉が用いられ、Alの
可塑性多孔質金属層では金属粉として平均粒径5〜10
0μmのAl粉と平均粒径5〜100μmのCu粉の混
合物が用いられ、Agの可塑性多孔質金属層では金属粉
として平均粒径5〜100μmのAg粉が用いられる。
水溶性樹脂バインダとしてはメチルセルロース、ヒドロ
キシプロピルメチルセルロース、ヒドロキシエチルメチ
ルセルロース、カルボキシメチルセルロースアンモニウ
ム、エチルセルロース等が用いられ、非水溶性炭化水素
系有機溶剤としてはネオペンタン、ヘキサン、イソヘキ
サン、ヘプタン等が用いられる。また界面活性剤として
は市販の台所用中性合成洗剤(例えばアルキルグルコシ
ドとポリオキシエチレンアルキルエーテルの28%混合
水溶液)が用いられ、可塑剤としてはエチレングリコー
ル、ポリエチレングリコール、グリセリン等の多価アル
コールや、イワシ油、菜種油、オリーブ油等の油脂や、
石油エーテル等のエーテルや、フタル酸ジエチル、フタ
ル酸ジNブチル、フタル酸ジエチルヘキシル、フタル酸
ジNオクチル等のエステルが用いられる。
In the plastic porous metal layer of Cu, Cu powder having an average particle size of 5 to 100 μm is used as the metal powder, and in the plastic porous metal layer of Al, the average particle size of 5 to 10 as the metal powder.
A mixture of 0 μm Al powder and Cu powder having an average particle size of 5 to 100 μm is used, and Ag plastic powder having an average particle size of 5 to 100 μm is used as the metal powder in the Ag plastic porous metal layer.
Methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose ammonium, ethylcellulose and the like are used as the water-soluble resin binder, and neopentane, hexane, isohexane, heptane and the like are used as the water-insoluble hydrocarbon organic solvent. A commercially available kitchen neutral synthetic detergent (for example, a 28% mixed aqueous solution of alkyl glucoside and polyoxyethylene alkyl ether) is used as the surfactant, and a polyhydric alcohol such as ethylene glycol, polyethylene glycol or glycerin is used as the plasticizer. And oils and fats such as sardine oil, rapeseed oil and olive oil,
Ethers such as petroleum ether and esters such as diethyl phthalate, diN-butyl phthalate, diethylhexyl phthalate and diN-octyl phthalate are used.

【0009】(c)ヒートシンク ヒートシンクはCu若しくはAlの押出し成形や射出成
形等により、又はCu板若しくはAl板のプレス成形に
より形成される。ヒートシンクは第2ろう材を介して可
塑性多孔質金属層に積層接着される基部と、この基部に
所定の間隔をあけて突設された多数のフィン部とを有す
る。基部及びフィン部はCu又はAlにより一体的に成
形される。またヒートシンクとして、フィン部のない基
部のみにより形成されたプレート状のものを用いること
もできる。
(C) Heat Sink The heat sink is formed by extrusion molding or injection molding of Cu or Al, or by press molding of Cu plate or Al plate. The heat sink has a base portion laminated and adhered to the plastic porous metal layer via the second brazing material, and a large number of fin portions protruding from the base portion at predetermined intervals. The base portion and the fin portion are integrally formed of Cu or Al. Further, as the heat sink, it is also possible to use a plate-like one formed by only the base portion having no fin portion.

【0010】(d)第2ろう材 金属薄板及びヒートシンクがCuにより形成され、かつ
可塑性多孔質金属層がCu又はAgにより形成されたと
き、第2ろう材としてAg−Cuろう材の箔が用いら
れ、金属薄板、可塑性多孔質金属層及びヒートシンクの
少なくともいずれか1つがAlにより形成されたとき、
第2ろう材としてAl−Siろう材の箔が用いられる。
(D) Second brazing material When the thin metal plate and the heat sink are made of Cu and the plastic porous metal layer is made of Cu or Ag, a foil of Ag-Cu brazing material is used as the second brazing material. When at least one of the thin metal plate, the plastic porous metal layer and the heat sink is formed of Al,
A foil of Al-Si brazing material is used as the second brazing material.

【0011】(e)ヒートシンク及び可塑性多孔質金属層
の金属薄板への積層接着 第2ろう材としてAg−Cuろう材の箔を用いる場合に
は、セラミック基板に積層接着された金属薄板に第2ろ
う材、可塑性多孔質金属層、第2ろう材及びヒートシン
クを重ねた状態でこれらに荷重0.1〜1.0kgf/
cm2を加え、水素雰囲気中で800〜850℃に加熱
することにより、ヒートシンクが第2ろう材、可塑性多
孔質金属層及び第2ろう材を介して金属薄板に積層接着
される。また第2ろう材としてAl−Siろう材の箔を
用いる場合には、セラミック基板に積層接着された金属
薄板に第2ろう材、可塑性多孔質金属層、第2ろう材及
びヒートシンクを重ねた状態でこれらに荷重0.1〜
1.0kgf/cm2を加え、真空中で550〜630
℃に加熱することにより、ヒートシンクが第2ろう材、
可塑性多孔質金属層及び第2ろう材を介して金属薄板に
積層接着される。また可塑性多孔質金属層に形成された
気孔には積層接着後の金属層の側面からシリコーングリ
ース、シリコーンオイル又はエポキシ樹脂を充填するこ
とが好ましい。
(E) Laminating and Bonding Heat Sink and Plastic Porous Metal Layer to Metal Thin Plate When Ag-Cu brazing material foil is used as the second brazing material, the second bonding is applied to the metal thin plate laminated and bonded to the ceramic substrate. When the brazing material, the plastic porous metal layer, the second brazing material and the heat sink are stacked, a load of 0.1 to 1.0 kgf /
By adding cm 2 and heating to 800 to 850 ° C. in a hydrogen atmosphere, the heat sink is laminated and bonded to the metal thin plate through the second brazing filler metal, the plastic porous metal layer and the second brazing filler metal. When an Al-Si brazing material foil is used as the second brazing material, the second brazing material, the plastic porous metal layer, the second brazing material and the heat sink are stacked on the thin metal plate laminated and bonded to the ceramic substrate. Then load 0.1 to these
1.0kgf / cm 2 was added, and 550 to 630 in vacuum.
By heating to ℃, the heat sink becomes the second brazing material,
It is laminated and adhered to a metal thin plate through the plastic porous metal layer and the second brazing material. The pores formed in the plastic porous metal layer are preferably filled with silicone grease, silicone oil, or epoxy resin from the side surface of the metal layer after lamination and adhesion.

【0012】[0012]

【作用】図1又は図3に示されるパワーモジュール用基
板10又は50では、セラミック基板13とヒートシン
ク18との熱膨張係数が異なっても、可塑性多孔質金属
層17がセラミック基板13やヒートシンク18の熱変
形を吸収するので、セラミック基板13に反りや割れが
発生するのを防止できる。また可塑性多孔質金属層17
にシリコーングリース、シリコーンオイル又はエポキシ
樹脂を充填することにより、可塑性多孔質金属層17で
の熱伝導率が向上するので、放熱特性を損わない。
In the power module substrate 10 or 50 shown in FIG. 1 or 3, even if the ceramic substrate 13 and the heat sink 18 have different coefficients of thermal expansion, the plastic porous metal layer 17 is used as the ceramic substrate 13 or the heat sink 18. Since the thermal deformation is absorbed, it is possible to prevent the ceramic substrate 13 from being warped or cracked. In addition, the plastic porous metal layer 17
By filling with silicone grease, silicone oil, or epoxy resin, the thermal conductivity of the plastic porous metal layer 17 is improved, so that the heat dissipation characteristics are not impaired.

【0013】[0013]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。 <実施例1>図1に示すように、パワーモジュール用基
板10はセラミック基板13の下面及び上面にそれぞれ
直接積層接着された金属薄板14及び回路基板16と、
金属薄板14に第2ろう材12と可塑性多孔質金属層1
7と第2ろう材12とを介して積層接着されセラミック
基板13と異なる熱膨張係数を有するヒートシンク18
とを備える。セラミック基板13をAl23含有量が9
6%のセラミック材料により縦、横及び厚さがそれぞれ
30mm、70mm及び0.635mmの長方形の薄板
状に形成し、金属薄板14及び回路基板16をCuによ
り縦、横及び厚さがそれぞれ30mm、70mm及び
0.3mmの長方形の薄板状に形成した。金属薄板14
及び回路基板16をDBC法によりセラミック基板13
の下面及び上面にそれぞれ積層接着した。即ちセラミッ
ク基板13の下面及び上面に金属薄板14及び回路基板
16をそれぞれ重ねた状態でこれらに荷重2.0kgf
/cm2を加え、N2雰囲気中で1065℃に加熱するこ
とにより積層接着した。セラミック基板13の上面に積
層接着された回路基板16をFeCl3水溶液でエッチ
ングして所定の形状の回路基板にした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. <Embodiment 1> As shown in FIG. 1, a power module substrate 10 includes a metal thin plate 14 and a circuit substrate 16 which are directly laminated and adhered to a lower surface and an upper surface of a ceramic substrate 13, respectively.
The second brazing material 12 and the plastic porous metal layer 1 on the thin metal plate 14.
7 and the second brazing filler metal 12 are laminated and adhered to each other and have a thermal expansion coefficient different from that of the ceramic substrate 13.
With. The ceramic substrate 13 has an Al 2 O 3 content of 9
A 6% ceramic material is formed into a rectangular thin plate having a length, width, and thickness of 30 mm, 70 mm, and 0.635 mm, respectively, and the metal thin plate 14 and the circuit board 16 are made of Cu, and each of length, width, and thickness is 30 mm. It was formed in a rectangular thin plate shape of 70 mm and 0.3 mm. Metal sheet 14
And the circuit board 16 by the DBC method.
Was laminated and adhered to the lower surface and the upper surface, respectively. That is, the metal thin plate 14 and the circuit board 16 are stacked on the lower surface and the upper surface of the ceramic substrate 13, respectively, and a load of 2.0 kgf is applied to them.
/ Cm 2 was added and the layers were bonded by heating at 1065 ° C. in an N 2 atmosphere. The circuit board 16 laminated and adhered on the upper surface of the ceramic substrate 13 was etched with a FeCl 3 aqueous solution to form a circuit board having a predetermined shape.

【0014】可塑性多孔質金属層17は気孔率30%の
Cuの多孔質焼結体である。この可塑性多孔質金属層1
7を以下の方法により製造した。先ず平均粒径40μm
のCu粉80gと、水溶性メチルセルロース樹脂バイン
ダ2.5gと、グリセリン5gと、界面活性剤0.5g
と、水20gとを30分間混練した後、ヘキサンを1g
添加して更に3分間混練して得られた金属粉含有スラリ
ーをドクタブレード法により成形体にした。次いで上記
成形体を温度40℃に30分間保持して上記成形体中の
ヘキサンを揮発させて発泡させた後、温度90℃に40
分間保持し乾燥して薄板状多孔質成形体にした。次にこ
の多孔質成形体を空気中で500℃に0.5時間加熱し
て保持した後、水素中で1000℃に1時間加熱して保
持し、スケルトン構造を有する気孔率92〜95%、厚
さ3mmの薄板状多孔質焼結体にした。更にこの多孔質
焼結体を厚さ1mmに圧延して気孔率30%の可塑性多
孔質金属層17を得た。また上記可塑性多孔質金属層1
7を縦及び横が30mm及び70mmの長方形状に切断
した。
The plastic porous metal layer 17 is a Cu porous sintered body having a porosity of 30%. This plastic porous metal layer 1
7 was manufactured by the following method. First, the average particle size is 40 μm
Cu powder 80g, water-soluble methylcellulose resin binder 2.5g, glycerin 5g, and surfactant 0.5g
And 20 g of water are kneaded for 30 minutes, and then 1 g of hexane
The metal powder-containing slurry obtained by adding and kneading for 3 minutes was formed into a molded body by the doctor blade method. Next, the molded body is kept at a temperature of 40 ° C. for 30 minutes to evaporate hexane in the molded body to foam, and then the temperature is kept at 90 ° C. for 40 minutes.
It was kept for a minute and dried to obtain a thin plate-like porous molded body. Next, this porous molded body was heated in air at 500 ° C. for 0.5 hours and held, and then heated in hydrogen at 1000 ° C. for 1 hour and held to have a skeleton structure and a porosity of 92 to 95%. A thin plate-shaped porous sintered body having a thickness of 3 mm was prepared. Further, this porous sintered body was rolled to a thickness of 1 mm to obtain a plastic porous metal layer 17 having a porosity of 30%. In addition, the plastic porous metal layer 1
7 was cut into a rectangular shape having a length of 30 mm and a width of 70 mm.

【0015】ヒートシンク18をCuの押出し成形によ
り形成し、第2ろう材12としてAg−Cuろう材の箔
を用いた。ヒートシンク18は第2ろう材12を介して
可塑性多孔質金属層17に積層接着される縦、横及び厚
さがそれぞれ30mm、70mm及び1mmの直方体状
の基部18aと、この基部18aの下面に所定の間隔を
あけて突設された多数のフィン部18bとを有し、上記
基部18aの積層接着面には幅が1mmで間隔が10m
mの格子状の溝18cを形成した。またヒートシンク1
8の自然空冷時での放熱特性は5℃/Wであった。セラ
ミック基板13の下面に積層接着された金属薄板14の
下面に第2ろう材12、可塑性多孔質金属層17、第2
ろう材12及びヒートシンク18を重ねた状態でこれら
に荷重0.2kgf/cm2を加え、水素雰囲気中で8
00℃に加熱することにより、ヒートシンク18を第2
ろう材12、可塑性多孔質金属層17及び第2ろう材1
2を介して金属薄板14の下面に積層接着した。可塑性
多孔質金属層17の気孔にはこの金属層17の側面から
シリコーングリースを充填した。このようにしてパワー
モジュール用基板10を得た。
The heat sink 18 was formed by extrusion molding of Cu, and Ag-Cu brazing material foil was used as the second brazing material 12. The heat sink 18 is laminated and adhered to the plastic porous metal layer 17 via the second brazing filler metal 12, and has a rectangular parallelepiped base portion 18a having a length, width, and thickness of 30 mm, 70 mm, and 1 mm, respectively, and a predetermined lower surface of the base portion 18a. And a large number of fin portions 18b projecting at intervals, the width of the base portion 18a is 1 mm and the distance between them is 10 m.
m grid-shaped grooves 18c were formed. Also heat sink 1
The heat radiation property of the sample No. 8 in natural air cooling was 5 ° C./W. The second brazing filler metal 12, the plastic porous metal layer 17, and the second metal layer 17 are formed on the lower surface of the metal thin plate 14 laminated and bonded to the lower surface of the ceramic substrate 13.
A load of 0.2 kgf / cm 2 is applied to the brazing filler metal 12 and the heat sink 18 in a stacked state, and the weight is set to 8 in a hydrogen atmosphere.
By heating the heat sink 18 to the second temperature
Brazing material 12, plastic porous metal layer 17 and second brazing material 1
It was laminated and adhered to the lower surface of the metal thin plate 14 through The pores of the plastic porous metal layer 17 were filled with silicone grease from the side surface of the metal layer 17. Thus, the power module substrate 10 was obtained.

【0016】<実施例2>図2に示すように、ヒートシ
ンク28をAlにより実施例1のヒートシンクと同形同
大に形成し、第2ろう材22としてAl−Siろう材の
箔を用いた。ヒートシンク28は基部28aとフィン部
28bとを有し、基部28aには実施例1のヒートシン
クのような溝を形成しなかった。またこのヒートシンク
28の放熱特性は5℃/Wであった。セラミック基板1
3の下面に積層接着された金属薄板14の下面に第2ろ
う材12、可塑性多孔質金属層17及び第2ろう材12
を介してヒートシンク28を重ねた状態でこれらに荷重
0.2kgf/cm2を加え、真空中で600℃に加熱
することにより、ヒートシンク28を第2ろう材12、
可塑性多孔質金属層17及び第2ろう材12を介して金
属薄板14に積層接着した。このようにしてパワーモジ
ュール用基板20を得た。上記以外の構成は実施例1と
同一であり、図2において図1と同一符号は同一部品を
示す。
<Embodiment 2> As shown in FIG. 2, the heat sink 28 is formed of Al to have the same shape and size as the heat sink of Embodiment 1, and a foil of Al-Si brazing material is used as the second brazing material 22. . The heat sink 28 has a base portion 28a and a fin portion 28b, and no groove was formed in the base portion 28a like the heat sink of the first embodiment. The heat dissipation characteristic of the heat sink 28 was 5 ° C./W. Ceramic substrate 1
The second brazing filler metal 12, the plastic porous metal layer 17, and the second brazing filler metal 12 are formed on the lower surface of the metal thin plate 14 laminated and adhered to the lower surface of 3.
A load of 0.2 kgf / cm 2 is applied to these in a state where the heat sinks 28 are overlapped with each other through heating, and the heat sinks 28 are heated to 600 ° C. in a vacuum, so that the heat sink 28 is
It was laminated and adhered to the metal thin plate 14 via the plastic porous metal layer 17 and the second brazing material 12. In this way, the power module substrate 20 was obtained. The configuration other than the above is the same as that of the first embodiment, and the same symbols in FIG. 2 as those in FIG. 1 indicate the same components.

【0017】<実施例3>図示しないが、可塑性多孔質
金属層は気孔率30%のAlの多孔質焼結体である。こ
の可塑性多孔質金属層を以下の方法により製造した。先
ず平均粒径25μmのAl粉50gと、平均粒径9μm
のCu粉1.2gと、水溶性メチルセルロース樹脂バイ
ンダ2.5gと、グリセリン5gと、界面活性剤0.5
gと、水20gとを30分間混練した後、ヘキサンを1
g添加して更に3分間混練して得られた金属粉含有スラ
リーをドクタブレード法により成形体にした。次いで上
記成形体を温度40℃に30分間保持して上記成形体中
のヘキサンを揮発させて発泡させた後、温度90℃に4
0分間保持し乾燥して薄板状多孔質成形体にした。次に
この多孔質成形体を空気中で650℃に1時間加熱して
保持した後、水素中で1000℃に1時間加熱して保持
し、スケルトン構造を有する気孔率93〜96%、厚さ
3mmの薄板状多孔質焼結体にした。更にこの多孔質焼
結体を厚さ1mmに圧延して気孔率30%の可塑性多孔
質金属層を得た。また第2ろう材としてAl−Siろう
材の箔を用い、ヒートシンクをCuにより形成した。上
記以外の構成は実施例2と同一である。 <実施例4>図示しないが、可塑性多孔質金属層がAl
の多孔質焼結体であることを除いて、構成は実施例2と
同一である。
Example 3 Although not shown, the plastic porous metal layer is a porous sintered body of Al having a porosity of 30%. This plastic porous metal layer was produced by the following method. First, 50 g of Al powder having an average particle size of 25 μm and an average particle size of 9 μm
Cu powder 1.2 g, water-soluble methyl cellulose resin binder 2.5 g, glycerin 5 g, and surfactant 0.5
g and 20 g of water were kneaded for 30 minutes, and hexane was added to 1
The metal powder-containing slurry obtained by adding g and kneading for 3 minutes was formed into a molded body by the doctor blade method. Next, the molded body is kept at a temperature of 40 ° C. for 30 minutes to volatilize hexane in the molded body to foam, and then to a temperature of 90 ° C. for 4 minutes.
It was kept for 0 minutes and dried to obtain a thin plate-shaped porous molded body. Next, this porous molded body was heated in air at 650 ° C. for 1 hour and held, and then heated in hydrogen at 1000 ° C. for 1 hour and held to have a skeleton structure and a porosity of 93 to 96% and a thickness. It was a thin plate-shaped porous sintered body of 3 mm. Further, this porous sintered body was rolled to a thickness of 1 mm to obtain a plastic porous metal layer having a porosity of 30%. A foil of Al-Si brazing material was used as the second brazing material, and the heat sink was made of Cu. The configuration other than the above is the same as that of the second embodiment. <Example 4> Although not shown, the plastic porous metal layer is made of Al.
The configuration is the same as in Example 2 except that the porous sintered body is

【0018】<実施例5>図3に示すように、この例の
パワーモジュール用基板50では、セラミック基板13
の下面及び上面に第1ろう材51であるAg−Cu−T
iろう材の箔を介して活性金属法により金属薄板13及
び回路基板16をそれぞれ積層接着した。即ちセラミッ
ク基板13の下面及び上面に第1ろう材51を挟んで金
属薄板14及び回路基板16をそれぞれ重ねた状態でこ
れらに荷重2.0kgf/cm2を加え、真空中で85
0℃に加熱することにより積層接着した。上記以外の構
成は実施例1と同一であり、図3において図1と同一符
号は同一部品を示す。
<Embodiment 5> As shown in FIG. 3, in the power module substrate 50 of this embodiment, the ceramic substrate 13 is used.
Ag-Cu-T which is the first brazing filler metal 51 on the lower surface and the upper surface of the
The metal thin plate 13 and the circuit board 16 were laminated and bonded by the active metal method via the foil of the brazing material. That is, a load of 2.0 kgf / cm 2 is applied to the lower surface and the upper surface of the ceramic substrate 13 with the first brazing filler metal 51 sandwiched therebetween and the metal thin plate 14 and the circuit substrate 16 are stacked, respectively, and the metal thin plate 14 and the circuit substrate 16 are vacuumed to 85
It was laminated and adhered by heating at 0 ° C. The configuration other than the above is the same as that of the first embodiment, and in FIG. 3, the same reference numerals as those in FIG. 1 denote the same components.

【0019】<実施例6>図4に示すように、この例の
パワーモジュール基板60では、セラミック基板13の
下面及び上面に第1ろう材51であるAg−Cu−Ti
ろう材の箔を介して活性金属法により金属薄板14及び
回路基板16をそれぞれ積層接着したことを除いて、構
成は実施例2と同一である。図4において図2と同一符
号は同一部品を示す。 <実施例7及び8>図示しないが、実施例7及び8で
は、セラミック基板の下面及び上面に第1ろう材である
Ag−Cu−Tiろう材の箔を介して活性金属法により
金属薄板及び回路基板をそれぞれ積層接着したことを除
いて、構成は実施例3及び4とそれぞれ同一である。
<Embodiment 6> As shown in FIG. 4, in the power module substrate 60 of this embodiment, Ag-Cu-Ti, which is the first brazing material 51, is formed on the lower surface and the upper surface of the ceramic substrate 13.
The configuration is the same as that of the second embodiment except that the thin metal plate 14 and the circuit board 16 are laminated and adhered to each other by the active metal method through the brazing foil. 4, the same reference numerals as those in FIG. 2 indicate the same parts. <Embodiments 7 and 8> Although not shown, in Embodiments 7 and 8, a metal thin plate and a metal thin plate are formed on the lower surface and the upper surface of the ceramic substrate by the active metal method through the foil of Ag-Cu-Ti brazing material which is the first brazing material. The configurations are the same as those in Examples 3 and 4, except that the circuit boards are laminated and bonded.

【0020】<実施例9>図示しないが、この例では、
金属薄板及び回路基板を厚さ0.4mmのAlにより実
施例5の金属薄板及び回路基板と同じ大きさにそれぞれ
形成し、セラミック基板の下面及び上面に第1ろう材で
あるAl−Siろう材の箔を介して金属薄板及び回路基
板をそれぞれ積層接着した。即ちセラミック基板の下面
及び上面に第1ろう材を挟んで金属薄板及び回路基板を
それぞれ重ねた状態でこれらに荷重2.0kgf/cm
2を加え、真空中で630℃に加熱することにより積層
接着した。また第2ろう材としてAl−Siろう材の箔
を用い、セラミック基板の下面積層接着された金属薄板
の下面に第2ろう材、可塑性多孔質金属層及び第2ろう
材を介してヒートシンクを重ねた状態でこれらに荷重
0.2kgf/cm2を加え、真空中で600℃に加熱
することにより、ヒートシンクを第2ろう材、可塑性多
孔質金属層及び第2ろう材を介して金属薄板に積層接着
した。上記以外の構成は実施例5と同一である。
<Embodiment 9> Although not shown, in this example,
The metal thin plate and the circuit board are formed of Al having a thickness of 0.4 mm to the same size as the metal thin plate and the circuit board of Example 5, respectively, and Al-Si brazing material as the first brazing material is formed on the lower surface and the upper surface of the ceramic substrate. The thin metal plate and the circuit board were laminated and bonded via the foil of. That is, the metal thin plate and the circuit board are stacked on the lower surface and the upper surface of the ceramic substrate with the first brazing filler metal sandwiched therebetween, and a load of 2.0 kgf / cm is applied to them.
2 was added and laminated and adhered by heating to 630 ° C. in vacuum. A foil of Al-Si brazing material is used as the second brazing material, and a heat sink is superposed on the lower surface of the metal thin plate adhered to the lower surface of the ceramic substrate through the second brazing material, the plastic porous metal layer and the second brazing material. In this state, a load of 0.2 kgf / cm 2 is applied to these, and the heat sink is heated to 600 ° C. in a vacuum, so that the heat sink is laminated on the metal thin plate through the second brazing filler metal, the plastic porous metal layer and the second brazing filler metal. Glued The configuration other than the above is the same as that of the fifth embodiment.

【0021】<実施例10〜12>図示しないが、実施
例10〜12では、金属薄板及び回路基板をAlにより
それぞれ形成し、第1ろう材としてAl−Siろう材の
箔を用いたことを除いて、構成は実施例6〜8とそれぞ
れ同一である。 <実施例13〜16>図示しないが、実施例13〜16
では、セラミック基板をAlNにより形成したことを除
いて、構成は実施例1〜4とそれぞれ同一である。但
し、予めセラミック基板を1300℃で酸化処理してそ
の表面にAl23層を最適な厚さで形成しておいた。 <実施例17〜24>図示しないが、実施例17〜24
では、セラミック基板をAlNにより形成したことを除
いて、構成は実施例5〜12とそれぞれ同一である。
<Examples 10 to 12> Although not shown, in Examples 10 to 12, the thin metal plate and the circuit board were each formed of Al, and the foil of Al-Si brazing material was used as the first brazing material. Except for this, the configuration is the same as that of each of Examples 6 to 8. <Examples 13 to 16> Although not shown, Examples 13 to 16
Then, the configuration is the same as that of each of Examples 1 to 4 except that the ceramic substrate is made of AlN. However, the ceramic substrate was previously oxidized at 1300 ° C. and an Al 2 O 3 layer was formed on the surface of the ceramic substrate with an optimum thickness. <Examples 17 to 24> Although not shown, Examples 17 to 24
Then, the configuration is the same as that of each of Examples 5 to 12 except that the ceramic substrate is made of AlN.

【0022】<比較例1>図6に示すように、可塑性多
孔質金属層を用いないことを除いて、実施例1と同一の
構成のパワーモジュール用基板5を比較例1とした。即
ちパワーモジュール用基板5はセラミック基板3の下面
及び上面にDBC法によりそれぞれ直接積層接着された
金属薄板4及び回路基板6と、金属薄板4に第2ろう材
2であるAg−Cuろう材の箔を介して積層接着された
ヒートシンク8とを備える。 <比較例2>図7に示すように、可塑性多孔質金属層を
用いないことを除いて、実施例5と同一の構成のパワー
モジュール用基板9を比較例2とした。即ちパワーモジ
ュール用基板9はセラミック基板3の下面及び上面に第
1ろう材1であるAg−Cu−Tiろう材の箔を介して
活性金属法によりそれぞれ積層接着された金属薄板4及
び回路基板6と、金属薄板4に第2ろう材2であるAg
−Cuろう材の箔を介して積層接着されたヒートシンク
8とを備える。 <比較例3及び4>図示しないが、可塑性多孔質金属層
を用いないことを除いて、実施例13及び17と同一の
構成のパワーモジュール用基板をそれぞれ比較例3及び
4とした。上記実施例1〜24及び比較例1〜4の構成
を表1にまとめた。
Comparative Example 1 As shown in FIG. 6, a power module substrate 5 having the same structure as that of Example 1 was used as Comparative Example 1 except that the plastic porous metal layer was not used. That is, the power module substrate 5 includes a metal thin plate 4 and a circuit board 6 which are directly laminated and adhered to the lower surface and the upper surface of the ceramic substrate 3 by the DBC method, and the metal thin plate 4 is made of Ag-Cu brazing material which is the second brazing material 2. And a heat sink 8 laminated and adhered via foil. Comparative Example 2 As shown in FIG. 7, a power module substrate 9 having the same structure as in Example 5 except that the plastic porous metal layer was not used was Comparative Example 2. That is, the power module substrate 9 is a metal thin plate 4 and a circuit board 6 which are laminated and adhered to the lower surface and the upper surface of the ceramic substrate 3 by the active metal method via the foil of Ag-Cu-Ti brazing material which is the first brazing material 1. And Ag which is the second brazing filler metal 2 on the thin metal plate 4.
A heat sink 8 laminated and adhered via a foil of a Cu brazing material. <Comparative Examples 3 and 4> Although not shown, Comparative Example 3 and 4 are power module substrates having the same configurations as those of Examples 13 and 17, except that the plastic porous metal layer is not used. The configurations of Examples 1 to 24 and Comparative Examples 1 to 4 are summarized in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】<比較試験と評価>実施例1〜24及び比
較例1〜4のパワーモジュール用基板に−40℃〜12
5℃の温度サイクル条件で0サイクル(温度サイクルを
全く与えない)、10サイクル及び50サイクルの温度
サイクルを与えた後の熱抵抗及びセラミック基板の割れ
について調べた。熱抵抗Rth(℃)は回路基板上に縦及
び横とも15mmの矩形の発熱体(図示せず)を2個P
b−Snはんだを介して接着し、この発熱体を10Wで
発熱させたときの周囲空気温度Ta(℃)と発熱体の温
度Tj(℃)とを測定して式より求めた。 Rth=(Tj−Ta)/10 …… またセラミック基板の割れ率Cr(%)はセラミック基
板から回路基板をエッチングして全て剥がし、顕微鏡で
積層接着周囲の割れの長さLc(mm)とエッチング前
の回路の全周長さLa(mm)を測定して式より求め
た。 Cr=(Lc/La)×100 …… これらの結果を表2に示す。
<Comparative Test and Evaluation> The power module substrates of Examples 1 to 24 and Comparative Examples 1 to 4 were -40 ° C to 12 ° C.
The thermal resistance and the cracking of the ceramic substrate after the temperature cycle of 5 ° C. for 0 cycles (no temperature cycle was applied), 10 cycles and 50 cycles were examined. The thermal resistance R th (° C.) is 15 mm in length and width on the circuit board. Two rectangular heating elements (not shown) P
The ambient air temperature T a (° C.) and the temperature T j (° C.) of the heating element when the heating element was heated at 10 W and adhered via b-Sn solder were measured and determined from the equation. R th = (T j -T a ) / 10 ...... Further cracking rate C r (%) of the ceramic substrate peeled all by etching the circuit board from the ceramic substrate, the length L c of the cracking of the laminate adhesive around a microscope (mm) and by measuring the entire peripheral length L a (mm) of the circuit before the etching was calculated from the equation. C r = (L c / L a ) × 100 ... The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように、割れ率は実施例
の方が従来例より著しく低くなっていることが判った。
また熱抵抗は0サイクルでは実施例より比較例の方が僅
かに良いが、10サイクル以上では実施例の方が比較例
より良くなっていることが判った。
As is apparent from Table 2, it was found that the cracking rate of the example was significantly lower than that of the conventional example.
It was also found that the thermal resistance of the comparative example was slightly better than that of the example at 0 cycles, but the thermal resistance of the example was better than that of the comparative example at 10 cycles or more.

【0027】なお、上記実施例では基部とフィン部とを
有するヒートシンクを挙げたが、これに限らず図5に示
すように Al等により形成された筐体をヒートシンク
78としてもよい。図5において図2と同一符号は同一
部品を示す。
Although the heat sink having the base portion and the fin portion is described in the above embodiment, the present invention is not limited to this, and as shown in FIG. 5, a housing formed of Al or the like may be used as the heat sink 78. 5, the same reference numerals as those in FIG. 2 indicate the same parts.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、セ
ラミック基板に直接又は第1ろう材を介して金属薄板を
積層接着し、金属薄板に第2ろう材と可塑性多孔質金属
層と第2ろう材とを介してセラミック基板と異なる熱膨
張係数を有するヒートシンクを積層接着したので、可塑
性多孔質金属層が熱変形を吸収してセラミック基板の反
りや割れを防止できる。また可塑性多孔質金属層が気孔
率20〜50%のCu,Al又はAgの多孔質焼結体で
あり、この可塑性多孔質金属層にシリコーングリース、
シリコーンオイル又はエポキシ樹脂を充填すれば、放熱
特性を損うことがない。
As described above, according to the present invention, the metal thin plates are laminated and adhered to the ceramic substrate directly or through the first brazing material, and the second brazing material and the plastic porous metal layer are formed on the metal thin plate. Since the heat sink having a different thermal expansion coefficient from that of the ceramic substrate is laminated and adhered through the second brazing material, the plastic porous metal layer can absorb the thermal deformation and prevent the ceramic substrate from warping or cracking. The plastic porous metal layer is a porous sintered body of Cu, Al or Ag having a porosity of 20 to 50%, and the plastic porous metal layer has a silicone grease,
Filling with silicone oil or epoxy resin does not impair the heat dissipation characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1のパワーモジュール用基板の断
面図。
FIG. 1 is a sectional view of a power module substrate according to a first embodiment of the present invention.

【図2】本発明の実施例2を示す図1に対応する断面
図。
FIG. 2 is a sectional view corresponding to FIG. 1, showing a second embodiment of the present invention.

【図3】本発明の実施例5を示す図1に対応する断面
図。
FIG. 3 is a sectional view corresponding to FIG. 1, showing a fifth embodiment of the present invention.

【図4】本発明の実施例6を示す図2に対応する断面
図。
FIG. 4 is a sectional view corresponding to FIG. 2, showing a sixth embodiment of the present invention.

【図5】本発明の実施例25を示す図2に対応する断面
図。
FIG. 5 is a sectional view corresponding to FIG. 2, showing a twenty-fifth embodiment of the present invention.

【図6】比較例1を示す図1に対応する断面図。6 is a sectional view showing Comparative Example 1 corresponding to FIG.

【図7】比較例2を示す図1に対応する断面図。7 is a cross-sectional view corresponding to FIG. 1 showing Comparative Example 2. FIG.

【符号の説明】[Explanation of symbols]

10,20,50,60,70 パワーモジュール用基
板 12,22 第2ろう材 13 セラミック基板 14 金属薄板 17 可塑性多孔質金属層 18,28,78 ヒートシンク 51 第1ろう材
10, 20, 50, 60, 70 Power module substrate 12, 22 Second brazing material 13 Ceramic substrate 14 Metal thin plate 17 Plastic porous metal layer 18, 28, 78 Heat sink 51 First brazing material

フロントページの続き (72)発明者 初鹿 昌文 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内Front page continuation (72) Inventor Masafumi Hatsuka 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Central Research Laboratory, Mitsubishi Materials Corporation

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基板(13)に直接又は第1ろう
材(51)を介して積層接着された金属薄板(14)と、 前記金属薄板(14)に第2ろう材(12,22)と可塑性多孔質
金属層(17)と前記第2ろう材(12,22)とを介して積層接
着され前記セラミック基板(13)と異なる熱膨張係数を有
するヒートシンク(18,28,78)とを備えたパワーモジュー
ル用基板。
1. A metal thin plate (14) laminated and adhered to a ceramic substrate (13) directly or via a first brazing material (51), and a second brazing material (12, 22) on the metal thin plate (14). And a heat sink (18, 28, 78) laminated and adhered via the plastic porous metal layer (17) and the second brazing material (12, 22) and having a thermal expansion coefficient different from that of the ceramic substrate (13). Equipped with a power module substrate.
【請求項2】 セラミック基板(13)がAl23又はAl
Nにより形成された請求項1記載のパワーモジュール用
基板。
2. The ceramic substrate (13) is made of Al 2 O 3 or Al.
The power module substrate according to claim 1, which is formed of N.
【請求項3】 金属薄板(14)がCuにより形成され、前
記金属薄板(14)が直接セラミック基板(13)に積層接着さ
れた請求項1又は2記載のパワーモジュール用基板。
3. The power module substrate according to claim 1, wherein the metal thin plate (14) is formed of Cu, and the metal thin plate (14) is directly laminated and adhered on the ceramic substrate (13).
【請求項4】 金属薄板(14)がCuにより形成され、第
1ろう材(51)がAg−Cu−Tiろう材である請求項1
又は2記載のパワーモジュール用基板。
4. The thin metal plate (14) is made of Cu, and the first brazing material (51) is Ag—Cu—Ti brazing material.
Alternatively, the power module substrate described in 2.
【請求項5】 金属薄板(14)がAlにより形成され、第
1ろう材(51)がAl−Siろう材である請求項1又は2
記載のパワーモジュール用基板。
5. The thin metal plate (14) is made of Al, and the first brazing material (51) is an Al—Si brazing material.
The power module substrate described.
【請求項6】 可塑性多孔質金属層(17)が気孔率20〜
50%のCu,Al又はAgの多孔質焼結体である請求
項1ないし5いずれか記載のパワーモジュール用基板。
6. The plastic porous metal layer (17) has a porosity of 20 to 20.
The power module substrate according to claim 1, which is a porous sintered body of 50% Cu, Al or Ag.
【請求項7】 可塑性多孔質金属層(17)にシリコーング
リース、シリコーンオイル又はエポキシ樹脂が充填され
た請求項1ないし6いずれか記載のパワーモジュール用
基板。
7. The substrate for power module according to claim 1, wherein the plastic porous metal layer (17) is filled with silicone grease, silicone oil or epoxy resin.
【請求項8】 ヒートシンク(18,28,78)がCu又はAl
により形成された請求項1ないし7いずれか記載のパワ
ーモジュール用基板。
8. The heat sink (18, 28, 78) is made of Cu or Al.
The power module substrate according to any one of claims 1 to 7, which is formed by:
【請求項9】 金属薄板(14)及びヒートシンク(18)がC
uにより形成され、可塑性多孔質金属層(17)がCu又は
Agにより形成され、第2ろう材(12)がAg−Cuろう
材である請求項1記載のパワーモジュール用基板。
9. The thin metal plate (14) and the heat sink (18) are made of C.
2. The power module substrate according to claim 1, wherein the plastic porous metal layer (17) is made of u, the plastic porous metal layer (17) is made of Cu or Ag, and the second brazing material (12) is an Ag-Cu brazing material.
【請求項10】 金属薄板(14)、可塑性多孔質金属層(1
7)及びヒートシンク(28,78)の少なくともいずれか1つ
がAlにより形成され、第2ろう材(22)がAl−Siろ
う材である請求項1記載のパワーモジュール用基板。
10. A thin metal plate (14), a plastic porous metal layer (1)
7. The power module substrate according to claim 1, wherein at least one of the heat sink (28) and the heat sink (28, 78) is made of Al, and the second brazing material (22) is an Al-Si brazing material.
JP14228695A 1995-06-09 1995-06-09 Power module substrate Expired - Lifetime JP3180621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14228695A JP3180621B2 (en) 1995-06-09 1995-06-09 Power module substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14228695A JP3180621B2 (en) 1995-06-09 1995-06-09 Power module substrate

Publications (2)

Publication Number Publication Date
JPH08335651A true JPH08335651A (en) 1996-12-17
JP3180621B2 JP3180621B2 (en) 2001-06-25

Family

ID=15311846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14228695A Expired - Lifetime JP3180621B2 (en) 1995-06-09 1995-06-09 Power module substrate

Country Status (1)

Country Link
JP (1) JP3180621B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037306A1 (en) * 2005-09-28 2007-04-05 Ngk Insulators, Ltd. Heat sink module and process for producing the same
JP2007273755A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp Heat sink as well as power module member, and power module
JP2010147398A (en) * 2008-12-22 2010-07-01 Mitsubishi Materials Corp Substrate for power module and method of manufacturing the same
JP2013211288A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink
KR20140127228A (en) * 2012-02-01 2014-11-03 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
JP2015126168A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Power module
JP2016012612A (en) * 2014-06-27 2016-01-21 三菱マテリアル株式会社 Base plate for power module with heat sink, manufacturing method and power module
WO2024048358A1 (en) * 2022-09-01 2024-03-07 デクセリアルズ株式会社 Laminate and method for manufacturing laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562276B (en) * 2017-05-10 2021-04-28 Dyson Technology Ltd A heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037306A1 (en) * 2005-09-28 2007-04-05 Ngk Insulators, Ltd. Heat sink module and process for producing the same
JP5128951B2 (en) * 2005-09-28 2013-01-23 日本碍子株式会社 Heat sink module and manufacturing method thereof
JP2007273755A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp Heat sink as well as power module member, and power module
JP4626555B2 (en) * 2006-03-31 2011-02-09 三菱マテリアル株式会社 Heat sink, power module member and power module
JP2010147398A (en) * 2008-12-22 2010-07-01 Mitsubishi Materials Corp Substrate for power module and method of manufacturing the same
KR20140127228A (en) * 2012-02-01 2014-11-03 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
JP2013211288A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink
JP2015126168A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Power module
JP2016012612A (en) * 2014-06-27 2016-01-21 三菱マテリアル株式会社 Base plate for power module with heat sink, manufacturing method and power module
WO2024048358A1 (en) * 2022-09-01 2024-03-07 デクセリアルズ株式会社 Laminate and method for manufacturing laminate

Also Published As

Publication number Publication date
JP3180621B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JP3180622B2 (en) Power module substrate and method of manufacturing the same
JP3171234B2 (en) Ceramic circuit board with heat sink
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP3180677B2 (en) Ceramic circuit board with heat sink
TWI615929B (en) Power module substrate, power module substrate having heatsink, power module, method for producing power module substrate, paste for connecting copper plate, and method for producing laminated body
JP2004298962A (en) Solder joining material and power module substrate utilizing the same
KR20170137094A (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
GB2311414A (en) Composite substrate for a heat-generating semiconductor device
KR20110124372A (en) Al/aln joint material, base plate for power module, power module and process for producing al/aln joint material
JP3127754B2 (en) Semiconductor device
JP2001168482A (en) Ceramics circuit substrate
US20100282459A1 (en) Heat sink and method for manufacturing a heat sink
JP3180621B2 (en) Power module substrate
JP3230181B2 (en) Method for manufacturing power module substrate and power module substrate manufactured by the method
CN109562598A (en) Metal-carbon particle composite material and its manufacturing method
JP3166060B2 (en) Heat dissipation sheet
JP5496081B2 (en) Method for manufacturing a metallized component, metallized component and support for supporting the component during metallization
JP6658400B2 (en) Method for producing ceramic / Al-SiC composite material joined body and method for producing substrate for power module with heat sink
JPH1065296A (en) Ceramic circuit board
JP3120826B2 (en) Terminal structure of power module substrate
JP3166819B2 (en) Power module circuit board and method of manufacturing the same
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
EP3416186A1 (en) Semiconductor substrate arrangement with a connection layer with regions of different porosity and method for producing the same
JP6269116B2 (en) Metal member with underlayer, insulated circuit board, semiconductor device, insulated circuit board with heat sink, and method for producing metal member with underlayer
JP2006060247A (en) Heat dissipation substrate and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

EXPY Cancellation because of completion of term