WO2022209192A1 - 作業現場の管理システム及び作業現場の管理方法 - Google Patents

作業現場の管理システム及び作業現場の管理方法 Download PDF

Info

Publication number
WO2022209192A1
WO2022209192A1 PCT/JP2022/002044 JP2022002044W WO2022209192A1 WO 2022209192 A1 WO2022209192 A1 WO 2022209192A1 JP 2022002044 W JP2022002044 W JP 2022002044W WO 2022209192 A1 WO2022209192 A1 WO 2022209192A1
Authority
WO
WIPO (PCT)
Prior art keywords
watering
area
unmanned
transport vehicle
workplace
Prior art date
Application number
PCT/JP2022/002044
Other languages
English (en)
French (fr)
Inventor
実里 前田
貴士 平中
研太 長川
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN202280017920.7A priority Critical patent/CN116964273A/zh
Priority to AU2022252276A priority patent/AU2022252276A1/en
Priority to US18/278,653 priority patent/US20240134395A1/en
Priority to CA3211972A priority patent/CA3211972A1/en
Publication of WO2022209192A1 publication Critical patent/WO2022209192A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/229Command input data, e.g. waypoints
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • G05D1/6484Performing a task within a working area or space, e.g. cleaning by taking into account parameters or characteristics of the working area or space, e.g. size or shape
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H3/00Applying liquids to roads or like surfaces, e.g. for dust control; Stationary flushing devices
    • E01H3/02Mobile apparatus, e.g. watering-vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/05Specific applications of the controlled vehicles for soil shifting, building, civil engineering or mining, e.g. excavators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/70Industrial sites, e.g. warehouses or factories
    • G05D2107/73Mining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/90Building sites; Civil engineering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles

Definitions

  • the present disclosure relates to a work site management system and a work site management method.
  • Patent Document 1 there are cases where watering is carried out by a watering truck at a work site.
  • Sprinkling water suppresses the spread of dust or sand at the work site.
  • a technique that can efficiently water an area where dust or sand is likely to spread.
  • An object of the present disclosure is to efficiently sprinkle water in an area where dust or sand is likely to spread in a work site.
  • a workplace data acquisition unit that acquires workplace data set in a workplace where an unmanned transport vehicle travels
  • a watering area setting unit that sets a watering area where the unmanned watering vehicle sprinkles water in the workplace based on the workplace data.
  • a worksite management system comprising:
  • FIG. 1 is a schematic diagram showing a work site management system according to an embodiment.
  • FIG. 2 is a perspective view showing the unmanned transport vehicle according to the embodiment.
  • FIG. 3 is a perspective view showing the unmanned water sprinkler vehicle according to the embodiment.
  • FIG. 4 is a schematic diagram showing a work site according to the embodiment.
  • FIG. 5 is a functional block diagram showing a work site management system according to the embodiment.
  • FIG. 6 is a diagram for explaining transport travel data of the unmanned transport vehicle according to the embodiment.
  • FIG. 7 is a diagram for explaining watering running data of the unmanned watering vehicle according to the embodiment.
  • FIG. 8 is a diagram for explaining an example of a traveling area and a watering area in the loading area according to the embodiment;
  • FIG. 8 is a diagram for explaining an example of a traveling area and a watering area in the loading area according to the embodiment; FIG.
  • FIG. 9 is a diagram for explaining an example of a traveling area and a watering area in the loading area according to the embodiment.
  • FIG. 10 is a diagram for explaining an example of a traveling area and a watering area in the earth unloading site according to the embodiment.
  • FIG. 11 is a diagram for explaining an example of a traveling area and a watering area in the earth unloading site according to the embodiment;
  • FIG. 12 is a flow chart showing a method for managing a loading area according to the embodiment.
  • FIG. 13 is a flowchart showing a method for managing an unloading site according to the embodiment.
  • FIG. 1 is a schematic diagram showing a work site management system 1 according to an embodiment.
  • the management system 1 manages unmanned vehicles operating at work sites.
  • An unmanned vehicle is a work vehicle that operates unmanned without being driven by a driver.
  • unmanned vehicles operating at work sites include an unmanned transport vehicle 10 and an unmanned watering vehicle 20 .
  • the unmanned transport vehicle 10 unmannedly travels through the work site and transports cargo.
  • An unmanned dump truck is exemplified as the unmanned transport vehicle 10 .
  • Excavated material excavated at a work site is exemplified as a load to be transported by the unmanned transport vehicle 10 .
  • the unmanned watering vehicle 20 unmannedly travels the work site and sprinkles water.
  • An unmanned water truck is exemplified as the unmanned water vehicle 20 .
  • the unmanned water sprinkler vehicle 20 sprinkles water to suppress the spread of dust or sand at the work site.
  • the management system 1 includes a management device 2 and a communication system 3.
  • the management device 2 is installed in a control facility 4 at a work site. An administrator exists at the control facility 4 .
  • the unmanned transport vehicle 10 has a control device 11.
  • the unmanned watering vehicle 20 has a control device 21 .
  • the management device 2 , the control device 11 and the control device 21 wirelessly communicate via the communication system 3 .
  • a wireless communication device 3A is connected to the management device 2 .
  • a wireless communication device 3B is connected to the control device 11 .
  • a wireless communication device 3C is connected to the control device 21 .
  • the communication system 3 includes a wireless communication device 3A, a wireless communication device 3B, and a wireless communication device 3C.
  • FIG. 2 is a perspective view showing the unmanned transport vehicle 10 according to the embodiment.
  • the unmanned transport vehicle 10 includes a wireless communication device 3B, a control device 11, a vehicle body 12, a traveling device 13, a dump body 14, and a sensor system 15.
  • the vehicle body 12 includes a body frame.
  • the vehicle body 12 is supported by the travel device 13 .
  • the vehicle body 12 supports the dump body 14 .
  • the traveling device 13 generates a driving force for causing the unmanned transport vehicle 10 to travel.
  • the travel device 13 generates a braking force for decelerating or stopping the unmanned transport vehicle 10 .
  • the travel device 13 generates a steering force for turning the unmanned transport vehicle 10 .
  • the travel device 13 moves the unmanned transport vehicle 10 forward or backward.
  • Traveling device 13 includes wheels 16 .
  • a tire 17 is attached to the wheel 16 .
  • the wheels 16 include front wheels 16F and rear wheels 16R.
  • the tire 17 includes a front tire 17F attached to the front wheel 16F and a rear tire 17R attached to the rear wheel 16R.
  • the wheels 16 rotate while the tires 17 are in contact with the road surface of the work site, so that the unmanned transport vehicle 10 travels on the work site.
  • the dump body 14 is a member on which cargo is loaded. At least part of the dump body 14 is arranged above the vehicle body 12 .
  • the sensor system 15 includes a position sensor 15A, an orientation sensor 15B, a speed sensor 15C, and an obstacle sensor 15D.
  • the position sensor 15A detects the position of the unmanned transport vehicle 10 .
  • the position of the unmanned vehicle 10 is detected using the Global Navigation Satellite System (GNSS).
  • the position sensor 15A includes a GNSS receiver and detects the position of the unmanned transport vehicle 10 in the global coordinate system.
  • the azimuth sensor 15B detects the azimuth of the unmanned transport vehicle 10 .
  • a gyro sensor is exemplified as the direction sensor 15B.
  • the speed sensor 15C detects the travel speed of the unmanned transport vehicle 10 .
  • a pulse sensor that detects the rotation of the wheels 16 is exemplified as the speed sensor 15C.
  • the obstacle sensor 15D detects obstacles around the unmanned transport vehicle 10 .
  • the obstacle sensor 15D detects obstacles in a non-contact manner.
  • a laser sensor LIDAR: Light Detection and Ranging
  • RADAR Radio Detection and Ranging
  • FIG. 3 is a perspective view showing the unmanned water sprinkler vehicle 20 according to the embodiment.
  • the unmanned watering vehicle 20 includes a wireless communication device 3C, a control device 21, a vehicle body 22, a traveling device 23, a tank 24, a sensor system 25, and a watering spray 28.
  • a wireless communication device 3C a control device 21, a vehicle body 22, a traveling device 23, a tank 24, a sensor system 25, and a watering spray 28.
  • the vehicle body 22 includes a body frame.
  • the vehicle body 22 is supported by the travel device 23 .
  • the vehicle body 22 supports the tank 24 .
  • the vehicle body 22 is provided with a cab 29 .
  • the cab 29 is provided at the front portion of the vehicle body 22 .
  • a driver can get on the cab 29 and operate the unmanned watering vehicle 20 .
  • the driver performs driving operation of the unmanned watering vehicle 20 .
  • the unmanned watering vehicle 20 operates unmanned at least when watering a work site.
  • the cab 29 may not be provided in the unmanned watering vehicle 20 .
  • the traveling device 23 generates driving force for causing the unmanned watering vehicle 20 to travel.
  • the travel device 23 generates braking force for decelerating or stopping the unmanned water vehicle 20 .
  • the travel device 23 generates a steering force for turning the unmanned water vehicle 20 .
  • the traveling device 23 advances or reverses the unmanned watering vehicle 20 .
  • the travel device 23 includes wheels 26 .
  • a tire 27 is attached to the wheel 26 .
  • the wheels 26 include front wheels 26F and rear wheels 26R.
  • the front wheels 26F are steering wheels and the rear wheels 26R are driving wheels. Both the front wheels 26F and the rear wheels 26R may be steering wheels. Both the front wheels 26F and the rear wheels 26R may be driving wheels.
  • the front wheels 26F may be driving wheels and the rear wheels 26R may be steering wheels.
  • the tire 27 includes a front tire 27F attached to the front wheel 26F and a rear tire 27R attached to the rear wheel 26R. As the wheels 26 rotate while the tires 27 are in contact with the road surface of the work site, the unmanned watering vehicle 20 travels on the work site.
  • the tank 24 is a member that stores water for watering. At least part of the tank 24 is arranged above the vehicle body 22 .
  • the sensor system 25 includes a position sensor 25A, an orientation sensor 25B, a speed sensor 25C, and an obstacle sensor 25D.
  • the position sensor 25A detects the position of the unmanned watering vehicle 20 .
  • the position of the unmanned water vehicle 20 is detected using the Global Navigation Satellite System (GNSS).
  • Position sensor 25A includes a GNSS receiver and detects the position of unmanned water vehicle 20 in the global coordinate system.
  • the azimuth sensor 25B detects the azimuth of the unmanned water vehicle 20 .
  • a gyro sensor is exemplified as the direction sensor 25B.
  • a speed sensor 25 ⁇ /b>C detects the running speed of the unmanned water vehicle 20 .
  • a pulse sensor that detects the rotation of the wheels 26 is exemplified as the speed sensor 25C.
  • the obstacle sensor 25 ⁇ /b>D detects obstacles around the unmanned water vehicle 20 .
  • the obstacle sensor 25D detects obstacles without contact.
  • a laser sensor LIDAR: Light Detection and Ranging
  • RADAR Radio Detection and Ranging
  • the water spray 28 sprays water from the tank 24 .
  • a watering spray 28 is arranged at the rear of the tank 24 .
  • a watering spray 28 is watered behind the unmanned watering vehicle 20 .
  • a plurality of water sprays 28 are provided.
  • a plurality of watering sprays 28 are arranged at intervals in the vehicle width direction of the unmanned watering vehicle 20 at the rear portion of the tank 24 .
  • the vehicle width direction refers to a direction parallel to the rotation axis of the wheels 26 when the unmanned water sprinkler vehicle 20 is in a straight-ahead state.
  • FIG. 4 is a schematic diagram showing a work site according to the embodiment.
  • a mine or a quarry is exemplified as a work site.
  • a mine is a place or establishment from which minerals are extracted.
  • a quarry is a place or establishment where stone is mined.
  • the unmanned transport vehicle 10 and the unmanned sprinkler vehicle 20 operate.
  • the work site is a mine.
  • mines include metal mines for mining metals, non-metal mines for mining limestone, and coal mines for mining coal.
  • a work site 30, an apron 33, a refueling station 34, a water supply station 35, a running path 36, and an intersection 37 are provided at the work site.
  • the work place 30 includes at least one of a loading place 31 and an unloading place 32 .
  • the loading area 31 is an area where the loading operation of loading the unmanned transport vehicle 10 by the loader 5 is carried out.
  • the loader 5 operates at the loading site 31 .
  • a hydraulic excavator is exemplified as the loader 5 .
  • the unloading site 32 is an area where the unmanned transport vehicle 10 unloads the load.
  • a crusher 6 is provided in the dumping site 32 .
  • the parking lot 33 is an area where at least one of the unmanned transport vehicle 10 and the unmanned watering vehicle 20 is parked.
  • the refueling station 34 is an area where at least one of the unmanned transport vehicle 10 and the unmanned watering vehicle 20 is refueled.
  • a fueling station 34 is provided with a fueling machine 7 for supplying fuel.
  • the water supply station 35 refers to an area where the unmanned watering vehicle 20 is supplied with water. Water for watering is supplied to the tank 24 at the water supply station 35 .
  • a water supply station 35 is provided with a water supply machine 8 for supplying water to the tank 24 .
  • the travel path 36 refers to an area where an unmanned vehicle travels toward at least one of the workshop 30, parking lot 33, refueling station 34, and water supply station 35.
  • the travel path 36 is provided so as to connect at least the loading site 31 and the earth discharging site 32 .
  • the travel path 36 is connected to each of the loading area 31, the unloading area 32, the parking area 33, the refueling area 34, and the water supply area 35.
  • An intersection 37 is an area where a plurality of roads 36 intersect or an area where one road 36 branches into a plurality of roads 36 .
  • FIG. 5 is a functional block diagram showing the work site management system 1 according to the embodiment.
  • the management system 1 has a management device 2 , a communication system 3 , a control device 11 and a control device 21 .
  • the management device 2 includes a computer system.
  • the management device 2 is connected to the input device 9 .
  • the management device 2 has a communication interface 41 , a storage circuit 42 and a processing circuit 43 .
  • the input device 9 is connected to the processing circuit 43 .
  • the input device 9 is operated by an administrator of the control facility 4 .
  • the input device 9 generates input data based on the administrator's operation. Input data generated by the input device 9 is input to the processing circuit 43 .
  • Examples of the input device 9 include a touch panel, a computer keyboard, a mouse, or operation buttons.
  • the input device 9 may be a non-contact input device including an optical sensor, or may be a voice input device.
  • the communication interface 41 is connected to the processing circuit 43 .
  • the communication interface 41 controls communication between the management device 2 and at least one of the control devices 11 and 21 .
  • the communication interface 41 communicates with at least one of the control device 11 and the control device 21 via the communication system 3 .
  • the storage circuit 42 is connected to the processing circuit 43 .
  • the storage circuit 42 stores data.
  • a non-volatile memory or a volatile memory is exemplified as the storage circuit 42 .
  • Non-volatile memory is exemplified by ROM (Read Only Memory) or storage. Examples of storage include a hard disk drive (HDD) or a solid state drive (SSD).
  • RAM Random Access Memory
  • the processing circuit 43 performs arithmetic processing and output processing of control commands.
  • a processor is exemplified as the processing circuit 43 .
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • a computer program is stored in the storage circuit 42 .
  • the processing circuit 43 obtains a computer program from the storage circuit 42 and executes it to perform a predetermined function.
  • the processing circuit 43 includes a transportation path generation unit 61, a work place data acquisition unit 62, a travel area identification unit 63, a watering area setting unit 64, a watering path generation unit 65, a first output unit 66, and a second output. 67.
  • the transport path generation unit 61 generates transport travel data indicating the travel conditions of the unmanned transport vehicle 10 set at the work site.
  • the travel conditions of the unmanned transport vehicle 10 include a haul path 102 indicating a target travel route of the unmanned transport vehicle 10 .
  • the transportation path generation unit 61 may generate transportation travel data based on input data from the input device 9 .
  • FIG. 6 is a diagram for explaining transportation travel data of the unmanned transportation vehicle 10 according to the embodiment.
  • the transport travel data defines travel conditions of the unmanned transport vehicle 10 .
  • the transport travel data includes course points 101 , transport paths 102 , target positions of the unmanned transport vehicle 10 , target orientations of the unmanned transport vehicle 10 , and target travel speeds of the unmanned transport vehicle 10 .
  • a plurality of course points 101 are set at least in the workplace 30 .
  • a plurality of course points 101 are set on the travel path 36 .
  • a course point 101 defines a target position for the unmanned transport vehicle 10 .
  • a target azimuth and a target traveling speed of the unmanned transport vehicle 10 are set for each of the plurality of course points 101 .
  • a plurality of course points 101 are set at intervals. The interval between the course points 101 is set to, for example, 1 [m] or more and 5 [m] or less. The intervals between the course points 101 may be uniform or non-uniform.
  • the transport path 102 is a virtual line that indicates the target travel route of the unmanned transport vehicle 10 .
  • a haul path 102 is defined by a trajectory passing through a plurality of course points 101 .
  • the unmanned transport vehicle 10 travels through the work site following the transport path 102 .
  • the target position of the unmanned transport vehicle 10 refers to the target position of the unmanned transport vehicle 10 when passing the course point 101.
  • the target position of the unmanned transport vehicle 10 may be defined in the local coordinate system of the unmanned transport vehicle 10, or may be defined in the global coordinate system.
  • the target orientation of the unmanned transport vehicle 10 refers to the target orientation of the unmanned transport vehicle 10 when passing the course point 101 .
  • the target running speed of the unmanned transport vehicle 10 means the target running speed of the unmanned transport vehicle 10 when passing the course point 101 .
  • the workplace data acquisition unit 62 acquires workplace data set for the workplace 30 where the unmanned transport vehicle 10 travels.
  • the workplace data includes at least one of a position at which the unmanned transport vehicle 10 travels and a position at which it stops in the workplace 30 .
  • the workplace data may be a factor that determines the travel locus of the unmanned transport vehicle 10 in the workplace 30 , or may be the transport path 102 set in the workplace 30 or the travel area 300 set in the workplace 30 .
  • the workplace data includes a target point that indicates the position to which the unmanned transport vehicle 10 is heading in the workplace 30 .
  • a target point is set at the workplace 30 .
  • the target points include work points that indicate locations at which work on the unmanned transport vehicle 10 is performed.
  • a plurality of work points are set in the workshop 30. Note that the number of work points set in the work place 30 may be one.
  • a work point refers to a position where work related to the unmanned transport vehicle 10 is performed. At the work point, work related to the unmanned transport vehicle 10 is performed.
  • the work related to the unmanned transport vehicle 10 includes loading work in which the loader 5 loads the unmanned transport vehicle 10 with cargo.
  • the work related to the unmanned transport vehicle 10 includes earth unloading work in which the unmanned transport vehicle 10 unloads the load.
  • the work points include at least one of a loading point LP indicating the position of the unmanned transport vehicle 10 during the loading work and a loader point LMP indicating the position of the loader 5 during the loading work.
  • a loading point LP and a loader point LMP are set in the loading field 31 . Only one loading point LP may be set in the loading field 31, or a plurality of loading points LP may be set.
  • the unmanned transport vehicle 10 may stop at the loading point LP, or may not stop at the loading point LP.
  • the work point also includes an earth unloading point DP that indicates the position of the unmanned transport vehicle 10 in the earth unloading work.
  • the unloading point DP is set at the unloading site 32 . Only one unloading point DP may be set in the unloading station 32, or a plurality of unloading points DP may be set.
  • the unmanned transport vehicle 10 may stop at the earth unloading point DP, or may not stop at the earth unloading point DP.
  • the workplace data also includes a discharge area DPA where the unmanned transport vehicle 10 can discharge the load.
  • the dumping area DPA is set at the dumping site 32 .
  • the earth unloading point DP is set inside the earth unloading area DPA.
  • the workplace data also includes at least one of an entry point EP indicating the position at which the unmanned transport vehicle 10 enters the workplace 30 and an exit point MP indicating the position at which the unmanned transport vehicle 10 leaves the workplace 30 .
  • Each of the entry point EP and exit point MP is set at the workplace 30 .
  • the unmanned transport vehicle 10 enters the workplace 30 from the travel path 36 , it passes through an entry point EP set in the workplace 30 . After passing the entry point EP, the unmanned transport vehicle 10 travels toward the work point set in the work place 30 .
  • the unmanned transport vehicle 10 passes through an exit point MP set in the workplace 30 . After passing the exit point MP, the unmanned transport vehicle 10 travels along the travel path 36 .
  • the workplace data also includes the carriage path 102 in the workplace 30 generated by the carriage path generation unit 61 .
  • the travel area identification unit 63 identifies the travel area 300 of the unmanned transport vehicle 10 in the workplace 30 based on the workplace data.
  • the travel area 300 is an area in which the unmanned transport vehicle 10 travels in the workshop 30 .
  • the travel area 300 includes at least one of an area where the unmanned transport vehicle 10 is scheduled to travel, an area where the unmanned transport vehicle 10 may travel, and an area where the unmanned transport vehicle 10 has already traveled.
  • the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 based on the target point of the workshop 30, for example. That is, the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 traveling toward the target point of the workshop 30 .
  • the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 based on at least one of the entry point EP and the exit point MP of the workshop 30, for example. That is, the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 passing through at least one of the entry point EP and the exit point MP of the workplace 30 .
  • the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 based on, for example, the position of the dumping area DPA. That is, the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 that travels toward the dumping area DPA of the workshop 30 .
  • the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 based on the position of the transport path 102, for example. That is, the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 that travels along the transport path 102 set in the workshop 30 .
  • the travel area identification unit 63 determines the travel area acquired by the workplace data acquisition unit 62 as the travel area 300. can be specified.
  • the watering area setting unit 64 sets watering data for controlling the watering spray 28 .
  • the watering data set by the watering area setting unit 64 includes execution and stoppage of watering from the watering sprayer 28 .
  • the watering data set by the watering area setting unit 64 includes the watering amount from the watering sprayer 28 .
  • the watering data set by the watering area setting unit 64 includes the number of watering sprayers 28 that perform watering.
  • the watering data set by the watering area setting unit 64 includes the installation position of the watering sprayer 28 that performs watering.
  • the watering data set by the watering area setting unit 64 includes the watering area 400 in the workshop 30 where the unmanned watering vehicle 20 waters.
  • the watering area 400 is an area in the workshop 30 that is watered from the watering spray 28 of the unmanned watering vehicle 20 .
  • the watering area setting unit 64 sets a watering area 400 where the unmanned watering vehicle 20 sprinkles water in the workplace 30 based on the workplace data acquired by the workplace data acquiring unit 62 .
  • the watering area setting unit 64 sets the watering area 400 where the unmanned watering vehicle 20 waters in the workshop 30 based on the traveling area 300 specified by the traveling area specifying unit 63 .
  • Watering area setting unit 64 sets watering area 400 such that watering area 400 includes at least part of running area 300 specified by running area specifying unit 63 . That is, the watering area setting unit 64 sets the watering area 400 so that water is sprinkled on at least a part of the running area 300 specified by the running area specifying unit 63 .
  • the watering area setting unit 64 sets the watering area 400 so that the watering area 400 includes all of the running area 300 specified by the running area specifying unit 63 . That is, the watering area setting unit 64 sets the watering area 400 so that water is sprinkled on the entire running area 300 specified by the running area specifying unit 63 .
  • the watering area setting unit 64 may set the watering area 400 so that part of the running area 300 specified by the running area specifying unit 63 is included in the watering area 400 .
  • the watering path generation unit 65 generates watering travel data indicating travel conditions of the unmanned watering vehicle 20 set at the work site.
  • the travel conditions of the unmanned water vehicle 20 include a watering path 202 that indicates the target travel route of the unmanned water vehicle 20 .
  • the watering path generation unit 65 generates the watering path 202 based on the workplace data acquired by the workplace data acquisition unit 62 .
  • the watering path generation unit 65 generates the watering path 202 of the unmanned watering vehicle 20 so that the watering area 400 set by the watering area setting unit 64 is watered.
  • the watering path generation unit 65 may generate the watering path 202 based on the travel area 300 of the unmanned transport vehicle 10 identified by the travel area identification unit 63 .
  • FIG. 7 is a diagram for explaining the water running data of the unmanned water vehicle 20 according to the embodiment.
  • the water running data defines the running conditions of the unmanned water vehicle 20 .
  • the watering travel data includes course points 201 , watering paths 202 , the target position of the unmanned watering vehicle 20 , the target orientation of the unmanned watering vehicle 20 , and the target running speed of the unmanned watering vehicle 20 .
  • a plurality of course points 201 are set at least in the workshop 30 .
  • a plurality of course points 201 are set on the travel path 36 .
  • the watering path 202 is a virtual line indicating the target travel route of the unmanned watering vehicle 20 .
  • the function of the transportation travel data and the function of the watering travel data are the same. A description of the water running data is omitted.
  • the first output unit 66 (transportation travel data output unit) transmits the transportation travel data generated by the transportation path generation unit 61 to the unmanned transport vehicle 10 .
  • the first output unit 66 transmits transportation travel data from the communication interface 41 to the control device 11 of the unmanned transportation vehicle 10 .
  • the second output section 67 (sprinkling traveling data output section) transmits the water traveling data generated by the watering path generating section 65 to the unmanned watering vehicle 20 .
  • the second output unit 67 transmits the water running data from the communication interface 41 to the control device 21 of the unmanned water vehicle 20 .
  • the second output unit 67 transmits watering data including the watering area 400 set by the watering area setting unit 64 to the unmanned watering vehicle 20 .
  • the second output unit 67 transmits watering data including the watering area 400 from the communication interface 41 to the control device 21 of the unmanned watering vehicle 20 .
  • the control device 11 includes a computer system. Like the management device 2, the control device 11 has a communication interface, storage circuitry, and processing circuitry. The control device 11 has a travel control unit 71 that controls the travel device 13 . The travel control unit 71 controls the travel device 13 based on the transportation travel data transmitted from the management device 2 .
  • the control device 21 includes a computer system. Like the management device 2, the control device 21 has a communication interface, storage circuitry, and processing circuitry. The control device 21 has a traveling control section 81 that controls the traveling device 23 and a watering control section 82 that controls the watering spray 28 . The travel control unit 81 controls the travel device 23 based on the water spray travel data transmitted from the management device 2 . The watering control unit 82 controls the watering spray 28 based on the watering data transmitted from the management device 2 .
  • the travel control unit 71 controls the travel device 13 based on the transportation travel data and the detection data of the sensor system 15 .
  • the travel control unit 71 controls the travel device 13 so that the unmanned transport vehicle 10 travels along the transport path 102 based on the detection data of the position sensor 15A and the detection data of the orientation sensor 15B. That is, the travel control unit 71 determines that the deviation between the detection position of the unmanned transport vehicle 10 detected by the position sensor 15A when passing the course point 101 and the target position of the unmanned transport vehicle 10 set at the course point 101 is The travel device 13 is controlled so that it becomes smaller.
  • the travel control unit 71 determines that the deviation between the detected orientation of the unmanned transport vehicle 10 detected by the orientation sensor 15B when passing the course point 101 and the target orientation of the unmanned transport vehicle 10 set at the course point 101 is The travel device 13 is controlled so that it becomes smaller. Further, the travel control unit 71 controls the travel device 13 based on the detection data of the speed sensor 15C so that the unmanned transport vehicle 10 travels at the target travel speed. That is, the traveling control unit 71 controls the difference between the detected travel speed of the unmanned transport vehicle 10 detected by the speed sensor 15C when passing the course point 101 and the target travel speed of the unmanned transport vehicle 10 set at the course point 101. The travel device 13 is controlled so that the deviation becomes small.
  • the travel control unit 81 controls the travel device 23 based on the water spray travel data and the detection data of the sensor system 25 .
  • the traveling control unit 81 controls the traveling device 23 so that the unmanned water vehicle 20 travels along the watering path 202 based on the detection data of the position sensor 25A and the detection data of the direction sensor 25B. Further, the travel control unit 81 controls the travel device 23 based on the detection data of the speed sensor 25C so that the unmanned water sprinkler vehicle 20 travels at the target travel speed.
  • FIG. 8 is a diagram for explaining an example of the traveling area 300 and the watering area 400 in the loading area 31 according to the embodiment.
  • the transportation path generation unit 61 generates transportation travel data so that the unmanned transport vehicle 10 travels toward the loading point LP.
  • the unmanned transport vehicle 10 travels in the loading field 31 according to the transportation travel data.
  • An entry point EP, a switchback point SP, a loading point LP, and an exit point MP are set in the loading field 31 .
  • Each of the entry point EP, switchback point SP, loading point LP, and exit point MP may be set by an administrator. The administrator can operate the input device 9 to set the entry point EP, the switchback point SP, the loading point LP, and the exit point MP.
  • the unmanned transport vehicle 10 that has traveled along the travel path 36 and passed through the entrance point EP enters the loading area 31 while moving forward. After entering the loading site 31, the unmanned transport vehicle 10 switches back at the switchback point SP and then moves backward to enter the loading point LP.
  • Switchback refers to an operation in which the advancing unmanned transport vehicle 10 changes its traveling direction and travels in the target direction while moving backward. Switchback is performed based on haul trip data.
  • the loader 5 loads a dump body 14 of the unmanned transport vehicle 10 with a load.
  • the unmanned transport vehicle 10 moves forward to the exit point MP.
  • the unmanned transport vehicle 10 leaves the loading area 31 after passing the exit point MP while moving forward.
  • the travel area identification unit 63 identifies the travel area 300 based on the transport path 102 .
  • the travel area specifying unit 63 specifies the travel area 300 based on, for example, the transport path 102 and the vehicle width of the unmanned transport vehicle 10 .
  • the travel area 300 is specified so that the entire hauling path 102 is included in the travel area 300 .
  • a plurality of switchback points SP may be set in the loading field 31 and a plurality of transportation paths 102 may be set in the loading field 31 .
  • each of the plurality of transportation paths 102 is set in the loading area 31 so as to have mutually different target travel routes.
  • the switchback point SP does not have to be set at the loading site 31 .
  • the transport path 102 is set in the loading area 31 so as to be a target travel route on which the unmanned transport vehicle 10 does not switch back.
  • the watering area setting unit 64 sets the watering area 400 so that the entire running area 300 is included in the watering area 400, as shown in FIG. 8(B).
  • the watering area setting unit 64 sets the watering area 400 so that the edge of the watering area 400 surrounds the running area 300 .
  • the watering area setting unit 64 sets the watering area 400 such that the entire edge of the watering area 400 is arranged outside the edge of the running area 300 .
  • the watering area 400 is smaller than the loading area 31. - ⁇
  • the watering path generation unit 65 generates the watering path 202 so that the watering area 400 is watered from the unmanned watering vehicle 20 .
  • the second output unit 67 transmits the water running data generated by the water path generation unit 65 to the unmanned water vehicle 20 .
  • the unmanned watering vehicle 20 travels the loading area 31 based on the watering path 202 while watering from the watering spray 28 so as to water at least a part of the watering area 400. do.
  • the watering path generation unit 65 generates the watering path 202 so that the unmanned watering vehicle 20 waters the watering area 400 while moving forward without going backwards.
  • the water sprayer 28 is provided at the rear part of the unmanned watering vehicle 20, it is preferable that the unmanned watering vehicle 20 spray water from the watering spray 28 while moving forward without moving backward.
  • the watering path generation unit 65 may generate the watering path 202 so that the unmanned watering vehicle 20 waters the watering area 400 while moving backward.
  • the watering path generation unit 65 may generate the watering path 202 so that the unmanned watering vehicle 20 waters the watering area 400 while moving forward and backward.
  • the watering area setting unit 64 may set the watering area 400 such that part of the running area 300 is included in the watering area 400 .
  • the watering area setting unit 64 may set the watering area 400 such that the edge of the running area 300 is arranged inside the edge of the watering area 400 .
  • the transportation path generation unit 61 may generate the transportation path 102 based on the loading point LP indicating the position of the unmanned transport vehicle 10 in the loading work, or the position of the loader 5 in the loading work.
  • a haul path 102 may be generated based on the indicated loader point LMP.
  • the carriage path generation unit 61 may predict the loading point LP from the loader point LMP and generate the carriage path 102 based on the predicted loading point LP.
  • FIG. 9 is a diagram for explaining an example of the traveling area 300 and the watering area 400 in the loading area 31 according to the embodiment.
  • the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 based on the loading point LP, the entry point EP, and the exit point MP.
  • the travel area identification unit 63 estimates a plurality of travel trajectories along which the unmanned transport vehicle 10 may travel, based on the relative positions of the loading point LP, the entry point EP, and the exit point MP.
  • the travel area specifying unit 63 can set the travel area 300 so as to include a plurality of estimated travel trajectories.
  • the traveling area specifying unit 63 sets a switchback point SP based on the loading point LP so as to suppress a decrease in the work efficiency of the loading work, and based on the set switchback point SP, a plurality of traveling areas. Estimate the trajectory.
  • the travel area specifying unit 63 may specify the travel area 300 of the unmanned transport vehicle 10 based on the loading point LP without using the entry point EP and the exit point MP.
  • the watering area setting unit 64 sets the watering area 400 so that the entire running area 300 is included in the watering area 400, as shown in FIG. 9(B).
  • the watering area setting unit 64 sets the watering area 400 so that the edge of the watering area 400 surrounds the running area 300 .
  • the watering area setting unit 64 sets the watering area 400 so that the edges of the watering area 400 and the edges of the running area 300 match.
  • the watering area 400 is smaller than the loading area 31. - ⁇
  • the watering area setting unit 64 may set the watering area 400 such that part of the running area 300 is included in the watering area 400 .
  • the watering area setting unit 64 may set the watering area 400 such that the edge of the running area 300 is arranged inside the edge of the watering area 400 .
  • the watering path generation unit 65 generates the watering path 202 so that the watering area 400 is watered from the unmanned watering vehicle 20 .
  • the second output unit 67 transmits the water running data generated by the water path generation unit 65 to the unmanned water vehicle 20 .
  • the unmanned watering vehicle 20 travels in the loading area 31 based on the watering path 202 while watering from the watering spray 28 so as to water the entire watering area 400 .
  • the travel area specifying unit 63 may specify the travel area 300 based on the loading point LP indicating the position of the unmanned transport vehicle 10 in the loading work, or may specify the position of the loader 5 in the loading work.
  • the travel area 300 may be identified based on the indicated loader point LMP.
  • FIG. 10 is a diagram for explaining an example of the running area 300 and the watering area 400 in the earth unloading site 32 according to the embodiment.
  • the transportation path generation unit 61 generates transportation travel data so that the unmanned transport vehicle 10 travels toward the earth unloading point DP.
  • the unmanned transport vehicle 10 travels in the unloading site 32 according to the transportation travel data.
  • An entry point EP, a switchback point SP, an earth unloading point DP, and an exit point MP are set in the unloading station 32 .
  • a plurality of earth unloading points DP are set.
  • the earth unloading point DP is set inside the earth unloading area DPA.
  • Each of the entry point EP, the switchback point SP, the earth unloading point DP, the exit point MP, and the earth unloading area DPA may be set by the administrator.
  • the administrator can operate the input device 9 to set the entry point EP, the switchback point SP, the earth unloading point DP, the exit point MP, and the earth unloading area DPA.
  • the unmanned transport vehicle 10 that has traveled along the travel path 36 and passed through the entrance point EP enters the unloading site 32 while moving forward.
  • the unmanned transport vehicle 10 that has entered the earth unloading site 32 switches back at the switchback point SP, and then enters the earth unloading point DP while moving backward. Switchback is performed based on haul trip data.
  • the unmanned transport vehicle 10 moves backward to enter the earth unloading point DP, and after stopping at the earth unloading point DP, earth unloading work is carried out.
  • the unmanned transport vehicle 10 dumps the dump body 14 to discharge the load from the dump body 14 .
  • the unmanned transport vehicle 10 that has completed the earth removal work moves forward to the exit point MP.
  • the unmanned transport vehicle 10 withdraws from the unloading site 32 after passing the exit point MP while moving forward.
  • a plurality of switchback points SP are set in the unloading site 32 .
  • a plurality of transport paths 102 are set in the unloading site 32 .
  • Each of the plurality of hauling paths 102 is set in the unloading site 32 so as to have mutually different target travel routes.
  • the travel area identification unit 63 identifies the travel area 300 based on the plurality of transport paths 102.
  • the travel area specifying unit 63 specifies the travel area 300 based on, for example, the transport path 102 and the vehicle width of the unmanned transport vehicle 10 .
  • the travel area 300 specifies the travel area 300 such that all of the plurality of hauling paths 102 are included in the travel area 300 .
  • the watering area setting unit 64 sets the watering area 400 so that the entire running area 300 is included in the watering area 400, as shown in FIG. 10(B).
  • the watering area setting unit 64 sets the watering area 400 so that the edge of the watering area 400 surrounds the running area 300 .
  • the watering area setting unit 64 sets the watering area 400 such that the entire edge of the watering area 400 is arranged outside the edge of the running area 300 .
  • the watering area 400 is smaller than the dumping site 32 .
  • the watering path generation unit 65 generates watering paths 202 so that the watering area 400 is watered from the unmanned watering vehicle 20 .
  • the second output unit 67 transmits the water running data generated by the water path generation unit 65 to the unmanned water vehicle 20 .
  • the unmanned watering vehicle 20 travels along the watering path 202 along the watering path 202 while watering from the watering spray 28 so as to water at least a part of the watering area 400 . do.
  • the watering path generation unit 65 generates the watering path 202 so that the unmanned watering vehicle 20 waters the watering area 400 while moving forward without going backwards.
  • the water sprayer 28 is provided at the rear part of the unmanned watering vehicle 20, it is preferable that the unmanned watering vehicle 20 spray water from the watering spray 28 while moving forward without moving backward.
  • the watering path generation unit 65 may generate the watering path 202 so that the unmanned watering vehicle 20 waters the watering area 400 while moving backward.
  • the watering path generation unit 65 may generate the watering path 202 so that the unmanned watering vehicle 20 waters the watering area 400 while moving forward and backward.
  • the transportation path generation unit 61 may generate the transportation path 102 based on the earth unloading point DP that indicates the position of the unmanned transportation vehicle 10 in the earth unloading work, or the unmanned transportation vehicle 10 can unload the load.
  • the carriage path 102 may be generated based on the position of the dumping area DPA.
  • the watering area setting unit 64 may set the watering area 400 such that part of the running area 300 is included in the watering area 400 .
  • the watering area setting unit 64 may set the watering area 400 such that the edge of the running area 300 is arranged inside the edge of the watering area 400 .
  • FIG. 11 is a diagram for explaining an example of the traveling area 300 and the watering area 400 in the dumping site 32 according to the embodiment.
  • the travel area specifying unit 63 can specify the travel area 300 of the unmanned transport vehicle 10 based on the earth unloading point DP, the entry point EP, and the exit point MP.
  • the travel area identification unit 63 estimates a plurality of travel trajectories along which the unmanned transport vehicle 10 may travel, based on the relative positions of the earth unloading point DP, the entrance point EP, and the exit point MP.
  • the travel area specifying unit 63 can set the travel area 300 so as to include a plurality of estimated travel trajectories. Note that if the distance between the switchback point SP and the earth unloading point DP is too long, the working efficiency of the earth unloading work will decrease.
  • the traveling area specifying unit 63 sets a switchback point SP based on the earth unloading point DP so as to suppress a decrease in the work efficiency of the earth discharging work, and based on the set switchback point SP, a plurality of traveling areas. Estimate the trajectory.
  • the travel area specifying unit 63 may specify the travel area 300 of the unmanned transport vehicle 10 based on the earth unloading point DP without using the entry point EP and the exit point MP.
  • the watering area setting unit 64 sets the watering area 400 so that the entire running area 300 is included in the watering area 400 as shown in FIG. 11(B).
  • the watering area setting unit 64 sets the watering area 400 so that the edge of the watering area 400 surrounds the running area 300 .
  • the watering area setting unit 64 sets the watering area 400 so that the edges of the watering area 400 and the edges of the running area 300 match.
  • the watering area 400 is smaller than the dumping site 32 .
  • the watering area setting unit 64 may set the watering area 400 such that part of the running area 300 is included in the watering area 400 .
  • the watering area setting unit 64 may set the watering area 400 such that the edge of the running area 300 is arranged inside the edge of the watering area 400 .
  • the watering path generation unit 65 generates the watering path 202 so that the watering area 400 is watered from the unmanned watering vehicle 20 .
  • the second output unit 67 transmits the water running data generated by the water path generation unit 65 to the unmanned water vehicle 20 .
  • the unmanned watering vehicle 20 travels along the watering path 202 along the watering path 202 while watering the entire watering area 400 from the watering spray 28 .
  • the travel area specifying unit 63 may specify the travel area 300 based on the earth unloading point DP that indicates the position of the unmanned transport vehicle 10 in the earth unloading work, or the unmanned transport vehicle 10 can unload the load.
  • the travel area 300 may be specified based on the position of the dumping area DPA.
  • FIG. 12 is a flow chart showing a method for managing the loading space 31 according to the embodiment.
  • the travel area identification unit 63 determines whether or not the transportation path 102 has been generated (step SL1).
  • step SL1 If it is determined in step SL1 that the transport path 102 has been generated (step SL1: Yes), the travel area specifying unit 63 specifies the travel area 300 based on the transport path 102.
  • the watering area setting unit 64 sets the watering area 400 based on the travel area 300 . That is, the watering area setting unit 64 sets the watering area 400 based on the transport path 102 (step SL2).
  • step SL3 determines whether or not there is a loader 5 that can carry out the loading work.
  • step SL3 When it is determined in step SL3 that there is a loader 5 capable of carrying out the loading work (step SL3: Yes), the watering area setting unit 64 determines the position of the loader 5 capable of carrying out the loading work. to set the watering area 400.
  • a loading point LP is set in the vicinity of the position of the loader 5 that can carry out the loading work.
  • the watering area setting unit 64 sets the watering area 400 based on the loading point LP, the entry point EP, and the exit point MP (step SL4).
  • step SL3 when it is determined that there is no loader 5 capable of carrying out the loading work (step SL3: No), the watering area setting unit 64 sets the entire loading area 31 as the watering area 400 (step SL5).
  • the watering path generation unit 65 generates the watering path 202 based on the watering area 400 set based on one process of steps SL2, SL4, and SL5 (step SL6).
  • the watering travel data including the watering path 202 generated by the watering path generation unit 65 is transmitted to the control device 21 of the unmanned watering vehicle 20 via the communication system 3 .
  • the control device 21 controls the unmanned watering vehicle 20 to water the watering area 400 based on the watering path 202 .
  • the unmanned watering vehicle 20 travels in the loading area 31 based on the watering path 202 while watering from the watering spray 28 .
  • FIG. 13 is a flow chart showing a method for managing the unloading site 32 according to the embodiment.
  • the traveling area specifying unit 63 determines whether or not the transportation path 102 has been generated (step SD1).
  • step SD1 When it is determined in step SD1 that the transportation path 102 has been generated (step SD1: Yes), the travel area identification unit 63 identifies the travel area 300 based on the transportation path 102.
  • the watering area setting unit 64 sets the watering area 400 based on the travel area 300 . That is, the watering area setting unit 64 sets the watering area 400 based on the transport path 102 (step SD2).
  • step SD3 determines whether or not the earth unloading point DP exists (step SD3).
  • step SD3 When it is determined in step SD3 that the earth unloading point DP exists (step SD3: Yes), the watering area setting unit 64 sets the watering area 400 based on the earth unloading point DP, the entrance point EP, and the exit point MP. (step SD4).
  • step SD3 When it is determined in step SD3 that the earth unloading point DP does not exist (step SD3: No), the travel area specifying unit 63 determines whether or not there is an earth unloading area DPA in which the earth unloading work can be performed ( Step SD5).
  • step SD5 When it is determined in step SD5 that there is a dumping area DPA in which the dumping work can be performed (step SD5: Yes), the watering area setting unit 64 sets the position of the dumping area DPA, the entry point EP, and the exit point. A watering area 400 is set based on MP (step SD6).
  • step SD5 When it is determined in step SD5 that there is no dumping area DPA where the dumping work can be performed (step SD5: No), the watering area setting unit 64 sets the entire dumping site 32 as the watering area 400 ( Step SD7).
  • the watering path generation unit 65 generates the watering path 202 based on the watering area 400 set based on one process of steps SD2, SD4, SD6, and SD7 (step SD8).
  • the watering travel data including the watering path 202 generated by the watering path generation unit 65 is transmitted to the control device 21 of the unmanned watering vehicle 20 via the communication system 3 .
  • the control device 21 controls the unmanned watering vehicle 20 to water the watering area 400 based on the watering path 202 .
  • the unmanned watering vehicle 20 travels in the dumping site 32 based on the watering path 202 while watering from the watering spray 28 .
  • the watering area 400 is set based on the workshop data set for the workshop 30 on which the unmanned transport vehicle 10 travels.
  • the work place data in the loading field 31 includes the loading point LP, the loading machine point LMP, the entrance point EP of the loading field 31, the exit point MP of the loading field 31, the transport path 102 set in the loading field 31, and at least one of the running area 300 .
  • the work place data in the unloading site 32 includes the unloading point DP, the unloading area DPA, the entrance point EP of the unloading site 32, the exit point MP of the unloading site 32, the transport path 102 set in the unloading site 32, and the At least one of the running areas 300 is included.
  • a position where the unmanned transport vehicle 10 travels or stops is an area in the workplace 30 where there is a high possibility that dust or sand will spread.
  • the unmanned watering vehicle 20 efficiently waters the area where dust or sand is likely to spread. can be done.
  • the travel area 300 of the unmanned transport vehicle 10 in the workplace 30 is specified based on the workplace data obtained by acquiring the workplace data set in the workplace 30 where the unmanned transport vehicle 10 travels.
  • a watering area 400 is set based on the identified travel area 300 .
  • a travel area 300 of the unmanned transport vehicle 10 is an area in the workplace 30 where dust or sand is likely to spread.
  • the unmanned watering vehicle 20 can efficiently water the traveling area 300 where dust or sand is likely to spread.
  • the travel area 300 is accurately specified by using not only the loading point LP but also at least one of the entry point EP and the exit point MP.
  • the travel area 300 in the earth unloading site 32 not only the earth unloading point DP but also at least one of the entry point EP and the exit point MP is used to accurately specify the travel area 300.
  • the travel area 300 is specified with high accuracy by specifying the travel area 300 based on the transport path 102.
  • the watering path 202 of the unmanned watering vehicle 20 is generated so that the watering area 400 set by the watering area setting unit 64 is watered.
  • the unmanned watering vehicle 20 can evenly water the watering area 400 by traveling through the workshop 30 while watering based on the watering data including the watering area 400 and the watering path 202 .
  • the workplace data may include work plans for the unmanned guided vehicle 10 at the workplace 30 .
  • a work plan is determined in advance as to which transport path 102 of which work site 30 each of the plurality of unmanned transport vehicles 10 is to travel.
  • the work place data acquisition unit 62 acquires the work plan of the unmanned transport vehicle 10 in the work place 30, and the watering area setting unit 64 sets the watering area 400 based on the work plan of the unmanned transport vehicle 10 in the work place 30. good too.
  • the workplace data may also include terrain data of the workplace 30 . For example, when the workplace data acquisition unit 62 acquires the terrain data of the workplace 30 and the watering area setting unit 64 sets the watering area 400 for the entire workplace 30, the watering area 400 is set based on the terrain data of the workplace 30. May be set.
  • control device 11 and the functions of the control device 21 may be provided in the management device 2, and at least some of the functions of the management device 2 may be provided in the control device 11 and the control device 21. may be provided on one or both of the
  • control device 11 may have the functions of the transport path generation unit 61 , the workplace data acquisition unit 62 , and the travel area identification unit 63 .
  • the control device 21 may have the function of the watering area setting unit 64 and the function of the watering path generation unit 65 .
  • each of the transport path generation unit 61, the workplace data acquisition unit 62, the traveling area identification unit 63, the watering area setting unit 64, the watering path generation unit 65, the first output unit 66, and the second output unit 67 may be configured by separate hardware.
  • SYMBOLS 1 Management system, 2... Management apparatus, 3... Communication system, 3A... Wireless communication apparatus, 3B... Wireless communication apparatus, 3C... Wireless communication apparatus, 4... Control facility, 5... Loader, 6... Crusher, 7 ... refueling machine, 8 ... water supply machine, 9 ... input device, 10 ... unmanned transport vehicle, 11 ... control device, 12 ... vehicle main body, 13 ... travel device, 14 ... dump body, 15 ... sensor system, 15A ... position sensor, 15B... direction sensor, 15C... speed sensor, 15D... obstacle sensor, 16... wheel, 16F... front wheel, 16R... rear wheel, 17... tire, 17F... front tire, 17R... rear tire, 20...
  • unmanned watering vehicle 21 Control device 22 Vehicle body 23 Running device 24 Tank 25 Sensor system 25A Position sensor 25B Orientation sensor 25C Speed sensor 25D Obstacle sensor 26 Wheel 26F Front wheel 26R...Rear wheel 27...Tire 27F...Front tire 27R...Rear tire 28...Sprinkling spray 29...Cab 30...Work place 31...Loading place 32...Discharge place 33...Apron , 34... Refueling station, 35... Water supply station, 36... Running path, 37... Intersection, 41... Communication interface, 42... Storage circuit, 43... Processing circuit, 61... Conveyance path generation unit, 62... Workplace data acquisition unit, 63 ... traveling area specifying unit 64 ... watering area setting unit 65 ... watering path generation unit 66 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • General Factory Administration (AREA)
  • Container Filling Or Packaging Operations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

作業現場の管理システムは、無人運搬車両が走行する作業場に設定された作業場データを取得する作業場データ取得部と、作業場データに基づいて作業場において無人散水車両が散水する散水エリアを設定する散水エリア設定部と、を備える。

Description

作業現場の管理システム及び作業現場の管理方法
 本開示は、作業現場の管理システム及び作業現場の管理方法に関する。
 特許文献1に開示されているように、作業現場において散水トラックにより散水が実施される場合がある。
米国特許出願公開第2015/0233245号
 散水により作業現場において粉塵又は砂埃が拡散することが抑制される。作業現場に散水する場合、粉塵又は砂埃が拡散する可能性が高いエリアに効率良く散水できる技術が要望される。
 本開示は、作業現場において粉塵又は砂埃が拡散する可能性が高いエリアに効率良く散水することを目的とする。
 本開示に従えば、無人運搬車両が走行する作業場に設定された作業場データを取得する作業場データ取得部と、作業場データに基づいて作業場において無人散水車両が散水する散水エリアを設定する散水エリア設定部と、を備える、作業現場の管理システムが提供される。
 本開示によれば、作業現場において粉塵又は砂埃が拡散する可能性が高いエリアに効率良く散水することができる。
図1は、実施形態に係る作業現場の管理システムを示す模式図である。 図2は、実施形態に係る無人運搬車両を示す斜視図である。 図3は、実施形態に係る無人散水車両を示す斜視図である。 図4は、実施形態に係る作業現場を示す模式図である。 図5は、実施形態に係る作業現場の管理システムを示す機能ブロック図である。 図6は、実施形態に係る無人運搬車両の運搬走行データを説明するための図である。 図7は、実施形態に係る無人散水車両の散水走行データを説明するための図である。 図8は、実施形態に係る積込場における走行エリア及び散水エリアの一例を説明するための図である。 図9は、実施形態に係る積込場における走行エリア及び散水エリアの一例を説明するための図である。 図10は、実施形態に係る排土場における走行エリア及び散水エリアの一例を説明するための図である。 図11は、実施形態に係る排土場における走行エリア及び散水エリアの一例を説明するための図である。 図12は、実施形態に係る積込場の管理方法を示すフローチャートである。 図13は、実施形態に係る排土場の管理方法を示すフローチャートである。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[管理システムの概要]
 図1は、実施形態に係る作業現場の管理システム1を示す模式図である。管理システム1は、作業現場で稼働する無人車両を管理する。無人車両とは、運転者による運転操作によらずに無人で稼働する作業車両をいう。実施形態において、作業現場で稼働する無人車両は、無人運搬車両10と無人散水車両20とを含む。
 無人運搬車両10は、無人で作業現場を走行して積荷を運搬する。無人運搬車両10として、無人ダンプトラックが例示される。無人運搬車両10に運搬される積荷として、作業現場において掘削された掘削物が例示される。
 無人散水車両20は、無人で作業現場を走行して散水する。無人散水車両20として、無人散水トラックが例示される。無人散水車両20は、作業現場において粉塵又は砂埃が拡散することを抑制するために散水する。
 管理システム1は、管理装置2と、通信システム3とを備える。管理装置2は、作業現場の管制施設4に設置される。管制施設4に管理者が存在する。
 無人運搬車両10は、制御装置11を有する。無人散水車両20は、制御装置21を有する。管理装置2と制御装置11と制御装置21とは、通信システム3を介して無線通信する。管理装置2に無線通信機3Aが接続される。制御装置11に無線通信機3Bが接続される。制御装置21に無線通信機3Cが接続される。通信システム3は、無線通信機3A、無線通信機3B、及び無線通信機3Cを含む。
[無人運搬車両]
 図2は、実施形態に係る無人運搬車両10を示す斜視図である。図1及び図2に示すように、無人運搬車両10は、無線通信機3Bと、制御装置11と、車両本体12と、走行装置13と、ダンプボディ14と、センサシステム15とを備える。
 車両本体12は、車体フレームを含む。車両本体12は、走行装置13に支持される。車両本体12は、ダンプボディ14を支持する。
 走行装置13は、無人運搬車両10を走行させるための駆動力を発生する。走行装置13は、無人運搬車両10を減速又は停止させるための制動力を発生する。走行装置13は、無人運搬車両10を旋回させるための操舵力を発生する。走行装置13は、無人運搬車両10を前進又は後進させる。走行装置13は、車輪16を含む。車輪16にタイヤ17が装着される。車輪16は、前輪16Fと、後輪16Rとを含む。タイヤ17は、前輪16Fに装着される前タイヤ17Fと、後輪16Rに装着される後タイヤ17Rとを含む。タイヤ17が作業現場の路面に接触した状態で車輪16が回転することにより、無人運搬車両10は、作業現場を走行する。
 ダンプボディ14は、積荷が積載される部材である。ダンプボディ14の少なくとも一部は、車両本体12よりも上方に配置される。
 センサシステム15は、位置センサ15Aと、方位センサ15Bと、速度センサ15Cと、障害物センサ15Dとを含む。位置センサ15Aは、無人運搬車両10の位置を検出する。無人運搬車両10の位置は、全地球航法衛星システム(GNSS)を利用して検出される。位置センサ15Aは、GNSS受信機を含み、無人運搬車両10のグローバル座標系の位置を検出する。方位センサ15Bは、無人運搬車両10の方位を検出する。方位センサ15Bとして、ジャイロセンサが例示される。速度センサ15Cは、無人運搬車両10の走行速度を検出する。速度センサ15Cとして、車輪16の回転を検出するパルスセンサが例示される。障害物センサ15Dは、無人運搬車両10の周囲の障害物を検出する。障害物センサ15Dは、非接触で障害物を検出する。障害物センサ15Dとして、レーザセンサ(LIDAR:Light Detection and Ranging)又はレーダセンサ(RADAR:Radio Detection and Ranging)が例示される。
[無人散水車両]
 図3は、実施形態に係る無人散水車両20を示す斜視図である。図1及び図3に示すように、無人散水車両20は、無線通信機3Cと、制御装置21と、車両本体22と、走行装置23と、タンク24と、センサシステム25と、散水スプレー28とを備える。
 車両本体22は、車体フレームを含む。車両本体22は、走行装置23に支持される。車両本体22は、タンク24を支持する。
 実施形態において、車両本体22にキャブ29が設けられる。キャブ29は、車両本体22の前部に設けられる。運転者は、キャブ29に搭乗して、無人散水車両20の運転操作を実施することができる。例えば無人散水車両20の保守又は点検を実施する場合、運転者は、無人散水車両20の運転操作を実施する。実施形態において、無人散水車両20は、少なくとも作業現場において散水するときに無人で稼働する。なお、無人散水車両20にキャブ29は設けられなくてもよい。
 走行装置23は、無人散水車両20を走行させるための駆動力を発生する。走行装置23は、無人散水車両20を減速又は停止させるための制動力を発生する。走行装置23は、無人散水車両20を旋回させるための操舵力を発生する。走行装置23は、無人散水車両20を前進又は後進させる。走行装置23は、車輪26を含む。車輪26にタイヤ27が装着される。車輪26は、前輪26Fと、後輪26Rとを含む。前輪26Fは操舵輪であり、後輪26Rは駆動輪である。なお、前輪26F及び後輪26Rの両方が操舵輪でもよい。前輪26F及び後輪26Rの両方が駆動輪でもよい。前輪26Fが駆動輪で後輪26Rが操舵輪でもよい。タイヤ27は、前輪26Fに装着される前タイヤ27Fと、後輪26Rに装着される後タイヤ27Rとを含む。タイヤ27が作業現場の路面に接触した状態で車輪26が回転することにより、無人散水車両20は、作業現場を走行する。
 タンク24は、散水のための水を貯蔵する部材である。タンク24の少なくとも一部は、車両本体22よりも上方に配置される。
 センサシステム25は、位置センサ25Aと、方位センサ25Bと、速度センサ25Cと、障害物センサ25Dとを含む。位置センサ25Aは、無人散水車両20の位置を検出する。無人散水車両20の位置は、全地球航法衛星システム(GNSS)を利用して検出される。位置センサ25Aは、GNSS受信機を含み、無人散水車両20のグローバル座標系の位置を検出する。方位センサ25Bは、無人散水車両20の方位を検出する。方位センサ25Bとして、ジャイロセンサが例示される。速度センサ25Cは、無人散水車両20の走行速度を検出する。速度センサ25Cとして、車輪26の回転を検出するパルスセンサが例示される。障害物センサ25Dは、無人散水車両20の周囲の障害物を検出する。障害物センサ25Dは、非接触で障害物を検出する。障害物センサ25Dとして、レーザセンサ(LIDAR:Light Detection and Ranging)又はレーダセンサ(RADAR:Radio Detection and Ranging)が例示される。
 散水スプレー28は、タンク24の水を噴射する。散水スプレー28は、タンク24の後部に配置される。散水スプレー28は、無人散水車両20の後方に散水する。実施形態において、散水スプレー28は、複数設けられる。複数の散水スプレー28は、タンク24の後部において無人散水車両20の車幅方向に間隔をあけて配置される。車幅方向とは、無人散水車両20が直進状態のときの車輪26の回転軸と平行な方向をいう。
[作業現場]
 図4は、実施形態に係る作業現場を示す模式図である。作業現場として、鉱山又は採石場が例示される。鉱山とは、鉱物を採掘する場所又は事業所をいう。採石場とは、石材を採掘する場所又は事業所をいう。作業現場において、無人運搬車両10及び無人散水車両20のそれぞれが稼働する。
 実施形態において、作業現場は、鉱山である。鉱山として、金属を採掘する金属鉱山、石灰石を採掘する非金属鉱山、又は石炭を採掘する石炭鉱山が例示される。
 作業現場に、作業場30、駐機場33、給油場34、給水場35、走行路36、及び交差点37が設けられる。作業場30は、積込場31及び排土場32の少なくとも一方を含む。
 積込場31とは、積込機5が無人運搬車両10に積荷を積み込む積込作業が実施されるエリアをいう。積込機5は、積込場31において稼働する。積込機5として、油圧ショベルが例示される。
 排土場32とは、無人運搬車両10が積荷を排土する排土作業が実施されるエリアをいう。排土場32に、破砕機6が設けられる。
 駐機場33とは、無人運搬車両10及び無人散水車両20の少なくとも一方が駐機されるエリアをいう。
 給油場34とは、無人運搬車両10及び無人散水車両20の少なくとも一方が給油されるエリアをいう。給油場34に、燃料を供給する給油機7が設けられる。
 給水場35とは、無人散水車両20が給水されるエリアをいう。給水場35において、散水のための水がタンク24に供給される。給水場35に、タンク24に水を供給する給水機8が設けられる。
 走行路36とは、作業場30、駐機場33、給油場34、及び給水場35の少なくとも一つに向かう無人車両が走行するエリアをいう。走行路36は、少なくとも積込場31と排土場32とを繋ぐように設けられる。実施形態において、走行路36は、積込場31、排土場32、駐機場33、給油場34、及び給水場35のそれぞれに繋がる。
 交差点37とは、複数の走行路36が交わるエリア又は1つの走行路36が複数の走行路36に分岐するエリアをいう。
[管理システム]
 図5は、実施形態に係る作業現場の管理システム1を示す機能ブロック図である。管理システム1は、管理装置2と、通信システム3と、制御装置11と、制御装置21とを有する。
 管理装置2は、コンピュータシステムを含む。管理装置2は、入力装置9に接続される。管理装置2は、通信インタフェース41と、記憶回路42と、処理回路43とを有する。
 入力装置9は、処理回路43に接続される。入力装置9は、管制施設4の管理者に操作される。入力装置9は、管理者の操作に基づいて、入力データを生成する。入力装置9により生成された入力データは、処理回路43に入力される。入力装置9として、タッチパネル、コンピュータ用キーボード、マウス、又は操作ボタンが例示される。なお、入力装置9は、光学センサを含む非接触型入力装置でもよいし、音声入力装置でもよい。
 通信インタフェース41は、処理回路43に接続される。通信インタフェース41は、管理装置2と制御装置11及び制御装置21の少なくとも一方との間の通信を制御する。通信インタフェース41は、通信システム3を介して制御装置11及び制御装置21の少なくとも一方と通信する。
 記憶回路42は、処理回路43に接続される。記憶回路42は、データを記憶する。記憶回路42として、不揮発性メモリ又は揮発性メモリが例示される。不揮発性メモリとして、ROM(Read Only Memory)又はストレージが例示される。ストレージとして、ハードディスクドライブ(HDD:Hard Disk Drive)又はソリッドステートドライブ(SSD:Solid State Drive)が例示される。揮発性メモリとして、RAM(Random Access Memory)が例示される。
 処理回路43は、演算処理及び制御指令の出力処理を実施する。処理回路43として、プロセッサが例示される。プロセッサとして、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)が例示される。コンピュータプログラムが記憶回路42に記憶される。処理回路43は、記憶回路42からコンピュータプログラムを取得して実行することにより、所定の機能を発揮する。
 処理回路43は、運搬パス生成部61と、作業場データ取得部62と、走行エリア特定部63と、散水エリア設定部64と、散水パス生成部65と、第1出力部66と、第2出力部67とを有する。
 運搬パス生成部61は、作業現場に設定される無人運搬車両10の走行条件を示す運搬走行データを生成する。無人運搬車両10の走行条件は、無人運搬車両10の目標走行経路を示す運搬パス102を含む。運搬パス生成部61は、入力装置9からの入力データに基づいて、運搬走行データを生成してもよい。
 図6は、実施形態に係る無人運搬車両10の運搬走行データを説明するための図である。運搬走行データは、無人運搬車両10の走行条件を規定する。運搬走行データは、コース点101、運搬パス102、無人運搬車両10の目標位置、無人運搬車両10の目標方位、及び無人運搬車両10の目標走行速度を含む。
 コース点101は、少なくとも作業場30に複数設定される。また、コース点101は、走行路36に複数設定される。コース点101は、無人運搬車両10の目標位置を規定する。複数のコース点101のそれぞれに、無人運搬車両10の目標方位及び目標走行速度が設定される。複数のコース点101は、間隔をあけて設定される。コース点101の間隔は、例えば1[m]以上5[m]以下に設定される。コース点101の間隔は、均一でもよいし、不均一でもよい。
 運搬パス102とは、無人運搬車両10の目標走行経路を示す仮想線をいう。運搬パス102は、複数のコース点101を通過する軌跡によって規定される。無人運搬車両10は、運搬パス102に従って、作業現場を走行する。
 無人運搬車両10の目標位置とは、コース点101を通過するときの無人運搬車両10の目標位置をいう。無人運搬車両10の目標位置は、無人運搬車両10のローカル座標系において規定されてもよいし、グローバル座標系において規定されてもよい。
 無人運搬車両10の目標方位とは、コース点101を通過するときの無人運搬車両10の目標方位をいう。
 無人運搬車両10の目標走行速度とは、コース点101を通過するときの無人運搬車両10の目標走行速度をいう。
 作業場データ取得部62は、無人運搬車両10が走行する作業場30に設定された作業場データを取得する。作業場データは、作業場30において無人運搬車両10が走行する位置及び停止する位置の少なくとも一方を含む。作業場データは、作業場30における無人運搬車両10の走行軌跡を決定するファクタでもよいし、作業場30に設定された運搬パス102又は作業場30に設定された走行エリア300でもよい。
 作業場データは、作業場30において無人運搬車両10が向かう位置を示す目標点を含む。目標点は、作業場30に設定される。目標点は、無人運搬車両10に係る作業が実施される位置を示す作業点を含む。
 作業点は、作業場30に複数設定される。なお、作業場30に設定される作業点は、1つでもよい。作業点とは、無人運搬車両10に係る作業が実施される位置をいう。作業点において、無人運搬車両10に係る作業が実施される。無人運搬車両10に係る作業は、積込機5が無人運搬車両10に積荷を積み込む積込作業を含む。無人運搬車両10に係る作業は、無人運搬車両10が積荷を排土する排土作業を含む。
 作業点は、積込作業における無人運搬車両10の位置を示す積込点LP及び積込作業における積込機5の位置を示す積込機点LMPの少なくとも一方を含む。積込点LP及び積込機点LMPは、積込場31に設定される。積込点LPは、積込場31に1つだけ設定されてもよいし、複数設定されてもよい。無人運搬車両10は、積込点LPにおいて停車してもよいし、積込点LPにおいて停車しなくてもよい。
 また、作業点は、排土作業における無人運搬車両10の位置を示す排土点DPを含む。排土点DPは、排土場32に設定される。排土点DPは、排土場32に1つだけ設定されてもよいし、複数設定されてもよい。無人運搬車両10は、排土点DPにおいて停車してもよいし、排土点DPにおいて停車しなくてもよい。
 また、作業場データは、無人運搬車両10が積荷を排土可能な排土エリアDPAを含む。排土エリアDPAは、排土場32に設定される。排土点DPは、排土エリアDPAの内側に設定される。
 また、作業場データは、無人運搬車両10が作業場30に進入する位置を示す入口点EP及び無人運搬車両10が作業場30から退去する位置を示す出口点MPの少なくとも一方を含む。入口点EP及び出口点MPのそれぞれは、作業場30に設定される。無人運搬車両10は、走行路36から作業場30に進入する場合、作業場30に設定されている入口点EPを通過する。入口点EPを通過した無人運搬車両10は、作業場30に設定されている作業点に向かって走行する。無人運搬車両10は、作業場30から退去する場合、作業場30に設定されている出口点MPを通過する。出口点MPを通過した無人運搬車両10は、走行路36を走行する。
 また、作業場データは、運搬パス生成部61により生成された作業場30における運搬パス102を含む。
 走行エリア特定部63は、作業場データに基づいて作業場30における無人運搬車両10の走行エリア300を特定する。走行エリア300とは、作業場30において無人運搬車両10が走行するエリアをいう。走行エリア300は、無人運搬車両10の走行が予定されているエリア、無人運搬車両10が走行する可能性があるエリア、及び無人運搬車両10が既に走行したエリアの少なくとも一つを含む。
 走行エリア特定部63は、例えば作業場30の目標点に基づいて、無人運搬車両10の走行エリア300を特定することができる。すなわち、走行エリア特定部63は、作業場30の目標点に向かって走行する無人運搬車両10の走行エリア300を特定することができる。
 走行エリア特定部63は、例えば作業場30の入口点EP及び出口点MPの少なくとも一方に基づいて、無人運搬車両10の走行エリア300を特定することができる。すなわち、走行エリア特定部63は、作業場30の入口点EP及び出口点MPの少なくとも一方を通過する無人運搬車両10の走行エリア300を特定することができる。
 走行エリア特定部63は、例えば排土エリアDPAの位置に基づいて、無人運搬車両10の走行エリア300を特定することができる。すなわち、走行エリア特定部63は、作業場30の排土エリアDPAに向かって走行する無人運搬車両10の走行エリア300を特定することができる。
 走行エリア特定部63は、例えば運搬パス102の位置に基づいて、無人運搬車両10の走行エリア300を特定することができる。すなわち、走行エリア特定部63は、作業場30に設定された運搬パス102に従って走行する無人運搬車両10の走行エリア300を特定することができる。
 走行エリア特定部63は、作業場データ取得部62により入力装置9等から作業場データとして無人運搬車両10の走行エリアが取得された場合、作業場データ取得部62により取得された走行エリアを走行エリア300として特定することができる。
 散水エリア設定部64は、散水スプレー28を制御するための散水データを設定する。散水エリア設定部64により設定される散水データは、散水スプレー28からの散水の実行及び散水の停止を含む。散水エリア設定部64により設定される散水データは、散水スプレー28からの散水量を含む。無人散水車両20に散水スプレー28が複数設けられる場合、散水エリア設定部64により設定される散水データは、散水を実行する散水スプレー28の数を含む。無人散水車両20の複数の位置のそれぞれに散水スプレー28が設置される場合、散水エリア設定部64により設定される散水データは、散水を実行する散水スプレー28の設置位置を含む。
 また、散水エリア設定部64により設定される散水データは、作業場30において無人散水車両20が散水する散水エリア400を含む。散水エリア400とは、作業場30において無人散水車両20の散水スプレー28から散水されるエリアをいう。散水エリア設定部64は、作業場データ取得部62により取得された作業場データに基づいて、作業場30において無人散水車両20が散水する散水エリア400を設定する。
 実施形態において、散水エリア設定部64は、走行エリア特定部63により特定された走行エリア300に基づいて、作業場30において無人散水車両20が散水する散水エリア400を設定する。散水エリア設定部64は、走行エリア特定部63により特定された走行エリア300の少なくとも一部が散水エリア400に含まれるように、散水エリア400を設定する。すなわち、散水エリア設定部64は、走行エリア特定部63により特定された走行エリア300の少なくとも一部に散水されるように、散水エリア400を設定する。
 実施形態において、散水エリア設定部64は、走行エリア特定部63により特定された走行エリア300の全部が散水エリア400に含まれるように、散水エリア400を設定する。すなわち、散水エリア設定部64は、走行エリア特定部63により特定された走行エリア300の全部に散水されるように、散水エリア400を設定する。
 なお、散水エリア設定部64は、走行エリア特定部63により特定された走行エリア300の一部が散水エリア400に含まれるように、散水エリア400を設定してもよい。
 散水パス生成部65は、作業現場に設定される無人散水車両20の走行条件を示す散水走行データを生成する。無人散水車両20の走行条件は、無人散水車両20の目標走行経路を示す散水パス202を含む。散水パス生成部65は、作業場データ取得部62により取得された作業場データに基づいて、散水パス202を生成する。散水パス生成部65は、散水エリア設定部64により設定された散水エリア400に散水されるように、無人散水車両20の散水パス202を生成する。散水パス生成部65は、走行エリア特定部63により特定された無人運搬車両10の走行エリア300に基づいて、散水パス202を生成してもよい。
 図7は、実施形態に係る無人散水車両20の散水走行データを説明するための図である。散水走行データは、無人散水車両20の走行条件を規定する。散水走行データは、コース点201、散水パス202、無人散水車両20の目標位置、無人散水車両20の目標方位、及び無人散水車両20の目標走行速度を含む。コース点201は、少なくとも作業場30に複数設定される。また、コース点201は、走行路36に複数設定される。散水パス202とは、無人散水車両20の目標走行経路を示す仮想線をいう。運搬走行データの機能と散水走行データの機能とは、同様である。散水走行データについての説明は省略する。
 第1出力部66(運搬走行データ出力部)は、運搬パス生成部61により生成された運搬走行データを無人運搬車両10に送信する。第1出力部66は、通信インタフェース41から無人運搬車両10の制御装置11に運搬走行データを送信する。
 第2出力部67(散水走行データ出力部)は、散水パス生成部65により生成された散水走行データを無人散水車両に20に送信する。第2出力部67は、通信インタフェース41から無人散水車両20の制御装置21に散水走行データを送信する。
 第2出力部67は、散水エリア設定部64により設定された散水エリア400を含む散水データを無人散水車両20に送信する。第2出力部67は、通信インタフェース41から無人散水車両20の制御装置21に散水エリア400を含む散水データを送信する。
 制御装置11は、コンピュータシステムを含む。管理装置2と同様、制御装置11は、通信インタフェース、記憶回路、及び処理回路を有する。制御装置11は、走行装置13を制御する走行制御部71を有する。走行制御部71は、管理装置2から送信された運搬走行データに基づいて、走行装置13を制御する。
 制御装置21は、コンピュータシステムを含む。管理装置2と同様、制御装置21は、通信インタフェース、記憶回路、及び処理回路を有する。制御装置21は、走行装置23を制御する走行制御部81と、散水スプレー28を制御する散水制御部82とを有する。走行制御部81は、管理装置2から送信された散水走行データに基づいて、走行装置23を制御する。散水制御部82は、管理装置2から送信された散水データに基づいて、散水スプレー28を制御する。
 走行制御部71は、運搬走行データ及びセンサシステム15の検出データに基づいて、走行装置13を制御する。走行制御部71は、位置センサ15Aの検出データ及び方位センサ15Bの検出データに基づいて、無人運搬車両10が運搬パス102に基づいて走行するように、走行装置13を制御する。すなわち、走行制御部71は、コース点101を通過するときに位置センサ15Aにより検出された無人運搬車両10の検出位置とコース点101に設定されている無人運搬車両10の目標位置との偏差が小さくなるように、走行装置13を制御する。また、走行制御部71は、コース点101を通過するときに方位センサ15Bにより検出された無人運搬車両10の検出方位とコース点101に設定されている無人運搬車両10の目標方位との偏差が小さくなるように、走行装置13を制御する。また、走行制御部71は、速度センサ15Cの検出データに基づいて、無人運搬車両10が目標走行速度で走行するように、走行装置13を制御する。すなわち、走行制御部71は、コース点101を通過するときに速度センサ15Cにより検出された無人運搬車両10の検出走行速度とコース点101に設定されている無人運搬車両10の目標走行速度との偏差が小さくなるように、走行装置13を制御する。
 走行制御部81は、散水走行データ及びセンサシステム25の検出データに基づいて、走行装置23を制御する。走行制御部81は、位置センサ25Aの検出データ及び方位センサ25Bの検出データに基づいて、無人散水車両20が散水パス202に基づいて走行するように、走行装置23を制御する。また、走行制御部81は、速度センサ25Cの検出データに基づいて、無人散水車両20が目標走行速度で走行するように、走行装置23を制御する。
[積込場における散水制御]
 図8は、実施形態に係る積込場31における走行エリア300及び散水エリア400の一例を説明するための図である。
 図8(A)に示すように、運搬パス生成部61は、積込点LPに向かって無人運搬車両10が走行するように、運搬走行データを生成する。無人運搬車両10は、積込場31において、運搬走行データに従って走行する。積込場31には、入口点EPと、スイッチバック点SPと、積込点LPと、出口点MPとが設定される。入口点EP、スイッチバック点SP、積込点LP、及び出口点MPのそれぞれは、管理者により設定されてもよい。管理者は、入力装置9を操作して、入口点EP、スイッチバック点SP、積込点LP、及び出口点MPのそれぞれを設定することができる。
 走行路36を走行し、入口点EPを通過した無人運搬車両10は、前進しながら積込場31に進入する。積込場31に進入した無人運搬車両10は、スイッチバック点SPでスイッチバックした後、後進しながら積込点LPに進入する。スイッチバックとは、前進する無人運搬車両10が進行方向を転換して後進しながら目標方向に進行する動作をいう。スイッチバックは、運搬走行データに基づいて実施される。
 無人運搬車両10が後進しながら積込点LPに進入し、積込点LPにおいて停車した後、積込作業が実施される。積込機5は、無人運搬車両10のダンプボディ14に積荷を積み込む。
 積込作業を終了した無人運搬車両10は、出口点MPまで前進する。無人運搬車両10は、前進しながら出口点MPを通過した後、積込場31から退去する。
 図8(A)に示すように、走行エリア特定部63は、運搬パス102に基づいて、走行エリア300を特定する。走行エリア特定部63は、例えば運搬パス102と無人運搬車両10の車幅とに基づいて、走行エリア300を特定する。走行エリア300は、運搬パス102の全部が走行エリア300に含まれるように、走行エリア300を特定する。
 なお、スイッチバック点SPが積込場31に複数設定され、運搬パス102が積込場31に複数設定されてもよい。この場合、複数の運搬パス102のそれぞれは、相互に異なる目標走行経路になるように積込場31に設定される。なお、スイッチバック点SPは、積込場31に設定されなくてもよい。この場合、運搬パス102は、無人運搬車両10がスイッチバックしない目標走行経路になるように積込場31に設定される。
 走行エリア300が特定された後、図8(B)に示すように、散水エリア設定部64は、走行エリア300の全部が散水エリア400に含まれるように、散水エリア400を設定する。散水エリア設定部64は、散水エリア400のエッジが走行エリア300を囲むように、散水エリア400を設定する。図8に示す例において、散水エリア設定部64は、散水エリア400のエッジの全部が走行エリア300のエッジの外側に配置されるように、散水エリア400を設定する。散水エリア400は、積込場31よりも小さい。
 図8(C)に示すように、散水パス生成部65は、無人散水車両20から散水エリア400に散水されるように、散水パス202を生成する。第2出力部67は、散水パス生成部65により生成された散水走行データを無人散水車両20に送信する。図8(C)に示すように、無人散水車両20は、散水エリア400の少なくとも一部に散水されるように、散水スプレー28から散水しながら、散水パス202に基づいて積込場31を走行する。
 実施形態において、散水パス生成部65は、無人散水車両20が後進することなく前進しながら散水エリア400に散水するように散水パス202を生成する。散水スプレー28が無人散水車両20の後部に設けられている場合、無人散水車両20は、後進することなく前進しながら散水スプレー28から散水することが好ましい。なお、散水パス生成部65は、無人散水車両20が後進しながら散水エリア400に散水するように散水パス202を生成してもよい。散水パス生成部65は、無人散水車両20が前進及び後進しながら散水エリア400に散水するように散水パス202を生成してもよい。
 なお、散水エリア設定部64は、走行エリア300の一部が散水エリア400に含まれるように、散水エリア400を設定してもよい。散水エリア設定部64は、走行エリア300のエッジが散水エリア400のエッジの内側に配置されるように、散水エリア400を設定してもよい。
 なお、運搬パス生成部61は、積込作業における無人運搬車両10の位置を示す積込点LPに基づいて運搬パス102を生成してもよいし、積込作業における積込機5の位置を示す積込機点LMPに基づいて運搬パス102を生成してもよい。例えば、運搬パス生成部61は、積込機点LMPから積込点LPを予測し、予測した積込点LPに基づいて運搬パス102を生成してもよい。
 図9は、実施形態に係る積込場31における走行エリア300及び散水エリア400の一例を説明するための図である。
 図9(A)に示すように、積込場31に運搬パス102が設定されず、積込点LP、入口点EP、及び出口点MPが設定される場合がある。運搬パス102が設定されなくても、走行エリア特定部63は、積込点LP、入口点EP、及び出口点MPに基づいて、無人運搬車両10の走行エリア300を特定することができる。実施形態において、走行エリア特定部63は、積込点LPと入口点EPと出口点MPとの相対位置に基づいて、無人運搬車両10が走行する可能性がある複数の走行軌跡を推定する。走行エリア特定部63は、推定した複数の走行軌跡が含まれるように走行エリア300を設定することができる。なお、スイッチバック点SPと積込点LPとの距離が長過ぎると、積込作業の作業効率が低下する。走行エリア特定部63は、積込作業の作業効率の低下が抑制されるように、積込点LPに基づいてスイッチバック点SPを設定し、設定したスイッチバック点SPに基づいて、複数の走行軌跡を推定する。
 なお、走行エリア特定部63は、入口点EP及び出口点MPを用いずに、積込点LPに基づいて、無人運搬車両10の走行エリア300を特定してもよい。
 走行エリア300が特定された後、図9(B)に示すように、散水エリア設定部64は、走行エリア300の全部が散水エリア400に含まれるように、散水エリア400を設定する。散水エリア設定部64は、散水エリア400のエッジが走行エリア300を囲むように、散水エリア400を設定する。図9に示す例において、散水エリア設定部64は、散水エリア400のエッジと走行エリア300のエッジとが一致するように、散水エリア400を設定する。散水エリア400は、積込場31よりも小さい。
 なお、散水エリア設定部64は、走行エリア300の一部が散水エリア400に含まれるように、散水エリア400を設定してもよい。散水エリア設定部64は、走行エリア300のエッジが散水エリア400のエッジの内側に配置されるように、散水エリア400を設定してもよい。
 図9(C)に示すように、散水パス生成部65は、無人散水車両20から散水エリア400に散水されるように、散水パス202を生成する。第2出力部67は、散水パス生成部65により生成された散水走行データを無人散水車両20に送信する。図9(C)に示すように、無人散水車両20は、散水エリア400の全部に散水されるように、散水スプレー28から散水しながら、散水パス202に基づいて積込場31を走行する。
 なお、走行エリア特定部63は、積込作業における無人運搬車両10の位置を示す積込点LPに基づいて走行エリア300を特定してもよいし、積込作業における積込機5の位置を示す積込機点LMPに基づいて走行エリア300を特定してもよい。
[排土場における散水制御]
 図10は、実施形態に係る排土場32における走行エリア300及び散水エリア400の一例を説明するための図である。
 図10(A)に示すように、運搬パス生成部61は、排土点DPに向かって無人運搬車両10が走行するように、運搬走行データを生成する。無人運搬車両10は、排土場32において、運搬走行データに従って走行する。排土場32には、入口点EPと、スイッチバック点SPと、排土点DPと、出口点MPとが設定される。実施形態において、排土点DPは、複数設定される。排土点DPは、排土エリアDPAの内側に設定される。入口点EP、スイッチバック点SP、排土点DP、出口点MP、及び排土エリアDPAのそれぞれは、管理者により設定されてもよい。管理者は、入力装置9を操作して、入口点EP、スイッチバック点SP、排土点DP、出口点MP、及び排土エリアDPAのそれぞれを設定することができる。
 走行路36を走行し、入口点EPを通過した無人運搬車両10は、前進しながら排土場32に進入する。排土場32に進入した無人運搬車両10は、スイッチバック点SPでスイッチバックした後、後進しながら排土点DPに進入する。スイッチバックは、運搬走行データに基づいて実施される。
 無人運搬車両10が後進しながら排土点DPに進入し、排土点DPにおいて停車した後、排土作業が実施される。無人運搬車両10は、ダンプボディ14をダンプ動作させて、ダンプボディ14から積荷を排土する。
 排土作業を終了した無人運搬車両10は、出口点MPまで前進する。無人運搬車両10は、前進しながら出口点MPを通過した後、排土場32から退去する。
 図10(A)に示すように、スイッチバック点SPは、排土場32に複数設定される。運搬パス102は、排土場32に複数設定される。複数の運搬パス102のそれぞれは、相互に異なる目標走行経路になるように排土場32に設定される。
 図10(A)に示すように、走行エリア特定部63は、複数の運搬パス102に基づいて、走行エリア300を特定する。走行エリア特定部63は、例えば運搬パス102と無人運搬車両10の車幅とに基づいて、走行エリア300を特定する。走行エリア300は、複数の運搬パス102の全部が走行エリア300に含まれるように、走行エリア300を特定する。
 走行エリア300が特定された後、図10(B)に示すように、散水エリア設定部64は、走行エリア300の全部が散水エリア400に含まれるように、散水エリア400を設定する。散水エリア設定部64は、散水エリア400のエッジが走行エリア300を囲むように、散水エリア400を設定する。図10に示す例において、散水エリア設定部64は、散水エリア400のエッジの全部が走行エリア300のエッジの外側に配置されるように、散水エリア400を設定する。散水エリア400は、排土場32よりも小さい。
 図10(C)に示すように、散水パス生成部65は、無人散水車両20から散水エリア400に散水されるように、散水パス202を生成する。第2出力部67は、散水パス生成部65により生成された散水走行データを無人散水車両20に送信する。図10(C)に示すように、無人散水車両20は、散水エリア400の少なくとも一部に散水されるように、散水スプレー28から散水しながら、散水パス202に基づいて排土場32を走行する。
 実施形態において、散水パス生成部65は、無人散水車両20が後進することなく前進しながら散水エリア400に散水するように散水パス202を生成する。散水スプレー28が無人散水車両20の後部に設けられている場合、無人散水車両20は、後進することなく前進しながら散水スプレー28から散水することが好ましい。なお、散水パス生成部65は、無人散水車両20が後進しながら散水エリア400に散水するように散水パス202を生成してもよい。散水パス生成部65は、無人散水車両20が前進及び後進しながら散水エリア400に散水するように散水パス202を生成してもよい。
 なお、運搬パス生成部61は、排土作業における無人運搬車両10の位置を示す排土点DPに基づいて運搬パス102を生成してもよいし、無人運搬車両10が積荷を排土可能な排土エリアDPAの位置に基づいて運搬パス102を生成してもよい。
 なお、散水エリア設定部64は、走行エリア300の一部が散水エリア400に含まれるように、散水エリア400を設定してもよい。散水エリア設定部64は、走行エリア300のエッジが散水エリア400のエッジの内側に配置されるように、散水エリア400を設定してもよい。
 図11は、実施形態に係る排土場32における走行エリア300及び散水エリア400の一例を説明するための図である。
 図11(A)に示すように、排土場32に運搬パス102が設定されず、排土点DP、入口点EP、及び出口点MPが設定される場合がある。運搬パス102が設定されなくても、走行エリア特定部63は、排土点DP、入口点EP、及び出口点MPに基づいて、無人運搬車両10の走行エリア300を特定することができる。実施形態において、走行エリア特定部63は、排土点DPと入口点EPと出口点MPとの相対位置に基づいて、無人運搬車両10が走行する可能性がある複数の走行軌跡を推定する。走行エリア特定部63は、推定した複数の走行軌跡が含まれるように走行エリア300を設定することができる。なお、スイッチバック点SPと排土点DPとの距離が長過ぎると、排土作業の作業効率が低下する。走行エリア特定部63は、排土作業の作業効率の低下が抑制されるように、排土点DPに基づいてスイッチバック点SPを設定し、設定したスイッチバック点SPに基づいて、複数の走行軌跡を推定する。
 なお、走行エリア特定部63は、入口点EP及び出口点MPを用いずに、排土点DPに基づいて、無人運搬車両10の走行エリア300を特定してもよい。
 走行エリア300が特定された後、図11(B)に示すように、散水エリア設定部64は、走行エリア300の全部が散水エリア400に含まれるように、散水エリア400を設定する。散水エリア設定部64は、散水エリア400のエッジが走行エリア300を囲むように、散水エリア400を設定する。図11に示す例において、散水エリア設定部64は、散水エリア400のエッジと走行エリア300のエッジとが一致するように、散水エリア400を設定する。散水エリア400は、排土場32よりも小さい。
 なお、散水エリア設定部64は、走行エリア300の一部が散水エリア400に含まれるように、散水エリア400を設定してもよい。散水エリア設定部64は、走行エリア300のエッジが散水エリア400のエッジの内側に配置されるように、散水エリア400を設定してもよい。
 図11(C)に示すように、散水パス生成部65は、無人散水車両20から散水エリア400に散水されるように、散水パス202を生成する。第2出力部67は、散水パス生成部65により生成された散水走行データを無人散水車両20に送信する。図11(C)に示すように、無人散水車両20は、散水エリア400の全部に散水されるように、散水スプレー28から散水しながら、散水パス202に基づいて排土場32を走行する。
 なお、走行エリア特定部63は、排土作業における無人運搬車両10の位置を示す排土点DPに基づいて走行エリア300を特定してもよいし、無人運搬車両10が積荷を排土可能な排土エリアDPAの位置に基づいて走行エリア300を特定してもよい。
[積込場の管理方法]
 図12は、実施形態に係る積込場31の管理方法を示すフローチャートである。
 走行エリア特定部63は、運搬パス102が生成されているか否かを判定する(ステップSL1)。
 ステップSL1において、運搬パス102が生成されていると判定した場合(ステップSL1:Yes)、走行エリア特定部63は、運搬パス102に基づいて走行エリア300を特定する。散水エリア設定部64は、走行エリア300に基づいて散水エリア400を設定する。すなわち、散水エリア設定部64は、運搬パス102に基づいて散水エリア400を設定する(ステップSL2)。
 ステップSL1において、運搬パス102が生成されていないと判定した場合(ステップSL1:No)、走行エリア特定部63は、積込作業を実施可能な積込機5が存在するか否かを判定する(ステップSL3)。
 ステップSL3において、積込作業を実施可能な積込機5が存在すると判定した場合(ステップSL3:Yes)、散水エリア設定部64は、積込作業を実施可能な積込機5の位置に基づいて散水エリア400を設定する。積込作業を実施可能な積込機5の位置の近傍に積込点LPが設定される。散水エリア設定部64は、積込点LP、入口点EP、及び出口点MPに基づいて散水エリア400を設定する(ステップSL4)。
 ステップSL3において、積込作業を実施可能な積込機5が存在しないと判定した場合(ステップSL3:No)、散水エリア設定部64は、積込場31の全部を散水エリア400に設定する(ステップSL5)。
 散水パス生成部65は、ステップSL2、ステップSL4、及びステップSL5の一つの処理に基づいて設定された散水エリア400に基づいて、散水パス202を生成する(ステップSL6)。
 散水パス生成部65により生成された散水パス202を含む散水走行データは、通信システム3を介して無人散水車両20の制御装置21に送信される。制御装置21は、散水パス202に基づいて、散水エリア400に散水されるように、無人散水車両20を制御する。無人散水車両20は、散水スプレー28から散水しながら、散水パス202に基づいて積込場31を走行する。
[排土場の管理方法]
 図13は、実施形態に係る排土場32の管理方法を示すフローチャートである。
 走行エリア特定部63は、運搬パス102が生成されているか否かを判定する(ステップSD1)。
 ステップSD1において、運搬パス102が生成されていると判定した場合(ステップSD1:Yes)、走行エリア特定部63は、運搬パス102に基づいて走行エリア300を特定する。散水エリア設定部64は、走行エリア300に基づいて散水エリア400を設定する。すなわち、散水エリア設定部64は、運搬パス102に基づいて散水エリア400を設定する(ステップSD2)。
 ステップSD1において、運搬パス102が生成されていないと判定した場合(ステップSD1:No)、走行エリア特定部63は、排土点DPが存在するか否かを判定する(ステップSD3)。
 ステップSD3において、排土点DPが存在すると判定された場合(ステップSD3:Yes)、散水エリア設定部64は、排土点DP、入口点EP、及び出口点MPに基づいて散水エリア400を設定する(ステップSD4)。
 ステップSD3において、排土点DPが存在しないと判定した場合(ステップSD3:No)、走行エリア特定部63は、排土作業を実施可能な排土エリアDPAが存在するか否かを判定する(ステップSD5)。
 ステップSD5において、排土作業を実施可能な排土エリアDPAが存在すると判定された場合(ステップSD5:Yes)、散水エリア設定部64は、排土エリアDPAの位置、入口点EP、及び出口点MPに基づいて散水エリア400を設定する(ステップSD6)。
 ステップSD5において、排土作業を実施可能な排土エリアDPAが存在しないと判定した場合(ステップSD5:No)、散水エリア設定部64は、排土場32の全部を散水エリア400に設定する(ステップSD7)。
 散水パス生成部65は、ステップSD2、ステップSD4、ステップSD6、及びステップSD7の一つの処理に基づいて設定された散水エリア400に基づいて、散水パス202を生成する(ステップSD8)。
 散水パス生成部65により生成された散水パス202を含む散水走行データは、通信システム3を介して無人散水車両20の制御装置21に送信される。制御装置21は、散水パス202に基づいて、散水エリア400に散水されるように、無人散水車両20を制御する。無人散水車両20は、散水スプレー28から散水しながら、散水パス202に基づいて排土場32を走行する。
[効果]
 以上説明したように、実施形態によれば、無人運搬車両10が走行する作業場30に設定された作業場データに基づいて、散水エリア400が設定される。積込場31における作業場データは、積込点LP、積込機点LMP、積込場31の入口点EP、積込場31の出口点MP、積込場31に設定された運搬パス102、及び走行エリア300の少なくとも一つを含む。排土場32における作業場データは、排土点DP、排土エリアDPA、排土場32の入口点EP、排土場32の出口点MP、排土場32に設定された運搬パス102、及び走行エリア300の少なくとも一つを含む。無人運搬車両10が走行又は停止する位置は、作業場30において粉塵又は砂埃が拡散する可能性が高いエリアである。無人運搬車両10が走行又は停止する位置を含む作業場データに基づいて散水エリア400が設定されることにより、無人散水車両20は、粉塵又は砂埃が拡散する可能性が高いエリアに効率良く散水することができる。
 実施形態においては、無人運搬車両10が走行する作業場30に設定された作業場データを取得する作業場データに基づいて、作業場30における無人運搬車両10の走行エリア300が特定される。特定された走行エリア300に基づいて散水エリア400が設定される。無人運搬車両10の走行エリア300は、作業場30において粉塵又は砂埃が拡散する可能性が高いエリアである。走行エリア300に基づいて散水エリア400が設定されることにより、無人散水車両20は、粉塵又は砂埃が拡散する可能性が高い走行エリア300に効率良く散水することができる。
 積込場31において走行エリア300を特定する場合、積込点LPのみならず、入口点EP及び出口点MPの少なくとも一方が用いられることにより、走行エリア300が精度良く特定される。同様に、排土場32において走行エリア300を特定する場合、排土点DPのみならず、入口点EP及び出口点MPの少なくとも一方が用いられることにより、走行エリア300が精度良く特定される。
 作業場30に無人運搬車両10の運搬パス102が生成されている場合、運搬パス102に基づいて走行エリア300が特定されることにより、走行エリア300が精度良く特定される。
 散水エリア設定部64により設定された散水エリア400に散水されるように、無人散水車両20の散水パス202が生成される。無人散水車両20は、散水エリア400を含む散水データ及び散水パス202に基づいて散水しながら作業場30を走行することにより、散水エリア400に満遍なく散水することができる。
[その他の実施形態]
 上述の実施形態において、作業場データは、作業場30における無人運搬車両10の作業計画を含んでもよい。例えば、作業現場における複数の無人運搬車両10及び複数の作業場30について、複数の無人運搬車両10のそれぞれがどの作業場30の運搬パス102を走行させるかが作業計画として予め定められる。そして、作業場データ取得部62は、作業場30における無人運搬車両10の作業計画を取得し、散水エリア設定部64は、作業場30における無人運搬車両10の作業計画に基づいて散水エリア400を設定してもよい。また、作業場データは、作業場30の地形データを含んでもよい。例えば、作業場データ取得部62が作業場30の地形データを取得し、散水エリア設定部64は、作業場30の全部を散水エリア400に設定するときに、作業場30の地形データに基づいて散水エリア400を設定してもよい。
 上述の実施形態において、制御装置11の機能及び制御装置21の機能の少なくとも一部が管理装置2に設けられてもよいし、管理装置2の機能の少なくとも一部が制御装置11及び制御装置21の一方又は両方に設けられてもよい。例えば、上述の実施形態において、制御装置11が運搬パス生成部61の機能、作業場データ取得部62の機能、及び走行エリア特定部63の機能を有してもよい。制御装置21が散水エリア設定部64の機能及び散水パス生成部65の機能を有してもよい。
 上述の実施形態において、運搬パス生成部61、作業場データ取得部62、走行エリア特定部63、散水エリア設定部64、散水パス生成部65、第1出力部66、及び第2出力部67のそれぞれが、別々のハードウエアにより構成されてもよい。
 1…管理システム、2…管理装置、3…通信システム、3A…無線通信機、3B…無線通信機、3C…無線通信機、4…管制施設、5…積込機、6…破砕機、7…給油機、8…給水機、9…入力装置、10…無人運搬車両、11…制御装置、12…車両本体、13…走行装置、14…ダンプボディ、15…センサシステム、15A…位置センサ、15B…方位センサ、15C…速度センサ、15D…障害物センサ、16…車輪、16F…前輪、16R…後輪、17…タイヤ、17F…前タイヤ、17R…後タイヤ、20…無人散水車両、21…制御装置、22…車両本体、23…走行装置、24…タンク、25…センサシステム、25A…位置センサ、25B…方位センサ、25C…速度センサ、25D…障害物センサ、26…車輪、26F…前輪、26R…後輪、27…タイヤ、27F…前タイヤ、27R…後タイヤ、28…散水スプレー、29…キャブ、30…作業場、31…積込場、32…排土場、33…駐機場、34…給油場、35…給水場、36…走行路、37…交差点、41…通信インタフェース、42…記憶回路、43…処理回路、61…運搬パス生成部、62…作業場データ取得部、63…走行エリア特定部、64…散水エリア設定部、65…散水パス生成部、66…第1出力部、67…第2出力部、71…走行制御部、81…走行制御部、82…散水制御部、101…コース点、102…運搬パス、201…コース点、202…散水パス、300…走行エリア、400…散水エリア、DP…排土点、DPA…排土エリア、EP…入口点、LP…積込点、LMP…積込機点、MP…出口点、SP…スイッチバック点。

Claims (20)

  1.  無人運搬車両が走行する作業場に設定された作業場データを取得する作業場データ取得部と、
     前記作業場データに基づいて前記作業場において無人散水車両が散水する散水エリアを設定する散水エリア設定部と、を備える、
     作業現場の管理システム。
  2.  前記無人運搬車両の目標走行経路を示す運搬パスを生成する運搬パス生成部を備え、
     前記作業場データは、前記運搬パスを含む、
     請求項1に記載の作業現場の管理システム。
  3.  前記作業場データは、前記無人運搬車両が向かう位置を示す目標点を含む、
     請求項1に記載の作業現場の管理システム。
  4.  前記目標点は、前記無人運搬車両に係る作業が実施される位置を示す作業点を含む、
     請求項3に記載の作業現場の管理システム。
  5.  前記作業は、積込機が前記無人運搬車両に積荷を積み込む積込作業を含み、
     前記作業点は、前記積込作業における前記無人運搬車両の位置を示す積込点及び前記積込作業における積込機の位置を示す積込機点の少なくとも一方を含む、
     請求項4に記載の作業現場の管理システム。
  6.  前記作業は、前記無人運搬車両が積荷を排土する排土作業を含み、
     前記作業点は、前記排土作業における前記無人運搬車両の位置を示す排土点を含む、
     請求項4又は請求項5に記載の作業現場の管理システム。
  7.  前記作業点は、前記作業場に複数設定される、
     請求項4から請求項6のいずれか一項に記載の作業現場の管理システム。
  8.  前記作業場データは、前記無人運搬車両が前記作業場に進入する位置を示す入口点及び前記無人運搬車両が前記作業場から退去する位置を示す出口点の少なくとも一方を含む、
     請求項1に記載の作業現場の管理システム。
  9.  前記作業場データは、前記無人運搬車両が積荷を排土可能な排土エリアを含む、
     請求項1に記載の作業現場の管理システム。
  10.  前記作業場データに基づいて前記作業場における前記無人運搬車両の走行エリアを特定する走行エリア特定部を備え、
     前記散水エリア設定部は、前記走行エリアに基づいて前記散水エリアを設定する、
     請求項1から請求項9のいずれか一項に記載の作業現場の管理システム。
  11.  前記散水エリア設定部は、前記走行エリアの少なくとも一部が前記散水エリアに含まれるように、前記散水エリアを設定する、
     請求項10に記載の作業現場の管理システム。
  12.  前記作業場データに基づいて前記無人散水車両の目標走行経路を示す散水パスを生成する散水パス生成部を備える、
     請求項1から請求項11のいずれか一項に記載の作業現場の管理システム。
  13.  前記散水パス生成部は、前記散水エリアに散水されるように前記散水パスを生成する、
     請求項12に記載の作業現場の管理システム。
  14.  無人運搬車両が走行する作業場に設定された作業場データに基づいて前記作業場に散水エリアを設定すること、
     前記散水エリアに散水されるように無人散水車両を制御することと、を含む、
     作業現場の管理方法。
  15.  前記作業場データは、前記無人運搬車両が向かう位置を示す目標点を含む、
     請求項14に記載の作業現場の管理方法。
  16.  前記目標点は、前記無人運搬車両に係る作業が実施される位置を示す作業点を含む、
     請求項15に記載の作業現場の管理方法。
  17.  前記作業場データは、前記無人運搬車両が前記作業場に進入する位置を示す入口点及び前記無人運搬車両が前記作業場から退去する位置を示す出口点の少なくとも一方を含む、
     請求項14に記載の作業現場の管理方法。
  18.  前記作業場データは、前記無人運搬車両が積荷を排土可能な排土エリアを含む、
     請求項14に記載の作業現場の管理方法。
  19.  前記作業場データは、前記無人運搬車両の目標走行経路を示す運搬パスを含む、
     請求項14に記載の作業現場の管理方法。
  20.  前記作業場データに基づいて前記散水エリアに散水されるように前記無人散水車両の目標走行経路を示す散水パスを生成することと、
     前記散水パスに基づいて走行するように前記無人散水車両を制御することと、を含む、
     請求項14から請求項19のいずれか一項に記載の作業現場の管理方法。
PCT/JP2022/002044 2021-03-29 2022-01-20 作業現場の管理システム及び作業現場の管理方法 WO2022209192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280017920.7A CN116964273A (zh) 2021-03-30 2022-01-20 作业现场的管理系统以及作业现场的管理方法
AU2022252276A AU2022252276A1 (en) 2021-03-30 2022-01-20 Worksite management system and worksite management method
US18/278,653 US20240134395A1 (en) 2021-03-29 2022-01-20 Management system of work site and management method of work site
CA3211972A CA3211972A1 (en) 2021-03-30 2022-01-20 Management system of work site and management method of work site

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058213A JP2022154939A (ja) 2021-03-30 2021-03-30 作業現場の管理システム及び作業現場の管理方法
JP2021-058213 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209192A1 true WO2022209192A1 (ja) 2022-10-06

Family

ID=83458580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002044 WO2022209192A1 (ja) 2021-03-29 2022-01-20 作業現場の管理システム及び作業現場の管理方法

Country Status (6)

Country Link
US (1) US20240134395A1 (ja)
JP (1) JP2022154939A (ja)
CN (1) CN116964273A (ja)
AU (1) AU2022252276A1 (ja)
CA (1) CA3211972A1 (ja)
WO (1) WO2022209192A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205698A (ja) * 1995-02-06 1996-08-13 Yanmar Agricult Equip Co Ltd 無人散水車の自動停止装置
JPH09158141A (ja) * 1995-12-05 1997-06-17 Kajima Corp 自動散水作業車
JP2007075705A (ja) * 2005-09-13 2007-03-29 Kobelco Contstruction Machinery Ltd 散水車
JP2016153987A (ja) * 2015-02-20 2016-08-25 日立建機株式会社 交通管制サーバ、車載端末装置及び交通管制システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205698A (ja) * 1995-02-06 1996-08-13 Yanmar Agricult Equip Co Ltd 無人散水車の自動停止装置
JPH09158141A (ja) * 1995-12-05 1997-06-17 Kajima Corp 自動散水作業車
JP2007075705A (ja) * 2005-09-13 2007-03-29 Kobelco Contstruction Machinery Ltd 散水車
JP2016153987A (ja) * 2015-02-20 2016-08-25 日立建機株式会社 交通管制サーバ、車載端末装置及び交通管制システム

Also Published As

Publication number Publication date
US20240134395A1 (en) 2024-04-25
JP2022154939A (ja) 2022-10-13
CN116964273A (zh) 2023-10-27
AU2022252276A1 (en) 2023-09-14
CA3211972A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP6159031B2 (ja) 作業機械の管理装置
JP6243538B2 (ja) 運搬機械の管理装置及び運搬機械の管理方法
WO2022176414A1 (ja) 無人車両の管理システム、及び無人車両の管理方法
WO2022176496A1 (ja) 無人車両の管理システム、及び無人車両の管理方法
WO2022149373A1 (ja) 散水車両の制御システム、散水車両、及び散水車両の制御方法
WO2022209192A1 (ja) 作業現場の管理システム及び作業現場の管理方法
WO2022181051A1 (ja) 無人車両の管理システム、及び無人車両の管理方法
WO2022196034A1 (ja) 無人車両の管理システム及び無人車両の管理方法
WO2024062873A1 (ja) 作業現場の管理システム及び作業現場の管理方法
WO2024062908A1 (ja) 作業現場の管理システム及び作業現場の管理方法
JP7472058B2 (ja) 散水車両の管理システム、散水車両、及び散水車両の管理方法
WO2022024522A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3211972

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 3211972

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18278653

Country of ref document: US

Ref document number: 2022252276

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280017920.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022252276

Country of ref document: AU

Date of ref document: 20220120

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779422

Country of ref document: EP

Kind code of ref document: A1