WO2022208799A1 - Water quality management device, water quality management method, and water quality management program - Google Patents

Water quality management device, water quality management method, and water quality management program Download PDF

Info

Publication number
WO2022208799A1
WO2022208799A1 PCT/JP2021/014000 JP2021014000W WO2022208799A1 WO 2022208799 A1 WO2022208799 A1 WO 2022208799A1 JP 2021014000 W JP2021014000 W JP 2021014000W WO 2022208799 A1 WO2022208799 A1 WO 2022208799A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
residual chlorine
water quality
concentration
unit
Prior art date
Application number
PCT/JP2021/014000
Other languages
French (fr)
Japanese (ja)
Inventor
敏治 柳川
圭二 尾山
一憲 小路
義文 旭
一朗 勝山
有頂 定道
勇也 鈴木
好貴 市川
Original Assignee
中国電力株式会社
日機装株式会社
日本エヌ・ユー・エス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 日機装株式会社, 日本エヌ・ユー・エス株式会社 filed Critical 中国電力株式会社
Priority to JP2021576358A priority Critical patent/JP7101912B1/en
Priority to PCT/JP2021/014000 priority patent/WO2022208799A1/en
Priority to TW111111376A priority patent/TW202242728A/en
Publication of WO2022208799A1 publication Critical patent/WO2022208799A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning

Definitions

  • the present invention relates to a water quality control device, a water quality control method, and a water quality control program. More specifically, the present invention relates to a water quality control device, a water quality control method, and a water quality control program used in a seawater utilization plant such as a power plant.
  • Seawater electrolytic chlorine sodium hypochlorite
  • adherent organisms such as barnacles and mussels
  • biofilms that adhere to the seawater system of seawater plants
  • thermal power plants and nuclear power plants Therefore, the technique of injecting water into the water intake is widely practiced.
  • sodium hypochlorite is generated by electrolyzing natural seawater, and an electrolytic solution containing the sodium hypochlorite is injected into a seawater intake to prevent adhesion of marine organisms.
  • the present invention has been made in view of the above problems, and is capable of preventing the concentration of residual chlorine in seawater from exceeding a reference value in a seawater outlet, a water quality control device, a water quality control method, and Intended to provide a water quality management program.
  • the present invention provides a water quality control device for a seawater utilization plant, comprising: an attribute value acquisition unit for acquiring an attribute value of seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction unit that predicts the residual chlorine concentration at the outlet of the discharge channel that discharges the seawater from the condenser to the sea; and a residual chlorine injected into the discharge channel based on the predicted residual chlorine concentration
  • the present invention relates to a water quality control device comprising a required amount calculation unit that calculates a required amount of a chlorine neutralizer, and a neutralizer injection unit that injects the required amount of the neutralizer into the discharge channel.
  • the attribute value includes the concentration of residual chlorine in seawater at the intake of the condenser, the water temperature of seawater at the outlet of the condenser, the flow time of seawater from the intake to the discharge, and the concentration It is preferable that the prediction unit predicts the residual chlorine concentration at the water outlet by applying the attribute value to the Arrhenius equation.
  • the concentration prediction unit inputs history data of attribute values including residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of seawater at the inlet of the condenser.
  • a label acquisition unit that acquires history data of the residual chlorine concentration in the water discharge port as a label; and a set of the input data and the label as learning data, the residual chlorine in the water discharge port
  • a learning unit that builds a learning model for estimating the concentration, and an estimated value generating unit that generates an estimated value of the residual chlorine concentration by applying a new attribute value to the learning model after building the learning model. It is preferable to have
  • the learning unit preferably constructs the learning model using a random forest.
  • the learning unit preferably constructs the learning model using generalized addition (GAM method).
  • the present invention also provides a water quality management method for a seawater utilization plant, comprising: an attribute value acquisition step of acquiring an attribute value of seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction step of predicting a residual chlorine concentration at an outlet of a discharge channel that discharges the seawater from the condenser to the sea, based on the predicted residual chlorine concentration;
  • the present invention relates to a water quality control method comprising a required amount calculation step of calculating a required amount of a neutralizer for residual chlorine, and a neutralizer injection step of injecting the required amount of the neutralizer into the discharge channel.
  • the present invention also provides a water quality management program for a seawater utilization plant, comprising: an attribute value obtaining step of obtaining an attribute value of seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction step of predicting a residual chlorine concentration at an outlet of a discharge channel that discharges the seawater from the condenser to the sea, based on the predicted residual chlorine concentration; Water quality management for causing a computer to execute a required amount calculation step of calculating a required amount of a neutralizer for residual chlorine and a neutralizer injection step of injecting the required amount of the neutralizer into the discharge channel. Regarding the program.
  • FIG. 1 is an overall configuration diagram of a seawater utilization plant according to an embodiment of the present invention
  • FIG. 1 is a functional block diagram of a water quality control device according to an embodiment of the present invention
  • FIG. It is a flowchart which shows operation
  • It is a functional block diagram of a concentration prediction part included in the water quality control device according to the embodiment of the present invention.
  • It is a flowchart which shows operation
  • It is a figure which shows the Arrhenius equation based on embodiment of this invention.
  • FIG. 1 It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. It is a figure which shows the Arrhenius equation based on embodiment of this invention. FIG.
  • FIG. 5 is a diagram showing a comparison between original data and prediction results by random forest according to the embodiment of the present invention
  • FIG. 5 is a diagram showing a comparison between original data and prediction results by random forest according to the embodiment of the present invention
  • GAM generalized addition method
  • GAM generalized addition method
  • GAM generalized addition method
  • GAM generalized addition method
  • FIG. 1 is an overall configuration diagram of a seawater utilization plant 100 including a water quality control device 1 and a condenser 2 according to this embodiment.
  • the condenser 2 takes in seawater as cooling water from the sea 3A through the water intake channel 21, and after cooling the steam turbine and the like, the cooling water is discharged from the outlet 221 of the condenser 2. The water is discharged to the sea 3B through the waterway 22.
  • a seawater electrolytic solution containing sodium hypochlorite is injected.
  • the water quality control device 1 predicts the residual chlorine concentration at the water outlet 222 of the water discharge channel 22 based on the attribute values of the seawater flowing through the condenser 2, and compares it with the residual chlorine concentration of the seawater at the condenser inlet 211. After calculating the amount of decrease, the required amount of the neutralizer is calculated based on the amount of decrease, and the required amount of the neutralizer is injected into the discharge channel 22 .
  • FIG. 1 A water quality control device 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 A water quality control device 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 A water quality control device 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 A water quality control device 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 is a functional block diagram of the water quality control device 1. As shown in FIG.
  • the water quality control device 1 includes a control section 11 , a neutralizing agent injection section 12 and a storage section 13 .
  • the control unit 11 is a part that controls the entire water quality management apparatus 1, and by reading and executing various programs from a storage area such as a ROM, a RAM, a flash memory, or a hard disk (HDD), the Various functions are realized.
  • the control unit 11 may be a CPU.
  • the control unit 11 includes an attribute value acquisition unit 111 , a concentration prediction unit 112 and a required amount calculation unit 113 .
  • control unit 11 includes general functional blocks such as a functional block for controlling the entire water quality management device 1 and a functional block for communication.
  • general functional blocks such as a functional block for controlling the entire water quality management device 1 and a functional block for communication.
  • these general functional blocks are well known to those skilled in the art, illustration and description are omitted.
  • the attribute value acquisition unit 111 acquires attribute values of seawater flowing through the condenser 2 . More specifically, for example, a pumping pump (not shown) installed outside the water quality control device 1 pumps up seawater from the water intake channel 21, and the pumped seawater is treated with the water quality installed outside the water quality control device 1. Analyze with an analyzer (not shown). The attribute value acquisition unit 111 acquires attribute values related to the water quality of seawater analyzed by the water quality analyzer. Furthermore, the attribute value acquisition unit 111 acquires the water temperature of seawater at the outlet 221 of the condenser 2, the flow time of seawater from the condenser inlet 211 to the water outlet 222, and the like as attribute values.
  • attribute values related to water quality for example, in addition to the residual chlorine concentration and water temperature of the seawater at the condenser inlet 211, for the purpose of improving accuracy, the concentration of organic matter, the amount of salt contained in the seawater, pH, ORP (oxidation-reduction potential).
  • the concentration prediction unit 112 predicts the residual chlorine concentration at the seawater water outlet 222 based on the attribute value acquired by the attribute value acquisition unit 111 .
  • the concentration prediction unit 112 uses, as attribute values, the residual chlorine concentration of seawater at the inlet 211 of the condenser 2, the water temperature of the seawater at the outlet 221 of the condenser 2, the inlet 211 of the condenser 2
  • the residual chlorine concentration at the seawater outlet 222 is estimated by applying the Arrheinius equation to the flow time of seawater from the outlet 222 to the outlet 222 .
  • the “Arrheinius equation” is an equation that predicts the rate of a chemical reaction at a certain temperature, and the reaction constant k that indicates the reaction rate is the temperature T is high and the activation energy E a is low.
  • A is a constant (frequency factor) independent of temperature
  • Ea is the activation energy per 1 mol
  • R is the gas constant
  • T is the absolute temperature.
  • the "frequency factor” is a factor representing the number of collisions between molecules in a bimolecular reaction.
  • the required amount calculation unit 113 calculates the necessary amount of the residual chlorine neutralizer to be injected into the water discharge channel 22. More specifically, the required amount calculation unit 113 calculates the required amount of the neutralizer based on the amount of decrease in the estimated residual chlorine concentration at the water outlet 222 compared to the residual chlorine concentration at the water intake 211 .
  • the neutralizing agent may be an existing agent capable of rapidly neutralizing residual chlorine, such as 35% hydrogen peroxide, sodium sulfite, or sodium thiosulfate.
  • 35% hydrogen peroxide solution reaction by-products are oxygen, water, and chloride ions
  • sodium sulfite reaction by-products are sulfate ions and chloride ions. Both of these are abundant in seawater.
  • the neutralizer injection unit 12 injects the necessary amount of neutralizer calculated by the necessary amount calculation unit 113 into the water discharge channel 22 .
  • the storage unit 13 stores the attribute value acquired by the attribute value acquisition unit 111, the residual chlorine concentration predicted by the concentration prediction unit 112, and the required amount of neutralizer calculated by the required amount calculation unit 113.
  • FIG. 3 is a flow chart showing the operation of the water quality control device 1. As shown in FIG.
  • step S1 the attribute value acquisition unit 111 acquires the attribute value of the water quality at the seawater intake 211, the water temperature of the seawater at the outlet 221 of the condenser 2, the flow time of the seawater from the inlet 211 to the water outlet 222, and the like. do.
  • step S ⁇ b>2 the concentration prediction unit 112 predicts the residual chlorine concentration at the seawater outlet 222 based on the attribute value acquired by the attribute value acquisition unit 111 .
  • step S3 the required amount calculation unit 113 calculates the required amount of the residual chlorine neutralizer to be injected into the discharge channel 22 based on the residual chlorine concentration predicted by the concentration prediction unit 112.
  • step S ⁇ b>4 the neutralizer injection unit 12 injects the necessary amount of neutralizer calculated by the necessary amount calculation unit 113 into the water discharge channel 22 .
  • a water quality control device 1 is a water quality control device 1 for a seawater utilization plant 100, and is an attribute value for acquiring an attribute value of seawater flowing through a condenser 2 installed in the seawater utilization plant 100.
  • the above attribute values are the residual chlorine concentration of seawater at the inlet 211 of the condenser 2, the water temperature of the seawater at the outlet 221 of the condenser 2, and the seawater temperature from the outlet 221 to the water discharge port 222.
  • the concentration prediction unit predicts the residual chlorine concentration at the water outlet 222 by applying the above attribute value to the Arrhenius equation.
  • a water quality control device 1A which is a second embodiment of the present invention, will be described below with reference to FIGS. 4 to 6.
  • FIG. In the following, for the sake of simplification of explanation, mainly the differences between the water quality control device 1A and the water quality control device 1 will be explained.
  • the basic configuration of the water quality control device 1A is the same as that of the water quality control device 1 shown in FIG.
  • the water quality control device 1A includes a concentration prediction unit 112A instead of the concentration prediction unit 112 included in the water quality control device 1.
  • FIG. The concentration prediction unit 112 mainly uses the Arrhenius equation to predict the residual chlorine concentration at the water discharge port 222, while the concentration prediction unit 112A predicts the residual chlorine concentration at the water discharge port 222 by machine learning.
  • FIG. 4 is a functional block diagram of the concentration prediction unit 112A.
  • the concentration prediction unit 112A includes an input data acquisition unit 114, a label acquisition unit 115, a learning unit 116, and an estimated value generation unit 117.
  • FIG. 4 is a functional block diagram of the concentration prediction unit 112A.
  • the concentration prediction unit 112A includes an input data acquisition unit 114, a label acquisition unit 115, a learning unit 116, and an estimated value generation unit 117.
  • the input data acquisition unit 114 acquires, from the storage unit 13, history data of attribute values including the residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of the seawater in the water intake 211 as input data to be used for machine learning. to get as
  • the label acquisition unit 115 acquires history data of the residual chlorine concentration at the water outlet 222 from the storage unit 13 as labels used for machine learning.
  • the learning unit 116 constructs a learning model for estimating the residual chlorine concentration at the water outlet 222 by performing machine learning using pairs of input data and labels as learning data, and stores the constructed learning model in the storage unit 13. .
  • the machine learning performed by the learning unit 116 may be random forest or generalized addition (GAM method).
  • GAM method random forest
  • a decision tree is used as a weak learner.
  • generalized addition is an algorithm that uses a model in which the linear predictor in the generalized linear model is the sum of nonlinear functions. , B spline, natural spline, etc. are used. Among them, an algorithm using a smoothing spline as a non-linear function is called a "GAM method".
  • the estimated value generation unit 117 acquires the learning model from the storage unit 13 and generates new attribute values in the learning model. produces an estimate of the residual chlorine concentration at the outlet 222 by applying .
  • FIG. 5 is a flow chart showing the operation of the water quality control device 1A during machine learning.
  • step S11 the input data acquisition unit 114 acquires history data of attribute values including residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), water temperature, and flow rate of seawater from the storage unit 13 as input data. .
  • attribute values including residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), water temperature, and flow rate of seawater.
  • step S12 the label acquisition unit 115 acquires history data of the residual chlorine concentration at the water outlet as a label.
  • step S13 the learning unit 116 treats pairs of input data and labels as learning data.
  • step S14 the learning unit 116 performs machine learning using the learning data.
  • step S15 if the machine learning has ended (S15: YES), the process proceeds to step S16. If the machine learning has not ended (S15: NO), the process proceeds to step S11.
  • step S16 the learning unit 116 stores the constructed learning model in the storage unit 13.
  • FIG. 6 is a flow chart showing the operation of the water quality control device 1A when injecting the neutralizer.
  • step S21 the estimated value generation unit 117 acquires the learning model from the storage unit 13.
  • step S22 the estimated value generation unit 117 acquires new attribute values from the attribute value acquisition unit 111.
  • step S23 the estimated value generator 117 generates an estimated value (predicted value) of the residual chlorine concentration at the water outlet 222 by applying the new attribute value to the learning model.
  • step S24 the required amount calculation unit 113 calculates the required amount of the residual chlorine neutralizer to be injected into the water discharge channel 22 based on the residual chlorine concentration predicted by the concentration prediction unit 112.
  • step S ⁇ b>25 the neutralizing agent injection unit 12 injects the necessary amount of neutralizing agent calculated by the necessary amount calculating unit 113 into the discharge channel 22 .
  • the concentration prediction unit 112A acquires history data of attribute values including the residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of the seawater at the water intake 211 as input data.
  • an estimated value generation unit 117 that generates an estimated value of the residual chlorine concentration by applying a new attribute value to the learning model after building the learning model.
  • the learning unit 116 builds a learning model using a random forest.
  • the learning unit 116 constructs a learning model using generalized addition.
  • (1-1) Relationship with Condenser Inlet Concentration It is also known that the initial concentration contributes greatly to the attenuation of the residual chlorine concentration.
  • the residual chlorine concentration at the condenser inlet is 0.05 mg / L or more, 0.03 mg / L or more and less than 0.05 mg / L, less than 0.03 mg / L for each power generation output , and the Arrhenius equations for each case are shown in FIGS. 7A to 9C.
  • the highest coefficient of determination was 0.589 when the power generation output was 200 MW or more and the residual chlorine concentration was 0.05 mg/L or more.
  • the coefficient of determination is less than 0.05 in any case of power generation output.
  • the original data and prediction results show similar behavior. Although it is generally within the range of 0.01 mg/L with respect to the original data, the coefficient of determination between the original data and the prediction result is as low as 0.096 because the distribution of errors is biased.
  • Prediction result 1 As with the prediction using random forest, the data from June 29, 2018 to February 28, 2019 was used as learning data, and the prediction from March 1, 2019 to March 31, 2019 was made. 11A and 11B show a comparison between original data and prediction results.
  • the original data and prediction results show similar behavior. Compared to the original data, it is generally within the range of 0.01 mg/L or less, and there is little bias in the error distribution, so the coefficient of determination between the original data and the prediction results is 0.272, which is higher than the results from the random forest.
  • Prediction result 2 The results shown in the previous section differed in the learning period and prediction period. Forecasts were made from November 1, 2018 to November 30, 2018. 12A and 12B show a comparison between original data and prediction results.
  • the original data and the prediction result show similar behavior. It was generally within the range of 0.01 mg/L with respect to the original data, and the coefficient of determination between the original data and the prediction result was 0.303.
  • the behavior of the original data and the prediction results are almost identical, demonstrating high reproducibility. It is generally within the range of about 0.005 mg/L with respect to the original data, and the coefficient of determination between the original data and the prediction result is as high as 0.505.
  • the management method by the water quality management device 1 or 1A is realized by software.
  • a program that constitutes this software is installed in the computer (water quality management device 1 or 1A).
  • These programs may be recorded on removable media and distributed to users, or may be distributed by being downloaded to users' computers via a network. Furthermore, these programs may be provided to the user's computer (water quality control device 1 or 1A) as a web service via a network without being downloaded.

Abstract

Provided are a water quality management device, a water quality management method, and a water quality management program with which it is possible to prevent the residual chlorine concentration in seawater from exceeding a reference value at a seawater discharge port. This water quality management device for use in a seawater utilization plant comprises: an attribute value acquisition unit that acquires an attribute value pertaining to seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction unit that, on the basis of the attribute value, predicts the residual chlorine concentration at a discharge port of a discharge path through which seawater is discharged from the condenser to the sea; a required amount calculation unit that, on the basis of the predicted residual chlorine concentration, calculates the required amount of a residual chlorine neutralizer to be injected into the discharge path; and a neutralizer injection unit that injects the neutralizer into the discharge path in the required amount.

Description

水質管理装置、水質管理方法、及び水質管理プログラムWater quality control device, water quality control method, and water quality control program
 本発明は、水質管理装置、水質管理方法、及び水質管理プログラムに関する。より詳しくは、発電所等の海水利用プラントで用いられる水質管理装置、水質管理方法、及び水質管理プログラムに関する。 The present invention relates to a water quality control device, a water quality control method, and a water quality control program. More specifically, the present invention relates to a water quality control device, a water quality control method, and a water quality control program used in a seawater utilization plant such as a power plant.
 火力・原子力発電所をはじめとする海水利用プラントの海水系統に付着する、フジツボ類、イガイ類等の付着生物、及びバイオフィルムへの対策として、海水電解塩素(次亜塩素酸ソーダ)を発生させて、取水口に注入する技術が広く実施されている。 Seawater electrolytic chlorine (sodium hypochlorite) is generated as a countermeasure against adherent organisms such as barnacles and mussels, and biofilms that adhere to the seawater system of seawater plants such as thermal power plants and nuclear power plants. Therefore, the technique of injecting water into the water intake is widely practiced.
 例えば、特許文献1は、天然の海水を電気分解することにより次亜塩素酸ソーダを生成し、当該次亜塩素酸ソーダを含む電解液を、海水の取水口に注入して海洋生物の付着防止に用いる技術を開示している。 For example, in Patent Document 1, sodium hypochlorite is generated by electrolyzing natural seawater, and an electrolytic solution containing the sodium hypochlorite is injected into a seawater intake to prevent adhesion of marine organisms. technology used for
特許第4932529号公報Japanese Patent No. 4932529
 海水電解塩素を取水口に注入する場合、海水の放水口における残留塩素濃度の基準値を超過しないように注入を実施する必要があるが、海水電解塩素を注入した後の残留塩素濃度は、水温や水質により減衰速度が異なることから、付着生物防止に有効な残留塩素濃度を維持しようとすると、一時的に放水口で基準値を超過する恐れがある。そのため、適切なタイミングで適切な量の中和剤を注入することで、残留塩素濃度の基準値の超過を未然に防止する技術が望まれている。 When injecting seawater electrochlorine into the water intake, it is necessary to inject it so that the residual chlorine concentration at the seawater discharge port does not exceed the standard value. Since the attenuation rate differs depending on the water quality and water quality, there is a risk that the standard value will be temporarily exceeded at the water discharge port if an attempt is made to maintain the residual chlorine concentration that is effective in preventing fouling organisms. Therefore, there is a demand for a technology that prevents the concentration of residual chlorine from exceeding the reference value by injecting an appropriate amount of neutralizing agent at an appropriate timing.
 本発明は、上記課題に鑑みてなされたものであり、海水の放水口における、海水中の残留塩素濃度の基準値の超過を未然に防ぐことが可能な、水質管理装置、水質管理方法、及び水質管理プログラムを提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of preventing the concentration of residual chlorine in seawater from exceeding a reference value in a seawater outlet, a water quality control device, a water quality control method, and Intended to provide a water quality management program.
 本発明は、海水利用プラントのための水質管理装置であって、前記海水利用プラントに設置される復水器を流通する、海水の属性値を取得する属性値取得部と、前記属性値に基づいて、前記復水器から前記海水を海に放出する放水路の放水口における残留塩素濃度を予測する濃度予測部と、予測された前記残留塩素濃度に基づいて、前記放水路に注入する、残留塩素の中和剤の必要量を算出する必要量算出部と、前記必要量分の前記中和剤を前記放水路に注入する中和剤注入部と、を備える水質管理装置に関する。 The present invention provides a water quality control device for a seawater utilization plant, comprising: an attribute value acquisition unit for acquiring an attribute value of seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction unit that predicts the residual chlorine concentration at the outlet of the discharge channel that discharges the seawater from the condenser to the sea; and a residual chlorine injected into the discharge channel based on the predicted residual chlorine concentration The present invention relates to a water quality control device comprising a required amount calculation unit that calculates a required amount of a chlorine neutralizer, and a neutralizer injection unit that injects the required amount of the neutralizer into the discharge channel.
 また、前記属性値は、前記復水器の取水口における海水の残留塩素濃度、前記復水器の出口における海水の水温、前記取水口から前記放水口までの海水の流下時間を含み、前記濃度予測部は、前記属性値をアレニウス式に適用することで、前記放水口における前記残留塩素濃度を予測することが好ましい。 In addition, the attribute value includes the concentration of residual chlorine in seawater at the intake of the condenser, the water temperature of seawater at the outlet of the condenser, the flow time of seawater from the intake to the discharge, and the concentration It is preferable that the prediction unit predicts the residual chlorine concentration at the water outlet by applying the attribute value to the Arrhenius equation.
 また、前記水質管理装置において、前記濃度予測部は、前記復水器の入口における海水の残留塩素濃度、塩分量、pH、ORP(酸化還元電位)、水温を含む属性値の履歴データを入力データとして取得する入力データ取得部と、前記放水口における残留塩素濃度の履歴データをラベルとして取得するラベル取得部と、前記入力データと前記ラベルとの組を学習データとして、前記放水口における前記残留塩素濃度を推定する学習モデルを構築する学習部と、前記学習モデルの構築後に、新たな属性値を前記学習モデルに適用することで、前記残留塩素濃度の推定値を生成する推定値生成部とを備えることが好ましい。 Further, in the water quality control device, the concentration prediction unit inputs history data of attribute values including residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of seawater at the inlet of the condenser. a label acquisition unit that acquires history data of the residual chlorine concentration in the water discharge port as a label; and a set of the input data and the label as learning data, the residual chlorine in the water discharge port A learning unit that builds a learning model for estimating the concentration, and an estimated value generating unit that generates an estimated value of the residual chlorine concentration by applying a new attribute value to the learning model after building the learning model. It is preferable to have
 また、前記水質管理装置において、前記学習部は、ランダムフォレストを用いて前記学習モデルを構築することが好ましい。 Also, in the water quality control device, the learning unit preferably constructs the learning model using a random forest.
 また、前記水質管理装置において、前記学習部は、一般化加法(GAM法)を用いて前記学習モデルを構築することが好ましい。 Further, in the water quality control device, the learning unit preferably constructs the learning model using generalized addition (GAM method).
 また本発明は、海水利用プラントのための水質管理方法であって、前記海水利用プラントに設置される復水器を流通する、海水の属性値を取得する属性値取得ステップと、前記属性値に基づいて、前記復水器から前記海水を海に放出する放水路の放水口における残留塩素濃度を予測する濃度予測ステップと、予測された前記残留塩素濃度に基づいて、前記放水路に注入する、残留塩素の中和剤の必要量を算出する必要量算出ステップと、前記必要量分の前記中和剤を前記放水路に注入する中和剤注入ステップと、を有する水質管理方法に関する。 The present invention also provides a water quality management method for a seawater utilization plant, comprising: an attribute value acquisition step of acquiring an attribute value of seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction step of predicting a residual chlorine concentration at an outlet of a discharge channel that discharges the seawater from the condenser to the sea, based on the predicted residual chlorine concentration; The present invention relates to a water quality control method comprising a required amount calculation step of calculating a required amount of a neutralizer for residual chlorine, and a neutralizer injection step of injecting the required amount of the neutralizer into the discharge channel.
 また本発明は、海水利用プラントのための水質管理プログラムであって、前記海水利用プラントに設置される復水器を流通する、海水の属性値を取得する属性値取得ステップと、前記属性値に基づいて、前記復水器から前記海水を海に放出する放水路の放水口における残留塩素濃度を予測する濃度予測ステップと、予測された前記残留塩素濃度に基づいて、前記放水路に注入する、残留塩素の中和剤の必要量を算出する必要量算出ステップと、前記必要量分の前記中和剤を前記放水路に注入する中和剤注入ステップと、をコンピュータに実行させるための水質管理プログラムに関する。 The present invention also provides a water quality management program for a seawater utilization plant, comprising: an attribute value obtaining step of obtaining an attribute value of seawater flowing through a condenser installed in the seawater utilization plant; a concentration prediction step of predicting a residual chlorine concentration at an outlet of a discharge channel that discharges the seawater from the condenser to the sea, based on the predicted residual chlorine concentration; Water quality management for causing a computer to execute a required amount calculation step of calculating a required amount of a neutralizer for residual chlorine and a neutralizer injection step of injecting the required amount of the neutralizer into the discharge channel. Regarding the program.
 本発明によれば、海水の放水口における、海水中の残留塩素濃度の基準値の超過を未然に防ぐことが可能となる。 According to the present invention, it is possible to prevent the concentration of residual chlorine in seawater from exceeding the standard value at the seawater outlet.
本発明の実施形態に係る海水利用プラントの全体構成図である。1 is an overall configuration diagram of a seawater utilization plant according to an embodiment of the present invention; FIG. 本発明の実施形態に係る水質管理装置の機能ブロック図である。1 is a functional block diagram of a water quality control device according to an embodiment of the present invention; FIG. 本発明の実施形態に係る水質管理装置の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the water-quality control apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水質管理装置に含まれる濃度予測部の機能ブロック図である。It is a functional block diagram of a concentration prediction part included in the water quality control device according to the embodiment of the present invention. 本発明の実施形態に係る水質管理装置の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the water-quality control apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水質管理装置の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the water-quality control apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るアレニウス式を示す図である。It is a figure which shows the Arrhenius equation based on embodiment of this invention. 本発明の実施形態に係るランダムフォレストによる元データと予測結果との比較を示す図である。FIG. 5 is a diagram showing a comparison between original data and prediction results by random forest according to the embodiment of the present invention; 本発明の実施形態に係るランダムフォレストによる元データと予測結果との比較を示す図である。FIG. 5 is a diagram showing a comparison between original data and prediction results by random forest according to the embodiment of the present invention; 本発明の実施形態に係る一般化加法(GAM)による元データと予測結果との比較を示す図である。It is a figure which shows the comparison of the original data and the prediction result by generalized addition method (GAM) based on embodiment of this invention. 本発明の実施形態に係る一般化加法(GAM)による元データと予測結果との比較を示す図である。It is a figure which shows the comparison of the original data and the prediction result by generalized addition method (GAM) based on embodiment of this invention. 本発明の実施形態に係る一般化加法(GAM)による元データと予測結果との比較を示す図である。It is a figure which shows the comparison of the original data and the prediction result by generalized addition method (GAM) based on embodiment of this invention. 本発明の実施形態に係る一般化加法(GAM)による元データと予測結果との比較を示す図である。It is a figure which shows the comparison of the original data and the prediction result by generalized addition method (GAM) based on embodiment of this invention. 本発明の実施形態に係る一般化加法(GAM)による元データと予測結果との比較を示す図である。It is a figure which shows the comparison of the original data and the prediction result by generalized addition method (GAM) based on embodiment of this invention. 本発明の実施形態に係る一般化加法(GAM)による元データと予測結果との比較を示す図である。It is a figure which shows the comparison of the original data and the prediction result by generalized addition method (GAM) based on embodiment of this invention.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔1 発明の概要〕
 図1は、本実施形態に係る水質管理装置1と復水器2とを含む海水利用プラント100の全体構成図である。海水利用プラント100において、復水器2は、海3Aから取水路21により冷却水としての海水を取水し、蒸気タービン等を冷却した後の冷却水は、復水器2の出口221から、放水路22により海3Bに放水される。取水路21の塩素注入点においては、次亜塩素酸ソーダを含む海水の電解液が注入される。
[1 Outline of the invention]
FIG. 1 is an overall configuration diagram of a seawater utilization plant 100 including a water quality control device 1 and a condenser 2 according to this embodiment. In the seawater utilization plant 100, the condenser 2 takes in seawater as cooling water from the sea 3A through the water intake channel 21, and after cooling the steam turbine and the like, the cooling water is discharged from the outlet 221 of the condenser 2. The water is discharged to the sea 3B through the waterway 22. At the chlorine injection point of the intake channel 21, a seawater electrolytic solution containing sodium hypochlorite is injected.
 水質管理装置1は、復水器2を流通する海水の属性値に基づいて、放水路22の放水口222での残留塩素濃度を予測し、復水器入口211における海水の残留塩素濃度に比較した低下量を算出後、当該低下量に基づいて、中和剤の必要量を算出し、当該必要量分の中和剤を放水路22に注入する。 The water quality control device 1 predicts the residual chlorine concentration at the water outlet 222 of the water discharge channel 22 based on the attribute values of the seawater flowing through the condenser 2, and compares it with the residual chlorine concentration of the seawater at the condenser inlet 211. After calculating the amount of decrease, the required amount of the neutralizer is calculated based on the amount of decrease, and the required amount of the neutralizer is injected into the discharge channel 22 .
〔2 第1実施形態〕
 以下、図2及び図3を参照することにより、本発明の第1実施形態である水質管理装置1について説明する。
[2 First embodiment]
A water quality control device 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 2 and 3. FIG.
〔2.1 実施形態の構成〕
 図2は、水質管理装置1の機能ブロック図である。水質管理装置1は、制御部11と、中和剤注入部12と、記憶部13とを備える。
[2.1 Configuration of Embodiment]
FIG. 2 is a functional block diagram of the water quality control device 1. As shown in FIG. The water quality control device 1 includes a control section 11 , a neutralizing agent injection section 12 and a storage section 13 .
 制御部11は、水質管理装置1の全体を制御する部分であり、各種プログラムを、ROM、RAM、フラッシュメモリ又はハードディスク(HDD)等の記憶領域から適宜読み出して実行することにより、本実施形態における各種機能を実現している。制御部11は、CPUであってよい。制御部11は、属性値取得部111、濃度予測部112、必要量算出部113を備える。 The control unit 11 is a part that controls the entire water quality management apparatus 1, and by reading and executing various programs from a storage area such as a ROM, a RAM, a flash memory, or a hard disk (HDD), the Various functions are realized. The control unit 11 may be a CPU. The control unit 11 includes an attribute value acquisition unit 111 , a concentration prediction unit 112 and a required amount calculation unit 113 .
 また、制御部11は、それ以外にも、水質管理装置1の全体を制御するための機能ブロック、通信を行うための機能ブロックといった一般的な機能ブロックを備える。ただし、これらの一般的な機能ブロックについては当業者によく知られているので図示及び説明を省略する。 In addition, the control unit 11 includes general functional blocks such as a functional block for controlling the entire water quality management device 1 and a functional block for communication. However, since these general functional blocks are well known to those skilled in the art, illustration and description are omitted.
 属性値取得部111は、復水器2を流通する海水の属性値を取得する。より詳細には、例えば、水質管理装置1の外部に設置された汲み上げポンプ(不図示)により、取水路21から海水を汲み上げ、汲み上げられた海水を、水質管理装置1の外部に設置された水質分析装置(不図示)で分析する。属性値取得部111は、水質分析装置で分析された海水の水質に係る属性値を取得する。更に、属性値取得部111は、属性値として、復水器2の出口221における海水の水温、復水器入口211から放水口222までの海水の流下時間等を取得する。 The attribute value acquisition unit 111 acquires attribute values of seawater flowing through the condenser 2 . More specifically, for example, a pumping pump (not shown) installed outside the water quality control device 1 pumps up seawater from the water intake channel 21, and the pumped seawater is treated with the water quality installed outside the water quality control device 1. Analyze with an analyzer (not shown). The attribute value acquisition unit 111 acquires attribute values related to the water quality of seawater analyzed by the water quality analyzer. Furthermore, the attribute value acquisition unit 111 acquires the water temperature of seawater at the outlet 221 of the condenser 2, the flow time of seawater from the condenser inlet 211 to the water outlet 222, and the like as attribute values.
 ここで、水質に係る属性値としては、例えば、復水器入口211における海水の残留塩素濃度と水温に加えて、精度向上を目的として他に有機物濃度、海水に含まれる塩分量、pH、ORP(酸化還元電位)、を含む。 Here, as attribute values related to water quality, for example, in addition to the residual chlorine concentration and water temperature of the seawater at the condenser inlet 211, for the purpose of improving accuracy, the concentration of organic matter, the amount of salt contained in the seawater, pH, ORP (oxidation-reduction potential).
 濃度予測部112は、属性値取得部111によって取得された属性値に基づいて、海水の放水口222における残留塩素濃度を予測する。とりわけ、本実施形態において、濃度予測部112は、属性値として、復水器2の入口211における海水の残留塩素濃度、復水器2の出口221における海水の水温、復水器2の入口211から放水口222までの海水の流下時間をアレニウス(Arrheinius)式に適用することにより、海水の放水口222における残留塩素濃度を推定する。 The concentration prediction unit 112 predicts the residual chlorine concentration at the seawater water outlet 222 based on the attribute value acquired by the attribute value acquisition unit 111 . In particular, in this embodiment, the concentration prediction unit 112 uses, as attribute values, the residual chlorine concentration of seawater at the inlet 211 of the condenser 2, the water temperature of the seawater at the outlet 221 of the condenser 2, the inlet 211 of the condenser 2 The residual chlorine concentration at the seawater outlet 222 is estimated by applying the Arrheinius equation to the flow time of seawater from the outlet 222 to the outlet 222 .
 ここで、「アレニウス(Arrheinius)式」とは、ある温度での化学反応の速度を予測する式のことであり、反応速度を示す反応定数kは、以下の式1で示すように、温度Tが高く、活性化エネルギーEが低いと大きくなることを示す式である。 Here, the “Arrheinius equation” is an equation that predicts the rate of a chemical reaction at a certain temperature, and the reaction constant k that indicates the reaction rate is the temperature T is high and the activation energy E a is low.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、Aは温度に無関係な定数(頻度因子)であり、Eは1molあたりの活性化エネルギーであり、Rは気体定数であり、Tは絶対温度である。ここで、「頻度因子」とは、二分子反応における分子間の衝突回数を表す因子のことである。 Here, A is a constant (frequency factor) independent of temperature, Ea is the activation energy per 1 mol, R is the gas constant, and T is the absolute temperature. Here, the "frequency factor" is a factor representing the number of collisions between molecules in a bimolecular reaction.
 必要量算出部113は、濃度予測部112により予測された残留塩素濃度に基づいて、放水路22に注入する、残留塩素の中和剤の必要量を算出する。より詳細には、必要量算出部113は、取水口211における残留塩素濃度に比較した、放水口222における推定残留塩素濃度の低下量に基づいて、中和剤の必要量を算出する。 Based on the residual chlorine concentration predicted by the concentration prediction unit 112, the required amount calculation unit 113 calculates the necessary amount of the residual chlorine neutralizer to be injected into the water discharge channel 22. More specifically, the required amount calculation unit 113 calculates the required amount of the neutralizer based on the amount of decrease in the estimated residual chlorine concentration at the water outlet 222 compared to the residual chlorine concentration at the water intake 211 .
 ここで、中和剤とは、例えば35%過酸化水素水、亜硫酸ソーダ、又はチオ硫酸ソーダ等、残留塩素を速やかに中和できる既存の薬剤であってよい。なお、35%過酸化水素水を用いた場合の反応副産物は、酸素、水、塩素イオンであり、亜硫酸ソーダを用いた場合の反応副産物は、硫酸イオン、塩素イオンである。これらのいずれも海水中に豊富に存在する。 Here, the neutralizing agent may be an existing agent capable of rapidly neutralizing residual chlorine, such as 35% hydrogen peroxide, sodium sulfite, or sodium thiosulfate. When 35% hydrogen peroxide solution is used, reaction by-products are oxygen, water, and chloride ions, and when sodium sulfite is used, reaction by-products are sulfate ions and chloride ions. Both of these are abundant in seawater.
 中和剤注入部12は、必要量算出部113によって算出された必要量分の中和剤を、放水路22に注入する。とりわけ、中和剤注入部12により、放水路22への中和剤の注入を自動制御することが好適である。 The neutralizer injection unit 12 injects the necessary amount of neutralizer calculated by the necessary amount calculation unit 113 into the water discharge channel 22 . In particular, it is preferable to automatically control the injection of the neutralizer into the discharge channel 22 by the neutralizer injector 12 .
 記憶部13は、属性値取得部111によって取得された属性値や、濃度予測部112によって予測される残留塩素濃度や、必要量算出部113によって算出される中和剤の必要量を記憶する。 The storage unit 13 stores the attribute value acquired by the attribute value acquisition unit 111, the residual chlorine concentration predicted by the concentration prediction unit 112, and the required amount of neutralizer calculated by the required amount calculation unit 113.
〔2.2 実施形態の動作〕
 図3は、水質管理装置1の動作を示すフローチャートである。
[2.2 Operation of Embodiment]
FIG. 3 is a flow chart showing the operation of the water quality control device 1. As shown in FIG.
 ステップS1において、属性値取得部111は、海水の取水口211における水質の属性値や、復水器2の出口221における海水の水温、入口211から放水口222までの海水の流下時間等を取得する。 In step S1, the attribute value acquisition unit 111 acquires the attribute value of the water quality at the seawater intake 211, the water temperature of the seawater at the outlet 221 of the condenser 2, the flow time of the seawater from the inlet 211 to the water outlet 222, and the like. do.
 ステップS2において、濃度予測部112は、属性値取得部111によって取得された属性値に基づいて、海水の放水口222における残留塩素濃度を予測する。 In step S<b>2 , the concentration prediction unit 112 predicts the residual chlorine concentration at the seawater outlet 222 based on the attribute value acquired by the attribute value acquisition unit 111 .
 ステップS3において、必要量算出部113は、濃度予測部112により予測された残留塩素濃度に基づいて、放水路22に注入する、残留塩素の中和剤の必要量を算出する。 In step S3, the required amount calculation unit 113 calculates the required amount of the residual chlorine neutralizer to be injected into the discharge channel 22 based on the residual chlorine concentration predicted by the concentration prediction unit 112.
 ステップS4において、中和剤注入部12は、必要量算出部113によって算出された必要量分の中和剤を、放水路22に注入する。 In step S<b>4 , the neutralizer injection unit 12 injects the necessary amount of neutralizer calculated by the necessary amount calculation unit 113 into the water discharge channel 22 .
〔2.3 実施形態が奏する効果〕
 本実施形態に係る水質管理装置1は、海水利用プラント100のための水質管理装置1であって、海水利用プラント100に設置される復水器2を流通する海水の属性値を取得する属性値取得部111と、属性値に基づいて、復水器2から海水を海に放出する放水路22の放水口222における残留塩素濃度を予測する濃度予測部112と、推定された残留塩素濃度に基づいて、放水路22に注入する、残留塩素の中和剤の必要量を算出する必要量算出部113と、必要量分の中和剤を放水路22に注入する中和剤注入部12と、を備える。
[2.3 Effects of Embodiment]
A water quality control device 1 according to the present embodiment is a water quality control device 1 for a seawater utilization plant 100, and is an attribute value for acquiring an attribute value of seawater flowing through a condenser 2 installed in the seawater utilization plant 100. An acquisition unit 111, a concentration prediction unit 112 that predicts the residual chlorine concentration at the outlet 222 of the discharge channel 22 that discharges seawater from the condenser 2 to the sea based on the attribute value, and a concentration prediction unit 112 that predicts, based on the estimated residual chlorine concentration a required amount calculation unit 113 for calculating the required amount of the neutralizing agent for residual chlorine to be injected into the discharge channel 22; Prepare.
 これにより、海水の放水口における、海水中の残留塩素濃度の基準値の超過を未然に防ぐことが可能となる。とりわけ、放水口222における残留塩素濃度の基準値を超過する前に、適切な量の中和剤を注入することで、基準値の超過を未然に防ぐことができる。このことで、電解塩素注入濃度のベース値を高めに合わせることが可能となり、発電の障害となる付着生物やバイオフィルムの付着をより効果的に抑制することで、復水器2の熱交換効率が向上し、多大なコスト削減効果が得られる。 This makes it possible to prevent the residual chlorine concentration in seawater from exceeding the standard value at the seawater outlet. Above all, by injecting an appropriate amount of the neutralizing agent before the residual chlorine concentration at the water outlet 222 exceeds the standard value, it is possible to prevent exceeding the standard value. As a result, it is possible to adjust the base value of the electrolytic chlorine injection concentration to a higher value, and by more effectively suppressing the adhesion of attached organisms and biofilms that hinder power generation, the heat exchange efficiency of the condenser 2 is improved, resulting in significant cost savings.
 また、水質管理装置1において、上記の属性値は、復水器2の入口211における海水の残留塩素濃度、復水器2の出口221における海水の水温、出口221から放水口222までの海水の流下時間を含み、濃度予測部は、上記の属性値をアレニウス式に適用することで、放水口222における残留塩素濃度を予測する。 In the water quality control device 1, the above attribute values are the residual chlorine concentration of seawater at the inlet 211 of the condenser 2, the water temperature of the seawater at the outlet 221 of the condenser 2, and the seawater temperature from the outlet 221 to the water discharge port 222. Including the flow time, the concentration prediction unit predicts the residual chlorine concentration at the water outlet 222 by applying the above attribute value to the Arrhenius equation.
 これにより、アレニウス式を用いることで、海水中の残留塩素濃度の基準値の超過を未然に防ぐことが可能となる。 As a result, by using the Arrhenius equation, it is possible to prevent the residual chlorine concentration in seawater from exceeding the standard value.
〔3 第2実施形態〕
 以下、図4~図6を参照することにより、本発明の第2実施形態である水質管理装置1Aについて説明する。なお、以下では説明の簡略化のため、主として、水質管理装置1Aが水質管理装置1と異なる点について説明する。
[3 Second embodiment]
A water quality control device 1A, which is a second embodiment of the present invention, will be described below with reference to FIGS. 4 to 6. FIG. In the following, for the sake of simplification of explanation, mainly the differences between the water quality control device 1A and the water quality control device 1 will be explained.
〔3.1 実施形態の構成〕
 水質管理装置1Aの基本構成は、図2に示す水質管理装置1と同様である。ただし、水質管理装置1Aは、水質管理装置1が備える濃度予測部112の代わりに濃度予測部112Aを備える。濃度予測部112は、主としてアレニウス式を用いることにより、放水口222における残留塩素濃度を予測するが、濃度予測部112Aは、機械学習により、放水口222における残留塩素濃度を予測する。
[3.1 Configuration of Embodiment]
The basic configuration of the water quality control device 1A is the same as that of the water quality control device 1 shown in FIG. However, the water quality control device 1A includes a concentration prediction unit 112A instead of the concentration prediction unit 112 included in the water quality control device 1. FIG. The concentration prediction unit 112 mainly uses the Arrhenius equation to predict the residual chlorine concentration at the water discharge port 222, while the concentration prediction unit 112A predicts the residual chlorine concentration at the water discharge port 222 by machine learning.
 図4は、濃度予測部112Aの機能ブロック図である。濃度予測部112Aは、入力データ取得部114と、ラベル取得部115と、学習部116と、推定値生成部117とを備える。 FIG. 4 is a functional block diagram of the concentration prediction unit 112A. The concentration prediction unit 112A includes an input data acquisition unit 114, a label acquisition unit 115, a learning unit 116, and an estimated value generation unit 117. FIG.
 入力データ取得部114は、記憶部13から、取水口211における海水の残留塩素濃度、塩分量、pH、ORP(酸化還元電位)、水温を含む属性値の履歴データを、機械学習に用いる入力データとして取得する。 The input data acquisition unit 114 acquires, from the storage unit 13, history data of attribute values including the residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of the seawater in the water intake 211 as input data to be used for machine learning. to get as
 ラベル取得部115は、記憶部13から、放水口222における残留塩素濃度の履歴データを、機械学習に用いるラベルとして取得する。 The label acquisition unit 115 acquires history data of the residual chlorine concentration at the water outlet 222 from the storage unit 13 as labels used for machine learning.
 学習部116は、入力データとラベルとの組を学習データとして機械学習をすることにより、放水口222における残留塩素濃度を推定する学習モデルを構築し、構築した学習モデルを記憶部13に格納する。 The learning unit 116 constructs a learning model for estimating the residual chlorine concentration at the water outlet 222 by performing machine learning using pairs of input data and labels as learning data, and stores the constructed learning model in the storage unit 13. .
 ここで、入力データとラベルとの組を学習データとする際、復水器2の出口221から放水口222までの海水の流下時間を考慮し、復水器入口データと、当該流下時間後の放水口データとが対になるように加工する。また、例えば、目的変数・説明変数共に、負の値は異常値とみなして除去してもよい。 Here, when a set of input data and a label is used as learning data, considering the flow time of seawater from the outlet 221 of the condenser 2 to the water discharge port 222, It is processed so that it is paired with the water outlet data. Further, for example, negative values may be regarded as abnormal values and removed for both the objective variable and the explanatory variable.
 また、学習部116が実行する機械学習は、ランダムフォレストであってもよく、一般化加法(GAM法)であってよい。ここで、「ランダムフォレスト」とは、機械学習のアルゴリズムのひとつであり、決定木を弱学習機とすると共に、ランダムサンプリングされたトレーニングデータによって学習した多数の弱学習器を統合させて汎化能力を向上させるアルゴリズムである。
 また、「一般化加法」とは、一般化線形モデルでの線形予測子を、非線形な関数の和としたモデルを用いるアルゴリズムであり、この時の非線形な関数として、局所回帰関数、平滑化スプライン、Bスプライン、自然スプライン等が用いられる。中でも、非線形な関数として、平滑化スプラインを用いるアルゴリズムが、「GAM法」と呼ばれる。
The machine learning performed by the learning unit 116 may be random forest or generalized addition (GAM method). Here, "random forest" is one of machine learning algorithms, and a decision tree is used as a weak learner. is an algorithm that improves
In addition, "generalized addition" is an algorithm that uses a model in which the linear predictor in the generalized linear model is the sum of nonlinear functions. , B spline, natural spline, etc. are used. Among them, an algorithm using a smoothing spline as a non-linear function is called a "GAM method".
 推定値生成部117は、学習部116によって学習モデルが構築され、構築された学習モデルが記憶部13に格納された後、記憶部13から学習モデルを取得して、新たな属性値を学習モデルに適用することにより、放水口222における残留塩素濃度の推定値を生成する。 After the learning model is constructed by the learning unit 116 and the constructed learning model is stored in the storage unit 13, the estimated value generation unit 117 acquires the learning model from the storage unit 13 and generates new attribute values in the learning model. produces an estimate of the residual chlorine concentration at the outlet 222 by applying .
〔3.2 実施形態の動作〕
 図5は、水質管理装置1Aの機械学習時の動作を示すフローチャートである。
[3.2 Operation of Embodiment]
FIG. 5 is a flow chart showing the operation of the water quality control device 1A during machine learning.
 ステップS11において、入力データ取得部114は、記憶部13から、海水の残留塩素濃度、塩分量、pH、ORP(酸化還元電位)、水温、流量を含む属性値の履歴データを入力データとして取得する。 In step S11, the input data acquisition unit 114 acquires history data of attribute values including residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), water temperature, and flow rate of seawater from the storage unit 13 as input data. .
 ステップS12において、ラベル取得部115は、放水口における残留塩素濃度の履歴データをラベルとして取得する。 In step S12, the label acquisition unit 115 acquires history data of the residual chlorine concentration at the water outlet as a label.
 ステップS13において、学習部116は、入力データとラベルとの組を学習データとする。 In step S13, the learning unit 116 treats pairs of input data and labels as learning data.
 ステップS14において、学習部116は、学習データを用いて機械学習を行う。 In step S14, the learning unit 116 performs machine learning using the learning data.
 ステップS15において、機械学習が終了した場合(S15:YES)には、処理はステップS16に移行する。機械学習が終了していない場合(S15:NO)には、処理はステップS11に移行する。 At step S15, if the machine learning has ended (S15: YES), the process proceeds to step S16. If the machine learning has not ended (S15: NO), the process proceeds to step S11.
 ステップS16において、学習部116は、構築した学習モデルを記憶部13に格納する。 In step S16, the learning unit 116 stores the constructed learning model in the storage unit 13.
 図6は、水質管理装置1Aの中和剤注入時の動作を示すフローチャートである。 FIG. 6 is a flow chart showing the operation of the water quality control device 1A when injecting the neutralizer.
 ステップS21において、推定値生成部117は、記憶部13から学習モデルを取得する。 In step S21, the estimated value generation unit 117 acquires the learning model from the storage unit 13.
 ステップS22において、推定値生成部117は、属性値取得部111から新たな属性値を取得する。 In step S22, the estimated value generation unit 117 acquires new attribute values from the attribute value acquisition unit 111.
 ステップS23において、推定値生成部117は、新たな属性値を学習モデルに適用することにより、放水口222における残留塩素濃度の推定値(予測値)を生成する。 In step S23, the estimated value generator 117 generates an estimated value (predicted value) of the residual chlorine concentration at the water outlet 222 by applying the new attribute value to the learning model.
 ステップS24において、必要量算出部113は、濃度予測部112により予測された残留塩素濃度に基づいて、放水路22に注入する、残留塩素の中和剤の必要量を算出する。 In step S24, the required amount calculation unit 113 calculates the required amount of the residual chlorine neutralizer to be injected into the water discharge channel 22 based on the residual chlorine concentration predicted by the concentration prediction unit 112.
 ステップS25において、中和剤注入部12は、必要量算出部113によって算出された必要量分の中和剤を、放水路22に注入する。 In step S<b>25 , the neutralizing agent injection unit 12 injects the necessary amount of neutralizing agent calculated by the necessary amount calculating unit 113 into the discharge channel 22 .
〔3.3 実施形態が奏する効果〕
 水質管理装置1Aにおいて、濃度予測部112Aは、取水口211における海水の残留塩素濃度、塩分量、pH、ORP(酸化還元電位)、水温を含む属性値の履歴データを入力データとして取得する入力データ取得部114と、放水口222における残留塩素濃度の履歴データをラベルとして取得するラベル取得部115と、入力データとラベルとの組を学習データとして、放水口における前記残留塩素濃度を推定する学習モデルを構築する学習部116と、学習モデルの構築後に、新たな属性値を学習モデルに適用することで、残留塩素濃度の推定値を生成する推定値生成部117とを備える。
[3.3 Effects of Embodiment]
In the water quality control device 1A, the concentration prediction unit 112A acquires history data of attribute values including the residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of the seawater at the water intake 211 as input data. An acquisition unit 114, a label acquisition unit 115 that acquires history data of the residual chlorine concentration in the water outlet 222 as a label, and a learning model that estimates the residual chlorine concentration in the water outlet using a set of input data and label as learning data. and an estimated value generation unit 117 that generates an estimated value of the residual chlorine concentration by applying a new attribute value to the learning model after building the learning model.
 これにより、より高精度な残留塩素濃度の予測値に基づいて、放水路22に中和剤を注入することが可能となる。 As a result, it is possible to inject the neutralizing agent into the discharge channel 22 based on a more accurate residual chlorine concentration predicted value.
 また、学習部116は、ランダムフォレストを用いて学習モデルを構築する。 Also, the learning unit 116 builds a learning model using a random forest.
 これにより、多数の説明変数への対応、及び高速での学習が可能となると共に、説明変数の重要度(寄与度)が算出できる。 This makes it possible to handle a large number of explanatory variables and perform high-speed learning, as well as calculate the importance (contribution) of the explanatory variables.
 また、学習部116は、一般化加法を用いて学習モデルを構築する。 Also, the learning unit 116 constructs a learning model using generalized addition.
 これにより、複雑な形の関数を用いることで、単純な比例関係でないものを説明できると共に、線形モデルの説明性を保持しつつ、予測の精度を高めることが可能となる。 As a result, by using a function with a complex form, it is possible to explain things that are not simple proportional relationships, and to improve the accuracy of prediction while maintaining the explainability of the linear model.
〔4 予測データ〕
〔4.1 アレニウス式〕
(1)2018年6月29日~2018年11月9日データによる分析
 2018年6月29日~2018年11月9日のA発電所1号機(最大出力340MW)の計測データを用いた
[4 Prediction data]
[4.1 Arrhenius equation]
(1) Analysis based on data from June 29, 2018 to November 9, 2018 Measurement data from June 29, 2018 to November 9, 2018 of A Power Station Unit 1 (maximum output 340 MW) was used
 (1-1) 復水器入口濃度との関係
 残留塩素濃度の減衰は、初期濃度の寄与が大きいことも知られている。(1-1)で示したアレニウス式について、発電出力別に復水器入口の残留塩素濃度を0.05mg/L以上、0.03mg/L以上0.05mg/L未満、0.03mg/L未満の3ケースに分け、それぞれのケースにおけるアレニウス式を、図7A~図9Cに示す。
(1-1) Relationship with Condenser Inlet Concentration It is also known that the initial concentration contributes greatly to the attenuation of the residual chlorine concentration. Regarding the Arrhenius formula shown in (1-1), the residual chlorine concentration at the condenser inlet is 0.05 mg / L or more, 0.03 mg / L or more and less than 0.05 mg / L, less than 0.03 mg / L for each power generation output , and the Arrhenius equations for each case are shown in FIGS. 7A to 9C.
 いずれの発電出力のケースにおいても、残留塩素濃度が高いほど決定係数が高くなっている。最も高い決定係数は、発電出力200MW以上、残留塩素濃度0.05mg/L以上の場合の0.589であった。なお、残留塩素濃度が0.03未満の場合は何れの発電出力のケースにおいても決定係数は0.05を下回っている。 In any case of power generation output, the higher the residual chlorine concentration, the higher the coefficient of determination. The highest coefficient of determination was 0.589 when the power generation output was 200 MW or more and the residual chlorine concentration was 0.05 mg/L or more. When the residual chlorine concentration is less than 0.03, the coefficient of determination is less than 0.05 in any case of power generation output.
〔4.2 機械学習〕
 復水器入口の残留塩素濃度から、放水口における残留塩素濃度を予測するための手法として機械学習の適用可能性についての検討を行った。
[4.2 Machine learning]
We investigated the applicability of machine learning as a method to predict the residual chlorine concentration at the outlet from the residual chlorine concentration at the condenser inlet.
 (1)使用したデータ
 モデル構築および予測に使用したデータは、A発電所1号機における2018年6月29日~2019年3月31日分の1分値を使用した。使用した変数およびデータの加工方法は以下の表に示すとおりである。
(1) Data used The data used for model construction and prediction was the 1-minute value from June 29, 2018 to March 31, 2019 at Unit 1 of A power plant. The variables used and data processing methods are shown in the table below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (2)予測モデルによる結果
 加工したデータを用いて、ランダムフォレストおよび一般化加法モデル(GAM)の2つの予測モデルを用いて予測を行った。
(2) Results from Prediction Models Using the processed data, predictions were made using two prediction models, random forest and generalized additive model (GAM).
 (2-1)ランダムフォレストによる予測結果
 2018年6月29日~2019年2月28日のデータを学習データとし、2019年3月1日~2019年3月31日の予測を行った。図10A及び図10Bに元データと予測結果との比較を示す。
(2-1) Prediction results by random forest Data from June 29, 2018 to February 28, 2019 were used as learning data, and predictions from March 1, 2019 to March 31, 2019 were made. 10A and 10B show a comparison between original data and prediction results.
 元データと予測結果は同じような挙動を示している。元データに対して概ね0.01mg/Lの範囲内に収まっているが、誤差の分布に偏りがあるため、元データと予測結果の決定係数は0.096と低くなっている。 The original data and prediction results show similar behavior. Although it is generally within the range of 0.01 mg/L with respect to the original data, the coefficient of determination between the original data and the prediction result is as low as 0.096 because the distribution of errors is biased.
 (2-2)一般化加法(GAM)による予測結果
 学習範囲および予測範囲を変え、三通りの予測を行った。
(2-2) Prediction Results by Generalized Additive Method (GAM) Three predictions were made by changing the learning range and the prediction range.
 1)予測結果1
 ランダムフォレストを使用した予測と同様に、2018年6月29日~2019年2月28日のデータを学習データとし、2019年3月1日~2019年3月31日の予想を行った。図11A及び図11Bに元データと予測結果の比較を示す。
1) Prediction result 1
As with the prediction using random forest, the data from June 29, 2018 to February 28, 2019 was used as learning data, and the prediction from March 1, 2019 to March 31, 2019 was made. 11A and 11B show a comparison between original data and prediction results.
 ランダムフォレストによる結果と同様に、元データと予測結果は同じような挙動を示している。元データに対して概ね0.01mg/L以下の範囲内に収まっており、誤差分布の偏りも少ないため、元データと予測結果の決定係数は0.272とランダムフォレストによる結果よりも高くなっている。 As with the random forest results, the original data and prediction results show similar behavior. Compared to the original data, it is generally within the range of 0.01 mg/L or less, and there is little bias in the error distribution, so the coefficient of determination between the original data and the prediction results is 0.272, which is higher than the results from the random forest. there is
 2)予測結果2
 前節で示した結果とは学習期間および予測期間を変え、2018年6月29日~2018年10月31日および2018年12月1日~2019年3月31日のデータを学習データとし、2018年11月1日~2018年11月30日の予測を行った。図12A及び図12Bに元データと予測結果の比較を示す。
2) Prediction result 2
The results shown in the previous section differed in the learning period and prediction period. Forecasts were made from November 1, 2018 to November 30, 2018. 12A and 12B show a comparison between original data and prediction results.
 予測結果1と同様に、元データと予測結果は同じような挙動を示している。元データに対して概ね0.01mg/Lの範囲内に収まっており、元データと予測結果の決定係数は0.303となっていた。 As with prediction result 1, the original data and the prediction result show similar behavior. It was generally within the range of 0.01 mg/L with respect to the original data, and the coefficient of determination between the original data and the prediction result was 0.303.
 3)予測結果3
 2019年2月1日~2019年2月14日のデータを学習データとし、2019年2月15日~2019年2月20日の予測を行った。図13A及び図13Bに元データと予測結果の比較を示す。
3) Prediction result 3
Data from February 1, 2019 to February 14, 2019 were used as learning data, and predictions were made from February 15, 2019 to February 20, 2019. 13A and 13B show a comparison between original data and prediction results.
 元データと予測結果の挙動はほぼ一致しており、高い再現性を示している。元データに対して概ね0.005mg/L程度の範囲内に収まっており、元データと予測結果の決定係数は0.505とかなり高くなっている。 The behavior of the original data and the prediction results are almost identical, demonstrating high reproducibility. It is generally within the range of about 0.005 mg/L with respect to the original data, and the coefficient of determination between the original data and the prediction result is as high as 0.505.
〔4.3 まとめ〕
 復水器入口から放水口への減衰反応は、発電出力が200MW以上かつ復水器入口の残留塩素濃度が0.05mg/L以上の場合、アレニウス式による近似曲線の決定係数が最も高くなり、発電出力、残留塩素濃度ともに低くなるほど決定係数が低くなる傾向が確認できた。このことからアレニウス式による放水口濃度の予測は、発電出力が高く復水器入口濃度が高いほど有効であると考えられる。
[4.3 Summary]
In the attenuation reaction from the condenser inlet to the outlet, when the power output is 200 MW or more and the residual chlorine concentration at the condenser inlet is 0.05 mg / L or more, the coefficient of determination of the approximated curve by the Arrhenius equation is the highest, It was confirmed that the lower the power output and residual chlorine concentration, the lower the coefficient of determination. From this, it is considered that the prediction of outlet concentration by the Arrhenius equation is more effective as the power generation output is higher and the concentration at the condenser inlet is higher.
 機械学習による放水口濃度の予測については、複数のモデル・条件により検証を行った結果、概ね実用性のある予測精度が確認され、適用可能性を示すことができた。  As a result of verifying the prediction of outlet concentration by machine learning using multiple models and conditions, we were able to confirm the accuracy of the prediction with practicality and demonstrated its applicability.
 水質管理装置1又は1Aによる管理方法は、ソフトウェアにより実現される。ソフトウェアによって実現される場合には、このソフトウェアを構成するプログラムが、コンピュータ(水質管理装置1又は1A)にインストールされる。また、これらのプログラムは、リムーバブルメディアに記録されてユーザに配布されてもよいし、ネットワークを介してユーザのコンピュータにダウンロードされることにより配布されてもよい。更に、これらのプログラムは、ダウンロードされることなくネットワークを介したWebサービスとしてユーザのコンピュータ(水質管理装置1又は1A)に提供されてもよい。 The management method by the water quality management device 1 or 1A is realized by software. When realized by software, a program that constitutes this software is installed in the computer (water quality management device 1 or 1A). These programs may be recorded on removable media and distributed to users, or may be distributed by being downloaded to users' computers via a network. Furthermore, these programs may be provided to the user's computer (water quality control device 1 or 1A) as a web service via a network without being downloaded.
1、1A 水質管理装置
2 復水器
11 制御部
12 中和剤注入部
13 記憶部
21 取水路
22 放水路
111 属性値取得部
112、112A 濃度予測部
113 必要量算出部
114 入力データ取得部
115 ラベル取得部
116 学習部
117 推定値生成部
 
1, 1A Water quality control device 2 Condenser 11 Control unit 12 Neutralizing agent injection unit 13 Storage unit 21 Water intake channel 22 Discharge channel 111 Attribute value acquisition unit 112, 112A Concentration prediction unit 113 Required amount calculation unit 114 Input data acquisition unit 115 Label acquisition unit 116 Learning unit 117 Estimated value generation unit

Claims (7)

  1.  海水利用プラントのための水質管理装置であって、
     前記海水利用プラントに設置される復水器を流通する海水の属性値を取得する属性値取得部と、
     前記属性値に基づいて、前記復水器から前記海水を海に放出する放水路の放水口における残留塩素濃度を予測する濃度予測部と、
     予測された前記残留塩素濃度に基づいて、前記放水路に注入する、残留塩素の中和剤の必要量を算出する必要量算出部と、
     前記必要量分の前記中和剤を前記放水路に注入する中和剤注入部と、を備える水質管理装置。
    A water quality control device for a seawater utilization plant, comprising:
    an attribute value acquisition unit that acquires an attribute value of seawater flowing through a condenser installed in the seawater utilization plant;
    a concentration prediction unit that predicts, based on the attribute value, the concentration of residual chlorine at a discharge port of a discharge channel that discharges the seawater from the condenser to the sea;
    a required amount calculation unit that calculates a required amount of a neutralizing agent for residual chlorine to be injected into the discharge channel based on the predicted residual chlorine concentration;
    a neutralizing agent injection unit that injects the necessary amount of the neutralizing agent into the discharge channel.
  2.  前記属性値は、前記復水器の取水口における海水の残留塩素濃度、前記復水器の出口における海水の水温、前記取水口から前記放水口までの海水の流下時間を含み、
     前記濃度予測部は、前記属性値をアレニウス式に適用することで、前記放水口における前記残留塩素濃度を予測する、請求項1に記載の水質管理装置。
    The attribute values include the residual chlorine concentration of seawater at the water intake of the condenser, the water temperature of seawater at the outlet of the condenser, and the flow time of seawater from the water intake to the water discharge,
    The water quality control device according to claim 1, wherein the concentration prediction unit predicts the residual chlorine concentration at the water outlet by applying the attribute value to the Arrhenius equation.
  3.  前記濃度予測部は、
      前記復水器の入口における海水の残留塩素濃度、塩分量、pH、ORP(酸化還元電位)、水温、を含む属性値の履歴データを入力データとして取得する入力データ取得部と、
      前記放水口における残留塩素濃度の履歴データをラベルとして取得するラベル取得部と、
      前記入力データと前記ラベルとの組を学習データとして、前記放水口における前記残留塩素濃度を推定する学習モデルを構築する学習部と、
      前記学習モデルの構築後に、新たな属性値を前記学習モデルに適用することで、前記残留塩素濃度の推定値を生成する推定値生成部とを備える、請求項1に記載の水質管理装置。
    The concentration prediction unit
    an input data acquisition unit that acquires, as input data, history data of attribute values including residual chlorine concentration, salinity, pH, ORP (oxidation-reduction potential), and water temperature of seawater at the inlet of the condenser;
    a label acquisition unit that acquires history data of residual chlorine concentration in the water outlet as a label;
    a learning unit that constructs a learning model for estimating the residual chlorine concentration at the water outlet using the set of the input data and the label as learning data;
    2. The water quality control device according to claim 1, further comprising an estimated value generation unit that generates an estimated value of the residual chlorine concentration by applying a new attribute value to the learning model after construction of the learning model.
  4.  前記学習部は、ランダムフォレストを用いて前記学習モデルを構築する、請求項3に記載の水質管理装置。 The water quality control device according to claim 3, wherein the learning unit builds the learning model using a random forest.
  5.  前記学習部は、一般化加法を用いて前記学習モデルを構築する、請求項3に記載の水質管理装置。 The water quality control device according to claim 3, wherein the learning unit builds the learning model using generalized addition.
  6.  海水利用プラントのための水質管理方法であって、
     前記海水利用プラントに設置される復水器を流通する海水の属性値を取得する属性値取得ステップと、
     前記属性値に基づいて、前記復水器から前記海水を海に放出する放水路の放水口における残留塩素濃度を予測する濃度予測ステップと、
     予測された前記残留塩素濃度に基づいて、前記放水路に注入する、残留塩素の中和剤の必要量を算出する必要量算出ステップと、
     前記必要量分の前記中和剤を前記放水路に注入する中和剤注入ステップと、を有する水質管理方法。
    A water quality control method for a seawater utilization plant, comprising:
    an attribute value acquisition step of acquiring an attribute value of seawater flowing through a condenser installed in the seawater utilization plant;
    a concentration prediction step of predicting, based on the attribute value, a residual chlorine concentration at a discharge port of a discharge channel that discharges the seawater from the condenser to the sea;
    a required amount calculating step of calculating a required amount of a neutralizing agent for residual chlorine to be injected into the discharge channel based on the predicted residual chlorine concentration;
    and a neutralizing agent injection step of injecting the necessary amount of the neutralizing agent into the discharge channel.
  7.  海水利用プラントのための水質管理プログラムであって、
     前記海水利用プラントに設置される復水器を流通する海水の属性値を取得する属性値取得ステップと、
     前記属性値に基づいて、前記復水器から前記海水を海に放出する放水路の放水口における残留塩素濃度を予測する濃度予測ステップと、
     予測された前記残留塩素濃度に基づいて、前記放水路に注入する、残留塩素の中和剤の必要量を算出する必要量算出ステップと、
     前記必要量分の前記中和剤を前記放水路に注入する中和剤注入ステップと、
    をコンピュータに実行させるための水質管理プログラム。
    A water quality control program for a seawater plant, comprising:
    an attribute value acquisition step of acquiring an attribute value of seawater flowing through a condenser installed in the seawater utilization plant;
    a concentration prediction step of predicting, based on the attribute value, a residual chlorine concentration at a discharge port of a discharge channel that discharges the seawater from the condenser to the sea;
    a required amount calculating step of calculating a required amount of a neutralizing agent for residual chlorine to be injected into the discharge channel based on the predicted residual chlorine concentration;
    a neutralizing agent injection step of injecting the necessary amount of the neutralizing agent into the discharge channel;
    A water quality management program that allows a computer to execute
PCT/JP2021/014000 2021-03-31 2021-03-31 Water quality management device, water quality management method, and water quality management program WO2022208799A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021576358A JP7101912B1 (en) 2021-03-31 2021-03-31 Water quality management equipment, water quality management methods, and water quality management programs
PCT/JP2021/014000 WO2022208799A1 (en) 2021-03-31 2021-03-31 Water quality management device, water quality management method, and water quality management program
TW111111376A TW202242728A (en) 2021-03-31 2022-03-25 Water quality management device, water quality management method, and water quality management program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014000 WO2022208799A1 (en) 2021-03-31 2021-03-31 Water quality management device, water quality management method, and water quality management program

Publications (1)

Publication Number Publication Date
WO2022208799A1 true WO2022208799A1 (en) 2022-10-06

Family

ID=82446216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014000 WO2022208799A1 (en) 2021-03-31 2021-03-31 Water quality management device, water quality management method, and water quality management program

Country Status (3)

Country Link
JP (1) JP7101912B1 (en)
TW (1) TW202242728A (en)
WO (1) WO2022208799A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104638A (en) * 1978-02-02 1979-08-17 Mitsubishi Heavy Ind Ltd Device for removing residual chlorine from cooling water
JP2011528982A (en) * 2008-07-24 2011-12-01 サムスン ヘビー インダストリーズ カンパニー リミテッド Ballast water treatment apparatus and method
JP2012106224A (en) * 2010-10-22 2012-06-07 Panasonic Corp Ballast water control method and ballast water treatment system
JP2016022458A (en) * 2014-07-24 2016-02-08 株式会社日立製作所 Injection water production system
JP2016209855A (en) * 2015-04-28 2016-12-15 三菱瓦斯化学株式会社 Method of treating seawater cooling water
WO2021053757A1 (en) * 2019-09-18 2021-03-25 中国電力株式会社 Chlorine injection concentration management device, chlorine injection concentration management method, and chlorine injection concentration management program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104638A (en) * 1978-02-02 1979-08-17 Mitsubishi Heavy Ind Ltd Device for removing residual chlorine from cooling water
JP2011528982A (en) * 2008-07-24 2011-12-01 サムスン ヘビー インダストリーズ カンパニー リミテッド Ballast water treatment apparatus and method
JP2012106224A (en) * 2010-10-22 2012-06-07 Panasonic Corp Ballast water control method and ballast water treatment system
JP2016022458A (en) * 2014-07-24 2016-02-08 株式会社日立製作所 Injection water production system
JP2016209855A (en) * 2015-04-28 2016-12-15 三菱瓦斯化学株式会社 Method of treating seawater cooling water
WO2021053757A1 (en) * 2019-09-18 2021-03-25 中国電力株式会社 Chlorine injection concentration management device, chlorine injection concentration management method, and chlorine injection concentration management program

Also Published As

Publication number Publication date
JPWO2022208799A1 (en) 2022-10-06
JP7101912B1 (en) 2022-07-15
TW202242728A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
Guo et al. Graph embedding‐based intelligent industrial decision for complex sewage treatment processes
Choi et al. Temperature-dependent viscosity model of HPAM polymer through high-temperature reservoirs
RU2011130431A (en) METHODOLOGY AND SYSTEM FOR CALCULATING THE CORROSION SPEED USING MECHANICAL MODELS
TW200921313A (en) Control system for industrial water system and method for its use
CN110751383B (en) Multi-strategy fusion dimensionality reduction-based electric power spot market clearing calculation method
Muros et al. A game theoretical randomized method for large-scale systems partitioning
WO2022208799A1 (en) Water quality management device, water quality management method, and water quality management program
Liu et al. Optimal locations of monitoring stations in water distribution systems under multiple demand patterns: a flaw of demand coverage method and modification
Xu et al. Optimizing reservoir operations for tradeoffs between economic objectives and legacy phosphorus management
JP2016097387A (en) Ammonia treatment system
CN114491388A (en) Data processing method, device, equipment and storage medium of power system
Pasha-Zanoosi et al. Multicomponent stress-strength reliability with exponentiated Teissier distribution
Ajali-Hernández et al. ANN based-model for estimating the boron permeability coefficient as boric acid in SWRO desalination plants using ensemble-based machine learning
Martinez Evaluation of the uniform current density assumption in cathodic protection systems with close anode‐to‐cathode arrangement
JP6730543B1 (en) Chlorine injection concentration control device, chlorine injection concentration control method, and chlorine injection concentration control program
Ando et al. Monte Carlo algorithm for calculating the Shapley values of minimum cost spanning tree games
Sengul et al. Prediction of optimal coagulant dosage in drinking water treatment by artificial neural network
Bărbulescu et al. Time series modeling using an adaptive gene expression programming algorithm
Khadom Artificial neural network for predication of zinc consumption rate of cathodic protection of copper in saline water: A short communication
Waldrip et al. MaxEnt analysis of a water distribution network in Canberra, ACT, Australia
Riñon et al. Parameter estimation of an S-system model using hybrid genetic algorithm with the aid of sensitivity analysis
Gördü et al. Optimization of groundwater use in the Goksu Delta at Silifke, Turkey
Ohar et al. Alternative formulation for DBP's minimization by optimal design of booster chlorination stations
Jánoky et al. New solutions in the Design of Private and Permissioned Blockchains
Fu et al. Multiobjective optimisation of urban wastewater systems using ParEGO: a comparison with NSGA II

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021576358

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934964

Country of ref document: EP

Kind code of ref document: A1