JP2016097387A - Ammonia treatment system - Google Patents

Ammonia treatment system Download PDF

Info

Publication number
JP2016097387A
JP2016097387A JP2014238637A JP2014238637A JP2016097387A JP 2016097387 A JP2016097387 A JP 2016097387A JP 2014238637 A JP2014238637 A JP 2014238637A JP 2014238637 A JP2014238637 A JP 2014238637A JP 2016097387 A JP2016097387 A JP 2016097387A
Authority
JP
Japan
Prior art keywords
boiler
drainage
line
water
hypochlorous acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238637A
Other languages
Japanese (ja)
Other versions
JP2016097387A5 (en
JP6331145B2 (en
Inventor
宏幸 高波
Hiroyuki Takanami
宏幸 高波
勇作 那須
Yusaku Nasu
勇作 那須
章弘 三田村
Akihiro Mitamura
章弘 三田村
大暉 四條
Daiki SHIJO
大暉 四條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014238637A priority Critical patent/JP6331145B2/en
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to PCT/JP2015/082777 priority patent/WO2016084754A1/en
Priority to TW104138600A priority patent/TWI574921B/en
Priority to SG11201704241YA priority patent/SG11201704241YA/en
Priority to KR1020177013814A priority patent/KR101967079B1/en
Priority to CN201580063882.9A priority patent/CN107001076A/en
Publication of JP2016097387A publication Critical patent/JP2016097387A/en
Publication of JP2016097387A5 publication Critical patent/JP2016097387A5/ja
Application granted granted Critical
Publication of JP6331145B2 publication Critical patent/JP6331145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines

Abstract

PROBLEM TO BE SOLVED: To shorten the reaction time of boiler drainage with hypochlorous acid.SOLUTION: There is provided an ammonia treatment system 1 which includes: a drainage line 10 which supplies boiler drainage W to a mixing tank 9; a pH measuring device 24 which measures the pH of the boiler drainage W flowing in the drainage line 10; a pH adjusting device 23 which is provided on the drainage line 10 and adds a pH adjusting agent for adjusting the pH of the boiler drainage W to the boiler drainage W; an electrolysis device 2 which decomposes sea water or salt water with electric current to produce electrolytically treated water E having hypochlorous acid; a supply line 18 which is provided upstream from a meeting part 20 in which the supply line meets the drainage line 10 connected to the mixing tank 9 and supplies the hypochlorous acid produced by the electrolysis device 2 to the boiler drainage W; and a control device which controls the additive amount of the pH adjusting agent based on a measured value of the pH measuring device 24.SELECTED DRAWING: Figure 1

Description

本発明は、アンモニア処理システムに係り、特にボイラ設備からの排水であるボイラ排水に含まれるアンモニアを処理するアンモニア処理システムに関する。   The present invention relates to an ammonia treatment system, and more particularly, to an ammonia treatment system for treating ammonia contained in boiler wastewater that is wastewater from boiler equipment.

例えば火力発電プラントにおいて、腐食の要因となる酸素を除去するために使用されているヒドラジンは、「変位原性が認められた化学物質」と評価されていることから、近年はより安全な脱酸素剤や、脱酸素剤不使用の水処理の採用が進行している。
ヒドラジンを用いない脱酸素剤としては、水素イオン指数(pH)の値を大きくした(例えばpH7〜pH10.5)アンモニアが知られているが、脱酸素剤としてアンモニアを用いることにより今後プラントからの排水のアンモニア濃度が高くなることが想定されている(例えば非特許文献1参照)。一方、排水規制により窒素の低減も求められており、早急な対応が望まれている。
For example, hydrazine, which is used to remove oxygen that causes corrosion in thermal power plants, has been evaluated as a “chemical substance that has been recognized as a displacement source”. Adoption of water treatment without agents and oxygen scavengers is in progress.
As an oxygen scavenger that does not use hydrazine, ammonia having a large hydrogen ion index (pH) (for example, pH 7 to pH 10.5) is known. It is assumed that the ammonia concentration in the wastewater becomes high (see, for example, Non-Patent Document 1). On the other hand, reduction of nitrogen is also required by the drainage regulations, and an immediate response is desired.

特許文献1には、海水を電気分解することによって得られる次亜塩素酸ナトリウム(次亜塩素酸ソーダ)を用い、塩素処理によってアンモニアを分解するアンモニア処理システムが記載されている。このアンモニア処理システムにおいては、アンモニア含有排水であるボイラ排水が混合槽に導入されるとともに混合槽に次亜塩素酸が添加され、ボイラ排水中に存在するアンモニアと次亜塩素酸とが溶液反応して、窒素ガスまで分解される。   Patent Document 1 describes an ammonia treatment system that decomposes ammonia by chlorination using sodium hypochlorite (sodium hypochlorite) obtained by electrolyzing seawater. In this ammonia treatment system, boiler wastewater, which is ammonia-containing wastewater, is introduced into the mixing tank, and hypochlorous acid is added to the mixing tank, so that ammonia and hypochlorous acid present in the boiler wastewater react with each other. To nitrogen gas.

特開2014−563号公報JP 2014-563 A

“火力プラント水処理における脱ヒドラジンへの取組み”、[online]、三菱重工技報 Vol.46 No.2 (2009)、[平成24年3月30日検索]、インターネット<URL: http://www.mhi.co.jp/technology/review/pdf/462/462055.pdf>“Efforts to remove hydrazine in thermal power plant water treatment”, [online], Mitsubishi Heavy Industries Technical Review Vol.46 No.2 (2009), [March 30, 2012 search], Internet <URL: http: // www.mhi.co.jp/technology/review/pdf/462/462055.pdf>

ところで、特許文献1に記載のシステムにおいては、ボイラ排水と次亜塩素酸との反応時間に応じて混合槽の容量が決定される。しかしながら、ボイラ排水と次亜塩素酸との反応時間が長くなると混合槽の容量を大きくする必要があった。   By the way, in the system of patent document 1, the capacity | capacitance of a mixing tank is determined according to the reaction time of boiler waste_water | drain and hypochlorous acid. However, when the reaction time between the boiler wastewater and hypochlorous acid becomes long, it is necessary to increase the capacity of the mixing tank.

この発明は、ボイラ排水と次亜塩素酸との反応時間を短くすることができるアンモニア処理システムを提供することを目的とする。   An object of this invention is to provide the ammonia processing system which can shorten the reaction time of boiler waste_water | drain and hypochlorous acid.

本発明の第一の態様によれば、アンモニア処理システムは、ボイラ排水を混合槽へ供給する排水ラインと、前記排水ラインを流れる前記ボイラ排水のpHを測定するpH測定装置と、前記排水ライン上に設けられ、前記ボイラ排水に前記ボイラ排水のpHを調整するpH調整剤を添加するpH調整装置と、海水又は塩水を電気分解して次亜塩素酸を有する電解処理水を生成する電解装置と、前記排水ラインと前記混合槽との合流部より上流に設けられ、前記電解装置で生成された次亜塩素酸を前記ボイラ排水に供給する供給ラインと、前記pH測定装置の測定値に基づいて前記pH調整剤の添加量を制御する制御装置と、を有することを特徴とする。   According to the first aspect of the present invention, the ammonia treatment system includes a drainage line for supplying boiler wastewater to the mixing tank, a pH measuring device for measuring the pH of the boiler wastewater flowing through the drainage line, and the drainage line. And a pH adjusting device for adding a pH adjusting agent for adjusting the pH of the boiler wastewater to the boiler wastewater, and an electrolytic device for electrolyzing seawater or salt water to generate electrolytically treated water having hypochlorous acid. Based on the measured value of the pH measuring device, a supply line that is provided upstream from the junction of the drainage line and the mixing tank and that supplies hypochlorous acid generated by the electrolysis device to the boiler drainage And a control device for controlling the amount of the pH adjuster added.

このような構成によれば、pH調整剤を添加してボイラ排水のpHを調整することにより、ボイラ排水と次亜塩素酸との反応時間を短くすることができる。   According to such a structure, the reaction time of boiler wastewater and hypochlorous acid can be shortened by adding a pH adjuster and adjusting the pH of boiler wastewater.

上記アンモニア処理システムにおいて、前記pH測定装置は、前記pH調整装置の下流側であって、前記pH調整装置によって添加された前記pH調整剤によって調整された前記ボイラ排水のpHが安定する位置に配置されてもよい。   In the ammonia treatment system, the pH measuring device is disposed downstream of the pH adjusting device and at a position where the pH of the boiler wastewater adjusted by the pH adjusting agent added by the pH adjusting device is stable. May be.

このような構成によれば、pH測定装置によって、より正確なボイラ排水のpHを測定することができる。これにより、pH調整装置によるボイラ排水のpHの調整を正確に行うことができる。   According to such a configuration, the pH of the boiler wastewater can be measured more accurately by the pH measuring device. Thereby, adjustment of pH of boiler drainage by a pH adjustment device can be performed correctly.

上記アンモニア処理システムにおいて、前記排水ラインの上流側に設けられて前記ボイラ排水を貯留する貯留槽と、前記貯留槽に貯留された前記ボイラ排水のpHを測定する貯留槽pH測定装置と、を有し、前記制御装置は、前記貯留槽pH測定装置の測定値に基づいて前記電解装置にて生成される次亜塩素酸量を制御してもよい。   The ammonia treatment system includes a storage tank that is provided upstream of the drainage line and stores the boiler drainage, and a storage tank pH measurement device that measures the pH of the boiler drainage stored in the storage tank. And the said control apparatus may control the amount of hypochlorous acid produced | generated in the said electrolysis apparatus based on the measured value of the said storage tank pH measurement apparatus.

本発明によれば、pH調整剤を添加してボイラ排水のpHを調整することにより、ボイラ排水と次亜塩素酸との反応時間を短くすることができる。   According to the present invention, the reaction time between boiler wastewater and hypochlorous acid can be shortened by adding a pH adjuster to adjust the pH of the boiler wastewater.

本発明の第一実施形態のアンモニア処理システムの概略構成図である。It is a schematic block diagram of the ammonia processing system of 1st embodiment of this invention. 本発明の第一実施形態のアンモニア処理システムの混合槽におけるアンモニア分解速度とボイラ排水のpHとの関係を示すグラフである。It is a graph which shows the relationship between the ammonia decomposition rate in the mixing tank of the ammonia treatment system of 1st embodiment of this invention, and the pH of boiler waste_water | drain. 本発明の第二実施形態のアンモニア処理システムの概略構成図である。It is a schematic block diagram of the ammonia processing system of 2nd embodiment of this invention.

(第一実施形態)
以下、本発明の第一実施形態のアンモニア処理システム1について図面を参照して詳細に説明する。
図1は、本発明の第一実施形態のアンモニア処理システム1を有するプラントPの概略構成図である。図1に示すように、アンモニア処理システム1は、排熱回収ボイラBを備えたコンバインドサイクル発電プラントPから排出されるボイラ排水Wを処理するためのシステムである。
(First embodiment)
Hereinafter, the ammonia processing system 1 of 1st embodiment of this invention is demonstrated in detail with reference to drawings.
FIG. 1 is a schematic configuration diagram of a plant P having an ammonia treatment system 1 according to the first embodiment of the present invention. As shown in FIG. 1, the ammonia treatment system 1 is a system for treating boiler waste water W discharged from a combined cycle power plant P having an exhaust heat recovery boiler B.

アンモニア処理システム1は、海水電解装置2と、制御装置(図示せず)と、を主な構成要素として備えている。
コンバインドサイクル発電プラントP(以下、プラントPと呼ぶ)は、ガスタービン(図示せず)と、ガスタービンからの排気ガスが送られる排熱回収ボイラB(以下、ボイラBと呼ぶ)と、蒸気タービン(図示せず)と、ガスタービンと蒸気タービンの回転駆動力により駆動されて発電する発電機(図示せず)と、を有する構成とすることができる。
The ammonia treatment system 1 includes a seawater electrolysis device 2 and a control device (not shown) as main components.
A combined cycle power plant P (hereinafter referred to as plant P) includes a gas turbine (not shown), an exhaust heat recovery boiler B (hereinafter referred to as boiler B) to which exhaust gas from the gas turbine is sent, and a steam turbine. (Not shown) and a generator (not shown) that generates electric power by being driven by the rotational driving force of the gas turbine and the steam turbine.

プラントPには海水の取水口3から第一海水供給ライン4を介して取水された海水Mが導入されて、例えば冷却などの用途に使用される。第一海水供給ライン4には、海水Mを送水する海水供給ポンプ(図示せず)、及び海水Mの流量を調整する海水流量調整バルブ(図示せず)が設けられている。
例えばボイラBのボイラ水には、腐食の要因となる酸素を除去するための脱酸素剤としてアンモニアが使用されている。よって、ボイラBから排出されるボイラ排水Wは、アンモニア(NH)、アンモニウムイオン(NH )等のアンモニア性窒素を含むアンモニア性窒素含有排水である。
Seawater M taken from the seawater intake 3 through the first seawater supply line 4 is introduced into the plant P, and used for applications such as cooling. The first seawater supply line 4 is provided with a seawater supply pump (not shown) that supplies the seawater M and a seawater flow rate adjustment valve (not shown) that adjusts the flow rate of the seawater M.
For example, in the boiler water of boiler B, ammonia is used as an oxygen scavenger for removing oxygen that causes corrosion. Therefore, the boiler waste water W discharged from the boiler B is an ammonia nitrogen-containing waste water containing ammonia nitrogen such as ammonia (NH 3 ) and ammonium ions (NH 4 + ).

ボイラBから排出されたボイラ排水Wは、貯留槽5に貯留される。貯留槽5には、ボイラ排水Wを減温するための減温希釈水(工業用水道)を貯留槽5に投入するための希釈水導入装置6が設けられている。貯留槽5内の処理水は、処理水の温度を計測可能な温度計(図示せず)によって計測された温度に基づいて、所定の温度以下に管理されている。また、貯留槽5には、貯留槽5内の処理水のpH(水素イオン指数)を計測する貯留槽pH測定装置7が設けられている。   The boiler waste water W discharged from the boiler B is stored in the storage tank 5. The storage tank 5 is provided with a dilution water introducing device 6 for introducing a temperature-reduced diluted water (industrial water supply) for reducing the temperature of the boiler waste water W into the storage tank 5. The treated water in the storage tank 5 is managed below a predetermined temperature based on the temperature measured by a thermometer (not shown) that can measure the temperature of the treated water. In addition, the storage tank 5 is provided with a storage tank pH measurement device 7 that measures the pH (hydrogen ion index) of the treated water in the storage tank 5.

貯留槽5の下流側には、混合槽9が設けられている。貯留槽5と混合槽9とは排水ライン10を介して接続されている。即ち、貯留槽5に貯留され、減温されたボイラ排水Wは、排水ライン10を介して混合槽9に導入された後放流される。排水ライン10には、貯留槽5に貯留されているボイラ排水Wを混合槽9に送水する排水供給ポンプ16が設けられている。   A mixing tank 9 is provided on the downstream side of the storage tank 5. The storage tank 5 and the mixing tank 9 are connected via a drainage line 10. That is, the boiler waste water W stored in the storage tank 5 and reduced in temperature is introduced into the mixing tank 9 through the drain line 10 and then discharged. The drainage line 10 is provided with a drainage supply pump 16 that feeds the boiler drainage W stored in the storage tank 5 to the mixing tank 9.

海水電解装置2は、第二海水供給ライン11を介して取水口3から導入された海水Mの電気分解を行う装置である。第二海水供給ライン11には、海水Mを送水する海水供給ポンプ14、及び海水Mの流量を調整する海水流量調整バルブ15が設けられている。
海水電解装置2は、電解槽12と、直流電源装置13と、を有している。海水電解装置2は、海水Mを電気分解することによって、次亜塩素酸ナトリウム(塩素、次亜塩素酸ソーダ)を含む電解処理水Eを生成する装置である。電解槽12は、複数の電極(図示せず)を有している。
The seawater electrolysis apparatus 2 is an apparatus that performs electrolysis of the seawater M introduced from the water intake 3 through the second seawater supply line 11. The second seawater supply line 11 is provided with a seawater supply pump 14 that supplies the seawater M and a seawater flow rate adjustment valve 15 that adjusts the flow rate of the seawater M.
The seawater electrolysis apparatus 2 includes an electrolytic cell 12 and a DC power supply device 13. The seawater electrolysis apparatus 2 is an apparatus that generates electrolyzed water E containing sodium hypochlorite (chlorine, sodium hypochlorite) by electrolyzing seawater M. The electrolytic cell 12 has a plurality of electrodes (not shown).

直流電源装置13は、海水Mの電気分解に供される電流を供給する装置であって、例えば、直流電源と定電流制御回路とを備える構成を採用することができる。直流電源は、直流電力を出力する電源であって、例えば交流電源から出力される交流電力を直流に整流して出力する構成であってもよい。   The DC power supply device 13 is a device that supplies a current to be used for electrolysis of the seawater M. For example, a configuration including a DC power supply and a constant current control circuit can be employed. The DC power source is a power source that outputs DC power, and may be configured to rectify and output AC power output from the AC power source to DC, for example.

本実施形態の海水電解装置2は、海水Mを電解槽12に一回のみ通すワンスルー方式である。海水電解装置2としては、上記ワンスルー方式の他に、電解槽12の下流側(電解槽12の流出口)と電解槽12の上流側(電解槽12の流入口)とを循環流路によって接続して、海水を循環させるリサイクル方式を採用してもよい。即ち、海水電解装置2は、海水Mを用いて次亜塩素酸を生成することができれば、どのような形式のものでもよい。   The seawater electrolysis apparatus 2 of the present embodiment is a one-through system in which the seawater M is passed through the electrolytic cell 12 only once. As the seawater electrolysis apparatus 2, in addition to the one-through method, the downstream side of the electrolytic cell 12 (outlet of the electrolytic cell 12) and the upstream side of the electrolytic cell 12 (inlet of the electrolytic cell 12) are connected by a circulation channel. Then, a recycling method for circulating seawater may be adopted. That is, the seawater electrolysis apparatus 2 may be of any type as long as it can generate hypochlorous acid using the seawater M.

海水電解装置2にて生成された電解処理水Eは、供給ライン18を介して混合槽9に導入されて、ボイラ排水Wと混合される。
また、排水ライン10上であって、供給ライン18との合流部20よりも下流側(混合槽9側)には、ボイラ排水Wと電解処理水Eとの混合を促進するラインミキサ21が設けられている。
The electrolyzed water E generated in the seawater electrolyzer 2 is introduced into the mixing tank 9 via the supply line 18 and mixed with the boiler waste water W.
A line mixer 21 that promotes the mixing of the boiler waste water W and the electrolytically treated water E is provided on the drain line 10 and downstream of the junction 20 with the supply line 18 (on the mixing tank 9 side). It has been.

混合槽9には、ボイラ排水Wと電解処理水Eが導入されて、ボイラ排水W中に存在するアンモニアと次亜塩素酸とが溶液反応して窒素ガス(N)まで分解される。即ち、混合槽9において、アンモニアが処理されて、ボイラ排水Wは放流可能な状態となる。 Boiler waste water W and electrolytically treated water E are introduced into the mixing tank 9, and ammonia and hypochlorous acid present in the boiler waste water W undergo a solution reaction and are decomposed to nitrogen gas (N 2 ). That is, in the mixing tank 9, ammonia is processed and the boiler waste water W is in a state where it can be discharged.

本実施形態の排水ライン10上には、上流側より順に排水ライン10を流れるボイラ排水WのpH(水素イオン指数)を調整するpH調整装置23と、ボイラ排水WのpHを測定するpH測定装置24が設けられている。pH調整装置23とpH測定装置24は、排水ライン10と供給ライン18の合流部20よりも上流側に設けられている。即ち、pH測定装置24は、pH調整装置23の下流側に設けられ、pH測定装置24の下流側にて電解処理水Eが混合される。   On the drainage line 10 of the present embodiment, a pH adjusting device 23 that adjusts the pH (hydrogen ion index) of the boiler drainage W that flows through the drainage line 10 in order from the upstream side, and a pH measurement device that measures the pH of the boiler drainage W. 24 is provided. The pH adjusting device 23 and the pH measuring device 24 are provided on the upstream side of the junction 20 of the drain line 10 and the supply line 18. That is, the pH measuring device 24 is provided on the downstream side of the pH adjusting device 23, and the electrolytically treated water E is mixed on the downstream side of the pH measuring device 24.

pH調整装置23は、排水ライン10を流れるボイラ排水WにpH調整剤を添加してボイラ排水WのpHを調整する装置である。pH調整剤は、塩酸などの酸又はアルカリ剤が用いられる。本実施形態のボイラ排水Wは、アルカリ性側である場合が多く、主として塩酸が添加される。   The pH adjusting device 23 is a device that adjusts the pH of the boiler drainage W by adding a pH adjuster to the boiler drainage W flowing through the drainage line 10. An acid or alkali agent such as hydrochloric acid is used as the pH adjuster. The boiler waste water W of the present embodiment is often on the alkaline side, and hydrochloric acid is mainly added.

pH測定装置24は、pH調整装置23よりも十分下流側に設置されている。具体的には、pH測定装置24は、pH調整装置23によって添加されたpH調整剤がボイラ排水Wと混合され、適切に反応した後のボイラ排水WのpHを測定できる位置に配置されている。換言すれば、pH測定装置24は、pH調整装置23によって添加されたpH調整剤によって調整されたボイラ排水WのpHが安定する位置に配置されている。   The pH measuring device 24 is installed sufficiently downstream of the pH adjusting device 23. Specifically, the pH measuring device 24 is arranged at a position where the pH adjusting agent added by the pH adjusting device 23 can be mixed with the boiler waste water W and can measure the pH of the boiler waste water W after reacting appropriately. . In other words, the pH measuring device 24 is disposed at a position where the pH of the boiler waste water W adjusted by the pH adjusting agent added by the pH adjusting device 23 is stabilized.

ここで、混合槽9におけるアンモニア分解速度とボイラ排水WのpHとの関係について説明する。発明者らの調査によれば、混合槽9におけるアンモニア分解速度とボイラ排水WのpHとの関係は、図2に示すようになる。図2に示すように、ボイラ排水WのpHを8.5前後とした場合、混合槽9におけるアンモニアの分解速度が向上することがわかった。
この関係に基づき、制御装置は、pH測定装置24の測定値、即ち排水ライン10の合流部20よりも上流側のボイラ排水WのpHがpH=7.5〜9.5となるように、pH調整装置23を制御してpH調整剤の添加量を調整する。例えば、制御装置は、ボイラ排水WのpHが10(アルカリ側)であった場合、ボイラ排水Wに塩酸を添加するようにpH調整装置23を制御する。
Here, the relationship between the ammonia decomposition rate in the mixing tank 9 and the pH of the boiler waste water W will be described. According to the inventors' investigation, the relationship between the ammonia decomposition rate in the mixing tank 9 and the pH of the boiler waste water W is as shown in FIG. As shown in FIG. 2, when the pH of the boiler waste water W was set to around 8.5, it turned out that the decomposition | disassembly rate of ammonia in the mixing tank 9 improves.
Based on this relationship, the control device is configured so that the measured value of the pH measuring device 24, that is, the pH of the boiler waste water W upstream of the merging portion 20 of the drain line 10 becomes pH = 7.5 to 9.5. The pH adjusting device 23 is controlled to adjust the addition amount of the pH adjusting agent. For example, when the pH of the boiler waste water W is 10 (alkali side), the control device controls the pH adjusting device 23 so that hydrochloric acid is added to the boiler waste water W.

次に、本実施形態のアンモニア処理システム1の作用について説明する。
まず、ボイラBから排出されたボイラ排水Wは、貯留槽5に貯留される。本実施形態のボイラ排水WのpHは、10.5前後であり、アルカリ性を示している。ボイラ排水Wと同時に、減温希釈水が貯留槽5に投入される。これにより、貯留槽5内のボイラ排水WのpHは例えば9.9となる。貯留槽5に貯留されたボイラ排水Wは、排水供給ポンプ16を用いて所定速度で排水ライン10に送水される。
Next, the operation of the ammonia processing system 1 of the present embodiment will be described.
First, the boiler waste water W discharged from the boiler B is stored in the storage tank 5. The pH of the boiler waste water W of this embodiment is around 10.5, indicating alkalinity. Simultaneously with the boiler waste water W, the temperature-reduced diluted water is introduced into the storage tank 5. Thereby, the pH of the boiler waste water W in the storage tank 5 becomes 9.9, for example. The boiler waste water W stored in the storage tank 5 is fed to the drain line 10 at a predetermined speed using the drain supply pump 16.

制御装置は、pH測定装置24にて測定されたpHに基づいて、pH調整装置23を用いてボイラ排水WにpH調整剤を投入する。制御装置は、ボイラ排水WのpHが7.5〜9.5となるように、pH調整装置23の制御を行う。   Based on the pH measured by the pH measuring device 24, the control device feeds the pH adjusting agent into the boiler waste water W using the pH adjusting device 23. The control device controls the pH adjusting device 23 so that the pH of the boiler waste water W becomes 7.5 to 9.5.

一方、制御装置は、貯留槽pH測定装置7によって測定されるボイラ排水WのpHに基づいて必要な次亜塩素酸量を算出し、直流電源装置13の出力電流値を決定する。そして、混合槽9における処理時間などから必要とされる電解処理水量Eを決定する。   On the other hand, the control device calculates the amount of hypochlorous acid required based on the pH of the boiler waste water W measured by the storage tank pH measurement device 7 and determines the output current value of the DC power supply device 13. And the amount E of electrolytic treatment water required from the processing time etc. in the mixing tank 9 is determined.

貯留槽pH測定装置7によって測定されるボイラ排水WのpHとアンモニア性窒素濃度は相関性があるので、ボイラ排水WのpHを測定することによって貯留槽5内の窒素濃度が解る。アンモニア性窒素濃度に対する次亜塩素酸量も相関性があり、次亜塩素酸量は直流電源装置13の電流値に対して比例して増減する。よって、貯留槽5内のボイラ排水WのpHを測定することで直流電源装置13を制御し、次亜塩素酸の生成量(アンモニア性窒素除去量)を決定することが可能となる。   Since the pH of the boiler waste water W measured by the storage tank pH measurement device 7 and the ammonia nitrogen concentration are correlated, the nitrogen concentration in the storage tank 5 can be determined by measuring the pH of the boiler waste water W. The amount of hypochlorous acid with respect to the ammoniacal nitrogen concentration is also correlated, and the amount of hypochlorous acid increases or decreases in proportion to the current value of the DC power supply device 13. Therefore, it is possible to control the DC power supply 13 by measuring the pH of the boiler waste water W in the storage tank 5 and determine the amount of hypochlorous acid produced (ammonia nitrogen removal amount).

上記実施形態によれば、アンモニア性窒素を含む排水であるボイラ排水Wに次亜塩素酸を含む電解処理水Eが添加されることによって、ボイラ排水Wに含まれるアンモニアを分解処理することができる。   According to the said embodiment, the ammonia contained in the boiler waste water W can be decomposed | disassembled by adding the electrolytically treated water E containing hypochlorous acid to the boiler waste water W which is a waste water containing ammonia nitrogen. .

また、pH調整剤を添加してボイラ排水WのpHを調整することにより、ボイラ排水Wと次亜塩素酸との反応時間を短くすることができる。特に、pHを7.5〜9.5の範囲に調整することにより、ボイラ排水Wと次亜塩素酸との反応時間をより短くすることができる。   Moreover, the reaction time of the boiler waste water W and hypochlorous acid can be shortened by adding the pH adjuster and adjusting the pH of the boiler waste water W. In particular, the reaction time between the boiler waste water W and hypochlorous acid can be further shortened by adjusting the pH to a range of 7.5 to 9.5.

また、ボイラ排水Wに添加されるpH調整剤が電解処理水Eが供給される合流部20よりも上流側にて添加されることによって、電解処理水EによるpH変動の影響を受けることなく、ボイラ排水WのpHを調整することができる。
また、貯留槽5内のボイラ排水WのpHを測定することによって、直流電源装置13を制御し、次亜塩素酸の生成量を決定することが可能となる。
In addition, the pH adjuster added to the boiler waste water W is added on the upstream side of the junction 20 to which the electrolytically treated water E is supplied, so that the pH is not affected by the electrolytically treated water E. The pH of the boiler waste water W can be adjusted.
In addition, by measuring the pH of the boiler waste water W in the storage tank 5, it is possible to control the DC power supply device 13 and determine the amount of hypochlorous acid produced.

(第二実施形態)
以下、本発明の第二実施形態のアンモニア処理システム1Bを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Second embodiment)
Hereinafter, the ammonia processing system 1B of 2nd embodiment of this invention is demonstrated based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.

図2に示すように、本実施形態のアンモニア処理システム1Bは、海水電解装置2にて生成された電解処理水Eを取水口3に注入する注入ライン17を有している。電解処理水E(次亜塩素酸ナトリウム)が取水口3に注入されることによって、取水口3に対する海洋生物の付着を抑制することができる。即ち、本実施形態の海水電解装置2は、海洋生物付着防止装置としての機能を有する。   As shown in FIG. 2, the ammonia treatment system 1 </ b> B of the present embodiment has an injection line 17 for injecting the electrolytically treated water E generated by the seawater electrolyzer 2 into the water inlet 3. By injecting the electrolyzed water E (sodium hypochlorite) into the water intake 3, adhesion of marine organisms to the water intake 3 can be suppressed. That is, the seawater electrolysis apparatus 2 of this embodiment has a function as a marine organism adhesion prevention apparatus.

海水電解装置2と取水口3とを接続する注入ライン17からは、電解処理水Eを混合槽9に供給する供給ライン18が分岐している。即ち、海水電解装置2にて生成された電解処理水Eは、注入ライン17から分岐する供給ライン18を介して混合槽9に導入されて、ボイラ排水Wと混合される。供給ライン18には、電解処理水Eの流量を調整する流量調整バルブ19が設けられている。   A supply line 18 for supplying the electrolyzed water E to the mixing tank 9 is branched from an injection line 17 that connects the seawater electrolysis apparatus 2 and the water intake 3. That is, the electrolytically treated water E generated by the seawater electrolyzer 2 is introduced into the mixing tank 9 through the supply line 18 branched from the injection line 17 and mixed with the boiler waste water W. The supply line 18 is provided with a flow rate adjusting valve 19 that adjusts the flow rate of the electrolytically treated water E.

制御装置は、流量調整バルブ19を調整することによって、注入ライン17から注入される電解処理水E(次亜塩素酸ナトリウム)の量を制御する。第一実施形態の制御装置と同様に、制御装置は、貯留槽pH測定装置7によって測定されるボイラ排水WのpHに基づいて必要な次亜塩素酸量を算出し、直流電源装置13の出力電流値を決定する。そして、混合槽9における処理時間などから必要とされる電解処理水量Eを決定する。   The control device controls the amount of electrolytically treated water E (sodium hypochlorite) injected from the injection line 17 by adjusting the flow rate adjusting valve 19. Similar to the control device of the first embodiment, the control device calculates the amount of hypochlorous acid required based on the pH of the boiler waste water W measured by the storage tank pH measurement device 7, and outputs the DC power supply 13. Determine the current value. And the amount E of electrolytic treatment water required from the processing time etc. in the mixing tank 9 is determined.

また、海水電解装置2にて生成された電解処理水Eは、注入ライン17を介して海水Mの取水口3に注入される。電解処理水Eが取水口3に注入されることによって、取水口3に対する海洋生物の付着を抑制することができる。   Further, the electrolytically treated water E generated by the seawater electrolysis apparatus 2 is injected into the water intake 3 of the seawater M through the injection line 17. By injecting the electrolyzed water E into the water intake 3, adhesion of marine organisms to the water intake 3 can be suppressed.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。
例えば、上記実施形態の電解処理水Eの供給ライン18は、ボイラ排水Wが流れる排水ライン10に接続されているが、供給ライン18を直接混合槽9に接続してもよい。
例えば、上記実施形態では、海水電解装置2には海水Mが導入される構成を示したが、海水電解装置2に塩水を導入する構成としてもよい。即ち、海水電解装置2に導入される液体は、海水Mと同様に塩素イオン(Cl)を含んでいればよい。
また、混合槽9又は混合槽9の下流にpH、残留塩素、水質などを測定する手段を設けて、廃水が基準に満たない場合に、廃水を貯留槽5に戻すラインを設けてもよい。
The technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, the supply line 18 of the electrolytically treated water E according to the above embodiment is connected to the drainage line 10 through which the boiler drainage W flows, but the supply line 18 may be directly connected to the mixing tank 9.
For example, in the above-described embodiment, the configuration in which the seawater M is introduced into the seawater electrolysis apparatus 2 is described, but the configuration in which saltwater is introduced into the seawater electrolysis apparatus 2 may be employed. That is, the liquid introduced into the seawater electrolysis apparatus 2 only needs to contain chlorine ions (Cl ) like the seawater M.
In addition, a means for measuring pH, residual chlorine, water quality, etc. may be provided downstream of the mixing tank 9 or the mixing tank 9, and a line for returning the waste water to the storage tank 5 when the waste water does not meet the standard may be provided.

1,1B アンモニア処理システム
2 海水電解装置(電解装置)
3 取水口
4 第一海水供給ライン
5 貯留槽
6 希釈水導入装置
7 貯留槽pH測定装置
9 混合槽
10 排水ライン
11 第二海水供給ライン
12 電解槽
13 直流電源装置
14 海水供給ポンプ
15 海水流量調整バルブ
16 排水供給ポンプ
17 注入ライン
18 供給ライン
19 流量調整バルブ
20 合流部
21 ラインミキサ
23 pH調整装置
24 pH測定装置
B ボイラ
E 電解処理水
M 海水
P プラント
W ボイラ排水
1,1B Ammonia treatment system 2 Seawater electrolyzer (electrolyzer)
DESCRIPTION OF SYMBOLS 3 Intake port 4 1st seawater supply line 5 Reservoir 6 Dilution water introduction device 7 Reservoir pH measurement device 9 Mixing tank 10 Drainage line 11 Second seawater supply line 12 Electrolyzer 13 DC power supply device 14 Seawater supply pump 15 Seawater flow rate adjustment Valve 16 Drainage supply pump 17 Injection line 18 Supply line 19 Flow rate adjustment valve 20 Junction part 21 Line mixer 23 pH adjustment device 24 pH measurement device B Boiler E Electrolyzed water M Seawater P Plant W Boiler drainage

Claims (3)

ボイラ排水を混合槽へ供給する排水ラインと、
前記排水ラインを流れる前記ボイラ排水のpHを測定するpH測定装置と、
前記排水ライン上に設けられ、前記ボイラ排水に前記ボイラ排水のpHを調整するpH調整剤を添加するpH調整装置と、
海水又は塩水を電気分解して次亜塩素酸を有する電解処理水を生成する電解装置と、
前記排水ラインと前記混合槽との合流部より上流に設けられ、前記電解装置で生成された次亜塩素酸を前記ボイラ排水に供給する供給ラインと、
前記pH測定装置の測定値に基づいて前記pH調整剤の添加量を制御する制御装置と、を有するアンモニア処理システム。
A drainage line for supplying boiler wastewater to the mixing tank;
A pH measuring device for measuring the pH of the boiler drainage flowing through the drainage line;
A pH adjusting device which is provided on the drainage line and adds a pH adjusting agent for adjusting the pH of the boiler drainage to the boiler drainage;
An electrolyzer that electrolyzes seawater or salt water to produce electrolytically treated water having hypochlorous acid;
A supply line that is provided upstream from a junction between the drainage line and the mixing tank, and supplies hypochlorous acid generated by the electrolysis device to the boiler drainage;
And a control device that controls the amount of the pH adjuster added based on the measured value of the pH measuring device.
前記pH測定装置は、前記pH調整装置の下流側であって、前記pH調整装置によって添加された前記pH調整剤によって調整された前記ボイラ排水のpHが安定する位置に配置されている請求項1に記載のアンモニア処理システム。   The said pH measurement apparatus is arrange | positioned in the position where the pH of the said boiler waste_water | drain adjusted with the said pH adjuster added by the said pH adjuster is stabilized downstream of the said pH adjuster. Ammonia treatment system as described in 1. 前記排水ラインの上流側に設けられて前記ボイラ排水を貯留する貯留槽と、
前記貯留槽に貯留された前記ボイラ排水のpHを測定する貯留槽pH測定装置と、を有し、
前記制御装置は、前記貯留槽pH測定装置の測定値に基づいて前記電解装置にて生成される次亜塩素酸量を制御する請求項1又は請求項2に記載のアンモニア処理システム。
A storage tank that is provided upstream of the drainage line and stores the boiler drainage;
A storage tank pH measurement device for measuring the pH of the boiler wastewater stored in the storage tank,
The ammonia processing system according to claim 1 or 2, wherein the control device controls an amount of hypochlorous acid generated in the electrolysis device based on a measurement value of the storage tank pH measurement device.
JP2014238637A 2014-11-26 2014-11-26 Ammonia treatment system Active JP6331145B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014238637A JP6331145B2 (en) 2014-11-26 2014-11-26 Ammonia treatment system
TW104138600A TWI574921B (en) 2014-11-26 2015-11-20 Ammonia treatment system
SG11201704241YA SG11201704241YA (en) 2014-11-26 2015-11-20 Ammonia processing system
KR1020177013814A KR101967079B1 (en) 2014-11-26 2015-11-20 Ammonia processing system
PCT/JP2015/082777 WO2016084754A1 (en) 2014-11-26 2015-11-20 Ammonia processing system
CN201580063882.9A CN107001076A (en) 2014-11-26 2015-11-20 ammonia treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238637A JP6331145B2 (en) 2014-11-26 2014-11-26 Ammonia treatment system

Publications (3)

Publication Number Publication Date
JP2016097387A true JP2016097387A (en) 2016-05-30
JP2016097387A5 JP2016097387A5 (en) 2017-12-21
JP6331145B2 JP6331145B2 (en) 2018-05-30

Family

ID=56074315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238637A Active JP6331145B2 (en) 2014-11-26 2014-11-26 Ammonia treatment system

Country Status (6)

Country Link
JP (1) JP6331145B2 (en)
KR (1) KR101967079B1 (en)
CN (1) CN107001076A (en)
SG (1) SG11201704241YA (en)
TW (1) TWI574921B (en)
WO (1) WO2016084754A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648431B (en) * 2018-01-03 2019-01-21 莊政霖 Electrolysis device
JP2019219087A (en) * 2018-06-18 2019-12-26 三菱日立パワーシステムズ株式会社 Condensing facility and steam turbine plant comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167271A1 (en) * 2015-04-17 2016-10-20 三菱重工環境・化学エンジニアリング株式会社 Hypochlorous acid supply device and boiler waste-water treatment method
CN110204017B (en) * 2019-05-16 2023-08-22 浙江浙能技术研究院有限公司 Electrolytic treatment system and method for adjusting pH value of ammonia-containing wastewater
JP6940713B1 (en) * 2021-05-18 2021-09-29 三菱重工環境・化学エンジニアリング株式会社 Hydrogen production system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137166A (en) * 1976-05-29 1979-01-30 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for the purification of waste water containing ammonia and ammonium salts
US20030234224A1 (en) * 2002-04-19 2003-12-25 Hydro-Trace, Inc. Process for remediating ground water containing one or more nitrogen compounds
JP2007289841A (en) * 2006-04-24 2007-11-08 Kurita Water Ind Ltd Coal gasification wastewater treatment method and apparatus
JP2014000563A (en) * 2012-05-25 2014-01-09 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Ammonia treatment system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1314688C (en) * 1987-09-14 1993-03-23 Ian Harry Warren Stripping and recovery of dichromate in electrolytic chlorate systems
JPH0975995A (en) * 1995-09-19 1997-03-25 Hitachi Ltd Removing system of high concentration ammonia nitrogen
FI117618B (en) * 2004-02-10 2006-12-29 Kemira Oyj Procedure for removing ammonium from wastewater
JP4446240B2 (en) * 2004-06-22 2010-04-07 三浦工業株式会社 Boiler system
JP4671743B2 (en) * 2005-04-15 2011-04-20 三菱重工環境・化学エンジニアリング株式会社 Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
DE102007004164A1 (en) * 2007-01-22 2008-07-24 Lanxess Deutschland Gmbh Process for eliminating nitrogen-containing organic compounds from saline water
CN201276469Y (en) * 2008-03-25 2009-07-22 中国科学院广州地球化学研究所 Apparatus for processing difficult biochemical treatment ammonia nitrogen wastewater by break-point chlorination
CN101570866B (en) * 2009-01-15 2010-12-29 新汶矿业集团有限责任公司泰山盐化工分公司 Method for removing ammonium from alkali production by full brine ion-exchange membrane electrolysis
CN102040197B (en) * 2010-11-17 2012-10-31 株洲化工集团诚信有限公司 Method for removing ammonia nitrogen in hydrazine hydrate evaporation byproduct residues containing alkali salt by utilizing urea method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137166A (en) * 1976-05-29 1979-01-30 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for the purification of waste water containing ammonia and ammonium salts
US20030234224A1 (en) * 2002-04-19 2003-12-25 Hydro-Trace, Inc. Process for remediating ground water containing one or more nitrogen compounds
JP2007289841A (en) * 2006-04-24 2007-11-08 Kurita Water Ind Ltd Coal gasification wastewater treatment method and apparatus
JP2014000563A (en) * 2012-05-25 2014-01-09 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Ammonia treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648431B (en) * 2018-01-03 2019-01-21 莊政霖 Electrolysis device
JP2019219087A (en) * 2018-06-18 2019-12-26 三菱日立パワーシステムズ株式会社 Condensing facility and steam turbine plant comprising the same
JP7123650B2 (en) 2018-06-18 2022-08-23 三菱重工業株式会社 Condensing facility and steam turbine plant equipped with the same

Also Published As

Publication number Publication date
KR101967079B1 (en) 2019-04-08
TW201632468A (en) 2016-09-16
SG11201704241YA (en) 2017-06-29
KR20170073657A (en) 2017-06-28
TWI574921B (en) 2017-03-21
JP6331145B2 (en) 2018-05-30
WO2016084754A1 (en) 2016-06-02
CN107001076A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6331145B2 (en) Ammonia treatment system
JP6191070B2 (en) Ammonia treatment system
JP2006297206A (en) Electrolytic treatment method and apparatus for ammonia nitrogen-containing waste water
JP7267196B2 (en) Ballast water management system
KR101269948B1 (en) Apparatus and method for nitrogen wastewater treatment
CN107108280B (en) Electrolysis system
JP2007185610A (en) Device for controlling injection of flocculant
JP6383989B2 (en) Hypochlorous acid supply device
JP6584948B2 (en) Marine organism adhesion control method
JP6300252B1 (en) Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system
JP2020037059A (en) Membrane filtration system, and membrane filtration method
WO2016167271A1 (en) Hypochlorous acid supply device and boiler waste-water treatment method
JP2012040524A (en) Electrolytic treatment apparatus and electrolytic treatment method
JP6565966B2 (en) Water treatment method
EP3231701B1 (en) Ballast water treatment device having device for injecting bromine salt and ozone
JP7351362B2 (en) Water treatment equipment and water treatment method
JP2019118852A (en) Water treatment method
JP2022042686A (en) Electrolytic treatment apparatus and electrolysis treatment method
JP2008155151A (en) Ozone injecting control device
Romano Moyano et al. Comprehensive kinetics of electrochemically assisted ammonia removal in marine aquaculture recirculating systems
JP2001009478A (en) Total organic carbon heat-decomposing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6331145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150