WO2022207838A1 - Dispositif de traitement thermique d'air pour véhicule a gestion de temperature améliorée - Google Patents

Dispositif de traitement thermique d'air pour véhicule a gestion de temperature améliorée Download PDF

Info

Publication number
WO2022207838A1
WO2022207838A1 PCT/EP2022/058651 EP2022058651W WO2022207838A1 WO 2022207838 A1 WO2022207838 A1 WO 2022207838A1 EP 2022058651 W EP2022058651 W EP 2022058651W WO 2022207838 A1 WO2022207838 A1 WO 2022207838A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
main flap
axis
rotation
rib
Prior art date
Application number
PCT/EP2022/058651
Other languages
English (en)
Inventor
Thierry Barbier
Cyril Gontier
Yves Rousseau
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to EP22720588.7A priority Critical patent/EP4313641A1/fr
Priority to JP2023560522A priority patent/JP2024512711A/ja
Priority to KR1020237033213A priority patent/KR20230152115A/ko
Priority to US18/553,038 priority patent/US20240174046A1/en
Priority to CN202280036859.0A priority patent/CN117460632A/zh
Publication of WO2022207838A1 publication Critical patent/WO2022207838A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00564Details of ducts or cables of air ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00678Damper doors moved by rotation; Grilles the axis of rotation being in the door plane, e.g. butterfly doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00514Details of air conditioning housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H2001/00721Air deflecting or air directing means

Definitions

  • the present invention relates to the field of heat treatment of air in vehicles, in particular automobiles. More specifically, the invention relates to a device for heat treatment of air in a vehicle passenger compartment comprising means for ventilating, heating and/or cooling the air in the passenger compartment and thus adjusting the temperature of said passenger compartment.
  • Vehicle air heat treatment devices comprise a casing whose walls are provided with openings delimiting air inlets and outlets and inside which the air is directed through various heat treatment members. More particularly, the walls of the casing form ducts in some of which are arranged an evaporator to cool the air and a radiator to heat the air.
  • Such devices are generally equipped with adjustable shutters to regulate the flow rates of cold air from the evaporator and the flow rates of hot air from the radiator and thus adjust the temperature of the air resulting from the mixing of hot air. and cold air.
  • the air at the adjusted temperature is then guided towards the passenger compartment, for example towards a glazed surface or towards an area where the feet of a user of the vehicle may be.
  • These devices may also include a mixing flap movable between a first end position configured so that only warm air is directed to the air outlets and a second end position configured so that only cold air goes to the air outlets.
  • the mixing flap can adopt intermediate positions between these two end positions, which allow different portions of hot and cold air to be mixed. It is then possible to obtain better control over the temperature of the air intended for the passenger compartment of the vehicle.
  • a drawback of these solutions is that they do not make it possible to have the most linear temperature change curve possible as a function of the different positions of the shutter. This results in thermal discomfort for the user or users of the vehicle.
  • Another drawback is that there is always a temperature gradient between the different air outlets and therefore between different zones of the passenger compartment, for example between a zone of the windshield of the vehicle and a zone of the feet of a user of the vehicle.
  • the present invention aims to overcome at least one of the aforementioned drawbacks and also to lead to other advantages by proposing a new type of thermal air treatment device for a vehicle, in particular an automobile, and more particularly for a habitable of said vehicle.
  • the present invention proposes an air heat treatment device for a vehicle, in particular a motor vehicle, comprising a casing comprising a conveying duct, a heating duct and a mixing chamber formed by the walls of the casing and configured to put in aeraulic communication at least one crankcase air inlet and at least one crankcase air outlet.
  • the delivery conduit extends from the inlet to the mixing chamber and the heating conduit extends parallel to the delivery conduit to the mixing chamber.
  • the thermal air treatment device further includes a mixing device configured to be movable between a first end position that prevents airflow between the delivery duct and the mixing chamber, such that the air is intended to circulate in the heating circuit, and a second end position which prevents air from circulating in the heating duct.
  • the mixing device comprises a main component capable of being rotatable along an axis of rotation.
  • the mixing device comprises a deflection element projecting from an upper face of said main flap.
  • the deflection element comprises at least one front rib extending in a plane comprising the axis of rotation and at least one lateral rib extending one end of the front rib and extending in a plane perpendicular to the axis of rotation .
  • a heating device can in particular be arranged in the heating duct and configured to heat the air circulating in the heating duct.
  • the upper face is thus named in relation to the orientation that the flap takes in the casing when the latter is installed in the vehicle, the upper face of the flap being turned away from the road on which the vehicle is traveling.
  • the upper face is in particular the face of the main flap which participates in delimiting the air flow zone within the routing duct when the main flap is in the second end position and that the essential, if not is the entire flow of air circulates in the routing duct.
  • the upper face can thus be defined as the face of the main flap facing away from the heating duct while the other face of the main flap, the lower face opposite the upper face, faces the heating duct. frontal impedes the laminar flow of air at the level of the upper face thus causing a change in the air flow regime.
  • the air flow then changes from laminar to turbulent.
  • the air will therefore enter the mixing chamber by swirling, which will allow better mixing of the air from the delivery duct and the air from the heating duct.
  • the lateral rib is substantially perpendicular, preferably strictly perpendicular, to the front rib seen in projection in a plane comprising the axis of rotation.
  • the upper face is configured to face the mixing chamber.
  • the upper face faces the mixing chamber regardless of the position of the main flap and therefore regardless of the position of the mixing device.
  • the upper face is, on the contrary, arranged opposite the heating duct, regardless of the position of the mixing device.
  • the main flap comprises a first free edge developing parallel to the axis of rotation and being closer to the inlet orifice than a second free edge of the main flap opposite the first free edge, the front rib being in the vicinity of the first free edge of the main flap.
  • the proximity of the first free edge and that of the second free edge with respect to the inlet orifice should in particular be considered in a plane perpendicular to the axis of rotation.
  • the first free edge of the main flap is arranged upstream of the second free edge with respect to the air flow. The first free edge is thus the first to be in contact with the air.
  • each side rib as previously mentioned extends from the front rib towards the second free edge.
  • the lateral rib extends continuously from the end of the front rib to the vicinity of the second free edge of the main flap.
  • the main flap comprises a shaft configured to allow rotation of the main flap around the axis of rotation and arranged between the first free edge and the second free edge of the main flap, the lateral rib passing through the shaft seen in projection in a plane comprising the axis of rotation.
  • the side rib extends over at least 80% of the length of the upper face of the main flap. This ratio of the length of the lateral rib to the length of the upper face is considered in a projection plane including the axis of rotation, the lengths being measured along an axis perpendicular to the axis of rotation.
  • the front rib extends over at most 25% of the width of the upper face of the main flap.
  • the width of the top face is measured from a first end of the first free edge of the main flap to a second end of the first free edge edge free along an axis parallel to the axis of rotation and included in a plane comprising the axis of rotation.
  • an extension plane of the front rib has an angle of inclination with respect to an extension plane of the upper face of the main flap.
  • the inclination of this front rib contributes to forming a ramp which deflects the air flow, for example to send it to a zone of the casing different from the mixing chamber in which the air is directed and to allow a continuous supply of air. a defrost air outlet without passing through this mixing chamber, and which creates a disturbance in the air flow allowing for the part of the flow passing through the mixing chamber a faster mixing with the air present elsewhere in this mixing chamber.
  • the inclination of this front rib is also calculated so that these advantageous characteristics can appear while limiting the pressure drops in the air flow so as not to penalize the performance of the heat treatment device.
  • the angle of inclination is between 50° and 80.
  • the angle of inclination is measured in the trigonometric direction from the plane of extension of the upper face of the main shutter to the plane of extension of the main rib seen in projection in a plane perpendicular to the axis of rotation of the main flap.
  • the inventors were able to determine by calculation that these values offered a good compromise between noise reduction, an acceptable pressure drop, and the degree of turbulence of the air flow.
  • the lateral rib is a first lateral rib and the deflection element comprises a second lateral rib projecting from the upper face of the main flap, the second lateral rib extending another end of the front rib and extending in a plane perpendicular to the axis of rotation.
  • the first lateral rib and the second lateral are substantially parallel and that the deflection element has a U-shape in a plane comprising the axis of rotation.
  • the main flap comprises a plurality of deflection elements extending at a distance from each other along an axis parallel to the axis of rotation.
  • the deflection elements are arranged next to each other along an axis parallel to the axis of rotation, each deflection element being spaced from an adjacent deflection element, so as to form a circulation conduit in which the air can circulate between two adjacent deflection elements.
  • the side ribs of the deflection elements are parallel to each other and form corridors where the air can rush. This results in the acceleration of the air at the level of the lateral ribs. The air thus reaches the mixing chamber more quickly and the mixing of the different air flows present in this mixing chamber is simplified.
  • the front ribs of the plurality of deflection elements are aligned with each other along an axis parallel to the axis of rotation.
  • the plurality of deflection elements comprises a central deflection element comprising a second lateral rib protruding from the upper face of the main flap, the second lateral rib extending another end of the front rib and extending in a plane perpendicular to the axis of rotation.
  • the central deflection element is arranged centrally within the plurality of deflection elements. In other words, the central deflection element is surrounded by as many deflection elements on either side of its lateral ribs.
  • the plurality of deflection elements comprises at least two end deflection elements which each consist of a front rib and a lateral rib, the other deflection elements of the plurality of elements deflection being arranged between the two end deflection elements. It is deduced from this configuration that these end deflection elements have an L shape seen in projection in a plane comprising the axis of rotation.
  • each end deflection element is arranged in the vicinity of a side edge of the main flap, the side edges of the main flap connecting the ends of the first and second free edges of the main flap, each free end of the front rib of each end deflection element being closest to one of the side edges.
  • the main flap has a plane of symmetry perpendicular to the axis of rotation of the main flap.
  • the mixing device comprises an additional flap, a proximal edge of which is articulated at the level of the first free edge of the main flap and a distal edge of which, opposite the proximal edge, engages in a sliding manner in a guide formed in a wall of the housing.
  • the invention also relates to a vehicle, in particular a motor vehicle, comprising a passenger compartment delimited in part by a glazed surface and an air heat treatment device according to the invention, in which at least one air outlet orifice of the device thermal air treatment unit is configured to supply a channel adapted to guide air towards the glazed surface and in which at least one air outlet is configured to guide air towards the feet of at least one user of said vehicle.
  • Figure 1 is a schematic representation in a transverse and vertical sectional plane of a heat treatment device according to the invention comprising a mixing device in a first end position;
  • FIG 2 Figure 2 is a schematic representation of the heat treatment device of Figure 1 where the mixing device is in a second end position;
  • Figure 3 is a schematic representation of the heat treatment device of Figure 1 where the mixing device is in an intermediate position between the first end position and the second end position;
  • Figure 4 is a schematic representation in perspective of the mixing device of Figures 1 to 3;
  • figure 5 is a schematic representation in projection in a longitudinal and transverse plane of a main component of the mixing device of figure 4;
  • Figure 6 is a schematic representation in section along a plane perpendicular to the axis of rotation of the main flap.
  • FIG. 1 to 3 illustrate a device 1 for heat treatment of air from a passenger compartment of a vehicle according to the present invention according to different configurations.
  • the heat treatment device 1 is configured to ventilate, heat and/or cool the air in the passenger compartment of the vehicle.
  • the heat treatment device 1 is configured to ventilate, heat and/or cool the air in the passenger compartment of the vehicle.
  • it is possible to adjust the temperature of the passenger compartment, for example in response to a request from a user of the vehicle.
  • the heat treatment device 1 comprises a casing 3 comprising a conveying duct 5, a heating duct 7, at least one distribution duct 9 and a mixing chamber 11 formed by walls of the casing 3.
  • the conveying duct 5, the heating duct 7, the distribution duct 9 and the mixing chamber 11 are arranged to put in aeraulic communication at least an air inlet 13 of the casing 3 and at least one air outlet 15a, 15b of the casing 3.
  • the routing duct 5 extends from the inlet 13 to the mixing chamber 11.
  • the routing duct 5 is configured to guide at least part of the air entered through the orifice of inlet 13 to mixing chamber 11.
  • An evaporator 17 is arranged in conveying duct 5. Evaporator 17 is configured to cool and dry the air passing through said evaporator 17.
  • a ventilation member can be arranged near the inlet orifice 13.
  • the ventilation member is configured to generate a flow of air oriented from the inlet orifice to air 13 from the casing 3 to the outlet orifice 15a, 15b of the casing 3.
  • the ventilation member is for example a centrifugal fan.
  • An air filter can be arranged between the ventilation member, not shown, and the evaporator 17.
  • the heating duct 7 extends parallel to the conveying duct 5 as far as the mixture 11.
  • the heating duct 7 is thus arranged as a branch of the delivery duct 5.
  • a heating device 19 is arranged in the heating duct 7 and configured to heat the air circulating in the heating duct 7.
  • an additional heating device for example of the PTC type, is arranged in the heating conduit 7 between the heating device 19 and the mixing chamber 11.
  • the mixing chamber 11 connects the conveying duct 5, the heating duct 7 and the distribution duct 9.
  • the mixing chamber 11 allows the air leaving the conveying duct 5 and the air at the output of the heating duct 7 to mix in order to obtain a desired temperature of the air intended for the passenger compartment.
  • the conveying duct 5 and the heating duct 7 and the mixing chamber 11 have a common junction.
  • a mixing device 21 is arranged in the housing, and in particular inside the conveying duct, upstream of the mixing chamber with respect to the direction of air circulation. capable of circulating in the conveying duct 5.
  • the mixing device 21 is configured to be movable between a first end position A, represented in FIG. 1, which prevents the circulation of air in the conveying duct 5 towards the mixing chamber 11 and a second end position B, shown in Figure 2, which prevents air from flowing towards the heating duct 7.
  • the air in the first end position, the air is directed towards the heating duct so that the first end position of the main flap corresponds to a heating function of the heat treatment device.
  • the air in the second end position, the air is directed to the mixing chamber passing only through the delivery duct 5, avoiding the heating circuit, so that the second end position of the main flap corresponds to a ventilation and/or air conditioning function of the heat treatment device.
  • the mixing device 21 can also take at least one intermediate position I, shown in Figure 3, between the first end position A and the second end position B and in which part of the air flow is directed towards the mixing chamber via the heating duct 7 and another part of the air flow is directed towards the mixing chamber via the routing duct 5.
  • the mixing device 21 comprises a main flap 23 formed of a shaft 39 and two fins 41,43 which extend from the shaft 39.
  • the shaft 39 is configured to allow the main flap 23 to be rotatable along an axis of rotation R.
  • the axis of rotation R which here extends along the longitudinal direction L, is perpendicular to a general direction of air flow along the mixing device 21.
  • Each fin 41,43 has a free edge which extends along an axis substantially parallel to the shaft 39 and therefore to the axis of rotation R.
  • the edges free of the fins are opposed to each other with respect to the shaft 39.
  • One of the free edges of the fins 41,43 forms a first free edge 29 of the main flap 23 and another of the free edges of the fins 41,43 forms a second free edge 31 of the main flap 23. It is understood that the first free edge 29 of the main flap 23 is opposite the second free edge 31 of the main flap
  • the ends of the first free edge 29 of the main flap 23 are connected to the ends of the second free edge 31 of the main flap 23 by side edges 33,35 which extend along an axis substantially perpendicular to the axis of rotation R
  • the side edges 33,35 of the main flap 21 are formed by the side edges of the fins 41,43 and a portion of the shaft 39.
  • the first free edge 29 of the main flap 23 is arranged upstream of the air flow at the level of the mixing device 21 and the second free edge 31 is downstream of said air flow.
  • the first free edge 29 is closer to the inlet 13 than the second free edge 31 seen in a plane comprising the axis of rotation R.
  • the two fins 41,43 and the shaft 39 each have an upper face which together forms the upper face 25 of the main flap 23 and each have a lower face which together forms a lower face 27 of the main flap 23 which is opposite the face 25 of the main flap 23.
  • the main flap 23 is configured such that the upper face 25 always faces the mixing chamber 11 regardless of the position A, B, I of the mixing device 21.
  • the mixing device 21 may also comprise an additional flap 45 articulated on the main flap to extend the latter and help to close the heating duct, this additional flap being particularly visible in Figures 1 to 4.
  • the additional flap 45 has a proximal edge 45a which is hinged to the first free edge 29 of the main flap 23 and a distal edge 45b, opposite the proximal edge 45a.
  • the distal edge 45b comprises a pin 45c which engages in a sliding manner in a guide 46 formed in a wall of the casing 3.
  • the mixing device 21 comprises at least one deflection element 51a,
  • the mixing device 21 comprises a plurality of deflection elements 51a, 51b, 51c among which a first end deflection element 51a, a second element d end 51c and a central deflection element 51b.
  • the deflection elements 51a, 51b, 51c protrude from the upper face 25 of the main flap 23.
  • the first end deflection element 51a and the second end deflection element 51c each comprise a front rib 53 extending in a longitudinal plane parallel to the axis of rotation R and a lateral rib 59 extending a first end 55 of the front rib 53 and extending in a plane perpendicular to the axis of rotation R.
  • These end deflection elements each comprise a single lateral rib so that the second end 57 of the front rib 53 is free.
  • the first end deflection element 51a and the second end deflection element 51c each therefore have an L shape seen in projection in the main elongation plane of the upper face 25 of the main flap.
  • the first end deflection element 51a is arranged in the vicinity of a side edge 33 of the main flap 23.
  • the front rib 53 of the first end deflection element 51a is substantially perpendicular to the first side edge 33 of the main flap 23.
  • the second end 57 of the front rib of the first end deflection element 51a is closer to the side edge 33 of the main flap 23 than is the first end 55 of the front rib 53 extended by the side rib 59.
  • the second end deflection element 51c is arranged in the vicinity of a second lateral edge 35 of the main flap 23.
  • the front rib 53 of the second end deflection element 51c is substantially perpendicular to the second lateral edge 35 of the main flap 23
  • the second end 57 of the front rib of the second end deflection element 51c is closer to the second side edge 35 of the main flap 23 than is the first end 55 of the front rib 53 of the second deflection element.
  • end 51c extended by the lateral rib 59.
  • the central deflection element 51b differs from the elements previously described in that it comprises a front rib 53 extending in a plane parallel to the axis of rotation R and two ribs side 59.65 each extending one end of the front rib 53 of the central deflection element 51b.
  • the two lateral ribs 59,65 of the central deflection element respectively extend in a plane perpendicular to the axis of rotation R.
  • the central deflection element 51b is such that the two lateral ribs 59,65 are substantially parallel to each other and substantially perpendicular to the front rib 53.
  • the central deflection element 51b has the shape of an LF seen in projection in the main elongation plane of the upper face 25 of the main flap.
  • the front rib 53 is formed on the fin 41 carrying at one end the first free edge 29 of the main flap 23 and this front rib 53 is arranged in the vicinity of this first free edge 29
  • the front rib 53 of each deflection element 51a, 51b, 51c is closer to the first free edge 29 of the main flap 23 than to the second edge 31 of the main flap 23, and more particularly, this front rib 53 of each deflection element 51a, 51b, 51c is closer to the first free edge 29 than to the shaft 39 separating the two fins 41, 43 from one another.
  • each deflection element 51a, 51b, 51c are aligned with each other along an axis parallel to the axis of rotation R. In this way, the flow of air likely to encounter the deflection elements when it circulates along the main flap, in particular in the second end position or else an intermediate position, is in contact substantially simultaneously with each of the front ribs .
  • the front rib 53 of each deflection element 51a, 51b, 51c extends over at most 25% of the width DI of the upper face 25 of the main flap 23.
  • an extension dimension of the front rib 53 of each deflection element 51a, 51b, 51c is equal to or less than 25% of the width DI of the upper face 25 of the main flap 23, it being understood that these dimensions are understood here in the longitudinal direction parallel to the axis of rotation R .
  • each deflection element 51a, 51b, 51c is equal or less than 25% of the width DI of the upper face 25 of the main flap 23.
  • Each deflection element could for example have a front rib having an extension dimension different from the extension dimensions of the other front ribs.
  • the front ribs 53 of the deflection elements 51a, 51b, 51c respectively develop in an extension plane which has an angle of inclination ⁇ with respect to an extension plane 250 of the upper face 25 of the main flap 23.
  • the front ribs can be arranged relative to each other so that they extend in a common extension plane 150 which has said inclination relative to the extension plane 20 of the upper face 25, namely the plane in which this upper face mainly extends.
  • each front rib 53 of the deflection elements 51a, 51b, 51c develop in a different extension plane from the other ribs 53.
  • the angle of inclination a is between 50° and 80°.
  • the angle of inclination a is measured in the trigonometric direction from the plane of extension 250 of the upper face 25 of the main flap 23 to the plane of extension 150 of the front ribs 53 seen in projection from a plane perpendicular to the axis of rotation R of the main flap 23.
  • each lateral rib 59,63 of each deflection element 51a, 51b, 51c extends continuously from one of the ends of the front rib 53 to the vicinity of the second free edge 31 of the flap main 23 along an axis perpendicular to the axis of rotation R.
  • the lateral ribs 59, 63 of the deflection elements 51a, 51b, 51c are parallel to each other, within the same deflection element but also from one deflection element to another.
  • the 65 of the deflection elements 51a, 51b, 51c have a length NI substantially greater than or equal to 80% of a length of the upper face 25 of the main flap 23.
  • the length Ni of a lateral rib is a distance measured along an axis perpendicular to the axis of rotation R, between one end of the lateral rib at the level of the corresponding front rib and another free end of the lateral rib.
  • the length L of the upper face 25 of the main flap 23 is the distance between the first free edge 29 and the second free edge 31 of the main flap 23 measured along an axis perpendicular to the axis of rotation R.
  • At least two lateral ribs each have a different length.
  • the central deflection element 51b is interposed between the two end deflection elements 51a, 51c along an axis parallel to the axis of rotation R.
  • the deflection elements 51a, 51b, 51c are placed at a distance each other along an axis parallel to the axis of rotation R. In other words the deflection elements are arranged next to each other along an axis parallel to the axis of rotation R and there is a space between two adjacent deflection elements.
  • the main flap 23 has a plane of symmetry S perpendicular to the axis of rotation R of the main flap 23.
  • the distribution duct 9 extends between the mixing chamber 11 and the outlet orifices 15a, 15b.
  • the distribution duct 9 is configured to distribute the air coming from the mixing chamber towards the outlet orifice 15a which feeds an upper channel 83 intended to bring part of the air towards a glazed surface and/or the orifice outlet 15b which feeds a lower channel 81 intended to bring another part of the air towards the feet of at least one user of said vehicle whether they are placed at the front or the rear of the vehicle cabin.
  • Distribution flaps 47, 49 are arranged in the distribution duct 9 to facilitate the distribution of the air coming from the mixing chamber 11 between the outlet orifices 15a, 15b.
  • the distribution flaps 47, 49 are configured to be rotatable to open or close, partially or completely, the passages between the mixing chamber 11 and the distribution duct 9 on the one hand and/or the outlet orifices 15a, 15b on the other hand.
  • the first end position A of the mixing device 21 represented in FIG. 1 corresponds to a request for hot air in the passenger compartment of the vehicle. All the air capable of penetrating the conveying duct 5 is directed towards the heating duct 7 in order to be heated by the heating device 19. The air can come into contact with the lower face 27 of the main flap 23 before to be directed towards the heating duct 7 and does not come into contact with the upper face 25 of the main component. The heated air is guided to the mixing chamber 11.
  • the second end position B of the mixing device 21 represented in FIG. 2 corresponds to a demand for unheated air in the passenger compartment of the vehicle.
  • the mixing device 21 is in a configuration where it is arranged at the inlet of the heating conduit between the evaporator 17 and the heating device 19 so that all the air entering the conduit conveying 5 is directed towards the mixing chamber.
  • the air circulates in particular along the upper face 25 of the main flap 23 which participates in delimiting the circulation zone of the air flow.
  • the intermediate position I of the mixing device 21 represented in FIG. 3 corresponds to a demand for air which needs to be partly heated.
  • part is guided into the mixing chamber 11 by the upper face 25 of the main flap 23 and another part is guided into the heating duct 7 in particular by the lower face 27 of the main flap 23.
  • the part of the air coming into contact with the upper face 25 of the main flap 23 is deflected by the front ribs 53 of the deflection elements 51a, 51b, 51c which can, according to a first feature to be noted, make it possible to direct a portion of the air flow in a direction other than that guiding the air towards the mixing chamber and in particular to direct part of the air flow directly towards the air outlet orifice 15a and the upper channel 83 dedicated to the ventilation of a glazed surface, to ensure a continuous demisting function.
  • the deflection of the air flow by contact with the frontal ribs also makes it possible to generate a change in the flow of the air which passes from laminar to turbulent which allows a faster mixing with the part of the air passed by the heating duct 7.
  • the presence of the front ribs and the lateral ribs extending perpendicularly from these front ribs makes it possible to create air circulation corridors, of reduced size, in which the flow of air is likely to rush and move at high speed. Consequently, the part of the air circulating along the upper face 25 arrives in the mixing chamber 11 more quickly, which again contributes to facilitating mixing with the air present in the mixing chamber.
  • the different air flows entering the mixing chamber mix quickly and the air flow which reaches the distribution duct 9 at the outlet of the mixing chamber has a uniform temperature.
  • the temperature change curve is then as linear as possible as a function of the different positions of the shutter.
  • the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Dispositif de traitement thermique d'air (1) pour véhicule comportant un conduit d'acheminement (5), un conduit de chauffage (7) et une chambre de mélange (11). Un dispositif de mélange (21) est configuré pour être mobile entre une première position d'extrémité (A) qui empêche la circulation d'air entre le conduit d'acheminement (5) et la chambre de mélange (11) et une deuxième position d'extrémité qui empêche l'air de circuler dans le conduit de chauffage (7). Le dispositif de mélange (21) comprend un volet principal (23) et un élément de déviation faisant saillie depuis le volet principal (23), l'élément de déviation comprenant au moins une nervure frontale et au moins une nervure latérale prolongeant une extrémité de la nervure frontale.

Description

DISPOSITIF DE TRAITEMENT THERMIQUE D’AIR POUR VÉHICULE A GESTION DE TEMPERATURE AMELIOREE
La présente invention se rapporte au domaine du traitement thermique d’air de véhicule notamment automobile. Plus précisément, l’invention concerne un dispositif de traitement thermique d’air d’un habitacle de véhicule comportant des moyens pour ventiler, chauffer et/ ou rafraîchir l’air de l’habitacle et ainsi ajuster la température dudit habitacle.
Les dispositifs de traitement thermique d’air de véhicule comportent un carter dont les parois sont pourvues d’ouvertures délimitant des entrées et des sorties d’air et à l’intérieur duquel l’air est dirigé à travers différents organes de traitement thermique. Plus partculièrement, les parois du carter forment des conduits dans certains desquels sont agencés un évaporateur pour refroidir l’air et un radiateur pour réchauffer l’air.
De tels dispositifs sont généralement équipés d’obturateurs réglables pour réguler les débits d’air froid issu de l’évaporateur et les débits d’air chaud issu du radiateur et ainsi ajuster la température de l’air résultant du mélange de l’air chaud et de l’air froid. L’air à la température ajustée est ensuite guidé vers l’habitable, par exemple vers une surface vitrée ou vers une zone où peuvent se trouver les pieds d’un utilisateur du véhicule. Ces dispositifs peuvent aussi inclure un volet de mélange mobile entre une première position d’extrémité configurée pour que seul de l’air chaud se dirige vers les sorties d’air et une deuxième position d’extrémité configurée pour que seul de l’air froid se dirige vers les sorties d’air. Le volet de mélange peut adopter des positions intermédiaires entre ces deux positions d’extrémité, qui permettent de mélanger des portions différentes d’air chaud et d’air froid. Il est alors possible d’obtenir un meilleur contrôle sur la température de l’air à destination de l’habitable du véhicule.
Un inconvénient de ces solutions est qu’elles ne permettent pas d’avoir une courbe d'évolution de la température la plus linéaire possible en fonction des différentes positions du volet. Il en résulte un inconfort thermique pour le ou les utilisateurs du véhicule. Un autre inconvénient est qu’il subsiste toujours un gradient de température entre les différentes sorties d’air et donc entre différentes zones de l’habitacle par exemple entre une zone du parebrise du véhicule et une zone de pieds d’un utilisateur du véhicule. La présente invention a pour objectif de palier au moins un des inconvénients précités et de conduire en outre à d’autres avantages en proposant un nouveau type de dispositif de traitement thermique d’air pour un véhicule, notamment automobile, et plus particulièrement pour un habitable dudit véhicule. La présente invention propose un dispositif de traitement thermique d’air pour véhicule, notamment automobile, comprenant un carter comportant un conduit d’acheminement, un conduit de chauffage et une chambre de mélange formés par des parois du carter et configurés pour mettre en communication aéraulique au moins un orifice d’entrée d’air du carter et au moins un orifice de sortie d’air du carter. Le conduit d’acheminement s’étend depuis l’orifice d’entrée jusqu’à la chambre de mélange et le conduit de chauffage s’étend parallèlement au conduit d’acheminement jusqu’à la chambre de mélange. Le dispositif de traitement thermique d’air comprend par ailleurs un dispositif de mélange configuré pour être mobile entre une première position d’extrémité qui empêche la circulation d’air entre le conduit d’acheminement et la chambre de mélange, de sorte que l’air est destiné à circuler dans le circuit de chauffage, et une deuxième position d’extrémité qui empêche l’air de circuler dans le conduit de chauffage. Le dispositif de mélange comprend un volet principal apte à être mobile en rotation selon un axe de rotation. Selon l’invention, le dispositif de mélange comporte un élément de déviation faisant saillie depuis une face supérieure dudit volet principal. L’élément de déviation comprend au moins une nervure frontale s’étendant dans un plan comprenant l’axe de rotation et au moins une nervure latérale prolongeant une extrémité de la nervure frontale et s’étendant dans un plan perpendiculaire à l’axe de rotation. Un dispositif de chauffage peut notamment être agencé dans le conduit de chauffage et configuré pour chauffer l’air circulant dans le conduit de chauffage.
La face supérieure est ainsi dénommée en rapport à l’orientation que prend le volet dans le carter lorsque celui-ci est implanté dans le véhicule, la face supérieure du volet étant tournée à l’opposé de la route sur laquelle circule le véhicule. La face supérieure est notamment la face du volet principal qui participe à délimiter la zone d’écoulement d’air au sein du conduit d’acheminement lorsque le volet principal est dans la deuxième position d’extrémité et que l’essentiel, si ce n’est l’intégralité du flux d’air circule dans le conduit d’acheminement. La face supérieure peut ainsi être définie comme la face du volet principal tournée à l’opposé du conduit de chauffage tandis que l’autre face du volet principal, la face inférieure opposée à la face supériure, est en regard du conduit de chauffage La nervure frontale fait obstacle à l’écoulement laminaire de l’air au niveau de la face supérieure provoquant ainsi un changement de régime d’écoulement d’air. L’écoulement de l’air passe alors de laminaire à turbulent. L’air va donc entrer dans la chambre de mélange en tourbillonnant ce qui permettra de mieux mélanger l’air issu du conduit d’acheminement et l’air issu du conduit de chauffage.
Selon un mode de réalisation, la nervure latérale est sensiblement perpendiculaire, préférentiellement strictement perpendiculaire, à la nervure frontale vu en projection dans un plan comprenant l’axe de rotation.
Il faut entendre ici, ainsi que dans tout ce qui suit, par « sensiblement », que les tolérances de fabrication, ainsi que d’éventuelles tolérances d’assemblage, doivent être prises en compte.
Selon un mode de réalisation, la face supérieure est configurée pour être en regard de la chambre de mélange. En d’autres termes, la face supérieure est en regard de la chambre de mélange quelle que soit la position du volet principal et donc quelle que soit la position du dispositif de mélange. Tel que cela a pu être précisé précédemment, la face supérieure est à contrario agencée à l’opposé du conduit de chauffage, quelle que soit la position du dispositif de mélange.
Selon un mode de réalisation, le volet principal comprend un premier bord libre se développant parallèlement à l’axe de rotation et étant plus proche de l’orifice d’entrée qu’un deuxième bord libre du volet principal opposé au premier bord libre, la nervure frontale étant au voisinage du premier bord libre du volet principal. La proximité du premier bord libre et celle du deuxième bord libre par rapport à l’orifice d’entrée est notamment à considérer dans un plan perpendiculaire à l’axe de rotation. Autrement dit, le premier bord libre du volet principal est agencé en amont du deuxième bord libre par rapport à l’écoulement d’air. Le premier bord libre est ainsi le premier à être en contact de l’air. Dans ce contexte, chaque nervure latérale telle que précédemment évoquée s’étend depuis la nervure frontale en direction du deuxième bord libre. Selon un mode de réalisation, la nervure latérale s’étend de manière continue depuis l’extrémité de la nervure frontale jusqu’au voisinage du deuxième bord libre du volet principal.
Selon un mode de réalisation, le volet principal comprend un arbre configuré pour permettre la rotation du volet principal autour de l’axe de rotation et agencé entre le premier bord libre et le deuxième bord libre du volet principal, la nervure latérale traversant l’arbre vu en projection dans un plan comprenant l’axe de rotation.
Selon un mode de réalisation, la nervure latérale s’étend sur au moins 80% de la longueur de la face supérieure du volet principal. Ce rapport entre la longueur de la nervure latérale et la longueur de la face supérieure est considéré dans un plan de projection comprenant l’axe de rtoation, les longueurs étant mesurées le long d’un axe perpendiculaire à l’axe de rotation.
Selon un mode de réalisation, la nervure frontale s’étend sur au plus 25% de la largeur de la face supérieure du volet principal. La largeur de la face supérieure est mesurée depuis une première extrémité du premier bord libre du volet principal jusqu’à une deuxième extrémité du premier bord libre bord libre le long d’un axe parallèle à l’axe de rotation et compris dans un plan comportant l’axe de rotation.
Selon un mode de réalisation, un plan d’extension de la nervure frontale présente un angle d’inclinaison par rapport à un plan d’extension de la face supérieure du volet principal. Un des effets techniques de cette caractéristique est de diminuer voire de supprimer les bruits qui seraient générées par la butée du flux d’air sur une paroi perpendiculaire au trajet du flux d’air. L’inclinaison de cette nervure frontale participe à former une rampe qui dévie le flux d’air, par exemple pour l’envoyer dans une zone du carter différente de la chambre de mélange dans lequel l’air est dirigé et permettre une alimentation continue d’une sortie d’air de dégivrage sans passer par cette chambre de mélange, et qui crée une perturbation dans le flux d’air permettant pour la partie du flux passant par la chambre de mélange un mélange plus rapide avec l’air présent par ailleurs dans cette chambre de mélange. L’inclinaison de cette nervure frontale est par ailleurs calculée pour que ces caractéristiques avantageuses puissent apparaître en limitant toutefois les pertes de charge dans le flux d’air pour ne pas pénaliser les performances du dispositif de traitement thermique.
Selon un mode de réalisation, l’angle d’inclinaison est compris entre 50° et 80. L’angle d’inclinaison est mesuré dans le sens trigonométrique depuis le plan d’extension de la face supérieure du volet principal jusqu’au plan d’extension de la nervure principal vu en projection dans un plan perpendiculaire à l’axe de rotation du volet principal. Les inventeur ont pu déterminer par le calcul que ces valeurs offraient un bon compromis entre la réduction de bruit, une perte de charge acceptable, et le degré de turbulence de l’écoulement de l’air.
Selon un mode de réalisation, la nervure latérale est une première nervure latérale et l’élément de déviation comprend une deuxième nervure latérale faisant saillie de la face supérieure du volet principal, la deuxième nervure latérale prolongeant une autre extrémité de la nervure frontale et s’étendant dans un plan perpendiculaire à l’axe de rotation. Dans ce contexte, on comprend que la première nervure latérale et la deuxième latérale sont sensiblement parallèles et que l’élément de déviation présente une forme de U dans un plan comprenant l’axe de rotation.
Selon un mode de réalisation, le volet principal comprend une pluralité d’éléments de déviation s’étendant à distance les uns des autres selon un axe parallèle à l’axe de rotation. Les éléments de déviation sont agencés les uns à côté des autres le long d’un axe parallèle à l’axe de rotation, chaque élément de déviation étant espacé d’un élément de déviation adjacent, de manière à former un ocnduit de circulation dans lequel l’air peut circuler entre deux éléments de déviation adjacents. En d’autres termes, les nervures latérales des éléments de déviation sont parallèles les unes aux autres et forment des couloirs où l’air peut s’engouffrer. Cela a pour conséquence l’accélération de l’air au niveau des nervures latérales. L’air atteint ainsi la chambre de mélange plus rapidement et le mélange des différents flux drair présents dans cette chambre de mélange en est simplifié. Selon un mode de réalisation, les nervures frontales de la pluralité d’éléments de déviation sont alignées entre elles selon un axe parallèle à l’axe de rotation.
Selon un mode de réalisation, la pluralité d’éléments de déviation comprend un élément de déviation central comportant une deuxième nervure latérale faisant saillie de la face supérieure du volet principal, la deuxième nervure latérale prolongeant une autre extrémité de la nervure frontale et s’étendant dans un plan perpendiculaire à l’axe de rotation. L’élément de déviation central est agencé de manière centrale au sein de la pluralité d’éléments de déviation. Autrement dit, l’élément déviation central est entouré par autant d’éléments de déviation de part et d’autre de ses nervures latérales.
Selon un mode de réalisation, la pluralité d’éléments de déviation comprend au moins deux éléments de déviation d’extrémité qui sont constitués chacun d’une nervure frontale et d’une nervure latérale, les autres éléments de déviation de la pluralité d’éléments de déviation étant agencés entre les deux éléments de déviation d’extrémité. On déduit de cette configuration que ces éléments de déviation d’extrémité présentent une forme en L vu en projection dans un plan comprenant l’axe de rotation. Selon un mode de réalisation, chaque élément de déviation d’extrémité est agencé au voisinage d’un bord latéral du volet principal, les bords latéraux du volet principal reliant les extrémités des premier et deuxième bords libres du volet principal, chaque extrémité libre de la nervure frontale de chaque élément de déviation d’extrémité étant la plus proche d’un des bords latéraux.
Selon un mode de réalisation, le volet principal présente un plan de symétrie perpendiculaire à l’axe de rotation du volet principal.
Selon un mode de réalisation, le dispositif de mélange comprend un volet additionnel dont un bord proximal est articulé au niveau du premier bord libre du volet principal et dont un bord distal, opposé au bord proximal, s’engage de manière coulissante dans un guide formé dans une paroi du carter.
L’invention a aussi pour objet un véhicule, notamment automobile, comprenant un habitacle délimité en partie par une surface vitrée et un dispositif de traitement thermique d’air selon l’invention, dans lequel au moins un orifice de sortie d’air du dispositif de traitement thermique d’air est configuré pour alimenter un canal adapté pour guider l’air vers la surface vitrée et dans lequel au moins un orifice de sortie d’air est configuré pour guider l’air vers les pieds d’au moins un utilisateur dudit véhicule. D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels :
[fig 1] la figure 1 est une représentation schématique dans un plan de coupe transversal et vertical d’un dispositif de traitement thermique selon l’invention comprenant un dispositif de mélange dans une première position d’extrémité ;
[fig 2] la figure 2 est une représentation schématique du dispositif de traitement thermique de la figure 1 où le dispositif de mélange est dans une deuxième position d’extrémité ; [fig 3] la figure 3 est une représentation schématique du dispositif de traitement thermique de la figure 1 où le dispositif de mélange est dans une position intermédiaire entre la première position d’extrémité et la deuxième position d’extrémité ; [fig 4] la figure 4 est une représentation schématique en perspective du dispositif de mélange des figures 1 à 3 ;
[fig 5] la figure 5 est une représentation schématique en projection dans un plan longitudinal et transversal d’un volet principal du dispositif de mélange de la figure 4 ; [fig 6] la figure 6 est une représentation schématique en coupe selon un plan perpendiculaire à l’axe de rotation du volet principal.
Il faut tout d’abord noter que si les figures exposent l’invention de manière détaillée pour sa mise en œuvre, elles peuvent bien entendu servir à mieux définir l’invention le cas échéant. Il est également à noter que, sur l’ensemble des figures, les éléments similaires et/ou remplissant la même fonction sont indiqués par la même numérotation.
Dans la description qui va suivre, une direction d’un axe longitudinal L, une direction d’un axe transversal T, et une direction d’un axe vertical V sont représentées par un trièdre (L, T, V) sur les figures. Les figures 1 à 3 illustrent un dispositif de traitement thermique 1 d’air d’un habitacle d’un véhicule selon la présente invention selon des configurations différentes. Le dispositif de traitement thermique 1 est configuré pour ventiler, chauffer et/ou rafraîchir l’air de l’habitacle du véhicule. Ainsi il est possible d’ajuster la température de l’habitacle par exemple en réponse à une demande d’un utilisateur du véhicule.
En référence aux figures 1 à 3, le dispositif de traitement thermique 1 comprend un carter 3 comportant un conduit d’acheminement 5, un conduit de chauffage 7, au moins un conduit de distribution 9 et une chambre de mélange 11 formés par des parois du carter 3. Le conduit d’acheminement 5, le conduit de chauffage 7, le conduit de distribution 9 et la chambre de mélange 11 sont agencés pour mettre en communication aéraulique au moins un orifice d’entrée 13 d’air du carter 3 et au moins un orifice de sortie 15a, 15b d’air du carter 3.
Le conduit d’acheminement 5 s’étend depuis l’orifice d’entrée 13 jusqu’à la chambre de mélange 11. Le conduit d’acheminement 5est configuré pour guider au moins une partie de l’air entré par l’orifice d’entrée 13 jusqu’à la chambre de mélange 11. Un évaporateur 17 est agencé dans le conduit d’acheminement 5. L’évaporateur 17 est configuré pour refroidir et sécher l’air passant au travers dudit évaporateur 17.
Un organe de ventilation, non visible sur les figures 1 à 3, peut être disposé au voisinage de l’orifice d’entrée 13. L’organe de ventilation est configuré pour générer un flux d’air orienté de l’orifice entrée d’air 13 du carter 3 vers l’orifice de sortie 15a, 15b du carter 3. L’organe de ventilation est par exemple un ventilateur centrifuge. Un filtre à air, non visible sur les figures, peut être agencé entre l’organe de ventilation non représenté et l’évaporateur 17. Le conduit de chauffage 7 s’étend en parallèle du conduit d’acheminement 5 jusqu’à la chambre de mélange 11. Le conduit de chauffage 7 est ainsi agencé en dérivation du conduit d’acheminement 5. Un dispositif de chauffage 19 est agencé dans le conduit de chauffage 7 et configuré pour chauffer l’air circulant dans le conduit de chauffage 7. Dans un mode de réalisation non représenté, un dispositif de chauffage supplémentaire, par exemple de type PTC, est agencé dans le conduit de chauffage 7 entre le dispositif de chauffage 19 et la chambre de mélange 11.
La chambre de mélange 11 met en communication le conduit d’acheminement 5, le conduit de chauffage 7 et le conduit de distribution 9. La chambre de mélange 11 permet à l’air en sortie du conduit d’acheminement 5 et à l’air en sortie du conduit de chauffage 7 de se mixer afin d’obtenir une température voulue de l’air à destination de l’habitacle. Ainsi, le conduit d’acheminement 5 et le conduit de chauffage 7 et la chambre de mélange 11 présentent une jonction commune. Comme cela est illustré sur les figures 1 à 3, un dispositif de mélange 21 est agencé dans le carter, et notamment à l’intérieur du conduit d’acheminement, en amont de la chambre de mélange par rapport au sens de circulation d’air susceptible de circuler dans le conduit d’acheminement 5. Le dispositif de mélange 21 est configuré pour être mobile entre une première position d’extrémité A, représentée sur la figure 1, qui empêche la circulation d’air dans le conduit d’acheminement 5 en direction de la chambre de mélange 11 et une deuxième position d’extrémité B, représentée sur la figure 2, qui empêche l’air de circuler en direction du conduit de chauffage 7.
En d’autres termes, dans la première position d’extrémité, l’air est dirigé vers le conduit de chauffage de sorte que la première position d’extrémité du volet principal correspond à une fonction de chauffage du dispositif de traitement thermique. Et dans la deuxième position d’extrémité, l’air est dirigé vers la chambre de mélange en passant uniquement dans le conduit d’acheminement 5, en évitant le circuit de chauffage, de sorte que la deuxième position d’extrémité du volet principal correspond à une fonction de ventilation et/ou de climatisation du dispositif de traitement thermique. Le dispositif de mélange 21 peut également prendre au moins une position intermédiaire I, représentée sur la figure 3, entre la première position d’extrémité A et la deuxième position d’extrémité B et dans laquelle une partie du flux d’air est dirigée vers la chambre de mélange via le conduit de chauffage 7 et une autre partie du flux d’air est dirigée vers la chambre de mélange via le conduit d’acheminement 5. Il est ainsi possible de faire varier la température du flux d’air présent dans la chambre de mélange 11 selon la température voulue dans l’habitacle, en ajustant la quantité d’air froid pénétrant la chambre de mélange et la quantité d’air chaud pénétrant dans cette même chambre de mélange. En référence aux figures 4 à 6, le dispositif de mélange 21 comprend un volet principal 23 formé d’un arbre 39 et de deux ailettes 41,43 qui s’étendent depuis l’arbre 39. L’arbre 39 est configuré pour permettre au volet principal 23 d’être mobile en rotation selon un axe de rotation R. L’axe de rotation R, qui s’étend ici selon la direction longitudinale L, est perpendiculaire à une direction générale d’écoulement de l’air le long du dispositif de mélange 21.
Chaque ailette 41,43 présente un bord libre qui s’étend selon un axe sensiblement parallèle à l’arbre 39 et donc à l’axe de rotation R. Les bords libres des ailettes sont opposés l’un à l’autre par rapport à l’arbre 39. Un des bords libres des ailettes 41,43 forme un premier bord 29 libre du volet principal 23 et un autre des bords libres des ailettes 41,43 forme un deuxième bord 31 libre du volet principal 23. On comprend que le premier bord 29 libre du volet principal 23 est opposé au deuxième bord 31 libre du volet principal
23·
Les extrémités du premier bord 29 libre du volet principal 23 sont reliées aux extrémités du deuxième bord 31 libre du volet principal 23 par des bords latéraux 33,35 qui s’étendent le long d’un axe sensiblement perpendiculaire à l’axe de rotation R. Les bords latéraux 33,35 du volet principal 21 sont formés par des bords latéraux des ailettes 41,43 et une portion de l’arbre 39.
De façon arbitraire, le premier bord 29 libre du volet principal 23 est agencé en amont de l’écoulement d’air au niveau du dispositif de mélange 21 et le deuxième bord 31 libre est en aval dudit écoulement d’air. Autrement dit, le premier bord 29 libre est plus proche de l’orifice d’entrée 13 que le deuxième bord 31 libre vu dans un plan comprenant l’axe de rotation R.
Les deux ailettes 41,43 et l’arbre 39 présentent chacun une face supérieure qui forme ensemble la face supérieure 25 du volet principal 23 et présentent chacun une face inférieure qui forme ensemble une face inférieure 27 du volet principal 23 qui est opposée à la face supérieure 25 du volet principal 23. Le volet principal 23 est configuré de telle sorte que la face supérieure 25 soit toujours en regard de la chambre de mélange 11 quelle que soit la position A, B, I du dispositif de mélange 21.
Il peut également être noté que la face inférieure du volet principal, c’est-à- dire la face inférieure des ailettes et de l’arbre participant à constituer le volet principal, est tournée vers le conduit de chauffage. Dans ce contexte, dans la deuxième position d’extrémité, visible sur la figure 2, la face supérieure 25 du volet principal participe à délimiter le chemin de passage d’air dans le conduit d’acheminement 5 en direction de la chambre de mélange. Sans que cela soit limitatif de l’invention, le dispositif de mélange 21 peut comprendre par ailleurs un volet additionnel 45 articulé sur le volet principal pour prolonger celui-ci et aider à l’obturation du conduit de chauffage, ce volet additionnel étant notamment visible sur les figures 1 à 4. Le volet additionnel 45 comporte un bord proximal 45a qui est articulé au premier bord 29 libre du volet principal 23 et un bord distal 45b, opposé au bord proximal 45a. Le bord distal 45b comprend un pion 45c qui s’engage de manière coulissante dans un guide 46 formé dans une paroi du carter 3.
Conformément à l’invention, et notamment en référence aux figures 4 à 6, le dispositif de mélange 21 comprend au moins un élément de déviation 51a,
51b, 51c. Plus particulièrement, dans le mode de réalisation illustré sur les figures 4 à 5, le dispositif de mélange 21 comporte une pluralité d’éléments de déviation 51a, 51b, 51c parmi lesquels un premier élément de déviation d’extrémité 51a, un deuxième élément d’extrémité 51c et un élément de déviation central 51b. Les éléments de déviation 51a, 51b, 51c font saillie depuis la face supérieure 25 du volet principal 23.
Le premier élément de déviation d’extrémité 51a et le deuxième élément de déviation d’extrémité 51c comprennent chacun une nervure frontale 53 s’étendant dans un plan longitudinal parallèle à l’axe de rotation R et une nervure latérale 59 prolongeant une première extrémité 55 de la nervure frontale 53 et s’étendant dans un plan perpendiculaire à l’axe de rotation R. Ces éléments de déviation d’extrémité comportent chacun une unique nervure latérale de sorte que la deuxième extrémité 57 de la nervure frontale 53 est libre.
Le premier élément de déviation d’extrémité 51a et le deuxième élément de déviation d’extrémité 51c présentent chacun donc une forme de L vue en projection dans le plan d’allongement principal de la face supérieure 25 du volet principal.
Le premier élément de déviation d’extrémité 51a est agencé au voisinage d’un bord latéral 33 du volet principal 23. La nervure frontale 53 du premier élément de déviation d’extrémité 51a est sensiblement perpendiculaire au premier bord latéral 33 du volet principal 23. La deuxième extrémité 57 de la nervure frontale du premier élément de déviation d’extrémité 51a est plus proche du bord latéral 33 du volet principal 23 que ne l’est la première extrémité 55 de la nervure frontale 53 prolongée par la nervure latérale 59. Le deuxième élément de déviation d’extrémité 51c est agencé au voisinage d’un deuxième bord latéral 35 du volet principal 23. La nervure frontale 53 du deuxième élément de déviation d’extrémité 51c est sensiblement perpendiculaire au deuxième bord latéral 35 du volet principal 23. La deuxième extrémité 57 de la nervure frontale du deuxième élément de déviation d’extrémité 51c est plus proche du deuxième bord latéral 35 du volet principal 23 que ne l’est la première extrémité 55 de la nervure frontale 53 du deuxième élément de déviation d’extrémité 51c prolongée par la nervure latérale 59. L’élément de déviation central 51b se distingue des éléments précédemment décrits en ce qu’il comprend une nervure frontale 53 s’étendant dans un plan parallèle à l’axe de rotation R et deux nervures latérales 59,65 prolongeant chacune une extrémité de la nervure frontale 53 de l’élément de déviation central 51b. Les deux nervures latérales 59,65 de l’élément de déviation central s’étendent respectivement dans un plan perpendiculaire à l’axe de rotation R. Ainsi, l’élément de déviation central 51b est tel que les deux nervures latérales 59,65 sont sensiblement parallèles entre elles et sensiblement perpendiculaires à la nervure frontale 53. Dans ce mode de réalisation, l’élément de déviation central 51b présente une forme de LF vue en projection dans le plan d’allongement principal de la face supérieure 25 du volet principal.
Pour chaque élément de déviation 51a, 51b, 51c, la nervure frontale 53 est formée sur l’ailette 41 portant à une extrémité le premier bord 29 libre du volet principal 23 et cette nervure frontale 53 est disposée au voisinage de ce premier bord libre 29. En d’autres termes, la nervure frontale 53 de chaque élément de déviation 51a, 51b, 51c est plus proche du premier bord 29 libre du volet principal 23 que du deuxième bord 31 du volet principal 23, et plus particulièrement, cette nervure frontale 53 de chaque élément de déviation 51a, 51b, 51c est plus proche du premier bord 29 libre que de l’arbre 39 séparant les deux ailettes 41, 43 l’une de l’autre.
Sur la figure 5, les nervures frontales 53 de chaque élément de déviation 51a, 51b, 51c sont alignées entre elles selon un axe parallèle à l’axe de rotation R. De la sorte, le flux d’air susceptible de rencontrer les éléments de déviation lorsqu’il circule le long du volet principal, notamment dans la deuxième position d’extrémité ou bien une position intermédiaire, est en contact sensiblement simultanément avec chacune des nervures frontales. La nervure frontale 53 de chaque élément de déviation 51a, 51b, 51c s’étend sur au plus 25% de la largeur DI de la face supérieure 25 du volet principal 23. Autrement dit une dimension d’extension de la nervure frontale 53 de chaque élément de déviation 51a, 51b, 51c est égal ou inférieur à 25% de la largeur DI de la face supérieure 25 du volet principal 23, étant entendu que ces dimensions s’entendent ici selon la direction longitudinale parallèle à l’axe de rotation R.
Sur la figure 5, on comprend que la largeur DI est mesurée d’un bord latéral à l’autre du volet principal, et que la dimension d’extension Ex d’une nervure frontale 53 d’un élément de déviation 51a, 51b, 51c est mesurée d’une extrémité 55 à l’autre extrémité 57 de cette nervure frontale 53, ces deux dimensions étant mesurées le long d’un axe parallèle à l’axe de rotation R.
Il convient de noter que ces modes de réalisation ne sont pas limitatifs de l’invention dès lors que, tel qu’évoqué précédemment, une dimension d’extension de la nervure frontale 53 de chaque élément de déviation 51a, 51b, 51c est égal ou inférieur à 25% de la largeur DI de la face supérieure 25 du volet principal 23. Chaque élément de déviation pourrait par exemple présenter une nervure frontale présentant une dimension d’extension différente des dimensions d’extension des autres nervures frontales.
Les nervures frontales 53 des éléments de déviation 51a, 51b, 51c se développent respectivement dans un plan d’extension qui présente un angle d’inclinaison a par rapport à un plan d’extension 250 de la face supérieure 25 du volet principal 23. Comme cela est notamment visible sur les figures, les nervures frontales peuvent être arrangées les unes par rapport aux autres de sorte qu’elles s’étendent dans un plan d’extension 150 commun qui présente ladite inclinaison par rapport au plan d’extension 20 de la face supérieure 25, à savoir le plan dans lequel s’étend principalement cette face supérieure. Dans un mode de réalisation non représenté, chaque nervure frontale 53 des éléments de déviation 51a, 51b, 51c se développe dans un plan d’extension différent des autres nervures 53.
L’angle d’inclinaison a est compris entre 50° et 8o°. L’angle d’inclinaison a est mesuré dans le sens trigonométrique depuis le plan d’extension 250 de la face supérieure 25 du volet principal 23 jusqu’au plan d’extension 150 des nervures frontales 53 vu en projection un plan perpendiculaire à l’axe de rotation R du volet principal 23.
En référence aux figures 4 à 6, chaque nervure latérale 59,63 de chaque élément de déviation 51a, 51b, 51c s’étend de manière continue depuis une des extrémités de la nervure frontale 53 jusqu’au voisinage du deuxième bord 31 libre du volet principal 23 le long d’un axe perpendiculaire à l’axe de rotation R. En complément de ce qui a pu être évoqué précédemment, dans l’exemple illustré, les nervures latérales 59, 63 des éléments de déviation 51a, 51b, 51c sont parallèles entre elles, au sein d’un même élément de déviation mais aussi d’un élément de déviation à l’autre.
Tel que cela est notamment visible sur la figure 5, les nervures latérales 59,
65 des éléments de déviation 51a, 51b, 51c présentent une longueur NI sensiblement supérieure ou égale à 80% d’une longueur de la face supérieure 25 du volet principal 23. La longueur Ni d’une nervure latérale est une distance mesurée le long d’un axe perpendiculaire à l’axe de rotation R, entre une extrémité de la nervure latérale au niveau de la nervure frontale correspondante et une autre extrémité, libre, de la nervure latérale. La longueur L de la face supérieure 25 du volet principal 23 est la distance entre le premier bord 29 libre et le deuxième bord 31 libre du volet principal 23 mesurée le long d’un axe perpendiculaire à l’axe de rotation R.
Dans un mode de réalisation non représenté, au moins deux nervures latérales présentent chacune une longueur différente.
L’élément de déviation central 51b est intercalé entre les deux éléments de déviation d’extrémité 51a, 51c le long d’un axe parallèle à l’axe de rotation R. Les éléments de déviation 51a, 51b, 51c sont placés à distance les uns des autres selon un axe parallèle à l’axe de rotation R. Autrement dit les éléments de déviation sont agencés les uns à côté des autres le long d’un axe parallèle à l’axe de rotation R et il y a un espace entre deux éléments de déviation adjacents.
A partir des caractéristiques décrites précédemment et en référence à la figure 4, on comprend que le volet principal 23 présente un plan de symétrie S perpendiculaire à l’axe de rotation R du volet principal 23.
En référence aux figures 1 à 3, le conduit de distribution 9 s’étend entre la chambre de mélange 11 et les orifices de sortie 15a, 15b. Le conduit de distribution 9 est configuré pour répartir l’air issu de la chambre de mélange vers l’orifice de sortie 15a qui alimente un canal supérieur 83 destiné à amener une partie de l’air vers une surface vitrée et/ou l’orifice de sortie 15b qui alimente un canal inférieur 81 destiné à amener une autre partie de l’air vers les pieds d’au moins un utilisateur dudit véhicule qu’ils soient placés à l’avant ou l’arrière de l’habitacle du véhicule.
Des volets de distribution 47, 49 sont agencés dans le conduit de distribution 9 pour faciliter la répartition de l’air issu de la chambre de mélange 11 entre les orifices de sortie 15a, 15b. Les volets de distribution 47, 49 sont configurés pour être mobiles en rotation pour ouvrir ou fermer, partiellement ou complètement les passages entre la chambre de mélange 11 et le conduit de distribution 9 d’une part et/ou les orifices de sortie 15a, 15b d’autre part. Tel que cela a pu être évoqué, la première position d’extrémité A du dispositif de mélange 21 représentée sur la figure 1 correspond à une demande d’air chaud dans l’habitacle du véhicule. Tout l’air susceptible de pénétrer dans le conduit d’acheminement 5 est dirigé vers le conduit de chauffage 7 afin d’être chauffé par le dispositif de chauffage 19. L’air peut venir au contact la face inférieure 27 du volet principal 23 avant d’être dirigé vers le conduit de chauffage 7 et ne vient pas au contact de la face supérieure 25 du volet principal. L’air ainsi chauffé est guidé vers la chambre de mélange 11.
La deuxième position d’extrémité B du dispositif de mélange 21 représentée sur la figure 2 correspond à une demande d’air non chauffé dans l’habitacle du véhicule. Le dispositif de mélange 21 est dans une configuration où il est agencé à l’entrée du conduit de chauffage entre l’évaporateur 17 et le dispositif de chauffage 19 de sorte que tout l’air pénétrant dans le conduit d’acheminement 5 est dirigé vers la chambre de mélange. L’air circule notamment le long de la face supérieure 25 du volet principal 23 qui participe à délimiter la zone de circulation du flux d’air.
La position intermédiaire I du dispositif de mélange 21 représentée sur la figure 3 correspond à une demande d’air qui requiert d’être en partie chauffé. Ainsi, après que l’air ait traversé l’évaporateur, une partie est guidée dans la chambre de mélange 11 par la face supérieure 25 du volet principal 23 et une autre partie est guidée dans le conduit de chauffage 7 notamment par la face inférieure 27 du volet principal 23. La partie de l’air venant en contact de la face supérieure 25 du volet principal 23 est déviée par les nervures frontales 53 des éléments de déviation 51a, 51b, 51c ce qui peut, selon une première fonctionnalité à noter, permettre de diriger une portion du flux d’air dans une direction autre que celle guidant l’air vers la chambre de mélange et notamment diriger une partie du flux d’air directement vers l’orifice de sortie d’air 15a et le canal supérieur 83 dédiés à la ventilation d’une surface vitrée, pour assurer de manière continue une fonction de désembuage. La déviation du flux d’air par contact avec les nervures frontales permet également de générer un changement dans l’écoulement de l’air qui passe de laminaire à turbulent ce qui permet un mélange plus rapide avec la partie de l’air passé par le conduit de chauffage 7. Par ailleurs, la présence des nervures frontales et des nervures latérales prolongeant perpendiculairement ces nervures frontales permet de créer des couloirs de circulation d’air, de dimension réduite, dans lesquels le flux d’air est susceptible de s’engouffrer et de circuler avec une vitesse élevée. Par conséquent, la partie de l’air circulant le long de la face supérieure 25 arrive dans la chambre de mélange 11 plus rapidement ce qui là encore participe à faciliter le mélange avec l’air présent dans la chambre de mélange. Ainsi les différents flux d’air pénétrant dans la chambre de mélange se mélangent rapidement et le flux d’air qui atteint le conduit de distribution 9 en sortie de la chambre de mélange présente une température homogène. La courbe d'évolution de la température est alors la plus linéaire possible en fonction des différentes positions du volet. Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention.

Claims

REVENDICATIONS l- Dispositif de traitement thermique d’air (1) pour véhicule comprenant un carter (3) comportant un conduit d’acheminement (5), un conduit de chauffage (7) et une chambre de mélange (11) formés par des parois du carter (3) et configurés pour mettre en communication aéraulique au moins un orifice d’entrée (13) d’air du carter (3) et au moins un orifice de sortie (15) d’air du carter (3), le conduit d’acheminement (5) s’étendant depuis l’orifice d’entrée (13) jusqu’à la chambre de mélange (11), le conduit de chauffage (7) s’étendant parallèlement au conduit d’acheminement (5) jusqu’à la chambre de mélange (11), le dispositif de traitement thermique comportant par ailleurs un dispositif de mélange (21) configuré pour être mobile entre une première position d’extrémité (A) qui empêche la circulation d’air entre le conduit d’acheminement (5) et la chambre de mélange (11), de sorte que l’air est destiné à circuler dans le conduit de chauffage, et une deuxième position d’extrémité (B) qui empêche l’air de circuler dans le conduit de chauffage (7), le dispositif de mélange (21) comprenant un volet principal (23) apte à être mobile en rotation selon un axe de rotation (R), caractérisé en ce que le dispositif de mélange (21) comprend en outre un élément de déviation (51a, 51b, 51c) faisant saillie depuis une face supérieure (25) dudit volet principal (23), l’élément de déviation (51a, 51b, 51c) comprenant au moins une nervure frontale (53) s’étendant dans un plan comprenant l’axe de rotation (R) et au moins une nervure latérale (59) prolongeant une extrémité (55) de la nervure frontale (53) et s’étendant dans un plan perpendiculaire à l’axe de rotation (R). 2- Dispositif de traitement thermique d’air (1) selon la revendication précédente, dans lequel la face supérieure (25) est configurée pour être en regard de la chambre de mélange (11).
3- Dispositif de traitement thermique d’air (1) selon l’une quelconque des revendications précédentes, dans lequel le volet principal (23) comprend un premier bord (29) libre se développant parallèlement à l’axe de rotation (R) et étant plus proche de l’orifice d’entrée (13) qu’un deuxième bord (31) libre du volet principal (23) opposé au premier bord (29) libre, et dans lequel la nervure frontale (53) est au voisinage du premier bord (29) libre du volet principal (23).
4- Dispositif de traitement thermique d’air (1) selon la revendication précédente, dans lequel la nervure latérale (59,65) s’étend de manière continue depuis l’extrémité (55,57) de la nervure frontale (53) jusqu’au voisinage du deuxième bord (31) libre du volet principal (23).
5- Dispositif de traitement thermique d’air (1) selon la revendication précédente, dans lequel le volet principal (23) comprend un arbre (39) configuré pour permettre la rotation du volet principal (23) autour de l’axe de rotation (R) et agencé entre le premier bord libre (29) et le deuxième bord libre (31) du volet principal (23), la nervure latérale (59,65) traversant l’arbre (39) vu en projection dans un plan comprenant l’axe de rotation (R).
6- Dispositif de traitement thermique d’air (1) selon l’une quelconque des revendications précédentes, dans lequel un plan d’extension (150) de la nervure frontale (53) présente un angle d’inclinaison (a) par rapport à un plan d’extension (250) de la face supérieure (25) du volet principal (23).
7- Dispositif de traitement thermique d’air (1) selon l’une quelconque des revendications précédentes, dans lequel la nervure latérale (59,65) est une première nervure latérale (59) et dans lequel l’élément de déviation (51a, 51b, 51c) comprend une deuxième nervure latérale (65) faisant saillie de la face supérieure (25) du volet principal (23), la deuxième nervure latérale (65) prolongeant une autre extrémité (57) de la nervure frontale (53) et s’étendant dans un plan perpendiculaire à l’axe de rotation (R).
8 Dispositif de traitement thermique d’air (1) selon l’une quelconque des revendications précédentes, dans lequel le volet principal (23) comprend une pluralité d’éléments de déviation (51a, 51b, 51c) s’étendant à distance les uns des autres selon un axe parallèle à l’axe de rotation (R).
9- Dispositif de traitement thermique d’air (1) selon la revendication précédente, dans lequel la pluralité d’éléments de déviation (51a, 51b, 51c) comprend un élément de déviation central (51b) comportant une deuxième nervure latérale (65) faisant saillie de la face supérieure (25) du volet principal (23), la deuxième nervure latérale (65) prolongeant une autre extrémité (57) de la nervure frontale (53) et s’étendant dans un plan perpendiculaire à l’axe de rotation (R), ledit élément de déviation central (51b) étant agencé de manière centrale au sein de la pluralité d’éléments de déviation (51a, 51b, 51c). 10- Dispositif de traitement thermique d’air (1) selon l’une quelconque des revendications 8 à 9, dans lequel la pluralité d’éléments de déviation (51a, 51b, 51c) comprend au moins deux éléments de déviation d’extrémité (51a, 51c) qui sont constitués chacun d’une nervure frontale (53) et d’une nervure latérale (55), les autres éléments de déviation (51b) de la pluralité d’éléments de déviation (51a, 51b, 51c) étant agencés entre les deux éléments de déviation d’extrémité (51a, 51c).
PCT/EP2022/058651 2021-03-31 2022-03-31 Dispositif de traitement thermique d'air pour véhicule a gestion de temperature améliorée WO2022207838A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22720588.7A EP4313641A1 (fr) 2021-03-31 2022-03-31 Dispositif de traitement thermique d'air pour véhicule a gestion de temperature améliorée
JP2023560522A JP2024512711A (ja) 2021-03-31 2022-03-31 温度管理が改善された自動車用の空気を熱処理するための装置
KR1020237033213A KR20230152115A (ko) 2021-03-31 2022-03-31 온도 관리가 향상된 차량용 공기 열 처리 장치
US18/553,038 US20240174046A1 (en) 2021-03-31 2022-03-31 Device for thermal treatment of air for a vehicle with improved temperature management
CN202280036859.0A CN117460632A (zh) 2021-03-31 2022-03-31 改进温度管理的用于车辆的空气热处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103367 2021-03-31
FRFR2103367 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022207838A1 true WO2022207838A1 (fr) 2022-10-06

Family

ID=75746925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/058651 WO2022207838A1 (fr) 2021-03-31 2022-03-31 Dispositif de traitement thermique d'air pour véhicule a gestion de temperature améliorée

Country Status (6)

Country Link
US (1) US20240174046A1 (fr)
EP (1) EP4313641A1 (fr)
JP (1) JP2024512711A (fr)
KR (1) KR20230152115A (fr)
CN (1) CN117460632A (fr)
WO (1) WO2022207838A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404011A (en) * 2003-07-14 2005-01-19 Keihin Corp A vehicle air conditioner having an air mixing door with an air flow guide
JP2006137295A (ja) * 2004-11-12 2006-06-01 Mitsubishi Heavy Ind Ltd 車両用空気調和機
US20070062683A1 (en) * 2005-09-20 2007-03-22 Keihin Corporation Air conditioner for vehicles
US20130014912A1 (en) * 2011-07-13 2013-01-17 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404011A (en) * 2003-07-14 2005-01-19 Keihin Corp A vehicle air conditioner having an air mixing door with an air flow guide
JP2006137295A (ja) * 2004-11-12 2006-06-01 Mitsubishi Heavy Ind Ltd 車両用空気調和機
US20070062683A1 (en) * 2005-09-20 2007-03-22 Keihin Corporation Air conditioner for vehicles
US20130014912A1 (en) * 2011-07-13 2013-01-17 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner

Also Published As

Publication number Publication date
US20240174046A1 (en) 2024-05-30
EP4313641A1 (fr) 2024-02-07
KR20230152115A (ko) 2023-11-02
JP2024512711A (ja) 2024-03-19
CN117460632A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
EP2889168B1 (fr) Dispositif de chauffage, ventilation et/ou climatisation
FR2703304A1 (fr) Boîtier de distribution pour une installation de chauffage-ventilation de l'habitacle d'un véhicule automobile.
EP3046786B1 (fr) Installation de chauffage, ventilation et/ou climatisation pour habitacle de véhicule automobile
EP3490826A1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
EP4021744A1 (fr) Dispostif de chauffage, ventilation et/ou climatisation pour véhicule automobile
EP3921193B1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
FR2531666A1 (fr) Installation de climatisation pour un vehicule automobile, notamment pour une voiture de tourisme
WO2021038153A1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour véhicule automobile
WO2018020106A1 (fr) Organe de regulation d'un flux d'air pour un dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
FR2562845A1 (fr) Dispositif climatiseur pour vehicules
FR2547543A1 (fr) Boitier d'une installation de chauffage ou de climatisation pour vehicule automobile
EP4313641A1 (fr) Dispositif de traitement thermique d'air pour véhicule a gestion de temperature améliorée
FR3122119A1 (fr) Dispositif de traitement thermique d’air pour véhicule à gestion de température améliorée
EP2858842A1 (fr) Installation de conditionnement thermique d'un habitacle d'un véhicule, notamment un véhicule électrique
FR2929558A1 (fr) Organe de mixage d'air du type volet-tambour et installation de chauffage, de ventilation et/ou de climatisation equipee d'un tel organe de mixage d'air.
FR3010656A1 (fr) Dispositif de conditionnement d'air pour vehicule automobile a double flux integrant un repartiteur de chaleur
FR3092524A1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour véhicule automobile
FR3054488B1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
EP2154013A1 (fr) Appareil de chauffage, ventilation et/ou climatisation à acoustique améliorée
WO2013182703A1 (fr) Système de conditionnement thermique d'un habitacle d'un véhicule, notamment un véhicule électrique
EP4135989A1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
EP4387857A1 (fr) Boîtier d'un système de ventilation, de chauffage et/ou d'air conditionné d'un véhicule automobile
WO2024200876A1 (fr) Dispositif de ventilation, chauffage et/ou climatisation, notamment pour véhicule automobile
FR2833530A1 (fr) Appareil de chauffage et/ou de climatisation a organe de mixage et de repartition d'air pour habitacle de vehicule automobile
FR3058362B1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour un habitacle d'un vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22720588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237033213

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18553038

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023560522

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022720588

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022720588

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202280036859.0

Country of ref document: CN