WO2022206897A1 - 一种电池及其组装工艺 - Google Patents

一种电池及其组装工艺 Download PDF

Info

Publication number
WO2022206897A1
WO2022206897A1 PCT/CN2022/084420 CN2022084420W WO2022206897A1 WO 2022206897 A1 WO2022206897 A1 WO 2022206897A1 CN 2022084420 W CN2022084420 W CN 2022084420W WO 2022206897 A1 WO2022206897 A1 WO 2022206897A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
negative electrode
open end
positive electrode
connecting piece
Prior art date
Application number
PCT/CN2022/084420
Other languages
English (en)
French (fr)
Inventor
宁亚军
夏天军
于东朋
姬嘉帅
Original Assignee
蜂巢能源科技(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技(无锡)有限公司 filed Critical 蜂巢能源科技(无锡)有限公司
Priority to EP22779077.1A priority Critical patent/EP4290659A1/en
Priority to US18/549,773 priority patent/US20240154176A1/en
Publication of WO2022206897A1 publication Critical patent/WO2022206897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of lithium ion battery assembly, and in particular, to a battery and an assembly process thereof.
  • lithium-ion batteries are widely used as power batteries in the field of electric vehicles.
  • the structural part of the lithium-ion battery is also an important part of the lithium-ion power battery. It not only provides a guarantee for the lithium-ion battery in terms of safety and reliability, but also takes into account the connection between the internal chemical system of the lithium-ion battery and the external modules.
  • the rapid charge and discharge of batteries is getting higher and higher, and the requirements for the overcurrent capability and safety capability of lithium batteries are getting higher and higher, so the high rate performance of structural parts is the general trend.
  • resistance welding is used between the negative electrode of the cell and the case during the manufacturing process.
  • the contact area of the resistance welding between the cell and the case is too small, the rate of the cell will be affected. performance, at the same time, the positive and negative of the battery are located at opposite ends of the case, which is not conducive to the design and welding of the external module busbars.
  • the purpose of this application is to propose a battery and its assembling process, which can make the positive and negative electrodes of the battery on the same side, which is convenient for the design and welding of the external module busbar, and can also increase the rate performance of the battery core assembly.
  • the present application provides a battery, comprising: a battery core assembly, the two ends of the battery core assembly are respectively provided with a positive electrode and a negative electrode; , the battery core assembly extends into the casing from the open end, and the negative end is limited and stopped at the rolling stop end; the negative electrode connecting piece is covered with the open end, and the negative electrode connecting piece is a conductive piece and is electrically connected to the negative electrode and the negative electrode respectively through the laser welding point.
  • Open-ended housing portion Open-ended housing portion.
  • the open end is provided with a lip that is pressed against the negative electrode, and the edge of the negative electrode connecting piece is bent to form a step that fits with the lip.
  • the battery core assembly includes a positive electrode cover plate fixed on the positive electrode, and the positive electrode cover plate is provided with a conductive sheet electrically connected to the battery core;
  • the insulating gasket is provided with a through hole for the conductive sheet to pass through.
  • the battery includes a negative electrode cover plate attached to the surface of the negative electrode connecting piece, and the negative electrode cover plate seals the open end.
  • the battery includes a sealing member, the positive electrode of the battery core assembly is provided with a liquid injection hole, and the sealing member is fixed and sealed on the surface of the liquid injection hole; the battery core assembly and the shell are both cylindrical, and the material of the negative electrode connecting piece includes copper. , any of iron and aluminum.
  • the present application also provides a battery assembling process for assembling the above-mentioned battery, the battery assembling process includes: inserting the battery core assembly into the casing from the open end, and making the positive limit of the battery core assembly at the piping stop.
  • the negative electrode of the cell assembly is located at the open end; the negative electrode connecting sheet is attached to the negative electrode and laser welding is performed; the negative electrode connecting sheet is covered on the open end and laser welding is performed.
  • the battery assembling process further includes: before the step of covering the negative electrode connecting sheet on the open end and performing laser welding, piping the open end and forming a lip against the surrounding of the negative electrode at the open end; The edge of the connecting piece is bent to form a step that fits with the lip.
  • the method further includes the steps of: attaching the positive electrode cover plate to the positive electrode and performing laser welding to form the cell assembly; inserting the insulating gasket from the open end The casing is fitted with the rolling edge stop end, so that the conductive sheet on the positive electrode cover plate passes through the insulating gasket and is exposed to the casing.
  • the method further includes a step of: laser welding the positive electrode cover plate and the rolling stop end and sealing the rolling stop end.
  • the battery assembly process further includes the steps of: injecting electrolyte at the liquid injection hole of the positive electrode; covering the liquid injection hole with a sealing member; laser welding the sealing member and the cell assembly.
  • laser welding is performed between the negative electrode connecting sheet and the negative electrode and the casing of the cell assembly, so that a laser welding spot is formed between the negative electrode and the negative electrode connecting sheet, and a laser welding point is formed between the negative electrode connecting sheet and the casing.
  • Solder joints, and then make the shell form a negative electrode with negative electricity, and finally make the positive and negative electrodes of the battery at the same end, which is more conducive to the design and welding of the external module busbar.
  • the laser welding spot can make the contact area between the cell assembly, the negative electrode connection piece and the casing larger, thereby improving the overcurrent capability of the negative electrode of the cell assembly to the casing, and improving the rate performance of the cell assembly. Additional features and advantages of the present application will be described in detail in the detailed description that follows.
  • FIG. 1 is a schematic three-dimensional structure diagram of a battery according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a partial explosion structure of a battery according to an embodiment of the present application.
  • FIG. 4 is a partial cross-sectional structural schematic diagram of a battery according to an embodiment of the present application.
  • FIG. 5 is a flow chart of steps of a battery assembly process according to an embodiment of the present application.
  • step S2 is a flowchart of steps before step S2 according to an embodiment of the present application.
  • FIG. 7 is a flow chart of further steps of a battery assembly process according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral body; it may be a mechanical connection, or a It can be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise expressly defined.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • FIG. 1 is a schematic three-dimensional structure diagram of a battery according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an exploded structure of a battery according to an embodiment of the present application.
  • 3 is a schematic diagram of a partial explosion structure of a battery according to an embodiment of the present application.
  • FIG. 4 is a partial cross-sectional structural schematic diagram of a battery according to an embodiment of the present application.
  • a battery 1 is provided, including: a cell assembly 11, the two ends of the cell assembly 11 are respectively provided with a positive electrode and a negative electrode; a casing 12, the casing The two ends of 12 are respectively formed as an open end 121 and a rolling stop end 122.
  • the cell assembly 11 extends into the casing 12 from the open end 121, and the negative end is limited and stopped at the rolling stop end 122; the negative electrode connecting piece 13, Covered with the open end 121 , the negative electrode connecting sheet 13 is a conductive sheet 113 and is electrically connected to the negative electrode and the casing of the open end 121 respectively through laser welding points.
  • the cell assembly 11 can be inserted into the casing 12 from the open end 121 so that the positive electrode of the cell assembly 11 faces the rolling stop end 122 , the negative electrode faces the open end 121, and the cell assembly 11 is limited under the action of the rolling stopper end 122, and the negative electrode connecting piece 13 is covered on the open end 121, so that the surface of the negative electrode connecting piece 13 is attached to the negative electrode, And laser welding is performed to form a laser welding spot between the negative electrode and the negative electrode connecting sheet 13 . Since the negative electrode connecting sheet 13 is a conductive sheet 113 , electrical conduction between the cell assembly 11 and the negative electrode connecting sheet 13 can be achieved.
  • the edge of the negative electrode connecting piece 13 is attached to the inner wall of the open end 121, and laser welding is performed to form a laser welding spot between the negative electrode connecting piece 13 and the casing 12. Therefore, electrical continuity can be formed between the negative electrode connecting piece 13 and the case 12, so that the case 12 forms a negative electrode with negative electricity, that is, the rolling stop end 122 is negatively charged. Negative, so that the positive and negative of the battery are on the same side.
  • a through hole is provided in the middle of the rolling stop end 122 , and the size of the through hole is smaller than the size of the cell assembly 11 , so as to stop and limit the cell assembly 11 , and at the same time, the through hole can be placed in the center of the through hole.
  • the positive electrode of the external module bus bar is electrically connected to the positive electrode of the battery core assembly 11 under the action of the battery, and then the negative electrode of the external module bus bar is electrically connected to the rolling stop end 122, so as to realize the module bus bar and the battery
  • the battery 1 of the present application is more conducive to the design and welding of the external module busbars.
  • laser welding is performed between the negative electrode of the battery cell assembly 11 and the negative electrode connecting piece 13
  • laser welding is performed between the negative electrode connecting piece 13 and the shell of the open end 121 , so that the negative electrode of the battery cell assembly 11 can be welded by laser.
  • a laser welding spot is formed between the negative electrode connecting plate 13 and the negative electrode connecting plate 13 and a laser welding spot is formed between the negative electrode connecting plate 13 and the casing 12 .
  • the contact area between the cell assembly 11 , the negative electrode connecting piece 13 and the case 12 is larger, thereby improving the overcurrent capability of the cell assembly 11 from the negative electrode to the case 12 and improving the rate performance of the cell assembly 11 .
  • the cell assembly 11 and the housing 12 are both cylindrical, and the material of the negative electrode connecting piece 13 includes any one of copper, iron, and aluminum.
  • the open end 121 is provided with a lip 123 against the negative electrode, and the edge of the negative electrode connecting piece 13 is bent to form a step 131 that fits with the lip 123 .
  • the battery cell assembly 11 includes a positive electrode cover plate 111 fixed on the positive electrode, and the positive electrode cover plate 111 is provided with a conductive sheet 113 that is electrically connected to the battery cell 112 ; the battery 1 includes a positive electrode cover plate 111 provided on The insulating washer 14 between the rolling edge stop end 122 and the insulating washer 14 is provided with a through hole for the conductive sheet 113 to pass through.
  • the positive electrode cover plate 111 By arranging the positive electrode cover plate 111 on the positive electrode of the battery cell 112, and arranging the conductive sheet 113 electrically connected to the battery cell 112 on the positive electrode cover plate 111, the electrical conduction between the positive electrode of the battery cell 112 and the conductive sheet 113 is realized, Furthermore, when the external bus bar module needs to be electrically connected to the battery 1 , the positive electrode of the external bus bar module can be welded to the conductive sheet 113 , which is more convenient for welding the external bus bar module and the positive electrode of the battery 1 .
  • the positive electrode of the cell assembly 11 and the casing 12 are insulated under the action of the insulating gasket, preventing the positive electrode of the cell assembly 11 from being connected to the casing 12.
  • the case 12 is in contact and a short circuit occurs.
  • the insulating gasket is provided with a through hole for the conductive sheet 113 to pass through, so that the conductive sheet 113 is exposed to the housing 12 through the through hole on the insulating gasket.
  • the through holes protrude to facilitate the welding of the external bus bar module and the conductive sheet 113 .
  • the positive electrode cover plate 111 is filled with insulating materials, so that the welding position of the positive electrode cover plate 111 and the rolling stop end 122 is insulated from each other relative to the position of the conductive sheet 113, so as to avoid the positive electrode cover plate 111 and the casing 12. A short circuit occurs due to electrical conduction.
  • laser welding is used between the positive electrode cover plate 111 and the battery cell 112 , and a laser welding spot is formed between the positive electrode cover plate 111 and the battery cell 112 , so as to realize the positive electrode of the positive electrode cover plate 111 and the battery cell 112 electrical conduction between them.
  • the part of the positive cover plate 111 exposed to the casing 12 is sealed and clamped to the through hole in the middle of the rolling stop end 122 , thereby fixing the cell assembly 11 in the casing 12 and preventing the occurrence of the cell assembly 11 relative to the casing 12 . shaking.
  • the battery 1 includes a negative electrode cover plate 15 attached to the surface of the negative electrode connecting piece 13 , the negative electrode cover plate 15 seals the open end 121 , and the negative electrode cover plate 15 is made of plastic, rubber and other insulating materials.
  • the cover plate 15 is attached to the surface of the negative electrode connecting piece 13, and the open end 121 is sealed by the negative electrode cover plate 15, so as to further strengthen the structural strength of the assembly between the cell assembly 11 and the casing 12 under the action of the negative electrode cover plate 15,
  • the cell assembly 11 is prevented from shaking in the casing 12 , and at the same time, the open end 121 can be sealed under the action of the negative cover plate 15 to prevent dust and debris from entering the casing 12 from the open end 121 and affecting the performance of the battery 1 .
  • the battery 1 includes a sealing member 16 , a liquid injection hole 114 is formed on the positive electrode of the cell assembly 11 , and the sealing member 16 is fixed and sealed on the surface of the liquid injection hole 114 .
  • a liquid injection hole 114 on the positive electrode of the cell assembly 11 it is convenient to inject electrolyte into the interior of the cell assembly 11 through the liquid injection hole 114, so as to decompose electrons through the electrolyte.
  • the sealing member 16 on the surface of the liquid hole 114 is used to seal the liquid injection hole 114 to prevent the electrolyte from flowing out of the liquid injection hole 114 .
  • the sealing member 16 is an aluminum nail, and is fixed on the surface of the liquid injection hole 114 by welding, so as to improve the sealing performance of the sealing member 16 to seal the liquid injection hole 114 .
  • FIG. 5 is a flow chart of steps of a battery assembly process according to an embodiment of the present application. As shown in FIG. 5 , in the embodiment of the present application, a battery assembling process is also provided for assembling the above-mentioned battery 1, and the battery assembling process includes:
  • Step S1 Insert the cell assembly 11 into the casing 12 from the open end 121, and make the positive limit of the cell assembly 11 be located at the hemming stop end 122, and the negative electrode of the cell assembly 11 is located at the open end 121;
  • Step S2 Attach the negative electrode connecting piece 13 to the negative electrode and carry out laser welding;
  • Step S3 Cover the negative electrode connecting piece 13 on the open end 121 and perform laser welding.
  • the positive limit of the cell assembly 11 is located at the rolling stop end 122, and the negative electrode of the cell assembly 11 is located at the open end 121, so that the cell The function of the assembly 11 on the rolling edge stop end 122 realizes the limit. Furthermore, by attaching the surface of the negative electrode connecting sheet 13 to the negative electrode, and performing laser welding, a laser welding spot is formed between the negative electrode and the negative electrode connecting sheet 13, and the electrical properties between the cell assembly 11 and the negative electrode connecting sheet 13 are realized. on.
  • the negative electrode connecting piece 13 is covered on the open end 121 and laser welding is performed, that is, the edge of the negative electrode connecting piece 13 is attached to the inner wall of the opening end 121, and laser welding is performed, so that the negative electrode connecting piece 13 and the casing 12 are connected by laser welding.
  • a laser welding spot is formed between the two parts, so as to realize the electrical conduction between the negative electrode connecting piece 13 and the casing 12, so that the casing 12 forms a negative electrode with negative electricity, that is, the rolling stop end 122 is negatively charged. negative electrode.
  • the battery 1 obtained by the battery assembly process of the present application is more conducive to the design and welding of the external module busbars, and the laser welding method of the present application is more favorable.
  • the point can make the contact area between the cell assembly 11 , the negative electrode connecting piece 13 and the casing 12 larger, thereby improving the overcurrent capability of the negative electrode of the cell assembly 11 to the casing 12 and improving the rate performance of the cell assembly 11 .
  • Step S301 piping the open end 121 and forming a lip 123 on the open end 121 against the periphery of the negative electrode; and bending the edge of the negative electrode connecting piece 13 to form a step 131 that fits with the lip 123 .
  • the open end 121 is rolled and a lip 123 against the surrounding of the negative electrode is formed on the open end 121, so as to limit the cell assembly 11. position, the edge of the negative electrode connecting piece 13 is bent out of the step 131 where the lip 123 fits, so that when the negative electrode connecting piece 13 and the shell of the open end 121 are laser welded, the step 131 is made to fit on the lip. 123 and form a positioning function, and can also perform laser welding on the step 131 and the lip 123, improve the welding area between the negative electrode connecting piece 13 and the shell 12, and is more conducive to the negative electrode connecting piece 13 and the shell of the open end 121 Laser welding between parts.
  • FIG. 6 is a flowchart of steps before step S2 according to an embodiment of the present application. As shown in FIG. 6 , in the embodiment of the present application, before the step of inserting the cell assembly 11 into the housing 12 from the open end 121 , the method further includes:
  • Step S201 attach the positive electrode cover plate 111 to the positive electrode and perform laser welding to form the cell assembly 11 ;
  • Step S202 the insulating gasket 14 is loaded into the casing 12 from the open end 121 and attached to the rolling stop end 122 , so that the conductive sheet 113 on the positive electrode cover plate 111 passes through the insulating gasket 14 and is exposed to the casing 12 .
  • the cell assembly 11 is formed by attaching the positive electrode cover plate 111 to the positive electrode of the battery cell 112 and performing laser welding.
  • a conductive sheet 113 electrically connected to the cell 112 is provided on the top, so that the positive electrode of the cell 112 and the conductive sheet 113 can be electrically connected.
  • the insulating gasket is put into the casing 12 from the open end 121 and is attached to the rolling stop end 122, so that the conductive sheet 113 on the positive electrode cover plate 111 passes through the insulating gasket 14 and is exposed to the casing 12, so that the battery cells are
  • the positive electrode of the assembly 11 and the casing 12 are insulated under the action of the insulating gasket, so as to prevent the short circuit caused by the contact between the positive electrode of the cell assembly 11 and the casing 12 .
  • the insulating gasket is provided with a through hole for the conductive sheet 113 to pass through, so that the conductive sheet 113 is exposed to the housing 12 through the through hole on the insulating gasket.
  • the through holes protrude to facilitate the welding of the external bus bar module and the conductive sheet 113 .
  • Step S11 laser welding the positive electrode cover plate 111 and the rolling stop end 122 and sealing the rolling stop end 122 .
  • the structural stability of the cell assembly 11 assembled in the casing 12 can be further improved, and the cell assembly 11 can be prevented from shaking relative to the casing 12.
  • the through hole of the rolling stop end 122 is sealed in a manner to prevent dust and debris from entering the casing 12 from the rolling stop end 122 and affecting the performance of the battery 1 .
  • the battery assembly process further includes:
  • Step S4 injecting electrolyte at the injection hole 114 of the positive electrode
  • Step S5 cover the liquid injection hole 114 with the sealing member 16;
  • Step S6 laser welding the sealing member 16 and the cell assembly 11 .
  • the positive electrode of the cell assembly 11 is provided with a liquid injection hole 114, the electrolyte can be injected into the interior of the cell assembly 11 through the liquid injection hole 114, so as to decompose the electrons through the electrolyte, and then the electrolyte can be covered with the liquid injection hole 114.
  • the sealing member 16 on the surface of the liquid hole 114 is used to seal the liquid injection hole 114 to prevent the electrolyte from flowing out of the liquid injection hole 114.
  • the sealing member 16 and the battery core assembly 11 are laser welded to fix the sealing member 16. On the cell assembly 11, the sealing performance of the sealing member 16 for sealing the liquid injection hole 114 is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及锂电池装配技术领域,公开了一种电池及其组装工艺,包括:电芯组件,电芯组件的两端分别设有正极和负极;壳体,壳体的两端分别形成为开口端和滚边止挡端,电芯组件从开口端伸入壳体内且负极端限位止挡于滚边止挡端;负极连接片,盖合于开口端,负极连接片为导电片并通过激光焊点分别电连接负极和开口端的壳体部。通过本申请的技术方案,能够使电池的正负极位于同一侧,便于外部模组汇流排的设计和焊接,同时还能够增加电芯组件的倍率性能。

Description

一种电池及其组装工艺
本申请要求在2021年03月31日提交中国专利局、申请号为202110351899.1、发明名称为“一种电池及其组装工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池装配技术领域,特别涉及一种电池及其组装工艺。
背景技术
随着锂离子电池技术的日益成熟,锂离子电池作为动力电池广泛应用于电动汽车领域中。锂离子电池的结构件部分也是锂离子动力电池的重要组成部分,它不仅在安全可靠性方面为锂离子电池提供保障,同时也兼顾锂离子电池内部化学体系与外部模组的连接。随着行业的发展,对电池快速充放电的越来越高,对锂电池的过流能力以及安全能力的要求也越来越高,因此结构件的高倍率性能是大势所趋。然而,现有的锂离子电池在制造过程中在电芯负极与壳体之间采用电阻焊的方式,由于电芯与壳体之间电阻焊的接触面积太小,因此将影响电芯的倍率性能,同时,电池的正负位于壳体的相对两端,不利于外部模组汇流排的设计和焊接。
发明内容
本申请旨在提出一种电池及其组装工艺,能够使电池的正负极位于同一侧,便于外部模组汇流排的设计和焊接,同时还能够增加电芯组件的倍率性能。
为达到上述目的,本申请提供了一种电池,包括:电芯组件,电芯组件的两端分别设有正极和负极;壳体,壳体的两端分别形成为开口端和滚 边止挡端,电芯组件从开口端伸入壳体内且负极端限位止挡于滚边止挡端;负极连接片,盖合于开口端,负极连接片为导电片并通过激光焊点分别电连接负极和开口端的壳体部。
可选地,开口端设置有抵持于负极的唇边,负极连接片的边缘折弯形成有与唇边贴合的台阶。
可选地,电芯组件包括固定于正极上的正极盖板,正极盖板上设置有与电芯电连接的导电片;电池包括设置于正极盖板和滚边止挡端之间的绝缘垫圈,绝缘垫圈开设有供导电片穿出的通孔。
可选地,电池包括贴合于负极连接片表面的负极盖板,负极盖板密封开口端。
可选地,电池包括密封件,电芯组件的正极开设有注液孔,密封件固定并密封于注液孔的表面;电芯组件和壳体均为圆柱形,负极连接片的材质包括铜、铁、铝中的任一种。
为达到上述目的,本申请还提供了一种电池组装工艺,用于组装上述的电池,电池组装工艺包括:将电芯组件从开口端插入壳体内,并使得电芯组件的正极限位于滚边止挡端处,电芯组件的负极位于开口端处;将负极连接片与负极贴合并进行激光焊接;将负极连接片盖合于开口端并进行激光焊接。
可选地,电池组装工艺还包括:在将负极连接片盖合于开口端并进行激光焊接的步骤之前,对开口端进行滚边并在开口端形成抵持于负极四周的唇边;并将负极连接片的边缘折弯出与唇边贴合的台阶。
可选地,在将电芯组件从开口端插入壳体的步骤之前,进一步包括步骤:将正极盖板贴合于正极上并进行激光焊接以形成电芯组件;将绝缘垫圈从开口端装入壳体内并与滚边止挡端贴合,使正极盖板上的导电片穿过绝缘垫圈并外露于壳体。
可选地,在将电芯组件从壳体的开口端插入壳体的步骤之后进一步包括步骤:将正极盖板与滚边止挡端进行激光焊接并密封滚边止挡端。
可选地,电池组装工艺还包括步骤:在正极的注液孔处注入电解液;通过密封件盖合于注液孔处;将密封件与电芯组件进行激光焊接。
相对于现有技术,本申请所述的电池及其组装工艺具有以下优势:
本申请的电池组装工艺中,通过负极连接片与电芯组件的负极和壳体进行激光焊接,从而在负极和负极连接片之间形成激光焊点,以及负极连接片和壳体之间形成激光焊点,进而使壳体形成带有负电的负极,最终使电池的正负极位于同一端,更利于外部模组汇流排的设计和焊接。同时,激光焊点能够使电芯组件、负极连接片以及壳体之间的接触面积更大,从而提高电芯组件负极到壳体上上的过流能力,提高电芯组件的倍率性能。本申请的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施方式及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请一实施例的电池的立体结构示意图;
图2是根据本申请一实施例的电池的爆炸结构示意图;
图3是根据本申请一实施例的电池的局部爆炸结构示意图;
图4是根据本申请一实施例的电池的局部剖视结构示意图。
图5是根据本申请一实施例的电池组装工艺的步骤流程图;
图6是根据本申请一实施例的步骤S2之前的步骤流程图;
图7是根据本申请一实施例的电池组装工艺的进一步步骤流程图。
附图标记说明:
1电池
11电芯组件                          12壳体
13负极连接片                        14绝缘垫圈
15负极盖板                          16密封件
111正极盖板                         112电芯
113导电片                           114注液孔
121开口端                           122滚边止挡端
123唇边
131台阶
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互组合。
在本申请的实施方式中所提到的“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
另外,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面将参考附图并结合实施方式来详细说明本申请。
图1是根据本申请一实施例的电池的立体结构示意图。图2是根据本 申请一实施例的电池的爆炸结构示意图。图3是根据本申请一实施例的电池的局部爆炸结构示意图。图4是根据本申请一实施例的电池的局部剖视结构示意图。如图1-图4所示,在本申请的实施例中,提供一种电池1,包括:电芯组件11,电芯组件11的两端分别设有正极和负极;壳体12,壳体12的两端分别形成为开口端121和滚边止挡端122,电芯组件11从开口端121伸入壳体12内且负极端限位止挡于滚边止挡端122;负极连接片13,盖合于开口端121,负极连接片13为导电片113并通过激光焊点分别电连接负极和开口端121的壳体部。
由于壳体12的两端分别为开口端121和滚边止挡端122,因此可将电芯组件11从开口端121伸入壳体12内,使电芯组件11的正极朝向滚边止挡端122,负极朝向开口端121,并在滚边止挡端122的作用下对电芯组件11进行限位,通过负极连接片13盖合于开口端121,使负极连接片13的表面与负极贴合,并进行激光焊接,从而在负极和负极连接片13之间形成激光焊点,由于负极连接片13为导电片113,因此可实现电芯组件11和负极连接片13之间的电性导通。负极连接片13的边缘与开口端121的内壁贴合,并进行激光焊接,从而在负极连接片13和壳体12之间形成激光焊点,由于负极连接片13与电芯组件11之间形成电性导通,因此可在负极连接片13和壳体12之间形成电性导通,进而使壳体12形成带有负电的负极,也即,使滚边止挡端122为带有负电的负极,使电池的正负极位于同一侧。
在本申请的实施例中,滚边止挡端122中间设有通孔,且通孔的尺寸小于电芯组件11的尺寸,以对电芯组件11进行止挡限位,同时还能在通孔的作用下将外部模组汇流排的正极与电芯组件11的正极进行电连接,进而将外部模组汇流排的负极与滚边止挡端122进行电连接,即可实现模组汇流排与电池1之间的电性导通,相对于现有技术中正负极位于两端的电池而言,本申请的电池1更利于外部模组汇流排的设计和焊接。
在本申请的实施例中,电芯组件11的负极与负极连接片13之间通过激光焊接,负极连接片13与开口端121的壳体部进行激光焊接,从而可在 电芯组件11的负极和负极连接片13之间形成激光焊点,在负极连接片13和壳体12之间形成激光焊点,相对于现有技术中通过电阻焊的方式而言,本申请的激光焊点能够使电芯组件11、负极连接片13以及壳体12之间的接触面积更大,从而提高电芯组件11负极到壳体12上上的过流能力,提高电芯组件11的倍率性能。
在本申请的实施例中,电芯组件11和壳体12均为圆柱形,负极连接片13的材质包括铜、铁、铝中的任一种。
在本申请的实施例中,开口端121设置有抵持于负极的唇边123,负极连接片13的边缘折弯形成有与唇边123贴合的台阶131。
通过在开口端121设置唇边123,并在负极连接片13的边缘折弯出于唇边123贴合的台阶131,从而在对负极连接片13和开口端121的壳体部进行激光焊接时,使台阶131贴合于唇边123上并形成定位作用,并且还能够对台阶131和唇边123进行激光焊接,提高负极连接片13和壳体12之间的焊接面积,更利于对负极连接片13和开口端121的壳体部之间的激光焊接。
在本申请的实施例中,电芯组件11包括固定于正极上的正极盖板111,正极盖板111上设置有与电芯112电连接的导电片113;电池1包括设置于正极盖板111和滚边止挡端122之间的绝缘垫圈14,绝缘垫圈14开设有供导电片113穿出的通孔。
通过将正极盖板111设置于电芯112的正极上,并在正极盖板111上设置与电芯112电连接的导电片113,从而实现电芯112正极与导电片113的电性导通,进而在需要将外部汇流排模组与电池1电连接时,可将外部汇流排模组的正极与导电片113进行焊接,更利于外部汇流排模组和电池1正极焊接。
通过在正极盖板111和滚边止挡端122之间设置绝缘垫片,从而使电芯组件11的正极与壳体12在绝缘垫片的作用下实现绝缘作用,防止电芯组件11的正极与壳体12接触而发生短路的情况。在绝缘垫片上开设有供导电片113穿出的通孔,以使导电片113经过绝缘垫片上的通孔外露于壳 体12,也即,导电片113从滚边止挡端122中间的通孔伸出,方便外部汇流排模组与导电片113进行焊接。
可以理解,正极盖板111内填充有绝缘材料,从而使正极盖板111与滚边止挡端122进行焊接的位置相对于导电片113的位置互相绝缘,从而避免正极盖板111与壳体12之间由于电性导通而发生短路的情况。
在本申请的实施例中,正极盖板111与电芯112之间通过激光焊接,并在正极盖板111和电芯112之间形成激光焊点,从而实现正极盖板111和电芯112正极之间的电性导通。正极盖板111外露于壳体12的部分密封并卡接于滚边止挡端122中间的通孔处,从而将电芯组件11固定于壳体12内,防止电芯组件11相对壳体12发生晃动。
在本申请的实施例中,电池1包括贴合于负极连接片13表面的负极盖板15,负极盖板15密封开口端121,负极盖板15由塑料、橡胶等绝缘材料制成,将负极盖板15贴合于负极连接片13的表面,并由负极盖板15密封开口端121,从而在负极盖板15的作用下进一步加固电芯组件11和壳体12之间装配的结构强度,防止电芯组件11在壳体12内发生晃动,同时,还能在负极盖板15的作用下密封开口端121,防止灰尘杂物从开口端121进入壳体12内而影响电池1的性能。
在本申请的实施例中,电池1包括密封件16,电芯组件11的正极开设有注液孔114,密封件16固定并密封于注液孔114的表面。通过在电芯组件11的正极开设注液孔114,以便于通过注液孔114向电芯组件11的内部注入电解液,以通过电解液起到分解电子的作用,通过设置可盖合于注液孔114表面的密封件16以对注液孔114进行密封,防止电解液从注液孔114处流出。
可以理解,密封件16为铝钉,且通过焊接的形式固定于注液孔114的表面,提高密封件16密封注液孔114的密封性。
图5是根据本申请一实施例的电池组装工艺的步骤流程图。如图5所示,在本申请的实施例中,还提供了一种电池组装工艺,用于组装上述的电池1,电池组装工艺包括:
步骤S1:将电芯组件11从开口端121插入壳体12内,并使得电芯组件11的正极限位于滚边止挡端122处,电芯组件11的负极位于开口端121处;步骤S2:将负极连接片13与负极贴合并进行激光焊接;
步骤S3:将负极连接片13盖合于开口端121并进行激光焊接。
通过先将电芯组件11从开口端121插入壳体12内,并使得电芯组件11的正极限位于滚边止挡端122处,电芯组件11的负极位于开口端121处,以使电芯组件11在滚边止挡端122的作用实现限位。进而,通过负极连接片13的表面与负极贴合,并进行激光焊接,从而在负极和负极连接片13之间形成激光焊点,并实现电芯组件11和负极连接片13之间的电性导通。最后,将负极连接片13盖合于开口端121并进行激光焊接,也即将负极连接片13的边缘与开口端121的内壁贴合,并进行激光焊接,从而在负极连接片13和壳体12之间形成激光焊点,实现负极连接片13和壳体12之间的电性导通,进而使壳体12形成带有负电的负极,也即,使滚边止挡端122为带有负电的负极。
通过本申请的电池组装工艺获得的电池1,相对于现有技术中正负极位于两端的电池1而言,本申请的电池1更利于外部模组汇流排的设计和焊接,并且本申请的激光焊点能够使电芯组件11、负极连接片13以及壳体12之间的接触面积更大,从而提高电芯组件11负极到壳体12上上的过流能力,提高电芯组件11的倍率性能。
在本申请的实施例中,在将负极连接片13盖合于开口端121并进行激光焊接的步骤之前还包括:
步骤S301:对开口端121进行滚边并在开口端121形成抵持于负极四周的唇边123;并将负极连接片13的边缘折弯出与唇边123贴合的台阶131。
在将负极连接片13盖合于开口端121并进行激光焊接之前,通过对开口端121进行滚边,并在开口端121形成抵持于负极四周的唇边123,以对电芯组件11进行限位,在负极连接片13的边缘折弯出于唇边123贴合的台阶131,从而在对负极连接片13和开口端121的壳体部进行激光焊接时,使台阶131贴合于唇边123上并形成定位作用,并且还能够对台阶131和 唇边123进行激光焊接,提高负极连接片13和壳体12之间的焊接面积,更利于对负极连接片13和开口端121的壳体部之间的激光焊接。
图6是根据本申请一实施例的步骤S2之前的步骤流程图。如图6所示,在本申请的实施例中,在将电芯组件11从开口端121插入壳体12的步骤之前,进一步包括:
步骤S201:将正极盖板111贴合于正极上并进行激光焊接以形成电芯组件11;
步骤S202:将绝缘垫圈14从开口端121装入壳体12内并与滚边止挡端122贴合,使正极盖板111上的导电片113穿过绝缘垫圈14并外露于壳体12。
在将电芯组件11从开口端121插入壳体12的步骤之前,先通过将正极盖板111贴合于电芯112的正极上并进行激光焊接来形成电芯组件11,由于正极盖板111上设置有与电芯112电连接的导电片113,从而可实现电芯112正极与导电片113的电性导通。进而,将绝缘垫片从开口端121装入壳体12内与滚边止挡端122贴合,使正极盖板111上的导电片113穿过绝缘垫圈14并外露于壳体12,使电芯组件11的正极与壳体12在绝缘垫片的作用下实现绝缘作用,防止电芯组件11的正极与壳体12接触而发生短路的情况。在绝缘垫片上开设有供导电片113穿出的通孔,以使导电片113经过绝缘垫片上的通孔外露于壳体12,也即,导电片113从滚边止挡端122中间的通孔伸出,方便外部汇流排模组与导电片113进行焊接。
在本申请的实施例中,在将电芯组件11从壳体12的开口端121插入壳体12的步骤之后进一步包括:
步骤S11:将正极盖板111与滚边止挡端122进行激光焊接并密封滚边止挡端122。
通过将正极盖板111与滚边止挡端122进行激光焊接,可进一步提升电芯组件11在壳体12内装配的结构稳定性,防止电芯组件11相对壳体12发生晃动,同时通过激光焊接的方式密封滚边止挡端122的通孔,可防止灰尘杂物从滚边止挡端122进入壳体12内而对电池1的性能造成影响。
图7是根据本申请一实施例的电池组装工艺的进一步步骤流程图。如图7所示,在本申请的实施例中,电池组装工艺还包括:
步骤S4:在正极的注液孔114处注入电解液;
步骤S5:通过密封件16盖合于注液孔114处;
步骤S6:将密封件16与电芯组件11进行激光焊接。
由于电芯组件11的正极开设注液孔114,从而可通过注液孔114向电芯组件11的内部注入电解液,以通过电解液起到分解电子的作用,进而通过设置可盖合于注液孔114表面的密封件16以对注液孔114进行密封,防止电解液从注液孔114处流出,最后通过将密封件16与电芯组件11进行激光焊接,以将密封件16固定于电芯组件11上,提高密封件16密封注液孔114的密封性。
以上所述仅为本申请的较佳实施方式而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电池,其特征在于,包括:
    电芯组件(11),所述电芯组件(11)的两端分别设有正极和负极;
    壳体(12),所述壳体(12)的两端分别形成为开口端(121)和滚边止挡端(122),所述电芯组件(11)从所述开口端伸入所述壳体(12)内且负极端限位止挡于所述滚边止挡端(122);
    负极连接片(13),盖合于所述开口端(121),所述负极连接片(13)为导电片并通过激光焊点分别电连接所述负极和所述开口端(121)的壳体部。
  2. 根据权利要求1所述的电池,其特征在于,所述开口端(121)设置有抵持于所述负极的唇边(123),所述负极连接片(13)的边缘折弯形成有与所述唇边(123)贴合的台阶(131)。
  3. 根据权利要求1所述的电池,其特征在于,所述电芯组件(11)包括固定于所述正极上的正极盖板(111),所述正极盖板(111)上设置有与所述电芯(112)电连接的导电片(113);
    所述电池包括设置于所述正极盖板(111)和所述滚边止挡端(122)之间的绝缘垫圈(14),所述绝缘垫圈(14)开设有供所述导电片(113)穿出的通孔。
  4. 根据权利要求1所述的电池,其特征在于,所述电池包括贴合于所述负极连接片(13)表面的负极盖板(15),所述负极盖板(15)密封所述开口端(121)。
  5. 根据权利要求1-4任一项所述的电池,其特征在于,所述电池包括密封件(16),所述电芯组件(11)的正极开设有注液孔(114),所述密封件(16)固定并密封于所述注液孔(114)的表面;
    所述电芯组件(11)和所述壳体(12)均为圆柱形,所述负极连接片(13)的材质包括铜、铁、铝中的任一种。
  6. 一种电池组装工艺,用于组装根据权利要求1-5任一项所述的电池,其特征在于,所述电池组装工艺包括:
    将所述电芯组件(11)从所述开口端(121)插入所述壳体(12)内,并使得所述电芯组件(11)的正极限位于所述滚边止挡端(122)处,所述电芯组件(11)的负极位于所述开口端(121)处;
    将所述负极连接片(13)与所述负极贴合并进行激光焊接;
    将所述负极连接片(13)盖合于所述开口端(121)并进行激光焊接。
  7. 根据权利要求6所述的电池组装工艺,其特征在于,在将所述负极连接片(13)盖合于所述开口端(121)并进行激光焊接的步骤之前还包括:对所述开口端(121)进行滚边并在所述开口端(121)形成抵持于所述负极四周的唇边(123);并将所述负极连接片(13)的边缘折弯出与所述唇边(123)贴合的台阶(131)。
  8. 根据权利要求6所述的电池组装工艺,其特征在于,在将所述电芯组件(11)从所述开口端(121)插入所述壳体(12)的步骤之前,进一步包括:
    将正极盖板(111)贴合于所述正极上并进行激光焊接以形成电芯组件(11);
    将绝缘垫圈(14)从所述开口端(121)装入所述壳体(12)内并与所述滚边止挡端(122)贴合,使所述正极盖板(111)上的导电片(113)穿过所述绝缘垫圈(14)并外露于所述壳体(12)。
  9. 根据权利要求8所述的电池组装工艺,其特征在于,在将电芯组件(11)从壳体(12)的开口端(121)插入所述壳体(12)的步骤之后进一 步包括:将所述正极盖板(111)与所述滚边止挡端(122)进行激光焊接并密封所述滚边止挡端(122)。
  10. 根据权利要求6所述的电池组装工艺,其特征在于,所述电池组装工艺还包括:
    在所述正极的注液孔(114)处注入电解液;
    通过密封件(16)盖合于所述注液孔(114)处;
    将所述密封件(16)与所述电芯组件(11)进行激光焊接。
PCT/CN2022/084420 2021-03-31 2022-03-31 一种电池及其组装工艺 WO2022206897A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22779077.1A EP4290659A1 (en) 2021-03-31 2022-03-31 Battery and assembly process therefor
US18/549,773 US20240154176A1 (en) 2021-03-31 2022-03-31 Battery and assembling method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110351899.1A CN113097633A (zh) 2021-03-31 2021-03-31 一种电池及其组装工艺
CN202110351899.1 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022206897A1 true WO2022206897A1 (zh) 2022-10-06

Family

ID=76672828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084420 WO2022206897A1 (zh) 2021-03-31 2022-03-31 一种电池及其组装工艺

Country Status (4)

Country Link
US (1) US20240154176A1 (zh)
EP (1) EP4290659A1 (zh)
CN (1) CN113097633A (zh)
WO (1) WO2022206897A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097633A (zh) * 2021-03-31 2021-07-09 蜂巢能源科技(无锡)有限公司 一种电池及其组装工艺
CN214336793U (zh) * 2021-03-31 2021-10-01 蜂巢能源科技(无锡)有限公司 一种圆柱电池
CN113823874B (zh) * 2021-07-21 2023-10-31 星恒电源股份有限公司 便于回收利用的圆柱电池模组及回收利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048365A1 (en) * 2003-08-28 2005-03-03 Matsushita Electric Industrial Co., Ltd. Battery and manufacturing method thereof
CN206461044U (zh) * 2017-02-13 2017-09-01 山东巨维新能源股份有限公司 端面引流结构的钢壳圆柱电池
CN210245557U (zh) * 2019-07-04 2020-04-03 深圳金山电池有限公司 纽扣电池
CN112531295A (zh) * 2020-12-22 2021-03-19 厦门海辰新能源科技有限公司 一种锂离子电池结构及极耳电连接方法
CN113097633A (zh) * 2021-03-31 2021-07-09 蜂巢能源科技(无锡)有限公司 一种电池及其组装工艺
CN214336793U (zh) * 2021-03-31 2021-10-01 蜂巢能源科技(无锡)有限公司 一种圆柱电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691260B2 (ja) * 1998-10-30 2005-09-07 三洋電機株式会社 組電池及びその連結体
US7875379B2 (en) * 2005-07-08 2011-01-25 Greatbatch Ltd. Electrochemical cell having a pocket separator design
US7785723B2 (en) * 2007-07-05 2010-08-31 Yun-Zhao Liu Battery device with plural joined-together batteries
CN201781032U (zh) * 2010-09-29 2011-03-30 广东正飞移动照明有限公司 一种锂离子电池及应用该锂离子电池的充电器
TWI450470B (zh) * 2011-02-18 2014-08-21 Guangdong Jetfast Portable Lighting Co Ltd 移動充電器
KR102517901B1 (ko) * 2015-10-02 2023-04-03 삼성에스디아이 주식회사 이차 전지
KR102371195B1 (ko) * 2017-04-07 2022-03-07 삼성에스디아이 주식회사 이차 전지 및 이를 이용한 이차 전지 모듈
WO2020055745A1 (en) * 2018-09-12 2020-03-19 Cardiac Pacemakers, Inc. Open tube battery housing
CN112151732A (zh) * 2020-09-30 2020-12-29 星恒电源(滁州)有限公司 一种圆形锂电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048365A1 (en) * 2003-08-28 2005-03-03 Matsushita Electric Industrial Co., Ltd. Battery and manufacturing method thereof
CN206461044U (zh) * 2017-02-13 2017-09-01 山东巨维新能源股份有限公司 端面引流结构的钢壳圆柱电池
CN210245557U (zh) * 2019-07-04 2020-04-03 深圳金山电池有限公司 纽扣电池
CN112531295A (zh) * 2020-12-22 2021-03-19 厦门海辰新能源科技有限公司 一种锂离子电池结构及极耳电连接方法
CN113097633A (zh) * 2021-03-31 2021-07-09 蜂巢能源科技(无锡)有限公司 一种电池及其组装工艺
CN214336793U (zh) * 2021-03-31 2021-10-01 蜂巢能源科技(无锡)有限公司 一种圆柱电池

Also Published As

Publication number Publication date
US20240154176A1 (en) 2024-05-09
CN113097633A (zh) 2021-07-09
EP4290659A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
WO2022206897A1 (zh) 一种电池及其组装工艺
KR101155889B1 (ko) 이차 전지
KR101146414B1 (ko) 이차 전지
EP2677563B1 (en) Rechargeable battery and module of the same
KR101084056B1 (ko) 이차 전지
US9819002B2 (en) Rechargeable battery and rechargeable battery module including the same
US20170338448A1 (en) Prismatic secondary battery
US9515297B2 (en) Rechargeable battery
CN113394493A (zh) 锂离子电池及具有其的电动车
KR101836339B1 (ko) 밀폐형 전지
US10033026B2 (en) Rechargeable battery having an external terminal and module thereof
JP6230543B2 (ja) 電気コネクタおよびそれを備える電池
KR102249896B1 (ko) 이차 전지 모듈 및 이차 전지 팩
CN102136561A (zh) 可再充电电池
WO2022206894A1 (zh) 一种圆柱电池
KR101724001B1 (ko) 이차 전지
CN116404323A (zh) 一种电池及电池制作方法
EP2736099A1 (en) Rechargeable battery
EP2775554B1 (en) Rechargeable battery
CN215578767U (zh) 电池盖板组件及具有其的电动车
KR101711983B1 (ko) 이차 전지
KR20180001063A (ko) 이차 전지
CN215578870U (zh) 电池支架及具有其的电动车
KR20150039457A (ko) 이차 전지
CN215578766U (zh) 锂离子电池及具有其的电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549773

Country of ref document: US

Ref document number: 2022779077

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779077

Country of ref document: EP

Effective date: 20230908

NENP Non-entry into the national phase

Ref country code: DE