WO2022206876A1 - 一种可加热膨胀微球的组合物及其应用 - Google Patents

一种可加热膨胀微球的组合物及其应用 Download PDF

Info

Publication number
WO2022206876A1
WO2022206876A1 PCT/CN2022/084264 CN2022084264W WO2022206876A1 WO 2022206876 A1 WO2022206876 A1 WO 2022206876A1 CN 2022084264 W CN2022084264 W CN 2022084264W WO 2022206876 A1 WO2022206876 A1 WO 2022206876A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
expandable microspheres
composition
expandable
microspheres
Prior art date
Application number
PCT/CN2022/084264
Other languages
English (en)
French (fr)
Inventor
李志强
高明亮
于永江
周洪玉
周彬
王鹏飞
魏蕊
Original Assignee
烟台正海磁性材料股份有限公司
烟台高氏新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台正海磁性材料股份有限公司, 烟台高氏新材料科技有限公司 filed Critical 烟台正海磁性材料股份有限公司
Priority to KR1020237034310A priority Critical patent/KR20230155541A/ko
Priority to US18/553,557 priority patent/US20240191049A1/en
Priority to JP2023560627A priority patent/JP2024511528A/ja
Priority to EP22779058.1A priority patent/EP4317278A1/en
Publication of WO2022206876A1 publication Critical patent/WO2022206876A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds

Definitions

  • the invention belongs to the field of expanded microspheres, and particularly relates to a composition of heat-expandable microspheres and applications thereof.
  • Expanded microspheres are thermoplastic hollow polymer microspheres consisting of a thermoplastic polymer shell and a liquid alkane encapsulated inside the shell. When heated to a certain temperature, the thermoplastic polymer shell softens, the liquid alkane in the shell gradually gasifies, the gas expands, the pressure in the shell increases, and the volume expansion of the microspheres becomes larger. Based on the above-mentioned properties of expanded microspheres, they are usually widely used in thermally expandable coatings, plastics, wallpapers, adhesives, inks, printing and other fields.
  • the expanded microspheres with thin shell walls will rupture at higher temperature and internal pressure, so that the expected expansion ratio of the expanded microspheres cannot be achieved, and it will also lead to coatings, adhesives, etc. containing the expanded microspheres. Due to the decrease in adhesion during application, the thin-walled expanded microspheres have been in a state of long-term disuse.
  • the thickness of the shell wall of the microspheres ensures that the shell wall thickness is sufficient to resist the problems of mixing, stirring, pouring, curing and bonding of adhesive substances, as well as damage and/or cracking during the trimming process, which has become an urgent technical problem to be solved in the art.
  • the present invention provides a composition of heat-expandable microspheres, comprising heat-expandable microspheres and a solvent, wherein:
  • the particle size of the heat-expandable microspheres is 5 ⁇ m ⁇ D ⁇ 40 ⁇ m; for example, 8 ⁇ m ⁇ D ⁇ 20 ⁇ m; 15, 16, 17, 18, 19 or 20 ⁇ m;
  • the thickness of the walls of at least 60% of the heat-expandable microspheres is less than or equal to 5 ⁇ m; for example, the thickness is less than or equal to 3 ⁇ m, for example, the thickness is 4.5 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m;
  • the solvent contains at least one organic solvent with a boiling point above 220°C.
  • the initial thermal expansion temperature T1 of the heat-expandable microspheres is 100 °C ⁇ T1 ⁇ 200°C, for example, T1 is 125 ° C ⁇ T1 ⁇ 180 °C, exemplarily 120°C, 130°C °C, 150°C, 160°C, 170°C, 190°C, or any value between the recited temperature points.
  • the maximum heat-resistant temperature T 2 of the heat - expandable microspheres is 145° C ⁇ T2 ⁇ 215 °C, for example, T2 is 150° C ⁇ T2 ⁇ 205 °C, exemplarily 155°C, 160°C, 165°C, 175°C, 185°C, 195°C, 200°C, or any value between the recited temperature points.
  • the weight proportion of the heat-expandable microspheres with a particle size of 8 ⁇ m ⁇ D ⁇ 20 ⁇ m is not less than 60% of the total weight of the heat-expandable microspheres, such as 60%, 65%, 70%, 72%, 76%, 80%, 90%, 100%;
  • the weight proportion of the heat-expandable microspheres with a particle size of 10 ⁇ m ⁇ D ⁇ 15 ⁇ m is not less than 50% of the total weight of the heat-expandable microspheres, for example, 55%, 56%, 60%, 70% %.
  • the heat-expandable microspheres comprise a thermoplastic polymer shell and a liquid alkane enclosed by the thermoplastic polymer shell.
  • the thermoplastic polymer shell is made of a material that can be melted by heat or a material that can be split when heated and expanded.
  • the material is selected from copolymers of vinylidene chloride and acrylonitrile, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, vinylidene Homopolymers of vinylidene chloride, random terpolymers of vinylidene chloride, acrylonitrile and divinylbenzene, polystyrene or polyvinyl chloride.
  • the liquid alkane may be selected from one, two or more of liquid ethane, liquid propane, liquid isobutane, n-pentane, and isopentane.
  • the organic solvent with a boiling point above 220° C. may be selected from dodecyl alcohol esters.
  • the solvent in addition to at least one organic solvent with a boiling point above 220° C., the solvent may also contain one or both of ethylene glycol butyl ether and dipropylene glycol butyl ether.
  • the "particle size” refers to the median particle size D 50 of the heat-expandable microspheres before heat-expansion
  • the "thickness” refers to the thickness of the shell wall of a single heat-expandable microsphere before heat-expansion.
  • the above particle size is the volume average diameter, and the diameter of the unexpanded heat-expandable microspheres, and the thickness of the shell walls of the microspheres can be determined by any method known in the art.
  • the weight ratio of the heat-expandable microspheres to the solvent is (4-40):1, preferably (5-20):1, exemplarily 4:1, 5:1, 6:1, 8:1.2, 7:1, 8:1, 9:1, 10:1, 15:1, 17:1.
  • the composition of heat-expandable microspheres may also optionally contain inorganic fibers.
  • the inorganic fibers are in the form of filaments or sheets (eg, flakes).
  • the inorganic fibers may be selected from one, two or more of nano-aluminosilicate fibers, carbon fibers, boron fibers, and the like. After the expansion of the composition, the inorganic fibers can be infiltrated with the resin in the following coating, and play the role of skeleton support and increasing strength in the following coating, and improve the strength and shrinkage resistance of the expanded coating.
  • the weight ratio of the inorganic fibers to the solvent is (0-2):1, such as (0.5-1.5):1, exemplarily 0.5:1, 3:5, 0.7:1 , 0.85:1, 0.9:1, 1:1, 1.2:1.
  • the expansion ratio of the composition of the heat-expandable microspheres is 150-300%, for example, 180-250%.
  • the composition of heat-expandable microspheres comprises heat-expandable microspheres, a solvent and inorganic fibers, wherein:
  • the weight ratio of heat-expandable microspheres with a particle size of 8 ⁇ m ⁇ D ⁇ 20 ⁇ m is not less than 60% of the total weight of the heat-expandable microspheres, for example, 60%, 65%, 70%, 72% %, 76%, 80%, 90%, 100%;
  • the weight proportion of the heat-expandable microspheres with a particle size of 10 ⁇ m ⁇ D ⁇ 15 ⁇ m is not less than 50% of the total weight of the heat-expandable microspheres, such as 55%, 56%, 60%, 70%;
  • the thickness of the walls of at least 60% of the heat-expandable microspheres is less than or equal to 3 ⁇ m;
  • the solvent contains at least dodecyl alcohol ester, and the weight ratio of the heat-expandable microspheres to the solvent is (5-20): 1;
  • the inorganic fibers are nano-aluminosilicate fibers, and the weight ratio of the inorganic fibers to the solvent is (0.5-1.5):1.
  • composition of heat-expandable microspheres comprises heat-expandable microspheres, a solvent and inorganic fibers, wherein:
  • the weight proportion of heat-expandable microspheres with a particle size of 8 ⁇ m ⁇ D ⁇ 20 ⁇ m is not less than 72% of the total weight of the heat-expandable microspheres
  • the weight proportion of heat-expandable microspheres with a particle size of 10 ⁇ m ⁇ D ⁇ 15 ⁇ m is not less than 56% of the total weight of the heat-expandable microspheres
  • the thickness of the walls of at least 73% of the heat-expandable microspheres is less than or equal to 5 ⁇ m;
  • the solvent contains at least dodecyl alcohol ester, and the weight ratio of the heat-expandable microspheres to the solvent is 17:1;
  • the inorganic fibers are nano-aluminosilicate fibers, and the weight ratio of the inorganic fibers to the solvent is 3:5;
  • the average thickness of the heat-expandable microspheres is 3.5 ⁇ m
  • the particle size D of the heat-expandable microspheres is 13.15 ⁇ m.
  • the present invention also provides a method for preparing the above composition of heat-expandable microspheres, comprising mixing the heat-expandable microspheres with a solvent, and optionally adding or not adding inorganic fibers to obtain the composition.
  • the heat-expandable microspheres have the particle size range, weight ratio, and wall thickness as described above.
  • the solvent and inorganic fibers have the meanings and amounts as described above.
  • the heat-expandable microspheres of the above particle size range can be obtained by mixing two, three or more types of heat-expandable microsphere raw materials (referred to as "raw material microspheres"). Wherein, the raw material microspheres can be selected from the types of microspheres known in the art.
  • the raw material microspheres may contain at least Q1 type microspheres and Q2 type microspheres.
  • the particle size of the Q1 type microspheres is 5 ⁇ m ⁇ D ⁇ 16 ⁇ m, and the weight ratio of the Q1 type microspheres is not less than 50% of the weight of the raw material microspheres, such as 50%, 60%, 70%.
  • the present invention also provides the use of the above-described composition of heat-expandable microspheres in coatings; preferably in aqueous coatings; more preferably in improving the stability of coatings formed from said coatings, such as by improving the internal void support of the coatings , forming a coating with a stable structure.
  • the weight ratio of the composition of the expandable microspheres to the coating is 1:(4-25), such as 1:(5-15), exemplarily 1:5.7, 1:6, 1:8, 1:9, 1:10, 1:11.
  • the coating can be used as an adhesive in the automotive industry, such as an adhesive used for the fixing of magnets in the assembly of an automobile engine.
  • the magnetic material is a NdFeB magnet.
  • the coating is a water-based coating.
  • the coating is prepared from a coating composition comprising an aqueous thermoplastic resin, an aqueous thermosetting resin, and a hot melt filling resin.
  • the water-based thermoplastic resin is selected from at least one of water-based acrylic resins and polyurethane resins.
  • the water-based thermosetting resin is selected from at least one of water-based epoxy resin and hydroxyacrylic acid.
  • the hot melt filling resin is selected from at least one of modified chlorinated polyvinyl chloride, polyester, polyurethane, polyamide, polyethersulfone, epoxy resin and polymethylmethacrylate .
  • the present invention also provides a method for improving the stability of the heat-expandable coating, comprising the steps of: mixing the heat-expandable microsphere composition with the coating composition;
  • both the expandable microsphere composition and the coating composition have the meanings and mass ratios shown above.
  • the method comprises: applying the mixed composition of heat-expandable microspheres and the coating composition on a substrate body, and then heating the substrate body to obtain the heat-expandable coating .
  • the base body is a magnetic material, preferably a NdFeB magnet.
  • the application may be selected from means known in the art, such as spraying, rolling, brushing, coating, electroplating, dipping, rolling, etc. to combine the mixed heat-expandable microspheres
  • means known in the art such as spraying, rolling, brushing, coating, electroplating, dipping, rolling, etc. to combine the mixed heat-expandable microspheres
  • the present invention also provides a substrate comprising a coating layer and a substrate body, wherein the coating layer is prepared from a coating containing the above-mentioned composition of heat-expandable microspheres.
  • the coating is located on the surface of the base body.
  • the base body has the meaning as described above.
  • the coating material has the meaning as described above.
  • the inventors of the present application found that due to the uneven wall thickness and/or particle size distribution of the heat-expandable microspheres, the thin-walled spheres would preferentially break when subjected to the same temperature and internal pressure, thereby The microspheres cannot reach the expected expansion ratio during application, which in turn affects the temperature resistance and bonding properties of the coatings containing expandable microspheres in the magnet fixation of automobile engine assemblies.
  • the coating containing the composition can rapidly soften and destroy the thin-shelled spheres in a short period of time during the secondary heating and expansion process.
  • the balloon is wrapped and hardened to form a stable hollow structure.
  • the obtained thermal expansion coating has stable structure, high resistance to thermal shrinkage, high mechanical strength and adhesion, and can be used for fixing high temperature resistant parts, and it can be placed in a high temperature environment for a long time (140-180 °C). ) to maintain bond stability.
  • Figure 1 is a schematic diagram of the structure of the heat-expandable microsphere, wherein 1-sphere, 2-shell wall.
  • FIG. 2 is a topography of the heat-expandable microspheres of Example A2 in an unexpanded state (magnified 500 times, the scale is 100 ⁇ m).
  • FIG. 3 is a topography of the coating containing heat-expandable microspheres of Example B2 in an unexpanded state (magnification 500 times, scale bar is 100 ⁇ m).
  • FIG. 4 is a topography of the coating containing heat-expandable microspheres of Example B2 in a fully expanded state (magnification 300 times, scale bar is 100 ⁇ m).
  • the heat-expandable microspheres used in the present invention can be purchased from the market, for example, two or more compositions selected from 920DU80, 920DU20, 909DU80, and 920DU40 in the Expancel series of AKZO-Nobel Company.
  • Table 1 shows the main parameters of the four heat-expandable microspheres in the Expancel series from AKZO-Nobel.
  • Example A1 Using different combinations of heat-expandable microspheres in the Expancel series of AKZO-Nobel company, the microspheres of type 920DU80 and 920DU20 were uniformly mixed according to the weight ratio of 1:2, and the microspheres were tested by BFS-MAGIC of German sympatec company The particle size of the combination is measured three times and the average value is obtained to obtain a combination of microspheres with a particle size of 12.08 ⁇ m of heat-expandable microspheres, Q1 type (particle size 5 ⁇ m ⁇ D ⁇ 16 ⁇ m, that is, in this embodiment, 920DU20 is the Q1 type microsphere ) accounts for 67% of the total weight of the microspheres;
  • Example A2 Using a combination of different heat-expandable microspheres in the Expancel series of AKZO-Nobel company, the microspheres of models 920DU80, 920DU20 and 920DU40 were uniformly mixed according to the weight ratio of 1:1:1, and were prepared by BFS of German sympatec company. -MAGIC tests the particle size of the microsphere combination, and takes the average value of the three tests to obtain a microsphere combination with a particle size of 13.15 ⁇ m of heat-expandable microspheres. 920DU20 and 920DU40 together are Q1 type microspheres) accounting for 65% of the total weight of the microspheres;
  • Example A3 The microspheres of models 909DU80, 920DU20 and 920DU40 were uniformly mixed according to the weight ratio of 1:1:1, and the particle size of the combination of microspheres was tested by BFS-MAGIC of German sympatec company, and the average value was obtained after three tests to obtain heatable expansion.
  • the Q1 type (particle size 5 ⁇ m ⁇ D ⁇ 16 ⁇ m, that is, in this embodiment, 920DU20 and 920DU40 are both Q1 type microspheres) accounts for 65% of the total weight of the microspheres;
  • Example A4 The microspheres of models 909DU80, 920DU80 and 920DU40 were uniformly mixed according to the weight ratio of 1:1:1, and the particle size of the combination of microspheres was tested by BFS-MAGIC of German sympatec company, and the particle size was tested three times, and the average value was obtained to obtain a heatable
  • the particle size of the expanded microspheres is 16.24 ⁇ m, and the Q1 type (particle size 5 ⁇ m ⁇ D ⁇ 16 ⁇ m, that is, 920DU40 is the Q1 type microsphere in this embodiment) accounts for 35% of the total weight of the microspheres;
  • the particle structure of the heat-expandable microspheres is shown in FIG. 1 , and the heat-expandable microspheres of Example A1 are shown in FIG. 2 in an unexpanded state.
  • the average thickness of the heat-expandable microspheres is obtained by the scanning electron microscope (SEM) S-4700 of Hitachi, Japan, and is the average value of the wall thickness of all microspheres ( ⁇ 20) at the visible interface.
  • the following proportions of waterborne coatings B1-B4 were formulated, containing resin, the composition of heat-expandable microspheres, and water.
  • the resin content in the water-based paint is: water-based thermoplastic resin (polyurethane resin) 25wt%, water-based thermosetting resin (hydroxy acrylic resin) 35wt%, the content of the heat-expandable microsphere composition is 15wt%, and the rest is water.
  • compositions of the heat-expandable microspheres contained in the aqueous coatings B1-B4 correspond to Examples A1-A4, respectively.
  • the coating samples of Examples B1-B4 were sprayed onto the surface of sintered NdFeB magnets (non-magnetized) with a size of 40mm ⁇ 15mm ⁇ 5mm, and were dried at 70°C for 30min to make the samples.
  • the surface coating can be dried and hardened; the hardened coating has certain anti-corrosion properties, which is convenient for the transportation and protection of the magnetic sheet. Transport the magnet to the workplace: at the motor rotor assembly site, insert the magnet into the prepared magnetic steel slot with a width of 5.5mm, and use 190 °C, 10min high temperature oven heating method to process the rotor workpiece.
  • the processing conditions and test results are as follows shown in Table 3.
  • the particle size of the heat-expandable microspheres added in the sample B4 is 16.24 ⁇ m, and the proportion of heat-expandable microspheres with a particle size of 8 ⁇ m ⁇ D ⁇ 20 ⁇ m is 40% , and the Q1 model (5 ⁇ m ⁇ D ⁇ 16 ⁇ m) accounts for 35% of the total weight of the heat-expandable microspheres;
  • the particle size of the heat-expandable microspheres added in the sample B2 is 13.15 ⁇ m, and the particle size is 10 ⁇ m ⁇ D ⁇ 15 ⁇ m
  • the proportion of heat-expandable microspheres is 56%; due to the poor uniformity of the particle size of the microspheres in sample B1, the microspheres with different particle sizes are heated, and the low-boiling point core material in the microspheres is heated to generate pressure, which causes the microspheres
  • the expansion of the shell, the pressure generated by the core material and the tension generated by the resin wall material due to stretching are
  • the normal temperature and high temperature (170°C) bonding thrust of the final product coating is slightly worse than that of sample B2.
  • sample B4 the heat-expandable microspheres with a thickness of ⁇ 5 ⁇ m account for 51% of the total weight of the microspheres, that is, there are microspheres with more wall thickness, and the outer shell of the microspheres is too thick, which is not easy to expand and become larger, and cannot be combined with the microspheres.
  • the thermoplastic resin forms a cross-linking structure, and the adhesive force decreases.
  • samples B3 and B4 no inorganic fibers or high-boiling organic solvents are added, which cannot help the thermoplastic resin and high-boiling organic solvents to form a dense layer on the surface of the coating.
  • the protective film has slightly poor stability after expansion, and the high and low temperature bonding thrust after expansion is significantly lower than that of sample B2. Comparing sample B3 with B4, the performance of sample B4, which does not contain inorganic fibers, is worse than that of sample B3, which contains dodecyl alcohol ester, a high boiling solvent.
  • the magnet coated with the coating of the heat-expandable microsphere composition of the present invention does not show a significant decrease in the bonding thrust and has good long-term bonding stability.
  • the inventor has further found that when the initial particle size of the expandable microspheres added in the coating is about 50 ⁇ m (the other parameters are the same as in Example B2), because the particle size of the expandable microspheres is too large, the hollowness of the microspheres after expansion If the area is too large, the compressive strength will also decrease and not be sufficient to resist damage and/or cracking during mixing, pouring, consolidation and finishing of the cementitious composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明公开一种可加热膨胀微球的组合物及其应用。所述组合物包含可加热膨胀微球和溶剂,其中:(1)所述可加热膨胀微球的粒径5μm≤D≤40μm;优选8μm≤D≤20μm;(2)所述可加热膨胀微球中至少60%微球的壁的厚度≤5μm;优选所述厚度≤3μm;(3)所述溶剂至少含有一种沸点在220℃以上的有机溶剂。含有该组合物得到的热膨胀涂层,具有稳定的结构,较高的抗的热收缩性,较高机械强度和粘结力,可以应用于耐高温零件的固定,且长期置于高温环境下(140-180℃)能够保持粘结稳定性。

Description

一种可加热膨胀微球的组合物及其应用
本申请要求享有2021年4月2日向中国国家知识产权局提交的,专利申请号为202110363704.5,发明名称为“一种可加热膨胀微球的组合物及其应用”的在先申请的优先权权益。所述在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于膨胀微球领域,具体涉及一种可加热膨胀微球的组合物及其应用。
背景技术
膨胀微球(也称发泡粉)是一种热塑性空心聚合物微球,由热塑性聚合物外壳和封入外壳内部的液态烷烃组成。当加热到某一温度时,热塑性聚合物外壳软化,壳内液态烷烃逐渐气化、气体膨胀、壳内压力增加,微球的体积膨胀变大。基于膨胀微球的上述特性,其通常被广泛应用于热膨胀涂料、塑胶、壁纸、粘合剂、油墨、印花等领域。
然而现有技术中,壳壁薄的膨胀微球会在较高温度和内部压力下破裂,从而无法达到膨胀微球预期的膨胀倍率,且还会导致含膨胀微球的涂料、粘合剂等在应用过程中粘结力下降,基于此,壳壁薄的膨胀微球处于长期被弃用的状态。如何对膨胀微球的应用进行改进,以减少其在后端应用时因其含有薄壁型膨胀微球而造成低膨胀倍率、粘结力下降、和/或不耐高温的问题,以及优化膨胀微球的壳壁厚度,确保壳壁厚度足以抵抗胶黏性物质混合、搅拌、浇注、固化粘结、以及修整过程中的损坏和/或破裂的问题,成为本领域亟待解决的技术问题。
发明内容
为了改善上述技术问题,本发明提供一种可加热膨胀微球的组合物,包含可加热膨胀微球和溶剂,其中:
(1)所述可加热膨胀微球的粒径5μm≤D≤40μm;例如,8μm≤D≤20μm;比如D=5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20μm;
(2)所述可加热膨胀微球中至少60%微球的壁的厚度≤5μm;例如,厚度≤3μm,比如所述厚度为4.5μm、3μm、2μm、1μm、0.5μm;
(3)所述溶剂至少含有一种沸点在220℃以上的有机溶剂。
根据本发明的实施方案,所述可加热膨胀微球的初始热膨胀温度T 1为100℃≤T 1≤200℃,例如T 1为125℃≤T 1≤180℃,示例性为120℃、130℃、150℃、160℃、170℃、190℃、或所列举的温度点之间的任意值。
根据本发明的实施方案,所述可加热膨胀微球的最高耐热温度T 2为145℃≤T 2≤215℃,例如T 2为150℃≤T 2≤205℃,示例性为155℃、160℃、165℃、175℃、185℃、195℃、200℃、或所列举的温度点之间的任意值。
本领域技术人员能够理解,所述初始热膨胀温度T 1≤最高耐热温度T 2
根据本发明的实施方案,粒径为8μm≤D≤20μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的60%,例如为60%、65%、70%、72%、76%、80%、90%、100%;
优选地,粒径为10μm≤D≤15μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的50%,例如为55%、56%、60%、70%。
根据本发明的实施方案,所述可加热膨胀微球包括热塑性聚合物外壳和由所述热塑性聚合物外壳封入的液态烷烃。
例如,所述热塑性聚合物外壳的材质为可热熔的物质或经加热膨胀会裂开的物质制得。比如,所述材质选自偏二氯乙烯和丙烯腈的共聚物,聚乙烯醇,聚乙烯醇缩丁醛,聚甲基丙烯酸甲酯,聚丙烯腈,聚偏二氯乙烯,聚砜,偏二 氯乙烯均聚物,偏二氯乙烯、丙烯腈和二乙烯基苯的无规三元共聚物,聚苯乙烯或聚氯乙烯。
根据本发明的实施方案,所述液态烷烃可以选自液态乙烷、液态丙烷、液态异丁烷、正戊烷、异戊烷中的一种、两种或更多种。
根据本发明的实施方案,所述沸点在220℃以上的有机溶剂可以选自十二碳醇酯。
根据本发明的实施方案,所述溶剂除含有至少一种沸点在220℃以上的有机溶剂外,还可以含有乙二醇丁醚和二丙二醇丁醚中的一种或两种。
本发明中,所述“粒径”指可加热膨胀微球在加热膨胀前的中值粒径D 50,所述“厚度”指单个可加热膨胀微球的壳壁在加热膨胀前的厚度。
上述粒径为体积平均直径,未膨胀可加热膨胀微球的直径、以及微球壳壁的厚度可通过本领域已知的任何方法来测定。
根据本发明的实施方案,所述可加热膨胀微球与所述溶剂的重量比为(4-40):1,优选(5-20):1,示例性为4:1、5:1、6:1、8:1.2、7:1、8:1、9:1、10:1、15:1、17:1。
根据本发明的实施方案,所述可加热膨胀微球的组合物还可以任选含有无机纤维。例如,所述无机纤维呈纤维丝状或片状(例如薄片状)。比如,所述无机纤维可以选自纳米硅酸铝纤维、碳纤维和硼纤维等中的一种、两种或更多种。无机纤维在组合物膨胀后,可以与下述涂层中的树脂相互浸润,在下述涂层中起骨架支撑和增加强度的作用,提高膨胀涂层的强度和抗收缩性。
根据本发明的实施方案,所述无机纤维与所述溶剂的重量比为(0-2):1,例如(0.5-1.5):1,示例性为0.5:1、3:5、0.7:1、0.85:1、0.9:1、1:1、1.2:1。
根据本发明的实施方案,所述可加热膨胀微球的组合物的膨胀倍率为150-300%,例如为180-250%。
根据本发明示例性的方案,所述可加热膨胀微球的组合物包含可加热膨胀微球、溶剂和无机纤维,其中:
(1)粒径为8μm≤D≤20μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的60%,例如为60%、65%、70%、72%、76%、80%、90%、100%;
粒径为10μm≤D≤15μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的50%,例如为55%、56%、60%、70%;
(2)所述可加热膨胀微球中至少60%微球的壁的厚度≤3μm;
(3)所述溶剂至少含有十二碳醇酯,所述可加热膨胀微球与所述溶剂的重量比为(5-20):1;
(4)所述无机纤维为纳米硅酸铝纤维,所述无机纤维与所述溶剂的重量比为(0.5-1.5):1。
示例性地,所述可加热膨胀微球的组合物包含可加热膨胀微球、溶剂和无机纤维,其中:
(1)粒径为8μm≤D≤20μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的72%;
粒径为10μm≤D≤15μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的56%;
(2)所述可加热膨胀微球中至少73%微球的壁的厚度≤5μm;
(3)所述溶剂至少含有十二碳醇酯,所述可加热膨胀微球与所述溶剂的重量比为17:1;
(4)所述无机纤维为纳米硅酸铝纤维,所述无机纤维与所述溶剂的重量比为3:5;
(5)所述可加热膨胀微球的平均厚度为3.5μm;
优选地,所述可加热膨胀微球的粒径D为13.15μm。
本发明还提供上述可加热膨胀微球的组合物的制备方法,包括将可加热膨胀微球和溶剂,以及任选加入或不加入的无机纤维混合,得到所述组合物。
优选地,所述可加热膨胀微球具有如上文所述的粒径范围、重量占比、壁 厚。
优选地,所述溶剂和无机纤维具有如上文所述的含义和用量。
根据本发明的实施方案,上述粒径范围的可加热膨胀微球可以由两种、三种或更多种型号的可加热膨胀微球原料(简称“原料微球”)混合得到。其中,所述原料微球可以选自本领域已知的微球型号。
例如,所述原料微球可以至少含有Q1型号微球和Q2型号微球。优选地,所述Q1型号微球的粒径为5μm≤D≤16μm,Q1型号微球的重量占比不低于原料微球重量的50%,例如为50%、60%、70%。
本领域技术人员能够根据需要对Q2型号以及其他型号的原料微球的初始粒径范围进行选择,以得到所述可加热膨胀微球的上述粒径范围。
本发明还提供上述可加热膨胀微球的组合物在涂料中的应用;优选用于水性涂料;更优选用于改善由所述涂料形成的涂层的稳定性,如通过改善涂层内部空隙支撑,形成稳定结构的涂层。
根据本发明的实施方案,所述可膨胀微球的组合物与涂料的重量比为1:(4-25),例如1:(5-15),示例性为1:5.7、1:6、1:8、1:9、1:10、1:11。
根据本发明的实施方案,所述涂料能够作为汽车行业中的胶粘剂,例如用于汽车发动机装配中磁材固定的胶粘剂。优选地,所述磁材为钕铁硼磁体。
根据本发明的实施方案,所述涂料为水基涂料。
根据本发明的实施方案,所述涂料由涂料组合物制备得到,所述涂料组合物包括水性热塑性树脂、水性热固性树脂和热熔填充树脂。
根据本发明的实施方案,所述水性热塑性树脂选自水性丙烯酸树脂和聚氨酯树脂中的至少一种。
根据本发明的实施方案,所述水性热固性树脂选自水性环氧树脂和羟基丙烯酸中的至少一种。
根据本发明的实施方案,所述热熔填充树脂选自改性氯化聚氯乙烯、聚酯、聚氨酯、聚酰胺、聚醚砜、环氧树脂和聚甲基丙烯酸甲酯中的至少一种。
本发明还提供一种提升可加热膨胀涂层稳定性的方法,包括如下步骤:将可加热膨胀微球的组合物与涂料组合物混合使用;
所述可膨胀微球的组合物和涂料组合物均具有如上文所示的含义和质量比。
根据本发明的实施方案,所述方法包括:将混合后的可加热膨胀微球的组合物和涂料组合物施用在基体本体上,再通过加热所述基体本体,得到所述可加热膨胀涂层。
根据本发明的实施方案,所述基体本体为磁材,优选为钕铁硼磁体。
根据本发明的实施方案,所述施用可以选自本领域已知手段,例如喷涂、滚涂、刷涂、涂覆、电镀、浸蘸、辊涂等将混合后的可加热膨胀微球的组合物和涂料组合物施用在基体本体表面的方法。
本发明还提供一种基体,所述基体包括涂层和基体本体,其中所述涂层由含有上述可加热膨胀微球的组合物的涂料制备得到。
优选地,所述涂层位于所述基体本体的表面。
优选地,所述基体本体具有如上文所述的含义。
优选地,所述涂料具有如上文所述的含义。
本发明的有益效果
本申请发明人在实践过程中发现,由于可加热膨胀微球的外壳壁厚不均和/或粒径分布不均,壳壁薄的球体在承受同等温度和内部压力时会优先破掉,从而使微球在应用时无法达到预期的膨胀倍率,进而影响含有可膨胀微球的涂料在汽车发动机装配的磁体固定中的耐温和粘结性能。本发明可加热膨胀微球的组合物在加热膨胀过程中,能够使含有该组合物的涂层在二次加热膨胀过程中的短时间内,迅速软化破坏薄壳球体,随着有机溶剂的挥发,使之在涂层表面及内部与涂层中的树脂基质交联,生成相互交联的网状结构,从而加强涂层空隙支撑,使涂层实现阶梯型膨胀,并且膨胀后部分高分子材料包裹气囊并硬化 形成稳定空心结构。得到的热膨胀涂层,具有稳定的结构,较高的抗的热收缩性,较高机械强度和粘结力,可以应用于耐高温零件的固定,且长期置于高温环境下(140-180℃)能够保持粘结稳定性。
附图说明
图1为可加热膨胀微球的结构示意图,其中,1-球体,2-壳壁。
图2为实施例A2可加热膨胀微球在未膨胀状态的形貌图(放大500倍,标尺为100μm)。
图3为实施例B2含有可加热膨胀微球的涂层在未膨胀状态的形貌图(放大500倍,标尺为100μm)。
图4为实施例B2含有可加热膨胀微球的涂层在完全膨胀状态的形貌图(放大300倍,标尺为100μm)。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
本发明采用的可加热膨胀微球可通过市场购买获得,例如选自AKZO-Nobel公司的Expancel系列中920DU80、920DU20、909DU80、920DU40的两种及以上组合物。
表1示出了AKZO-Nobel公司的Expancel系列中四种可加热膨胀微球的主要参数。
表1
型号 直径(±1)/μm 初始膨胀温度T 1/℃ 最高耐热温度T 2/℃
920DU80 18-24 123-133 185-195
920DU20 5-9 120-145 155-175
909DU80 18-24 120-130 175-190
920DU40 10-16 123-133 185-195
实施例A1-A4
如表2所示的可加热膨胀微球的组合物,含有,
可加热膨胀微球组合:
实施例A1:采用AKZO-Nobel公司的Expancel系列中不同的可加热膨胀微球组合,将型号920DU80与920DU20的微球按照重量比1:2均匀混合,由德国sympatec公司的BFS-MAGIC测试微球组合的粒径,测试三次取平均值,得到可加热膨胀微球的粒径为12.08μm的微球组合,Q1型号(粒径5μm≤D≤16μm,即本实施例中920DU20为Q1型号微球)占微球总重量的比例67%;
实施例A2:采用AKZO-Nobel公司的Expancel系列中不同的可加热膨胀微球的组合,将型号920DU80、920DU20和920DU40的微球按照重量比1:1:1均匀混合,由德国sympatec公司的BFS-MAGIC测试微球组合的粒径,测试三次取平均值,得到可加热膨胀微球的粒径为13.15μm的微球组合,Q1型号(粒径5μm≤D 0≤16μm,即本实施例中920DU20和920DU40共同为Q1型号微球)占微球总重量的比例65%;
实施例A3:型号909DU80、920DU20和920DU40的微球按照重量比1:1:1均匀混合,由德国sympatec公司的BFS-MAGIC测试微球组合的粒径,测试三次取平均值,得到可加热膨胀微球的粒径为14.38μm的微球组合,Q1型号(粒径5μm≤D≤16μm,即本实施例中920DU20和920DU40共同为Q1型号微球)占微球总重量的比例65%;
实施例A4:型号909DU80、920DU80和920DU40的微球按照重量比1:1:1均 匀混合,由德国sympatec公司的BFS-MAGIC测试微球组合的粒径,测试三次,取平均值,得到可加热膨胀微球的粒径为16.24μm的微球组合,Q1型号(粒径5μm≤D≤16μm,即本实施例中920DU40为Q1型号微球)占微球总重量的比例35%;
以及十二碳醇酯和纳米硅酸铝纤维。
可加热膨胀微球的颗粒结构如图1所示,实施例A1的可加热膨胀微球在未膨胀状态如图2所示。
表2
Figure PCTCN2022084264-appb-000001
注:[1]可加热膨胀微球的平均厚度由日本日立公司扫描电子显微镜(SEM)S-4700测试得到,为可视界面所有微球(≥20个)的壁厚的平均值。
实施例B1-B4
配制以下比例的水性涂料B1-B4,含有树脂、可加热膨胀微球的组合物和水。水性涂料中树脂的含量为:水性热塑性树脂(聚氨酯树脂)25wt%,水性热固性树脂(羟基丙烯酸树脂)35wt%,可加热膨胀微球的组合物的含量为15wt%,其余为水。
水性涂料B1-B4中所含的可加热膨胀微球的组合物分别对应实施例A1-A4。
应用例
将实施例B1-B4的涂料样品,采用喷涂的方式,分别涂覆到规格为40mm×15mm×5mm的烧结钕铁硼磁体(未充磁)表面,在70℃的条件下烘干30min,使表面涂层干燥硬化即可;硬化后的涂层具有一定的防腐性能,便于磁片的运输和保护。将磁体运输到工作场所:电机转子装配现场,将磁体安插到制备好的宽度为5.5mm磁钢卡槽中,采用190℃,10min高温烘箱加热方式对转子工件进行处理,处理条件和测试结果如表3所示。
由图3可以看出,膨胀前微球被树脂包围(微球镶嵌在树脂内部),较少量能观察到微球本体;受热后涂层软化其中的膨胀微球先受热膨胀,后因高沸点溶剂十二碳醇酯的作用,几乎看不到完整的微球,微球外壳软化破裂,与涂层中的树脂基质交联,生成相互交联的涂层结构(图4)。涂层膨胀后粘结性更好,能够将磁片与卡槽缝隙紧密填满,将磁片稳定的固定在卡槽内部。
表3处理条件及测试结果
  样品B1 样品B2 样品B3 样品B4
膨胀温度/℃ 190 190 190 190
膨胀时间/min 10 10 10 10
漆膜厚度/μm 110 110 110 110
粘结推力(常温)/牛顿 1147 1298 1091 1042
粘结推力(170℃)/牛顿 271 297 218 189
粘结推力(浸油1500h) 261 285 206 176
样品B1-B4获得涂层的实验数据可以看出:样品B4中添加的可加热膨胀微球的粒径为16.24μm,粒径为8μm≤D≤20μm的可加热膨胀微球占比为40%,且Q1型号(5μm≤D≤16μm)占可加热膨胀微球总重量的比例35%;样品B2中添加的可加热膨胀微球的粒径为13.15μm,粒径为10μm≤D≤15μm的可加热膨胀 微球的占比为56%;由于样品B1中微球粒径的均一性较差,不同粒径的微球受热,微球内的低沸点芯材受热产生压强,从而引起微球外壳的膨胀,芯材产生的压力与树脂壁材由于拉伸产生的张力不够平衡,稳定性稍差,最终产品的涂层的常温与高温(170℃)粘结推力比样品B2,均稍微差一些。样品B4中,可加热膨胀微球的厚度≤5μm的微球占微球总重量的比例51%,即,存在较多壁厚的微球,微球外壳过厚,不易膨胀变大,无法与热塑性树脂形成交联性结构,胶黏力下降,同样,样品B3与B4中,未添加无机纤维或高沸点有机溶剂,无法助于热塑性树脂与高沸点有机溶剂在涂层表面形成一层致密的保护膜,膨胀后的稳定性稍差,膨胀后的高低温粘结推力明显比样品B2降低。样品B3与B4对比,不包含无机纤维的样品B4的性能要更差于包含高沸点溶剂十二碳醇酯的样品B3。
经过1500小时的浸油试验后,采用由本发明的可加热膨胀微球组合物的涂料制备的涂层的磁体,其粘结推力,没有呈现明显降低,具有长期的良好的粘结稳定性。
发明人还进一步发现,当涂料中添加的可膨胀微球的初始粒径约为50μm(其他参数与实施例B2相同),由于可膨胀微球的粒径过大,膨胀后,微球的中空面积过大,抗压强度也会降低,不足以抵抗胶结性组合物混合、浇注、固结和修整过程中的损坏和/或破裂。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可加热膨胀微球的组合物,其特征在于,所述组合物包含可加热膨胀微球和溶剂,其中:
    (1)所述可加热膨胀微球的初始粒径5μm≤D≤40μm;优选8μm≤D≤20μm;
    (2)所述可加热膨胀微球中至少60%微球的壁的厚度≤5μm;优选所述厚度≤3μm;
    (3)所述溶剂至少含有一种沸点在220℃以上的有机溶剂。
  2. 根据权利要求1所述的组合物,其特征在于,所述可加热膨胀微球的初始热膨胀温度T 1为100℃≤T 1≤200℃;
    优选地,所述可加热膨胀微球的最高耐热温度T 2为145℃≤T 2≤215℃;
    优选地,粒径为8μm≤D≤20μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的60%,例如为60%、65%、70%、72%、76%、80%、90%、100%;
    优选地,粒径为10μm≤D≤15μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的50%,例如为55%、56%、60%、70%。
  3. 根据权利要求1或2所述的组合物,其特征在于,所述可加热膨胀微球包括热塑性聚合物外壳和由所述热塑性聚合物外壳封入的液态烷烃。
    优选地,所述沸点在220℃以上的有机溶剂选自十二碳醇酯。
    优选地,所述溶剂除含有至少一种沸点在220℃以上的有机溶剂外,还含有乙二醇丁醚和二丙二醇丁醚中的一种或两种。
  4. 根据权利要求1-3任一项所述的组合物,其特征在于,所述可加热膨胀微球与所述溶剂的重量比为(4-40):1;
    优选地,所述可加热膨胀微球的组合物还任选含有无机纤维。优选地,所述无机纤维选自纳米硅酸铝纤维、碳纤维和硼纤维中的一种、两种或更多种。
    优选地,所述无机纤维与所述溶剂的重量比为(0-2):1。
    优选地,所述可加热膨胀微球的组合物的膨胀倍率为150-300%。
  5. 根据权利要求1-4任一项所述的组合物,其特征在于,所述可加热膨胀微球的组合物包含可加热膨胀微球、溶剂和无机纤维,其中:
    (1)粒径为8μm≤D≤20μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的60%;
    粒径为10μm≤D≤15μm的可加热膨胀微球的重量占比不低于所述可加热膨胀微球的总重量的50%;
    (2)所述可加热膨胀微球中至少60%微球的壁的厚度≤3μm;
    (3)所述溶剂至少含有十二碳醇酯;
    所述可加热膨胀微球与所述溶剂的重量比为(5-20):1;
    (4)所述无机纤维为纳米硅酸铝纤维,所述无机纤维与所述溶剂的重量比为(0.5-1.5):1。
  6. 权利要求1-5任一项所述的可加热膨胀微球的组合物的制备方法,其特征在于,所述制备方法包括将可加热膨胀微球和溶剂,以及任选加入或不加入的无机纤维混合,得到所述组合物。
  7. 权利要求1-5任一项所述的可加热膨胀微球组合物在涂料中的应用;优选用于水性涂料;更优选用于改善由所述涂料形成的涂层的稳定性。
    优选地,所述可膨胀微球组合物与涂料的重量比为1:(4-25)。
    优选地,所述涂料能够作为汽车行业中的胶粘剂。
    优选地,所述涂料为水基涂料。
  8. 根据权利要求7所述的应用,其特征在于,所述涂料由涂料组合物制备得到,所述涂料组合物包括水性热塑性树脂、水性热固性树脂和热熔填充树脂。
  9. 一种提升可加热膨胀涂层稳定性的方法,其特征在于,所述方法包括如下步骤:将可加热膨胀微球的组合物与涂料组合物混合使用;
    所述可膨胀微球的组合物具有如权利要求1-5任一项所述的含义,所述涂料 组合物均具有如权利要求8所述的含义。
  10. 根据权利要求9所述的方法,其特征在于,所述方法包括:将混合后的可加热膨胀微球组合物和涂料组合物施用在基体本体上,再通过加热基体本体,得到所述可加热膨胀涂层。
    优选地,所述基体本体为磁材。
PCT/CN2022/084264 2021-04-02 2022-03-31 一种可加热膨胀微球的组合物及其应用 WO2022206876A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237034310A KR20230155541A (ko) 2021-04-02 2022-03-31 가열 팽창 가능한 미소구체의 조성물 및 이의 응용
US18/553,557 US20240191049A1 (en) 2021-04-02 2022-03-31 Composition of heat-expandable microspheres and use thereof
JP2023560627A JP2024511528A (ja) 2021-04-02 2022-03-31 熱膨張性微小球の組成物及びその応用
EP22779058.1A EP4317278A1 (en) 2021-04-02 2022-03-31 Composition of heat-expandable microspheres and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363704.5A CN113150366B (zh) 2021-04-02 2021-04-02 一种可加热膨胀微球的组合物及其应用
CN202110363704.5 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022206876A1 true WO2022206876A1 (zh) 2022-10-06

Family

ID=76888433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084264 WO2022206876A1 (zh) 2021-04-02 2022-03-31 一种可加热膨胀微球的组合物及其应用

Country Status (6)

Country Link
US (1) US20240191049A1 (zh)
EP (1) EP4317278A1 (zh)
JP (1) JP2024511528A (zh)
KR (1) KR20230155541A (zh)
CN (1) CN113150366B (zh)
WO (1) WO2022206876A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150366B (zh) * 2021-04-02 2022-12-09 烟台高氏化工科技有限公司 一种可加热膨胀微球的组合物及其应用
CN113764150B (zh) * 2021-06-11 2023-01-10 烟台正海磁性材料股份有限公司 一种可膨胀烧结钕铁硼磁体及其制备方法和应用
CN113593817B (zh) * 2021-08-03 2022-07-22 包头天和磁材科技股份有限公司 磁体预制件、磁体组件及其制备方法
CN113881294A (zh) * 2021-08-31 2022-01-04 烟台正海磁性材料股份有限公司 一种涂层、钕铁硼磁体及其制备方法和应用
CN113817386A (zh) * 2021-08-31 2021-12-21 烟台正海磁性材料股份有限公司 一种磁性材料表面导磁性膨胀型涂层及其制备方法和应用
CN117820937A (zh) * 2022-09-27 2024-04-05 烟台正海磁性材料股份有限公司 一种膨胀涂层及其制备方法和应用、包含该膨胀涂层的永磁体
CN118231082A (zh) * 2022-12-19 2024-06-21 天津三环乐喜新材料有限公司 一种带有粘结涂层的磁体、磁体组装件和电气装置
CN116769369A (zh) * 2023-07-25 2023-09-19 上海纳米技术及应用国家工程研究中心有限公司 一种膨胀型防火涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484893A2 (en) * 1990-11-09 1992-05-13 Matsumoto Yushi-Seiyaku Co., Ltd. Hollow fine particle composition
US20090149559A1 (en) * 2005-11-21 2009-06-11 Matsumoto Yushi-Seiyaku Co., Ltd Heat-expandable microspheres, method for producing the same, and application thereof
US20100113627A1 (en) * 2008-11-05 2010-05-06 Matsumoto Shota Water-based coating-type damping material
CN104341843A (zh) * 2013-06-11 2015-02-11 现代摩比斯株式会社 汽车部件质感涂料用组合物及包含该组合物的汽车部件
CN111500214A (zh) * 2020-05-22 2020-08-07 广东弘擎电子材料科技有限公司 压敏胶黏剂、压敏胶黏剂的制备方法与耐高温保护膜
CN112424309A (zh) * 2018-07-20 2021-02-26 松本油脂制药株式会社 热膨胀性微球及其用途
CN113150366A (zh) * 2021-04-02 2021-07-23 烟台高氏化工科技有限公司 一种可加热膨胀微球的组合物及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437757A (zh) * 2019-07-11 2019-11-12 昆山博益鑫成高分子材料有限公司 一种新型热减粘胶黏剂及热减粘保护膜的制备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484893A2 (en) * 1990-11-09 1992-05-13 Matsumoto Yushi-Seiyaku Co., Ltd. Hollow fine particle composition
US20090149559A1 (en) * 2005-11-21 2009-06-11 Matsumoto Yushi-Seiyaku Co., Ltd Heat-expandable microspheres, method for producing the same, and application thereof
US20100113627A1 (en) * 2008-11-05 2010-05-06 Matsumoto Shota Water-based coating-type damping material
CN104341843A (zh) * 2013-06-11 2015-02-11 现代摩比斯株式会社 汽车部件质感涂料用组合物及包含该组合物的汽车部件
CN112424309A (zh) * 2018-07-20 2021-02-26 松本油脂制药株式会社 热膨胀性微球及其用途
CN111500214A (zh) * 2020-05-22 2020-08-07 广东弘擎电子材料科技有限公司 压敏胶黏剂、压敏胶黏剂的制备方法与耐高温保护膜
CN113150366A (zh) * 2021-04-02 2021-07-23 烟台高氏化工科技有限公司 一种可加热膨胀微球的组合物及其应用

Also Published As

Publication number Publication date
US20240191049A1 (en) 2024-06-13
CN113150366B (zh) 2022-12-09
JP2024511528A (ja) 2024-03-13
KR20230155541A (ko) 2023-11-10
EP4317278A1 (en) 2024-02-07
CN113150366A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022206876A1 (zh) 一种可加热膨胀微球的组合物及其应用
WO2022206875A1 (zh) 一种涂料组合物及其制备方法和应用
CA1268282A (en) Aqueous composition comprising a phosphated epoxy and non-self dispersible resin
CN107974188B (zh) 一种具有互穿网络结构的阻尼涂料及其制备方法
CN102333647B (zh) 可用于非纤维素类纤维上胶剂、涂层剂或粘结组合物的组合物以及含有该组合物的复合材料
CN101255299B (zh) 一种环保耐热丙烯酸树脂绝缘涂料
CA2873571C (en) Wood products impregnated with water based compositions
CN114694915B (zh) 带粘结层的磁体、制备方法及磁体组件的制备方法
KR20240004870A (ko) 팽창성 NdFeB 소결 자석 및 이의 제조 방법과 응용
Gangineni et al. Interfacial behavior of graphene carboxyl‐grafted carbon fiber reinforced polymer composites at elevated temperatures: Emphasis on the effect of electrophoretic deposition time
CN106978023A (zh) 一种基于石墨烯的防腐涂料及其散热片
CN108395749A (zh) 一种防腐蚀涂料及其制备方法
Yu et al. Study on ethanol resistance stability and adhesion properties of polyacrylate latex for PE or BOPP film inks
US4544432A (en) Method of bonding phosphated steel surfaces electrodeposited with a primer
KR20240044356A (ko) 팽창성 코팅층, 이의 제조 방법 및 응용, 이를 포함하는 영구자석
Yi et al. Preparation of small particle diameter thermally expandable microspheres under atmospheric pressure for potential utilization in wood
CN112680070A (zh) 一种耐腐蚀高附着力环氧树脂粉末涂料及其制备方法
CN110628067A (zh) 一种超轻离型力的离型膜及其制备方法
WO2022143403A1 (zh) 一种平面粉末涂料组合物及其涂层
Hong et al. Microwave processing of syntactic foam from an expandable thermoset/thermoplastic mixture
Min et al. Preparation and properties of expandable epoxy foam prepreg for sandwich composites prepared via thermal expansion molding process
CN112280516A (zh) 一种可uv固化的环氧树脂导热胶黏剂及其制备方法
JP2002256175A5 (zh)
JP2002285008A (ja) 人造大理石用樹脂組成物
WO2024130817A1 (zh) 包覆的膨胀微球和膨胀型粘结剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023560627

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18553557

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237034310

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034310

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022779058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779058

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE