WO2022206736A1 - 电子设备、通信方法、存储介质和计算机程序产品 - Google Patents

电子设备、通信方法、存储介质和计算机程序产品 Download PDF

Info

Publication number
WO2022206736A1
WO2022206736A1 PCT/CN2022/083596 CN2022083596W WO2022206736A1 WO 2022206736 A1 WO2022206736 A1 WO 2022206736A1 CN 2022083596 W CN2022083596 W CN 2022083596W WO 2022206736 A1 WO2022206736 A1 WO 2022206736A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
base station
electronic device
cot
downlink
Prior art date
Application number
PCT/CN2022/083596
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼集团公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 曹建飞 filed Critical 索尼集团公司
Priority to JP2023560473A priority Critical patent/JP2024513211A/ja
Priority to EP22778918.7A priority patent/EP4319399A1/en
Priority to CN202280024191.8A priority patent/CN117083951A/zh
Publication of WO2022206736A1 publication Critical patent/WO2022206736A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular, to electronic devices, communication methods, storage media, and computer program products used in wireless communication systems.
  • the frequency bands used for wireless communication are gradually expanding.
  • a specific frequency band (52.6GHz-71GHz) higher than FR1 (450MHz-6GHz) and FR2 (24.25GHz-52.6GHz) is receiving attention. Since the specific frequency band is higher and the spectrum resources are abundant, a wider optional subcarrier spacing can be used. While wider subcarrier spacing can facilitate spectrum utilization, it also results in a shorter OFDM symbol duration. Accordingly, the length of the time slot is also shortened. Performing beam switching in shortened time slots will increase the implementation complexity of the UE. In addition, higher frequency bands also mean greater path loss.
  • the electronic devices and methods provided by the present invention can improve radio transmissions in wireless communication systems.
  • An aspect of the present disclosure relates to an electronic device for a base station side, the electronic device includes: a processing circuit, where the processing circuit is configured to perform the following operations: send a single downlink control information (Downlink Control Information, DCI) to a user UE, a single DCI for scheduling multiple downlink transmissions associated with the UE, a single DCI indicates a corresponding scheduled beam for each of the multiple downlink transmissions; determining a corresponding actual beam for each of the multiple downlink transmissions ; and performing corresponding downlink transmissions of the plurality of downlink transmissions using the determined corresponding actual beams.
  • DCI Downlink Control Information
  • An aspect of the present disclosure relates to an electronic device for a UE side, the electronic device comprising: a processing circuit configured to perform the following operations: receive a single DCI from a base station, the single DCI is used to schedule multiple DCIs associated with the UE Downlink transmission, a single DCI indicates a corresponding scheduled beam for each of the plurality of downlink transmissions; determining a corresponding actual beam for each of the plurality of downlink transmissions; and performing using the determined corresponding actual beam A corresponding downlink transmission of the plurality of downlink transmissions.
  • An aspect of the present disclosure relates to an electronic device for a base station side, the electronic device comprising: a processing circuit configured to perform the following operations: send a single DCI to a UE, the single DCI indicating multiple channels spanning multiple time slots A state information reference signal (Channel State Information-Reference Signal, CSI-RS) resource set, wherein multiple CSI-RS resource sets are associated with the same reporting configuration; in each of the multiple time slots, multiple A corresponding set of CSI-RS resources in the set of CSI-RS resources sends CSI-RS transmissions to the UE; and in reporting based on the same reporting configuration, CSI reports associated with measurements of multiple slots are received from the UE.
  • CSI-RS Channel State Information-Reference Signal
  • One aspect of the present disclosure relates to an electronic device for a UE side, the electronic device comprising: a processing circuit configured to perform the following operations: receive a single DCI from a base station, the single DCI indicating multiple channels spanning multiple time slots Status information reference signal CSI-RS resource set, wherein multiple CSI-RS resource sets are associated with the same reporting configuration; in each time slot of the multiple time slots, receiving from the base station uses the multiple CSI-RS resource sets and in a report based on the same reporting configuration, sending a CSI report associated with the measurement of multiple time slots to the base station.
  • a processing circuit configured to perform the following operations: receive a single DCI from a base station, the single DCI indicating multiple channels spanning multiple time slots Status information reference signal CSI-RS resource set, wherein multiple CSI-RS resource sets are associated with the same reporting configuration; in each time slot of the multiple time slots, receiving from the base station uses the multiple CSI-RS resource sets and in a report based on the same reporting configuration, sending a CSI report
  • An aspect of the present disclosure relates to an electronic device for a base station side, wherein the electronic device includes a processing circuit configured to perform the following operations: sending a single DCI to a UE, the single DCI being configured to combine multiple synchronization signals Synchronization Signal Block (SSB) resources are scheduled in multiple time slots; and SSB transmissions are sent in each of the multiple time slots.
  • a processing circuit configured to perform the following operations: sending a single DCI to a UE, the single DCI being configured to combine multiple synchronization signals Synchronization Signal Block (SSB) resources are scheduled in multiple time slots; and SSB transmissions are sent in each of the multiple time slots.
  • SSB Synchronization Signal Block
  • An aspect of the present disclosure relates to an electronic device for a UE side, wherein the electronic device includes a processing circuit configured to perform the following operations: receive a single DCI from a base station, the single DCI is configured to combine multiple synchronization signals Block SSB resources are scheduled in multiple time slots; and SSB transmissions are received in each of the multiple time slots.
  • An aspect of the present disclosure relates to an electronic device for a base station side, wherein the electronic device includes: a processing circuit configured to perform the following operations: sending a single DCI to a UE, the single DCI being configured to trigger multiple probes including multiple probes A set of SRS resources for Sounding Reference Signal (SRS) resources, and multiple SRS resources are scheduled in multiple time slots; and SRS transmissions are received from the UE in each of the multiple time slots.
  • SRS Sounding Reference Signal
  • An aspect of the present disclosure relates to an electronic device for a UE side, wherein the electronic device includes a processing circuit configured to perform the following operations: receiving a single DCI from a base station, the single DCI being configured to trigger multiple probes including multiple probes an SRS resource set of reference signal SRS resources, and the plurality of SRS resources are scheduled in a plurality of time slots; and an SRS transmission is sent to the base station 110 in each of the plurality of time slots.
  • An aspect of the present disclosure relates to an electronic device for a base station side, the electronic device comprising: a processing circuit configured to perform the following operations: configure a first offset associated with a first transmission between the base station and a UE Configure the channel occupancy time (Channel Occupying Time, COT) associated with the base station and the UE, the COT is included in the COT message, and the COT indicates the specific time period during which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band; based on the COT From the first offset, a specific time for the first transmission is calculated; and at the specific time, the first transmission is performed.
  • COT Channel Occupying Time
  • An aspect of the present disclosure relates to an electronic device for a UE side, the electronic device comprising: a processing circuit configured to perform the following operations: configure a first offset associated with a first transmission between a base station and the UE Configure the channel occupation time COT associated with the base station and the UE, the COT is included in the COT message, and the COT indicates the specific time period during which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band; based on the COT and the first offset , calculating a specific time for the first transmission; and at the specific time, performing the first transmission.
  • An aspect of the present disclosure relates to an electronic device for a base station side, the electronic device includes: a processing circuit configured to perform the following operations: determine a channel occupation time COT associated with the base station and the UE, the COT is contained in the COT In the message, COT indicates a specific time period during which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band; determine whether the expected transmission time of a specific transmission in periodic transmissions with the UE is within the COT; in response to the expected transmission time of the specific transmission Outside the COT, the particular transmission is determined to be a deactivated transmission; and in response to the expected transmission time of the particular transmission being within the COT, the particular transmission is determined to be an active transmission.
  • An aspect of the present disclosure relates to an electronic device for a UE side, the electronic device comprising: a processing circuit configured to perform the following operations: determine a channel occupation time COT associated with a base station and the UE, the COT is contained in the COT
  • COT indicates a specific time period during which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band
  • the particular transmission in response to the expected transmission time of the specific transmission Outside the COT, the particular transmission is determined to be a deactivated transmission; and in response to the expected transmission time of the particular transmission being within the COT, the particular transmission is determined to be an active transmission.
  • Another aspect of the present disclosure is a method performed at a base station side, and the method may include operations performed by the aforementioned processing circuit of the electronic device at the base station side.
  • Another aspect of the present disclosure is a method performed on the UE side, and the method may include the operations performed by the aforementioned processing circuit of the electronic device on the UE side.
  • Another aspect of the present disclosure relates to a computer-readable storage medium storing one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as described herein Disclose any of the methods described.
  • Another aspect of the present disclosure relates to a computer program product, comprising a computer program that, when executed by a processor, implements any of the methods as described in the present disclosure.
  • FIG. 1 shows a schematic diagram of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 shows a block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 3 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 4 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • 5A-5C illustrate schematic diagrams of multiple application examples of the improved beam selection scheme according to embodiments of the present disclosure.
  • FIG. 6 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 7 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 8A shows an example of a single DCI scheduled cross-slot CSI-RS transmission scheme.
  • 8B illustrates an example of an improved cross-slot CSI-RS transmission scheme for single DCI scheduling according to an embodiment of the present disclosure.
  • FIG. 9 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 10 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 11 shows an example of an improved cross-slot SSB transmission scheme for a single DCI schedule according to an embodiment of the present disclosure.
  • FIG. 12 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 13 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 14A shows an example of an improved cross-slot SRS transmission scheme for a single DCI schedule according to an embodiment of the present disclosure.
  • 14B illustrates another example of a single DCI-scheduled improved cross-slot SRS transmission scheme according to an embodiment of the present disclosure.
  • 15 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • 16 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • Figure 17A shows an example of a transmission associated with the COT.
  • 17B illustrates an example of a COT-triggered signal/channel transmission scheme according to an embodiment of the present disclosure.
  • Figure 18 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 19 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 20 shows an example of a signal/channel transmission scheme activated by COT according to an embodiment of the present disclosure.
  • 21 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • FIG. 22 is a block diagram illustrating a second example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a communication device to which the technology of the present disclosure can be applied.
  • 24 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • Wireless communication system 100 may include base station 110 and UE 120 . It should be understood that although only one base station 110 and three UEs 120 are shown in FIG. 1, it should be understood that the wireless communication system 100 may also include any other suitable number of base stations and UEs.
  • the base station 110 is an example of a network-side device in the wireless communication system 100 .
  • the terms “base station” and “network side device” may be used interchangeably.
  • the operation of the base station 110 may be implemented using any network-side device instead.
  • Base station 110 may be implemented as any type of base station.
  • base station 110 may be implemented as an eNB, such as a macro eNB and a small eNB.
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • the base station 110 may also be implemented as a gNB, such as a macro gNB and a small gNB.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the UE 120 is an example of a user-side device in the wireless communication system 100.
  • UE 120 may be implemented as any type of terminal device.
  • the UE 120 may be implemented as a mobile terminal (such as a smartphone, tablet personal computer (PC), notebook PC, portable game terminal, portable/dongle type mobile router, and digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the UE 120 may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine-type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine-type communication
  • the UE 120 may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the above-mentioned terminals.
  • Base station 110 and UE 120 may perform wireless communication according to any suitable communication protocol.
  • wireless communication may be performed according to a cellular communication protocol.
  • Cellular communication protocols can include 4G, 5G, and any cellular communication protocol under development or to be developed.
  • the base station 110 and the UE 120 can communicate on the corresponding wireless communication frequency band.
  • wireless communication frequency bands may include, but are not limited to, the FR1 frequency band, the FR2 frequency band, the 52.6GHz-71GHz frequency band, or any other suitable frequency band.
  • FIG. 2 shows a block diagram of an electronic device 200 according to an embodiment of the present disclosure.
  • the electronic device 200 may include a communication unit 210 , a storage unit 220 , and a processing circuit 230 .
  • the communication unit 210 may be used to receive or send radio transmissions.
  • the radio transmissions may include downlink transmissions from base station 110 to UE 120 and/or uplink transmissions from UE 120 to base station 110.
  • the radio transmission may be used to convey various control signaling (eg, Radio Resource Control (RRC), DCI) and/or user data.
  • RRC Radio Resource Control
  • the radio transmission may also be used to transmit one or more synchronization, reference or measurement signals (eg, SSB, CSI-RS, SRS, etc.).
  • the communication unit 210 may perform functions such as frequency up-conversion, digital-to-analog conversion on transmitted radio signals, and/or functions such as frequency down-conversion, analog-to-digital conversion on received radio signals.
  • the communication unit 210 may be implemented using various technologies.
  • the communication unit 210 may be implemented as a communication interface component such as an antenna device, a radio frequency circuit, and a part of a baseband processing circuit.
  • the communication unit 210 is drawn in dashed lines, as it may alternatively be located within the processing circuit 230 or outside the electronic device 200 .
  • the storage unit 220 may store information generated by the processing circuit 230, information received from or to be transmitted to other devices through the communication unit 210, programs, machine codes and data for the operation of the electronic device 200, and the like.
  • the storage unit 220 may be a volatile memory and/or a nonvolatile memory.
  • the storage unit 220 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • ROM read only memory
  • flash memory flash memory
  • the processing circuit 230 may be configured to perform one or more operations to provide various functions of the electronic device 200 .
  • the processing circuit 230 may perform corresponding operations by executing one or more executable instructions stored in the storage unit 220 .
  • the processing circuit 230 may be configured to perform one or more operations on the base station side described in the present disclosure.
  • the processing circuit 230 may be configured to perform one or more operations on the UE-side described in the present disclosure.
  • the electronic device 200 (and more specifically, the processing circuit 230 ) may be used to perform one or more of the operations described herein in relation to the base station 110 .
  • the electronic device 200 may be implemented as the base station 110 itself, a part of the base station 110 , or a control device for controlling the base station 110 .
  • the electronic device 200 may be implemented as a chip for controlling the base station 110 .
  • electronic device 200, and more specifically, processing circuit 230 may also be used to perform one or more of the operations described herein in relation to UE 120.
  • the electronic device 200 may be implemented as the UE 120 itself, a part of the UE 120, or a control device for controlling the UE 120.
  • the electronic device 200 may be implemented as a chip for controlling the UE 120.
  • modules described above are exemplary and/or preferred modules for implementing the processes described in this disclosure. These modules may be hardware units (such as central processing units, field programmable gate arrays, digital signal processors or application specific integrated circuits, etc.) and/or software modules (such as computer readable programs).
  • the modules used to implement the various steps described below are not described in detail above. However, as long as there is a step of performing a certain process, there may be a corresponding module or unit (implemented by hardware and/or software) for implementing the same process.
  • the technical solutions defined by the steps described below and all combinations of units corresponding to these steps are included in the disclosure content of the present disclosure, as long as the technical solutions they constitute are complete and applicable.
  • a device constituted by various units may be incorporated into a hardware device such as a computer as functional modules.
  • the computer may of course have other hardware or software components.
  • the length of the time slot is shortened. For example, for the 52.6GHz-71GHz frequency band, the length of the time slot occupied by transmissions such as Physical Downlink Shared Channel (PDSCH) transmissions, Physical Uplink Shared Channel (PUSCH) transmissions is reduced. Multiple transmissions of this type may be considered to be scheduled by a single DCI.
  • a single DCI can usually only schedule a single transmission, and a corresponding beam selection scheme is designed for the single transmission. Such beam selection schemes are no longer suitable for scenarios where a single DCI schedules multiple transmissions. Improved beam selection schemes are desired.
  • FIG. 3 shows an example flow diagram of a method 300 according to an embodiment of the present disclosure.
  • the method 300 may be used to implement an improved beam selection scheme according to embodiments of the present disclosure.
  • the method 300 may be performed on the base station 110 side.
  • Method 300 may include steps 310 to 330 .
  • the base station 110 may be configured to send a single DCI to the UE 120.
  • the single DCI may be used to schedule multiple downlink transmissions associated with the UE 120.
  • the single DCI may indicate to the UE 120 a corresponding scheduled beam for each of the plurality of downlink transmissions.
  • the corresponding scheduled beam refers to a desired transmit beam scheduled by the DCI for performing each downlink transmission.
  • the base station 110 may be configured to determine a corresponding actual beam for each of the plurality of downlink transmissions.
  • the corresponding actual beam refers to a transmit beam that the base station 110 will actually use to perform the corresponding downlink transmission.
  • the determined corresponding actual beam for each downlink transmission may or may not be the same as the corresponding scheduled beam scheduled by the DCI for that downlink transmission.
  • the base station 110 may be configured to perform a corresponding downlink transmission of the plurality of downlink transmissions using the determined corresponding actual beam. Specifically, if the determined corresponding actual beam is different from the corresponding scheduled beam, the base station 110 may be configured to send the corresponding downlink transmission to the UE 120 using the corresponding actual beam instead of the corresponding scheduled beam. If the determined corresponding actual beam is the same as the corresponding scheduled beam, the base station 110 may be configured to send the corresponding downlink transmission to the UE 120 using the corresponding scheduled beam, as scheduled by the DCI.
  • examples of the multiple downlink transmissions that may be scheduled in a single DCI may include multiple PDSCH transmissions.
  • PDSCH transmission can be used to carry downlink user data.
  • examples of the multiple downlink transmissions may include multiple aperiodic channel state information reference signal (Aperiodic CSI-RS, AP CSI-RS) transmissions.
  • AP CSI-RS transmissions may be used to perform channel measurements (eg, beam scanning) to obtain channel state information.
  • the base station 110 may be configured to include transmission configuration information (Transmission Configuration Information, TCI) in the single DCI, so as to indicate corresponding to a plurality of downlink transmissions associated with the UE 120 Scheduling beams.
  • TCI Transmission Configuration Information
  • the respective scheduling beams scheduled for each of the plurality of downlink transmissions may be different.
  • the corresponding scheduling beam scheduled for each of the plurality of downlink transmissions may be the same, which may advantageously save overhead for indicating the corresponding scheduling beam for each downlink transmission (eg, , occupying fewer fields in the DCI).
  • base station 110 may be configured to determine a respective actual beam for each of the plurality of downlink transmissions based on one or more parameters associated with the capabilities of UE 120.
  • the one or more parameters associated with the capabilities of the UE 120 may be reported by the UE 120 to the base station 110 when the UE 120 accesses the cellular network.
  • the base station 110 may obtain the one or more parameters at any other suitable time or in any other suitable manner.
  • the one or more parameters reported by UE 120 to base station 110 may indicate that UE 120 will use the same receive beam for multiple downlink transmissions scheduled by a single DCI.
  • UE 120 may send a first parameter to base station 110, which may indicate that UE 120 will all use the same receive beam for multiple downlink transmissions scheduled by a single DCI.
  • the UE 120 may transmit the first parameter when the capability of the UE 120 is so weak that it cannot complete the beam switching within a certain period of time, thereby reducing the beam switching of the UE 120.
  • the first parameter may be the sameBeamForPDSCH parameter associated with PDSCH transmission. Similar parameters can also be defined for AP CSI-RS transmission.
  • the first parameter may be included in a report of the capabilities of the UE 120 to send to the base station 110.
  • the base station 110 may be configured to determine, based on the first parameter associated with the capabilities of the UE 120, that the respective actual beam used for each of the plurality of downlink transmissions associated with the UE 120 is the same beam.
  • base station 110 may be configured to determine the corresponding default beam associated with the earliest of the plurality of downlink transmissions as the same default beam for each of the plurality of downlink transmissions beam. That is, base station 110 may be configured to first determine the corresponding default beam associated with the earliest downlink transmission, and then apply the default beam to each of the plurality of downlink transmissions.
  • a default beam may refer to a beam that the base station 110 or the UE 120 should use, specified based on preconfigured rules. Unlike corresponding scheduled beams, which are dynamically scheduled by DCI, default beams are not dynamically scheduled by DCI.
  • one or more parameters reported by UE 120 to base station 110 may instruct UE 120 to allow the use of different beams for multiple downlink transmissions scheduled by a single DCI.
  • UE 120 may send a second parameter to base station 110, which may instruct UE 120 to allow the use of different beams for multiple downlink transmissions scheduled by the DCI.
  • the UE 120 may transmit the second parameter if the UE 120 is capable enough to complete the beam switching within a certain period of time, thereby making beam switching possible.
  • the second parameter may be the separateBeamForPDSCH parameter associated with PDSCH transmission. Similar parameters can also be defined for AP CSI-RS transmission.
  • This second parameter may, for example, be included in a report of the capabilities of the UE 120 to send to the base station 110.
  • the base station 110 may be configured to determine, based on the second parameter associated with the capabilities of the UE 120, that the respective actual beams used for each of the multiple downlink transmissions associated with the UE 120 may not be all of them. the same, but can contain different beams.
  • the second parameter has correspondence with the first parameter.
  • the first parameter and the second parameter may be reported to the base station 110 by the UE 120 as different parameter fields.
  • the first parameter and the second parameter may be reported to the base station 110 by the UE 120 as different values of the same parameter field.
  • the base station 110 may be configured to determine the respective respective actual beams based on a third parameter associated with the capabilities of the UE 120.
  • the third parameter may indicate the time threshold required for the UE 120 to be ready for the scheduled beam indicated by the DCI.
  • the base station 110 may determine the time threshold based on the third parameter.
  • the base station 110 may be configured to determine the time threshold based on the timeDurationForQCL parameter reported by the UE 120.
  • the timeDurationForQCL parameter may indicate the time required by the UE 120 from receiving the DCI until the beams indicated by the DCI for PDSCH transmission are ready.
  • Example values for the timeDurationForQCL parameter may include 7, 14, 28, or any other suitable number of OFDM symbols.
  • the base station 110 may be configured to determine the time threshold based on the beamSwitchTiming parameter reported by the UE 120.
  • Example values for the beamSwitchTiming parameter may include 14, 28, 42, or any other suitable number of OFDM symbols.
  • the beamSwitchTiming parameter may indicate the time required by the UE 120 from receiving the DCI until switching to the beam indicated by the DCI for AP CSI-RS transmission. The UE 120 may not be able to prepare (or switch to) the scheduling beam indicated by the DCI before the time threshold determined based on the third parameter.
  • the base station 110 may be configured to temporally divide the plurality of downlink transmissions to be performed based on the time threshold. Specifically, the base station 110 may be configured to determine a first group of downlink transmissions scheduled before the time threshold and a second group of downlink transmissions scheduled after the time threshold among the plurality of downlink transmissions. The base station 110 can expect that when performing the first set of downlink transmissions, the UE 120 does not have enough time to prepare/switch to the corresponding receive beams scheduled by the DCI, and when performing the second set of downlink transmissions, the UE 120 has enough time to prepare/switch to the corresponding receive beam scheduled by the DCI.
  • the base station 110 may be configured to use a default beam instead of the corresponding scheduled beam indicated by the DCI as the corresponding actual beam for that downlink transmission.
  • the base station 110 may be configured to use the corresponding scheduled beam indicated by the single DCI as the corresponding actual beam for the downlink transmission.
  • the default beam is not dynamically scheduled by the DCI, but may be specified based on pre-configured rules.
  • the default beam may be determined based on the control channel the UE 120 listens to.
  • the default beam may be specified as the beam used by UE 120 for the most recently received control channel transmission (eg, PDCCH transmission, etc.).
  • the default beams associated with different time slots may be different. More specifically, for each time slot, it may be specified that the corresponding default beam associated with that time slot is determined based on the CORESET with the lowest ID in the search space that UE 120 most recently monitored.
  • the CORESET here refers to a resource set used for downlink control channel transmission.
  • the corresponding default beam may be the beam corresponding to the CORESET with the lowest ID. Since each downlink transmission in the first set of downlink transmissions may be scheduled in different time slots, the corresponding default beams corresponding to each downlink transmission may also be different from each other. In this case, the UE 120 may be required to frequently switch beams between time slots if the corresponding default beam associated with the time slot in which it is located is used for each downlink transmission in the first set of downlink transmissions. This increases the requirements on the capabilities of the UE 120 with the shortened length of the time slot, thereby increasing the implementation complexity of the UE 120.
  • the base station 110 may also be configured to determine whether the corresponding actual beams used for each downlink transmission in the first set of downlink transmissions are the same or different. For example, the determination may be made based on a fourth parameter associated with the capabilities of the UE 120.
  • An example of the fourth parameter may be trackDefaultBeamForPDSCH associated with PDSCH. Similar parameters can be defined for AP CSI-RS or other downlink transmissions. This fourth parameter may, for example, be included in a report of the capabilities of the UE 120 to send to the base station 110.
  • base station 110 may receive an indication from UE 120 that UE 120 is unable or undesired to perform beam switching. For example, base station 110 may receive a fourth parameter from UE 120, the value of which indicates that UE 120 expects the corresponding actual beams for each of the first set of downlink transmissions to be the same. The base station 110 may be configured to use the same corresponding actual beam for each of the first set of downlink transmissions based on the value of the fourth parameter.
  • base station 110 may be configured to determine the default beam associated with the earliest downlink transmission of the plurality of downlink transmissions to be the same corresponding actual beam. That is, base station 110 may be configured to first determine a default beam associated with the earliest downlink transmission, and then apply the default beam to each of the first set of downlink transmissions, thereby avoiding frequent beam switching .
  • base station 110 may receive an indication from UE 120 that UE 120 is capable or desired to perform beam switching.
  • the base station 110 may receive a fourth parameter from the UE 120, the value of the fourth parameter indicating that the UE 120 allows the corresponding actual beams for each of the first set of downlink transmissions to be different, which allows the UE 120 to use the performance better beam.
  • the base station 110 may be configured to use different corresponding actual beams for the first set of downlink transmissions based on the value of the fourth parameter.
  • the different respective actual beams for each of the first set of downlink transmissions may be determined in various ways.
  • base station 110 may be configured to use, for each downlink transmission in the first set of downlink transmissions, a default beam corresponding to the downlink transmission.
  • the base station 110 may determine the beam corresponding to the CORESET with the lowest ID in the search space monitored recently by the UE 120 as the corresponding default beam, and use it as the beam for the downlink
  • the corresponding actual beam of transmission may vary from slot to slot.
  • FIG. 4 shows an example flowchart of a method 400 according to an embodiment of the present disclosure.
  • the method 400 may be used to implement an improved beam selection scheme according to embodiments of the present disclosure.
  • the method 400 may be performed on the UE 120 side.
  • Method 400 may include steps 410 to 430 .
  • UE 120 may be configured to receive a single DCI from base station 110.
  • the single DCI may be used to schedule multiple downlink transmissions associated with the UE 120.
  • the single DCI may indicate to the UE 120 a corresponding scheduled beam for each of the plurality of downlink transmissions.
  • UE 120 may parse the information in the DCI (e.g., TCI) to determine a corresponding scheduling beam for each of the plurality of downlink transmissions.
  • the corresponding scheduled beam refers to the desired receive beam scheduled by the DCI to perform each downlink transmission.
  • the respective scheduled beams scheduled for each downlink transmission may be different, and preferably, may be the same.
  • UE 120 may be configured to determine a corresponding actual beam for each of the plurality of downlink transmissions.
  • the corresponding actual beam refers to the receive beam that UE 120 will actually use to receive the corresponding downlink transmission.
  • the determined corresponding actual beam for each downlink transmission may or may not be the same as the corresponding scheduled beam for that downlink transmission.
  • UE 120 may be configured to receive a respective downlink transmission of the plurality of downlink transmissions using the determined respective actual beam. Specifically, if the determined corresponding actual beam is different from the corresponding scheduled beam, the UE 120 may be configured to receive the corresponding downlink transmission from the base station 110 using the corresponding actual beam instead of the corresponding scheduled beam. If the determined corresponding actual beam is the same as the corresponding scheduled beam, the UE 120 may be configured to receive the corresponding downlink transmission from the base station 110 using the corresponding scheduled beam, as scheduled by the DCI.
  • examples of the multiple downlink transmissions that can be scheduled in a single DCI can include multiple PDSCH transmissions, or multiple AP CSI-RS transmissions.
  • UE 120 may be configured to report one or more parameters associated with the capabilities of UE 120 (eg, one or more of the first to fourth parameters discussed above) to The base station 110 thus indicates to the base station 110 the UE's beam selection scheme for multiple downlink transmissions scheduled by a single DCI.
  • UE 120 may be configured to report these parameters to base station 110 when accessing the cellular network (or any other suitable time).
  • the UE 120 may select the corresponding actual beam based on the reported parameters, thereby corresponding to the beam selection scheme of the base station 110 discussed earlier.
  • UE 120 may be configured to determine that the corresponding actual beam used for each of the plurality of downlink transmissions is the same beam. For example, if the capabilities of the UE 120 are so weak that the UE 120 cannot complete beam switching within a certain time, the UE 120 may send a first parameter to the base station 110, which may indicate that the UE 120 will Multiple downlink transmissions all use the same receive beam, thereby avoiding beam switching.
  • the first parameter may include the sameBeamForPDSCH associated with PDSCH transmissions, or similar parameters for AP CSI-RS transmissions.
  • UE 120 may be configured to receive each of the plurality of downlink transmissions using the same receive beam.
  • UE 120 may be configured to determine a respective default beam associated with the earliest of the plurality of downlink transmissions as the same default beam for each of the plurality of downlink transmissions beam.
  • UE 120 may be configured to determine that the respective actual beams used for each of the plurality of downlink transmissions may contain different beams. For example, if UE 120 is capable enough that UE 120 can complete beam switching within a certain period of time, UE 120 may send a second parameter to base station 110, which may indicate UE 120 to allow multiple DCI-scheduled Downlink transmissions use different beams, making beam switching possible.
  • the first parameter may include separateBeamForPDSCH associated with PDSCH transmission, or a similar parameter for AP CSI-RS transmission. In this case, UE 120 may be configured to receive the multiple downlink transmissions using different receive beams.
  • the UE 120 may also be configured to determine a time threshold associated with the UE 120 being ready for DCI as indicated the time required to schedule the beam.
  • the time threshold may be determined based on the capabilities of the UE 120 itself.
  • the UE 120 may be configured to send the parameter associated with the time threshold to the base station 110 as a third parameter.
  • examples of the third parameter may include the timeDurationForQCL parameter or the beamSwitchTiming parameter.
  • the UE 120 may be configured to determine a first set of downlink transmissions of the plurality of downlink transmissions scheduled before the time threshold and a second set of downlink transmissions scheduled after the time threshold.
  • the UE 120 may be configured to use a default beam instead of the corresponding scheduled beam indicated by a single DCI as the corresponding actual beam for that downlink transmission.
  • the UE 120 may be configured to use the corresponding scheduled beam indicated by the single DCI as the corresponding actual beam for that downlink transmission.
  • the respective default beams corresponding to each of the downlink transmissions may also be different from each other.
  • the UE 120 may determine whether the corresponding actual beam used for each downlink transmission in the first group of downlink transmissions is the same beam or a different beam based on its own capabilities, and indicate the result of the determination to the base station 110. For example, UE 120 may send the fourth parameter associated with the determined result to base station 110.
  • UE 120 may send an indication to base station 110 that UE 120 is unable or does not desire beam switching for the first set of downlink transmissions. For example, UE 120 may send and receive a fourth parameter to base station 110, the value of which indicates that UE 120 expects the corresponding actual beams for each of the first set of downlink transmissions to be the same (ie, no beam switching ). Accordingly, UE 120 may be configured to use the same beam to receive each of the first set of downlink transmissions. This same beam can be determined in various ways.
  • the UE 120 may be configured to correlate the earliest downlink transmission of the plurality of downlink transmissions The default beam of the link is determined to be the same beam.
  • the UE 120 may send an indication to the base station 110 that the UE 120 is capable or desired to perform beam switching for the first set of downlink transmissions.
  • the UE 120 may send and receive a fourth parameter to the base station 110, the value of the fourth parameter indicating that the corresponding actual beams allowed by the UE 120 for each downlink transmission in the first set of downlink transmissions are different.
  • UE 120 may be configured to receive the first set of downlink transmissions using different beams.
  • UE 120 may be configured to use, for each downlink transmission in the first set of downlink transmissions, a default beam corresponding to that downlink transmission.
  • the UE 120 may be configured to communicate with the UE 120
  • the beam corresponding to the CORESET with the lowest ID in the most recently monitored search space is determined as the default beam corresponding to the downlink transmission, and used as the corresponding actual beam for the downlink transmission.
  • the corresponding actual beam (ie, the corresponding default beam) for each downlink transmission in the first set of downlink transmissions may vary from time to time slot.
  • 5A-5C illustrate schematic diagrams of multiple application examples of the improved beam selection scheme according to embodiments of the present disclosure.
  • a single DCI 510 and multiple downlink transmissions 520-1 through 520-4 (collectively 520) scheduled by the DCI are shown in FIG. 5A.
  • the plurality of downstream transmissions 520-1 to 520-4 are serialized in time.
  • the plurality of downlink transmissions 520 are divided into a first group of downlink transmissions ( 520 - 1 , 520 - 2 ) located before the time threshold 530 and a second group of downlink transmissions ( 520 - 2 ) located after the time threshold 530 based on the time threshold 530 520-3, 520-4).
  • the UE 120 For the second set of downlink transmissions, the UE 120 has sufficient time to prepare the corresponding receive beams scheduled by the DCI 510, and thus can perform downlink transmissions 520-3 using the corresponding scheduled beams 540-3, 540-4 indicated by the DCI 510, respectively. 3. 520-4.
  • Downlink transmissions 520-1, 520-2 of the first set of downlink transmissions are performed using default beams 550-1 and 550-2.
  • the default beams 550-1 and 550-2 may be the same beam, which may be the default beam 550-1 associated with the earliest downlink transmission 520-1 in the first set of downlink transmissions. In this case, beam switching may only occur between transmissions 520-2 and 520-3. In other examples, default beams 550-1 and 550-2 may be different beams, so beam switching may also occur between transmissions 520-1 and 520-2.
  • Figure 5B shows a special embodiment in which multiple downlink transmissions 520-1 to 520-4 scheduled by a single DCI are all located before the time threshold 530 and are therefore all divided into a first group of downlink transmissions.
  • the same beam is used for each of the first set of downlink transmissions 520-1 through 520-4.
  • This same beam may be the default beam 550-1 associated with the earliest downlink transmission 520-1 in the first set of downlink transmissions. In this example, no beam switching is required.
  • Figure 5C shows a similar scenario to Figure 5B, where multiple downlink transmissions 520-1 to 520-4 scheduled by a single DCI are all located before the time threshold 530 and are therefore all divided into a first group of downlink transmissions.
  • a different corresponding default beam 550-1 to 550-4 is used for each downlink transmission 520-1 to 520-4 in the first group of downlink transmissions, respectively.
  • beam switching is required based on changes in default beams associated with different transmissions.
  • FIGS. 5A-5C illustrate only one or more exemplary scenarios of the improved beam selection scheme of the present disclosure, which illustrate one or more but not all aspects in accordance with the present disclosure.
  • Figures 5A-5C illustrate embodiments where a single DCI schedules 4 transmissions, in other embodiments a single DCI may schedule more or fewer transmissions.
  • the length of the time threshold 530 may vary.
  • This section describes the various beams used for downlink transmissions for base station 110 and UE 120, respectively.
  • the various beams described for base station 110 are transmit beams that base station 110 may use to send downlink transmissions
  • the various beams described for UE 120 are receive beams that UE 120 may use to receive downlink transmissions.
  • the transmit and receive beams associated with the same downlink transmission may be matched beam pairs.
  • the corresponding scheduling beam of the base station 110 and the corresponding scheduling beam of the UE 120 associated with the same downlink transmission may be a matched pair of transmit beam-receive beam, rather than the same beam.
  • the improved beam selection scheme of the present disclosure provides a flexible beam selection mechanism.
  • This beam selection mechanism is particularly suitable for a scenario where a single DCI schedules multiple downlink transmissions.
  • This beam selection mechanism allows for the determination of an appropriate corresponding actual beam for each of the plurality of downlink transmissions.
  • the appropriate corresponding actual beam may be determined, eg, based on the capabilities of the UE.
  • the UE's capability eg, beam switching capability.
  • the improved beam selection scheme of the present disclosure enables UEs with different capabilities to adapt to this feature of the 52.6GHz-71GHz frequency band.
  • solutions of the present disclosure are not limited by specific frequency bands. In addition to the 52.6GHz-71GHz frequency band, the solution of the present disclosure can also be applied to any suitable frequency band.
  • a single DCI can only trigger one trigger state (TriggerState).
  • the trigger status may indicate multiple sets of reference signal resources for multiple CSI-RS transmissions.
  • Each of the multiple reference signal resource sets is associated with a corresponding reporting configuration. Therefore, the multiple reference signal resource sets are associated with multiple different reporting configurations.
  • FIG. 6 shows an example flow diagram of a method 600 according to an embodiment of the present disclosure.
  • Method 600 may be used to implement improved cross-slot CSI-RS transmission according to embodiments of the present disclosure.
  • the method 600 may be performed on the base station 110 side.
  • Method 600 may include steps 610 to 630 .
  • the base station 110 may be configured to send a single DCI to the UE 120.
  • the single DCI may indicate multiple sets of CSI-RS resources across multiple slots.
  • the multiple CSI-RS resource sets may be associated with the same reporting configuration. That is, each CSI-RS resource set in the multiple CSI-RS resource sets is associated with the same reporting configuration, rather than being associated with different reporting configurations respectively.
  • the multiple CSI-RS resource sets may be associated with the same CSI ReportConfig parameter. In other words, the CSI ReportConfig parameter associated with each of the multiple CSI-RS resource sets may be set to the same value.
  • the base station 110 may be configured to send a CSI-RS transmission to the UE 120 in each of the plurality of time slots using a corresponding CSI-RS resource set of the plurality of CSI-RS resource sets.
  • the CSI-RS transmissions scheduled by DCI are aperiodic CSI-RS transmissions, i.e. AP CSI-RS transmissions.
  • the multiple CSI-RS transmissions sent may be used to measure downlink channel quality. Because the multiple CSI-RS transmissions span multiple time slots, the measurement may also span multiple time slots. The measurement of each slot can obtain a corresponding measurement result based on the CSI-RS transmission in the slot.
  • the base station 110 may be configured to receive CSI reports from the UE 120 associated with the measurement of the plurality of time slots in a report based on the same reporting configuration. Multiple measurements across multiple slots can be synthesized to generate a CSI report that can describe channel state information based on multiple CSI-RS transmissions across multiple slots. Since each of the multiple CSI-RS resource sets is associated with the same reporting configuration, measurement results based on CSI-RS transmissions sent using each CSI-RS resource set can be associated with the same reporting configuration.
  • the CSI report may be sent by the UE 120 to the base station 110 in a single report based on the reporting configuration. This saves overhead by avoiding multiple reports caused by multiple different reporting configurations.
  • the base station 110 may be configured to configure the value of the repetition parameter Repetition of each CSI-RS resource set to OFF.
  • the value of the Repetition parameter may indicate whether all CSI-RS resources in the CSI-RS resource set are used for the measurement of the same beam or for the measurement of multiple beams.
  • the ON value of the Repetition parameter indicates that repetition is turned on, that is, all CSI-RS resources in the CSI-RS resource set are used to repeatedly transmit the same beam.
  • the OFF value of the Repetition parameter indicates that repetition is turned off, that is, each CSI-RS resource in the CSI-RS resource set is used to transmit multiple different beams.
  • the base station 110 may be configured to transmit multiple transmit beams using each CSI-RS resource of a set of CSI-RS resources in each slot, eg, for beam scanning.
  • the CSI report received by the base station 110 in step 630 is generated based on the measurement of each of the plurality of time slots.
  • the measurements for each time slot may be based on the transmit beam of the base station 110 within that time slot and the receive beam of the UE 120 within that time slot.
  • base station 110 may be configured to transmit multiple transmit beams in each time slot for beam scanning.
  • UE 120 may not be able to receive CSI-RS transmissions using multiple receive beams. This is because the UE 120 may not have sufficient capability to perform beam switching between multiple receive beams within a single time slot, especially as the time slot length becomes shorter.
  • UE 120 may be configured to receive CSI-RS transmissions using a single receive beam in each of the plurality of time slots, thereby avoiding beam switching within a single time slot.
  • UE 120 may use a different single receive beam in each of the plurality of time slots.
  • the single receive beam of the first time slot may be different from the single receive beam of the second time slot.
  • UE 120 may spread the multiple receive beams into multiple time slots, and beam scanning may be done across multiple time slots (rather than within a single time slot).
  • the base station 110 and the UE 120 may be configured to operate in the 52.6GHz-71GHz frequency band.
  • the length of the time slot is shortened.
  • the shortened time slot length places higher requirements on the beam switching capability of the UE 120.
  • the UE 120 no longer needs to complete multiple beam switching in a single time slot, thereby relaxing the capability requirements of the UE 120 and reducing the UE 120's Implementation complexity.
  • FIG. 7 shows an example flow diagram of a method 700 according to an embodiment of the present disclosure.
  • the method 700 may be used to implement improved cross-slot CSI-RS transmission according to embodiments of the present disclosure.
  • the method 700 may be performed on the UE 120 side.
  • Method 700 may include steps 710 to 730 .
  • UE 120 may be configured to receive a single DCI from base station 110.
  • the single DCI may indicate multiple sets of CSI-RS resources across multiple time slots, and the multiple sets of CSI-RS resources may be associated with the same reporting configuration.
  • the UE 120 may be configured to receive, in each of the plurality of time slots, from the base station 110, a CSI-RS sent using a corresponding CSI-RS resource set of the plurality of CSI-RS resource sets.
  • RS transmission to perform measurements since the multiple CSI-RS transmissions span multiple time slots, the measurement process may also span multiple time slots. The measurement of each slot can obtain a corresponding measurement result based on the CSI-RS transmission in the slot.
  • UE 120 may be configured to send CSI reports associated with measurements of multiple time slots to base station 110 in a report based on the same reporting configuration.
  • UE 120 may be configured to generate a CSI report that may synthesize multiple measurements across multiple time slots, the CSI report may describe channel state information based on multiple CSI-RS transmissions across multiple time slots.
  • UE 120 may be configured to send the CSI report to base station 110 in a single report based on the same reporting configuration.
  • the value of the repetition parameter Repetition of each CSI-RS resource set may be configured to be OFF. Based on the parameter value, UE 120 may determine that base station 110 is configured to transmit multiple transmit beams using each CSI-RS resource of a set of CSI-RS resources in each slot.
  • UE 120 may be configured to perform measurements using a different single receive beam in each of the plurality of time slots. Specifically, UE 120 may be configured to use a single receive beam in each time slot to receive CSI-RS transmissions sent by base station 110 using multiple transmit beams. The UE 120 may generate measurements associated with the time slot based on the reception. In this way, UE 120 can spread multiple receive beams into multiple time slots, thereby completing beam scanning across multiple time slots (rather than within a single time slot). UE 120 can avoid beam switching within a single time slot. As previously discussed, this design may reduce the implementation complexity of the UE 120 when the length of the time slot is short (eg, when the UE 120 operates in the 52.6GHz-71GHz frequency band).
  • FIG. 8A shows an example of a single DCI scheduled cross-slot CSI-RS transmission scheme.
  • a single DCI 810 may schedule multiple CSI-RS transmissions, eg, CSI-RS transmissions 830-1, 830-2, 830-3, with a single trigger state.
  • CSI-RS transmissions 830-1, 830-2, 830-3 are scheduled in time slots 820-1, 820-2, 820-3, respectively.
  • Each CSI-RS transmission 830-1, 830-2, 830-3 is associated with a corresponding reporting configuration 840-1, 840-2, 840-3, respectively.
  • three reports associated with reporting configurations 840-1, 840-2, 840-3, respectively, will be triggered.
  • a single DCI 810 can schedule multiple CSI-RS transmissions, eg, CSI-RS transmissions 830-1, 830-2, 830-3, with a single trigger state.
  • CSI-RS transmissions 830-1, 830-2, 830-3 are scheduled in time slots 820-1, 820-2, 820-3, respectively.
  • each CSI-RS transmission 830-1, 830-2, 830-3 is associated with the same reporting configuration 840.
  • the reporting configuration 840 may only trigger a single report 850 . In this way, the overhead of configuring the reporting configuration and the overhead of reporting the CSI report can be reduced.
  • the transmit and receive beams used by the base station 110 and the UE 120 in various time slots are also shown.
  • the base station 110 may be configured to transmit CSI-RS transmissions using the first set of transmit beams 860-1 to perform beam scanning, while the UE 120 may only receive using a single receive beam 870-1 These CSI-RS are transmitted.
  • the measurements associated with the first time slot may be based on the first set of transmit beam 860-1 and receive beam 870-1.
  • the base station 110 may be configured to transmit CSI-RS transmissions using the second set of transmit beams 860-2 to perform beam scanning, while the UE 120 may only receive using a single receive beam 870-2 These CSI-RS are transmitted.
  • the measurements associated with the second time slot may be based on the second set of transmit beams 860-2 and receive beams 870-2.
  • the base station 110 may be configured to transmit CSI-RS transmissions using the third set of transmit beams 860-3 to perform beam scanning, while the UE 120 may only receive using the single receive beam 870-3 These CSI-RS are transmitted.
  • the measurements associated with the third time slot may be based on the third set of transmit beam 860-3 and receive beam 870-3.
  • the CSI report 850 may be generated based on a synthesis of the measurement results of the first to third time slots.
  • the three receive beams 870-1, 870-2, 870-3 of the UE 120 are spread over three time slots so that the UE 120 does not need to perform beam switching within a single time slot.
  • the improved cross-slot CSI-RS transmission scheme of the present disclosure reduces overhead associated with configuration of CSI-RS and CSI reporting.
  • one or more preferred embodiments of the scheme also enable the UE to adapt to shortened time slot lengths (eg, in the 52.6GHz-71GHz frequency band).
  • the solution of the present disclosure is not limited by a specific frequency band.
  • the solution of the present disclosure can also be applied to any suitable frequency band.
  • Multi-slot SSB transmissions scheduled by a single DCI face similar problems to the previously described multi-slot CSI-RS.
  • the present disclosure provides improved multi-slot SSB transmission with a single DCI schedule.
  • FIG. 9 shows an example flow diagram of a method 900 according to an embodiment of the present disclosure.
  • Method 900 may be used to implement improved multi-slot SSB transmission in accordance with embodiments of the present disclosure.
  • the method 900 may be performed on the base station 110 side.
  • Method 900 may include steps 910 to 930 .
  • the base station 110 may be configured to send a single DCI to the UE 120.
  • the single DCI may be configured to schedule multiple SSB resources in multiple time slots.
  • base station 110 may be configured to send an SSB transmission to UE 120 in each of the plurality of time slots.
  • the base station 110 may be configured to perform SSB transmission in each of the plurality of time slots using a plurality of transmit beams in different directions corresponding to the plurality of SSB resources to perform SSB transmission to Perform a downlink beam scan. That is, base station 110 may be configured to transmit SSB transmissions in a single time slot by switching multiple transmit beams in different directions.
  • downlink beam scanning in each of the plurality of time slots may be based on a respective single receive beam of the UE. While base station 110 may use multiple transmit beams in different directions in each time slot, UE 120 may be configured to use only a corresponding single receive beam in each time slot. Also, the corresponding receive beams used by UE 120 in different time slots may be different. Downlink beam scanning in each time slot may be based on multiple transmit beams in different directions sent by base station 110 in that time slot and a single receive beam used by UE 120. In other words, base station 110 may scan multiple transmit beams within a single time slot, while UE 120 is configured to scan multiple receive beams across multiple time slots (rather than within a single time slot).
  • FIG. 10 shows an example flow diagram of a method 1000 according to an embodiment of the present disclosure.
  • Method 1000 may be used to implement improved multi-slot SSB transmission in accordance with embodiments of the present disclosure.
  • the method 1000 may be performed on the UE 120 side.
  • Method 1000 may include steps 1010 and 1020 .
  • UE 120 may be configured to receive a single DCI from base station 110.
  • the single DCI may be configured to schedule multiple SSB resources in multiple time slots.
  • UE 120 may be configured to receive SSB transmissions in each of the plurality of time slots.
  • UE 120 may be configured to receive SSB transmissions from base station 110 using a single receive beam in each time slot.
  • the corresponding receive beams used by UE 120 in different time slots may be different.
  • UE 120 is configured to scan multiple receive beams across multiple time slots (rather than within a single time slot).
  • base station 110 may use multiple transmit beams in different directions in each time slot, as previously described. Accordingly, the SSB transmissions received by UE 120 from base station 110 in each time slot are sent by base station 110 using multiple transmit beams in different directions corresponding to the multiple SSB resources.
  • a single DCI 1110 may schedule multiple SSB transmissions, eg, SSB transmissions 1130-1, 1130-2, 1130-3.
  • SSB transmissions 1130-1, 1130-2, 1130-3 are scheduled in consecutive time slots 1120-1, 1120-2, 1120-3, respectively.
  • the base station 110 may be configured to transmit SSB transmissions using the first set of transmit beams 1140-1, while the UE 120 may receive these SSB transmissions using only a single receive beam 1170-1.
  • the measurements associated with the first time slot may be based on the first set of transmit beam 1140-1 and receive beam 1170-1.
  • the base station 110 may be configured to transmit SSB transmissions using the second set of transmit beams 1140-2, while the UE 120 may receive these SSB transmissions using only a single receive beam 1170-2.
  • the measurements associated with the second time slot may be based on the second set of transmit beams 1140-2 and receive beams 1170-2.
  • the base station 110 may be configured to transmit SSB transmissions using the third set of transmit beams 1140-3, while the UE 120 may receive SSB transmissions using only a single receive beam 1170-3.
  • the measurements associated with the third time slot may be based on the third set of transmit beam 1140-3 and receive beam 1170-3.
  • the three receive beams 1170-1, 1170-2, 1170-3 of the UE 120 are spread over three time slots, so beam switching in a single time slot is not required.
  • the base station 110 and the UE 120 may be configured to operate in the 52.6GHz-71GHz frequency band.
  • the time slot length may be shortened.
  • the UE 120 no longer needs to perform multiple beam switching in the shortened single time slot. This relaxes the requirements for the beam switching capability of the UE 120, reducing the implementation complexity of the UE 120.
  • the solution of the present disclosure is not limited by a specific frequency band. In addition to the 52.6GHz-71GHz frequency band, the solution of the present disclosure can also be applied to any suitable frequency band.
  • a cross-slot SRS transmission scheme scheduled by a single DCI faces similar problems to the previously described multi-slot CSI-RS transmission, SSB.
  • the present disclosure provides an improved cross-slot SRS transmission scheme for a single DCI schedule.
  • FIG. 12 shows an example flow diagram of a method 1200 according to an embodiment of the present disclosure.
  • the method 1200 may be used to implement an improved cross-slot SRS transmission scheme according to embodiments of the present disclosure.
  • the method 1200 may be performed on the base station 110 side.
  • Method 1200 may include steps 1210 and 1220 .
  • the base station 110 may be configured to send a single DCI to the UE 120.
  • the single DCI may be configured to trigger an SRS resource set containing multiple SRS resources and schedule the multiple SRS resources in multiple time slots.
  • base station 110 may be configured to receive SRS transmissions from UE 120 in each of the plurality of time slots.
  • the plurality of SRS resources are scheduled in a plurality of time slots, such that the UE 120 uses only one SRS resource of the plurality of SRS resources in each time slot of the plurality of time slots transmission.
  • one SRS resource that should be used by UE 120 may be allocated for each time slot.
  • UE 120 sends SRS transmissions using only the transmit beam corresponding to the one SRS resource in each slot.
  • base station 110 may be configured to receive SRS transmissions from UE 120 using multiple receive beams corresponding to all of the SRS resources of the SRS resource set in each slot.
  • the above-mentioned embodiments are particularly suitable for scenarios with a short time slot length.
  • a sub-carrier SCS with a width of 480kHz or 960kHz may be used.
  • the wider subcarrier width promotes the utilization of spectrum resources, but also shortens the duration of the OFDM symbol. Accordingly, the length of each slot becomes shorter.
  • the UE 120 is required to perform beam switching frequently within a single time slot, the implementation complexity of the UE will be significantly increased.
  • each slot may alternatively be allocated more than one SRS resource that should be used by the UE 120.
  • the more than one SRS resource may be a subset of the aforementioned SRS resource set, or even the SRS resource set itself.
  • UE 120 may use the more than one SRS resource of the plurality of SRS resources to send SRS transmissions in each of the plurality of time slots. Accordingly, UE 120 will be able to send SRS transmissions in each slot using more than one transmit beam corresponding to the more than one SRS resource.
  • base station 110 may be configured to receive SRS transmissions from UE 120 using multiple receive beams corresponding to all of the SRS resources of the SRS resource set in each slot, similar to that discussed above.
  • the base station 110 may be configured to determine whether to limit the UE 120 to use only a single SRS resource for sending SRS transmissions in a single slot based on the width of the currently used subcarriers. For example, if the width of the sub-carriers is wider (480 kHz or 960 kHz), the UE 120 may be restricted to use only a single SRS resource to send SRS transmissions in a single slot. If the width of the subcarriers is narrow (120 kHz), the UE 120 may be allowed to use more than one SRS resource in a single slot to send SRS transmissions.
  • FIG. 13 shows an example flow diagram of a method 1300 according to an embodiment of the present disclosure.
  • the method 1300 may be used to implement an improved cross-slot SRS transmission scheme according to embodiments of the present disclosure.
  • the method 1300 may be performed on the UE 120 side.
  • Method 1300 may include steps 1310 and 1320 .
  • UE 120 may be configured to receive a single DCI from base station 110.
  • the single DCI may be configured to trigger a set of SRS resources containing multiple SRS resources, and the multiple SRS resources are scheduled in multiple time slots.
  • UE 120 may be configured to send an SRS transmission to base station 110 in each of the plurality of time slots.
  • the UE 120 may complete uplink beam scanning, codebook-based or non-codebook-based transmission, uplink positioning, or switching of the transmit antenna of the UE 120 by sending SRS transmissions.
  • UE 120 may be configured to transmit SRS transmissions using only one SRS resource of the plurality of SRS resources in each of the plurality of time slots. This may eliminate the need for the UE 120 to perform beam switching within a single time slot. For example, this configuration can be applied where the subcarrier width is wider (eg, 480 kHz or 960 kHz).
  • UE 120 may be configured to send SRS transmissions in each of the plurality of time slots using more than one SRS resource of the plurality of SRS resources. Accordingly, UE 120 will be able to send SRS transmissions in each slot using more than one transmit beam corresponding to the more than one SRS resource. This allows UE 120 to perform a certain number of beam switches within a single time slot. For example, this configuration can be applied where the subcarrier width is narrow (eg, 120 kHz).
  • the number of SRS resources allocated to a single slot may be negatively correlated with the width of the subcarriers, and/or positively correlated with the capabilities of the UE 120.
  • the number of SRS resources allocated into a single slot may be smaller (eg, single).
  • the number of SRS resources allocated to a single slot may be smaller (eg, single).
  • a single DCI 1410 may schedule multiple SRS transmissions, eg, SRS transmissions 1430-1, 1430-2, 1430-3. Also, SRS transmissions 1430-1, 1430-2, 1430-3 are scheduled in consecutive time slots 1420-1, 1420-2, 1420-3, respectively. Each of the time slots 1420-1, 1420-2, 1420-3 may be shorter.
  • the base station 140 may be configured to receive SRS transmissions using a set of receive beams 1440, while the UE 120 may only transmit SRS transmissions using a single transmit beam 1450-1.
  • the measurements associated with the first time slot may be based on a set of receive beams 1440 and transmit beams 1450-1.
  • the base station 140 may be configured to receive SRS transmissions using a set of receive beams 1440, while the UE 120 may transmit SRS transmissions using only a single transmit beam 1450-2.
  • the measurements associated with the second time slot may be based on a set of receive beams 1440 and transmit beams 1450-2.
  • the base station 140 may be configured to receive SRS transmissions using a set of receive beams 1440, while the UE 120 may transmit SRS transmissions using only a single transmit beam 1450-3.
  • the measurements associated with the third time slot may be based on a set of receive beams 1440 and transmit beams 1450-3.
  • the multiple transmit beams of UE 120 are spread across multiple time slots, thereby avoiding performing beam switching in a single time slot.
  • the set of receive beams 1440 used by the base station 110 in each of the first time slot 1420-1, the second time slot 1420-2, and the third time slot 1420-2 may be the same set beam, for example for upstream beam scanning.
  • the set of receive beams 1440 used by the base station 110 in each time slot may vary across time slots without limitation.
  • a single DCI 1410 may schedule multiple SRS transmissions, eg, SRS transmissions 1430-1, 1430-2, 1430-3. Also, SRS transmissions 1430-1, 1430-2, 1430-3 are scheduled in consecutive time slots 1420-1, 1420-2, 1420-3, respectively. Unlike the example of Figure 14A, in Figure 14B, each of the time slots 1420-1, 1420-2, 1420-3 may be longer.
  • the base station 140 may be configured to receive SRS transmissions using a set of receive beams 1440, while the UE 120 may transmit SRS transmissions using a set of transmit beams 1450-1.
  • the base station 140 may be configured to receive SRS transmissions using a set of receive beams 1440, while the UE 120 may transmit SRS transmissions using a set of transmit beams 1450-2.
  • the base station 140 may be configured to receive SRS transmissions using a set of receive beams 1440, while the UE 120 may transmit SRS transmissions using a set of transmit beams 1450-3.
  • Each set of transmit beams 1450-1, 1450-2, 1450-3 may correspond to a subset of SRS resources in the set of SRS resources scheduled by a single DCI 1410, which may include more than one SRS resource.
  • the base station 110 and the UE 120 may be configured to operate in the 52.6GHz-71GHz frequency band.
  • the 52.6GHz-71GHz frequency band wider subcarrier widths and shortened time slot lengths are expected.
  • the solution of the present disclosure relaxes the requirement for the beam switching capability of the UE 120 and reduces the implementation complexity of the UE 120 by dispersing the multiple transmit beams of the UE 120 into multiple time slots.
  • the solutions of the present disclosure are not limited by specific frequency bands. In addition to the 52.6GHz-71GHz frequency band, the solution of the present disclosure can also be applied to any suitable frequency band.
  • a network-side device eg, a base station
  • the network side device indicates the specific time period to the UE through the COT message in the DCI.
  • Some signal transmissions or channel transmissions between the base station and the UE may fall outside this specific time period. If this happens, additional DCI signaling can often be used to reschedule transmissions that fall outside of a certain time period. This approach requires additional signaling overhead.
  • the present disclosure provides an improved scheme that provides signal/channel transmission triggered/activated by COT.
  • Method 1500 shows an example flow diagram of a method 1500 according to an embodiment of the present disclosure.
  • the method 1500 may be used to implement a COT-triggered signal/channel transmission scheme according to embodiments of the present disclosure.
  • the method 1500 may be performed on the base station 110 side.
  • Method 1500 may include steps 1510 to 1540 .
  • the base station 110 may be configured to configure a first offset, which may be associated with the first transmission between the base station 110 and the UE 120.
  • the first transmission may be an uplink transmission or a downlink transmission.
  • the first transmission may be a signal transmission or a channel transmission.
  • the first offset may be associated with an amount of time.
  • the first offset can be represented in various ways. As an example, the first offset may be described in time units such as nanoseconds, microseconds, milliseconds, or using the number of OFDM symbols. In other examples, a percentage may be used to describe the first offset.
  • base station 110 may be configured to configure COTs associated with base station 110 and UE 120.
  • the COT may indicate a specific time period during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band. Base station 110 and UE 120 are not allowed to communicate outside the COT.
  • the COT may be included in the COT message for transmission between the base station 110 and the UE 120.
  • the COT message may include the start time and duration of the COT.
  • the COT message may be generated by base station 110 and sent to UE 120.
  • the COT message may be sent to UE 120 via DCI (eg, DCI_2.0).
  • base station 110 may receive COT messages from UE 120.
  • the base station 110 may be configured to calculate a specific time for the first transmission based on the COT and the first offset.
  • the COT and the first offset may be combined in any predetermined suitable manner to obtain the specific time.
  • the specific time may be calculated as a time shifted backward by a first offset from the start time of the COT, or as a time shifted forward by a first offset from the end time of the COT.
  • the first offset is a percentage
  • the specific time may be calculated as a time elapsed by a certain percentage of the duration of the COT from the start time of the COT.
  • the base station 110 may be configured to perform the first transmission at the calculated specific time.
  • the first transmission may be a downlink transmission, and performing the first transmission by the base station 110 means that the base station 110 sends the first transmission to the UE 120.
  • the first transmission may be an uplink transmission, and the base station 110 performing the first transmission means that the base station 110 receives the first transmission from the UE 120. It should be noted that the execution of this first transmission does not require the triggering of additional dynamic signaling, but can be performed automatically when the specific time is reached.
  • the base station 110 may start a timer after entering the COT, the timer expiring after the first offset. Base station 110 may perform the first transmission when the timer expires.
  • the base station 110 may further determine whether the calculated specific time is within the specific time period indicated by the COT. In response to determining that the calculated specific time is within the specific time period indicated by the COT, the base station 110 may be configured to perform the first transmission at the specific time. In response to determining that the calculated particular time is outside the particular time period (e.g., when the first offset is greater than the duration of the COT), the base station 110 may be configured to abort performing the first transmission.
  • the first offset may be configured in various suitable ways.
  • the first offset may be configured through RRC signaling, COT message, or a combination thereof.
  • the first offset may be configured through RRC signaling.
  • the base station 110 may be configured to configure the information associated with the first offset in RRC signaling and send the RRC signaling to the UE 120.
  • the information associated with the first offset in the RRC signaling may be the first offset itself. Since the RRC signaling belongs to the signaling of the higher layer, the first offset has lower dynamics in this configuration. In this case, multiple COTs associated with base station 110 and UE 120 will be associated with the same first offset if the information associated with the first offset is not reconfigured through new RRC signaling quantity.
  • the first offset may be configured through a COT message.
  • the first offset may be included with the COT in the COT message to be communicated between the base station 110 and the UE 120.
  • each COT associated with base station 110 and UE 120 would have a value of the first offset specific to that COT.
  • the value of the first offset is configured through the COT message indicating the COT.
  • the first offsets associated with different COTs may be different or may be the same. In some embodiments, since the COT message can be sent through the DCI, the first offset has high dynamics in this configuration.
  • the first offset may be configured based on both RRC signaling and COT messages.
  • the base station 110 may configure a list including multiple optional offsets in the RRC signaling.
  • the offset index can be configured using the COT message.
  • An optional offset corresponding to the offset index in the list of optional offsets may be configured as the first offset.
  • the configuration of the list of optional offsets is less dynamic, while the configuration of the offset index can be more dynamic.
  • the size of the first offset may be configured based on the priority of the UE 120. Different first offsets may be configured for multiple UEs 120 with different priorities. For the UE 120 with high priority, a small first offset can be configured, so that the base station 110 and the UE 120 can perform the first transmission as soon as possible after entering the COT. For a low priority UE 120, a large first offset may be configured such that the first transmission between the base station 110 and the UE 120 may be performed later in the COT, in the next COT, or Do not execute.
  • the COT message may further include an indication of whether to trigger the first transmission. If the COT message indicates that the first transmission is not to be triggered, the base station 110 may abort performing the first transmission. Otherwise, the base station 110 may perform the first transmission at the calculated specific time.
  • the COT message may be generated by base station 110 .
  • the base station 110 may be configured to perform a Listen Before Talk (LBT) operation to determine a specific time period during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band, ie, with the The COT associated with the base station 110 and the UE 120.
  • LBT Listen Before Talk
  • the base station 110 may be configured to detect the energy of the channel on the unlicensed frequency band and determine the time period in which the energy of the channel is below a threshold as the COT in which the base station 110 and the UE 120 are allowed to communicate.
  • the base station 110 may include the determined COT in a COT message, and send the COT message to the UE 120 through DCI.
  • the base station 110 may further include information associated with the first offset in the generated COT message.
  • the first transmission may include various types of downlink transmissions.
  • the first transmission may be a Downlink Reference Signal (DL RS) transmission.
  • DL RS transmission triggered by COT can be used to perform channel measurements.
  • One or more of the existing periodic CSI-RS transmissions may fall outside the COT resulting in missing channel measurements.
  • COT-triggered DL RS transmission can replace or be used in combination with periodic CSI-RS transmission to compensate for missing channel measurements.
  • the first transmission may be a PDSCH transmission. PDSCH transmission triggered by COT can be used to transmit downlink user data.
  • the existing semi-static PDSCH (Semi-Persistent PDSCH, SP PDSCH) transmission is periodic, and one or more PDSCH transmissions may fall outside the COT and cannot be performed.
  • PDSCH transmission triggered by COT can replace or be used in combination with semi-static PDSCH transmission to ensure the reliability of PDSCH transmission.
  • base station 110 may receive COT messages from UE 120.
  • the COT message may include the COT determined by the UE 120 based on the LBT operation.
  • the COT message may further include information associated with the first offset.
  • base station 110 may extract information associated with the first offset from the COT message and configure the first offset to be used by base station 110 based on the information accordingly.
  • the first transmission may include various types of uplink transmissions.
  • the first transmission may include an Uplink Reference Signal (UL RS) transmission.
  • COT-triggered UL RS transmissions can replace or be used in conjunction with existing periodic uplink reference signal transmissions.
  • the first transmission may include a PUSCH transmission.
  • the PUSCH transmission triggered by COT can replace the existing semi-static PUSCH (Semi-Persistent PUSCH, SP PUSCH) transmission, or be used in combination with it.
  • the first transmission may also include a PUCCH transmission.
  • the PUCCH transmission triggered by COT can replace the existing semi-static PUCCH (Semi-Persistent PUCCH, SP PUCCH) transmission, or be used in combination with it.
  • FIG. 16 shows an example flow diagram of a method 1600 according to an embodiment of the present disclosure.
  • the method 1600 may be used to implement a COT-triggered signal/channel transmission scheme according to embodiments of the present disclosure.
  • the method 1600 may be performed on the UE 120 side.
  • Method 1600 may include steps 1610 to 1640 .
  • UE 120 may be configured to configure a first offset, which may be associated with a first transmission between base station 110 and UE 120.
  • the first transmission may be an uplink transmission, eg, UL RS transmission, PUCCH transmission, PUSCH transmission, and so on.
  • the first transmission may be a downlink transmission, such as DL RS transmission, PDSCH transmission, etc.
  • the first transmission may be a signal transmission, such as a UL RS transmission, a DL RS transmission, or the like.
  • the first transmission may be a channel transmission, such as a PUCCH transmission, a PUSCH transmission, a PDSCH transmission, or the like.
  • UE 120 may be configured to configure the COT associated with the base station and UE 120.
  • the COT may indicate a specific time period during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band. Base station 110 and UE 120 are not allowed to communicate outside the COT.
  • the COT may be included in the COT message for transmission between the base station 110 and the UE 120.
  • UE 120 may receive a COT message from base station 110.
  • UE 120 may generate and send a COT message to base station 110.
  • UE 120 may be configured to calculate a specific time for the first transmission based on the COT and the first offset.
  • the COT and the first offset may be combined in any predetermined suitable manner to obtain the specific time.
  • the specific time may be calculated as the sum of the start time of the COT and the first offset, or the difference between the end time of the COT and the first offset.
  • the first offset is also a percentage
  • the specific time may be calculated as a percentage of the duration of the COT that has elapsed since the start of the COT.
  • the UE 120 may be configured to perform the first transmission at the calculated specific time. If the first transmission may be a downlink transmission, the UE 120 may be configured to receive the first transmission from the base station 110 at the calculated specific time. If the first transmission may be an uplink transmission, UE 120 may be configured to send the first transmission to base station 110 at the calculated specific time. The execution of this first transmission does not require the triggering of additional dynamic signaling, but can be performed automatically when the specific time is reached.
  • the UE 120 may further determine whether the calculated specific time is within the specific time period indicated by the COT. In response to determining that the calculated specific time is within the specific time period indicated by the COT, the UE 120 may be configured to perform the first transmission at the specific time. Otherwise, the UE 120 may be configured to abstain from performing the first transmission.
  • the first offset may be configured in various suitable ways, as long as UE 120 and base station 110 agree on the first offset associated with each COT.
  • the UE 120 may configure the first offset through RRC signaling, COT messages, or a combination thereof.
  • UE 120 may be configured to configure the first offset based at least in part on RRC signaling received from base station 110. Specifically, the UE 120 may obtain information associated with the first offset by parsing the RRC signaling from the base station 110, and configure the first offset to be used by the UE 120 based on the information associated with the first offset Offset.
  • UE 120 may be configured to configure the first offset using, at least in part, a COT message. For example, UE 120 may obtain information associated with the first offset by parsing the COT message from base station 110, and configure the first offset to be used by UE 120 based on the information associated with the first offset quantity. Alternatively, if the COT message is generated by the UE 120, the first offset may also be included in the COT message by the UE 120 and sent to the base station 110.
  • UE 120 may configure the first offset based on both RRC signaling and COT messages. Specifically, the UE 120 may be configured to extract the list of optional offsets from the RRC signaling, use the COT message to configure the offset index, and place the list of optional offsets corresponding to the offset index in the list of optional offsets.
  • the optional offset is configured as the first offset that the UE 120 will use.
  • the size of the first offset may be configured based on the priority of the UE 120.
  • UEs 120 of different priorities may be configured with different first offsets.
  • UEs 120 with high priority may be configured with a small first offset.
  • Low priority UEs 120 may be configured with a large first offset.
  • the priority of the UE 120 may depend on the type of UE 120 or the type of service the UE 120 is performing. For example, UEs 120 associated with life rescue, security alerts, or UEs 120 making emergency calls may be assigned the highest priority.
  • a UE 120 that is a streaming media device or a UE 120 that is performing a normal call may be assigned a medium priority.
  • Certain MTC devices or UEs 120 that only perform periodic update or background handshake services may be assigned low priority.
  • the COT message transmitted between the base station 110 and the UE 120 may also optionally include an indication of whether to trigger the first transmission. If the COT message indicates that the first transmission is not to be triggered, the UE 120 may abort performing the first transmission. Otherwise, UE 120 may perform the first transmission at the calculated specific time.
  • UE 120 may receive a COT message from base station 110.
  • the COT message may include the COT determined by the base station 110 based on the LBT operation.
  • the COT message may further include information associated with the first offset.
  • UE 120 can extract information associated with the first offset from the COT message and configure the first offset to be used by UE 120 accordingly.
  • the first transmission may include various types of downlink transmissions, such as the previously described DL RS transmissions, PDSCH transmissions, and the like.
  • the COT message may be generated by UE 120.
  • the UE 120 may be configured to perform LBT operations to determine the specific time period during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band, i.e., the COT associated with the base station 110 and the UE 120.
  • UE 120 may be configured to detect the energy of the channel on the unlicensed band and determine the time period in which the energy of the channel is below a threshold as the COT in which base station 110 and UE 120 are allowed to communicate.
  • UE 120 may include the determined COT in a COT message and send the COT message to base station 110. If the LBT performed by the UE 120 is directional (i.e.
  • the COT message may be a directional COT message, which may include information related to the specific direction associated information. That is, a directional LBT generates a directional COT message.
  • UE 120 may also include information associated with the first offset in the generated COT message.
  • the first transmission may include various types of uplink transmissions, such as the previously described UL RS transmissions, PUSCH transmissions, PUCCH transmissions, and the like.
  • Figure 17A shows an example of a transmission associated with the COT.
  • base station 110 triggers corresponding COT 1720-1 and COT 1720-2 via COT messages 1710-1 and 1710-2, respectively.
  • Base station 110 and UE 120 desire to perform periodic transmission 1730.
  • the periodic transmission 1730 here may be any of periodic CSI-RS transmission, semi-static PDSCH transmission, periodic uplink RS transmission, semi-static PUSCH transmission, or semi-static PUCCH transmission, for example.
  • the first transmission 1730-1 of the periodic transmission 1730 is located within the COT 1720-1 so it can be performed.
  • the second transmission 1730-2 of the periodic transmission 1730 is not located in any COT and therefore cannot be performed.
  • the base station 110 needs to dynamically trigger the transmission 1750 through an additional DCI 1740.
  • the periodic transmission 1730 may be, for example, a periodic CSI-RS transmission.
  • UE 120 relies on the periodic CSI-RS transmission to monitor the beam quality of the channel.
  • base station 110 needs to dynamically trigger aperiodic CSI-RS transmission 1750 through additional DCI 1740 to make up for previously missed periodic CSI-RS transmission 1730-2.
  • Triggered aperiodic CSI-RS transmission 1750 needs to use the same QCL-TypeD assumption as missed periodic CSI-RS transmission 1730-2.
  • FIG. 17B illustrates an example of a COT-triggered signal/channel transmission scheme according to an embodiment of the present disclosure.
  • Corresponding COT 1720-1 and COT 1720-2 are triggered by COT messages 1710-1 and 1710-2, respectively. These COT messages may be sent by the base station 110 to the UE 120, or by the UE to the base station 110.
  • the corresponding first transmission 1760-1 or 1760-2 is automatically performed .
  • the first transmission 1760-1 or 1760-2 is triggered by COT 1720-1 or COT 1720-2, respectively, without being dynamically triggered by an additional DCI (eg, DCI 1740 in Figure 17A).
  • the base station 110 and the UE 120 may configure the first offset 1770-1 and the second offset 1770-2 through RRC signaling (not shown), COT message 1710, or a combination of the two .
  • the configured first offset 1770-1 and second offset 1770-2 may be the same or different.
  • the example of Figure 17B avoids the additional DCI 1740, saving overhead.
  • periodic transmission 1730 in Figure 17A is not shown in Figure 17B
  • periodic transmission 1730 may optionally be retained in Figure 17B.
  • the first transmission 1760 of Figure 17B may be used in combination with the periodic transmission 1730 of Figure 17A.
  • first transmission 1760-1 may not be performed in COT 1720-1.
  • a COT message 1710-2 may indicate that the first transmission 1760-2 should be performed in the COT 1710-2 to compensate for the periodic transmission The absence of 1730-2.
  • COT message 1710-2 may contain an indication that the first transmission should be performed, while COT message 1710-1 may not contain an indication that the first transmission should be performed.
  • the first transmission 1760-2 may be in the same or similar configuration as the corresponding missing periodic transmission 1730-2.
  • the periodic transmission 1730-2 is a CSI-RS transmission
  • the first transmission 1760-2 may be a DL RS transmission and employ the same QCL-TypeD assumptions as the periodic transmission 1730-2.
  • FIG. 18 shows an example flow diagram of a method 1800 according to an embodiment of the present disclosure.
  • the method 1800 may be used to implement a COT activated signal/channel transmission scheme according to embodiments of the present disclosure.
  • the method 1800 may be performed on the base station 110 side.
  • Method 1800 may include steps 1810 to 1840 .
  • base station 110 may be configured to determine COTs associated with base station 110 and UE 120.
  • the COT may indicate a specific period of time during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band. Base station 110 and UE 120 are not allowed to communicate outside the COT.
  • the COT may be included in the COT message for transmission between the base station 110 and the UE 120.
  • the COT message may include the start time and duration of the COT.
  • the COT message may be generated by base station 110 and sent to UE 120.
  • the COT message may be sent to UE 120 via DCI (eg, DCI_2.0).
  • base station 110 may receive COT messages from UE 120.
  • the base station 110 may be configured to determine whether the expected transmission time of a particular transmission of the periodic transmissions with the UE 120 is within the COT.
  • the time interval between each two adjacent transmissions of the periodic transmission is a pre-configured fixed interval. Therefore, the expected transmission time for each transmission can be determined based on the first transmission/previous transmission and the fixed interval. Whether the expected transmission time is within the COT may be determined based on a comparison of the expected transmission time determined for a particular transmission with the COT.
  • the periodic transmission between the base station 110 and the UE 120 may be downlink transmission, including but not limited to downlink Semi-Persistent Reference Signal (SP RS) transmission, semi-static Scheduling Physical Downlink Shared Channel (Semi-Persistent Scheduling PDSCH, SPS PDSCH) transmissions, etc.
  • the periodic transmission between the base station 110 and the UE 120 may be an uplink transmission, including but not limited to uplink semi-static sounding reference signal (Semi-Persistent Sounding Reference Signal, SP SRS) transmission, Configure Granted Physical Uplink Shared Channel (Configured Grant PUSCH, CG PUSCH) transmission.
  • SP SRS uplink semi-static sounding reference signal
  • SP SRS Configure Granted Physical Uplink Shared Channel
  • step 1830 the base station 110 may be configured to determine the particular transmission as a deactivated transmission.
  • step 1840 the base station 110 may be configured to determine the particular transmission as an active transmission.
  • the COT message may be generated by base station 110 .
  • the base station 110 may be configured to perform LBT operations, and based on the LBT operations, determine specific time periods during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band, ie, with the base station 110 and the UE 120. 120 associated COT.
  • the base station 110 may be configured to detect the energy of the channel on the unlicensed frequency band and determine the time period in which the energy of the channel is below a threshold as the COT in which the base station 110 and the UE 120 are allowed to communicate.
  • the base station 110 may include the determined COT in a COT message, and send the COT message to the UE 120 through DCI (eg, DCI_2.0).
  • examples of periodic transmissions may include various types of downlink periodic transmissions, such as downlink SP RS transmissions or SPS PDSCH transmissions.
  • base station 110 may receive a COT message from UE 120 and determine the COT based on the COT message from UE 120.
  • the COT message may include the COT determined by the UE 120 based on the LBT operation.
  • examples of periodic transmissions may include various types of uplink periodic transmissions, such as uplink SPSRS transmissions or CG PUSCH transmissions.
  • the base station 110 may also optionally be configured to perform a specific transmission determined to be in an active state, but not perform a specific transmission determined to be in a deactivated state.
  • performing a specific transmission by the base station 110 may include the base station 110 sending the specific transmission to the UE 120.
  • the base station 110 performing a specific transmission may include the base station 110 receiving the specific transmission from the UE 120.
  • the base station 110 may be configured to perform the method 1800 for each transmission in the periodic transmission until the execution of the periodic transmission is completed.
  • FIG. 19 shows an example flow diagram of a method 1900 according to an embodiment of the present disclosure.
  • the method 1900 may be used to implement a COT activated signal/channel transmission scheme according to embodiments of the present disclosure.
  • the method 1900 may be performed on the UE 120 side.
  • Method 1900 may include steps 1910 to 1940 .
  • UE 120 may be configured to determine the COT associated with base station 110 and UE 120.
  • the COT may indicate a specific period of time during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band.
  • the COT may be included in the COT message for transmission between the base station 110 and the UE 120.
  • UE 120 may receive a COT message from base station 110.
  • the COT message may be generated by UE 120 and sent to base station 110.
  • UE 120 may be configured to determine whether the expected transmission time of a particular transmission of periodic transmissions with base station 110 is within the COT. For example, the expected transmission time for each transmission may be determined based on a fixed interval between the first/previous transmission and periodic transmissions. Whether the expected transmission time is within the COT may be determined based on a comparison of the determined expected transmission time for a particular transmission with the COT.
  • step 1930 UE 120 may be configured to determine a particular transmission as a deactivated transmission.
  • step 1940 UE 120 may be configured to determine a particular transmission as an active transmission.
  • UE 120 may receive the COT message from base station 110 and determine the COT based on the COT message from base station 110.
  • the base station 110 may be configured to perform LBT operations, and based on the LBT operations, determine specific time periods during which the base station 110 and the UE 120 are allowed to communicate with each other on the unlicensed frequency band, ie, with the base station 110 and the UE 120. 120 associated COT.
  • examples of periodic transmissions may include various types of downlink periodic transmissions, such as downlink SP RS transmissions or SPS PDSCH transmissions.
  • the UE 120 may be configured to perform a listen-before-send LBT operation and determine the COT based on the LBT operation. If the LBT performed by the UE 120 is directional (i.e. the UE 120 performs the LBT using a receiver with a beam in a specific direction), then the COT message may be a directional COT message, which may include information related to the specific direction associated information. That is, a directional LBT generates a directional COT message.
  • examples of periodic transmissions may include various types of uplink periodic transmissions, such as uplink SPSRS transmissions or CG PUSCH transmissions.
  • the UE 120 may also optionally be configured to perform specific transmissions determined to be in the active state, but not to perform specific transmissions determined to be in the deactivated state.
  • the periodic transmission is a downlink transmission
  • the UE 120 performing a specific transmission may include the UE 120 receiving the specific transmission from the base station 110.
  • the periodic transmission is an uplink transmission
  • the UE 120 performing a specific transmission may include the UE 120 sending the specific transmission to the base station 110.
  • the UE 120 may be configured to perform the method 1900 for each transmission in the periodic transmission until the execution of the periodic transmission is completed.
  • the base station 110 and the UE 120 can consistently determine whether each transmission in the periodic transmission is in an active state or a deactivated state. Additional transmissions may not need to be scheduled through additional signaling to compensate for transmissions located outside the COT.
  • FIG. 20 shows an example of a signal/channel transmission scheme activated by COT according to an embodiment of the present disclosure.
  • Corresponding COT 2020-1 and COT 2020-2 are triggered by COT messages 2010-1 and 2010-2, respectively. These COT messages may be sent by the base station 110 to the UE 120, or by the UE to the base station 110.
  • the time interval 2040 between every two adjacent transmissions may be fixed.
  • the first transmission 2030-1 of the periodic transmissions 2030 it can be determined that the expected transmission time of the first transmission 2030-1 is within the COT 2020-1, so the base station 110 and the UE 120 can determine the first transmission 2030-1 to be active state.
  • the second transmission 2030-2 of the periodic transmissions 2030 it can be determined that the expected transmission time of the second transmission 2030-2 is not within any of the COT 2020-1, COT 2020-2, or other COTs, so the base station 110 And the UE 120 may determine the second transmission 2030-2 to be deactivated.
  • the third transmission 2030-3 in the periodic transmission 2030 it can be determined that the expected transmission time of the third transmission 2030-3 is within the COT 2020-2, so the base station 110 and the UE 120 can determine the third transmission 2030-3 to be active state.
  • the base station 110 and the UE 120 may be configured to perform the first transmission 2030-1 and the third 2030-3 in the active state, and not perform the second transmission 2030-2 in the deactivated state. Accordingly, the second transmission 2030-2 is depicted in dashed lines in the figure.
  • Figure 20 shows two COTs and a periodic transmission 2030 with three transmissions, in other embodiments more or fewer COTs may be included, and the periodic transmission 2030 may include more times or Fewer transfers without limitation.
  • control-side electronic device may be implemented as or included in various control devices/base stations.
  • transmitting apparatus and the terminal apparatus according to the embodiments of the present disclosure may be implemented as or included in various terminal apparatuses.
  • control device/base station mentioned in the present disclosure may be implemented as any type of base station, eg eNB, such as macro eNB and small eNB.
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • gNBs such as macro gNBs and small gNBs.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices mentioned in this disclosure may in some embodiments be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital camera) or in-vehicle terminals (such as car navigation devices).
  • the terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single die) mounted on each of the above-mentioned terminals.
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example, but not limited to the following:
  • a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, or a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B which may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (such as gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • Some functions in the base station of the present disclosure may also be implemented as entities with control functions for communication in D2D, M2M and V2V communication scenarios, or as entities with spectrum coordination functions in cognitive radio communication scenarios.
  • gNB 2100 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • gNB 2100 includes multiple antennas 2110 and base station equipment 2120.
  • the base station apparatus 2120 and each antenna 2110 may be connected to each other via an RF cable.
  • the gNB 2100 (or the base station device 2120) here may correspond to the above-mentioned control-side electronic device.
  • Each of the antennas 2110 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station apparatus 2120 to transmit and receive wireless signals.
  • gNB 2100 may include multiple antennas 2110.
  • multiple antennas 2110 may be compatible with multiple frequency bands used by gNB 2100.
  • the base station apparatus 2120 includes a controller 2121 , a memory 2122 , a network interface 2117 , and a wireless communication interface 2125 .
  • the controller 2121 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 2120 . For example, the controller 2121 determines the location of the target terminal device in the at least one terminal device according to the positioning information of the at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 2125. location information.
  • the controller 2121 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2122 includes RAM and ROM, and stores programs executed by the controller 2121 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2123 is a communication interface for connecting the base station apparatus 2120 to the core network 2124 .
  • the controller 2121 may communicate via the network interface 2117 with core network nodes or further gNBs.
  • gNB 2100 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 2123 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 2123 is a wireless communication interface, the network interface 2123 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2125 .
  • Wireless communication interface 2125 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of gNB 2100 via antenna 2110.
  • the wireless communication interface 2125 may generally include, for example, a baseband (BB) processor 2126 and RF circuitry 2127.
  • the BB processor 2126 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 2126 may have some or all of the above-described logical functions.
  • the BB processor 2126 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 2126 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 2120. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2127 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2110 .
  • FIG. 21 shows an example in which one RF circuit 2127 is connected to one antenna 2110, the present disclosure is not limited to this illustration, but one RF circuit 2127 may connect multiple antennas 2110 at the same time.
  • the wireless communication interface 2125 may include a plurality of BB processors 2126.
  • multiple BB processors 2126 may be compatible with multiple frequency bands used by gNB 2100.
  • the wireless communication interface 2125 may include a plurality of RF circuits 2127.
  • multiple RF circuits 2127 may be compatible with multiple antenna elements.
  • FIG. 21 shows an example in which the wireless communication interface 2125 includes multiple BB processors 2126 and multiple RF circuits 2127 , the wireless communication interface 2125 may include a single BB processor 2126 or a single RF circuit 2127 .
  • gNB 2200 includes multiple antennas 2210, RRH 2220 and base station equipment 2230.
  • the RRH 2220 and each antenna 2210 may be connected to each other via an RF cable.
  • the base station apparatus 2230 and the RRH 2220 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 2200 (or the base station device 2230) here may correspond to the above-mentioned control-side electronic device.
  • Each of the antennas 2210 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 2220 to transmit and receive wireless signals.
  • gNB 2200 may include multiple antennas 2210.
  • multiple antennas 2210 may be compatible with multiple frequency bands used by gNB 2200.
  • the base station apparatus 2230 includes a controller 2231 , a memory 2232 , a network interface 2233 , a wireless communication interface 2234 , and a connection interface 2236 .
  • the controller 2231, the memory 2232, and the network interface 2233 are the same as the controller 1521, the memory 1522, and the network interface 1523 described with reference to Fig. 15 .
  • Wireless communication interface 2234 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 2220 and antenna 2210 to terminals located in a sector corresponding to RRH 2220.
  • the wireless communication interface 2234 may generally include, for example, a BB processor 2235.
  • the BB processor 2235 is the same as the BB processor 1526 described with reference to FIG. 15, except that the BB processor 2235 is connected to the RF circuit 2222 of the RRH 2220 via the connection interface 2236.
  • the wireless communication interface 2234 may include a plurality of BB processors 2235.
  • multiple BB processors 2235 may be compatible with multiple frequency bands used by gNB 2200.
  • FIG. 22 shows an example in which the wireless communication interface 2234 includes multiple BB processors 2235, the wireless communication interface 2234 may include a single BB processor 2235.
  • connection interface 2236 is an interface for connecting the base station apparatus 2230 (the wireless communication interface 2234) to the RRH 2220.
  • the connection interface 2236 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 2230 (the wireless communication interface 2234) to the RRH 2220.
  • the RRH 2220 includes a connection interface 2223 and a wireless communication interface 2221.
  • connection interface 2223 is an interface for connecting the RRH 2220 (the wireless communication interface 2221) to the base station apparatus 2230.
  • the connection interface 2223 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 2221 transmits and receives wireless signals via the antenna 2210 .
  • Wireless communication interface 2221 may typically include RF circuitry 2222, for example.
  • RF circuitry 2222 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 2210 .
  • FIG. 22 shows an example in which one RF circuit 2222 is connected to one antenna 2210, the present disclosure is not limited to this illustration, but one RF circuit 2222 may be connected to a plurality of antennas 2210 at the same time.
  • the wireless communication interface 2221 may include a plurality of RF circuits 2222.
  • multiple RF circuits 2222 may support multiple antenna elements.
  • FIG. 22 shows an example in which the wireless communication interface 2221 includes a plurality of RF circuits 2222 , the wireless communication interface 2221 may include a single RF circuit 2222 .
  • the communication device 2300 includes a processor 2301, a memory 2302, a storage device 2303, an external connection interface 2304, a camera device 2306, a sensor 2307, a microphone 2308, an input device 2309, a display device 2310, a speaker 2311, a wireless communication interface 2312, one or more Antenna switch 2315, one or more antennas 2316, bus 2317, battery 2318, and auxiliary controller 2319.
  • the communication device 2300 (or the processor 2301) here may correspond to the above-mentioned transmitting device or terminal-side electronic device.
  • the processor 2301 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the communication device 2300 .
  • the memory 2302 includes RAM and ROM, and stores data and programs executed by the processor 2301 .
  • the storage device 2303 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2304 is an interface for connecting an external device, such as a memory card and a Universal Serial Bus (USB) device, to the communication apparatus 2300 .
  • USB Universal Serial Bus
  • the camera 2306 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 2307 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2308 converts the sound input to the communication device 2300 into an audio signal.
  • the input device 2309 includes, for example, a touch sensor, keypad, keyboard, button, or switch configured to detect a touch on the screen of the display device 2310, and receives operations or information input from a user.
  • the display device 2310 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the communication device 2300 .
  • the speaker 2311 converts the audio signal output from the communication device 2300 into sound.
  • the wireless communication interface 2312 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2312 may typically include, for example, BB processor 2313 and RF circuitry 2314.
  • the BB processor 2313 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2314 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2316 .
  • the wireless communication interface 2312 can be a chip module on which the BB processor 2313 and the RF circuit 2314 are integrated. As shown in FIG.
  • the wireless communication interface 2312 may include a plurality of BB processors 2313 and a plurality of RF circuits 2314 .
  • FIG. 23 shows an example in which the wireless communication interface 2312 includes multiple BB processors 2313 and multiple RF circuits 2314 , the wireless communication interface 2312 may include a single BB processor 2313 or a single RF circuit 2314 .
  • the wireless communication interface 2312 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2312 may include a BB processor 2313 and an RF circuit 2314 for each wireless communication scheme.
  • Each of the antenna switches 2315 switches the connection destination of the antenna 2316 among a plurality of circuits included in the wireless communication interface 2312 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 2316 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2312 to transmit and receive wireless signals.
  • the communication device 2300 may include a plurality of antennas 2316.
  • FIG. 23 shows an example in which the communication device 2300 includes multiple antennas 2316, the communication device 2300 may also include a single antenna 2316.
  • the communication device 2300 may include an antenna 2316 for each wireless communication scheme.
  • the antenna switch 2315 may be omitted from the configuration of the communication device 2300.
  • the bus 2317 connects the processor 2301, the memory 2302, the storage device 2303, the external connection interface 2304, the camera device 2306, the sensor 2307, the microphone 2308, the input device 2309, the display device 2310, the speaker 2311, the wireless communication interface 2312, and the auxiliary controller 2319 to each other connect.
  • the battery 2318 provides power to the various blocks of the communication device 2300 shown in FIG. 23 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 2319 operates the minimum necessary functions of the communication device 2300, eg, in sleep mode.
  • FIG. 24 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 2400 to which the technology of the present disclosure can be applied.
  • the car navigation device 2400 includes a processor 2401, a memory 2402, a global positioning system (GPS) module 2404, a sensor 2405, a data interface 2406, a content player 2407, a storage medium interface 2408, an input device 2409, a display device 2410, a speaker 2411, a wireless A communication interface 2413 , one or more antenna switches 2416 , one or more antennas 2417 , and a battery 2418 .
  • the car navigation device 2400 (or the processor 2401 ) here may correspond to a transmitting device or a terminal-side electronic device.
  • the processor 2401 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 2400 .
  • the memory 2402 includes RAM and ROM, and stores data and programs executed by the processor 2401 .
  • the GPS module 2404 measures the position (such as latitude, longitude, and altitude) of the car navigation device 2400 using GPS signals received from GPS satellites.
  • Sensors 2405 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2406 is connected to, for example, the in-vehicle network 2421 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 2407 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 2408 .
  • the input device 2409 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2410, and receives operations or information input from a user.
  • the display device 2410 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 2411 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2413 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2413 may typically include, for example, BB processor 2414 and RF circuitry 2415.
  • the BB processor 2414 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2415 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2417 .
  • the wireless communication interface 2413 can also be a chip module on which the BB processor 2414 and the RF circuit 2415 are integrated. As shown in FIG.
  • the wireless communication interface 2413 may include a plurality of BB processors 2414 and a plurality of RF circuits 2415.
  • FIG. 24 shows an example in which the wireless communication interface 2413 includes multiple BB processors 2414 and multiple RF circuits 2415
  • the wireless communication interface 2413 may include a single BB processor 2414 or a single RF circuit 2415 .
  • the wireless communication interface 2413 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2413 may include the BB processor 2414 and the RF circuit 2415 for each wireless communication scheme.
  • Each of the antenna switches 2416 switches the connection destination of the antenna 2417 among a plurality of circuits included in the wireless communication interface 2413, such as circuits for different wireless communication schemes.
  • Each of the antennas 2417 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2413 to transmit and receive wireless signals.
  • the car navigation device 2400 may include a plurality of antennas 2417 .
  • FIG. 24 shows an example in which the car navigation device 2400 includes a plurality of antennas 2417 , the car navigation device 2400 may also include a single antenna 2417 .
  • the car navigation device 2400 may include an antenna 2417 for each wireless communication scheme.
  • the antenna switch 2416 may be omitted from the configuration of the car navigation apparatus 2400 .
  • the battery 2418 provides power to the various blocks of the car navigation device 2400 shown in FIG. 24 via feeders, which are partially shown in the figure as dashed lines.
  • the battery 2418 accumulates power supplied from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 2420 that includes one or more blocks of a car navigation device 2400 , an in-vehicle network 2421 , and a vehicle module 2422 .
  • the vehicle module 2422 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2421 .
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.
  • Embodiment 1 An electronic device for a base station side, the electronic device includes:
  • a processing circuit configured to perform the following operations:
  • a corresponding downlink transmission of the plurality of downlink transmissions is performed using the determined corresponding actual beam.
  • Embodiment 2 The electronic device of Embodiment 1, wherein:
  • each of the multiple downlink transmissions is a physical downlink shared channel PDSCH transmission
  • Each of the plurality of downlink transmissions is an aperiodic channel state information reference signal AP CSI-RS transmission.
  • Embodiment 3 The electronic device according to Embodiment 1, wherein determining the corresponding actual beam includes:
  • the corresponding actual beam used for each of the plurality of downlink transmissions is the same beam.
  • Embodiment 4 The electronic device according to Embodiment 3, wherein determining the corresponding actual beam further includes:
  • the corresponding default beam associated with the earliest downlink transmission of the plurality of downlink transmissions is determined to be the same beam.
  • Embodiment 5 The electronic device according to Embodiment 1, wherein determining the corresponding actual beam includes:
  • the respective actual beams used for each of the plurality of downlink transmissions comprise different beams.
  • Embodiment 6 The electronic device according to Embodiment 5, wherein determining the corresponding actual beam further includes:
  • the corresponding scheduled beam indicated by the single DCI is used as the corresponding actual beam for the downlink transmission.
  • Embodiment 7 The electronic device according to Embodiment 6, wherein determining the corresponding actual beam further includes:
  • the corresponding actual beams used for each downlink transmission in the first set of downlink transmissions are the same beam or different beams.
  • Embodiment 8 The electronic device according to Embodiment 7, wherein determining the corresponding actual beam further includes:
  • the default beam associated with the earliest downlink transmission of the plurality of downlink transmissions is determined to be the same beam.
  • Embodiment 9 The electronic device according to Embodiment 7, wherein determining the corresponding actual beam further includes:
  • the lowest ID in the search space monitored by the UE most recently The beam corresponding to the CORESET is determined as the corresponding actual beam used for the downlink transmission.
  • Embodiment 10 a method performed on a base station side, comprising:
  • a corresponding downlink transmission of the plurality of downlink transmissions is performed using the determined corresponding actual beam.
  • an electronic device for a UE side of a user equipment comprising:
  • a processing circuit configured to perform the following operations:
  • a base station receiving from a base station a single DCI for scheduling multiple downlink transmissions associated with the UE, the single DCI indicating a respective scheduling beam for each of the multiple downlink transmissions;
  • Respective downlink transmissions of the plurality of downlink transmissions are received using the determined corresponding actual beams.
  • Embodiment 12 The electronic device of Embodiment 11, wherein:
  • each of the multiple downlink transmissions is a physical downlink shared channel PDSCH transmission
  • Each of the plurality of downlink transmissions is an aperiodic channel state information reference signal AP CSI-RS transmission.
  • determining the corresponding actual beam includes:
  • Embodiment 14 The electronic device according to Embodiment 13, wherein determining the corresponding actual beam further comprises:
  • the corresponding default beam associated with the earliest downlink transmission of the plurality of downlink transmissions is determined to be the same beam.
  • Embodiment 15 The electronic device according to Embodiment 11, wherein determining the corresponding actual beam includes:
  • the respective actual beams used for each of the plurality of downlink transmissions are determined to contain different beams.
  • determining the corresponding actual beam further includes:
  • the corresponding scheduled beam indicated by the single DCI is used as the corresponding actual beam for the downlink transmission.
  • Embodiment 17 The electronic device according to Embodiment 16, wherein determining the corresponding actual beam further comprises:
  • Embodiment 18 The electronic device according to Embodiment 17, wherein determining the corresponding actual beam further comprises:
  • the default beam associated with the earliest downlink transmission of the plurality of downlink transmissions is determined to be the same beam.
  • Embodiment 19 The electronic device according to Embodiment 17, wherein determining the corresponding actual beam further comprises:
  • the lowest ID in the search space monitored by the UE most recently The beam corresponding to the CORESET is determined as the corresponding actual beam used for the downlink transmission.
  • Embodiment 20 a method performed on a user equipment UE side, comprising:
  • a base station receiving from a base station a single DCI for scheduling multiple downlink transmissions associated with the UE, the single DCI indicating a respective scheduling beam for each of the multiple downlink transmissions;
  • Respective downlink transmissions of the plurality of downlink transmissions are received using the determined corresponding actual beams.
  • an electronic device for a base station side comprising:
  • a processing circuit configured to perform the following operations:
  • the single DCI indicating multiple sets of channel state information reference signal CSI-RS resources across multiple time slots, wherein the multiple sets of CSI-RS resources are associated with the same reporting configuration
  • CSI reports associated with measurements of the plurality of time slots are received from the UE.
  • Embodiment 22 The electronic device of Embodiment 21, wherein the value of the repetition parameter Repetition of each of the multiple CSI-RS resource sets is configured to be OFF.
  • Embodiment 23 The electronic device of Embodiment 21, wherein the CSI report is generated based on measurements of each of the plurality of time slots, and the measurements of each time slot are based on the UE generated from different single receive beams.
  • Embodiment 24 The electronic device of Embodiment 20, wherein the base station operates in a frequency band of 52.6GHz-71GHz.
  • Embodiment 25 a method performed on a base station side, comprising:
  • the single DCI indicating multiple sets of channel state information reference signal CSI-RS resources across multiple time slots, wherein the multiple sets of CSI-RS resources are associated with the same reporting configuration
  • CSI reports associated with CSI measurements for the plurality of slots are received from the UE.
  • Embodiment 26 an electronic device for a UE side of a user equipment, the electronic device comprising:
  • a processing circuit configured to perform the following operations:
  • the single DCI indicating multiple sets of channel state information reference signal CSI-RS resources across multiple time slots, wherein the multiple sets of CSI-RS resources are associated with the same reporting configuration;
  • a CSI report associated with the measurement of the plurality of time slots is sent to the base station.
  • Embodiment 27 The electronic device of Embodiment 26, wherein the value of the repetition parameter Repetition of each CSI-RS resource set in the plurality of CSI-RS resource sets is configured to be OFF.
  • Embodiment 28 The electronic device of Embodiment 26, wherein performing the measurement comprises performing the measurement using a different single receive beam in each of the plurality of time slots.
  • Embodiment 29 The electronic device of Embodiment 20, wherein the UE operates in a frequency band of 52.6GHz-71GHz.
  • Embodiment 30 a method performed on a user equipment UE side, comprising:
  • the single DCI indicating multiple sets of channel state information reference signal CSI-RS resources across multiple time slots, wherein the multiple sets of CSI-RS resources are associated with the same reporting configuration;
  • a CSI report associated with the measurement of the plurality of time slots is sent to the base station.
  • Embodiment 31 an electronic device for a base station side, wherein the electronic device includes:
  • a processing circuit configured to perform the following operations:
  • An SSB transmission is sent in each of the plurality of time slots.
  • Embodiment 32 The electronic device of Embodiment 31, wherein sending the SSB transmission in each of the plurality of time slots comprises:
  • SSB transmission is performed using a plurality of transmit beams in different directions corresponding to the plurality of SSB resources to perform downlink beam scanning.
  • Embodiment 33 The electronic device of Embodiment 32, wherein the downlink beam scan in each of the plurality of time slots is based on a respective single receive beam of the UE.
  • Embodiment 34 The electronic device of Embodiment 32, wherein the base station operates in a frequency band of 52.6GHz-71GHz.
  • Embodiment 35 a method performed on a base station side, comprising:
  • An SSB transmission is sent in each of the plurality of time slots.
  • Embodiment 36 An electronic device for a UE side of a user equipment, wherein the electronic device includes:
  • a processing circuit configured to perform the following operations:
  • An SSB transmission is received in each of the plurality of time slots.
  • Embodiment 37 The electronic device of Embodiment 36, wherein receiving the SSB transmission in each timeslot comprises:
  • SSB transmissions are received from the base station using a single receive beam in each time slot.
  • Embodiment 38 The electronic device of Embodiment 37, wherein the SSB transmissions received from the base station in each time slot are performed by the base station using multiple transmit beams in different directions corresponding to the multiple SSB resources.
  • Embodiment 39 The electronic device of Embodiment 37, wherein the UE operates in a frequency band of 52.6GHz-71GHz.
  • Embodiment 40 a method performed on a user equipment UE side, comprising:
  • An SSB transmission is received in each of the plurality of time slots.
  • Embodiment 41 an electronic device for a base station side, wherein the electronic device includes:
  • a processing circuit configured to perform the following operations:
  • a single DCI to a user equipment UE, the single DCI being configured to trigger a set of SRS resources including a plurality of sounding reference signal SRS resources, and scheduling the plurality of SRS resources in a plurality of time slots;
  • An SRS transmission is received from the UE in each of the plurality of time slots.
  • Embodiment 42 The electronic device of Embodiment 41, wherein the plurality of SRS resources are scheduled in a plurality of time slots such that the UE only The SRS transmission is sent using one SRS resource of the plurality of SRS resources.
  • Embodiment 43 The electronic device according to Embodiment 42, wherein the width of the subcarrier SCS used by the base station is 480 kHz or 960 kHz.
  • Embodiment 44 The electronic device of Embodiment 41, wherein the plurality of SRS resources are scheduled in a plurality of time slots such that the UE uses in each of the plurality of time slots more than one SRS resource of the plurality of SRS resources for transmission.
  • Embodiment 45 a method performed on a base station side, comprising:
  • a single DCI to a user equipment UE, the single DCI being configured to trigger a set of SRS resources including a plurality of sounding reference signal SRS resources, and scheduling the plurality of SRS resources in a plurality of time slots;
  • An SRS transmission is received in each of the plurality of time slots.
  • Embodiment 46 An electronic device for a UE side of a user equipment, wherein the electronic device includes:
  • a processing circuit configured to perform the following operations:
  • the single DCI being configured to trigger a set of SRS resources containing a plurality of sounding reference signal SRS resources, and the plurality of SRS resources being scheduled in a plurality of time slots;
  • SRS transmissions are sent to base station 110 in each of the plurality of time slots.
  • Embodiment 47 The electronic device of Embodiment 46, wherein the plurality of SRS resources are scheduled in a plurality of time slots such that the UE only uses in each of the plurality of time slots An SRS resource of the plurality of SRS resources is used to send the SRS transmission.
  • Embodiment 48 The electronic device according to Embodiment 47, wherein the width of the subcarrier SCS used by the UE is 480 kHz or 960 kHz.
  • Embodiment 49 The electronic device of Embodiment 46, wherein the plurality of SRS resources are scheduled in a plurality of time slots such that the UE uses in each of the plurality of time slots More than one SRS resource of the plurality of SRS resources is used to send the SRS transmission.
  • Embodiment 50 a method performed on a user equipment UE side, comprising:
  • the single DCI being configured to trigger a set of SRS resources containing a plurality of sounding reference signal SRS resources, and the plurality of SRS resources being scheduled in a plurality of time slots;
  • SRS transmissions are sent to base station 110 in each of the plurality of time slots.
  • Embodiment 51 an electronic device for a base station side, the electronic device comprising:
  • a processing circuit configured to perform the following operations:
  • the COT is included in the COT message, the COT indicates the specific time at which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band part;
  • the first transmission is performed.
  • Embodiment 52 The electronic device of Embodiment 51, wherein the first transmission is performed in response to determining that the specific time is within the specific time period indicated by the COT.
  • Embodiment 53 The electronic device of Embodiment 51, wherein configuring the first offset comprises:
  • the RRC signaling is sent to the UE.
  • Embodiment 54 The electronic device of Embodiment 51, wherein configuring the first offset comprises: using the COT message at least in part to configure the first offset.
  • Embodiment 55 The electronic device of Embodiment 54, wherein configuring the first offset comprises:
  • An optional offset corresponding to the offset index in the list of optional offsets is configured as the first offset.
  • Embodiment 56 The electronic device of Embodiment 55, wherein the size of the first offset is configured based on the priority of the UE.
  • Embodiment 57 The electronic device of Embodiment 54, wherein the COT message includes an indication of whether to trigger the first transmission.
  • Embodiment 58 The electronic device of Embodiment 51, wherein the COT message is sent by the base station to the UE, and the first transmission is one of:
  • Embodiment 59 The electronic device of Embodiment 51, wherein the COT message is received by the base station from the UE, and the first transmission is one of:
  • uplink reference signal UL RS transmission
  • Embodiment 60 a method performed on a base station side, comprising:
  • the COT is included in the COT message, the COT indicates the specific time at which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band part;
  • the first transmission is performed.
  • Embodiment 61 an electronic device for a UE side of a user equipment, the electronic device comprising:
  • a processing circuit configured to perform the following operations:
  • the COT is included in the COT message, the COT indicates the specific time at which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band part;
  • the first transmission is performed.
  • Embodiment 62 The electronic device of Embodiment 61, wherein the first transmission is performed in response to determining that the specific time is within the specific time period indicated by the COT.
  • Embodiment 63 The electronic device of Embodiment 62, wherein configuring the first offset comprises configuring the first offset based at least in part on RRC signaling received from the base station.
  • Embodiment 64 The electronic device of Embodiment 61, wherein configuring the first offset comprises using, at least in part, the COT message to configure the first offset.
  • Embodiment 65 The electronic device of Embodiment 64, wherein configuring the first offset comprises:
  • An optional offset corresponding to the offset index in the list of optional offsets is configured as the first offset.
  • Embodiment 66 The electronic device of Embodiment 65, wherein the size of the first offset is determined based on the priority of the UE.
  • Embodiment 67 The electronic device of Embodiment 64, wherein the COT message includes an indication of whether to trigger the first transmission.
  • Embodiment 68 The electronic device of Embodiment 61, wherein the COT message is received by the UE from the base station, and the first transmission is one of:
  • Embodiment 69 The electronic device of Embodiment 61, wherein the COT message is sent by the UE to the base station, and the first transmission is one of:
  • uplink reference signal UL RS transmission
  • Embodiment 70 a method performed on a user equipment UE side, comprising:
  • the COT is included in the COT message, the COT indicates the specific time at which the base station and the UE are allowed to communicate with each other on the unlicensed frequency band part;
  • the first transmission is performed.
  • Embodiment 71 an electronic device for a base station side, the electronic device comprising:
  • a processing circuit configured to perform the following operations:
  • determining a channel occupation time COT associated with the base station and the UE the COT being included in a COT message, the COT indicating a specific time at which the base station and the UE are allowed to communicate with each other on an unlicensed frequency band part;
  • the particular transmission is determined to be an active transmission in response to the expected transmission time of the particular transmission being within the COT.
  • Embodiment 72 The electronic device of Embodiment 71, wherein determining the COT comprises:
  • the COT is determined by the base station based on the LBT operation.
  • Embodiment 73 The electronic device of Embodiment 72, wherein the periodic transmission is one of:
  • Embodiment 74 The electronic device of Embodiment 71, wherein determining the COT comprises:
  • the COT is determined based on the COT message from the UE.
  • Embodiment 75 The electronic device of Embodiment 74, wherein the periodic transmission is one of:
  • the configuration grants the physical uplink shared channel CG PUSCH transmission.
  • Embodiment 76 The electronic device of Embodiment 71, wherein the processing circuit is further configured to perform the following operations:
  • the specific transfer in the active state is performed and the specific transfer in the deactivated state is not performed.
  • Embodiment 77 a method performed on a base station side, comprising:
  • determining a channel occupation time COT associated with the base station and the UE the COT being included in a COT message, the COT indicating a specific time at which the base station and the UE are allowed to communicate with each other on an unlicensed frequency band part;
  • the particular transmission is determined to be an active transmission in response to the expected transmission time of the particular transmission being within the COT.
  • An electronic device for a UE side of a user equipment comprising:
  • a processing circuit configured to perform the following operations:
  • determining a channel occupation time COT associated with the base station and the UE the COT being included in a COT message, the COT indicating a specific time period during which the base station and the UE are allowed to communicate with each other on an unlicensed frequency band;
  • the particular transmission is determined to be an active transmission in response to the expected transmission time of the particular transmission being within the COT.
  • Embodiment 79 The electronic device of Embodiment 78, wherein determining the COT comprises:
  • the COT is determined based on the COT message from the base station.
  • Embodiment 80 The electronic device of Embodiment 79, wherein the periodic transmission is one of:
  • Embodiment 81 The electronic device of Embodiment 78, wherein determining the COT comprises:
  • the COT is determined by the UE based on the LBT operation.
  • Embodiment 82 The electronic device of Embodiment 81, wherein the periodic transmission is one of:
  • the configuration grants the physical uplink shared channel CG PUSCH transmission.
  • Embodiment 83 The electronic device of Embodiment 78, wherein the processing circuit is further configured to perform the following operations:
  • the specific transfer in the active state is performed and the specific transfer in the deactivated state is not performed.
  • Embodiment 84 a method performed on the UE side of a user equipment, comprising:
  • determining a channel occupation time COT associated with the base station and the UE the COT being included in a COT message, the COT indicating a specific time period during which the base station and the UE are allowed to communicate with each other on an unlicensed frequency band;
  • the particular transmission is determined to be an active transmission in response to the expected transmission time of the particular transmission being within the COT.
  • Embodiment 85 A computer-readable storage medium storing one or more instructions, the one or more instructions, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as in Embodiment 10, The method of any one of 20, 25, 30, 35, 40, 45, 50, 60, 70, 77, 84.
  • Embodiment 86 A computer program product comprising one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as in Embodiments 10, 20, and 25 The method of any one of , 30, 35, 40, 45, 50, 60, 70, 77, 84.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信系统中的电子设备、通信方法、存储介质和计算机程序产品。公开了用于基站侧的电子设备,该电子设备包括:处理电路,该处理电路被配置为:向用户设备UE发送单个DCI,单个DCI用于调度与UE相关联的多个下行传输,单个DCI指示用于多个下行传输中的每一个下行传输的相应调度波束;确定用于多个下行传输中的每一个下行传输的相应实际波束;以及使用所确定的相应实际波束执行多个下行传输中的相应下行传输。

Description

电子设备、通信方法、存储介质和计算机程序产品
优先权声明
本申请要求于2021年4月2日递交、申请号为202110359046.2、发明名称为“电子设备、通信方法、存储介质和计算机程序产品”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及无线通信领域,并且具体而言,涉及用于无线通信系统中的电子设备、通信方法、存储介质和计算机程序产品。
背景技术
无线通信所使用的频段正在逐步扩展。在3GPP Rel.17的标准化过程中,比FR1(450MHz–6GHz)和FR2(24.25GHz–52.6GHz)更高的特定频段(52.6GHz-71GHz)正受到关注。由于该特定频段较高,频谱资源较为丰富,因此可以使用更宽的可选子载波间隔。虽然较宽的子载波间隔可以促进对频谱的利用,但是也使得OFDM符号的持续时间缩短。相应地,时隙的长度也缩短。在缩短的时隙内执行波束切换将提高UE的实现复杂度。另外,较高的频段也意味着更大的路径损耗。
发明内容
本发明提供的电子设备和方法能够改进无线通信系统中的无线电传输。
本公开的一方面涉及一种用于基站侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:向用户UE发送单个下行控制信息(Downlink Control Information,DCI),单个DCI用于调度与UE相关联的多个下行传输,单个DCI指示用于多个下行传输中的每一个下行传输的相应调度波束;确定用于多个下行传输中的每一个下行传输的相应实际波束;以及使用所确定的相应实际波束执行多个下行传输中的相应下行传输。
本公开的一方面涉及一种用于UE侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:从基站接收单个DCI,单个DCI用于调度与UE相关联的多个下行传输,单个DCI指示用于多个下行传输中的每一个下行传输的相应调度 波束;确定用于多个下行传输中的每一个下行传输的相应实际波束;以及使用所确定的相应实际波束执行多个下行传输中的相应下行传输。
本公开的一方面涉及一种用于基站侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:向UE发送单个DCI,单个DCI指示跨多个时隙的多个信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)资源集合,其中,多个CSI-RS资源集合与相同上报配置相关联;在多个时隙的每一个时隙中,使用多个CSI-RS资源集合中的相应CSI-RS资源集合向UE发送CSI-RS传输;以及在基于相同上报配置的报告中,从UE接收与多个时隙的测量相关联的CSI报告。
本公开的一方面涉及一种用于UE侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:从基站接收单个DCI,单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,多个CSI-RS资源集合与相同上报配置相关联;在多个时隙的每一个时隙中,从基站接收使用多个CSI-RS资源集合中的相应CSI-RS资源集合发送的CSI-RS传输以执行测量;以及在基于相同上报配置的报告中,向基站发送与多个时隙的测量相关联的CSI报告。
本公开的一方面涉及一种用于基站侧的电子设备,其中,电子设备包括:处理电路,处理电路被配置为执行以下操作:向UE发送单个DCI,单个DCI被配置为将多个同步信号块(Synchronization Signal Block,SSB)资源调度在多个时隙中;以及在多个时隙中的每一个时隙中发送SSB传输。
本公开的一方面涉及一种用于UE侧的电子设备,其中,电子设备包括:处理电路,处理电路被配置为执行以下操作:从基站接收单个DCI,单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及在多个时隙中的每一个时隙中接收SSB传输。
本公开的一方面涉及一种用于基站侧的电子设备,其中,电子设备包括:处理电路,处理电路被配置为执行以下操作:向UE发送单个DCI,单个DCI被配置为触发包含多个探测参考信号(Sounding Reference Signal,SRS)资源的SRS资源集合,并且将多个SRS资源调度在多个时隙中;以及在多个时隙中的每一个时隙中从UE接收SRS传输。
本公开的一方面涉及一种用于UE侧的电子设备,其中,电子设备包括:处理电路,处理电路被配置为执行以下操作:从基站接收单个DCI,单个DCI被配置为触发 包含多个探测参考信号SRS资源的SRS资源集合,并且多个SRS资源被调度在多个时隙中;以及在多个时隙中的每一个时隙中向基站110发送SRS传输。
本公开的一方面涉及一种用于基站侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:配置与基站和UE之间的第一传输相关联的第一偏移量;配置与基站和UE相关联的信道占用时间(Channel Occupying Time,COT),COT被包含在COT消息中,COT指示基站与UE被允许在非授权频段上互相通信的特定时间段;基于COT与第一偏移量,计算用于第一传输的特定时间;以及在特定时间,执行第一传输。
本公开的一方面涉及一种用于UE侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:配置与基站和UE之间的第一传输相关联的第一偏移量;配置与基站和UE相关联的信道占用时间COT,COT被包含在COT消息中,COT指示基站与UE被允许在非授权频段上互相通信的特定时间段;基于COT与第一偏移量,计算用于第一传输的特定时间;以及在特定时间,执行第一传输。
本公开的一方面涉及一种用于基站侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:确定与基站和UE相关联的信道占用时间COT,COT被包含在COT消息中,COT指示基站与UE被允许在非授权频段上互相通信的特定时间段;确定与UE的周期性传输中的特定传输的预期传输时间是否在COT内;响应于特定传输的预期传输时间不在COT内,将特定传输确定为去激活态的传输;并且响应于特定传输的预期传输时间在COT内,将特定传输确定为激活态的传输。
本公开的一方面涉及一种用于UE侧的电子设备,电子设备包括:处理电路,处理电路被配置为执行以下操作:确定与基站和UE相关联的信道占用时间COT,COT被包含在COT消息中,COT指示基站与UE被允许在非授权频段上互相通信的特定时间段;确定与UE的周期性传输中的特定传输的预期传输时间是否在COT内;响应于特定传输的预期传输时间不在COT内,将特定传输确定为去激活态的传输;并且响应于特定传输的预期传输时间在COT内,将特定传输确定为激活态的传输。
本公开的另一个方面在基站侧执行的方法,该方法可以包括前述基站侧的电子设备的处理电路所执行的操作。
本公开的另一个方面在UE侧执行的方法,该方法可以包括前述UE侧的电子设备的处理电路所执行的操作。
本公开的另一个方面涉及一种存储有一个或多个指令的计算机可读存储介质,该 一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如本公开所述的任何方法。
本公开的另一个方面涉及一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现如本公开所述的任何方法。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1示出了根据本公开的实施例的无线通信系统的示意图。
图2示出了根据本公开的实施例的电子设备的框图。
图3示出了根据本公开的实施例的方法的示例流程图。
图4示出了根据本公开的实施例的方法的示例流程图。
图5A-图5C示出了根据本公开的实施例的改进的波束选择方案的多个应用示例的示意图。
图6示出了根据本公开的实施例的方法的示例流程图。
图7示出了根据本公开的实施例的方法的示例流程图。
图8A示出了单个DCI调度的跨时隙CSI-RS传输方案的示例。
图8B示出了根据本公开的实施例的单个DCI调度的改进的跨时隙CSI-RS传输方案的示例。
图9示出了根据本公开的实施例的方法的示例流程图。
图10示出了根据本公开的实施例的方法的示例流程图。
图11示出了根据本公开的实施例的单个DCI调度的改进的跨时隙SSB传输方案的示例。
图12示出了根据本公开的实施例的方法的示例流程图。
图13示出了根据本公开的实施例的方法的示例流程图。
图14A示出了根据本公开的实施例的单个DCI调度的改进的跨时隙SRS传输方案的示例。
图14B示出了根据本公开的实施例的单个DCI调度的改进的跨时隙SRS传输方案的另一示例。
图15示出了根据本公开的实施例的方法的示例流程图。
图16示出了根据本公开的实施例的方法的示例流程图。
图17A示出了与COT相关联的传输的示例。
图17B示出了根据本公开的实施例的由COT触发的信号/信道传输方案的示例。
图18示出了根据本公开的实施例的方法的示例流程图。
图19示出了根据本公开的实施例的方法的示例流程图。
图20示出了根据本公开的实施例的由COT激活的信号/信道传输方案的示例。
图21是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。
图22是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。
图23是示出可以应用本公开内容的技术的通讯设备的示意性配置的示例的框图。
图24示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还应当注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
1、示例无线通信系统与示例电子设备
图1示出了根据本公开的实施例的无线通信系统100的示意图。可以在无线通 信系统100内执行本公开描述的各种技术。无线通信系统100可以包括基站110和UE120。应理解,虽然图1中仅示出了一个基站110和三个UE 120,但是应理解,无线通信系统100还可以包括其他任意合适数量的基站和UE。
基站110是无线通信系统100中网络侧设备的示例。在本公开中,术语“基站”与“网络侧设备”可以互换地使用。可以使用任意网络侧设备来替代地实现基站110的操作。基站110可以被实现为任何类型的基站。例如,基站110可以被实现为eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。又例如,基站110也可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。
UE 120无线通信系统100中用户侧设备的示例。UE 120可以被实现为任何类型的终端设备。例如,UE 120可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。又例如,UE 120还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE 120可以为安装在上述终端中的每一个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
基站110与UE 120可以根据任何适当的通信协议来执行无线通信。例如,可以根据蜂窝通信协议来执行无线通信。蜂窝通信协议可以包括4G、5G以及任何正在开发或将要开发的蜂窝通信协议。相应地,基站110与UE 120可以在对应的无线通信频段上进行通信。无线通信频段的示例可以包括但不限于FR1频段、FR2频段、52.6GHz-71GHz频段或任何其他合适的频段。
图2示出了根据本公开的实施例的电子设备200的框图。电子设备200可以包括通信单元210、存储单元220以及处理电路230。
通信单元210可以被用于接收或发送无线电传输。例如,该无线电传输可以包括从基站110到UE 120的下行链路传输和/或从UE 120到基站110的上行链路传输。该无线电传输可以被用于传送各种控制信令(例如无线电资源控制(RRC)、DCI)和/或用户数据。该无线电传输也可以被用于传送一个或多个同步信号、参考信号或测量信号(例如,SSB、CSI-RS、SRS、等等)。通信单元210可以对所发送的无线电 信号执行诸如上变频、数字-模拟转换之类的功能,和/或对所接收的无线电信号执行诸如下变频、模拟-数字变换之类的功能。在本公开的实施例中,可以使用各种技术来实现通信单元210。例如,通信单元210可以被实现为天线器件、射频电路和部分基带处理电路等通信接口部件。通信单元210用虚线绘出,因为它可以替代地位于处理电路230内或者位于电子设备200之外。
存储单元220可以存储由处理电路230产生的信息,通过通信单元210从其他设备接收的信息或将要发送到其他设备的信息,用于电子设备200操作的程序、机器代码和数据等。存储单元220可以是易失性存储器和/或非易失性存储器。例如,存储单元220可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。存储单元220用虚线绘出,因为它可以替代地位于处理电路230内或者位于电子设备200之外。
处理电路230可以被配置为执行一个或多个操作,从而提供电子设备200的各种功能。作为示例,处理电路230可以通过执行存储单元220所存储的一个或多个可执行指令而执行对应的操作。例如,当电子设备200被用于实现本公开所描述的基站侧的设备时,处理电路230可以被配置为执行本公开所描述的基站侧一个或多个操作。当电子设备200被用于实现本公开所描述的UE侧的设备时,处理电路230可以被配置为执行本公开所描述的UE侧的一个或多个操作。可以使用电子设备200(更具体地,处理电路230)来执行本文描述的与基站110相关的一个或多个操作。在这种情况下,电子设备200可以被实现为基站110本身、基站110的一部分、或者用于控制基站110的控制设备。例如,电子设备200可以被实现为用于控制基站110的芯片。此外,也可以使用电子设备200(更具体地,处理电路230)来执行本文描述的与UE 120相关的一个或多个操作。在这种情况下,电子设备200可以被实现为UE 120本身、UE 120的一部分、或者用于控制UE 120的控制设备。例如,电子设备200可以被实现为用于控制UE 120的芯片。
应当注意的是,以上描述的各个单元是用于实施本公开中描述的处理的示例性和/或优选的模块。这些模块可以是硬件单元(诸如中央处理器、场可编程门阵列、数字信号处理器或专用集成电路等)和/或软件模块(诸如计算机可读程序)。以上并未详尽地描述用于实施下文描述各个步骤的模块。然而,只要有执行某个处理的步骤,就可以有用于实施同一处理的对应的模块或单元(由硬件和/或软件实施)。通过下文所描述的步骤以及与这些步骤对应的单元的所有组合限定的技术方案都被包括在本 公开的公开内容中,只要它们构成的这些技术方案是完整并且可应用的。
此外,由各种单元构成的设备可以作为功能模块被并入到诸如计算机之类的硬件设备中。除了这些功能模块之外,计算机当然可以具有其他硬件或者软件部件。
下面将结合附图来进一步描述本公开的示例实施例。应当注意,在下面的描述中,各种在基站侧执行的方法可以由在基站侧实现的电子设备200的处理电路230执行。以下为了方便,将这种方法描述为由基站110执行。但是,本领域技术人员可以知晓,这些方法也可以由基站110的一部分执行,或者由基站110的控制设备执行。此外,各种在UE侧执行的方法可以是由在UE侧实现的电子设备200的处理电路230执行。以下为了方便,将这种方法描述为由UE 120执行。但是,本领域技术人员可以知晓,这些方法也可以由UE 120的一部分执行,或者由UE 120的控制设备执行。
2、改进的波束选择方案
在3GPP的最新标准化进展中,时隙的长度被缩短。例如,对于52.6GHz-71GHz频段,诸如物理下行共享信道(PDSCH)传输、物理上行共享信道(PUSCH)传输之类的传输所占用的时隙的长度被减少。可以考虑由单个DCI来调度多个这种类型的传输。在相关技术中,单个DCI通常只能调度单个传输,并且为该单个传输设计了对应的波束选择方案。这样的波束选择方案不再适合单个DCI调度多个传输的场景。期望改进的波束选择方案。
图3示出了根据本公开的实施例的方法300的示例流程图。方法300可以被用于实现根据本公开的实施例的改进的波束选择方案。方法300可以在基站110侧执行。方法300可以包括步骤310至步骤330。
在步骤310中,基站110可以被配置为向UE 120发送单个DCI。该单个DCI可以被用于调度与该UE 120相关联的多个下行传输。具体地,该单个DCI可以向UE 120指示用于该多个下行传输中的每一个下行传输的相应调度波束。在这里,相应调度波束是指DCI所调度的用于执行每一个下行传输的期望发射波束。
在步骤320中,基站110可以被配置为确定用于该多个下行传输中的每一个下行传输的相应实际波束。在这里,相应实际波束是指基站110将实际用于执行相应下行传输的发射波束。如下面进一步讨论的,所确定的用于每一个下行传输的相应实际波束可能与DCI所调度的用于该下行传输的相应调度波束相同,也可能与该相应调度波束不同。
在步骤330中,基站110可以被配置为使用所确定的相应实际波束来执行该多个下行传输中的相应下行传输。具体地,如果所确定的相应实际波束与相应调度波束不同,则基站110可以被配置为使用相应实际波束而不是相应调度波束向UE 120发送相应下行传输。如果所确定的相应实际波束与相应调度波束相同,则基站110可以被配置为使用相应调度波束向UE 120发送相应下行传输,正如DCI所调度的那样。
在一些实施例中,可以在单个DCI中被调度的该多个下行传输的示例可以包括多个PDSCH传输。PDSCH传输可以被用于承载下行用户数据。在另一些实施例中,该多个下行传输的示例可以包括多个非周期信道状态信息参考信号(Aperiodic CSI-RS,AP CSI-RS)传输。AP CSI-RS传输可以被用于执行信道测量(例如,波束扫描)以获得信道状态信息。
根据本公开的实施例,在步骤310中,基站110可以被配置为将传输配置信息(Transmission Configuration Information,TCI)包括在该单个DCI中,从而为与UE 120相关联的多个下行传输指示相应调度波束。在一些实施例中,为该多个下行传输中的每一个下行传输调度的相应调度波束可以是不同的。在另一些实施例中,为该多个下行传输中的每一个下行传输调度的相应调度波束可以是相同的,这可以有利地节省用于为每一个下行传输的指示相应调度波束的开销(例如,占用DCI中的更少的字段)。
根据本公开的实施例,基站110可以被配置为基于与UE 120的能力相关联的一个或多个参数来确定用于多个下行传输中的每一个下行传输的相应实际波束。在一些实施例中,与UE 120的能力相关联的该一个或多个参数可以在UE 120接入蜂窝网络时由UE 120上报给基站110。在另一些实施例中,基站110可以在任何其他合适的时间或通过任何其他合适的方式获得该一个或多个参数。
在一些实施例中,UE 120上报给基站110的该一个或多个参数可以指示UE 120将对单个DCI所调度的多个下行传输使用相同的接收波束。例如,UE 120可以向基站110发送第一参数,该第一参数可以指示UE 120将对单个DCI所调度的多个下行传输全部使用相同的接收波束。UE 120可以在UE 120的能力较弱以至于不能够在一定时间内完成波束切换的情况下发送该第一参数,从而减少UE 120的波束切换。作为示例,该第一参数可以是与PDSCH传输相关联的sameBeamForPDSCH参数。对于AP CSI-RS传输,也可以定义类似的参数。第一参数可以被包含在UE 120的能力的报告中以发送给基站110。基站110可以被配置为基于与UE 120的能力相关联的第 一参数,而确定用于与该UE 120相关联的多个下行传输中的每一个下行传输的相应实际波束是相同的波束。
可以通过任何方式来确定该相同的波束。作为示例而非限制,基站110可以被配置为将与该多个下行传输中的最早下行传输相关联的相应默认波束确定为用于所述多个下行传输中的每一个下行传输的该相同的波束。也就是说,基站110可以被配置为首先确定用于该最早下行传输相关联的相应默认波束,并且然后将该默认波束应用于所述多个下行传输中的每一个下行传输。在本公开中,默认波束可以指基于预先配置的规则而规定的基站110或UE 120应当使用的波束。与由DCI动态地调度的相应调度波束不同,默认波束不是由DCI动态地调度的。
在另一些实施例中,UE 120上报给基站110的一个或多个参数可以指示UE 120允许对单个DCI所调度的多个下行传输使用不同的波束。UE 120可以向基站110发送第二参数,该第二参数可以指示UE 120允许对DCI所调度的多个下行传输使用不同的波束。例如,UE 120可以在UE 120的能力足够强以至于能够在一定时间内完成波束切换的情况下发射该第二参数,从而使得波束切换是可能的。作为示例,该第二参数可以是与PDSCH传输相关联的separateBeamForPDSCH参数。对于AP CSI-RS传输,也可以定义类似的参数。该第二参数例如可以被包含在UE 120的能力的报告中以发送给基站110。相应地,基站110可以被配置为基于与UE 120的能力相关联的第二参数,而确定用于与该UE 120相关联的多个下行传输中的每一个下行传输的相应实际波束可以不是全部相同的,而是可以包含不同的波束。应当理解,第二参数与第一参数具有对应性。在一个实施例中,第一参数和第二参数可以作为不同的参数字段由UE 120上报给基站110。在另一个实施例中,第一参数和第二参数可以作为同一参数字段的不同值由UE 120上报给基站110。
如果用于与UE 120相关联的多个下行传输的相应实际波束可以包含不同的波束,则基站110可以被配置为基于与UE 120的能力相关联的第三参数来确定各个相应实际波束。第三参数可以指示UE 120准备好DCI所指示的调度波束所需的时间门限。基站110可以基于该第三参数而确定该时间门限。作为示例,如果下行传输是PDSCH传输,则基站110可以被配置为基于UE 120上报的timeDurationForQCL参数而确定该时间门限。timeDurationForQCL参数可以指示UE 120从接收到DCI起直到准备好该DCI为PDSCH传输指示的波束所需的时间。timeDurationForQCL参数的示例值可以包括7个、14个、28个或任何其他合适数量的OFDM符号。作为另 一个示例,如果下行传输是AP CSI-RS传输,则基站110可以被配置为基于UE 120上报的beamSwitchTiming参数来确定该时间门限。beamSwitchTiming参数的示例值可以包括14、28、42个或任何其他合适数量的OFDM符号。beamSwitchTiming参数可以指示UE 120从接收到DCI起直到切换到该DCI为AP CSI-RS传输指示的波束所需的时间。在基于第三参数所确定的时间门限之前,UE 120可能无法准备好(或者切换到)DCI所指示的调度波束。
在上述实施例中,基站110可以被配置为基于该时间门限在时间上对要执行的多个下行传输进行划分。具体地,基站110可以被配置为确定该多个下行传输中被调度在时间门限之前的第一组下行传输以及被调度在时间门限之后的第二组下行传输。基站110可以预期,在执行第一组下行传输时,UE 120没有足够的时间来准备好/切换到DCI所调度的相应接收波束,而在执行第二组下行传输时,UE 120具有足够的时间来准备好/切换到DCI所调度的相应接收波束。因此,对于第一组下行传输中的每一个下行传输,基站110可以被配置为使用默认波束而不是由DCI所指示的相应调度波束,作为用于该下行传输的相应实际波束。对于第二组下行传输中的每一个下行传输,基站110可以被配置为使用该单个DCI所指示的相应调度波束作为用于该下行传输的相应实际波束。
如前面所描述的,默认波束不是由DCI动态地调度的,而是可以基于预先配置的规则而规定。在一些实施例中,可以基于UE 120监听的控制信道来确定默认波束。例如,默认波束可以被规定为UE 120最新近接收到的控制信道传输(例如PDCCH传输等)所使用的波束。在这种情况下,与不同时隙相关联的默认波束可能是不同的。更具体地,对于每一个时隙,可以规定,基于UE 120最近监测的搜索空间中具有最低ID的CORESET来确定与该时隙相关联的相应默认波束。这里的CORESET指用于下行控制信道传输的资源集合。该相应默认波束可以是对应于最低ID的CORESET的波束。由于第一组下行传输中的每一个下行传输可能被调度在不同时隙内,所以与每一个下行传输相对应的相应默认波束也可能彼此不同。在这种情况下,如果对于第一组下行传输中的每一个下行传输都使用与其所在时隙相关联的相应默认波束,则可能要求UE 120在各个时隙间频繁进行波束切换。在时隙的长度缩短的情况下,这提高了对UE 120的能力的要求,从而增加了UE 120的实现复杂度。
因此,基站110还可以被配置为确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的或是不同的。例如,该确定可以基于与UE 120的能力相关 联的第四参数而做出。第四参数的示例可以是与PDSCH相关联的trackDefaultBeamForPDSCH。对于AP CSI-RS或其他下行传输,可以定义类似的参数。该第四参数例如可以被包含在UE 120的能力的报告中以发送给基站110。
在一些情况下,基站110可以从UE 120接收UE 120不能够或不期望进行波束切换的指示。例如,基站110可以从UE 120接收第四参数,该第四参数的值指示UE 120期望用于第一组下行传输中的每一个下行传输的相应实际波束是相同的。基站110可以被配置为基于该第四参数的值而对第一组下行传输中的每一个下行传输使用相同的相应实际波束。
可以通过各种方式来确定用于第一组下行传输中的每一个下行传输的该相同的相应实际波束。作为示例而非限制,基站110可以被配置为将与所述多个下行传输中的最早下行传输相关联的默认波束确定为该相同的相应实际波束。也就是说,基站110可以被配置为首先确定用于该最早下行传输相关联的默认波束,并且然后将该默认波束应用于第一组下行传输中的每一个下行传输,从而避免频繁的波束切换。
在一些情况下,基站110可以从UE 120接收UE 120能够或期望进行波束切换的指示。例如,基站110可以从UE 120接收第四参数,该第四参数的值指示UE 120允许用于第一组下行传输中的每一个下行传输的相应实际波束是不同的,这允许UE 120使用性能更好的波束。基站110可以被配置为基于该第四参数的值而对第一组下行传输中使用不同的相应实际波束。
可以通过各种方式来确定用于第一组下行传输中的每一个下行传输的不同的相应实际波束。作为示例而非限制,基站110可以被配置为对第一组下行传输中的每一个下行传输使用与该下行传输对应的默认波束。例如,对于第一组下行传输中的每一个下行传输,基站110可以将与UE 120最近监测的搜索空间中的ID最低的CORESET对应的波束确定为相应默认波束,并将其作为用于该下行传输的相应实际波束。该相应默认波束可能随时隙而变化。
图4示出了根据本公开的实施例的方法400的示例流程图。方法400可以被用于实现根据本公开的实施例的改进的波束选择方案。方法400可以在UE 120侧执行。方法400可以包括步骤410至步骤430。
在步骤410中,UE 120可以被配置为从基站110接收单个DCI。该单个DCI可以被用于调度与该UE 120相关联的多个下行传输。具体地,该单个DCI可以向UE 120指示用于该多个下行传输中的每一个下行传输的相应调度波束。UE 120可以解析 该DCI中的信息(例如,TCI)以确定用于该多个下行传输中的每一个下行传输的相应调度波束。对于UE 120,相应调度波束是指该DCI所调度的用于执行每一个下行传输的期望接收波束。如前面已经讨论的,为每一个下行传输调度的相应调度波束可以是不同的,并且优选地,可以是相同的。
在步骤420中,UE 120可以被配置为确定用于该多个下行传输中的每一个下行传输的相应实际波束。对于UE 120,相应实际波束是指UE 120将实际用于接收相应下行传输的接收波束。如下面进一步讨论的,所确定的用于每一个下行传输的相应实际波束可能与用于该下行传输的相应调度波束相同,也可能与该相应调度波束不同。
在步骤430中,UE 120可以被配置为使用所确定的相应实际波束来接收该多个下行传输中的相应下行传输。具体地,如果所确定的相应实际波束与相应调度波束不同,则UE 120可以被配置为使用相应实际波束而不是相应调度波束从基站110接收相应下行传输。如果所确定的相应实际波束与相应调度波束相同,则UE 120可以被配置为使用相应调度波束从基站110接收相应下行传输,正如DCI所调度的那样。
如前面已经讨论的,可以在单个DCI中被调度的该多个下行传输的示例可以包括多个PDSCH传输,或多个AP CSI-RS传输。
根据本公开的实施例,UE 120可以被配置为将与UE 120的能力相关联的一个或多个参数(例如,前面所讨论的第一参数至第四参数中的一个或多个)报告给基站110从而向基站110指示UE的针对单个DCI调度的多个下行传输的波束选择方案。例如,UE 120可以被配置为在接入蜂窝网络时(或任何其他合适的时间)将这些参数上报给基站110。在为由单个DCI调度的多个下行传输的每一个下行传输确定相应实际波束时,UE 120可以基于上报的参数来选择相应实际波束,从而与前面讨论的基站110的波束选择方案对应。
在一些实施例中,UE 120可以被配置为确定用于所述多个下行传输中的每一个下行传输的相应实际波束是相同的波束。例如,如果UE 120的能力较弱以至于UE 120不能够在一定时间内完成波束切换,则UE 120可以向基站110发送第一参数,该第一参数可以指示UE 120将对单个DCI所调度的多个下行传输全部使用相同的接收波束,从而避免波束切换。如前面所讨论的,第一参数的示例可以包括与PDSCH传输相关联的sameBeamForPDSCH,或者用于AP CSI-RS传输的类似参数。在这种情况下,UE 120可以被配置为使用相同的接收波束来接收所述多个下行传输中的每一个下行传输。作为示例而非限制,UE 120可以被配置为将与该多个下行传输中的最早下行 传输相关联的相应默认波束确定为用于所述多个下行传输中的每一个下行传输的该相同的波束。
在另一些实施例中,UE 120可以被配置为确定用于所述多个下行传输中的每一个下行传输的相应实际波束可以包含不同的波束。例如,如果UE 120的能力足够强以至于UE 120能够在一定时间内完成波束切换,则UE 120可以向基站110发送第二参数,该第二参数可以指示UE 120允许对DCI所调度的多个下行传输使用不同的波束,从而使得波束切换是可能的。如前面所讨论的,第一参数的示例可以包括与PDSCH传输相关联的separateBeamForPDSCH,或者用于AP CSI-RS传输的类似参数。在这种情况下,UE 120可以被配置为使用不同的接收波束来接收所述多个下行传输。
如果UE 120确定用于与UE 120相关联的多个下行传输的相应实际波束可以包含不同的波束,则UE 120还可以被配置为确定时间门限,该时间门限关联于UE 120准备好DCI所指示的调度波束所需的时间。该时间门限可以是基于UE 120自身的能力而确定的。UE 120可以被配置为将与该时间门限相关联的参数作为第三参数发送给基站110。如前面所讨论的,第三参数的示例可以包括timeDurationForQCL参数或beamSwitchTiming参数。UE 120可以被配置为确定所述多个下行传输中被调度在该时间门限之前的第一组下行传输以及被调度在所述时间门限之后的第二组下行传输。对于第一组下行传输中的每一个下行传输,UE 120可以被配置为使用默认波束而不是由单个DCI所指示的相应调度波束,作为用于该下行传输的相应实际波束。对于第二组下行传输中的每一个下行传输,UE 120可以被配置为使用该单个DCI所指示的相应调度波束作为用于该下行传输的相应实际波束。
如前面所讨论的,由于第一组下行传输中的每一个下行传输被调度在不同时隙内,所以与每一个下行传输相对应的相应默认波束也可能彼此不同。UE 120可以基于自身的能力而确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束或是不同的波束,并向基站110指示该确定的结果。例如,UE 120可以将与该确定的结果相关联的第四参数发送给基站110。
在一些情况下,UE 120可以向基站110发送UE 120对于第一组下行传输不能够或不期望进行波束切换的指示。例如,UE 120可以向基站110发送接收第四参数,该第四参数的值指示UE 120期望用于第一组下行传输中的每一个下行传输的相应实际波束是相同的(即,没有波束切换)。相应地,UE 120可以被配置为使用相同的波束来接收第一组下行传输中的每一个下行传输。可以通过各种方式来确定该相同的波束。 作为示例而非限制,响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的,UE 120可以被配置为将与所述多个下行传输中的最早下行传输相关联的默认波束确定为该相同的波束。
在另一些情况下,UE 120可以向基站110发送UE 120对于第一组下行传输能够或期望进行波束切换的指示。例如,UE 120可以向基站110发送接收第四参数,该第四参数的值指示UE 120允许用于第一组下行传输中的每一个下行传输的相应实际波束是不同的。相应地,UE 120可以被配置为使用不同的波束来接收第一组下行传输。作为示例而非限制,UE 120可以被配置为对第一组下行传输中的每一个下行传输使用与该下行传输对应的默认波束。例如,响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束可以是不同的波束,对于第一组下行传输中的每一个下行传输,UE 120可以被配置为将与UE 120最近监测的搜索空间中的ID最低的CORESET对应的波束确定为与该下行传输对应的默认波束,并将其用作用于该下行传输的相应实际波束。在这种情况下,用于第一组下行传输中的每一个下行传输的相应实际波束(即,相应默认波束)可能随时隙而变化。
图5A-图5C示出了根据本公开的实施例的改进的波束选择方案的多个应用示例的示意图。
图5A中示出了单个DCI 510以及由该DCI所调度的多个下行传输520-1至520-4(统称为520)。该多个下行传输520-1至520-4在时间上是序列化的。在该示例中,多个下行传输520基于时间门限530被划分为位于时间门限530之前的第一组下行传输(520-1、520-2)以及位于时间门限530之后的第二组下行传输(520-3、520-4)。对于第二组下行传输,UE 120有足够的时间可以准备好DCI 510所调度的相应接收波束,因此可以分别使用DCI 510所指示的相应调度波束540-3、540-4来执行下行传输520-3、520-4。使用默认波束550-1和550-2来执行第一组下行传输中的下行传输520-1、520-2。在一些示例中,默认波束550-1和550-2可以是相同的波束,该相同的波束可以是与第一组下行传输中的最早下行传输520-1相关联的默认波束550-1。在这种情况下,波束切换可以仅发生在传输520-2与520-3之间。在另一些示例中,默认波束550-1和550-2可以是不同的波束,因此传输520-1和520-2之间也可能发生波束切换。
图5B示出了特殊的实施例,其中由单个DCI所调度的多个下行传输520-1至520-4都位于时间门限530前,并因此都被划分到第一组下行传输中。在该示例中,对 于第一组下行传输中的每一个下行传输520-1至520-4,都使用了相同的波束。该相同的波束可以是与第一组下行传输中的最早下行传输520-1相关联的默认波束550-1。在该示例中,无需进行波束切换。
图5C示出了与图5B类似的场景,其中由单个DCI所调度的多个下行传输520-1至520-4都位于时间门限530前,并因此都被划分到第一组下行传输中。与图5B的实施例不同,图5C中的实施例中,对于第一组下行传输中的每一个下行传输520-1至520-4分别使用不同的相应默认波束550-1至550-4。在该示例中,需要根据与不同传输相关联的默认波束的变化而进行波束切换。
应当注意,图5A-图5C所示出的仅仅是本公开的改进的波束选择方案的一个或多个示例性场景,其示出了根据本公开的一个或多个方面而非全部方面。此外,尽管图5A至图5C示出了单个DCI调度4个传输的实施例,但是在其他实施例中,单个DCI可以调度更多或更少的传输。并且,时间门限530的长度可以不同。
本节分别针对基站110和UE 120描述了用于下行传输的各种波束。应当理解,针对基站110描述的各种波束是基站110可用于发送下行传输的发射波束,而针对UE120描述的各种波束是UE 120可用于接收下行传输的接收波束。还应当理解,与同一下行传输相关联的发射波束和接收波束可以是匹配的波束对。例如,与同一下行传输相关联的基站110的相应调度波束和UE 120的相应调度波束可以是匹配的一对发射波束-接收波束,而不是同一个波束。
本公开的改进的波束选择方案提供了灵活的波束选择机制。该波束选择机制特别适合于单个DCI调度多个下行传输的场景。该波束选择机制允许对所述多个下行传输中的各个下行传输确定合适的相应实际波束。可以例如基于UE的能力来确定合适的相应实际波束。在52.6GHz-71GHz频段,由于时隙长度减小,对UE的能力(例如,波束切换能力)提出了更高的要求。本公开的改进的波束选择方案使得不同能力的UE都能适配于52.6GHz-71GHz频段的这种特点。
应当注意,本公开的方案并不受具体频段的限制。除了52.6GHz-71GHz频段以外,本公开的方案还可以应用于任何合适的频段。
3、由单个DCI调度的改进的跨时隙传输方案
3.1由单个DCI调度的改进的跨时隙CSI-RS传输方案
在Rel.15和Rel.16协议中,单个DCI只能触发一个触发状态(TriggerState)。 该触发状态可以指示多个参考信号资源集合以用于多个CSI-RS传输。该多个参考信号资源集合中的每一个参考信号资源集合都与相应的上报配置关联。因此,该多个参考信号资源集合被关联到多个不同的上报配置。相应地,对于由该单个DCI所触发的多个CSI-RS传输,将触发相应的多次CSI报告。需要的是改进的跨时隙CSI-RS传输。
图6示出了根据本公开的实施例的方法600的示例流程图。方法600可以被用于实现根据本公开的实施例的改进的跨时隙CSI-RS传输。方法600可以在基站110侧执行。方法600可以包括步骤610至步骤630。
在步骤610中,基站110可以被配置为向UE 120发送单个DCI。该单个DCI可以指示跨多个时隙的多个CSI-RS资源集合。可以使该多个CSI-RS资源集合与相同上报配置相关联。也就是说,该多个CSI-RS资源集合中的每一个CSI-RS资源集合与同一上报配置相关联,而不是分别关联到不同的上报配置。具体地,可以将该多个CSI-RS资源集合关联到相同的CSI ReportConfig参数。或者说,可以将与该多个CSI-RS资源集合中的每一个所关联的CSI ReportConfig参数设置为相同的值。
在步骤620中,基站110可以被配置为在该多个时隙的每一个时隙中,使用该多个CSI-RS资源集合中的相应CSI-RS资源集合向UE 120发送CSI-RS传输。由DCI调度的CSI-RS传输是非周期CSI-RS传输,即,AP CSI-RS传输。所发送的多个CSI-RS传输可以被用于测量下行信道质量。因为该多个CSI-RS传输跨多个时隙,所以该测量也可以跨多个时隙。每一个时隙的测量可以得到基于该时隙中的CSI-RS传输的相应测量结果。
在步骤630中,基站110可以被配置为在基于所述相同上报配置的报告中从UE 120接收与该多个时隙的测量相关联的CSI报告。可以综合跨多个时隙的多个测量结果而生成CSI报告,该CSI报告可以描述基于跨时隙的多个CSI-RS传输而得到的信道状态信息。由于多个CSI-RS资源集合中的每一个CSI-RS资源集合与同一上报配置相关联,所以基于使用每一个CSI-RS资源集合发送的CSI-RS传输而得到的测量结果可以关联到同一上报配置。可以在基于该上报配置的单次报告中由UE 120将CSI报告发送给基站110。这避免了由多个不同上报配置所引起的多次报告,从而节省了开销。
根据本公开的实施例,基站110可以被配置为将每一个CSI-RS资源集合的重复参数Repetition的值配置为关闭OFF。Repetition参数的值可以指示该CSI-RS资 源集合中所有CSI-RS资源是用于同一个波束的测量还是用于多个波束的测量。Repetition参数的ON值指示开启重复,即,该CSI-RS资源集合中所有CSI-RS资源被用于重复发送同一个波束。Repetition参数的OFF值指示指示关闭重复,即,该CSI-RS资源集合中的各个CSI-RS资源被用于发送多个不同的波束。基于Repetition参数的OFF值,基站110可以被配置为在每个时隙中使用一个CSI-RS资源集合的各个CSI-RS资源发送多个发射波束,以例如进行波束扫描。
根据本公开的实施例,基站110在步骤630中接收的CSI报告是基于多个时隙中的每一个时隙的测量而生成的。每一个时隙的测量可以基于该时隙内的基站110的发射波束以及该时隙内的UE 120的接收波束。如前所述,基站110可以被配置为在每个时隙中发送多个发射波束以进行波束扫描。然而,UE 120可能不能使用多个接收波束来接收CSI-RS传输。这是因为UE 120可能不具有足够的能力来在单个时隙内完成多个接收波束间的波束切换,尤其是在时隙长度变短的情况下。因此,UE 120可以被配置为在该多个时隙中的每个时隙中使用单个接收波束来接收CSI-RS传输,从而避免在单个时隙内进行波束切换。UE 120可以在该多个时隙中的每个时隙使用不同的单个接收波束。例如,第一时隙的单个接收波束可以不同于第二时隙的单个接收波束。在这种情况下,UE 120可以将多个接收波束分散到多个时隙中,并可以跨多个时隙(而不是在单个时隙内)完成波束扫描。
根据本公开的实施例,基站110和UE 120可以被配置为操作于52.6GHz-71GHz频段。如前面所讨论的,对于52.6GHz-71GHz频段,时隙的长度被缩短。缩短的时隙长度对于UE 120的波束切换能力提出了较高要求。通过将UE 120的多个接收波束分散到多个时隙中,使得UE 120不再需要在单个时隙中完成多次波束切换,从而放松了对于UE 120的能力的要求,降低了UE 120的实现复杂度。
图7示出了根据本公开的实施例的方法700的示例流程图。方法700可以被用于实现根据本公开的实施例的改进的跨时隙CSI-RS传输。方法700可以在UE 120侧执行。方法700可以包括步骤710至步骤730。
在步骤710中,UE 120可以被配置为从基站110接收单个DCI。该单个DCI可以指示跨多个时隙的多个CSI-RS资源集合,并且该多个CSI-RS资源集合可以与相同上报配置相关联。
在步骤720中,UE 120可以被配置为在所述多个时隙的每一个时隙中,从基站110接收使用该多个CSI-RS资源集合中的相应CSI-RS资源集合发送的CSI-RS传输 以执行测量。因为该多个CSI-RS传输跨多个时隙,所以该测量过程也可以跨多个时隙。每一个时隙的测量可以得到基于该时隙中的CSI-RS传输的相应测量结果。
在步骤730中,UE 120可以被配置为在基于所述相同上报配置的报告中,向基站110发送与多个时隙的测量相关联的CSI报告。UE 120可以被配置为可以综合跨多个时隙的多个测量结果而生成CSI报告,该CSI报告可以描述基于跨时隙的多个CSI-RS传输而得到的信道状态信息。有利地,UE 120可以被配置为在基于该相同上报配置的单次报告中将CSI报告发送给基站110。
根据本公开的实施例,每一个CSI-RS资源集合的重复参数Repetition的值可以被配置为关闭OFF。基于该参数值,UE 120可以确定基站110被配置为在每个时隙中使用一个CSI-RS资源集合的各个CSI-RS资源发送多个发射波束。
根据本公开的实施例,UE 120可以被配置为在多个时隙的每一个时隙中使用不同的单个接收波束来执行测量。具体地,UE 120可以被配置为在每个时隙中使用单个接收波束来接收基站110使用多个发射波束发送的CSI-RS传输。UE 120可以基于该接收来生成与该时隙相关联的测量结果。通过这种方式,UE 120可以将多个接收波束分散到多个时隙中,从而跨多个时隙(而不是在单个时隙内)完成波束扫描。UE 120可以避免在单个时隙内进行波束切换。如前面所讨论的,当时隙的长度较短(例如,当UE 120操作于52.6GHz-71GHz频段)时,这种设计可以降低UE 120的实现复杂度。
图8A示出了单个DCI调度的跨时隙CSI-RS传输方案的示例。在该示例中,单个DCI 810可以通过单个触发状态调度多个CSI-RS传输,例如CSI-RS传输830-1、830-2、830-3。CSI-RS传输830-1、830-2、830-3分别被调度在时隙820-1、820-2、820-3中。每个CSI-RS传输830-1、830-2、830-3各自关联于相应的上报配置840-1、840-2、840-3。作为结果,对于单个DCI 810调度的多个CSI-RS传输,将触发分别关联于上报配置840-1、840-2、840-3的三次报告。
图8B示出了根据本公开的实施例的单个DCI调度的改进的跨时隙CSI-RS传输方案的示例。与图8A类似,单个DCI 810可以通过单个触发状态调度多个CSI-RS传输,例如CSI-RS传输830-1、830-2、830-3。CSI-RS传输830-1、830-2、830-3分别被调度在时隙820-1、820-2、820-3中。与图8A不同,在图8B的示例中,每个CSI-RS传输830-1、830-2、830-3都关联于相同的上报配置840。该上报配置840可以仅触发单次报告850。通过这种方式,可以减少配置上报配置的开销以及上报CSI报告 的开销。
在图8B的示例中,还示出了基站110和UE 120在各个时隙中所使用的发射波束和接收波束。在第一时隙820-1中,基站110可以被配置为使用第一组发射波束860-1来发射CSI-RS传输以执行波束扫描,而UE 120可以仅使用单个接收波束870-1来接收这些CSI-RS传输。与第一时隙相关联的测量结果可以基于第一组发射波束860-1和接收波束870-1。在第二时隙820-2中,基站110可以被配置为使用第二组发射波束860-2来发射CSI-RS传输以执行波束扫描,而UE 120可以仅使用单个接收波束870-2来接收这些CSI-RS传输。与第二时隙相关联的测量结果可以基于第二组发射波束860-2和接收波束870-2。在第三时隙820-3中,基站110可以被配置为使用第三组发射波束860-3来发射CSI-RS传输以执行波束扫描,而UE 120可以仅使用单个接收波束870-3来接收这些CSI-RS传输。与第三时隙相关联的测量结果可以基于第三组发射波束860-3和接收波束870-3。CSI报告850可以是基于对第一至第三时隙的测量结果的综合而生成的。在该示例中,UE 120的三个接收波束870-1、870-2、870-3被分散在三个时隙中,使得UE 120无需在单个时隙内执行波束切换。
本公开的改进的跨时隙CSI-RS传输方案减小了与CSI-RS的配置和CSI报告相关联的开销。此外,该方案的一个或多个优选实施例还使得UE能够适合于(例如,52.6GHz-71GHz频段中的)缩短的时隙长度。尽管如此,本公开的方案并不受具体频段的限制。除了52.6GHz-71GHz频段以外,本公开的方案还可以应用于任何合适的频段。
3.2单个DCI调度的改进的多时隙SSB传输
由单个DCI调度的多时隙SSB传输面临前面描述的多时隙CSI-RS类似的问题。本公开提供了单个DCI调度的改进的多时隙SSB传输。
图9示出了根据本公开的实施例的方法900的示例流程图。方法900可以被用于实现根据本公开的实施例的改进的多时隙SSB传输。方法900可以在基站110侧执行。
方法900可以包括步骤910至步骤930。在步骤910中,基站110可以被配置为向UE 120发送单个DCI。该单个DCI可以被配置为将多个SSB资源调度在多个时隙中。在步骤920中,基站110可以被配置为在所述多个时隙中的每一个时隙中向UE 120发送SSB传输。
根据本公开的实施例,基站110可以被配置为在所述多个时隙中的每一个时隙中,使用与所述多个SSB资源对应的不同方向的多个发射波束来进行SSB传输以执行下行波束扫描。也就是说,基站110可以被配置为在单个时隙中就切换不同方向的多个发射波束来发送SSB传输。
根据本公开的实施例,在所述多个时隙中的每一个时隙中的下行波束扫描可以基于所述UE的相应单个接收波束。尽管基站110可以在每一个时隙中使用不同方向的多个发射波束,但UE 120可以被配置为每一个时隙中仅使用相应单个接收波束。而且,UE 120在不同时隙使用的相应接收波束可以不同。每一个时隙中的下行波束扫描可以基于该时隙中基站110所发送的不同方向的多个发射波束和UE 120所使用的单个接收波束。换句话说,基站110可以在单个时隙内扫描多个发射波束,而UE 120被配置为跨多个时隙(而不是在单个时隙内)扫描多个接收波束。
图10示出了根据本公开的实施例的方法1000的示例流程图。方法1000可以被用于实现根据本公开的实施例的改进的多时隙SSB传输。方法1000可以在UE 120侧执行。
方法1000可以包括步骤1010和步骤1020。在步骤1010中,UE 120可以被配置为从基站110接收单个DCI。该单个DCI可以被配置为将多个SSB资源调度在多个时隙中。在步骤1020中,UE 120可以被配置为在所述多个时隙中的每一个时隙中接收SSB传输。
根据本公开的实施例,UE 120可以被配置为在每一个时隙中使用单个接收波束从基站110接收SSB传输。UE 120在不同时隙使用的相应接收波束可以不同。通过这种方式,UE 120被配置为跨多个时隙(而不是在单个时隙内)扫描多个接收波束。
与UE不同,基站110可以在每一个时隙中使用不同方向的多个发射波束,如前所述。因此,在每一个时隙中UE 120从基站110接收的SSB传输是基站110使用与所述多个SSB资源对应的不同方向的多个发射波束而发送的。
图11示出了根据本公开的实施例的单个DCI调度的改进的跨时隙SSB传输方案的示例。在该示例中,单个DCI 1110可以调度多个SSB传输,例如SSB传输1130-1、1130-2、1130-3。并且,SSB传输1130-1、1130-2、1130-3分别被调度在连续的时隙1120-1、1120-2、1120-3中。在第一时隙1120-1中,基站110可以被配置为使用第一组发射波束1140-1来发射SSB传输,而UE 120可以仅使用单个接收波束1170-1来接收这些SSB传输。与第一时隙相关联的测量结果可以基于第一组发射波束1140- 1和接收波束1170-1。在第二时隙1120-2中,基站110可以被配置为使用第二组发射波束1140-2来发射SSB传输,而UE 120可以仅使用单个接收波束1170-2来接收这些SSB传输。与第二时隙相关联的测量结果可以基于第二组发射波束1140-2和接收波束1170-2。在第三时隙1120-3中,基站110可以被配置为使用第三组发射波束1140-3来发射SSB传输,而UE 120可以仅使用单个接收波束1170-3来接收SSB这些传输。与第三时隙相关联的测量结果可以基于第三组发射波束1140-3和接收波束1170-3。在该示例中,UE 120的三个接收波束1170-1、1170-2、1170-3被分散在三个时隙中,因此不需要在单个时隙中进行波束切换。
根据本公开的实施例,基站110和UE 120可以被配置为操作于52.6GHz-71GHz频段。如前面所讨论的,在52.6GHz-71GHz频段的情况下,时隙长度可能被缩短。通过将UE 120的多个接收波束分散到多个时隙中,使得UE 120不再需要在缩短的单个时隙中完成多个波束切换。这放松了对于UE 120的波束切换能力的要求,降低了UE 120的实现复杂度。尽管如此,本公开的方案并不受具体频段的限制。除了52.6GHz-71GHz频段以外,本公开的方案还可以应用于任何合适的频段。
3.3单个DCI调度的改进的跨时隙SRS传输方案
由单个DCI调度的跨时隙SRS传输方案面临前面描述的多时隙CSI-RS传输、SSB类似的问题。本公开提供了单个DCI调度的改进的跨时隙SRS传输方案。
图12示出了根据本公开的实施例的方法1200的示例流程图。方法1200可以被用于实现根据本公开的实施例的改进的跨时隙SRS传输方案。方法1200可以在基站110侧执行。
方法1200可以包括步骤1210和步骤1220。在步骤1210中,基站110可以被配置为向UE 120发送单个DCI。该单个DCI可以被配置为触发包含多个SRS资源的SRS资源集合,并且将该多个SRS资源调度在多个时隙中。在步骤1220中,基站110可以被配置为在该多个时隙中的每一个时隙中从UE 120接收SRS传输。
根据本公开的实施例,该多个SRS资源被调度在多个时隙中,使得UE 120在多个时隙中的每一个时隙中仅使用该多个SRS资源中的一个SRS资源来进行传输。例如,可以为每一个时隙分配应当由UE 120使用的一个SRS资源。相应地,UE 120在每一个时隙中仅使用与该一个SRS资源对应的发射波束来发送SRS传输。与UE 120不同,基站110可以被配置为在每一个时隙中使用与SRS资源集合的全部SRS资源 对应的多个接收波束来从UE 120接收SRS传输。
上述实施例特别适用于时隙长度较短的场景。例如,对于52.6GHz-71GHz,宽度为480kHz或960kHz的子载波SCS可能将被采用。较宽的子载波宽度促进了频谱资源的利用,但也使得OFDM符号的持续时间变短。相应地,每个时隙的长度变短。在这种情况下,如果要求UE 120在单个时隙内频繁地进行波束切换,将显著增加UE的实现复杂度。
在子载波宽度较窄(例如120kHz)并且因此时隙长度较宽的情况下,也可以替代地为每一个时隙分配应当由UE 120使用的多于一个SRS资源。该多于一个SRS资源可以是前面所述的SRS资源集合的子集,甚至是SRS资源集合本身。在这种情况下,UE 120在所述多个时隙中的每一个时隙中可以使用多个SRS资源中的该多于一个SRS资源来发送SRS传输。相应地,UE 120在每一个时隙中将能够使用与该多于一个SRS资源对应的多于一个发射波束来发送SRS传输。在这种情况下,基站110可以被配置为在每一个时隙中使用与SRS资源集合的全部SRS资源对应的多个接收波束来从UE 120接收SRS传输,与前面讨论的类似。
根据本公开的实施例,基站110可以被配置为基于当前使用的子载波的宽度来确定是否限制UE 120在单个时隙中仅使用单个SRS资源来发送SRS传输。例如,如果子载波的宽度较宽(480kHz或960kHz),则可以限制UE 120在单个时隙中仅使用单个SRS资源来发送SRS传输。如果子载波的宽度较窄(120kHz),则可以允许UE 120在单个时隙中使用多于一个SRS资源来发送SRS传输。
图13示出了根据本公开的实施例的方法1300的示例流程图。方法1300可以被用于实现根据本公开的实施例的改进的跨时隙SRS传输方案。方法1300可以在UE 120侧执行。
方法1300可以包括步骤1310和步骤1320。在步骤1310中,UE 120可以被配置为从基站110接收单个DCI。该单个DCI可以被配置为触发包含多个SRS资源的SRS资源集合,并且所述多个SRS资源被调度在多个时隙中。在步骤1320中,UE 120可以被配置为在所述多个时隙中的每一个时隙中向基站110发送SRS传输。UE 120可以通过发送SRS传输来完成上行波束扫描、基于码本或者基于非码本的传输、上行定位或者UE 120的发射天线的切换。
根据本公开的实施例,UE 120可以被配置为在所述多个时隙中的每一个时隙中仅使用多个SRS资源中的一个SRS资源来发送SRS传输。这可以使得UE 120不需 要在单个时隙内进行波束切换。例如,可以在子载波宽度较宽(例如,480kHz或960kHz)的情况下,应用这种配置。
根据本公开的其他实施例,UE 120可以被配置为在所述多个时隙中的每一个时隙中使用所述多个SRS资源中的多于一个SRS资源来发送SRS传输。相应地,UE 120在每一个时隙中将能够使用与该多于一个SRS资源对应的多于一个发射波束来发送SRS传输。这使得UE 120可以在单个时隙内进行一定数量的波束切换。例如,可以在子载波宽度较窄(例如,120kHz)的情况下,应用这种配置。
根据本公开的实施例,分配到单个时隙中的SRS资源的数量可以与子载波的宽度呈负相关,和/或与UE 120的能力呈正相关。换句话说,在应用较宽的子载波的情况下,分配到单个时隙中的SRS资源的数量可以较少(例如,单个)。此外,在UE 120的能力较弱的情况下,分配到单个时隙中的SRS资源的数量可以较少(例如,单个)。
图14A示出了根据本公开的实施例的单个DCI调度的改进的跨时隙SRS传输方案的示例。在图14A中,单个DCI 1410可以调度多个SRS传输,例如SRS传输1430-1、1430-2、1430-3。并且,SRS传输1430-1、1430-2、1430-3分别被调度在连续的时隙1420-1、1420-2、1420-3中。时隙1420-1、1420-2、1420-3中的每一个可能较短。在第一时隙1420-1中,基站140可以被配置为使用一组接收波束1440来接收SRS传输,而UE 120可以仅使用单个发射波束1450-1来发送SRS传输。与第一时隙相关联的测量结果可以基于一组接收波束1440和发射波束1450-1。在第二时隙1420-2中,基站140可以被配置为使用一组接收波束1440来接收SRS传输,而UE 120可以仅使用单个发射波束1450-2来发送SRS传输。与第二时隙相关联的测量结果可以基于一组接收波束1440和发射波束1450-2。在第三时隙1420-3中,基站140可以被配置为使用一组接收波束1440来接收SRS传输,而UE 120可以仅使用单个发射波束1450-3来发送SRS传输。与第三时隙相关联的测量结果可以基于一组接收波束1440和发射波束1450-3。在该示例中,UE 120的多个发射波束被分散在多个时隙中,从而避免在单个时隙中执行波束切换。在一些实施例中,基站110在第一时隙1420-1、第二时隙1420-2、第三时隙1420-2的每个时隙中使用的一组接收波束1440可以是相同一组波束,以例如用于上行波束扫描。在其他实施例中,基站110在每个时隙中使用的一组接收波束1440可以跨时隙变化,而不受限制。
图14B示出了根据本公开的实施例的单个DCI调度的改进的跨时隙SRS传输 方案的另一示例。在图14B中,单个DCI 1410可以调度多个SRS传输,例如SRS传输1430-1、1430-2、1430-3。并且,SRS传输1430-1、1430-2、1430-3分别被调度在连续的时隙1420-1、1420-2、1420-3中。不同于图14A的示例,在图14B中,时隙1420-1、1420-2、1420-3中的每一个可能较长。在第一时隙1420-1中,基站140可以被配置为使用一组接收波束1440来接收SRS传输,而UE 120可以使用一组发射波束1450-1来发送SRS传输。在第二时隙1420-2中,基站140可以被配置为使用一组接收波束1440来接收SRS传输,而UE 120可以使用一组发射波束1450-2来发送SRS传输。在第三时隙1420-3中,基站140可以被配置为使用一组接收波束1440来接收SRS传输,而UE 120可以使用一组发射波束1450-3来发送SRS传输。每组发射波束1450-1、1450-2、1450-3可以对应于由单个DCI 1410所调度的SRS资源集合中的一个SRS资源子集,其可以包括多于一个SRS资源。
根据本公开的实施例,基站110和UE 120可以被配置为操作于52.6GHz-71GHz频段。在52.6GHz-71GHz频段的情况下,预期将采用较宽的子载波宽度和缩短的时隙长度。本公开的方案通过将UE 120的多个发射波束分散到多个时隙中,放松了对于UE 120的波束切换能力的要求,降低了UE 120的实现复杂度。应当注意,本公开的方案并不受具体频段的限制。除了52.6GHz-71GHz频段以外,本公开的方案还可以应用于任何合适的频段。
4、由COT触发/激活的信号/信道传输方案
在Rel.16的非授权频段设计中,网络侧设备(例如,基站)负责监听信道,并确定信道可用的特定时间段作为COT。网络侧设备并过DCI中的COT消息向UE指示该特定时间段。基站与UE之间的某些信号传输或信道传输可能会落在该特定时间段之外。如果发生这种情况,通常可以使用额外的DCI信令来重新调度落在特定时间段之外的传输。这种方式需要额外的信令开销。本公开提供了改进的方案,其提供由COT触发/激活的信号/信道传输。
4.1由COT触发的信号/信道传输方案
图15示出了根据本公开的实施例的方法1500的示例流程图。方法1500可以被用于实现根据本公开的实施例的由COT触发的信号/信道传输方案。方法1500可以在基站110侧执行。方法1500可以包括步骤1510至步骤1540。
在步骤1510中,基站110可以被配置为配置第一偏移量,该第一偏移量可以与基站110和UE 120之间的第一传输相关联。根据本公开的实施例,第一传输可以是上行传输或下行传输。此外,第一传输可以是信号传输或信道传输。第一偏移量可以与时间量相关联。可以用各种方式来表示第一偏移量。作为示例,可以用诸如纳秒、微秒、毫秒之类的时间单位或者使用OFDM符号的数量来描述第一偏移量。在其他示例中,可以使用百分比来描述第一偏移量。
在步骤1520中,基站110可以被配置为配置与基站110和UE 120相关联的COT。COT可以指示基站110与UE 120被允许在非授权频段上互相通信的特定时间段。基站110与UE 120不被允许在COT之外进行通信。COT可以被包含在COT消息中以在基站110与UE 120之间传送。例如,COT消息可以包括COT的开始时刻和持续时间。在一些实施例中,可以由基站110生成COT消息并发送给UE 120。COT消息可以通过DCI(例如DCI_2.0)发送给UE 120。在另一些实施例中,基站110可以从UE 120接收COT消息。
在步骤1530中,基站110可以被配置为基于COT与第一偏移量,计算用于第一传输的特定时间。可以以任何预先确定的合适方式来组合COT与第一偏移量以得到该特定时间。例如,该特定时间可以被计算为COT的开始时刻起向后偏移第一偏移量处的时间,或者是COT的结束时刻起向前偏移第一偏移量处的时间。在第一偏移量是百分比的情况下,该特定时间可以被计算为自COT的开始时刻起经过COT的持续时间的一定百分比的时刻。
在步骤1540中,基站110可以被配置为在所计算出的特定时间处执行第一传输。在一些实施例中,第一传输可以是下行传输,基站110执行第一传输是指基站110向UE 120发送第一传输。在另一些实施例中,第一传输可以是上行传输,基站110执行第一传输是指基站110从UE 120接收第一传输。应当注意,该第一传输的执行不需要额外的动态信令的触发,而是可以在到达该特定时间时自动地执行。作为一个示例,基站110可以在进入COT之后开启计时器,该计时器在第一偏移量之后到期。基站110可以在计时器到期时执行第一传输。
根据本公开的实施例,在执行第一传输之前,基站110还可以进一步确定所计算出的特定时间是否位于COT所指示的特定时间段内。响应于确定所计算出的特定时间位于COT所指示的特定时间段内,基站110可以被配置为在该特定时间处执行第一传输。响应于确定所计算出的特定时间位于该特定时间段外(例如,当第一偏移 量大于COT的持续时间时),基站110可以被配置为放弃执行第一传输。
根据本公开的实施例,可以通过各种合适的方式来配置第一偏移量。例如,可以通过RRC信令、COT消息、或它们的组合来配置第一偏移量。
在一些实施例中,可以通过RRC信令来配置第一偏移量。例如,基站110可以被配置为将与第一偏移量相关联的信息配置在RRC信令中,并将RRC信令发送给UE 120。RRC信令中与第一偏移量相关联的信息可以是第一偏移量本身。由于RRC信令属于较高层的信令,所以这种配置方式下第一偏移量具有较低的动态性。在这种情况下,如果没有通过新的RRC信令来重新配置与第一偏移量相关联的信息,则与基站110和UE 120相关联的多个COT将关联于相同的第一偏移量。
在另一些实施例中,可以通过COT消息来配置第一偏移量。例如,可以将第一偏移量与COT一起包括在COT消息中,从而在基站110与UE 120之间传送。在这种情况下,与基站110和UE 120相关联的每个COT将具有特定于该COT的第一偏移量的值。该第一偏移量的值是通过指示该COT的COT消息而配置的。不同COT所关联的第一偏移量可以不同,也可能是相同的。在一些实施例中,由于COT消息可以通过DCI而发送,所以这种配置方式下第一偏移量具有较高的动态性。
在还有的实施例中,可以基于RRC信令以及COT消息二者来配置第一偏移量。例如,基站110可以将包括多个可选偏移量的列表配置在RRC信令中。并且,可以使用COT消息来配置偏移量索引。可以将可选偏移量的列表中与该偏移量索引对应的可选偏移量配置为第一偏移量。可选偏移量的列表的配置具有较低的动态性,而偏移量索引的配置可以具有较高的动态性。
根据本公开的实施例,可以基于UE 120的优先级来配置第一偏移量的大小。可以为具有不同优先级的多个UE 120配置不同的第一偏移量。对于优先级高的UE 120,可以配置小的第一偏移量,使得基站110与该UE 120在进入COT后能尽快地执行第一传输。对于优先级低的UE 120,可以配置大的第一偏移量,使得基站110与该UE 120之间的第一传输可以在COT中的较晚时候才执行、在下一个COT中才执行、或者不执行。
可选地,COT消息还可以包括是否触发第一传输的指示。如果COT消息指示不触发第一传输,则基站110可以放弃执行第一传输。否则,基站110可以在计算出的特定时间处执行第一传输。
在一些实施例中,可以由基站110生成COT消息。在这些实施例中,基站110 可以被配置为执行先听后传(Listen Before Talk,LBT)操作来确定基站110与UE 120被允许在非授权频段上互相通信的特定时间段,即,与该基站110和UE 120相关联的COT。例如,基站110可以被配置为探测非授权频段上的信道的能量,并将信道的能量低于阈值的时间段确定为允许基站110与UE 120在其中进行通信的COT。基站110可以将所确定的COT包含在COT消息中,并将该COT消息通过DCI发送给UE 120。可选地,如前所述,基站110还可以将与第一偏移量相关联的信息包含在所生成的COT消息中。
在这些实施例中,第一传输可以包括各种类型的下行传输。在一些示例中,第一传输可以是下行链路参考信号(Downlink Reference Signal,DL RS)传输。由COT触发的DL RS传输可以被用于执行信道测量。现有的周期性的CSI-RS传输中的一次或多次传输可能落在COT之外而造成缺失的信道测量。由COT触发的DL RS传输可以代替周期性的CSI-RS传输,或与周期性的CSI-RS传输相结合使用,从而补偿缺失的信道测量。在另一些示例中,第一传输可以是PDSCH传输。由COT触发的PDSCH传输可以用于传输下行用户数据。现有的半静态PDSCH(Semi-Persistent PDSCH,SP PDSCH)传输是周期性的,其中的一个或多个PDSCH传输可能会落在COT之外而不能执行。由COT触发的PDSCH传输可以代替半静态PDSCH传输,或与半静态PDSCH传输相结合使用,从而确保PDSCH传输的可靠性。
在另一些实施例中,基站110可以从UE 120接收COT消息。该COT消息可以包括UE 120基于LBT操作而确定的COT。可选地,该COT消息还可以包括与第一偏移量相关联的信息。在这种情况下,基站110可以从该COT消息提取与第一偏移量相关联的信息,并相应地基于该信息来配置基站110将要使用的第一偏移量。
在这些实施例中,第一传输可以包括各种类型的上行传输。在一些示例中,第一传输可以包括上行链路参考信号(Uplink Reference Signal,UL RS)传输。由COT触发的UL RS传输可以代替现有的周期性上行链路参考信号传输,或与之结合使用。在另一些示例中,第一传输可以包括PUSCH传输。由COT触发的PUSCH传输可以代替现有的半静态PUSCH(Semi-Persistent PUSCH,SP PUSCH)传输,或与之结合使用。在另一些示例中,第一传输还可以包括PUCCH传输。由COT触发的PUCCH传输可以代替现有的半静态PUCCH(Semi-Persistent PUCCH,SP PUCCH)传输,或与之结合使用。
图16示出了根据本公开的实施例的方法1600的示例流程图。方法1600可以被 用于实现根据本公开的实施例的由COT触发的信号/信道传输方案。方法1600可以在UE 120侧执行。方法1600可以包括步骤1610至步骤1640。
在步骤1610中,UE 120可以被配置为配置第一偏移量,该第一偏移量可以与基站110和UE 120之间的第一传输相关联。如前面所描述的,第一传输可以是上行传输,例如UL RS传输、PUCCH传输、PUSCH传输,等等。替代地,第一传输可以是下行传输,例如DL RS传输、PDSCH传输,等等。第一传输可以是信号传输,例如UL RS传输、DL RS传输,等等。替代地,第一传输可以是信道传输,例如PUCCH传输、PUSCH传输、PDSCH传输,等等。
在步骤1620中,UE 120可以被配置为配置与基站和UE 120相关联的COT。COT可以指示基站110与UE 120被允许在非授权频段上互相通信的特定时间段。基站110与UE 120不被允许在COT之外进行通信。COT可以被包含在COT消息中以在基站110与UE 120之间传送。在一些实施例中,UE 120可以从基站110接收COT消息。在另一些实施例中,UE 120可以生成COT消息并将其发送给基站110。
在步骤1630中,UE 120可以被配置为基于COT与第一偏移量,计算用于第一传输的特定时间。可以以任何预先确定的合适方式来组合COT与第一偏移量以得到该特定时间。例如,该特定时间可以被计算为COT的开始时刻与第一偏移量之和,或者是COT的结束时刻与第一偏移量之差。在第一偏移量也是百分比的情况下,该特定时间可以被计算为自COT的开始时刻起经过COT的持续时间的一定百分比的时间。
在步骤1640中,UE 120可以被配置为在所计算出的特定时间处执行第一传输。如果第一传输可以是下行传输,则UE 120可以被配置为在所计算出的特定时间处从基站110接收该第一传输。如果第一传输可以是上行传输,则UE 120可以被配置为在所计算出的特定时间处向基站110发送该第一传输。该第一传输的执行不需要额外的动态信令的触发,而是可以在到达该特定时间时自动地执行。
根据本公开的实施例,在执行第一传输之前,UE 120还可以进一步确定所计算出的特定时间是否位于COT所指示的特定时间段内。响应于确定所计算出的特定时间位于COT所指示的特定时间段内,UE 120可以被配置为在该特定时间处执行第一传输。否则,UE 120可以被配置为放弃执行第一传输。
如前面关于方法1500已经详细描述的,可以通过各种合适的方式来配置第一偏移量,只要UE 120与基站110对每个COT所关联的第一偏移量达成一致。作为非限 制性示例,UE 120可以通过RRC信令、COT消息、或它们的组合来配置第一偏移量。
在一些实施例中,UE 120可以被配置为至少部分地基于从基站110接收的RRC信令来配置所述第一偏移量。具体地,UE 120可以通过解析来自基站110的RRC信令来获得与第一偏移量相关联的信息,并基于该与第一偏移量相关联的信息来配置UE 120将使用的第一偏移量。
在另一些实施例中,UE 120可以而被配置为至少部分地使用COT消息来配置第一偏移量。例如,UE 120可以通过解析来自基站110的COT消息来获得与第一偏移量相关联的信息,并基于该与第一偏移量相关联的信息来配置UE 120将使用的第一偏移量。替代地,如果COT消息是由UE 120生成的,则也可以由UE 120将第一偏移量包括在该COT消息中,并发送给基站110。
在还有的实施例中,UE 120可以基于RRC信令以及COT消息二者来配置第一偏移量。具体地,UE 120可以被配置为从RRC信令中提取可选偏移量的列表,使用COT消息来配置偏移量索引,以及将可选偏移量的列表中与偏移量索引对应的可选偏移量配置为UE 120将使用的第一偏移量。
根据本公开的实施例,可以基于UE 120的优先级来配置第一偏移量的大小。不同优先级的UE 120可能被配置不同的第一偏移量。优先级高的UE 120可以被配置小的第一偏移量。优先级低的UE 120可以被配置大的第一偏移量。UE 120的优先级可以取决于UE 120的类型或UE 120正在执行的业务的类型。例如,与生命救援、安全警报相关联的UE 120,或者正在执行紧急呼叫的UE 120可以被分配最高的优先级。作为流媒体设备的UE 120或者正在执行普通呼叫的UE 120可以被分配中等优先级。某些MTC设备或者仅执行定期更新或后台握手业务的UE 120可以被分配低优先级。
根据本公开的实施例,在基站110与UE 120之间传送的COT消息还可以可选地包括是否触发第一传输的指示。如果COT消息指示不触发第一传输,则UE 120可以放弃执行第一传输。否则,UE 120可以在计算出的特定时间处执行第一传输。
在一些实施例中,UE 120可以从基站110接收COT消息。该COT消息可以包括基站110基于LBT操作而确定的COT。可选地,该COT消息还可以包括与第一偏移量相关联的信息。在这种情况下,UE 120可以从该COT消息提取与第一偏移量相关联的信息,并相应地配置UE 120将使用的第一偏移量。在这些实施例中,第一传输可以包括各种类型的下行传输,例如前面描述的DL RS传输、PDSCH传输,等 等。
在另一些实施例中,可以由UE 120生成COT消息。在这些实施例中,UE 120可以被配置为执行LBT操作来确定基站110与UE 120被允许在非授权频段上互相通信的特定时间段,即,与该基站110和UE 120相关联的COT。例如,UE 120可以被配置为探测非授权频段上的信道的能量,并将信道的能量低于阈值的时间段确定为允许基站110与UE 120在其中进行通信的COT。UE 120可以将所确定的COT包含在COT消息中,并将该COT消息发送给基站110。如果UE 120执行的LBT是指向性的(即UE 120使用带有特定方向的波束的接收机完成LBT),那么该COT消息可以是指向性COT消息,该指向性COT消息可以包括与该特定方向相关联的信息。即,指向性LBT产生指向性COT消息。可选地,如前所述,UE 120还可以将与第一偏移量相关联的信息包含在所生成的COT消息中。在这些实施例中,第一传输可以包括各种类型的上行传输,例如前面描述的UL RS传输、PUSCH传输、PUCCH传输,等等。
图17A示出了与COT相关联的传输的示例。在该示例中,基站110分别通过COT消息1710-1和1710-2触发相应的COT 1720-1和COT 1720-2。基站110与UE 120期望执行周期性传输1730。这里的周期性传输1730例如可以是周期性CSI-RS传输、半静态PDSCH传输、周期性上行链路RS传输、半静态PUSCH传输、或者半静态PUCCH传输等等中的任何一种。如图所示,周期性传输1730的第一传输1730-1位于COT 1720-1内,因此它能够被执行。周期性传输1730的第二传输1730-2没有位于任何COT中,因此不能够被执行。为了弥补未被执行的第二传输1730-2,基站110需要通过额外的DCI 1740来动态地触发传输1750。
作为更具体地示例,周期性传输1730例如可以是周期性CSI-RS传输。在高频段的波束失败恢复中,UE 120依赖该周期性CSI-RS传输来监测信道的波束质量。但是,如果位于COT之外,则周期性的波束失败监测信号或新波束的发现信号都无法从基站110发出,UE 120也无法实时地监测信道质量。因此,基站110需要通过额外的DCI 1740来动态地触发非周期CSI-RS传输1750,从而弥补之前错过的周期性CSI-RS传输1730-2。所触发的非周期CSI-RS传输1750需要与所错过的周期性CSI-RS传输1730-2使用相同的QCL-TypeD假设。
图17B示出了根据本公开的实施例的由COT触发的信号/信道传输方案的示例。分别通过COT消息1710-1和1710-2触发相应的COT 1720-1和COT 1720-2。这些 COT消息可以由基站110发送给UE 120,或者由UE发送给基站110。对于每个COT 1720-1或COT 1720-2,在该COT的开始时刻起的第一偏移量1770-1或1770-2之后,相应的第一传输1760-1或1760-2自动地执行。也就是说,第一传输1760-1或1760-2是分别由COT 1720-1或COT 1720-2触发的,而不需要由额外的DCI(例如,图17A中的DCI 1740)动态地触发。如前面已经讨论的,基站110和UE 120可以通过RRC信令(未示出)、COT消息1710、或者二者的组合来配置第一偏移量1770-1和第二偏移量1770-2。所配置的第一偏移量1770-1和第二偏移量1770-2可以是相同的,也可以是不同的。与图17A的示例相比,图17B的示例避免了额外的DCI 1740,节省了开销。
应当注意,尽管图17B中没有示出图17A中的周期性传输1730,但图17B中也可以可选地保留周期性传输1730。例如,图17B的第一传输1760可以与图17A的周期性传输1730组合使用。在这样的示例中,由于周期性传输1730-1能够在COT 1720-1中正常执行,所以可以不在COT 1720-1中执行第一传输1760-1。由于周期性传输1730-2(其没有位于任何COT内)不能够被执行,所以可以通过COT消息1710-2来指示应当在COT 1710-2中执行第一传输1760-2,以补偿周期性传输1730-2的缺失。在这种情况下,COT消息1710-2可以包含应当执行第一传输的指示,而COT消息1710-1可以不包含应当执行第一传输的指示。第一传输1760-2可以与对应的缺失的周期性传输1730-2采用相同或类似的配置。例如,如果周期性传输1730-2是CSI-RS传输,则第一传输1760-2可以是DL RS传输,并采用与周期性传输1730-2相同的QCL-TypeD假设。
4.2由COT激活的信号/信道传输方案
图18示出了根据本公开的实施例的方法1800的示例流程图。方法1800可以被用于实现根据本公开的实施例的由COT激活的信号/信道传输方案。方法1800可以在基站110侧执行。方法1800可以包括步骤1810至步骤1840。
在步骤1810中,基站110可以被配置为确定与基站110和UE 120相关联的COT。如前面讨论的,COT可以指示基站110与UE 120被允许在非授权频段上互相通信的特定时间段。基站110与UE 120不被允许在COT之外进行通信。COT可以被包含在COT消息中以在基站110与UE 120之间传送。例如COT消息可以包括COT的开始时刻和持续时间。在一些实施例中,可以由基站110生成COT消息并发 送给UE 120。COT消息可以通过DCI(例如DCI_2.0)发送给UE 120。在另一些实施例中,基站110可以从UE 120接收COT消息。
在步骤1820中,基站110可以被配置确定与UE 120的周期性传输中的特定传输的预期传输时间是否在所述COT内。周期性传输的每两次相邻传输之间的时间间隔是预先配置的固定间隔。因此,可以基于首次传输/前次传输和该固定间隔来确定每次传输的预期传输时间。可以基于针对特定传输所确定的预期传输时间与COT的比较来确定预期传输时间是否在COT内。在一些实施例中,基站110与UE 120之间的周期性传输可以是下行链路传输,包括但不限于下行链路的半静态参考信号(Semi-Persistent Reference Signal,SP RS)传输、半静态调度物理下行链路共享信道(Semi-Persistent Scheduling PDSCH,SPS PDSCH)传输,等等。在一些实施例中,基站110与UE 120之间的周期性传输可以是上行链路传输,包括但不限于上行链路的半静态探测参考信号(Semi-Persistent Sounding Reference Signal,SP SRS)传输、配置授权物理上行链路共享信道(Configured Grant PUSCH,CG PUSCH)传输。
响应于在步骤1820中确定特定传输的预期传输时间不在COT内,方法1800可以继续到步骤1830。在步骤1830中,基站110可以被配置为将该特定传输确定为去激活态的传输。响应于在步骤1820中确定特定传输的预期传输时间在COT内,方法1800可以继续到步骤1840。在步骤1840中,基站110可以被配置为将该特定传输确定为激活态的传输。
在一些实施例中,可以由基站110生成COT消息。在这些实施例中,基站110可以被配置为执行LBT操作,并且基于该LBT操作来确定基站110与UE 120被允许在非授权频段上互相通信的特定时间段,即,与该基站110和UE 120相关联的COT。例如,基站110可以被配置为探测非授权频段上的信道的能量,并将信道的能量低于阈值的时间段确定为允许基站110与UE 120在其中进行通信的COT。基站110可以将所确定的COT包含在COT消息中,并将该COT消息通过DCI(例如,DCI_2.0)发送给UE 120。在这些实施例中,周期性传输的示例可以包括各种类型的下行链路的周期性传输,例如下行链路的SP RS传输或者SPS PDSCH传输。
在另一些实施例中,基站110可以从UE 120接收COT消息,并且基于来自UE 120的该COT消息确定所述COT。该COT消息可以包括UE 120基于LBT操作而确定的COT。在这些实施例中,周期性传输的示例可以包括各种类型的上行链路的周期性传输,例如上行链路的SP SRS传输或者CG PUSCH传输。
根据本公开的实施例,基站110还可以可选地被配置为执行被确定为激活态的特定传输,而不执行被确定为去激活态的特定传输。在周期性传输是下行传输的实施例中,基站110执行特定传输可以包括基站110向UE 120发送该特定传输。在周期性传输是上行传输的实施例中,基站110执行特定传输可以包括基站110从UE 120接收该特定传输。
根据本公开的实施例,基站110可以被配置为对周期性传输中的每次传输都执行方法1800,直到该周期性传输执行完毕。
图19示出了根据本公开的实施例的方法1900的示例流程图。方法1900可以被用于实现根据本公开的实施例的由COT激活的信号/信道传输方案。方法1900可以在UE 120侧执行。方法1900可以包括步骤1910至步骤1940。
在步骤1910中,UE 120可以被配置为确定与基站110和UE 120相关联的COT。如前面讨论的,COT可以指示基站110与UE 120被允许在非授权频段上互相通信的特定时间段。COT可以被包含在COT消息中以在基站110与UE 120之间传送。在一些实施例中,UE 120可以从基站110接收COT消息。在另一些实施例中,可以由UE 120生成COT消息并发送给基站110。
在步骤1920中,UE 120可以被配置确定与基站110的周期性传输中的特定传输的预期传输时间是否在所述COT内。例如,可以基于首次传输/前次传输和周期性传输之间的固定间隔来确定每次传输的预期传输时间。可以基于针对特定传输所确定的预期传输时间与COT的比较来确定预期传输时间是否在所述COT内。
响应于在步骤1920中确定特定传输的预期传输时间不在COT内,方法1900可以继续到步骤1930。在步骤1930中,UE 120可以被配置为将特定传输确定为去激活态的传输。响应于在步骤1920中确定特定传输的预期传输时间在COT内,方法1900可以继续到步骤1940。在步骤1940中,UE 120可以被配置为将特定传输确定为激活态的传输。
在一些实施例中,UE 120可以从基站110接收COT消息,并基于来自基站110的COT消息确定COT。在这些实施例中,基站110可以被配置为执行LBT操作,并且基于该LBT操作来确定基站110与UE 120被允许在非授权频段上互相通信的特定时间段,即,与该基站110和UE 120相关联的COT。在这些实施例中,周期性传输的示例可以包括各种类型的下行链路的周期性传输,例如下行链路的SP RS传输或者SPS PDSCH传输。
在另一些实施例中,UE 120可以被配置为执行先听后发LBT操作,并且基于该LBT操作确定COT。如果UE 120执行的LBT是指向性的(即UE 120使用带有特定方向的波束的接收机完成LBT),那么该COT消息可以是指向性COT消息,该指向性COT消息可以包括与该特定方向相关联的信息。即,指向性LBT产生指向性COT消息。在这些实施例中,周期性传输的示例可以包括各种类型的上行链路的周期性传输,例如上行链路的SP SRS传输或者CG PUSCH传输。
根据本公开的实施例,UE 120还可以可选地被配置为执行被确定为激活态的特定传输,而不执行被确定为去激活态的特定传输。在周期性传输是下行传输的实施例中,UE 120执行特定传输可以包括UE 120从基站110接收该特定传输。在周期性传输是上行传输的实施例中,UE 120执行特定传输可以包括UE 120向基站110发送该特定传输。
根据本公开的实施例,UE 120可以被配置为对周期性传输中的每次传输都执行方法1900,直到该周期性传输执行完毕。
在根据本公开的实施例的由COT激活的信号/信道传输方案中,基站110和UE 120能够一致地确定周期性传输中的每次传输是处于激活态还是去激活态。可以不需要通过额外的信令来调度附加的传输以补偿位于COT之外的传输。
图20示出了根据本公开的实施例的由COT激活的信号/信道传输方案的示例。分别通过COT消息2010-1和2010-2触发相应的COT 2020-1和COT 2020-2。这些COT消息可以由基站110发送给UE 120,或者由UE发送给基站110。对于一组周期性传输2030,每两个相邻的传输之间的时间间隔2040可以是固定的。对于周期性传输2030中的第一传输2030-1,可以确定第一传输2030-1的预期传输时间位于COT 2020-1内,因此基站110和UE 120可以将第一传输2030-1确定为激活态的。对于周期性传输2030中的第二传输2030-2,可以确定第二传输2030-2的预期传输时间不位于COT 2020-1、COT 2020-2或其他COT中的任一者内,因此基站110和UE 120可以将第二传输2030-2确定为去激活态的。对于周期性传输2030中的第三传输2030-3,可以确定第三传输2030-3的预期传输时间位于COT 2020-2内,因此基站110和UE 120可以将第三传输2030-3确定为激活态的。基站110和UE 120可以被配置为执行激活态的第一传输2030-1和第三2030-3,并且不执行去激活态的第二传输2030-2。相应地,第二传输2030-2在图中用虚线绘出。
应当注意,尽管图20示出了两个COT和具有三个传输的周期性传输2030,但 在其他实施例中可以包括更多或更少的COT,并且周期性传输2030可以包括更多次或更少次的传输,而不受限制。
5、应用示例
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的控制侧电子设备可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的发射设备和终端设备可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照附图描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是 未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图21是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 2100包括多个天线2110以及基站设备2120。基站设备2120和每个天线2110可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 2100(或基站设备2120)可以对应于上述控制侧电子设备。
天线2110中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2120发送和接收无线信号。如图21所示,gNB 2100可以包括多个天线2110。例如,多个天线2110可以与gNB 2100使用的多个频段兼容。
基站设备2120包括控制器2121、存储器2122、网络接口2117以及无线通信接口2125。
控制器2121可以为例如CPU或DSP,并且操作基站设备2120的较高层的各种功能。例如,控制器2121根据由无线通信接口2125获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器2121可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2122包括RAM和ROM,并且存储由控制器2121执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2123为用于将基站设备2120连接至核心网2124的通信接口。控制器2121可以经由网络接口2117而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2100与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2123还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2123为无线通信接口,则与由无线通信接口2125使用的频段相比,网络接口2123可以使用较高频段用于无线通信。
无线通信接口2125支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE- Advanced),并且经由天线2110来提供到位于gNB 2100的小区中的终端的无线连接。无线通信接口2125通常可以包括例如基带(BB)处理器2126和RF电路2127。BB处理器2126可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2121,BB处理器2126可以具有上述逻辑功能的一部分或全部。BB处理器2126可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2126的功能改变。该模块可以为插入到基站设备2120的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2127可以包括例如混频器、滤波器和放大器,并且经由天线2110来传送和接收无线信号。虽然图21示出一个RF电路2127与一根天线2110连接的示例,但是本公开并不限于该图示,而是一个RF电路2127可以同时连接多根天线2110。
如图21所示,无线通信接口2125可以包括多个BB处理器2126。例如,多个BB处理器2126可以与gNB 2100使用的多个频段兼容。如图21所示,无线通信接口2125可以包括多个RF电路2127。例如,多个RF电路2127可以与多个天线元件兼容。虽然图21示出其中无线通信接口2125包括多个BB处理器2126和多个RF电路2127的示例,但是无线通信接口2125也可以包括单个BB处理器2126或单个RF电路2127。
第二示例
图22是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 2200包括多个天线2210、RRH 2220和基站设备2230。RRH 2220和每个天线2210可以经由RF线缆而彼此连接。基站设备2230和RRH 2220可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 2200(或基站设备2230)可以对应于上述控制侧电子设备。
天线2210中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 2220发送和接收无线信号。如图22所示,gNB 2200可以包括多个天线2210。例如,多个天线2210可以与gNB 2200使用的多个频段兼容。
基站设备2230包括控制器2231、存储器2232、网络接口2233、无线通信接口2234以及连接接口2236。控制器2231、存储器2232和网络接口2233与参照图15描 述的控制器1521、存储器1522和网络接口1523相同。
无线通信接口2234支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH 2220和天线2210来提供到位于与RRH 2220对应的扇区中的终端的无线通信。无线通信接口2234通常可以包括例如BB处理器2235。除了BB处理器2235经由连接接口2236连接到RRH 2220的RF电路2222之外,BB处理器2235与参照图15描述的BB处理器1526相同。如图22所示,无线通信接口2234可以包括多个BB处理器2235。例如,多个BB处理器2235可以与gNB 2200使用的多个频段兼容。虽然图22示出其中无线通信接口2234包括多个BB处理器2235的示例,但是无线通信接口2234也可以包括单个BB处理器2235。
连接接口2236为用于将基站设备2230(无线通信接口2234)连接至RRH 2220的接口。连接接口2236还可以为用于将基站设备2230(无线通信接口2234)连接至RRH 2220的上述高速线路中的通信的通信模块。
RRH 2220包括连接接口2223和无线通信接口2221。
连接接口2223为用于将RRH 2220(无线通信接口2221)连接至基站设备2230的接口。连接接口2223还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2221经由天线2210来传送和接收无线信号。无线通信接口2221通常可以包括例如RF电路2222。RF电路2222可以包括例如混频器、滤波器和放大器,并且经由天线2210来传送和接收无线信号。虽然图22示出一个RF电路2222与一根天线2210连接的示例,但是本公开并不限于该图示,而是一个RF电路2222可以同时连接多根天线2210。
如图22所示,无线通信接口2221可以包括多个RF电路2222。例如,多个RF电路2222可以支持多个天线元件。虽然图22示出其中无线通信接口2221包括多个RF电路2222的示例,但是无线通信接口2221也可以包括单个RF电路2222。
[关于用户设备/终端设备的示例]
第一示例
图23是示出可以应用本公开内容的技术的通讯设备2300(例如,智能电话,联络器等等)的示意性配置的示例的框图。通讯设备2300包括处理器2301、存储器2302、存储装置2303、外部连接接口2304、摄像装置2306、传感器2307、麦克风2308、输入装置2309、显示装置2310、扬声器2311、无线通信接口2312、一个或多个天线开关2315、一个或多个天线2316、总线2317、电池2318以及辅助控制器2319。在一种 实现方式中,此处的通讯设备2300(或处理器2301)可以对应于上述发射设备或终端侧电子设备。
处理器2301可以为例如CPU或片上系统(SoC),并且控制通讯设备2300的应用层和另外层的功能。存储器2302包括RAM和ROM,并且存储数据和由处理器2301执行的程序。存储装置2303可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2304为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至通讯设备2300的接口。
摄像装置2306包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2307可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2308将输入到通讯设备2300的声音转换为音频信号。输入装置2309包括例如被配置为检测显示装置2310的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2310包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示通讯设备2300的输出图像。扬声器2311将从通讯设备2300输出的音频信号转换为声音。
无线通信接口2312支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2312通常可以包括例如BB处理器2313和RF电路2314。BB处理器2313可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2314可以包括例如混频器、滤波器和放大器,并且经由天线2316来传送和接收无线信号。无线通信接口2312可以为其上集成有BB处理器2313和RF电路2314的一个芯片模块。如图23所示,无线通信接口2312可以包括多个BB处理器2313和多个RF电路2314。虽然图23示出其中无线通信接口2312包括多个BB处理器2313和多个RF电路2314的示例,但是无线通信接口2312也可以包括单个BB处理器2313或单个RF电路2314。
此外,除了蜂窝通信方案之外,无线通信接口2312可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2312可以包括针对每种无线通信方案的BB处理器2313和RF电路2314。
天线开关2315中的每一个在包括在无线通信接口2312中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2316的连接目的地。
天线2316中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2312传送和接收无线信号。如图23所示,通讯设备2300可以包括多个天线2316。虽然图23示出其中通讯设备2300包括多个天线2316的示例,但是通讯设备2300也可以包括单个天线2316。
此外,通讯设备2300可以包括针对每种无线通信方案的天线2316。在此情况下,天线开关2315可以从通讯设备2300的配置中省略。
总线2317将处理器2301、存储器2302、存储装置2303、外部连接接口2304、摄像装置2306、传感器2307、麦克风2308、输入装置2309、显示装置2310、扬声器2311、无线通信接口2312以及辅助控制器2319彼此连接。电池2318经由馈线向图23所示的通讯设备2300的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2319例如在睡眠模式下操作通讯设备2300的最小必需功能。
第二示例
图24是示出可以应用本公开内容的技术的汽车导航设备2400的示意性配置的示例的框图。汽车导航设备2400包括处理器2401、存储器2402、全球定位系统(GPS)模块2404、传感器2405、数据接口2406、内容播放器2407、存储介质接口2408、输入装置2409、显示装置2410、扬声器2411、无线通信接口2413、一个或多个天线开关2416、一个或多个天线2417以及电池2418。在一种实现方式中,此处的汽车导航设备2400(或处理器2401)可以对应于发射设备或终端侧电子设备。
处理器2401可以为例如CPU或SoC,并且控制汽车导航设备2400的导航功能和另外的功能。存储器2402包括RAM和ROM,并且存储数据和由处理器2401执行的程序。
GPS模块2404使用从GPS卫星接收的GPS信号来测量汽车导航设备2400的位置(诸如纬度、经度和高度)。传感器2405可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2406经由未示出的终端而连接到例如车载网络2421,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2407再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2408中。输入装置2409包括例如被配置为检测显示装置2410的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2410包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2411输出导航功能的声音或再现的内容。
无线通信接口2413支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2413通常可以包括例如BB处理器2414和RF电路2415。BB处理器2414可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2415可以包括例如混频器、滤波器和放大器,并且经由天线2417来传送和接收无线信号。无线通信接口2413还可以为其上集成有BB处理器2414和RF电路2415的一个芯片模块。如图24所示,无线通信接口2413可以包括多个BB处理器2414和多个RF电路2415。虽然图24示出其中无线通信接口2413包括多个BB处理器2414和多个RF电路2415的示例,但是无线通信接口2413也可以包括单个BB处理器2414或单个RF电路2415。
此外,除了蜂窝通信方案之外,无线通信接口2413可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2413可以包括BB处理器2414和RF电路2415。
天线开关2416中的每一个在包括在无线通信接口2413中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2417的连接目的地。
天线2417中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2413传送和接收无线信号。如图24所示,汽车导航设备2400可以包括多个天线2417。虽然图24示出其中汽车导航设备2400包括多个天线2417的示例,但是汽车导航设备2400也可以包括单个天线2417。
此外,汽车导航设备2400可以包括针对每种无线通信方案的天线2417。在此情况下,天线开关2416可以从汽车导航设备2400的配置中省略。
电池2418经由馈线向图24所示的汽车导航设备2400的各个块提供电力,馈线在图中被部分地示为虚线。电池2418累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备2400、车载网络2421以及车辆模块2422中的一个或多个块的车载系统(或车辆)2420。车辆模块2422生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2421。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指 令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
6、本公开的示例性实施例实现
根据本公开的实施例,可以想到各种实现本公开的概念的示例性实现方式,包括但不限于:
实施例1、一种用于基站侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
向用户设备UE发送单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度波束;
确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
使用所确定的相应实际波束执行所述多个下行传输中的相应下行传输。
实施例2、如实施例1所述的电子设备,其中:
所述多个下行传输中的每一个下行传输是物理下行共享信道PDSCH传输;或者
所述多个下行传输中的每一个下行传输是非周期信道状态信息参考信号AP CSI-RS传输。
实施例3、如实施例1所述的电子设备,其中,确定相应实际波束包括:
基于与所述UE的能力相关联的第一参数,确定用于所述多个下行传输中的每一个下行传输的相应实际波束是相同的波束。
实施例4、如实施例3所述的电子设备,其中,确定相应实际波束还包括:
将与所述多个下行传输中的最早下行传输相关联的相应默认波束确定为所述相同的波束。
实施例5、如实施例1所述的电子设备,其中,确定相应实际波束包括:
基于与所述UE的能力相关联的第二参数,确定用于所述多个下行传输中的每一个下行传输的相应实际波束包含不同的波束。
实施例6、如实施例5所述的电子设备,其中,确定相应实际波束还包括:
基于与所述UE的能力相关联的第三参数,确定时间门限;
确定所述多个下行传输中被调度在所述时间门限之前的第一组下行传输以及被调度在所述时间门限之后的第二组下行传输;
对于第一组下行传输中的每一个下行传输,使用默认波束而不是由所述单个DCI所指示的相应调度波束,作为用于该下行传输的相应实际波束;以及
对于第二组下行传输中的每一个下行传输,使用所述单个DCI所指示的相应调度波束作为用于该下行传输的相应实际波束。
实施例7、如实施例6所述的电子设备,其中,确定相应实际波束还包括:
基于与所述UE的能力相关联的第四参数,确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束或是不同的波束。
实施例8、如实施例7所述的电子设备,其中,确定相应实际波束还包括:
响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的,将与所述多个下行传输中的最早下行传输相关联的默认波束确定为该相同的波束。
实施例9、如实施例7所述的电子设备,其中,确定相应实际波束还包括:
响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束不是相同的波束,对于第一组下行传输中的每一个下行传输,将与UE最近监测的搜索空间中的ID最低的CORESET对应的波束确定为用于该下行传输的相应实际波束。
实施例10、一种在基站侧执行的方法,包括:
向用户设备UE发送单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度 波束;
确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
使用所确定的相应实际波束执行所述多个下行传输中的相应下行传输。
实施例11、一种用于用户设备UE侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
从基站接收单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度波束;
确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
使用所确定的相应实际波束接收所述多个下行传输中的相应下行传输。
实施例12、如实施例11所述的电子设备,其中:
所述多个下行传输中的每一个下行传输是物理下行共享信道PDSCH传输;或者
所述多个下行传输中的每一个下行传输是非周期信道状态信息参考信号AP CSI-RS传输。
实施例13、如实施例12所述的电子设备,确定相应实际波束包括:
确定用于所述多个下行传输中的每一个下行传输的相应实际波束是相同的波束。
实施例14、如实施例13所述的电子设备,其中,确定相应实际波束还包括:
将与所述多个下行传输中的最早下行传输相关联的相应默认波束确定为所述相同的波束。
实施例15、如实施例11所述的电子设备,其中,确定相应实际波束包括:
确定用于所述多个下行传输中的每一个下行传输的相应实际波束包含不同的波束。
实施例16、如实施例15所述的电子设备,确定相应实际波束还包括:
确定时间门限;
确定所述多个下行传输中被调度在所述时间门限之前的第一组下行传输以及被调度在所述时间门限之后的第二组下行传输;
对于第一组下行传输中的每一个下行传输,使用默认波束而不是由所述单个DCI所指示的相应调度波束,作为用于该下行传输的相应实际波束;以及
对于第二组下行传输中的每一个下行传输,使用所述单个DCI所指示的相应调度波束作为用于该下行传输的相应实际波束。
实施例17、如实施例16所述的电子设备,其中,确定相应实际波束还包括:
确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束或是不同的波束。
实施例18、如实施例17所述的电子设备,其中,确定相应实际波束还包括:
响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束,将与所述多个下行传输中的最早下行传输相关联的默认波束确定为该相同的波束。
实施例19、如实施例17所述的电子设备,其中,确定相应实际波束还包括:
响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束不是相同的波束,对于第一组下行传输中的每一个下行传输,将与UE最近监测的搜索空间中的ID最低的CORESET对应的波束确定为用于该下行传输的相应实际波束。
实施例20、一种在用户设备UE侧执行的方法,包括:
从基站接收单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度波束;
确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
使用所确定的相应实际波束接收所述多个下行传输中的相应下行传输。
实施例21、一种用于基站侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
向用户设备UE发送单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
在所述多个时隙的每一个时隙中,使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合向所述UE发送CSI-RS传输;以及
在基于所述相同上报配置的报告中,从所述UE接收与所述多个时隙的测量相关联的CSI报告。
实施例22、如实施例21所述的电子设备,其中,所述多个CSI-RS资源集合中的每一个CSI-RS资源集合的重复参数Repetition的值被配置为关闭OFF。
实施例23、如实施例21所述的电子设备,其中,所述CSI报告是基于所述多个时隙中的每一个时隙的测量而生成的,并且每一个时隙的测量是基于UE的不同单个接收波束而生成的。
实施例24、如实施例20所述的电子设备,其中,所述基站操作于52.6GHz-71GHz频段。
实施例25、一种在基站侧执行的方法,包括:
向用户设备UE发送单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
在所述多个时隙的每一个时隙中,使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合向所述UE发送CSI-RS;以及
在基于所述相同上报配置的报告中,从所述UE接收与所述多个时隙的CSI测量相关联的CSI报告。
实施例26、一种用于用户设备UE侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
从基站接收单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
在所述多个时隙的每一个时隙中,从所述基站接收使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合发送的CSI-RS传输以执行测量;以及
在基于所述相同上报配置的报告中,向所述基站发送与所述多个时隙的测量相关联的CSI报告。
实施例27、如实施例26所述的电子设备,其中,所述多个CSI-RS资源集合中的每一个CSI-RS资源集合的重复参数Repetition的值被配置为关闭OFF。
实施例28、如实施例26所述的电子设备,其中,执行测量包括:在所述多个时隙的每一个时隙中使用不同的单个接收波束来执行测量。
实施例29、如实施例20所述的电子设备,其中,所述UE操作于52.6GHz-71GHz频段。
实施例30、一种在用户设备UE侧执行的方法,包括:
从基站接收单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
在所述多个时隙的每一个时隙中,从所述基站接收使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合发送的CSI-RS以执行测量;以及
在基于所述相同上报配置的报告中,向所述基站发送与所述多个时隙的测量相关联的CSI报告。
实施例31、一种用于基站侧的电子设备,其中,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
向用户设备UE发送单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中发送SSB传输。
实施例32、如实施例31所述的电子设备,其中,在所述多个时隙中的每一个时隙中发送SSB传输包括:
在所述多个时隙中的每一个时隙中,使用与所述多个SSB资源对应的不同方向的多个发射波束来进行SSB传输以执行下行波束扫描。
实施例33、如实施例32所述的电子设备,其中,在所述多个时隙中的每一个时隙中的所述下行波束扫描基于所述UE的相应单个接收波束。
实施例34、如实施例32所述的电子设备,其中,所述基站操作于52.6GHz-71GHz频段。
实施例35、一种在基站侧执行的方法,包括:
向用户设备UE发送单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中发送SSB传输。
实施例36、一种用于用户设备UE侧的电子设备,其中,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
从基站接收单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中接收SSB传输。
实施例37、如实施例36所述的电子设备,其中,在每一个时隙中接收SSB传输包括:
在每一个时隙中使用单个接收波束从所述基站接收SSB传输。
实施例38、如实施例37所述的电子设备,其中,在每一个时隙中从基站接收的SSB传输是基站使用与所述多个SSB资源对应的不同方向的多个发射波束进行的。
实施例39、如实施例37所述的电子设备,其中,所述UE操作于52.6GHz-71GHz频段。
实施例40、一种在用户设备UE侧执行的方法,包括:
从基站接收单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;
在所述多个时隙中的每一个时隙中接收SSB传输。
实施例41、一种用于基站侧的电子设备,其中,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
向用户设备UE发送单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且将所述多个SRS资源调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中从所述UE接收SRS传输。
实施例42、如实施例41所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中,使得所述UE在所述多个时隙中的每一个时隙中仅使用所述多个SRS资源中的一个SRS资源来发送SRS传输。
实施例43、如实施例42所述的电子设备,其中,所述基站使用的子载波SCS的宽度为480kHz或960kHz。
实施例44、如实施例41所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中,使得所述UE在所述多个时隙中的每一个时隙中使用所述多个SRS资源中的多于一个SRS资源来进行传输。
实施例45、一种在基站侧执行的方法,包括:
向用户设备UE发送单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且将所述多个SRS资源调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中接收SRS传输。
实施例46、一种用于用户设备UE侧的电子设备,其中,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
从基站接收单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且所述多个SRS资源被调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中向基站110发送SRS传输。
实施例47、如实施例46所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中使得所述UE在所述多个时隙中的每一个时隙中仅使用所述多个SRS资源中的一个SRS资源来发送SRS传输。
实施例48、如实施例47所述的电子设备,其中,所述UE使用的子载波SCS的 宽度为480kHz或960kHz。
实施例49、如实施例46所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中,使得所述UE在所述多个时隙中的每一个时隙中使用所述多个SRS资源中的多于一个SRS资源来发送SRS传输。
实施例50、一种在用户设备UE侧执行的方法,包括:
从基站接收单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且所述多个SRS资源被调度在多个时隙中;以及
在所述多个时隙中的每一个时隙中向基站110发送SRS传输。
实施例51、一种用于基站侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
在所述特定时间,执行所述第一传输。
实施例52、如实施例51所述的电子设备,其中,所述第一传输是响应于确定所述特定时间在所述COT指示的所述特定时间段内而执行的。
实施例53、如实施例51所述的电子设备,其中,配置所述第一偏移量包括:
将与所述第一偏移量相关联的信息配置在RRC信令中;以及
将所述RRC信令发送给所述UE。
实施例54、如实施例51所述的电子设备,其中,配置所述第一偏移量包括:至少部分地使用所述COT消息来配置所述第一偏移量。
实施例55、如实施例54所述的电子设备,其中,配置所述第一偏移量包括:
将可选偏移量的列表配置在RRC信令中;
使用所述COT消息来配置偏移量索引;以及
将所述可选偏移量的列表中与所述偏移量索引对应的可选偏移量配置为所述第一偏移量。
实施例56、如实施例55所述的电子设备,其中,所述第一偏移量的大小是基于所 述UE的优先级而配置的。
实施例57、如实施例54所述的电子设备,其中,所述COT消息包括是否触发所述第一传输的指示。
实施例58、如实施例51所述的电子设备,其中,所述COT消息由所述基站发送给所述UE,并且所述第一传输是以下各项中的一者:
下行链路参考信号DL RS传输;或者
PDSCH传输。
实施例59、如实施例51所述的电子设备,其中,所述COT消息是由所述基站从所述UE接收的,并且所述第一传输是以下各项中的一者:
上行链路参考信号UL RS传输;
PUSCH传输;或者
PUCCH传输。
实施例60、一种在基站侧执行的方法,包括:
配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
在所述特定时间,执行所述第一传输。
实施例61、一种用于用户设备UE侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
在所述特定时间,执行所述第一传输。
实施例62、如实施例61所述的电子设备,其中,所述第一传输是响应于确定所述特定时间在所述COT指示的所述特定时间段内而执行的。
实施例63、如实施例62所述的电子设备,其中,配置所述第一偏移量包括:至少部分地基于从所述基站接收的RRC信令来配置所述第一偏移量。
实施例64、如实施例61所述的电子设备,其中,配置所述第一偏移量包括:至少部分地使用所述COT消息来配置所述第一偏移量。
实施例65、如实施例64所述的电子设备,其中,配置所述第一偏移量包括:
从RRC信令中提取可选偏移量的列表;
使用所述COT消息来配置偏移量索引;以及
将所述可选偏移量的列表中与所述偏移量索引对应的可选偏移量配置为所述第一偏移量。
实施例66、如实施例65所述的电子设备,其中,所述第一偏移量的大小是基于所述UE的优先级而确定的。
实施例67、如实施例64所述的电子设备,其中,所述COT消息包括是否触发所述第一传输的指示。
实施例68、如实施例61所述的电子设备,其中,所述COT消息是由所述UE从所述基站接收的,并且所述第一传输是以下各项中的一者:
下行链路参考信号DL RS传输;或者
PDSCH传输。
实施例69、如实施例61所述的电子设备,其中,所述COT消息由所述UE发送给所述基站,并且所述第一传输是以下各项中的一者:
上行链路参考信号UL RS传输;
PUSCH传输;或者
PUCCH传输。
实施例70、一种在用户设备UE侧执行的方法,包括:
配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
在所述特定时间,执行所述第一传输。
实施例71、一种用于基站侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
确定与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
实施例72、如实施例71所述的电子设备,其中,确定所述COT包括:
由所述基站执行先听后发LBT操作;以及
由所述基站基于所述LBT操作确定所述COT。
实施例73、如实施例72所述的电子设备,其中,所述周期性传输是以下各项中的一者:
下行链路的半静态参考信号SP RS传输;或者
半静态调度物理下行链路共享信道SPS PDSCH传输。
实施例74、如实施例71所述的电子设备,其中,确定所述COT包括:
基于来自所述UE的COT消息确定所述COT。
实施例75、如实施例74所述的电子设备,其中,所述周期性传输是以下各项中的一者:
上行链路的半静态探测参考信号SP SRS传输;或者
配置授权物理上行链路共享信道CG PUSCH传输。
实施例76、如实施例71所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
执行激活态的所述特定传输,而不执行去激活态的所述特定传输。
实施例77、一种在基站侧执行的方法,包括:
确定与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相 通信的特定时间段;
确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
78、一种用于用户设备UE侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为执行以下操作:
确定与基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
实施例79、如实施例78所述的电子设备,其中,确定所述COT包括:
基于来自所述基站的COT消息确定所述COT。
实施例80、如实施例79所述的电子设备,其中,所述周期性传输是以下各项中的一者:
下行链路的半静态参考信号SP RS传输;或者
半静态调度物理下行链路共享信道SPS PDSCH传输。
实施例81、如实施例78所述的电子设备,其中,确定所述COT包括:
由所述UE执行先听后发LBT操作;以及
由所述UE基于所述LBT操作确定所述COT。
实施例82、如实施例81所述的电子设备,其中,所述周期性传输是以下各项中的一者:
上行链路的半静态探测参考信号SP SRS传输;或者
配置授权物理上行链路共享信道CG PUSCH传输。
实施例83、如实施例78所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
执行激活态的所述特定传输,而不执行去激活态的所述特定传输。
实施例84、一种在用户设备UE侧执行的方法,包括:
确定与基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
实施例85、一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如实施例10、20、25、30、35、40、45、50、60、70、77、84中任一项所述的方法。
实施例86、一种包括一个或多个指令的计算机程序产品,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如实施例10、20、25、30、35、40、45、50、60、70、77、84中任一项所述的方法。

Claims (86)

  1. 一种用于基站侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    向用户设备UE发送单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度波束;
    确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
    使用所确定的相应实际波束执行所述多个下行传输中的相应下行传输。
  2. 如权利要求1所述的电子设备,其中:
    所述多个下行传输中的每一个下行传输是物理下行共享信道PDSCH传输;或者
    所述多个下行传输中的每一个下行传输是非周期信道状态信息参考信号AP CSI-RS传输。
  3. 如权利要求1所述的电子设备,其中,确定相应实际波束包括:
    基于与所述UE的能力相关联的第一参数,确定用于所述多个下行传输中的每一个下行传输的相应实际波束是相同的波束。
  4. 如权利要求3所述的电子设备,其中,确定相应实际波束还包括:
    将与所述多个下行传输中的最早下行传输相关联的相应默认波束确定为所述相同的波束。
  5. 如权利要求1所述的电子设备,其中,确定相应实际波束包括:
    基于与所述UE的能力相关联的第二参数,确定用于所述多个下行传输中的每一个下行传输的相应实际波束包含不同的波束。
  6. 如权利要求5所述的电子设备,其中,确定相应实际波束还包括:
    基于与所述UE的能力相关联的第三参数,确定时间门限;
    确定所述多个下行传输中被调度在所述时间门限之前的第一组下行传输以及被调 度在所述时间门限之后的第二组下行传输;
    对于第一组下行传输中的每一个下行传输,使用默认波束而不是由所述单个DCI所指示的相应调度波束,作为用于该下行传输的相应实际波束;以及
    对于第二组下行传输中的每一个下行传输,使用所述单个DCI所指示的相应调度波束作为用于该下行传输的相应实际波束。
  7. 如权利要求6所述的电子设备,其中,确定相应实际波束还包括:
    基于与所述UE的能力相关联的第四参数,确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束或是不同的波束。
  8. 如权利要求7所述的电子设备,其中,确定相应实际波束还包括:
    响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的,将与所述多个下行传输中的最早下行传输相关联的默认波束确定为该相同的波束。
  9. 如权利要求7所述的电子设备,其中,确定相应实际波束还包括:
    响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束不是相同的波束,对于第一组下行传输中的每一个下行传输,将与UE最近监测的搜索空间中的ID最低的CORESET对应的波束确定为用于该下行传输的相应实际波束。
  10. 一种在基站侧执行的方法,包括:
    向用户设备UE发送单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度波束;
    确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
    使用所确定的相应实际波束执行所述多个下行传输中的相应下行传输。
  11. 一种用于用户设备UE侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    从基站接收单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调 度波束;
    确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
    使用所确定的相应实际波束接收所述多个下行传输中的相应下行传输。
  12. 如权利要求11所述的电子设备,其中:
    所述多个下行传输中的每一个下行传输是物理下行共享信道PDSCH传输;或者
    所述多个下行传输中的每一个下行传输是非周期信道状态信息参考信号AP CSI-RS传输。
  13. 如权利要求12所述的电子设备,确定相应实际波束包括:
    确定用于所述多个下行传输中的每一个下行传输的相应实际波束是相同的波束。
  14. 如权利要求13所述的电子设备,其中,确定相应实际波束还包括:
    将与所述多个下行传输中的最早下行传输相关联的相应默认波束确定为所述相同的波束。
  15. 如权利要求11所述的电子设备,其中,确定相应实际波束包括:
    确定用于所述多个下行传输中的每一个下行传输的相应实际波束包含不同的波束。
  16. 如权利要求15所述的电子设备,确定相应实际波束还包括:
    确定时间门限;
    确定所述多个下行传输中被调度在所述时间门限之前的第一组下行传输以及被调度在所述时间门限之后的第二组下行传输;
    对于第一组下行传输中的每一个下行传输,使用默认波束而不是由所述单个DCI所指示的相应调度波束,作为用于该下行传输的相应实际波束;以及
    对于第二组下行传输中的每一个下行传输,使用所述单个DCI所指示的相应调度波束作为用于该下行传输的相应实际波束。
  17. 如权利要求16所述的电子设备,其中,确定相应实际波束还包括:
    确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束或是 不同的波束。
  18. 如权利要求17所述的电子设备,其中,确定相应实际波束还包括:
    响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束是相同的波束,将与所述多个下行传输中的最早下行传输相关联的默认波束确定为该相同的波束。
  19. 如权利要求17所述的电子设备,其中,确定相应实际波束还包括:
    响应于确定用于第一组下行传输中的每一个下行传输的相应实际波束不是相同的波束,对于第一组下行传输中的每一个下行传输,将与UE最近监测的搜索空间中的ID最低的CORESET对应的波束确定为用于该下行传输的相应实际波束。
  20. 一种在用户设备UE侧执行的方法,包括:
    从基站接收单个DCI,所述单个DCI用于调度与所述UE相关联的多个下行传输,所述单个DCI指示用于所述多个下行传输中的每一个下行传输的相应调度波束;
    确定用于所述多个下行传输中的每一个下行传输的相应实际波束;以及
    使用所确定的相应实际波束接收所述多个下行传输中的相应下行传输。
  21. 一种用于基站侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    向用户设备UE发送单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
    在所述多个时隙的每一个时隙中,使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合向所述UE发送CSI-RS传输;以及
    在基于所述相同上报配置的报告中,从所述UE接收与所述多个时隙的测量相关联的CSI报告。
  22. 如权利要求21所述的电子设备,其中,所述多个CSI-RS资源集合中的每一个CSI-RS资源集合的重复参数Repetition的值被配置为关闭OFF。
  23. 如权利要求21所述的电子设备,其中,所述CSI报告是基于所述多个时隙中的每一个时隙的测量而生成的,并且每一个时隙的测量是基于UE的不同单个接收波束而生成的。
  24. 如权利要求20所述的电子设备,其中,所述基站操作于52.6GHz-71GHz频段。
  25. 一种在基站侧执行的方法,包括:
    向用户设备UE发送单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
    在所述多个时隙的每一个时隙中,使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合向所述UE发送CSI-RS;以及
    在基于所述相同上报配置的报告中,从所述UE接收与所述多个时隙的CSI测量相关联的CSI报告。
  26. 一种用于用户设备UE侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    从基站接收单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
    在所述多个时隙的每一个时隙中,从所述基站接收使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合发送的CSI-RS传输以执行测量;以及
    在基于所述相同上报配置的报告中,向所述基站发送与所述多个时隙的测量相关联的CSI报告。
  27. 如权利要求26所述的电子设备,其中,所述多个CSI-RS资源集合中的每一个CSI-RS资源集合的重复参数Repetition的值被配置为关闭OFF。
  28. 如权利要求26所述的电子设备,其中,执行测量包括:在所述多个时隙的每 一个时隙中使用不同的单个接收波束来执行测量。
  29. 如权利要求20所述的电子设备,其中,所述UE操作于52.6GHz-71GHz频段。
  30. 一种在用户设备UE侧执行的方法,包括:
    从基站接收单个DCI,所述单个DCI指示跨多个时隙的多个信道状态信息参考信号CSI-RS资源集合,其中,所述多个CSI-RS资源集合与相同上报配置相关联;
    在所述多个时隙的每一个时隙中,从所述基站接收使用所述多个CSI-RS资源集合中的相应CSI-RS资源集合发送的CSI-RS以执行测量;以及
    在基于所述相同上报配置的报告中,向所述基站发送与所述多个时隙的测量相关联的CSI报告。
  31. 一种用于基站侧的电子设备,其中,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    向用户设备UE发送单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中发送SSB传输。
  32. 如权利要求31所述的电子设备,其中,在所述多个时隙中的每一个时隙中发送SSB传输包括:
    在所述多个时隙中的每一个时隙中,使用与所述多个SSB资源对应的不同方向的多个发射波束来进行SSB传输以执行下行波束扫描。
  33. 如权利要求32所述的电子设备,其中,在所述多个时隙中的每一个时隙中的所述下行波束扫描基于所述UE的相应单个接收波束。
  34. 如权利要求32所述的电子设备,其中,所述基站操作于52.6GHz-71GHz频段。
  35. 一种在基站侧执行的方法,包括:
    向用户设备UE发送单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中发送SSB传输。
  36. 一种用于用户设备UE侧的电子设备,其中,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    从基站接收单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中接收SSB传输。
  37. 如权利要求36所述的电子设备,其中,在每一个时隙中接收SSB传输包括:
    在每一个时隙中使用单个接收波束从所述基站接收SSB传输。
  38. 如权利要求37所述的电子设备,其中,在每一个时隙中从基站接收的SSB传输是基站使用与所述多个SSB资源对应的不同方向的多个发射波束进行的。
  39. 如权利要求37所述的电子设备,其中,所述UE操作于52.6GHz-71GHz频段。
  40. 一种在用户设备UE侧执行的方法,包括:
    从基站接收单个DCI,所述单个DCI被配置为将多个同步信号块SSB资源调度在多个时隙中;
    在所述多个时隙中的每一个时隙中接收SSB传输。
  41. 一种用于基站侧的电子设备,其中,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    向用户设备UE发送单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且将所述多个SRS资源调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中从所述UE接收SRS传输。
  42. 如权利要求41所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中,使得所述UE在所述多个时隙中的每一个时隙中仅使用所述多个SRS资源中的一个SRS资源来发送SRS传输。
  43. 如权利要求42所述的电子设备,其中,所述基站使用的子载波SCS的宽度为480kHz或960kHz。
  44. 如权利要求41所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中,使得所述UE在所述多个时隙中的每一个时隙中使用所述多个SRS资源中的多于一个SRS资源来进行传输。
  45. 一种在基站侧执行的方法,包括:
    向用户设备UE发送单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且将所述多个SRS资源调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中接收SRS传输。
  46. 一种用于用户设备UE侧的电子设备,其中,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    从基站接收单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且所述多个SRS资源被调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中向基站110发送SRS传输。
  47. 如权利要求46所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中使得所述UE在所述多个时隙中的每一个时隙中仅使用所述多个SRS资源中的一个SRS资源来发送SRS传输。
  48. 如权利要求47所述的电子设备,其中,所述UE使用的子载波SCS的宽度为480kHz或960kHz。
  49. 如权利要求46所述的电子设备,其中,所述多个SRS资源被调度在多个时隙中,使得所述UE在所述多个时隙中的每一个时隙中使用所述多个SRS资源中的多于一个SRS资源来发送SRS传输。
  50. 一种在用户设备UE侧执行的方法,包括:
    从基站接收单个DCI,所述单个DCI被配置为触发包含多个探测参考信号SRS资源的SRS资源集合,并且所述多个SRS资源被调度在多个时隙中;以及
    在所述多个时隙中的每一个时隙中向基站110发送SRS传输。
  51. 一种用于基站侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
    配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
    在所述特定时间,执行所述第一传输。
  52. 如权利要求51所述的电子设备,其中,所述第一传输是响应于确定所述特定时间在所述COT指示的所述特定时间段内而执行的。
  53. 如权利要求51所述的电子设备,其中,配置所述第一偏移量包括:
    将与所述第一偏移量相关联的信息配置在RRC信令中;以及
    将所述RRC信令发送给所述UE。
  54. 如权利要求51所述的电子设备,其中,配置所述第一偏移量包括:至少部分地使用所述COT消息来配置所述第一偏移量。
  55. 如权利要求54所述的电子设备,其中,配置所述第一偏移量包括:
    将可选偏移量的列表配置在RRC信令中;
    使用所述COT消息来配置偏移量索引;以及
    将所述可选偏移量的列表中与所述偏移量索引对应的可选偏移量配置为所述第一偏移量。
  56. 如权利要求55所述的电子设备,其中,所述第一偏移量的大小是基于所述UE的优先级而配置的。
  57. 如权利要求54所述的电子设备,其中,所述COT消息包括是否触发所述第一传输的指示。
  58. 如权利要求51所述的电子设备,其中,所述COT消息由所述基站发送给所述UE,并且所述第一传输是以下各项中的一者:
    下行链路参考信号DL RS传输;或者
    PDSCH传输。
  59. 如权利要求51所述的电子设备,其中,所述COT消息是由所述基站从所述UE接收的,并且所述第一传输是以下各项中的一者:
    上行链路参考信号UL RS传输;
    PUSCH传输;或者
    PUCCH传输。
  60. 一种在基站侧执行的方法,包括:
    配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
    配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
    在所述特定时间,执行所述第一传输。
  61. 一种用于用户设备UE侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
    配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
    在所述特定时间,执行所述第一传输。
  62. 如权利要求61所述的电子设备,其中,所述第一传输是响应于确定所述特定时间在所述COT指示的所述特定时间段内而执行的。
  63. 如权利要求62所述的电子设备,其中,配置所述第一偏移量包括:至少部分地基于从所述基站接收的RRC信令来配置所述第一偏移量。
  64. 如权利要求61所述的电子设备,其中,配置所述第一偏移量包括:至少部分地使用所述COT消息来配置所述第一偏移量。
  65. 如权利要求64所述的电子设备,其中,配置所述第一偏移量包括:
    从RRC信令中提取可选偏移量的列表;
    使用所述COT消息来配置偏移量索引;以及
    将所述可选偏移量的列表中与所述偏移量索引对应的可选偏移量配置为所述第一偏移量。
  66. 如权利要求65所述的电子设备,其中,所述第一偏移量的大小是基于所述UE的优先级而确定的。
  67. 如权利要求64所述的电子设备,其中,所述COT消息包括是否触发所述第一传输的指示。
  68. 如权利要求61所述的电子设备,其中,所述COT消息是由所述UE从所述基站接收的,并且所述第一传输是以下各项中的一者:
    下行链路参考信号DL RS传输;或者
    PDSCH传输。
  69. 如权利要求61所述的电子设备,其中,所述COT消息由所述UE发送给所述基站,并且所述第一传输是以下各项中的一者:
    上行链路参考信号UL RS传输;
    PUSCH传输;或者
    PUCCH传输。
  70. 一种在用户设备UE侧执行的方法,包括:
    配置与所述基站和用户设备UE之间的第一传输相关联的第一偏移量;
    配置与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    基于所述COT与所述第一偏移量,计算用于所述第一传输的特定时间;以及
    在所述特定时间,执行所述第一传输。
  71. 一种用于基站侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    确定与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
    响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
    响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
  72. 如权利要求71所述的电子设备,其中,确定所述COT包括:
    由所述基站执行先听后发LBT操作;以及
    由所述基站基于所述LBT操作确定所述COT。
  73. 如权利要求72所述的电子设备,其中,所述周期性传输是以下各项中的一者:
    下行链路的半静态参考信号SP RS传输;或者
    半静态调度物理下行链路共享信道SPS PDSCH传输。
  74. 如权利要求71所述的电子设备,其中,确定所述COT包括:
    基于来自所述UE的COT消息确定所述COT。
  75. 如权利要求74所述的电子设备,其中,所述周期性传输是以下各项中的一者:
    上行链路的半静态探测参考信号SP SRS传输;或者
    配置授权物理上行链路共享信道CG PUSCH传输。
  76. 如权利要求71所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    执行激活态的所述特定传输,而不执行去激活态的所述特定传输。
  77. 一种在基站侧执行的方法,包括:
    确定与所述基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
    响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
    响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
  78. 一种用于用户设备UE侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为执行以下操作:
    确定与基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
    响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
    响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
  79. 如权利要求78所述的电子设备,其中,确定所述COT包括:
    基于来自所述基站的COT消息确定所述COT。
  80. 如权利要求79所述的电子设备,其中,所述周期性传输是以下各项中的一者:下行链路的半静态参考信号SP RS传输;或者
    半静态调度物理下行链路共享信道SPS PDSCH传输。
  81. 如权利要求78所述的电子设备,其中,确定所述COT包括:
    由所述UE执行先听后发LBT操作;以及
    由所述UE基于所述LBT操作确定所述COT。
  82. 如权利要求81所述的电子设备,其中,所述周期性传输是以下各项中的一者:
    上行链路的半静态探测参考信号SP SRS传输;或者
    配置授权物理上行链路共享信道CG PUSCH传输。
  83. 如权利要求78所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    执行激活态的所述特定传输,而不执行去激活态的所述特定传输。
  84. 一种在用户设备UE侧执行的方法,包括:
    确定与基站和所述UE相关联的信道占用时间COT,所述COT被包含在COT消息中,所述COT指示所述基站与所述UE被允许在非授权频段上互相通信的特定时间段;
    确定与所述UE的周期性传输中的特定传输的预期传输时间是否在所述COT内;
    响应于所述特定传输的预期传输时间不在所述COT内,将所述特定传输确定为去激活态的传输;并且
    响应于所述特定传输的预期传输时间在所述COT内,将所述特定传输确定为激活态的传输。
  85. 一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如权利要求10、20、25、30、35、40、45、50、60、70、77、84中任一项所述的方法。
  86. 一种包括一个或多个指令的计算机程序产品,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如权利要求10、20、25、30、35、40、45、50、60、70、77、84中任一项所述的方法。
PCT/CN2022/083596 2021-04-02 2022-03-29 电子设备、通信方法、存储介质和计算机程序产品 WO2022206736A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023560473A JP2024513211A (ja) 2021-04-02 2022-03-29 電子機器及び方法
EP22778918.7A EP4319399A1 (en) 2021-04-02 2022-03-29 Electronic device, communication method, storage medium and computer program product
CN202280024191.8A CN117083951A (zh) 2021-04-02 2022-03-29 电子设备、通信方法、存储介质和计算机程序产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110359046.2A CN115190595A (zh) 2021-04-02 2021-04-02 电子设备、通信方法、存储介质和计算机程序产品
CN202110359046.2 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022206736A1 true WO2022206736A1 (zh) 2022-10-06

Family

ID=83455601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083596 WO2022206736A1 (zh) 2021-04-02 2022-03-29 电子设备、通信方法、存储介质和计算机程序产品

Country Status (4)

Country Link
EP (1) EP4319399A1 (zh)
JP (1) JP2024513211A (zh)
CN (2) CN115190595A (zh)
WO (1) WO2022206736A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392111A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院有限公司 一种pdsch调度方法、用户终端和网络侧设备
US20190141693A1 (en) * 2017-11-08 2019-05-09 Samsung Electronics Co., Ltd Method and apparatus for beam management in the unlicensed spectrum
CN111543097A (zh) * 2017-11-15 2020-08-14 Idac控股公司 无线网络中的波束管理

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392111A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院有限公司 一种pdsch调度方法、用户终端和网络侧设备
US20190141693A1 (en) * 2017-11-08 2019-05-09 Samsung Electronics Co., Ltd Method and apparatus for beam management in the unlicensed spectrum
CN111543097A (zh) * 2017-11-15 2020-08-14 Idac控股公司 无线网络中的波束管理

Also Published As

Publication number Publication date
CN115190595A (zh) 2022-10-14
JP2024513211A (ja) 2024-03-22
EP4319399A1 (en) 2024-02-07
CN117083951A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US11877246B2 (en) Uplink power control for SRS carrier-based switching
CN116456485A (zh) 用户设备、基站及其所用的方法
US11576155B2 (en) Communication apparatus, communication method, and program
CN111183667B (zh) 无线电网络节点、无线装置以及其中执行的方法
TWI830778B (zh) 通訊裝置、通訊方法、及非暫時性電腦可讀取之儲存裝置
JP2014505422A (ja) 無線通信システムにおける機器内共存干渉を調整する装置及び方法
EP3311623B1 (en) Communications terminal, infrastructure equipment and methods for discontinuous reception, drx
US20210143963A1 (en) Communication device, communication method, and program
JP6488019B2 (ja) セカンダリセルとの通信の時間多重化
US20230254937A1 (en) Power saving for extended reality (xr) communication
US11856583B2 (en) Wireless communication device, wireless communication method, and computer program
WO2022206736A1 (zh) 电子设备、通信方法、存储介质和计算机程序产品
WO2022237996A1 (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
WO2023065096A1 (zh) 信号发送的控制方法、装置和系统
WO2024067863A1 (en) Network energy saving method, and related devices
US20230100797A1 (en) Communications devices and methods
CN114616918A (zh) 副蜂窝小区休眠指示和应用延迟
KR20170042318A (ko) D2d를 위한 블랭크 서브프레임 사용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283449

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280024191.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023560473

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022778918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778918

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE