WO2022206316A1 - 一种减反射防宽红外耐高温树脂镜片及其制备方法 - Google Patents

一种减反射防宽红外耐高温树脂镜片及其制备方法 Download PDF

Info

Publication number
WO2022206316A1
WO2022206316A1 PCT/CN2022/079857 CN2022079857W WO2022206316A1 WO 2022206316 A1 WO2022206316 A1 WO 2022206316A1 CN 2022079857 W CN2022079857 W CN 2022079857W WO 2022206316 A1 WO2022206316 A1 WO 2022206316A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin lens
reflection
infrared
composite oxide
Prior art date
Application number
PCT/CN2022/079857
Other languages
English (en)
French (fr)
Inventor
黄昱勇
汤峰
马玉琴
Original Assignee
江苏万新光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏万新光学有限公司 filed Critical 江苏万新光学有限公司
Publication of WO2022206316A1 publication Critical patent/WO2022206316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the invention relates to the technical field of resin lens preparation, in particular to an anti-reflection, anti-broadband, infrared, high-temperature-resistant resin lens and a preparation method thereof.
  • a lens with a refractive index of 1.60 or more is a high refractive index
  • a refractive index of 1.56 is a medium refractive index
  • a refractive index below 1.56 is a low refractive index.
  • the refractive index of the lens Due to the structural difference of the lens material itself, the absorption rate of light in different wavelength bands of visible light is different, so it will affect the light transmittance and reflectivity of the lens itself.
  • the surface of the resin lens is generally coated to reduce the reflection of light and enhance the transmission of light, that is, the optical anti-reflection film.
  • Infrared rays are not sensitive to the human eye, and are mainly absorbed by the cornea, which has potential damage to the human eye. This requires anti-reflection and anti-infrared characteristics on the optical film layer, which is much thicker than the general conventional film layer.
  • the effective bandwidth of anti-infrared resin glasses currently on the market is about 900-1200nm, which cannot meet the needs of various wavelength bands, especially long-band infrared radiation; on the other hand, the main materials of optical films are inorganic materials.
  • the finished lens Due to the difference in the physicochemical properties of the polymer resin lens substrate and the inorganic material film layer, the finished lens has high stress and poor temperature resistance and environmental resistance, especially the anti-reflection and anti-infrared film layer is thick, and the impact is particularly significant. . Therefore, it is an urgent problem to be solved in the art to provide an anti-reflection, anti-infrared, high-temperature-resistant resin lens.
  • the present invention aims to provide an anti-reflection and anti-broad infrared band high temperature resin lens and a preparation method thereof, which can effectively realize the anti-broad infrared band while reducing the reflectivity of the resin lens, and pass Reduce stress to improve high temperature resistance and durability of resin lenses.
  • an anti-reflection and anti-width infrared high temperature resistant resin lens comprising: a resin lens substrate, a hardened layer and an anti-reflection and anti-width infrared film layer; wherein, the resin lens substrate, the hardened layer and the anti-reflection and anti-width infrared film layers are arranged in sequence, the hardening layer is located on the surface of the resin lens substrate, and the anti-reflection anti-width infrared film layer is located on the surface of the hardening layer;
  • the anti-reflection and anti-broadband infrared high temperature resistant resin lens further includes a waterproof layer, and the waterproof layer is located on the surface of the anti-reflection and anti-broadband infrared film layer.
  • the material of the hardened layer is organosilicon; preferably, the organosilicon contains at least Ti element;
  • the anti-reflection and anti-width infrared film layer includes a silicon-boron composite oxide layer, a TiO 2 layer and a tin-doped indium oxide (ITO) layer; preferably, the silicon-boron composite oxide material is composed of SiO 2 and B 2 O 3 composition, and wherein the mole fraction of SiO 2 in the silicon-boron composite oxide material is 70%-95%;
  • the thickness of the hardened layer is 1-5 ⁇ m
  • the thickness of the anti-reflection and anti-width infrared film layer is 360-900 nm;
  • the thickness of the ITO layer of the anti-reflection and anti-width infrared film layer is 60-200 nm;
  • the thickness of the waterproof layer is 4-20 nm
  • the average reflectivity of the resin lens is less than or equal to 2.0%
  • the double-sided average transmittance of the resin lens in the near-infrared wavelength range of 900 nm to 3000 nm is less than or equal to 50%;
  • the double-sided average transmittance of the resin lens in the near-infrared wavelength range of 1200-3000 nm is less than or equal to 40%;
  • the anti-reflection and anti-width infrared film layer includes four layers of silicon-boron composite oxide layers, two layers of ITO layers and two layers of TiO 2 layers;
  • the anti-reflection and anti-width infrared film layer includes eight layers, which are specifically arranged in sequence by the following film layers: a first layer of silicon-boron composite oxide layer, a second layer of ITO layer, and a third layer of silicon-boron composite oxide layer. , the fourth layer of TiO2 layer, the fifth layer of silicon-boron composite oxide layer, the sixth layer of TiO2 layer, the seventh layer of ITO layer and the eighth layer of silicon-boron composite oxide layer;
  • Another aspect of the present invention provides a preparation method of the above-mentioned anti-reflection and anti-width infrared film layer high temperature resin lens, comprising the following steps:
  • S1 preparation of hardened layer forming a hardened layer on the surface of the resin lens substrate, that is, to obtain a resin lens containing the hardened layer;
  • S2 Preparation of anti-reflection and anti-width infrared film layer: forming the anti-reflection anti-width infrared film layer on the surface of the resin lens obtained in S1, that is, to obtain a resin lens containing an anti-reflection and anti-width infrared film layer, specifically including:
  • step S21 forming a first silicon-boron composite oxide layer on the surface of the resin lens obtained in step S1;
  • step S22 forming a second ITO layer on the surface of the resin lens obtained in step S21;
  • step S23 forming a third silicon-boron composite oxide layer on the surface of the resin lens obtained in step S22 again;
  • step S25 forming a fifth silicon-boron composite oxide layer on the surface of the resin lens obtained in step S24;
  • step S28 The eighth layer of silicon-boron composite oxide layer is formed on the surface of the resin lens obtained in step S27 again, that is, a resin lens containing an anti-reflection and anti-width infrared film layer is obtained;
  • a waterproof layer is formed on the surface of the resin lens obtained in step S2, that is, it is obtained.
  • the step of preparing the hardening layer in S1 includes: immersing the resin lens substrate cleaned by ultrasonic waves in a hardening solution aqueous solution with a mass percentage of 20-30%, the immersion temperature is 10-20°C, and the immersion temperature is 10-10°C. After 2 seconds, the solution is pulled out at a speed of 1 to 3.0 mm/s, and then dried at 60 to 90 °C for 2 to 4 hours. , that is, a resin lens with a hardened layer is obtained;
  • the step S2 specifically includes: using a vacuum coating process in a vacuum coating machine, evaporating the solid film layer material and then passing through gas phase transport, and depositing a thin film on the surface of the resin lens obtained in the step S1 to form an anti-reflection and anti-wide infrared lens.
  • the film layer specifically includes the following steps:
  • the step of preparing the waterproof layer described in S3 includes: continuing to use the vacuum coating process on the surface of the lens obtained in the step S2, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is 50-80 Under the condition of °C, a high-energy electron beam is used to heat the waterproof material, and the The evaporated waterproof material is deposited on the surface of the resin lens obtained by S2 in the form of nano-scale molecules.
  • the ITO material with a specific thickness is used to prepare the film layer to obtain a good infrared light cut-off effect.
  • the extinction coefficient of ITO in the infrared band is high, which produces an effect similar to that of a metal film, which can effectively cut off the infrared band above 1200 nm and has an anti-infrared effect;
  • using the electrical conductivity of ITO it has protection against microwaves and electric fields.
  • the film layer structure By optimizing the film layer structure, it has a good interference cut-off effect on infrared light of 900-1200 nm, and the light transmittance of the resin lens is improved and its reflectivity is reduced.
  • the lens prepared by the invention has good visual effect while protecting human eyes and reducing broadband infrared radiation.
  • the present invention uses silicon boron composite oxide to prepare the film layer, maintains the glassy structure of the film layer, and effectively avoids the formation of long columnar layers by using only SiO 2 to prepare the film layer, resulting in a high film layer. stress and improve the high temperature resistance of the film.
  • the broadband anti-infrared resin lens provided by the present invention broadens the ability to protect infrared rays, can protect the infrared light above 900nm, can withstand 70-80°C, and meets the needs of most scenarios.
  • Example 1 is a schematic diagram of each layer of an anti-reflection and anti-width infrared resin lens prepared in Example 1 of the present invention
  • each layer of the anti-reflection and anti-width infrared film layer is:
  • the thickness of the first silicon-boron composite oxide layer is 0-180 nm, preferably 5-30 nm;
  • the thickness of the second ITO layer is 10-50 nm, preferably 12-40 nm;
  • the thickness of the third silicon-boron composite oxide layer is 10-60 nm, preferably 15-40 nm;
  • the thickness of the fourth layer of TiO 2 is 70-160 nm, preferably 90-140 nm;
  • the thickness of the fifth silicon-boron composite oxide layer is 90-250 nm, preferably 140-210 nm;
  • the thickness of the sixth layer of TiO 2 is 10-60 nm, preferably 15-40 nm;
  • the thickness of the seventh ITO layer is 30-120 nm, preferably 40-100 nm;
  • the thickness of the eighth silicon-boron composite oxide layer is 60-130 nm, preferably 70-95 nm;
  • the silicon-boron composite oxide is developed and produced by Changzhou Zhanchi Optoelectronics Technology Co., Ltd. entrusted by us.
  • the silicon-boron composite oxide is composed of SiO 2 and B 2 O 3 , wherein the moles of SiO 2 The score is 75% to 95%, see Examples and Comparative Examples for specific models.
  • a resin lens with a refractive index of 1.60 is selected as the substrate, for example, the lens substrate preparation monomer is MR-8 from Japan's Mitsui Chemicals Co., Ltd., hereinafter referred to as "MR-8";
  • the model Z117 of Ito Optical Industry Co., Ltd. (hereinafter referred to as "Z117") is selected as the hardening liquid, and the hardening liquid is selected to prepare the lens of the present invention, which greatly improves the adhesion between the film layers. dense cohesion;
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection and anti-width infrared film layer 3 comprises: a silicon-boron composite Oxide layer 3-1 (wherein SiO 2 and B 2 O 3 mole percentages: 92% SiO 2 , 8% B 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • material model is BL08) / 24.2nm, ITO layer 3-2/27.68nm, silicon boron composite oxide layer 3-3/32.44nm (materials are the same as 3-1), TiO 2 layer 3-4/127.45nm, silicon boron composite oxide layer 3- 5/177.92nm (same material as 3-1), TiO 2 layer 3-6/19.8nm, ITO layer 3-7/67.75nm; silicon boron composite oxide layer 3-8/74.1nm (material same as 3-1) ;
  • the waterproof layer 4 adopts a fluorine-containing waterproof material (for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm; the preparation method of the resin lens comprises the following steps:
  • step S2 preparation of anti-reflection and anti-width infrared film: in the vacuum coating machine, the vacuum coating process is used, the solid film material is evaporated and then transported through the gas phase, and the surface of the resin lens obtained in step S1 is deposited into a thin film to form anti-reflection anti-width infrared layer, which includes the following steps:
  • the background vacuum degree is less than or equal to 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is 60°C, and the ion source is assisted by the process. for depositing the evaporated silicon boron composite oxide in the form of nano-scale molecules to obtain a resin lens containing the first silicon boron composite oxide layer;
  • step S3 Preparation of waterproof layer: On the surface of the lens obtained in step S28, the vacuum coating process is continued. Under the condition that the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa and the temperature in the coating chamber is 60°C, the material is heated by high-energy electron beam. , with a rate of It is obtained by depositing the evaporated waterproof material containing C 12 F 27 N on the surface of the resin lens obtained in S28 in the form of nano-scale molecules.
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; the anti-reflection layer 3 comprises: a silicon-boron composite oxide layer 3 -1 (wherein SiO 2 and B 2 O 3 mole percentages: 80% SiO 2 , 20% B 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • material model is BL20)/24.2nm, ITO layer 3-2/27.68nm, silicon boron composite oxide layer 3-3/32.44nm (the same material as 3-1), TiO 2 layer 3-4/127.45nm, silicon boron composite oxide layer 3-5/177.92nm (Material same as 3-1), TiO 2 layer 3-6/19.8nm, ITO layer 3-7/67.75nm; silicon boron composite oxide layer 3-8/74.1nm (material same as 3-1); waterproof layer 4 A fluorine-containing waterproof material (containing perfluorotributylamine (C 12 F 27 N))/10 nm is used; the preparation method of the resin lens is the same as that of Example 1.
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; the anti-reflection layer 3 comprises: a silicon-boron composite oxide layer 3 -1 (wherein SiO 2 and B 2 O 3 mole percentage: 92% SiO 2 , 8% B 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • material model is BL08)/24.2nm, ITO layer 3-2/28.0nm, silicon boron composite oxide layer 3-3/33.29nm (the same material as 3-1), TiO 2 layer 3-4/129.92nm, silicon boron composite oxide layer 3-5/175.14nm (Material same as 3-1), TiO 2 layer 3-6/32.6nm, ITO layer 3-7/48.0nm; silicon boron composite oxide layer 3-8/80.52nm (material same as 3-1); waterproof layer 4 A fluorine-containing waterproof material (containing perfluorotributylamine (C 12 F 27 N))/10 nm is used; the preparation method of the resin lens is the same as that of Example 1.
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; the anti-reflection layer 3 comprises: a silicon-boron composite oxide layer 3 -1 (wherein SiO 2 and B 2 O 3 mole percentage: 92% SiO 2 , 8% B 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • material model is BL08)/24.2nm, ITO layer 3-2/18.0nm, silicon boron composite oxide layer 3-3/38.43nm (the same material as 3-1), TiO 2 layer 3-4/117.54nm, silicon boron composite oxide layer 3-5/160.22nm (Materials are the same as 3-1), TiO 2 layer 3-6/32.6nm, ITO layer 3-7/98.38nm; silicon boron composite oxide layer 3-8/84.62nm (materials are the same as 3-1); waterproof layer 4 A fluorine-containing waterproof material (for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm is used; the preparation method of the resin lens is the same as that of Example 1.
  • fluorine-containing waterproof material for example, containing perfluorotributylamine (C 12 F 27 N)
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: resin lens substrate 1 (MR-8); hardened layer 2 (Z117)/2.6-3 ⁇ m; anti-reflection layer 3 includes: SiO 2 layer 3-/24.2 nm, TiO2 layer 3-2/15.12nm, SiO2 layer 3-3/31.53nm, TiO2 layer 3-4/98.61nm, SiO2 layer 3-5/171.19nm, TiO2 layer 3-6/92.59 nm, ITO layer 3-7/5.0 nm; SiO 2 layer 3-8/75.47 nm; waterproof layer 4 adopts fluorine-containing waterproof material (for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm; the The preparation method of the resin lens comprises the following steps:
  • step S2 preparation of anti-reflection infrared film layer: in a vacuum coating machine, using a vacuum coating process, the solid film layer material is evaporated and then transported through the gas phase, and the surface of the resin lens obtained in step S1 is deposited into a thin film to form an anti-reflection infrared layer, which specifically includes The following steps:
  • the background vacuum degree is less than or equal to 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is 60°C, and high-energy electron beams are used to heat SiO 2 at a rate of The evaporated SiO 2 is deposited in the form of nano-scale molecules to obtain a resin lens containing the first layer of SiO 2 ;
  • step S25 Repeat step S21 to form a resin lens containing SiO2 ;
  • Preparation of waterproof layer in S3 On the surface of the lens obtained in step S23, the vacuum coating process is continued, and the material is heated by high-energy electron beam under the condition that the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa and the temperature in the coating chamber is 60°C , with a rate of It is obtained by depositing the evaporated waterproof material containing C 12 F 27 N on the surface of the resin lens obtained in S23 in the form of nano-scale molecules.
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; the anti-reflection layer 3 comprises: a silicon-boron composite oxide layer 3 -1 (wherein SiO 2 and B 2 O 3 mole percentage: 92% SiO 2 , 8% B 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • material model is BL08)/24.2nm, TiO 2 layers 3-2/11.87nm, silicon boron composite oxide layer 3-3/30.55nm (the same material as 3-1), TiO 2 layer 3-4/103.81nm, silicon boron composite oxide layer 3-5/162.52 nm (materials are the same as 3-1), TiO 2 layer 3-6/87.60nm, ITO layer 3-7/40.0nm; silicon boron composite oxide layer 3-8/50.52nm (materials are the same as 3-1); waterproof layer 4.
  • a fluorine-containing waterproof material for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm is used; the preparation method of the resin lens is the same as that of Example 1.
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: resin lens substrate 1 (MR-8); hardened layer 2 (Z117)/2.6-3 ⁇ m; anti-reflection layer 3 includes: SiO 2 layer 3-/24.2 nm, ZrO 2 layer 3-2/17.12nm, SiO 2 layer 3-3/16.05nm, ZrO 2 layer 3-4/111.76nm, SiO 2 layer 3-5/163.07nm, ZrO 2 layer 3-6/100.59 nm, ITO layer 3-7/5.0 nm; SiO 2 layer 3-8/64.27 nm; waterproof layer 4 adopts fluorine-containing waterproof material (for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm; the The preparation method of the resin lens comprises the following steps:
  • step S2 preparation of anti-reflection infrared film layer: in a vacuum coating machine, using a vacuum coating process, the solid film layer material is evaporated and then transported through the gas phase, and the surface of the resin lens obtained in step S1 is deposited into a thin film to form an anti-reflection infrared layer, which specifically includes The following steps:
  • the background vacuum degree is less than or equal to 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is 60°C, and high-energy electron beams are used to heat SiO 2 at a rate of The evaporated SiO 2 is deposited in the form of nano-scale molecules to obtain a resin lens containing the first layer of SiO 2 ;
  • step S25 Repeat step S21 to form a resin lens containing SiO2 ;
  • Preparation of waterproof layer in S3 On the surface of the lens obtained in step S23, the vacuum coating process is continued, and the material is heated by high-energy electron beam under the condition that the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa and the temperature in the coating chamber is 60°C , with a rate of It is obtained by depositing the evaporated waterproof material containing C 12 F 27 N on the surface of the resin lens obtained in S23 in the form of nano-scale molecules.
  • An anti-reflection and anti-width infrared resin lens which is arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 includes: SiO 2 layer/24.2nm, ITO layer 3-2/27.68nm, SiO2 layer 3-3/32.44nm, TiO2 layer 3-4/127.45nm, SiO2 layer 3-5/177.92nm, TiO2 layer 3-6/19.8nm, ITO Layer 3-7/67.75nm; SiO 2 layer 3-8/74.1nm; waterproof layer 4 adopts fluorine-containing waterproof material (for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm;
  • the preparation method includes the following steps:
  • step S2 preparation of anti-reflection and anti-width infrared film: in the vacuum coating machine, the vacuum coating process is used, the solid film material is evaporated and then transported through the gas phase, and the surface of the resin lens obtained in step S1 is deposited into a thin film to form anti-reflection anti-width infrared layer, which includes the following steps:
  • the background vacuum degree is less than or equal to 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is 60°C, ion source-assisted process, and high-energy electron beam is used to heat SiO 2 at a rate of The evaporated SiO 2 is deposited in the form of nano-scale molecules to obtain a resin lens containing the first layer of SiO 2 ;
  • step S3 Preparation of waterproof layer: On the surface of the lens obtained in step S28, the vacuum coating process is continued. Under the condition that the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa and the temperature in the coating chamber is 60°C, the material is heated by high-energy electron beam. , with a rate of It is obtained by depositing the evaporated waterproof material containing C 12 F 27 N on the surface of the resin lens obtained in S28 in the form of nano-scale molecules.
  • An anti-reflection and anti-width infrared resin lens arranged in sequence comprises: a resin lens substrate 1 (MR-8); a hardened layer 2 (Z117)/2.6-3 ⁇ m; the anti-reflection layer 3 comprises: a silicon-boron composite oxide layer 3 -1 (wherein SiO 2 and B 2 O 3 mole percentages: 50% SiO 2 , 50% B 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • material model is BL50)/24.2nm, ITO layer 3-2/27.68nm, silicon boron composite oxide layer 3-3/32.44nm (the same material as 3-1), TiO 2 layer 3-4/127.45nm, silicon boron composite oxide layer 3-5/177.92nm (Material same as 3-1), TiO 2 layer 3-6/19.8nm, ITO layer 3-7/67.75nm; silicon boron composite oxide layer 3-8/74.1nm (material same as 3-1); waterproof layer 4 A fluorine-containing waterproof material (for example, containing perfluorotributylamine (C 12 F 27 N))/10 nm is used; the preparation method of the resin lens is the same as that of Example 1.
  • fluorine-containing waterproof material for example, containing perfluorotributylamine (C 12 F 27 N)
  • the average visible light reflectance refers to the average visual transmittance under the illumination of C light (light source with a color temperature of 6774K defined in CIE), and here refers to the total transmittance of the lens (both sides);
  • 950 ⁇ 1200nm transmittance here refers to the arithmetic average pass rate of the lens at 950 ⁇ 1050nm after double-sided plating;
  • 1200 ⁇ 3000nm transmittance here refers to the arithmetic average transmittance of the lens at 1200 ⁇ 3000nm after double-sided plating.
  • the test method for temperature resistance is to refer to Clause 5.8 in the National Resin Lens Temperature Resistance Standard (GB 10810.4-2012): pass the baking test at 55°C for 30 minutes. After passing the test, increase the temperature at 5°C for 30 minutes each time by the same method, until the lens fails such as film cracking or orange peel, and record the qualified maximum temperature. The results are reported in Table 4 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种减反射防宽红外树脂镜片及其制备方法,镜片包括:树脂镜片基片(1)、加硬层(2)以及减反射防宽红外膜层(3);其中,树脂镜片基片(1)、加硬层(2)以及减反射防宽红外膜层(3)依次排列,加硬层(2)位于树脂镜片基片(1)表面,减反射防宽红外膜层(3)位于加硬层(2)表面;且减反射防宽红外膜层(3)由高折射率材料TiO2层(3-4、3-6)和低折射率材料硅硼复合氧化物层(3-1、3-3、3-5、3-8)以及透明导电材料ITO层(3-2、3-7)排列组成。通过调整膜层结构,并严格控制材料组成以及制备工艺,得到了红外宽波段(900nm以上)截止,提高了制备眼镜的树脂镜片耐温性能和抗环境性能,获得了具有良好视觉效果的减反射防宽红外树脂镜片产品。

Description

一种减反射防宽红外耐高温树脂镜片及其制备方法 技术领域
本发明涉及树脂镜片制备技术领域,具体涉及一种减反射防宽红外耐高温树脂镜片及其制备方法。
背景技术
近年来,光学树脂镜片在国内外眼镜市场上需求越来越大,树脂镜片与玻璃镜片相比,具有质量轻、染色性能好、易于加工等优点,中高折射率光学树脂镜片更以高透光率、防紫外、超薄等特有的优势获得使用者的青睐。
通常在镜片行业中,镜片折射率达到1.60以上为高折射率,折射率达到1.56为中折射率,折射率在1.56以下为低折射率。影响镜片折射率的因素有很多,由于镜片材料本身的结构差异,其在可见光不同波段对光线的吸收率不同,故会影响镜片本身的光透过性和反射性。为满足树脂镜片光学性能的要求,一般会在树脂镜片表面镀膜,以减少光的反射并增强光的透射,即为光学减反射膜。红外线是人眼不能感光的,主要被角膜吸收,对人眼有着潜在伤害。这要求光学膜层上具备减反射和防红外的特点,这样的光学膜层比一般的常规膜层厚得多。一方面,目前市场上的防红外树脂眼镜镜片防红外的有效带宽在900~1200nm左右,不能满足各种波段、尤其是长波段红外线辐射的需要;另一方面,光学薄膜的主要材料为无机材料,由于高分子的树脂镜片基底和无机材料膜层的物化性质存在差异,而导致成品镜片应力较高而导致耐温和耐环境性能不佳,尤其减反射防红外的膜层较厚,影响特别显著。因此,提供一种减反射防红外耐高温的树脂镜片成为本领域亟待解决的问题。
发明内容
为防护眼睛免受各红外波段的辐射,本发明旨在于提供一种减反射 防宽红外波段耐高温树脂镜片及其制备方法,有效实现防宽红外波段的同时降低树脂镜片的反射率,并通过降低应力来提升树脂镜片的耐高温性和耐久性。
本发明的技术方案是通过以下方式实现的:
本发明的一方面提供了一种减反射防宽红外耐高温树脂镜片,包括:树脂镜片基片、加硬层以及减反射防宽红外膜层;其中,所述树脂镜片基片、加硬层以及减反射防宽红外膜层依次排列,所述加硬层位于所述树脂镜片基片表面,所述减反射防宽红外膜层位于所述加硬层表面;
进一步的,所述减反射防宽红外耐高温的树脂镜片还包括防水层,所述防水层位于所述减反射防宽红外膜层表面。
进一步的,所述加硬层的材料为有机硅;优选的,所述有机硅中至少含有Ti元素;
进一步的,所述减反射防宽红外膜层包括硅硼复合氧化物层、TiO 2层以及掺锡氧化铟(ITO)层;优选的,所述硅硼复合氧化物材料由SiO 2和B 2O 3组成,且其中SiO 2占所述硅硼复合氧化物材料的摩尔分数为70%~95%;
进一步的,所述加硬层的厚度为1~5μm;
进一步的,所述减反射防宽红外膜层的厚度为360~900nm;
更进一步的,所述减反射防宽红外膜层的ITO层厚度为60~200nm;
进一步的,所述防水层的厚度为4~20nm;
进一步的,所述树脂镜片的平均反射率≤2.0%;
进一步的,所述树脂镜片在近红外波段900nm~3000nm的双面平均透过率≤50%;
更进一步的,所述树脂镜片在近红外波段1200~3000nm的双面平均 透过率≤40%;
进一步的,所述减反射防宽红外膜层包括四层硅硼复合氧化物层、两层ITO层以及两层TiO 2层;
更进一步的,所述减反射防宽红外膜层包括八层,具体由以下膜层依次排列:第一层硅硼复合氧化物层、第二层ITO层、第三层硅硼复合氧化物层、第四层TiO 2层、第五层硅硼复合氧化物层、第六层TiO 2层、第七层ITO层以及第八层硅硼复合氧化物层;
本发明另一方面提供了一种上述减反射防宽红外膜层耐高温的树脂镜片的制备方法,包括以下步骤:
S1制备加硬层:在树脂镜片基片表面形成加硬层,即获得含加硬层的树脂镜片;
S2制备减反射防宽红外膜层:在S1获得的树脂镜片表面形成所述减反射防宽红外膜层,即获得含减反射防宽红外膜层的树脂镜片,具体包括:
S21:在步骤S1获得的树脂镜片表面形成第一层硅硼复合氧化物层;
S22:在步骤S21获得的树脂镜片表面形成第二层ITO层;
S23:在步骤S22获得的树脂镜片表面再次形成第三层硅硼复合氧化物层;
S24:在步骤S23获得的树脂镜片表面形成第四层TiO 2层;
S25:在步骤S24获得的树脂镜片表面再次形成第五层硅硼复合氧化物层;
S26:在步骤S25获得的树脂镜片表面再次形成第六层TiO 2层;
S27:在步骤S26获得的树脂镜片表面再次形成第七层ITO层;
S28:在步骤S27获得的树脂镜片表面再次形成第八层硅硼复合氧化物层,即获得含减反射防宽红外膜层的树脂镜片;
S3制备防水层:在步骤S2获得的树脂镜片表面形成防水层,即得。
进一步的,所述S1制备加硬层的步骤包括:将超声波清洗干净的树脂镜片基片浸入质量百分含量20~30%的加硬液水溶液中,浸渍温度10~20℃,浸渍4~10秒后以1~3.0mm/s的速度提拉出溶液,然后在60~90℃烘干2~4小时后将上述基片取出并送至烘箱内、在100~140℃干燥固化120~200min,即得含加硬层的树脂镜片;
进一步的,所述步骤S2具体包括:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射防宽红外膜层,具体包括以下步骤:
S21:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热硅硼复合氧化物,以速率为
Figure PCTCN2022079857-appb-000001
将蒸发后的硅硼复合氧化物以纳米级分子形式沉积,获得含第一层硅硼复合氧化物层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079857-appb-000002
将蒸发后的ITO以纳米级分子形式沉积,获得含第二层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第三层硅硼复合氧化物层的树脂镜片;
S24:在S23获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、并有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
Figure PCTCN2022079857-appb-000003
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第四层TiO 2层的树脂镜片;
S25:在S24获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第五层硅硼复合氧化物层的树脂镜片;
S26:在S25获得的树脂镜片表面,继续采用真空镀膜工艺,重复 S24的工艺步骤,形成含第六层TiO 2层的树脂镜片;
S27:在S26获得的树脂镜片表面,继续采用真空镀膜工艺,重复S22的工艺步骤,形成含第七层ITO层的树脂镜片;
S28:在S27获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第八层硅硼复合氧化物层的树脂镜片;
S3:在S28获得的树脂镜片表面形成防水层:在S28步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079857-appb-000004
将蒸发后的含氟防水材料以纳米级分子形式沉积于S28获得的树脂镜片表面,即得;优选的,所述含氟防水材料主要成分为全氟三丁胺(C 12F 27N)。
进一步的,S3所述制备防水层的步骤包括:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~80℃条件下,采用高能电子束加热防水材料,以速率
Figure PCTCN2022079857-appb-000005
将蒸发后的防水材料以纳米级分子形式沉积于S2获得的树脂镜片表面,即得。
有益效果
1.采用减反射防宽红外膜层具有良好的光学效果和耐高温性能:
(1)采用特定厚度的ITO材料制备膜层获得良好的红外光截止效果,ITO在红外波段的消光系数较高,产生类似金属膜的效果,可以有效截止1200nm以上红外波段,具有防红外效果;并利用ITO的电导性,对于微波和电场都有防护性。
(2)采用TiO 2料制备膜层获得良好的光学效果:由于TiO 2的折射率高,使防宽红外截止效果更好,减反射膜的反射率较低。
通过优化膜层结构,对900~1200nm的红外光有良好的干涉截止效果, 并得到提升树脂镜片光透射性,降低其反射性。使得本发明制备的镜片,在保护人眼降低宽波段红外辐射的同时具有良好的视觉效果。
2.具有良好的耐高温和耐耐久性:
(1)提升产品的耐高温性能:本发明采用硅硼复合氧化物制备膜层,保持膜层的玻璃态结构,有效避免了仅采用SiO 2制备膜层而易形成长柱状结果导致膜层高应力,提高膜层的耐高温性能。
(2)减少膜层和基片的不匹配效果,使产品的具有耐久性。
总之,本发明提供的宽波段防红外的树脂镜片增宽了防护红外线的能力,对900nm以上的红外光都能防护,能够耐受70~80℃,符合大部分场景的需求。
附图说明
图1是本发明实施例1制备的一种减反射防宽红外树脂镜片各层示意图
树脂镜片基片1、加硬层2、减反射防宽红外膜层3、防水层4;其中,减反射防宽红外膜层3包括:硅硼复合氧化物层3-1、ITO层3-2、硅硼复合氧化物层3-3、TiO 2层3-4、硅硼复合氧化物层3-5、TiO 2层3-6、ITO层3-7以及硅硼复合氧化物层3-8
具体实施方式
在一个具体的实施方式中,所述减反射防宽红外膜层各层厚度为:
所述第一层硅硼复合氧化物层厚度为0~180nm,优选5~30nm;
所述第二层ITO层厚度为10~50nm,优选12~40nm;
所述第三层硅硼复合氧化物层厚度为10~60nm,优选15~40nm;
所述第四层TiO 2层厚度为70~160nm,优选90~140nm;
所述第五层硅硼复合氧化物层厚度为90~250nm,优选140~210nm;
所述第六层TiO 2层厚度为10~60nm,优选15~40nm;
所述第七层ITO层厚度为30~120nm,优选40~100nm;
所述第八层硅硼复合氧化物层厚度为60~130nm,优选70~95nm;
在一个具体的实施方式中,所述硅硼复合氧化物我们委托常州市瞻驰光电科技股份有限公司开发并生产,硅硼复合氧化物由SiO 2和B 2O 3组成,其中SiO 2的摩尔分数为75%~95%,具体型号参见实施例和对比例。
在一个具体的实施方式中,选取折射率为1.60的树脂镜片作为基片,例如选取其镜片基片制备单体为日本三井化学株式会社的MR-8,以下简称“MR-8”;
在一个具体的实施方式中,选取伊藤光学工业株式会社(以下简称为“Z117”)型号Z117作为加硬液,选择该加硬液制备本发明所述镜片,极大地提高了膜层之间的致密衔接性;
(一)实施例
实施例1
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射防宽红外膜层3包括:硅硼复合氧化物层3-1(其中SiO 2和B 2O 3摩尔百分比:92%SiO 2、8%B 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为BL08)/24.2nm、ITO层3-2/27.68nm、硅硼复合氧化物层3-3/32.44nm(材料同3-1)、TiO 2层3-4/127.45nm、硅硼复合氧化物层3-5/177.92nm(材料同3-1)、TiO 2层3-6/19.8nm、ITO层3-7/67.75nm;硅硼复合氧化物层3-8/74.1nm(材料同3-1);防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%的型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒 后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备减反射防宽红外膜层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射防宽红外层,具体包括以下步骤:
S21:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、离子源辅助工艺,采用高能电子束加热硅硼复合氧化物,以速率为
Figure PCTCN2022079857-appb-000006
将蒸发后的硅硼复合氧化物以纳米级分子形式沉积,获得含第一层硅硼复合氧化物层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加ITO,以速率为
Figure PCTCN2022079857-appb-000007
将蒸发后的ITO以纳米级分子形式沉积,获得含第二层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第三层硅硼复合氧化物层的树脂镜片;
S24:在S23获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
Figure PCTCN2022079857-appb-000008
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第四层TiO 2层的树脂镜片;
S25:在S24获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第五层硅硼复合氧化物层的树脂镜片;
S26:在S25获得的树脂镜片表面,重复S24的工艺步骤,形成含第六层TiO 2层的树脂镜片;
S27:在S26获得的树脂镜片表面,重复S22的工艺步骤,形成含第七层ITO层的树脂镜片;
S28:在S27获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第八层硅硼复合氧化物层的树脂镜片;
S3制备防水层:在S28步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079857-appb-000009
将蒸发后的含C 12F 27N的防水材料以纳米级分子形式沉积于S28获得的树脂镜片表面,即得。
实施例2
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅硼复合氧化物层3-1(其中SiO 2和B 2O 3摩尔百分比:80%SiO 2、20%B 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为BL20)/24.2nm、ITO层3-2/27.68nm、硅硼复合氧化物层3-3/32.44nm(材料同3-1)、TiO 2层3-4/127.45nm、硅硼复合氧化物层3-5/177.92nm(材料同3-1)、TiO 2层3-6/19.8nm、ITO层3-7/67.75nm;硅硼复合氧化物层3-8/74.1nm(材料同3-1);防水层4采用含氟防水材料(含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法同实施例1。
实施例3
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅硼复合氧化物层3-1(其中SiO 2和B 2O 3摩尔百分比:92%SiO 2、8%B 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为BL08)/24.2nm、ITO层3-2/28.0nm、硅硼复合氧化物层3-3/33.29nm(材料同3-1)、TiO 2层3-4/129.92nm、硅硼复合氧化物层3-5/175.14nm(材料同3-1)、TiO 2层3-6/32.6nm、ITO层3-7/48.0nm;硅硼复合氧化物层3-8/80.52nm(材料同3-1);防水层4采用含氟防水材料(含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法同实施例1。
实施例4
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅硼复合氧化物层3-1(其中SiO 2和B 2O 3摩尔百分比:92%SiO 2、8%B 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为BL08)/24.2nm、ITO层3-2/18.0nm、硅硼复合氧化物层3-3/38.43nm(材料同3-1)、TiO 2层3-4/117.54nm、硅硼复合氧化物层3-5/160.22nm(材料同3-1)、TiO 2层3-6/32.6nm、ITO层3-7/98.38nm;硅硼复合氧化物层3-8/84.62nm(材料同3-1);防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法同实施例1。
对比例1
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:SiO 2层3-/24.2nm、TiO 2层3-2/15.12nm、SiO 2层3-3/31.53nm、TiO 2层3-4/98.61nm、SiO 2层3-5/171.19nm、TiO 2层3-6/92.59nm、ITO层3-7/5.0nm;SiO 2层3-8/75.47nm;防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%的型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,干燥固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备减反射红外膜层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射红外层,具体包括以下步骤:
S21:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、采用高能电子束加热SiO 2,以速率为
Figure PCTCN2022079857-appb-000010
将蒸发后的SiO 2以纳米级分子形式沉积,获得含第一层SiO 2的树脂镜片;
S22:在S21获得的树脂镜片表面,在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
Figure PCTCN2022079857-appb-000011
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第二层TiO 2层的树脂镜片;
S23:再交替重复S21、S22步骤2次,依次分别再形成含二层SiO 2和TiO 2的树脂镜片,即得;
S24:在S23获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加ITO,以速率为
Figure PCTCN2022079857-appb-000012
将蒸发后的ITO以纳米级分子形式沉积,获得含ITO层的树脂镜片;
S25:重复S21步骤,形成含SiO 2的树脂镜片;
S3制备防水层:在S23步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079857-appb-000013
将蒸发后的含C 12F 27N的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例2
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅硼复合氧化物层3-1(其中SiO 2和B 2O 3摩尔百分比:92%SiO 2、8%B 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为BL08)/24.2nm、TiO 2层3-2/11.87nm、硅硼复合氧化物层3-3/30.55nm(材料同3-1)、TiO 2层3-4/103.81nm、硅硼复合氧化物层3-5/162.52nm(材料同3-1)、TiO 2层3-6/87.60nm、ITO层3-7/40.0nm;硅硼复合氧化物层3-8/50.52nm(材料同3-1);防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法同实施例1。
对比例3
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:SiO 2层3-/24.2nm、ZrO 2层3-2/17.12nm、SiO 2层3-3/16.05nm、ZrO 2层3-4/111.76nm、SiO 2层3-5/163.07nm、ZrO 2层3-6/100.59nm、ITO层3-7/5.0nm;SiO 2层3-8/64.27nm;防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%的型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,干燥固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备减反射红外膜层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射红外层,具体包括以下步骤:
S21:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、采用高能电子束加热SiO 2,以速率为
Figure PCTCN2022079857-appb-000014
将蒸发后的SiO 2以纳米级分子形式沉积,获得含第一层SiO 2的树脂镜片;
S22:在S21获得的树脂镜片表面,在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、采用高能电子束加热ZrO 2,以速率为
Figure PCTCN2022079857-appb-000015
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第二层ZrO 2层的树脂镜片;
S23:再交替重复S21、S22步骤2次,依次分别再形成含二层SiO 2和ZrO 2的树脂镜片,即得;
S24:在S23获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加ITO,以速率为
Figure PCTCN2022079857-appb-000016
将蒸发后的ITO以纳米级分子形式沉积,获得含ITO层的树脂镜片;
S25:重复S21步骤,形成含SiO 2的树脂镜片;
S3制备防水层:在S23步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079857-appb-000017
将蒸发后的含C 12F 27N的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例4
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:SiO 2层/24.2nm、ITO层3-2/27.68nm、SiO 2层3-3/32.44nm、TiO 2层3-4/127.45nm、SiO 2层3-5/177.92nm、TiO 2层3-6/19.8nm、ITO层3-7/67.75nm;SiO 2层3-8/74.1nm;防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%的型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备减反射防宽红外膜层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射防宽红外层,具体包括以下步骤:
S21:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、离子源辅助工艺,采用高能电子束加热SiO 2,以速率为
Figure PCTCN2022079857-appb-000018
将蒸发后的SiO 2以纳米级分子形式沉积,获得含第一层SiO 2的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀 膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加ITO,以速率为
Figure PCTCN2022079857-appb-000019
将蒸发后的ITO以纳米级分子形式沉积,获得含第二层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第三层SiO 2层的树脂镜片;
S24:在S23获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
Figure PCTCN2022079857-appb-000020
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第四层TiO 2层的树脂镜片;
S25:在S24获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第五层SiO 2层的树脂镜片;
S26:在S25获得的树脂镜片表面,重复S24的工艺步骤,形成含第六层TiO 2层的树脂镜片;
S27:在S26获得的树脂镜片表面,重复S22的工艺步骤,形成含第七层ITO层的树脂镜片;
S28:在S27获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第八层SiO 2层的树脂镜片;
S3制备防水层:在S28步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079857-appb-000021
将蒸发后的含C 12F 27N的防水材料以纳米级分子形式沉积于S28获得的树脂镜片表面,即得。
对比例5
一种减反射防宽红外树脂镜片,依次排列包括:树脂镜片基片1(MR-8);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅硼复合氧化物层3-1(其中SiO 2和B 2O 3摩尔百分比:50%SiO 2、50%B 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为BL50)/24.2nm、ITO层3-2/27.68nm、硅硼复合氧化物层3-3/32.44nm(材料同3-1)、TiO 2 层3-4/127.45nm、硅硼复合氧化物层3-5/177.92nm(材料同3-1)、TiO 2层3-6/19.8nm、ITO层3-7/67.75nm;硅硼复合氧化物层3-8/74.1nm(材料同3-1);防水层4采用含氟防水材料(例如含有全氟三丁胺(C 12F 27N))/10nm;所述树脂镜片的制备方法同实施例1。
二、实验例
1.测定实施例1~4和对比例1~5平均反射率和防宽红外效果
对实施例1~4以及对比例1~4制备获得的镜片,测定其平均反射率及近红外的透过率,测量结果记录在表1中:
其中,可见光平均反射率:是指在C光(CIE中定义的色温6774K的光源)照明下的视觉平均透过率,在这里指镜片(双面)的总透过率;
950~1200nm透过率:这里指双面镀好后,镜片在950~1050nm的算术平均通过率;
1200~3000nm透过率:这里指双面镀好后,镜片在1200~3000nm的算术平均通过率。
表1
Figure PCTCN2022079857-appb-000022
由此可见,实施例有效的实现了减反射和红外宽波段截止的效果。对比例1、2、3均不能实现红外宽波段截止。
2.耐高温、耐久性测试
2.1耐温实验:
完成样品后,存放一周后测试了样品的耐温性能。耐温性能的测试方法是参照国家树脂镜片耐温标准(GB 10810.4-2012)中的第5.8条款:通过55℃、30分钟的烘烤测试。通过后同样的方法每次增加5℃烘烤30分钟测试,直到镜片出现膜裂或橘皮等失效现象,并记录合格的最高温度。结果记录在如下表4中。
2.2高温高湿测试
参照树脂镜片耐高温高湿测试调试为:70℃、95%湿度下的存储24小时,查看制备镜片是否存在膜裂或橘皮等明显失效现象;每次高温高湿测试放入不同位置的3片树脂镜片。结果记录在如下表2中。
表2
Figure PCTCN2022079857-appb-000023
由此可见,在其他条件不变的情况下,低折射率材料采用以含SiO 2摩尔分数75%~95%的硅硼复合氧化物的耐高温性能、高温附着力、耐久性比其他常规材料更好;我们采用这两种材料及其合适的工艺和设计以保证减反射防宽红外产品的耐高温性和耐久性。分析对比例5,由于B 2O 3比例太高,致使膜层不能形成较稳定的网格结构,导致耐温和耐高温高湿性能下降。

Claims (13)

  1. 一种减反射防宽红外耐高温树脂镜片,其特征在于,包括:树脂镜片基片、加硬层以及减反射防宽红外膜层;其中,所述树脂镜片基片、加硬层以及减反射防宽红外膜层依次排列,所述加硬层位于所述树脂镜片基片表面,所述减反射防宽红外膜层位于所述加硬层表面。
  2. 根据权利要求1所述的减反射防宽红外耐高温树脂镜片,其特征在于,所述加硬层的材料为有机硅;优选的,所述有机硅中至少含有Ti元素;进一步优选的,所述加硬层的厚度为1~5μm。
  3. 根据权利要求1所述的减反射防宽红外耐高温树脂镜片,其特征在于,所述减反射防宽红外膜层包括硅硼复合氧化物层、TiO 2层以及掺锡氧化铟(即ITO)层;进一步的,所述减反射防宽红外膜层的厚度为360~900nm。
  4. 根据权利要求3所述的减反射防宽红外耐高温树脂镜片,其特征在于,所述硅硼复合氧化物材料由SiO 2和B 2O 3组成,且其中SiO 2占所述硅硼复合氧化物材料的摩尔分数为70%~95%。
  5. 根据权利要求3所述的减反射防宽红外耐高温树脂镜片,其特征在于,所述ITO层厚度为60~200nm。
  6. 根据权利要求3~5任一项所述的减反射防宽红外耐高温树脂镜片,其特征在于,所述减反射防宽红外膜层包括四层硅硼复合氧化物层、两层ITO层以及两层TiO 2层;进一步的,所述减反射防宽红外膜层包括八层,具体由以下膜层依次排列:第一层硅硼复合氧化物层、第二层ITO层、第三层硅硼复合氧化物层、第四层TiO 2层、第五层硅硼复合氧化物层、第六层TiO 2层、第七层ITO层以及第八层硅硼复合氧化物层。
  7. 根据权利要求1~5任一项所述的减反射防宽红外耐高温树脂镜片,其特征在于,还包括防水层,所述防水层位于所述减反射防宽红外膜层表面;优选的,所述防水层的厚度为4~20nm。
  8. 根据权利要求1所述的减反射防宽红外耐高温树脂镜片,其特征在于,所述树脂镜片的平均反射率≤2.0%。
  9. 根据权利要求1所述的减反射防宽红外耐高温树脂镜片,其特征 在于,所述树脂镜片在近红外波段900nm~3000nm的双面平均透过率≤50%,进一步的,所述树脂镜片在近红外波段1200~3000nm的双面平均透过率≤40%。
  10. 一种权利要求7~9任一项所述减反射防宽红外膜层耐高温树脂镜片的制备方法,其特征在于,包括以下步骤:
    S1制备加硬层:在树脂镜片基片表面形成加硬层,即获得含加硬层的树脂镜片;
    S2制备减反射防宽红外膜层:在S1获得的树脂镜片表面形成所述减反射防宽红外膜层,即获得含减反射防宽红外膜层的树脂镜片,具体包括:
    S21:在步骤S1获得的树脂镜片表面形成第一层硅硼复合氧化物层;
    S22:在步骤S21获得的树脂镜片表面形成第二层ITO层;
    S23:在步骤S22获得的树脂镜片表面再次形成第三层硅硼复合氧化物层;
    S24:在步骤S23获得的树脂镜片表面形成第四层TiO 2层;
    S25:在步骤S24获得的树脂镜片表面再次形成第五层硅硼复合氧化物层;
    S26:在步骤S25获得的树脂镜片表面再次形成第六层TiO 2层;
    S27:在步骤S26获得的树脂镜片表面再次形成第七层ITO层;
    S28:在步骤S27获得的树脂镜片表面再次形成第八层硅硼复合氧化物层,即获得含减反射防宽红外膜层的树脂镜片;
    S3制备防水层:在步骤S2获得的树脂镜片表面形成防水层,即得。
  11. 根据权利要求10所述减反射防宽红外膜层耐高温树脂镜片的制备方法,其特征在于,所述S1制备加硬层的步骤包括:将超声波清洗干净的树脂镜片基片浸入质量百分含量20~30%的加硬液水溶液中,浸渍温度10~20℃,浸渍4~10秒后以1~3.0mm/s的速度提拉出溶液,然后在60~90℃烘干2~4小时后将上述基片取出并送至烘箱内、在100~140℃干 燥固化120~200min,即得含加硬层的树脂镜片。
  12. 根据权利要求10所述减反射防宽红外膜层耐高温树脂镜片的制备方法,其特征在于,所述步骤S2具体包括:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射防宽红外膜层,具体包括以下步骤:
    S21:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热硅硼复合氧化物,以速率为
    Figure PCTCN2022079857-appb-100001
    将蒸发后的硅硼复合氧化物以纳米级分子形式沉积,获得含第一层硅硼复合氧化物层的树脂镜片;
    S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
    Figure PCTCN2022079857-appb-100002
    将蒸发后的ITO以纳米级分子形式沉积,获得含第二层ITO层的树脂镜片;
    S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第三层硅硼复合氧化物层的树脂镜片;
    S24:在S23获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、并有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
    Figure PCTCN2022079857-appb-100003
    将蒸发后的TiO 2以纳米级分子形式沉积,获得含第四层TiO 2层的树脂镜片;
    S25:在S24获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第五层硅硼复合氧化物层的树脂镜片;
    S26:在S25获得的树脂镜片表面,继续采用真空镀膜工艺,重复S24的工艺步骤,形成含第六层TiO 2层的树脂镜片;
    S27:在S26获得的树脂镜片表面,继续采用真空镀膜工艺,重复S22的工艺步骤,形成含第七层ITO层的树脂镜片;
    S28:在S27获得的树脂镜片表面,继续采用真空镀膜工艺,重复S21的工艺步骤,形成含第八层硅硼复合氧化物层的树脂镜片;
    S3:在S28获得的树脂镜片表面形成防水层:在S28步骤获得的镜 片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃条件下,采用高能电子束加热材料,以速率为
    Figure PCTCN2022079857-appb-100004
    将蒸发后的含氟防水材料以纳米级分子形式沉积于S28获得的树脂镜片表面,即得;优选的,所述含氟防水材料主要成分为全氟三丁胺(C 12F 27N)。
  13. 根据权利要求10所述减反射防宽红外膜层耐高温树脂镜片的制备方法,其特征在于,S3所述制备防水层的步骤包括:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~80℃条件下,采用高能电子束加热防水材料,以速率
    Figure PCTCN2022079857-appb-100005
    将蒸发后的防水材料以纳米级分子形式沉积于S2获得的树脂镜片表面,即得。
PCT/CN2022/079857 2021-04-01 2022-03-09 一种减反射防宽红外耐高温树脂镜片及其制备方法 WO2022206316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110353862.2 2021-04-01
CN202110353862.2A CN113109896B (zh) 2021-04-01 2021-04-01 一种减反射防宽红外耐高温树脂镜片及其制备方法

Publications (1)

Publication Number Publication Date
WO2022206316A1 true WO2022206316A1 (zh) 2022-10-06

Family

ID=76713774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079857 WO2022206316A1 (zh) 2021-04-01 2022-03-09 一种减反射防宽红外耐高温树脂镜片及其制备方法

Country Status (2)

Country Link
CN (1) CN113109896B (zh)
WO (1) WO2022206316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109896B (zh) * 2021-04-01 2022-05-20 江苏万新光学有限公司 一种减反射防宽红外耐高温树脂镜片及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226212A (zh) * 2013-04-11 2013-07-31 红安华州光电科技有限公司 一种消影透明导电膜
WO2017125999A1 (ja) * 2016-01-18 2017-07-27 伊藤光学工業株式会社 光学部品
CN107957600A (zh) * 2018-01-17 2018-04-24 江苏康耐特光学有限公司 一种增透防红外镀膜树脂镜片及其制备方法
CN208207250U (zh) * 2018-06-08 2018-12-07 江苏康耐特光学有限公司 一种防近红外树脂镜片
CN109734331A (zh) * 2019-03-13 2019-05-10 浙江旗滨节能玻璃有限公司 一种可单片使用减反射低辐射玻璃及其制备方法
WO2020071597A1 (ko) * 2018-10-02 2020-04-09 신진퓨처필름주식회사 광학다층막 적외선 반사 윈도우 필름 및 그 제조방법과 이를 이용한 창호시스템
CN112415639A (zh) * 2020-11-27 2021-02-26 江苏万新光学有限公司 一种低反射防红外耐高温树脂镜片及其制备方法
CN113109896A (zh) * 2021-04-01 2021-07-13 江苏万新光学有限公司 一种减反射防宽红外耐高温树脂镜片及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM553424U (zh) * 2017-05-09 2017-12-21 Onelensolution Optical Tech Sdn Bhd 光學鏡片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226212A (zh) * 2013-04-11 2013-07-31 红安华州光电科技有限公司 一种消影透明导电膜
WO2017125999A1 (ja) * 2016-01-18 2017-07-27 伊藤光学工業株式会社 光学部品
CN107957600A (zh) * 2018-01-17 2018-04-24 江苏康耐特光学有限公司 一种增透防红外镀膜树脂镜片及其制备方法
CN208207250U (zh) * 2018-06-08 2018-12-07 江苏康耐特光学有限公司 一种防近红外树脂镜片
WO2020071597A1 (ko) * 2018-10-02 2020-04-09 신진퓨처필름주식회사 광학다층막 적외선 반사 윈도우 필름 및 그 제조방법과 이를 이용한 창호시스템
CN109734331A (zh) * 2019-03-13 2019-05-10 浙江旗滨节能玻璃有限公司 一种可单片使用减反射低辐射玻璃及其制备方法
CN112415639A (zh) * 2020-11-27 2021-02-26 江苏万新光学有限公司 一种低反射防红外耐高温树脂镜片及其制备方法
CN113109896A (zh) * 2021-04-01 2021-07-13 江苏万新光学有限公司 一种减反射防宽红外耐高温树脂镜片及其制备方法

Also Published As

Publication number Publication date
CN113109896A (zh) 2021-07-13
CN113109896B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
CN112415639A (zh) 一种低反射防红外耐高温树脂镜片及其制备方法
WO2022213763A1 (zh) 一种超低反清底色防蓝光树脂镜片及其制备方法
WO2024093106A1 (zh) 一种清底色防蓝光防红外树脂镜片及其制备方法
WO2024093105A1 (zh) 一种弱吸收低反清底色防蓝光树脂镜片及其制备方法
CN111381299B (zh) 一种低反射色中性低应力树脂镜片及其制备方法
JPS6029702A (ja) プラスチツクレンズ
US10562812B2 (en) Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same
CN111679347A (zh) 一种高损伤阈值激光薄膜工艺技术方法
US10830933B2 (en) Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same
Kim et al. Photonic multilayer structure induced high near‐infrared (NIR) blockage as energy‐saving window
WO2022206316A1 (zh) 一种减反射防宽红外耐高温树脂镜片及其制备方法
CN215895150U (zh) 一种超低反清底色防蓝光树脂镜片
CN114879380A (zh) 一种淡橙色超清底色防蓝光树脂镜片及其制备方法
CN111366995A (zh) 一种具有高硬度膜层结构的树脂镜片及其制备方法
CN113031309B (zh) 一种减反射防近红外激光的树脂镜片
CN111562631B (zh) 一种低应力耐高温树脂镜片及其制备方法
JPH07104102A (ja) ガラス製光学部品の撥水製反射防止膜およびその製造 方法
WO2024138917A1 (zh) 一种弱吸收日夜低反清底色防蓝光树脂镜片及其制备方法
WO2024138918A1 (zh) 一种弱吸收低反清底色防蓝光树脂镜片及其制备方法
CN210127189U (zh) 一种可钢化low-e玻璃
CN113031308B (zh) 一种减反射防近红外激光树脂镜片的制备方法
CN113151783A (zh) 一种组合型反射膜及其制备方法
CN217787531U (zh) 一种淡橙色超清底色防蓝光树脂镜片
CN212515108U (zh) 一种低反射色中性低应力的树脂镜片
CN116479377B (zh) 一种改善塑胶表面光学薄膜在氙灯照射试验中的膜裂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778500

Country of ref document: EP

Kind code of ref document: A1