WO2022213763A1 - 一种超低反清底色防蓝光树脂镜片及其制备方法 - Google Patents

一种超低反清底色防蓝光树脂镜片及其制备方法 Download PDF

Info

Publication number
WO2022213763A1
WO2022213763A1 PCT/CN2022/079856 CN2022079856W WO2022213763A1 WO 2022213763 A1 WO2022213763 A1 WO 2022213763A1 CN 2022079856 W CN2022079856 W CN 2022079856W WO 2022213763 A1 WO2022213763 A1 WO 2022213763A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin lens
composite oxide
ultra
blue light
Prior art date
Application number
PCT/CN2022/079856
Other languages
English (en)
French (fr)
Inventor
黄昱勇
汤峰
吴仲英
Original Assignee
江苏万新光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏万新光学有限公司 filed Critical 江苏万新光学有限公司
Publication of WO2022213763A1 publication Critical patent/WO2022213763A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the invention relates to the technical field of resin lens preparation, in particular to an ultra-low anti-clear background anti-blue light resin lens and a preparation method thereof.
  • a lens with a refractive index of 1.60 or more is a high refractive index
  • a refractive index of 1.56 is a medium refractive index
  • a refractive index below 1.56 is a low refractive index.
  • the surface of the resin lens is generally coated to reduce the reflection of light and enhance the transmission of light, that is, the optical anti-reflection film.
  • Blue light is divided into harmful blue light and beneficial blue light. Modern people’s daily life is inseparable from various electronic products, and the chance of exposure to blue light has increased sharply.
  • Mobile phone screens, LED lights, and computer screens will generate a large amount of blue light, which will cause harm to people’s eyes and skin, and will stimulate brown light.
  • Pigment causes the skin to produce macular and freckles, which will deepen the degree of myopia in the eyes, cause visual fatigue, and at the same time, it is not conducive to normal sleep.
  • the strong blue light with shorter wavelength has potential harm to the human body, and the blue light with longer wavelength can make the lens more beautiful, improve the clarity of the lens, and improve the excitement of people's work.
  • the new national standard for anti-blue light also distinguishes between harmful blue light and beneficial blue light.
  • the present invention aims to provide an ultra-low anti-blue light anti-blue light and high temperature resistant resin lens and a preparation method thereof, which can achieve ultra-low anti-blue light while meeting anti-blue light standards, and improve the resin by reducing stress. High temperature resistance and durability of lenses.
  • a first aspect of the present invention provides an ultra-low-reflection background anti-blue light resin lens, comprising: a resin lens substrate, a hardened layer, and an ultra-low-reflection background anti-blue light film; wherein, the resin lens base The film, the hardened layer and the ultra-low anti-clear background anti-blue light film layer are arranged in sequence, the hardened layer is located on the surface of the resin lens substrate, and the ultra-low anti-clear background anti-blue light film layer is located on the hardened layer surface;
  • the ultra-low-reflection background anti-blue light resin lens further comprises a waterproof layer, and the waterproof layer is located on the surface of the ultra-low-reflection background anti-blue light film layer;
  • the UV cut-off wavelength of the resin lens substrate is 405-407 nm
  • the material of the hardened layer is mainly composed of silicone
  • the ultra-low anti-clear bottom color anti-blue light layer includes a silicon aluminum composite oxide layer, a titanium-niobium composite oxide layer and a tin-doped indium oxide (ie ITO) layer; further, the ultra-low anti-clear bottom color The color anti-blue light layer includes four layers of silicon-aluminum composite oxide layers, three layers of titanium-niobium composite oxide layers and one layer of tin-doped indium oxide (ie ITO) layer;
  • the silicon-aluminum composite oxide layer is composed of SiO 2 and Al 2 O 3 composite materials, and the mole fraction of SiO 2 in the composite material is 70% to 95%; further preferably, SiO 2 accounts for 92% of the composite molar fraction;
  • the titanium-niobium composite oxide layer is composed of TiO 2 and Nb 2 O 5 composite materials, wherein TiO 2 accounts for 10% to 90% of the mole fraction of the composite material; preferably, TiO 2 accounts for the composite material. 80% of the material mole fraction;
  • the thickness of the hardened layer is 1-5 ⁇ m
  • the thickness of the ultra-low anti-clear background color anti-blue light film layer is 200-600 nm;
  • the thickness of the waterproof layer is 4-20 nm
  • the average reflectivity of the ultra-low anti-clear background anti-blue light resin lens is ⁇ 0.5%
  • the peak reflectivity of the ultra-low anti-clear background anti-blue light resin lens in the visible light band of 400-700 nm is ⁇ 3.5%;
  • the H value of the reflected light color coordinate of the ultra-low anti-clear background anti-blue light resin lens is 260-280, and the C value is 12-30;
  • the yellow index of the ultra-low anti-clear background anti-blue light resin lens is ⁇ 5.5%
  • the second aspect of the present invention provides a preparation method of the above-mentioned ultra-low anti-clear background anti-blue light resin high temperature resistant lens, comprising the following steps:
  • S1 preparation of hardened layer forming a hardened layer on the surface of the resin lens substrate, that is, to obtain a resin lens containing the hardened layer;
  • the ultra-low-reflection background anti-blue light film layer is formed on the surface of the resin lens obtained in S1, that is, the resin lens containing the ultra-low-reflection background anti-blue light film layer is obtained , including:
  • step S21 forming silicon-aluminum composite oxide layers and titanium-niobium composite oxide layers alternately on the surface of the resin lens obtained in step S1, namely, obtaining a resin comprising three layers of silicon-aluminum composite oxide layers and three layers of titanium-niobium composite oxide layers lens;
  • step S3 preparing a waterproof layer: forming a waterproof layer on the surface of the resin lens obtained in step S2.
  • the film material adopts niobium-titanium composite oxide material, which makes the anti-reflection bandwidth wider and the reflectivity lower, and effectively controls the peak reflectivity and peak reflectivity of the average wavelength band of visible light, which is significantly improved Resin lens has light transmittance to obtain ultra-low reflection effect;
  • the use of niobium-titanium composite oxide material can effectively avoid the easy crystallization of the TiO 2 film layer, and can also effectively avoid the dense Nb 2 O 5 film layer on the resin lens.
  • the defects of easy cracking, in the case of resin glasses coating with low ion source energy, ensure that the film layer is in an amorphous state, prevent the film layer from cracking due to crystallization, thereby improving the high temperature and high humidity resistance of the film layer and lens, thereby improving the product.
  • the silicon-aluminum composite oxide material layer effectively avoids the easy formation of long columnar SiO 2 resulting in high stress of the film layer, maintains the glassy structure of the film layer, and improves the high temperature resistance of the film layer;
  • the film layer is prepared with niobium-titanium composite oxide material, which effectively reduces the sensitivity of TiO 2 to O 2 flow in the IAD auxiliary process, reduces the difficulty of the process and effectively improves the product quality. Repeatability and mass producibility.
  • the ultra-low anti-clear background color anti-blue light film layer 3 includes: a silicon-aluminum composite oxide layer 3-1, a titanium-niobium composite oxide layer 3-2, a silicon-aluminum composite oxide layer 3-3, and a titanium-niobium composite oxide layer 3 -4. Silicon aluminum composite oxide layer 3-5, titanium niobium composite oxide layer 3-6, ITO layer 3-7 and silicon aluminum composite oxide layer 3-8
  • the ultra-low anti-clear background color anti-blue light film layer includes four layers of silicon aluminum composite oxide layers, three layers of titanium niobium composite oxide layers and one layer of tin-doped indium oxide (ie ITO) layer , wherein, in the ultra-low anti-clear background color anti-blue light film layer, the three-layer silicon-aluminum composite oxide layer and the three-layer titanium-niobium composite oxide layer are alternately arranged in sequence, and the first layer of silicon-aluminum composite oxide layer The material layer is located on the surface of the hardened layer, the seventh layer of ITO layer is located on the surface of the sixth layer of titanium-niobium composite oxide layer, and the eighth layer of silicon-aluminum composite oxide layer is located on the seventh layer ITO layer surface;
  • each layer of the ultra-low anti-clear background color anti-blue light film layer is:
  • the thickness of the first silicon-aluminum composite oxide layer is 0-180 nm, preferably 5-30 nm;
  • the thickness of the second titanium-niobium composite oxide layer is 10-40 nm, preferably 12-30 nm;
  • the thickness of the third silicon-aluminum composite oxide layer is 15-80 nm, preferably 20-50 nm;
  • the thickness of the fourth titanium-niobium composite oxide layer is 20-90 nm, preferably 30-60 nm;
  • the thickness of the fifth silicon-aluminum composite oxide layer is 5-60 nm, preferably 5-30 nm;
  • the thickness of the sixth titanium-niobium composite oxide layer is 20-80 nm, preferably 25-60 nm; the thickness of the seventh ITO layer is 2-10 nm, preferably 5 nm;
  • the thickness of the eighth silicon-aluminum composite oxide layer is 60-130 nm, preferably 70-100 nm;
  • the step of preparing the hardened layer in S1 includes: immersing the resin lens substrate cleaned by ultrasonic waves in a hardening solution aqueous solution with a mass percentage of 25-30%, and the immersion temperature is 10-20° C. , after immersing for 5 seconds, pull out the solution at a speed of 1.0-3.0mm/s, and then dry it at 70-90 ° C for 3 hours, then take out the above-mentioned substrate and send it to a drying box for drying and curing.
  • the curing temperature is 100 ⁇ 150°C, curing time 120 ⁇ 180min, resin lens with hardened layer is obtained;
  • the process of preparing the ultra-low anti-clear background color anti-blue light film layer in the step S2 includes:
  • the vacuum coating process is used to evaporate the silicon-aluminum composite oxide layer, the titanium-niobium composite oxide and the ITO solid-state film material after vapor phase transport, and deposit a thin film on the surface of the resin lens obtained in the S1 step to form a reduced
  • the reflective layer specifically includes the following steps:
  • step S21 Alternately form a silicon-aluminum composite oxide layer and a titanium-niobium composite oxide layer on the surface of the resin lens obtained in step S1, that is, to obtain a resin lens including a silicon-aluminum composite oxide layer and a titanium-niobium composite oxide layer, specifically including:
  • S213 Repeat steps S211 and S212 to alternately form a third silicon-aluminum composite oxide layer, a fourth titanium-niobium composite oxide layer, a fifth silicon-aluminum composite oxide layer, and a sixth titanium-niobium composite oxide layer, respectively , that is, to form a resin lens comprising a third layer of silicon-aluminum composite oxide layer, a fourth layer of titanium-niobium composite oxide layer, a fifth layer of silicon-aluminum composite oxide layer and a sixth layer of titanium-niobium composite oxide layer;
  • the ion source-assisted deposition process parameters are: the ion source is a Hall source, the anode voltage: 90-140V, the anode current: 2.5-5A, the auxiliary gas is O 2 , and the flow rate is 10-30sccm;
  • the ion source-assisted deposition process parameters are: the ion source is a Hall source, the anode voltage: 110V, the anode current: 3A, the auxiliary gas is O 2 , and the flow rate is 15sccm;
  • the step S3: forming a waterproof layer on the surface of the resin lens obtained in step S2 includes the following steps: continuing to use a vacuum coating process on the surface of the lens obtained in step S23, and the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is 50 ⁇ 70 °C, the material is heated by high-energy electron beam, and the rate is
  • the evaporated fluorine-containing waterproof material preferably a waterproof material containing C 12 F 27 N
  • the silicon-aluminum composite oxide layer is composed of SiO 2 and Al 2 O 3 composite materials, And wherein the mole fraction of SiO 2 in the composite material is 70% to 95%, the specific models refer to the examples and comparative examples;
  • the titanium-niobium composite oxide is commissioned by Changzhou Zhanchi Optoelectronics Technology Co., Ltd. to develop and produce, and the titanium-niobium composite oxide is composed of TiO 2 and Nb 2 O 5 , wherein the moles of TiO 2 The score is 10% to 90%.
  • Examples and Comparative Examples See Examples and Comparative Examples;
  • the resin lens base sheet selected by the present invention is a conventional lens in the field to adjust the UV powder content so that the UV cut-off wavelength is 405-407 nm, and the definition of the UV cut-off wavelength refers to 5.4.2.4 of the optical resin lens standard QB/T 2506-2017 .4;
  • a resin lens substrate with a model of MR-8 (refractive index 1.60) or MR-7 (refractive index 1.67) from Mitsui Chemicals Co., Ltd. and its UV cutoff wavelength is 405-407 nm is purchased , hereinafter referred to as "MR-8-UV405" or "MR-7-UV405"; or in a specific embodiment, the refractive index developed and produced by Jiangsu Shike New Materials Co., Ltd. is 1.56, and its UV value is cut off.
  • the resin lens substrate with a wavelength of 405-407 nm hereinafter referred to as "SK1.56-UV405", for the specific preparation method of the resin lens substrate, please refer to the patent of Shike Optical Company: CN201410245692.6.
  • conventional hardening liquid can be selected.
  • the model Z117 or Z118 (hereinafter referred to as "Z117” or "Z118") of Ito Optical Industry Co., Ltd. is selected to add hardening liquid;
  • the hardening liquid of Duen Optical (Changshu) Co., Ltd. whose model is VH56 (hereinafter referred to as "VH56") is selected, and the above-mentioned hardening liquid is selected to prepare the lens of the present invention, which greatly improves the adhesion between the film layers. dense cohesion.
  • An ultra-low anti-clear background anti-blue light resin lens arranged in sequence comprising: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (wherein SiO 2 and Al 2 O 3 molar percentage: 92% SiO 2 : 8% Al 2 O 3 ; entrusted to Changzhou Zhanchi Photoelectric Technology Co., Ltd.
  • the material model is SA56 )/24.6nm, titanium-niobium composite oxide layer 3-2 (wherein the molar percentage of TiO 2 and Nb 2 O 5 is: 80% TiO 2 : 20% Nb 2 O 5 ; entrusted to Changzhou Zhanchi Photoelectric Technology Co., Ltd.
  • the material model is PTN28)/18.8nm
  • the silicon-aluminum composite oxide layer is 3-3/31.34nm (the material is the same as 3-1)
  • the titanium-niobium composite oxide layer is 3-4 (the material is the same as 3-2)/ 51.32nm
  • silicon-aluminum composite oxide layer 3-5/10.41nm (same material as 3-1)
  • titanium-niobium composite oxide layer 3-6 (same material as 3-2)/34.38nm
  • Silicon-aluminum composite oxide layer 3-8/92.63nm materials are the same as 3-1
  • Waterproof layer 4 using a waterproof material containing C 12 F 27 N/10nm
  • Waterproof layer 4 using a waterproof material containing C 12 F 27 N/10nm
  • the preparation method of the resin lens comprises the following steps:
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S213 Repeat steps S211 and S212 to alternately form the third layer of silicon-aluminum composite oxide and the fourth layer of titanium-niobium composite oxide, the fifth layer of silicon-aluminum composite oxide and the sixth layer of titanium-niobium composite oxide, respectively, That is to form a resin lens comprising a third layer of silicon-aluminum composite oxide layer, a fourth layer of titanium-niobium composite oxide layer, a fifth layer of silicon-aluminum composite oxide layer and a sixth layer of titanium-niobium composite oxide layer;
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of It is obtained by depositing the evaporated waterproof material containing C 12 F 27 N on the surface of the resin lens obtained by S24 in the form of nano-scale molecules.
  • An ultra-low anti-clear background anti-blue light resin lens which is arranged in sequence and comprises: a resin lens substrate 1 (SK1.56-UV405); a hardened layer 2 (VH56)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (material model is SA56)/24.6nm, titanium-niobium composite oxide layer 3-2 (material model is PTN28)/17.62nm, silicon aluminum composite oxide layer 3-3/32.39nm (material Same as 3-1), titanium-niobium composite oxide layer 3-4 (same material as 3-2)/50.9nm, silicon-aluminum composite oxide layer 3-5/10.04nm (same material as 3-1), titanium-niobium composite oxide layer Material layer 3-6 (same material as 3-2)/34.72nm, ITO layer 3-7/5nm; silicon aluminum composite oxide layer 3-8/92.49nm (material same as 3-1); Waterproof material of C 12 F 27 N/10nm);
  • the preparation method of the resin lens comprises the following steps:
  • An ultra-low anti-clear background anti-blue light resin lens which is arranged in sequence and comprises: a resin lens substrate 1 (MR-7-UV405); a hardened layer 2 (Z118)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (material model is SA56)/24.6nm, titanium-niobium composite oxide layer 3-2 (material model is PTN28)/20.95nm, silicon aluminum composite oxide layer 3-3/29.21nm (material Same as 3-1), titanium-niobium composite oxide layer 3-4 (same material as 3-2)/53.23nm, silicon-aluminum composite oxide layer 3-5/10.08nm (same material as 3-1), titanium-niobium composite oxide layer Material layer 3-6 (same material as 3-2)/34.11nm, ITO layer 3-7/5nm; silicon-aluminum composite oxide layer 3-8/92.54nm (material same as 3-1); Waterproof material of C 12 F 27 N/10
  • the preparation method of the resin lens comprises the following steps:
  • An ultra-low anti-clear background anti-blue light resin lens which is arranged in sequence and comprises: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/1-2.6 ⁇ m; an anti-reflection layer 3 comprising: silicon Aluminum composite oxide layer 3-1 (material type SA56)/25.6nm, titanium-niobium composite oxide layer 3-2 (wherein TiO 2 and Nb 2 O 5 molar percentage: 50%TiO 2 : 50% Nb 2 O 5 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • the material model is PTN55)/18.88nm
  • the silicon-aluminum composite oxide layer is 3-3/31.34nm (the material is the same as 3-1)
  • the titanium-niobium composite oxide Material layer 3-4 (same material as 3-2)/51.63nm
  • silicon-aluminum composite oxide layer 3-5/10.41nm (same material as 3-1)
  • titanium-niobium composite oxide layer 3-6 (same material as 3- 2)/34.59nm
  • silicon-aluminum composite oxide layer 3-8/92.63nm the material is the same as 3-1
  • waterproof layer 4 using the waterproof material containing C 12 F 27 N / 10nm ); its preparation method is the same as that of Example 1.
  • An ultra-low anti-clear background anti-blue light resin lens which is arranged in sequence and includes: resin lens substrate 1 (MR-8-UV405); hardened layer 2 (Z117)/3-5 ⁇ m; anti-reflection layer 3 includes: silicon aluminum Composite oxide layer 3-1 (material type SA56)/25.8nm, titanium-niobium composite oxide layer 3-2 (wherein TiO 2 and Nb 2 O 5 mole percentages are: 20%TiO 2 : 80% Nb 2 O 5 ; Entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • the material model is PTN57)/18.98nm, silicon-aluminum composite oxide layer 3-3/31.95nm (materials are the same as 3-1), titanium-niobium composite oxide Layer 3-4 (same material as 3-2)/51.84nm, silicon-aluminum composite oxide layer 3-5/9.82nm (same material as 3-1), titanium-niobium composite oxide layer 3-6 (same material as 3-2) )/36.82nm, ITO layer 3-7/5nm; silicon-aluminum composite oxide layer 3-8/93.2nm (the material is the same as 3-1); waterproof layer 4 (using the waterproof material containing C 12 F 27 N / 15nm) ; Its preparation method is the same as that of Example 1.
  • An ultra-low anti-clear background anti-blue light resin lens arranged in sequence comprising: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (wherein SiO 2 and Al 2 O 3 molar percentage: 80% SiO 2 : 20% Al 2 O 3 ; entrusted to Changzhou Zhanchi Photoelectric Technology Co., Ltd.
  • the material model is SA86 )/27.6nm, titanium-niobium composite oxide layer 3-2 (material model is PTN28)/18.8nm, silicon-aluminum composite oxide layer 3-3/31.34nm (the same material as 3-1), titanium-niobium composite oxide layer 3-4 (same material as 3-2)/51.32nm, silicon-aluminum composite oxide layer 3-5/10.41nm (same material as 3-1), titanium-niobium composite oxide layer 3-6 (same material as 3-2) /34.38nm, ITO layer 3-7/5nm; silicon-aluminum composite oxide layer 3-8/92.63nm (the material is the same as 3-1); waterproof layer 4 (using the waterproof material containing C 12 F 27 N / 10nm); The preparation method is the same as that in Example 1.
  • An ultra-low-reflection background anti-blue light resin lens which is arranged in sequence and comprises: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an ultra-low-reflection background anti-blue light Layer 3 includes: SiO2 layer 3-1/25.6nm, ZrO2 layer 3-2 /21.9nm, SiO2 layer 3-3/41.55nm, ZrO2 layer 3-4/ 49.18nm , SiO2 layer 3-5 /10.11nm, ZrO 2 layer 3-6/55.73nm, ITO layer 3-7/5nm; SiO 2 layer 3-8/89.26nm; waterproof layer 4 (using a waterproof material containing C 12 F 27 N/10nm);
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S213 Repeat steps S211 and S212 twice to alternately form a third layer of SiO 2 , a fourth layer of ZrO 2 , a fifth layer of SiO 2 and a sixth layer of ZrO 2 Resin lens with four layers of ZrO 2 , the fifth layer of SiO 2 and the sixth layer of ZrO 2 ;
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of The evaporated waterproof material is deposited on the surface of the resin lens obtained by S23 in the form of nano-scale molecules.
  • An ultra-low anti-clear background anti-blue light resin lens arranged in sequence comprising: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (material model is SA56)/36.3nm, titanium-niobium composite oxide layer 3-2 (material model is PTN28)/18.11nm, silicon-aluminum composite oxide layer 3-3/166nm (materials are the same as 3-1), titanium-niobium composite oxide layer 3-4/93.44nm (materials are the same as 3-2), ITO layer 3-5/5nm, silicon aluminum composite oxide layer 3-6/75.8nm (materials are the same as 3- 1); Waterproof layer 4 (using a waterproof material/10nm containing C 12 F 27 N); its preparation method comprises the following steps:
  • the preparation method of the resin lens comprises the following steps:
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S213 Repeat the steps of S211 and S212 to alternately form a third layer of silicon-aluminum composite oxide and a fourth layer of titanium-niobium composite oxide, namely, to form a third layer of silicon-aluminum composite oxide and a fourth layer of titanium-niobium composite oxide.
  • layered resin lenses
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of The evaporated waterproof material is deposited on the surface of the resin lens obtained by S23 in the form of nano-scale molecules.
  • An ultra-low anti-clear background anti-blue light resin lens arranged in sequence comprising: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (material model is SA56)/24.6nm, TiO2 layer 3-2/18.8nm, silicon aluminum composite oxide layer 3-3/31.34nm (materials are the same as 3-1), TiO2 layer 3-4/51.32nm, silicon-aluminum composite oxide layer 3-5/10.41nm (the same material as 3-1), TiO 2 layer 3-6/34.38nm, ITO layer 3-7/5nm; silicon-aluminum composite oxide Layer 3-8/92.63nm (the same material as 3-1); Waterproof layer 4 (using the waterproof material containing C 12 F 27 N/10nm);
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S213 Repeat the steps of S211 and S212 to alternately form the third layer of silicon-aluminum composite oxide and the fourth layer of TiO 2 and the fifth layer of silicon-aluminum composite oxide and the sixth layer of TiO 2 , that is, to form the third layer including the third layer.
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of The evaporated waterproof material is deposited on the surface of the resin lens obtained by S23 in the form of nano-scale molecules.
  • An ultra-low anti-clear background color anti-blue light resin lens which is arranged in sequence and comprises: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: SiO 2 Layer 3-1/24.6nm, TiO2 layer 3-2/18.8nm, SiO2 layer 3-3/31.34nm, TiO2 layer 3-4/51.32nm, SiO2 layer 3-5/10.41nm, TiO2 layer 3-6/34.38nm, ITO layer 3-7/5nm; SiO 2 layer 3-8/92.63nm; waterproof layer 4 (using a waterproof material containing C 12 F 27 N/10nm); its preparation method includes the following steps :
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of The evaporated waterproof material is deposited on the surface of the resin lens obtained by S24 in the form of nano-scale molecules.
  • An ultra-low anti-clear background color anti-blue light resin lens which is arranged in sequence and comprises: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: SiO 2 Layer 3-1/24.6nm, titanium-niobium composite oxide layer 3-2 (material type PTN28)/18.8nm, SiO 2 layer 3-3/31.34nm, titanium-niobium composite oxide layer 3-4 (materials are the same as 3 -2)/51.32nm, SiO2 layer 3-5/10.41nm, titanium-niobium composite oxide layer 3-6 (the same material as 3-2)/34.38nm, ITO layer 3-7/5nm; SiO2 layer 3- 8/92.63nm; waterproof layer 4 (using a waterproof material containing C 12 F 27 N/10nm); its preparation method includes the following steps:
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S213 Repeat steps S211 and S212 to alternately form a third SiO 2 layer and a fourth titanium-niobium composite oxide layer and a fifth SiO 2 layer and a sixth titanium-niobium composite oxide layer, respectively, forming a third A resin lens comprising a SiO2 layer, a fourth titanium-niobium composite oxide layer, a fifth SiO2 layer and a sixth titanium-niobium composite oxide layer;
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of The evaporated waterproof material is deposited on the surface of the resin lens obtained by S23 in the form of nano-scale molecules.
  • An ultra-low anti-clear background anti-blue light resin lens which is arranged in sequence and includes: resin lens substrate 1 (MR-8-UV405); hardened layer 2 (Z117)/3-5 ⁇ m; anti-reflection layer 3 includes: silicon aluminum Composite oxide layer 3-1 (material model is SA56)/24.8nm; Nb 2 O 5 layer 3-2/18.98nm, silicon-aluminum composite oxide layer 3-3/31.95nm (the material is the same as 3-1), Nb 2 O 5 layer 3-4/51.84nm, silicon aluminum composite oxide layer 3-5/9.82nm (the same material as 3-1), Nb 2 O 5 layer 3-6/32.86nm, ITO layer 3-7/5nm ; Si-aluminum composite oxide layer 3-8/93.2nm (the material is the same as 3-1); Waterproof layer 4 (using the waterproof material containing C 12 F 27 N/15nm);
  • step S2 to prepare ultra-low anti-clear background anti-blue light layer: in the vacuum coating machine, using the vacuum coating process, the solid film material is evaporated and then transported through the gas phase, and a thin film is deposited on the surface of the resin lens obtained in step S1 to form an ultra-low reflection Clear the background color anti-blue light layer, including the following steps:
  • S21 includes the following steps:
  • S213 Repeat the steps of S211 and S212 to alternately form the third layer of silicon-aluminum composite oxide and the fourth layer of Nb 2 O 5 and the fifth layer of silicon-aluminum composite oxide and the sixth layer of Nb 2 O 5 , that is, to form A resin lens comprising a third layer of silicon-aluminum composite oxide layer, a fourth layer of Nb 2 O 5 layer, a fifth layer of silicon-aluminum composite oxide layer and a sixth layer of Nb 2 O 5 layer;
  • S3 Prepare a waterproof layer: Form a waterproof layer on the surface of the resin lens obtained in S23: On the surface of the lens obtained in step S2, continue to use the vacuum coating process, the background vacuum degree is ⁇ 3 ⁇ 10 -3 Pa, and the temperature in the coating chamber is At 60 °C, the material is heated by a high-energy electron beam at a rate of The evaporated waterproof material is deposited on the surface of the resin lens obtained by S23 in the form of nano-scale molecules.
  • An ultra-low anti-clear background anti-blue light resin lens arranged in sequence comprising: a resin lens substrate 1 (MR-8-UV405); a hardened layer 2 (Z117)/2.6-3 ⁇ m; an anti-reflection layer 3 comprising: silicon aluminum Composite oxide layer 3-1 (wherein SiO 2 and Al 2 O 3 molar percentage: 60% SiO 2 : 40% Al 2 O 3 ; entrusted to Changzhou Zhanchi Optoelectronics Technology Co., Ltd.
  • the material model is SA66 )/24.6nm, titanium-niobium composite oxide layer 3-2 (material model is PTN28)/15.31nm, silicon-aluminum composite oxide layer 3-3/38.85nm (material is the same as 3-1), titanium-niobium composite oxide layer 3-4 (same material as 3-2)/43.19nm, silicon aluminum composite oxide layer 3-5/9.79nm (same material as 3-1), titanium niobium composite oxide layer 3-6 (same material as 3-2) /42.12nm, ITO layer 3-7/5nm; silicon-aluminum composite oxide layer 3-8/87.46nm (the same material as 3-1); waterproof layer 4 (using the waterproof material containing C 12 F 27 N/10nm);
  • the preparation method of the resin lens is the same as that of Example 1.
  • a titanium-niobium composite oxide material with a refractive index close to that of TiO 2 is selected.
  • average reflectance refers to the visual average reflectance under C light (light source with a color temperature of 6774K defined in CIE) illumination, Herein refers to the reflectance of one side), and the peak reflectance of visible light (refers to the highest reflectance of one side at 400-700 nm), and the measurement results are recorded in Table 4 below.
  • the main harmful blue light (415 to 445 nm) and beneficial blue light (415 to 445 nm) and beneficial blue light ( 445 ⁇ 475nm) arithmetic average transmittance, and measure its transmission yellow index (the national standard requires the average transmittance of harmful blue light 415 ⁇ 445nm ⁇ 80%, the average transmittance of beneficial blue light 445 ⁇ 475nm> 80%, the yellow index ⁇ 5.0 ), the measurement results are recorded in Table 4 below.
  • Example 1 to 6 and Comparative Examples 1 to 9 After completing the samples (Examples 1 to 6 and Comparative Examples 1 to 9), the temperature resistance of the samples was tested after being stored for one week.
  • the test method for high temperature resistance is to refer to Clause 5.8 in the National Resin Lens Temperature Resistance Standard (GB 10810.4-2012): pass the baking test at 55°C for 30 minutes. After passing the test, increase the temperature at 5°C for 30 minutes each time by the same method, until the lens fails such as film cracking or orange peel, and record the qualified maximum temperature.
  • the results are recorded in Table 4 below.
  • the photovoltaic industry and the optical communication industry use high temperature and high humidity to evaluate the durability of products.
  • the definition of resin lens resistance to high temperature and humidity The test adjustment is as follows: store at 85°C and 85% humidity for 12 hours, and check whether the prepared lenses have obvious failures such as film cracks or orange peel; three resin lenses are placed in different positions for each high temperature and high humidity test.
  • the test results of Examples 1 to 6 and Comparative Examples 1 to 9 are recorded in Table 4 below.
  • Adhesion test refers to the film adhesion test in Article 5.9 of the national standard GB10810.4-2012.
  • the high temperature film adhesion test refers to that Wanxin Company refers to Article 5.9 of the national standard GB10810.4-2012, and changes the boiling conditions to 90 ⁇ 2°C for 60 minutes, and other test methods are the same.
  • Adhesion and high temperature adhesion test results Grade A means no film release or the area of release film is less than 5%, Grade B means the area of release film is between 5% and 15%, Grade C (unqualified) means the area of release film significantly greater than 15%.
  • To verify the product adhesion distribution high temperature adhesion tests were performed from 5 different locations in the coating chamber. The test results of Examples 1 to 6 and Comparative Examples 1 to 9 are recorded in Table 4 below.
  • Examples 1 to 6 can effectively cut off harmful blue light, and have high transparency of beneficial blue light. While meeting the national anti-blue light standard, the yellow index is low to achieve the clear effect of the lens; while the cutoff of harmful blue light in Comparative Example 1 does not meet the According to the national anti-blue light standard, the yellow index of Comparative Example 2 and Comparative Example 4 is relatively high, and the visual effect of clear lenses cannot be achieved.
  • the high-refractive index material of the lens adopts titanium-niobium composite oxide, which has better high temperature resistance, high-temperature adhesion and durability than other conventional materials; the low-refractive index material adopts silicon-aluminum composite oxide.
  • the high temperature resistance, high temperature adhesion and durability of the material are better than other conventional materials; we use these two specific ratio materials to prepare the film system and its appropriate process to ensure the high temperature resistance of the ultra-low anti-clear background color anti-blue light products. sex and durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

一种超低反清底色防蓝光树脂镜片及其制备方法,包括:树脂镜片基片(1)、加硬层(2)、超低反清底色防蓝光膜层(3)以及防水层(4);其中,树脂镜片基片(1)、加硬层(2)以及超低反清底色防蓝光膜层(3)依次排列,加硬层(2)位于树脂镜片基片(1)表面,超低反清底色防蓝光膜层(3)位于加硬层(2)表面;且超低反清底色防蓝光膜层(3)由高折射率材料钛铌复合氧化物以及低折射率材料硅铝复合氧化物组成。

Description

一种超低反清底色防蓝光树脂镜片及其制备方法 技术领域
本发明涉及树脂镜片制备技术领域,具体涉及一种超低反清底色防蓝光树脂镜片及其制备方法。
背景技术
近年来,光学树脂镜片在国内外眼镜市场上需求越来越大,树脂镜片与玻璃镜片相比,具有质量轻、染色性能好、易于加工等优点,中高折射率光学树脂镜片更以高透光率、防紫外、超薄等特有的优势获得使用者的青睐。
通常在镜片行业中,镜片折射率达到1.60以上为高折射率,折射率达到1.56为中折射率,折射率在1.56以下为低折射率。为满足树脂镜片光学性能的要求,一般会在树脂镜片表面镀膜,以减少光的反射并增强光的透射,即为光学减反射膜。
蓝光分为有害蓝光和有益蓝光。现代人们日常生活离不开各种电子产品,接触蓝光的机会随之急剧增加,手机屏幕、LED灯、电脑屏幕都会产生大量的蓝光,这样会给人们的眼睛与皮肤带来危害,会激发褐色色素,让皮肤产生黄斑、雀斑,会加深眼睛近视程度,产生视觉疲劳感,同时也不利于正常睡眠。较强的波长较短的蓝光对人体有着潜在的伤害的,波长较长的蓝光能够使镜片更加美观,提高镜片的清透感,并提高人们工作的兴奋性。新的防蓝光国家标准也区分对待有害蓝光和有益蓝光。为满足消费者在新的电子环境下的新要求,亟需我们提供一种超低反清底色防蓝光耐高温耐久的树脂镜片。
发明内容
为了满足新的消费需求,本发明旨在于提供一种超低反清底色防 蓝光耐高温的树脂镜片及其制备方法,实现超低反的同时满足防蓝光标准,并通过降低应力来提升树脂镜片的耐高温性和耐久性。
本发明是通过以下技术方案实现的:
本发明的第一方面提供了一种超低反清底色防蓝光树脂镜片,包括:树脂镜片基片、加硬层以及超低反清底色防蓝光膜层;其中,所述树脂镜片基片、加硬层以及超低反清底色防蓝光膜层依次排列,所述加硬层位于所述树脂镜片基片表面,所述超低反清底色防蓝光膜层位于所述加硬层表面;
进一步的,所述超低反清底色防蓝光树脂镜片还包括防水层,所述防水层位于所述超低反清底色防蓝光膜层表面;
进一步的,所述树脂镜片基片UV截止波长为405~407nm;
进一步的,所述加硬层的材料主要成分为有机硅;
进一步的,所述超低反清底色防蓝光层包括硅铝复合氧化物层、钛铌复合氧化物层以及掺锡氧化铟(即ITO)层;更进一步的,所述超低反清底色防蓝光层包括四层硅铝复合氧化物层、三层钛铌复合氧化物层以及一层掺锡氧化铟(即ITO)层;
进一步的,所述硅铝复合氧化物层由SiO 2和Al 2O 3复合材料组成,且其中SiO 2占所述复合材料的摩尔分数为70%~95%;进一步优选的,其中SiO 2占所述复合材料摩尔分数的92%;
进一步的,所述钛铌复合氧化物层由TiO 2和Nb 2O 5复合材料组成,其中TiO 2占所述复合材料摩尔分数的10%~90%;优选的,其中TiO 2占所述复合材料摩尔分数的80%;
进一步的,所述加硬层的厚度为1~5μm;
进一步的,所述超低反清底色防蓝光膜层的厚度为200~600nm;
进一步的,所述防水层的厚度为4~20nm;
进一步的,所述超低反清底色防蓝光树脂镜片的平均反射率≤0.5%;
进一步的,所述超低反清底色防蓝光树脂镜片在可见光波段400~700nm处峰值反射率≤3.5%;
更进一步的,所述超低反清底色防蓝光树脂镜片的反射光色坐标H值为260~280、且C值为12~30;
更进一步的,所述超低反清底色防蓝光树脂镜片的黄色指数≤5.5%;
本发明第二方面提供了一种上述超低反清底色防蓝光树脂耐高温镜片的制备方法,包括以下步骤:
S1制备加硬层:在树脂镜片基片表面形成加硬层,即获得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光膜层:在S1获得的树脂镜片表面形成所述超低反清底色防蓝光膜层,即获得含超低反清底色防蓝光膜层的树脂镜片,具体包括:
S21:在步骤S1获得的树脂镜片表面依次交替分别形成硅铝复合氧化物层和钛铌复合氧化物层,即获得包括三层硅铝复合氧化物层和三层钛铌复合氧化物层的树脂镜片;
S22:在步骤S21获得的树脂镜片表面形成含一层ITO层的树脂镜片;
S23:在步骤S22获得的树脂镜片表面再形成一层含硅铝复合氧化物层的树脂镜片;
S3制备防水层:在步骤S2获得的树脂镜片表面形成防水层。
有益效果
1.获得超低反射效果:膜层材料采用铌钛复合氧化物材料,使减反射的带宽更宽,反射率更低,并有效控制了可见光平均波段的峰值反射率和峰值反射率,显著提升树脂镜片光透射性,获得超低反射效果;
2.具有良好防蓝光效果和视觉效果:选用特定的树脂基片、结合膜系结构,实现了有效阻隔有害蓝光并透过有益蓝光;同时使得产品的黄色指数≤5.5%,具有良好的视觉效果;
3.显著提升镜片的耐高温性和耐久性:首先,采用铌钛复合氧化物材料可以有效规避TiO 2膜层易结晶的特性,也可以有效规避致密的Nb 2O 5膜层在树脂镜片上易裂的缺陷,在树脂眼镜镀膜低离子源能量的情况下,保证膜层处于无定形态,防止膜层因为结晶崩裂,从而提升膜层和镜片的耐高温和耐高湿性能,进而提高产品的耐久性;其次,硅铝复合氧化物材料层,有效避免了SiO 2容易形成长柱状结果导致膜层高应力,保持膜层的玻璃态结构,提高膜层的耐高温性能;
4.改善产品的重复性和可量产性:采用铌钛复合氧化物材料制备膜层,有效降低了TiO 2对于IAD辅助工艺中O 2流量的敏感性,降低了工艺难度并有效改善产品的重复性和可量产性。
附图说明
图1是本发明一种超低反清底色防蓝光树脂镜片各层示意图;树脂镜片基片1、加硬层2、超低反清底色防蓝光膜层3、防水层4;其中,超低反清底色防蓝光膜层3包括:硅铝复合氧化物层3-1、钛铌 复合氧化物层3-2、硅铝复合氧化物层3-3、钛铌复合氧化物层3-4、硅铝复合氧化物层3-5、钛铌复合氧化物层3-6、ITO层3-7以及硅铝复合氧化物层3-8
具体实施方式
在一个具体的实施方式中,所述超低反清底色防蓝光膜层包括四层硅铝复合氧化物层、三层钛铌复合氧化物层以及一层掺锡氧化铟(即ITO)层,其中,所述超低反清底色防蓝光膜层中,所述三层硅铝复合氧化物层和三层钛铌复合氧化物层交替依次排列,且所述第一层硅铝复合氧化物层位于所述加硬层表面、且所述第七层ITO层位于所述第六层钛铌复合氧化物层表面、且所述第八层硅铝复合氧化物层位于所述第七层ITO层表面;
更进一步的,在一个具体的实施方式中,所述超低反清底色防蓝光膜层各层厚度为:
所述第一层硅铝复合氧化物层的厚度为0~180nm,优选5~30nm;
所述第二层钛铌复合氧化物层的厚度为10~40nm,优选12~30nm;
所述第三层硅铝复合氧化物层的厚度为15~80nm,优选20~50nm;
所述第四层钛铌复合氧化物层的厚度为20~90nm,优选30~60nm;
所述第五层硅铝复合氧化物层的厚度为5~60nm,优选5~30nm;
所述第六层钛铌复合氧化物层的厚度为20~80nm,优选25~60nm;所述第七层ITO层的厚度为2~10nm,优选5nm;
所述第八层硅铝复合氧化物层的厚度为60~130nm,优选70~100nm;
在一个具体的实施方式中,所述S1制备加硬层的步骤包括:将超声波清洗干净的树脂镜片基片浸入质量百分含量25~30%的加硬液水溶液中,浸渍温度10~20℃,浸渍5秒后以1.0~3.0mm/s的速度提 拉出溶液,再将其于70~90℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度100~150℃,固化时间120~180min,即得含加硬层的树脂镜片;
在一个具体的实施方式中,所述步骤S2制备超低反清底色防蓝光膜层的工艺包括:
在真空镀膜机内、采用真空镀膜工艺,将硅铝复合氧化物层、钛铌复合氧化物以及ITO固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射层,具体包括以下步骤:
S21:在步骤S1获得的树脂镜片表面交替分别形成硅铝复合氧化物层和钛铌复合氧化物层,即获得包括硅铝复合氧化物层和钛铌复合氧化物层的树脂镜片,具体包括:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热所述硅铝复合氧化物,以速率为
Figure PCTCN2022079856-appb-000001
将蒸发后的硅铝复合氧化物以纳米级分子形式沉积,获得含第一层硅铝复合氧化物层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热所述钛铌复合氧化物,以速率为
Figure PCTCN2022079856-appb-000002
将蒸发后的钛铌复合氧化物以纳米级分子形式沉积,获得含第二层钛铌复合氧化物层的树脂镜片;
S213:重复S211和S212步骤,分别交替形成第三层硅铝复合氧化物层和第四层钛铌复合氧化物层以及第五层硅铝复合氧化物层和第六层钛铌复合氧化物层,即形成包括第三层硅铝复合氧化物层、第四层钛铌复合氧化物层、第五层硅铝复合氧化物层以及第六层钛铌复 合氧化物层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000003
将蒸发后的ITO以纳米级分子形式沉积,获得含ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成一层含硅铝复合氧化物层的树脂镜片;
在S21~S23步骤中,所述离子源辅助沉积工艺参数为:离子源为霍尔源,阳极电压:90~140V,阳极电流:2.5~5A,辅助气为O 2,流量为10~30sccm;优选的,所述离子源辅助沉积工艺参数为:离子源为霍尔源,阳极电压:110V,阳极电流:3A,辅助气为O 2,流量为15sccm;
在一个具体的实施方式中,所述步骤S3:在S2获得的树脂镜片表面形成防水层包括以下步骤:在S23步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000004
将蒸发后的含氟防水材料(优选含有C 12F 27N的防水材料)以纳米级分子形式进行沉积,获得含防水层的树脂镜片。
在一个具体的实施方式中,所述硅铝复合氧化物我们委托常州市瞻驰光电科技股份有限公司开发并生产,所述硅铝复合氧化物层由SiO 2和Al 2O 3复合材料组成,且其中SiO 2占所述复合材料的摩尔分数为70%~95%,具体型号参见实施例和对比例;
在一个具体的实施方式中,所述钛铌复合氧化物我们委托常州市 瞻驰光电科技股份有限公司开发并生产,钛铌复合氧化物由TiO 2和Nb 2O 5组成,其中TiO 2的摩尔分数为10%~90%,具体型号参见实施例和对比例;
本发明选择的树脂镜片基片为本领域常规镜片调整其UV粉的含量以UV截止波长在405~407nm即可,UV截止波长的定义参照光学树脂镜片标准QB/T 2506-2017的5.4.2.4.4;
例如,一个具体的实施方式中,购买日本三井化学株式会社的型号为MR-8(折射率1.60)或者MR-7(折射率1.67)、且其UV截止波长为405~407nm的树脂镜片基片,以下简称“MR-8-UV405”或“MR-7-UV405”;或者在一个具体的实施方式中,购买江苏视科新材料股份有限公司开发并生产的折射率为1.56、其UV值截止波长为405~407nm的树脂镜片基片,以下简称“SK1.56-UV405”,该树脂镜片基片具体制备方法参见视客光学公司的专利:CN201410245692.6。
本发明选择常规加硬液体即可,例如在一个具体的实施方式中,选取伊藤光学工业株式会社的型号Z117或Z118(以下简称为“Z117”或“Z118”)加硬液;或者在一个具体的实施方式中选取度恩光学(常熟)有限公司型号为VH56(以下简称为“VH56”)的加硬液,选择上述加硬液制备本发明所述镜片,极大地提高了膜层之间的致密衔接性。
(一)实施例
实施例1
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(其中SiO 2和Al 2O 3摩尔量百分比:92%SiO 2: 8%Al 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为SA56)/24.6nm、钛铌复合氧化物层3-2(其中TiO 2和Nb 2O 5摩尔量百分比为:80%TiO 2:20%Nb 2O 5;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为PTN28)/18.8nm、硅铝复合氧化物层3-3/31.34nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/51.32nm、硅铝复合氧化物层3-5/10.41nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/34.38nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.63nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);
所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热硅铝复合氧化物,以速率为
Figure PCTCN2022079856-appb-000005
将蒸发后的硅铝复合氧化物以纳米级分子形式沉积,获得含第一层硅铝复合氧化物层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能 电子束加热钛铌复合氧化物,以速率为
Figure PCTCN2022079856-appb-000006
将蒸发后的钛铌复合氧化物以纳米级分子形式沉积,获得含第二层钛铌复合氧化物层的树脂镜片;
S213:重复S211和S212步骤,分别交替形成第三层硅铝复合氧化物和第四层钛铌复合氧化物层以及第五层硅铝复合氧化物层和第六层钛铌复合氧化物层,即形成包括第三层硅铝复合氧化物层、第四层钛铌复合氧化物层、第五层硅铝复合氧化物层以及第六层钛铌复合氧化物层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000007
将蒸发后的ITO以纳米级分子形式沉积,获得含第七层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第八层硅铝复合氧化物层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000008
将蒸发后的含有C 12F 27N的防水材料以纳米级分子形式沉积于S24获得的树脂镜片表面,即得。
实施例2
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(SK1.56-UV405);加硬层2(VH56)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/24.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/17.62nm、硅铝复合氧化物层3-3/32.39nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/50.9nm、硅铝复合氧化物层3-5/10.04nm(材料同3-1)、钛铌复合氧化物层3-6 (材料同3-2)/34.72nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.49nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);
所述树脂镜片的制备方法所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量30%、型号为Z118的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
其余步骤同实施例1。
实施例3
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-7-UV405);加硬层2(Z118)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/24.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/20.95nm、硅铝复合氧化物层3-3/29.21nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/53.23nm、硅铝复合氧化物层3-5/10.08nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/34.11nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.54nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);
所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z118的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min, 即得含加硬层的树脂镜片;
其余步骤同实施例1。
实施例4
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/1~2.6μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/25.6nm、钛铌复合氧化物层3-2(其中TiO 2和Nb 2O 5摩尔量百分比为:50%TiO 2:50%Nb 2O 5;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为PTN55)/18.88nm、硅铝复合氧化物层3-3/31.34nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/51.63nm、硅铝复合氧化物层3-5/10.41nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/34.59nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.63nm(材料同3-1);防水层4(采用含C 12F 27N的防水材料/10nm);其制备方法同实施例1。
实施例5
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/3~5μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/25.8nm、钛铌复合氧化物层3-2(其中TiO 2和Nb 2O 5摩尔量百分比为:20%TiO 2:80%Nb 2O 5;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为PTN57)/18.98nm、硅铝复合氧化物层3-3/31.95nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/51.84nm、硅铝复合氧化物层3-5/9.82nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/36.82nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/93.2nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/15nm);其制备方法同实施例1。
实施例6
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(其中SiO 2和Al 2O 3摩尔量百分比:80%SiO 2:20%Al 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为SA86)/27.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/18.8nm、硅铝复合氧化物层3-3/31.34nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/51.32nm、硅铝复合氧化物层3-5/10.41nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/34.38nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.63nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);其制备方法同实施例1。
(二)对比例
对比例1
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV400,UV=1%的截止值在400nm,在日本三井公司MR-8基础上调整UV染色剂得到);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/24.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/18.8nm、硅铝复合氧化物层3-3/31.34nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/51.32nm、硅铝复合氧化物层3-5/10.41nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/34.38nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.63nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);制备方法同实施例1。
对比例2
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV410,UV=1%的截止值在410nm,在日本三井公司MR-8基础上调整UV染色剂得到);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/24.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/18.8nm、硅铝复合氧化物层3-3/31.34nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/51.32nm、硅铝复合氧化物层3-5/10.41nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/34.38nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.63nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);制备方法同实施例1。
对比例3
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;超低反清底色防蓝光层3包括:SiO 2层3-1/25.6nm、ZrO 2层3-2/21.9nm、SiO 2层3-3/41.55nm、ZrO 2层3-4/49.18nm、SiO 2层3-5/10.11nm、ZrO 2层3-6/55.73nm、ITO层3-7/5nm;SiO 2层3-8/89.26nm;防水层4(采用含有C 12F 27N的防水材料/10nm);
其制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下 步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、无离子源辅助工艺的条件下,采用高能电子束加热SiO 2,以速率为
Figure PCTCN2022079856-appb-000009
将蒸发后的SiO 2以纳米级分子形式沉积,获得含第一层SiO 2层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、无离子源辅助工艺的条件下,采用高能电子束加热ZrO 2,以速率为
Figure PCTCN2022079856-appb-000010
将蒸发后的ZrO 2以纳米级分子形式沉积,获得含第二层ZrO 2层的树脂镜片;
S213:重复两次S211和S212步骤,分别交替形成第三层SiO 2,第四层ZrO 2层,第五层SiO 2和第六层ZrO 2层,即形成包括第三层SiO 2层、第四层ZrO 2层、第五层SiO 2和第六层ZrO 2层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000011
将蒸发后的ITO以纳米级分子形式沉积,获得含第七层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第八层SiO 2层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000012
将蒸发后的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例4
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基 片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/36.3nm、钛铌复合氧化物层3-2(材料型号为PTN28)/18.11nm、硅铝复合氧化物层3-3/166nm(材料同3-1)、钛铌复合氧化物层3-4/93.44nm(材料同3-2)、ITO层3-5/5nm、硅铝复合氧化物层3-6/75.8nm(材料同3-1);防水层4(采用含有C 12F 27N的防水材料/10nm);其制备方法包括以下步骤:
所述树脂镜片的制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热硅铝复合氧化物,以速率为
Figure PCTCN2022079856-appb-000013
将蒸发后的硅铝复合氧化物以纳米级分子形式沉积,获得含第一层硅铝复合氧化物层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热钛铌复合氧化物,以速率为
Figure PCTCN2022079856-appb-000014
将蒸发后的钛铌复合氧化物以纳米级分子形式沉积,获得含第二层钛铌复合氧化物层的树脂 镜片;
S213:重复S211和S212步骤,分别交替形成第三层硅铝复合氧化物和第四层钛铌复合氧化物层即形成包括第三层硅铝复合氧化物层和第四层钛铌复合氧化物层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000015
将蒸发后的ITO以纳米级分子形式沉积,获得含第五层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第六层硅铝复合氧化物层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000016
将蒸发后的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例5
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/24.6nm、TiO 2层3-2/18.8nm、硅铝复合氧化物层3-3/31.34nm(材料同3-1)、TiO 2层3-4/51.32nm、硅铝复合氧化物层3-5/10.41nm(材料同3-1)、TiO 2层3-6/34.38nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/92.63nm(材料同3-1);防水层4(采用含C 12F 27N的防水材料/10nm);
其制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍 5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热硅铝复合氧化物,以速率为
Figure PCTCN2022079856-appb-000017
将蒸发后的硅铝复合氧化物以纳米级分子形式沉积,获得含第一层硅铝复合氧化物层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
Figure PCTCN2022079856-appb-000018
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第二层TiO 2层的树脂镜片;
S213:重复S211和S212步骤,分别交替形成第三层硅铝复合氧化物和第四层TiO 2层以及第五层硅铝复合氧化物层和第六层TiO 2层,即形成包括第三层硅铝复合氧化物层、第四层TiO 2层、第五层硅铝复合氧化物层以及第六层TiO 2层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000019
将蒸发后的ITO以纳米级分子形式沉积,获得含第七层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第八层硅铝复合氧化物层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000020
将蒸发后的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例6
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:SiO 2层3-1/24.6nm、TiO 2层3-2/18.8nm、SiO 2层3-3/31.34nm、TiO 2层3-4/51.32nm、SiO 2层3-5/10.41nm、TiO 2层3-6/34.38nm、ITO层3-7/5nm;SiO 2层3-8/92.63nm;防水层4(采用含C 12F 27N的防水材料/10nm);其制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热SiO 2,以速率为
Figure PCTCN2022079856-appb-000021
将蒸发后的SiO 2以纳米级分子形式沉积,获得含第一层SiO 2层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热TiO 2,以速率为
Figure PCTCN2022079856-appb-000022
将蒸发后的TiO 2以纳米级分子形式沉积,获得含第二层TiO 2层的树脂镜片;
S213:重复S211和S212步骤,分别交替形成第三层SiO 2层和第四层TiO 2层以及第五层SiO 2层和第六层TiO 2层,即形成包括第三层SiO 2层、第四层TiO 2层、第五层SiO 2层以及第六层TiO 2层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000023
将蒸发后的ITO以纳米级分子形式沉积,获得含第七层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第八层SiO 2层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000024
将蒸发后的防水材料以纳米级分子形式沉积于S24获得的树脂镜片表面,即得。
对比例7
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:SiO 2层3-1/24.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/18.8nm、SiO 2层3-3/31.34nm、钛铌复合氧化物层3-4(材料同3-2)/51.32nm、SiO 2层3-5/10.41nm、钛铌复合氧化物层3-6(材料同3-2)/34.38nm、ITO层3-7/5nm;SiO 2层3-8/92.63nm;防水层4(采用含 C 12F 27N的防水材料/10nm);其制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热SiO 2,以速率为
Figure PCTCN2022079856-appb-000025
将蒸发后的SiO 2以纳米级分子形式沉积,获得含第一层SiO 2层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热钛铌复合氧化物,以速率为
Figure PCTCN2022079856-appb-000026
将蒸发后的钛铌复合氧化物以纳米级分子形式沉积,获得含第二层钛铌复合氧化物层的树脂镜片;
S213:重复S211和S212步骤,分别交替形成第三层SiO 2层和第四层钛铌复合氧化物层以及第五层SiO 2层和第六层钛铌复合氧化物层,即形成包括第三层SiO 2层、第四层钛铌复合氧化物层、第五层SiO 2层以及第六层钛铌复合氧化物层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000027
将蒸发后的ITO以纳米级分子形 式沉积,获得含第七层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第八层SiO 2层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000028
将蒸发后的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例8
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/3~5μm;减反射层3包括:硅铝复合氧化物层3-1(材料型号为SA56)/24.8nm;Nb 2O 5层3-2/18.98nm、硅铝复合氧化物层3-3/31.95nm(材料同3-1)、Nb 2O 5层3-4/51.84nm、硅铝复合氧化物层3-5/9.82nm(材料同3-1)、Nb 2O 5层3-6/32.86nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/93.2nm(材料同3-1);防水层4(采用含C 12F 27N的防水材料/15nm);
其制备方法包括以下步骤:
S1:制作加硬层:将超声波清洗干净的树脂镜片基片浸入质量百分含量27%、型号为Z117的加硬液水溶液中,浸渍温度15℃,浸渍5秒后以2.0mm/s的速度提拉出溶液;80℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度120℃,固化时间150min,即得含加硬层的树脂镜片;
S2制备超低反清底色防蓝光层:在真空镀膜机内、采用真空镀膜工艺,将固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成超低反清底色防蓝光层,具体包括以下步骤:
S21:包括以下步骤:
S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热硅铝复合氧化物,以速率为
Figure PCTCN2022079856-appb-000029
将蒸发后的硅铝复合氧化物以纳米级分子形式沉积,获得含第一层硅铝复合氧化物层的树脂镜片;
S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、有离子源辅助工艺的条件下,采用高能电子束加热Nb 2O 5,以速率为
Figure PCTCN2022079856-appb-000030
将蒸发后的Nb 2O 5以纳米级分子形式沉积,获得含第二层Nb 2O 5层的树脂镜片;
S213:重复S211和S212步骤,分别交替形成第三层硅铝复合氧化物和第四层Nb 2O 5层以及第五层硅铝复合氧化物层和第六层Nb 2O 5层,即形成包括第三层硅铝复合氧化物层、第四层Nb 2O 5层、第五层硅铝复合氧化物层以及第六层Nb 2O 5层的树脂镜片;
S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
Figure PCTCN2022079856-appb-000031
将蒸发后的ITO以纳米级分子形式沉积,获得含第七层ITO层的树脂镜片;
S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成含第八层硅铝复合氧化物层的树脂镜片;
S3制备防水层:在S23获得的树脂镜片表面形成防水层:在S2步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为60℃条件下,采用高能电子束加热材料,以速率为
Figure PCTCN2022079856-appb-000032
将蒸发后的防水材料以纳米级分子形式沉积于S23获得的树脂镜片表面,即得。
对比例9
一种超低反清底色防蓝光树脂镜片,依次排列包括:树脂镜片基片1(MR-8-UV405);加硬层2(Z117)/2.6~3μm;减反射层3包括:硅铝复合氧化物层3-1(其中SiO 2和Al 2O 3摩尔量百分比:60%SiO 2:40%Al 2O 3;委托常州市瞻驰光电科技股份有限公司开发并生产,材料型号为SA66)/24.6nm、钛铌复合氧化物层3-2(材料型号为PTN28)/15.31nm、硅铝复合氧化物层3-3/38.85nm(材料同3-1)、钛铌复合氧化物层3-4(材料同3-2)/43.19nm、硅铝复合氧化物层3-5/9.79nm(材料同3-1)、钛铌复合氧化物层3-6(材料同3-2)/42.12nm、ITO层3-7/5nm;硅铝复合氧化物层3-8/87.46nm(材料同3-1);防水层4(采用含C 12F 27N的防水材料/10nm);所述树脂镜片的制备方法同实施例1。
二、实验例
1.实施例1~6和对比例1~9的膜系结构如下表1所示:
表3
Figure PCTCN2022079856-appb-000033
2.测定镜片的平均反射率、防蓝光和黄色指数等光学效果
(1)预实验:我们对实施例以及对比例选用材料的折射率进行了测定,结果如下表2所示:
表2
Figure PCTCN2022079856-appb-000034
由此可见,为了满足镜片达到目标需求并保持与TiO 2同样的光学性能,选择与TiO 2折射率接近的钛铌复合氧化物材料。
表3
Figure PCTCN2022079856-appb-000035
由此可见,为了满足镜片达到目标需求并保持与SiO 2同样的光学性能,选择与SiO 2折射率接近的硅铝复合氧化物材料。
(2)测定实施例1~6和对比例1~9平均反射率和峰值反射率
对实施例1~6以及对比例1~9制备获得的镜片,测定其平均反射率(平均反射率:是指在C光(CIE中定义的色温6774K的光源)照明下的视觉平均反射率,在这里指单面的反射率),及可见光峰值反射率(指单面在400~700nm的最高反射率),测量结果记录在下表4中。
(3)测定实施例1~6和对比例1~9防蓝光国标和黄色指数
对实施例1~6以及对比例1~9制备获得的镜片,参照新的防蓝光国家标准QBT-38120-2019中蓝光防护膜的要求,测定其主要有害蓝光(415~445nm)和有益蓝光(445~475nm)的算术平均透过率,并测定其透射黄色指数(国标要求有害蓝光415~445nm平均透过率≤80%,有益蓝光445~475nm平均透过率>80%,黄色指数<5.0),测量结果记录在下表4中。
2.耐高温、耐久性和高温附着力实验
(1)耐高温实验:
完成样品(实施例1~6以及对比例1~9)后,存放一周后测试了样品的耐温性能。耐高温性能的测试方法是参照国家树脂镜片耐温标准(GB 10810.4-2012)中的第5.8条款:通过55℃30分钟的烘烤测试。通过后同样的方法每次增加5℃烘烤30分钟测试,直到镜片出现膜裂或橘皮等失效现象,并记录合格的最高温度,结果记录在如下表4中。
(2)耐久性实验:
光伏行业和光通讯行业用高温高湿来评估产品的耐久性。参照光伏行业测试标准(GB/T 18911-2002,IEC61646:1996的第10.13条)和光通讯行业(Ballcore Test,GR-1221-Core第6.2.5条)的测试方法,定义树脂镜片耐高温高湿测试调试为:85℃、85%湿度下的存储12小时,查看制备镜片是否存在膜裂或橘皮等明显失效现象;每次高温高湿测试放入不同位置的3片树脂镜片。实施例1~6以及对比例1~9的测试结果记录在如下表4中。
(3)高温附着力实验:
附着力测试指参照国标GB10810.4~2012中第5.9条的膜层附着力测试。高温膜层附着力测试是指万新公司参照国标GB10810.4~2012中第5.9条,将水煮条件改成90±2℃ 60分钟,其他测试方法都一样。附着力和高温附着力测试结果:等级A指的是不脱膜或脱膜面积小于5%,等级B指脱膜面积在5%~15%之间,等级C(不合格)指脱膜面积明显大于15%。为验证产品附着力分布,从镀膜室中5个不同位置做了高温附着力测试。实施例1~6以及对比例1~9的测试结果记录在如下表4中。
表4
Figure PCTCN2022079856-appb-000036
3.结论:
(1)超低反效果:实施例1~6均具有较低的可见光平均反射率0.25%~0.35%,以及较低的峰值反射率2.8~3.5%;而对比例3、4、8 和9达不到上述技术效果,即达不到超低反射的效果。
(2)实施例1~6均能够有效的截止有害蓝光,高透有益蓝光,在符合国家防蓝光标准的同时,黄色指数较低以实现镜片清透效果;而对比例1有害蓝光截止不符合国家防蓝光标准,对比例2和对比例4黄色指数较高,达不到镜片清透的视觉效果。
(3)在其他条件不变的情况下,镜片高折射率材料采用钛铌复合氧化物的耐高温性能、高温附着力、耐久性比其他常规材料更好;低折射率材料采用硅铝复合氧化物的耐高温性能、高温附着力、耐久性比其他常规材料更好;我们采用这两种特定配比材料制备膜系及其恰当的工艺以保证超低反清底色防蓝光产品的耐高温性和耐久性。

Claims (17)

  1. 一种超低反清底色防蓝光树脂镜片,其特征在于,包括:树脂镜片基片、加硬层以及超低反清底色防蓝光膜层;其中,所述树脂镜片基片、加硬层以及超低反清底色防蓝光膜层依次排列,所述加硬层位于所述树脂镜片基片表面,所述超低反清底色防蓝光膜层位于所述加硬层表面。
  2. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光树脂镜片还包括防水层,所述防水层位于所述超低反清底色防蓝光膜层表面;进一步的,所述防水层的厚度为4~20nm。
  3. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述树脂镜片基片UV截止波长为405~407nm。
  4. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述加硬层的材料主要成分为有机硅;进一步的,所述加硬层的厚度为1~5μm。
  5. 根据权利要求1或2所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光膜层包括硅铝复合氧化物层、钛铌复合氧化物层以及掺锡氧化铟(即ITO)层;更进一步的,所述超低反清底色防蓝光层包括四层硅铝复合氧化物层、三层钛铌复合氧化物层以及一层掺锡氧化铟(即ITO)层。
  6. 根据权利要求5所述的超低反清底色防蓝光树脂镜片,其特征在于,所述硅铝复合氧化物层由SiO 2和Al 2O 3复合材料组成,且其中SiO 2占所述复合材料的摩尔分数为70%~95%;进一步优选的,其中SiO 2占所述复合材料摩尔分数的92%。
  7. 根据权利要求5所述的超低反清底色防蓝光树脂镜片,其特征在于,所述钛铌复合氧化物层由TiO 2和Nb 2O 5复合材料组成,其中TiO 2占所述复合材料摩尔分数的10%~90%;优选的,其中TiO 2占所述复合材料摩尔分数的80%。
  8. 根据权利要求5所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光膜层的厚度为200~600nm。
  9. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光树脂镜片的平均反射率≤0.5%。
  10. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光树脂镜片在可见光波段400~700nm处峰值反射率≤3.5%。
  11. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光树脂镜片的反射光色坐标H值为260~280、且C值为12~30。
  12. 根据权利要求1所述的超低反清底色防蓝光树脂镜片,其特征在于,所述超低反清底色防蓝光树脂镜片的黄色指数≤5.5%。
  13. 一种上述超低反清底色防蓝光树脂耐高温镜片的制备方法,其特征在于,包括以下步骤:
    S1制备加硬层:在树脂镜片基片表面形成加硬层,即获得含加硬层的树脂镜片;
    S2制备超低反清底色防蓝光膜层:在S1获得的树脂镜片表面形成所述超低反清底色防蓝光膜层,即获得含超低反清底色防蓝光膜层的树脂镜片,具体包括:
    S21:在步骤S1获得的树脂镜片表面依次交替分别形成硅铝复合氧化物层和钛铌复合氧化物层,即获得包括三层硅铝复合氧化物层和三层钛铌复合氧化物层的树脂镜片;
    S22:在步骤S21获得的树脂镜片表面形成含一层ITO层的树脂镜片;
    S23:在步骤S22获得的树脂镜片表面再形成一层含硅铝复合氧化物层的树脂镜片;
    S3制备防水层:在步骤S2获得的树脂镜片表面形成防水层。
  14. 根据权利要求13所述超低反清底色防蓝光树脂耐高温镜片的制备方法,其特征在于,所述S1制备加硬层的步骤包括:将超声波清洗干净的树脂镜片基片浸入质量百分含量25~30%的加硬液水溶液中,浸渍温度10~20℃,浸渍5秒后以1.0~3.0mm/s的速度提拉出溶液,再将其于70~90℃烘干3小时后将上述基片取出并送至烘干箱内干燥固化,固化温度100~150℃,固化时间120~180min,即得含加硬层的树脂镜片。
  15. 根据权利要求13所述超低反清底色防蓝光树脂耐高温镜片的制备方法,其特征在于,所述步骤S2制备超低反清底色防蓝光膜层的工艺包括:
    在真空镀膜机内、采用真空镀膜工艺,将硅铝复合氧化物层、钛铌复合氧化物以及ITO固态膜层材料蒸发后经过气相传输,在S1步骤获得的树脂镜片表面沉积成薄膜,形成减反射层,具体包括以下步骤:
    S21:在步骤S1获得的树脂镜片表面交替分别形成硅铝复合氧化物层和钛铌复合氧化物层,即获得包括硅铝复合氧化物层和钛铌复合氧化物层的树脂镜片,具体包括:
    S211:在S1获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热所述硅铝复合氧化物,以速率为
    Figure PCTCN2022079856-appb-100001
    将蒸发后的硅铝复合氧化物以纳米级分子形式沉积,获得含第一层硅铝复合氧化物层的树脂镜片;
    S212:在S211获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、有离子源辅助工艺的条件下,采用高能电子束加热所述钛铌复合氧化物,以速率为
    Figure PCTCN2022079856-appb-100002
    将蒸发后的钛铌复合氧化物以纳米级分子形式沉积,获得含第二层钛铌复合氧化物 层的树脂镜片;
    S213:重复S211和S212步骤,分别交替形成第三层硅铝复合氧化物层和第四层钛铌复合氧化物层以及第五层硅铝复合氧化物层和第六层钛铌复合氧化物层,即形成包括第三层硅铝复合氧化物层、第四层钛铌复合氧化物层、第五层硅铝复合氧化物层以及第六层钛铌复合氧化物层的树脂镜片;
    S22:在S21获得的树脂镜片表面,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃、并有离子源辅助工艺的条件下,采用高能电子束加热ITO,以速率为
    Figure PCTCN2022079856-appb-100003
    将蒸发后的ITO以纳米级分子形式沉积,获得含ITO层的树脂镜片;
    S23:在S22获得的树脂镜片表面,继续采用真空镀膜工艺,重复S211的工艺步骤,再形成一层含硅铝复合氧化物层的树脂镜片。
  16. 根据权利要求15所述超低反清底色防蓝光树脂耐高温镜片的制备方法,其特征在于,在S21~S23步骤中,所述离子源辅助沉积工艺参数为:离子源为霍尔源,阳极电压:90~140V,阳极电流:2.5~5A,辅助气为O 2,流量为10~30sccm。
  17. 根据权利要求13所述超低反清底色防蓝光树脂耐高温镜片的制备方法,其特征在于,所述步骤S3:在S2获得的树脂镜片表面形成防水层包括以下步骤:在S23步骤获得的镜片表面,继续采用真空镀膜工艺,在本底真空度≤3×10 -3Pa、且镀膜舱内的温度为50~70℃条件下,采用高能电子束加热材料,以速率为
    Figure PCTCN2022079856-appb-100004
    将蒸发后的含氟防水材料以纳米级分子形式进行沉积,获得含防水层的树脂镜片。
PCT/CN2022/079856 2021-04-07 2022-03-09 一种超低反清底色防蓝光树脂镜片及其制备方法 WO2022213763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369919.8A CN113009713A (zh) 2021-04-07 2021-04-07 一种超低反清底色防蓝光树脂镜片及其制备方法
CN202110369919.8 2021-04-07

Publications (1)

Publication Number Publication Date
WO2022213763A1 true WO2022213763A1 (zh) 2022-10-13

Family

ID=76388373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079856 WO2022213763A1 (zh) 2021-04-07 2022-03-09 一种超低反清底色防蓝光树脂镜片及其制备方法

Country Status (2)

Country Link
CN (1) CN113009713A (zh)
WO (1) WO2022213763A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009713A (zh) * 2021-04-07 2021-06-22 江苏万新光学有限公司 一种超低反清底色防蓝光树脂镜片及其制备方法
CN115598860A (zh) * 2022-10-31 2023-01-13 江苏万新光学有限公司(Cn) 一种弱吸收低反清底色防蓝光树脂镜片及其制备方法
CN115616797A (zh) * 2022-10-31 2023-01-17 江苏万新光学有限公司 一种清底色防蓝光防红外树脂镜片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151041A1 (en) * 2015-10-02 2017-04-05 Tokai Optical Co., Ltd. An optical film and spectacle lens
CN107728239A (zh) * 2017-11-24 2018-02-23 江苏康耐特光学有限公司 一种防蓝光防眩光镀膜树脂镜片及其制备方法
CN110908142A (zh) * 2019-12-25 2020-03-24 江苏汇鼎光学眼镜有限公司 一种减反射防蓝光镜片及其生产工艺
CN112415639A (zh) * 2020-11-27 2021-02-26 江苏万新光学有限公司 一种低反射防红外耐高温树脂镜片及其制备方法
CN113009713A (zh) * 2021-04-07 2021-06-22 江苏万新光学有限公司 一种超低反清底色防蓝光树脂镜片及其制备方法
CN215895150U (zh) * 2021-04-07 2022-02-22 江苏万新光学有限公司 一种超低反清底色防蓝光树脂镜片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151041A1 (en) * 2015-10-02 2017-04-05 Tokai Optical Co., Ltd. An optical film and spectacle lens
CN107728239A (zh) * 2017-11-24 2018-02-23 江苏康耐特光学有限公司 一种防蓝光防眩光镀膜树脂镜片及其制备方法
CN110908142A (zh) * 2019-12-25 2020-03-24 江苏汇鼎光学眼镜有限公司 一种减反射防蓝光镜片及其生产工艺
CN112415639A (zh) * 2020-11-27 2021-02-26 江苏万新光学有限公司 一种低反射防红外耐高温树脂镜片及其制备方法
CN113009713A (zh) * 2021-04-07 2021-06-22 江苏万新光学有限公司 一种超低反清底色防蓝光树脂镜片及其制备方法
CN215895150U (zh) * 2021-04-07 2022-02-22 江苏万新光学有限公司 一种超低反清底色防蓝光树脂镜片

Also Published As

Publication number Publication date
CN113009713A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022213763A1 (zh) 一种超低反清底色防蓝光树脂镜片及其制备方法
WO2024093105A1 (zh) 一种弱吸收低反清底色防蓝光树脂镜片及其制备方法
CN112415639A (zh) 一种低反射防红外耐高温树脂镜片及其制备方法
WO2024093106A1 (zh) 一种清底色防蓝光防红外树脂镜片及其制备方法
CN111381299B (zh) 一种低反射色中性低应力树脂镜片及其制备方法
JP2023115322A (ja) 外部塗装用の耐久性のあるハイブリッド全方向構造色顔料
CN215895150U (zh) 一种超低反清底色防蓝光树脂镜片
JP3779174B2 (ja) 蒸着組成物、それを利用した反射防止膜の形成方法及び光学部材
CN206618874U (zh) 一种防蓝光膜结构和防蓝光镜片
WO2022206316A1 (zh) 一种减反射防宽红外耐高温树脂镜片及其制备方法
CN114879380A (zh) 一种淡橙色超清底色防蓝光树脂镜片及其制备方法
CN113031309B (zh) 一种减反射防近红外激光的树脂镜片
WO2024138917A1 (zh) 一种弱吸收日夜低反清底色防蓝光树脂镜片及其制备方法
WO2024138918A1 (zh) 一种弱吸收低反清底色防蓝光树脂镜片及其制备方法
CN216817106U (zh) 一种高近红外反射增透膜设计的镜片
CN106405687B (zh) 一种防蓝光膜结构和防蓝光镜片及其应用
CN217787531U (zh) 一种淡橙色超清底色防蓝光树脂镜片
CN212515108U (zh) 一种低反射色中性低应力的树脂镜片
CN112415640A (zh) 一种防护绿色激光笔的树脂镜片及其制备方法
CN113151783A (zh) 一种组合型反射膜及其制备方法
CN220271693U (zh) 一种弱吸收日夜低反清底色防蓝光树脂镜片
CN219435152U (zh) 一种弱吸收低反清底色防蓝光树脂镜片
JPH02291502A (ja) プラスチックレンズ用多層反射防止膜
CN113031308B (zh) 一种减反射防近红外激光树脂镜片的制备方法
CN213398961U (zh) 一种低应力耐高温的树脂镜片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783832

Country of ref document: EP

Kind code of ref document: A1