WO2022206234A1 - 用于信息传输的方法和装置 - Google Patents

用于信息传输的方法和装置 Download PDF

Info

Publication number
WO2022206234A1
WO2022206234A1 PCT/CN2022/077847 CN2022077847W WO2022206234A1 WO 2022206234 A1 WO2022206234 A1 WO 2022206234A1 CN 2022077847 W CN2022077847 W CN 2022077847W WO 2022206234 A1 WO2022206234 A1 WO 2022206234A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
rlc
identifier
iab donor
signaling
Prior art date
Application number
PCT/CN2022/077847
Other languages
English (en)
French (fr)
Inventor
刘菁
朱元萍
史玉龙
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023019919A priority Critical patent/BR112023019919A2/pt
Priority to EP22778419.6A priority patent/EP4311301A4/en
Publication of WO2022206234A1 publication Critical patent/WO2022206234A1/zh
Priority to US18/476,218 priority patent/US20240022990A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to an integrated IAB network for access and backhaul, and in particular, to a method and apparatus for information transmission.
  • IAB donor CU integrated access and backhaul donor central unit
  • the information transmission between the terminal device and the IAB donor CU is controlled by the IAB donor CU, which cannot realize the information transmission in the cross-network topology scenario, which affects the performance of the information transmission in the cross-network topology scenario (such as , information interruption and delay, unbalanced network load, etc.), so how to realize information transmission in cross-network topology scenarios and improve the performance of information transmission has become an urgent problem to be solved.
  • the present application provides a method and apparatus for information transmission, which can realize information transmission in a cross-network topology scenario.
  • the present application provides a method for information transmission, which can be performed by a centralized unit (integrated access and backhaul donor central unit, IAB donor CU) of a first host node, or, It can also be performed by a chip or circuit provided in the first IAB donor CU, which is not limited in this application.
  • IAB donor CU integrated access and backhaul donor central unit
  • the method for information transmission includes:
  • the centralized unit IAB donor CU of the first host node determines the first quality of service QoS information of the data and/or the signaling type of signaling, and the first QoS information is used to determine the second IAB donor CU to manage the data.
  • Transmission in the network topology the signaling type is used to determine the transmission of the signaling in the second network topology; the first IAB donor CU sends a first message to the second IAB donor CU, and the first message includes the The first QoS information and/or the indication information of the signaling type, wherein, the data and/or signaling are transmitted through the first network topology and the second network topology managed by the first IAB donor CU.
  • the first IAB donor CU determines and sends the second IAB donor CU information about the second IAB donor CU to the second IAB donor CU.
  • the required QoS information and/or signaling type of signaling can ensure that data and/or signaling can be transmitted across network topologies, and can improve the transmission performance when data and/or signaling are transmitted across network topologies.
  • the service interruption delay can be reduced, such as the link between the border node and the parent node in the first network topology. If the road quality is not good, the border node can continue to transmit services with the parent node in the second network topology.
  • the first IAB donor can decide which parent node and border node to transmit data through according to the load situation, so that data services are transmitted on different paths, so that the network load can be balanced.
  • the first QoS information of the data determined by the first IAB donor CU includes: the first IAB donor CU determines the second QoS information and the second QoS information according to the QoS corresponding to the data.
  • the first QoS information; the method further includes: the first IAB donor CU determines the transmission of the data in the first network topology according to the second QoS information, and/or the first IAB donor CU determines the signaling type according to the signaling type. Transmission of signaling in the first network topology.
  • the first IAB donor CU can determine the second QoS information required by the first IAB donor CU and the first required by the second IAB donor CU according to the QoS information corresponding to the data QoS information, on the premise that the data can be transmitted across the network topology, realize the QoS guarantee in the transmission process.
  • the first message further includes a first routing identifier and/or a first backhaul radio link control channel BH RLC CH identifier;
  • the first network topology includes the first A node and a second node, the first routing identifier is used to identify the first path for transmitting the data and/or the signaling between the first node and the second node, and the first BH RLC CH identifier is used to identify The first BH RLC CH of the data and/or the signaling is transmitted between the first node and a child node of the first node, the first node is a border node, and the second node is an access node of a terminal device.
  • the first message also includes general packet radio service tunneling protocol (general packet radio service tunneling protocol, GTP) tunnel information, wherein the GTP tunnel information is used for Identifies this data.
  • GTP general packet radio service tunneling protocol
  • the first message further includes the QoS identified by the first BH RLC CH.
  • the first message further includes first indication information, where the first indication information is used to indicate that the first path and/or the first BH RLC CH use for uplink transmission or downlink transmission.
  • the second network topology includes the first node and the third node
  • the method further includes: the first IAB donor CU receiving data from the second IAB donor CU
  • the second message, the second message includes a second routing identifier corresponding to the first routing identifier, and/or a second BH RLC CH identifier corresponding to the first BH RLC CH identifier.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second path and/or the second BH RLC CH use for uplink transmission or downlink transmission.
  • the method further includes: the first IAB donor CU sends a third message to the first node, where the third message includes the first routing identifier and the first routing identifier Two routing identifiers, and/or, the first BH RLC CH identifier and the second BH RLC CH identifier; wherein, the second routing identifier is used to identify the transmission of the data and/or between the first node and the third node
  • the second BH RLC CH identifies the second BH RLC CH used to identify the data and/or signaling between the first node and the parent node of the first node, the third node For the second IAB donor DU.
  • the transmission of information includes a transmission path and a BH RLC CH, and the transmission of information in the network topology can be accurately determined by determining the identification path routing identification and the identification of the identification BH RLC CH.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or Downlink transmission, and/or, is used to indicate that the first BH RLC CH and the second BH RLC CH are used for uplink transmission or downlink transmission.
  • the method further includes: the first IAB donor CU receiving a second message from the second IAB donor CU, the second message including a second routing identifier, and /or, a second BH RLC CH identifier; wherein, the second network topology includes a first node and a third node, and the second routing identifier is used to identify the first node and the third node to transmit the data and/or The second path of signaling, the second BH RLC CH is used to identify the second BH RLC CH for transmitting the data and/or signaling between the first node and the parent node of the first node, the first node is the boundary node, and the third node is the second IAB donor DU.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second path and/or the second BH RLC CH use for uplink transmission or downlink transmission.
  • the first network topology includes the first node and the second node, and the method further includes: the first IAB donor CU determines that the second routing identifier corresponds to and/or the first BH RLC CH identifier corresponding to the second BH RLC CH identifier.
  • the method further includes: the first IAB donor CU sends a third message to the first node, where the third message includes the first routing identifier and the first routing identifier Two routing identifiers, and/or, the first BH RLC CH identifier and the second BH RLC CH identifier; wherein, the first routing identifier is used to identify the transmission of the data and/or between the first node and the second node or the path where the signaling is located, the first BH RLC CH identifier is used to identify the first BH RLC CH for transmitting the data and/or the signaling between the first node and the child nodes of the first node, the second BH RLC CH
  • the node is the access node of the terminal device.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or Downlink transmission, and/or, is used to indicate that the first BH RLC CH and the second BH RLC CH are used for uplink transmission or downlink transmission.
  • a method for information transmission is provided, and the method for information transmission can be performed by a second IAB donor CU, or can also be implemented by a chip or circuit provided in the second IAB donor CU implementation, which is not limited in this application.
  • the method for information transmission includes:
  • the second IAB donor CU receives the first message from the first IAB donor CU, where the first message includes the first quality of service QoS information and/or the indication information of the signaling type; the second IAB donor CU according to the first QoS information determine the transmission of the data in the second network topology managed by the second IAB donor CU; and/or the second IAB donor CU determines the transmission of the signaling in the second network topology according to the signaling type.
  • the first IAB donor CU determines and sends the second IAB donor CU information about the second IAB donor CU to the second IAB donor CU. required QoS information and/or signaling type of signaling to ensure that data and/or signaling can be transmitted across network topologies.
  • the first message further includes a first routing identifier and/or a first backhaul radio link control channel BH RLC CH identifier;
  • the first IAB donor CU manages
  • the first network topology includes a first node and a second node, the first routing identifier is used to identify the first path for transmitting the data and/or the signaling between the first node and the second node, the first routing The BH RLC CH identifier is used to identify the first BH RLC CH for transmitting the data and/or the signaling between the first node and the child nodes of the first node, the first node is a border node, and the second node is a The access node of the terminal device.
  • the first message further includes GTP tunnel information, where the GTP tunnel information is used to identify the data.
  • the first message further includes the QoS identified by the first BH RLC CH.
  • the first message further includes first indication information, where the first indication information is used to indicate that the first path and/or the first BH RLC CH use for uplink transmission or downlink transmission.
  • the method further includes: the second IAB donor CU sends a second message to the first IAB donor CU, where the second message includes a connection with the first route A second routing identifier corresponding to the identifier, and/or a second BH RLC CH identifier corresponding to the first BH RLC CH identifier; wherein, the second network topology includes the first node and the third node, and the second routing The identification is used to identify the second path for transmitting the data and/signaling between the first node and the third node, and the second BH RLC CH identification is used to identify the relationship between the first node and the parent node of the first node.
  • the second BH RLC CH that transmits the data and/or signaling between, the third node is the second IAB donor DU.
  • the method further includes: the second IAB donor CU sending a second message to the first IAB donor CU, the second message including a second routing identifier, and /or, a second BH RLC CH identifier; wherein, the second network topology includes a first node and a third node, and the second routing identifier is used to identify the first node and the third node to transmit the data and/or The second path of signaling, the second BH RLC CH is used to identify the second BH RLC CH for transmitting the data and/or signaling between the first node and the parent node of the first node, the first node is the boundary node, and the third node is the second IAB donor DU.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second path and/or the second BH RLC CH use for uplink transmission or downlink transmission.
  • a method for information transmission is provided.
  • the method for information transmission can be executed by a first node, or can also be executed by a chip or circuit provided in the first node. This application This is not limited.
  • the method for information transmission includes:
  • the first node receives the third message from the first IAB donor CU, the third message includes the first routing identifier and the second routing identifier, and/or, the first BH RLC CH identifier and the second BH RLC CH identifier, the A node determines, according to the first routing identifier and the second routing identifier, the transmission of data and/or signaling in the first network topology managed by the first IAB donor CU and the second network managed by the second IAB donor CU Route conversion between transmissions in the topology; the first node determines, according to the first BH RLC CH identity and the second BH RLC CH identity, the transmission of the data and/or the signaling in the first network topology and the Bearer mapping conversion between transmissions in the second network topology; wherein the first network topology includes the first node and the second node, and the first routing identifier is used to identify the relationship between the first node and the second node The first path for transmitting the data and/or the signaling between the first node and the
  • a BH RLC CH the first node is a border node, the second node is an access node of a terminal device, the second network topology includes the first node and a third node, and the second routing identifier is used to identify the first node.
  • the first IAB donor CU sends data and/or signaling to the first node in the first network information required for transmission in the topology and the second network topology to ensure that the transmission across the network topology can be achieved.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or Downlink transmission, and/or, is used to indicate that the first BH RLC CH and the second BH RLC CH are used for uplink transmission or downlink transmission.
  • a fourth aspect provides an apparatus for information transmission, the apparatus for information transmission comprising:
  • a processing unit configured to determine the first quality of service QoS information of the data and/or the signaling type of signaling, the first QoS information is used to determine the transmission of the data in the second network topology managed by the second IAB donor CU, the signaling type is used to determine the transmission of the signaling in the second network topology;
  • a sending unit configured to send a first message to the second IAB donor CU, where the first message includes the first QoS information and/or the indication information of the signaling type
  • the data and/or signaling are transmitted through the first network topology and the second network topology managed by the first IAB donor CU.
  • the processing unit determines that the first quality of service QoS information of the data includes:
  • the processing unit determines the second QoS information and the first QoS information according to the QoS corresponding to the data
  • the processing unit is further configured to determine the transmission of the data in the first network topology according to the second QoS information, and/or
  • the transmission of the signaling in the first network topology is determined according to the signaling type.
  • the first message further includes a first routing identifier and/or a first backhaul radio link control channel BH RLC CH identifier;
  • the first network topology includes a first node and a second node
  • the first routing identifier is used to identify a first path for transmitting the data and/or the signaling between the first node and the second node
  • the BH RLC CH identifier is used to identify the first BH RLC CH for transmitting the data and/or the signaling between the first node and the child nodes of the first node
  • the first node is a border node
  • the second node is a The access node of the terminal device.
  • the first message further includes first indication information, where the first indication information is used to indicate that the first path and/or the first BH RLC CH use for uplink transmission or downlink transmission.
  • the apparatus further includes:
  • a receiving unit configured to receive a second message from the second IAB donor CU, the second message includes a second routing identification corresponding to the first routing identification, and/or, corresponding to the first BH RLC CH identification The second BH RLC CH identifier of ;
  • the sending unit is further configured to send a third message to the first node, where the third message includes the first routing identifier and the second routing identifier, and/or the first BH RLC CH identifier and the second BH RLC CH logo;
  • the second network topology includes the first node and the third node
  • the second routing identifier is used to identify the second path for transmitting the data and/or signaling between the first node and the third node
  • the The two BH RLC CH identifiers are used to identify the second BH RLC CH for transmitting the data and/or signaling between the first node and the parent node of the first node
  • the third node is the second IAB donor DU.
  • the second message further includes second indication information, and the second indication information is used to indicate that the second path and/or the second BH RLC CH use for uplink transmission or downlink transmission;
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or downlink transmission, and/or, used to indicate the first BH RLC CH and the second BH RLC CH for uplink transmission or downlink transmission.
  • the apparatus further includes:
  • a receiving unit configured to receive a second message from the second IAB donor CU, where the second message includes a second routing identifier, and/or a second BH RLC CH identifier;
  • the second network topology includes a first node and a third node
  • the second routing identifier is used to identify a second path for transmitting the data and/or signaling between the first node and the third node
  • the second routing identifier The BH RLC CH identifier is used to identify the second BH RLC CH for transmitting the data and/or signaling between the first node and the parent node of the first node, the first node is a border node, and the third node is the first node.
  • the first network topology includes the first node and the second node, and the method further includes:
  • the processing unit is further configured to determine a first routing identifier corresponding to the second routing identifier and a first BH RLC CH identifier corresponding to the second BH RLC CH identifier;
  • the sending unit is further configured to send a third message to the first node, where the third message includes the first routing identifier and the second routing identifier, and/or the first BH RLC CH identifier and the second BH RLC CH logo;
  • the first routing identifier is used to identify the first path for transmitting the data and/or the signaling between the first node and the second node
  • the first BHRLC CH identifier is used to identify the first node and/or the signaling.
  • the first BHRLC CH of the data and/or the signaling is transmitted between the child nodes of the first node, and the second node is the access node of the terminal device.
  • the second message further includes second indication information, and the second indication information is used to indicate that the second path and/or the second BH RLC CH use for uplink transmission or downlink transmission;
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or downlink transmission, and/or, used to indicate the first BH RLC CH and the second BH RLC CH for uplink transmission or downlink transmission.
  • a fifth aspect provides an apparatus for information transmission, the apparatus for information transmission comprising:
  • a receiving unit configured to receive the first message from the first IAB donor CU, the first message including the first quality of service QoS information and/or the indication information of the signaling type;
  • a processing unit for determining, according to the first QoS information, the transmission of the data in the second network topology managed by the second IAB donor CU;
  • the transmission of the signaling in the second network topology is determined according to the signaling type.
  • the first message further includes a first routing identifier and/or a first backhaul radio link control channel BH RLC CH identifier;
  • the first network topology managed by the first IAB donor CU includes a first node and a second node, and the first routing identifier is used to identify the data and/or the signaling between the first node and the second node.
  • the first path, the first BH RLC CH identifier is used to identify the first BH RLC CH for transmitting the data and/or the signaling between the first node and the child nodes of the first node, and the first node is the boundary node, the second node is the access node of the terminal device.
  • the first message further includes first indication information, where the first indication information is used to indicate that the first path and/or the first BH RLC CH use for uplink transmission or downlink transmission.
  • the apparatus further includes:
  • a sending unit for sending a second message to the first IAB donor CU, the second message includes a second routing identifier corresponding to the first routing identifier, and/or, corresponding to the first BH RLC CH identifier The second BH RLC CH logo;
  • the second network topology includes the first node and the third node
  • the second routing identifier is used to identify the second path for transmitting the data and/or signaling between the first node and the third node
  • the The two BH RLC CH identifiers are used to identify the second BH RLC CH for transmitting the data and/or signaling between the first node and the parent node of the first node
  • the third node is the second IAB donor DU.
  • the first message further includes first indication information, where the first indication information is used to indicate that the first path and/or the first BH RLC CH use for uplink transmission or downlink transmission;
  • the second message further includes second indication information, where the second indication information is used to indicate that the second path and/or the second BH RLC CH are used for uplink transmission or downlink transmission.
  • the apparatus further includes:
  • a sending unit configured to send a second message to the first IAB donor CU, where the second message includes a second routing identifier, and/or a second BH RLC CH identifier;
  • the second network topology includes a first node and a third node
  • the second routing identifier is used to identify a second path for transmitting the data and/or signaling between the first node and the third node
  • the second routing identifier The BH RLC CH identifier is used to identify the second BH RLC CH for transmitting the data and/or signaling between the first node and the parent node of the first node, the first node is a border node, and the third node is the first node.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second path and/or the second BH RLC CH use for uplink transmission or downlink transmission.
  • an apparatus for information transmission includes:
  • the processing unit is used to determine, according to the first routing identification and the second routing identification, the transmission of data and/or signaling in the first network topology managed by the first IAB donor CU and the transmission of data and/or signaling in the first network topology managed by the second IAB donor CU. Route translation between transmissions in the second network topology;
  • the processing unit is further configured to determine the transmission of the data and/or the signaling in the first network topology and the transmission in the second network topology according to the first BH RLC CH identifier and the second BH RLC CH identifier Bearer mapping conversion between;
  • the first network topology includes the device and the second node
  • the first routing identifier is used to identify the first path for transmitting the data and/or the signaling between the device and the second node
  • the first BH The RLC CH identifier is used to identify the first BH RLC CH for transmitting the data and/or the signaling between the device and the child nodes of the first node
  • the device is a border node
  • the second node is the access point of the terminal equipment node
  • the second network topology includes the device and a third node, the second routing identifier is used to identify a second path for transmitting the data and/or signaling between the device and the third node, and the second BH RLC CH identifier is used for A second BH RLC CH for transmitting the data and/or signaling between the device and the parent node of the first node, the third node being the second IAB donor DU.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or Downlink transmission, and/or, is used to indicate that the first BH RLC CH and the second BH RLC CH are used for uplink transmission or downlink transmission.
  • a seventh aspect provides a device for information transmission, which includes a processor for implementing the function of the first IAB donor CU in the method described in the above-mentioned first aspect.
  • the apparatus for information transmission may also include a memory, which is coupled to the processor, and the processor is used to implement the function of the first IAB donor CU in the method described in the first aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute the program instructions stored in the memory for realizing the function of the first IAB donor CU in the method described in the first aspect above.
  • the apparatus for information transmission may further include a communication interface, and the communication interface is used for the apparatus for information transmission to communicate with other devices.
  • the communication interface can be a transceiver, an input/output interface, or a circuit or the like.
  • the device for information transmission includes: a processor and a communication interface
  • the processor is configured to run a computer program, so that the apparatus for information transmission implements any one of the methods described in the first aspect;
  • the processor communicates with the outside using the communication interface.
  • the external may be an object other than the processor, or an object other than the apparatus.
  • the means for information transmission is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a device for information transmission includes a processor for implementing the function of the second IAB donor CU in the method described in the above-mentioned second aspect.
  • the apparatus for information transmission may further include a memory, which is coupled to the processor, and the processor is configured to implement the function of the second IAB donor CU in the method described in the second aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute the program instructions stored in the memory for implementing the function of the second IAB donor CU in the method described in the second aspect above.
  • the apparatus for information transmission may further include a communication interface, and the communication interface is used for the apparatus for information transmission to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit or the like.
  • the means for information transmission includes: a processor and a communication interface
  • the processor communicates with the outside using the communication interface
  • the processor is used for running a computer program, so that the apparatus for information transmission implements any one of the methods described in the second aspect above.
  • the external may be an object other than the processor, or an object other than the apparatus.
  • the means for information transmission is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • an apparatus for information transmission includes a processor for implementing the function of the first node in the method described in the third aspect above.
  • the apparatus for information transmission may further include a memory coupled to the processor, where the processor is configured to implement the function of the first node in the method described in the third aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement the function of the first node in the method described in the third aspect above.
  • the apparatus for information transmission may further include a communication interface, and the communication interface is used for the apparatus for information transmission to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, a circuit, or the like.
  • the means for information transmission includes: a processor and a communication interface
  • the processor communicates with the outside using the communication interface
  • the processor is used for running a computer program, so that the apparatus for information transmission implements any one of the methods described in the third aspect above.
  • the external may be an object other than the processor, or an object other than the apparatus.
  • the means for information transmission is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer-readable storage medium is run on a computer, the computer executes the methods described in the above aspects.
  • the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • a twelfth aspect provides a communication system, including the apparatus for information transmission shown in the fourth aspect, the apparatus for information transmission shown in the fifth aspect, and the device for use in the sixth aspect shown in the sixth aspect. device for information transmission.
  • a chip device including a processing circuit configured to call and run a program from a memory, so that a communication device installed with the chip device executes any one of the first to third aspects above methods in possible implementations.
  • FIG. 1 is an architectural diagram of an IAB system applicable to the technical solution of the present application.
  • FIG. 2 is a scene diagram of information return.
  • FIG. 4 is an example of a user plane protocol stack architecture of a multi-hop IAB network.
  • FIG. 5 is an example of a control plane protocol stack architecture of a multi-hop IAB network.
  • FIG. 6 is a schematic diagram of a mapping relationship among RLC channels, logical channels and protocol entities.
  • FIG. 8 is a schematic flowchart of a method for information transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of QoS information division according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a process of determining route mapping provided by the present application.
  • FIG. 11 is a schematic diagram of a flowchart of determining bearer mapping provided by the present application.
  • FIG. 12 is a schematic diagram of another flow of determining route mapping provided by the present application.
  • FIG. 13 is a schematic diagram of another flow of determining bearer mapping provided by the present application.
  • FIG. 14 is a schematic diagram of another flow of determining route mapping provided by the present application.
  • FIG. 15 is a schematic diagram of another flowchart of determining bearer mapping provided by the present application.
  • FIG. 16 is a schematic diagram of another flow of determining route mapping provided by the present application.
  • FIG. 17 is a schematic diagram of another flowchart of determining bearer mapping provided by the present application.
  • FIG. 18 are schematic diagrams of the CP-UP separation scenario of the IAB donor provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of an apparatus 1800 for information transmission proposed in this application.
  • FIG. 20 is a schematic structural diagram of a first IAB donor CU applicable to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of an apparatus 2000 for information transmission proposed in this application.
  • FIG. 22 is a schematic structural diagram of a second IAB donor CU applicable to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of an apparatus 2200 for information transmission proposed in this application.
  • FIG. 24 is a schematic structural diagram of a first node applicable to this embodiment of the present application.
  • the communication systems mentioned in the embodiments of the present application include, but are not limited to: narrow band-internet of things (NB-IoT) systems, wireless local access network (WLAN) systems, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), 5G mobile communication system or communication system after 5G, such as NR, device to device (device to device) device, D2D) communication system, machine to machine (M2M) communication system, Internet of Things (Internet of Things, IoT) communication system or other communication systems.
  • NB-IoT narrow band-internet of things
  • WLAN wireless local access network
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • 5G mobile communication system or communication system after 5G such as NR, device to device (device to device) device, D2D) communication system, machine to machine (M2M) communication system, Internet of Things (Internet of Things, IoT) communication system
  • the terminal equipment (terminal equipment) in the embodiments of the present application may refer to an unmanned aerial vehicle (UAV), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile station Device, user terminal (user terminal), user equipment (UE), terminal (terminal), wireless communication device, user agent or user equipment.
  • UAV unmanned aerial vehicle
  • UE user equipment
  • terminal terminal equipment
  • wireless communication device user agent or user equipment.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of the public land mobile network (PLMN)
  • PLMN public land mobile network
  • a wearable device may also be referred to as a wearable smart device, which is a general term for intelligently designing daily wearable devices and developing wearable devices using wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Interconnection, the intelligent network of the interconnection of things and things.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, a narrow band (narrow band, NB) technology.
  • NB narrow band
  • the terminal device may also include sensors such as smart printers, train detectors, and gas stations, and the main functions include collecting data (part of terminal devices), receiving control information and downlink data of base stations or nodes, and sending them. Electromagnetic waves that transmit uplink data to base stations or nodes.
  • the base station in this embodiment of the present application may be any communication device with a wireless transceiver function that is used to communicate with a terminal device.
  • Base stations include but are not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), Base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system connection Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • AP evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base station controller
  • BTS base station controller
  • home base station home evolved NodeB, HeNB, or
  • the gNB in the system can also be a 5G system, such as NR
  • the gNB in the system or the transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, it can also be a network node that constitutes a gNB or a transmission point, such as Baseband unit (BBU), or distributed unit (distributed unit, DU), etc.
  • BBU Baseband unit
  • DU distributed unit
  • the base station in this embodiment of the present application may refer to a centralized unit (central unit, CU) or DU.
  • the base station includes CUs and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • AAU active antenna unit
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, therefore, in this architecture, the higher-layer signaling, such as the RRC layer signaling, can also be considered to be sent by the DU. , or, sent by DU+AAU.
  • the base station may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU may be divided into base stations in an access network (radio access network, RAN), or the CU may be divided into base stations in a core network (core network, CN), which is not limited in this application.
  • the CU can be further divided into a central unit of the control plane (CU-CP) and a central unit of the user plane (CU-UP).
  • CU-CP and CU-UP can also be deployed on different physical devices
  • CU-CP is responsible for control plane functions, mainly including RRC layer and PDCP-C layer.
  • the PDCP-C layer is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP layer and PDCP-U layer.
  • the SDAP layer is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • the PDCP-U layer is mainly responsible for at least one function of data plane encryption and decryption, integrity protection, header compression, serial number maintenance, and data transmission.
  • the CU-CP and the CU-UP are connected through a communication interface (eg, an E1 interface).
  • CU-CP represents that the base station is connected with core network equipment through a communication interface (eg, Ng interface), and is connected with DU through a communication interface (eg, F1-C (control plane) interface).
  • the CU-UP is connected to the DU through a communication interface (eg, F1-U (user plane) interface).
  • the PDCP-C layer is also included in the CU-UP.
  • the base station mentioned in the embodiments of this application may be a device including a CU, or a DU, or a device including a CU and a DU, or a control plane CU node (CU-CP node), a user plane CU node (CU-UP node), and a DU node device of.
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • DU node device of a device including a CU, or a DU, or a control plane CU node (CU-CP node), a user plane CU node (CU-UP node), and a DU node device of.
  • the embodiments of the present application also involve wireless backhaul nodes (also referred to as IAB nodes) for providing wireless backhaul for devices (eg, terminal devices) accessing the wireless backhaul network. , BH) service.
  • the wireless backhaul service refers to a data and/or signaling backhaul service provided through a wireless backhaul link.
  • the IAB node is a specific name of a relay node, which does not constitute a limitation on the solution of the present application. It can be one of the above-mentioned base stations or terminal devices with a forwarding function, or can be an independent device form.
  • the IAB node can provide wireless access services for terminal equipment, and connect to a donor base station (donor gNB) through a wireless backhaul link to transmit user service data.
  • donor gNB donor base station
  • the IAB node may also be equipment such as customer premises equipment (customer premises equipment, CPE), residential gateway (residential gateway, RG).
  • CPE customer premises equipment
  • residential gateway residential gateway
  • RG residential gateway
  • the method provided by the embodiment of the present application may also be applied to a scenario of home access (home access).
  • Base stations, terminal equipment and IAB nodes can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons or satellites.
  • the scenarios in which the base station and the terminal device are located are not limited.
  • a terminal device or a base station or an IAB node includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), card, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is an architectural diagram of an IAB system applicable to the technical solution of the present application.
  • an IAB system includes at least one base station 100, one or more terminal devices 101 served by the base station 100, one or more relay nodes (ie, IAB nodes) 110, and the IAB node 110 One or more terminal devices 111 served.
  • the IAB node 110 is connected to the base station 100 via a wireless backhaul link 113 .
  • base station 100 is referred to as a donor base station.
  • the donor base station is also referred to in this application as a donor node or a donor node or an IAB donor (hereinafter collectively referred to as an IAB donor for ease of description).
  • the IAB network system may also include one or more intermediate IAB nodes (hereinafter collectively referred to as IAB nodes for convenience of description). For example, IAB node 120 and IAB node 130.
  • the IAB donor can be an access network element with a complete base station function, or it can be in the form of CU and DU separation, that is, the IAB donor is composed of the centralized unit of the IAB donor and the distributed unit of the IAB donor.
  • the centralized unit of the IAB donor is also referred to as an IAB donor CU (also referred to as a donor CU, or directly referred to as a CU, hereinafter collectively referred to as an IAB donor CU for ease of description).
  • the distributed unit of IAB donor is also called IAB donor DU (or called donor DU, hereinafter collectively referred to as IAB donor DU for ease of description).
  • IAB donor consists of two parts: IAB donor CU and IAB donor DU. Similar to the above-mentioned base station, the IAB donor can be composed of one IAB donor CU and one or more IAB donor-DUs. IAB donor-CU is similar to the above-mentioned base station CU, and mainly implements the functions of the PDCP layer, SDAP layer and RRC layer. IAB donor-DU is similar to the above-mentioned base station DU. It mainly implements the functions of the L1 and L2 protocol stacks, including The functions of the PHY layer, the MAC layer and the RLC layer will not be repeated here.
  • an IAB donor CU may also be a control plane (CP) (hereinafter collectively referred to as IAB donor CU-CP for ease of description) and a user plane (UP) (hereinafter collectively referred to as UP for ease of description).
  • IAB donor CU-UP isolated morphology.
  • a CU may consist of one CU-CP and one or more CU-UPs.
  • the method provided by the embodiments of the present application is exemplified by taking the example that the IAB donor is composed of the IAB donor-CU and the IAB donor-DU.
  • Link A path between two adjacent nodes in a path.
  • Access link The link between the terminal device and the base station, or between the terminal device and the IAB node, or between the terminal device and the IAB donor, or between the terminal device and the IAB donor DU.
  • the access link includes the wireless link used by an IAB node to communicate with its parent node in the role of a normal terminal device.
  • the IAB node acts as a common terminal device, it does not provide backhaul services for any child nodes.
  • Access links include uplink access links and downlink access links.
  • the access link of the terminal device is a wireless link, so the access link may also be referred to as a wireless access link.
  • Backhaul link The link between the IAB node and the parent node when it acts as a wireless backhaul node.
  • the IAB node acts as a wireless backhaul node, it provides wireless backhaul services for child nodes.
  • Backhaul links include uplink backhaul links and downlink backhaul links.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link can also be called a wireless backhaul link.
  • Each IAB node regards the adjacent nodes that provide wireless access services and/or wireless backhaul services as parent nodes. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • child nodes may also be referred to as subordinate nodes, and parent nodes may also be referred to as superior nodes.
  • the node's previous hop node refers to the last node in the path including the node that receives data (or referred to as a data packet) before the node. It can be understood that the previous hop node of the node may include the previous hop node of the node in the uplink transmission and the previous hop node of the node in the downlink transmission.
  • Next-hop node of a node refers to the first node in the path containing the node that receives data after the node. It can be understood that the next hop node of the node may include the next hop node of the node in the uplink transmission and the next hop node of the node in the downlink transmission.
  • the ingress link of a node refers to the link between the node and the previous hop of the node, which can also be called the previous hop link of the node. It can be understood that the ingress link of the node may include the ingress link of the node in uplink transmission and the ingress link of the node in downlink transmission.
  • the egress link of a node refers to the link between the node and the next-hop node of the node, which may also be referred to as the next-hop link of the node. It can be understood that the egress link of the node may include the egress link of the node in uplink transmission and the egress link of the node in downlink transmission.
  • the links involved in the ingress link and the egress link may be referred to as a wireless backhaul radio link control channel (backhaul radio link control channel, BH RLC CH), hereinafter referred to as BH RLC CH for convenience of description. .
  • backhaul radio link control channel BH RLC CH
  • Access IAB node refers to the IAB node that the terminal device accesses, or the IAB node that provides access services for the terminal device.
  • Intermediate IAB node refers to the IAB node that provides wireless backhaul services for other IAB nodes (for example, the IAB node on the path between the access IAB node and the IAB donor).
  • An IAB node may have a part of a mobile terminal (MT) (hereinafter collectively referred to as IAB node MT for ease of description) and a DU part (hereinafter collectively referred to as IAB node DU for ease of description).
  • IAB node MT can also be called IAB node UE, which is not limited in this article.
  • the IAB node uses the IAB node MT to communicate with its parent node, and the IAB node uses the IAB node DU to communicate with its child nodes (the child node may be an end device or another IAB node).
  • An IAB node can establish a backhaul connection between the IAB node MT and at least one parent node of the IAB node.
  • An IAB node DU of an IAB node can provide access services for terminal equipment or IAB node MTs of other IAB nodes. An example is described below with reference to FIG. 2 .
  • FIG. 2 is a scene diagram of information return.
  • a schematic diagram of the composition of the IAB node can be seen from Figure 2.
  • the UE is connected to the IAB donor (the host node as shown in Figure 2) through IAB node#2 and IAB node#1 (as IAB node#2 and IAB node#1 as shown in Figure 2).
  • IAB node#2 includes IAB node#2 DU and IAB node#2 MT
  • IAB node#1 includes IAB node#1 DU and IAB node#1 MT.
  • the IAB node#2 DU provides access services for the UE.
  • the IAB node#1 DU provides access services for the IAB node#2 MT part.
  • IAB donor DU provides access services for IAB node#1 MT.
  • the IAB donor CU is connected to the 5G core network (5G core, 5GC) through a communication interface (the NG interface shown in Figure 2), and the communication interface between the IAB donor DU and the IAB donor CU (as shown in Figure 2) F1 interface) connection, it should be understood that the name of the communication interface is not limited in the embodiment of this application.
  • the protocol stack of the IAB network includes a user plane protocol stack and a control plane protocol stack.
  • the protocol stack of the intermediate IAB node in the user plane and the control plane is the same.
  • (a) and (b) of FIG. 3 are examples of the protocol stack architecture of the intermediate IAB node.
  • the IAB node MT and the IAB node DU of the intermediate IAB node may not share the backhaul adaptation protocol (BAP) layer, as shown in (a) of Figure 3.
  • BAP backhaul adaptation protocol
  • the IAB node MT and the IAB node DU of the intermediate IAB node can also share the BAP layer, as shown in (b) of Figure 3.
  • the protocol stacks on the user plane and the control plane for accessing the IAB node are different, as shown in Figure 4 and Figure 5, respectively.
  • FIG. 4 is an example of a user plane protocol stack architecture of a multi-hop IAB network.
  • service data adaptation protocol service data adaptation protocol
  • SDAP packet data adaptation protocol
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • GTP-U general packet radio service tunneling protocol user plane
  • user datagram protocol user datagram protocol, UDP
  • network interconnection protocol interconnection protocol
  • IP internet protocol
  • L2 layer layer 2
  • L1 layer layer
  • radio link control radio link control
  • RLC medium access control
  • MAC medium access control
  • Radio resource control radio resource control, RRC
  • F1 application protocol F1 application protocol, F1AP
  • stream control transmission protocol stream control transmission protocol
  • SCTP stream control transmission protocol
  • the L2 layer is the link layer.
  • the L2 layer may be a data link layer in an open systems interconnection (open systems interconnection, OSI) reference model.
  • the L1 layer may be the physical layer.
  • the L1 layer may be the physical layer in the OSI reference model.
  • Radio bearers include data radio bearers (DRB) and signaling radio bearers (signaling radio bearers).
  • RRB data radio bearers
  • SRB signaling radio bearers
  • the RB can be considered as a logical channel for data transmission between the UE and the IAB donor.
  • the radio access link between UE and IAB node#2 in FIG. 4 may be referred to as the DRB, the radio backhaul link between IAB node#2 and IAB node#1, and the IAB node#1 and IAB
  • the wireless backhaul link between the donor's IAB donor DU may be the BH RLC CH.
  • Each protocol layer will be configured with corresponding protocol layer entities, such as PDCP entity, RLC entity and MAC entity.
  • protocol layer entities such as PDCP entity, RLC entity and MAC entity.
  • data for example, IP data packets, hereinafter referred to as data
  • the data of the UE is processed in the PDCP layer, and then sent to the access backhaul node through the RLC layer, the MAC layer and the PHY layer in sequence (for example, in FIG. 4 ).
  • PHY layer of the IAB node 2 shown.
  • an IAB node can contain an IAB node DU and an IAB node MT.
  • the IAB node MT of the IAB node performs data forwarding on the backhaul link without requiring the complete protocol stack of the terminal device in the wireless access link.
  • IAB node#2 shown in FIG. 4 is a child node of IAB node#1 for IAB node#1.
  • IAB node#2 sends data from UE to IAB node#1
  • the IAB node#2 MT of IAB node#2 does not need the PDCP layer, and the data is forwarded under the BAP layer. Therefore, in Figure 4, when an IAB node sends data to its parent node as a wireless backhaul node, it only involves the protocol layers below the BAP layer, which is applicable to all IAB nodes, and will not be repeated here.
  • the protocol stack of the communication link between it and the parent node is the same as the protocol stack of the wireless access link between the UE and the access IAB node, and the protocol stack between it and the host CU is the same.
  • the protocol stack is the same as that between the UE and the host CU.
  • FIG. 4 also shows the user plane protocol stack (F1-U as shown in FIG. 4 ) of the F1 interface between the IAB donor CU and the access IAB node (IAB node#2 in FIG. 4 ).
  • F1-U user plane protocol stack
  • IAB node#2 access IAB node
  • FIG. 4 shows the user plane protocol stack (F1-U as shown in FIG. 4 ) of the F1 interface between the IAB donor CU and the access IAB node (IAB node#2 in FIG. 4 ).
  • each data radio bearer of a UE has a one-to-one correspondence with a GTP tunnel.
  • FIG. 5 is an example of a control plane protocol stack architecture of a multi-hop IAB network.
  • the IAB donor adopts the CP-UP separation architecture, and the F1-C interface is established between the IAB node#2 DU and the IAB donor CU-CP.
  • the RRC message of the UE is encapsulated and transmitted in the F1AP message of the F1-C interface.
  • each protocol layer in Figure 4 is also applicable in Figure 5, but there are some differences.
  • the F1 interface between the IAB node and the IAB donor CU in FIG. 5 uses the F1 control plane (F1-C) protocol stack.
  • F1-C F1 control plane
  • Figures 4 and 5 respectively show an example of an end-to-end user plane and control plane protocol stack architecture for transmitting data services of a UE in an IAB network.
  • the protocol stack architecture may also have other possibilities. For example, if a protocol layer for security protection is introduced at the F1 interface between IAB node#2 and IAB donor CU, the protocol stack architecture will change.
  • the IAB donor retains the protocol stack of the IAB donor DU and the IAB donor CU to the external node interface, and the protocol layer on the internal interface between the IAB donor DU and the IAB donor CU is not necessary. of.
  • the protocol stack of the IAB node for the outside, can not distinguish the IAB node DU and the IAB node MT, and only display the protocol stack of the interface to the external node.
  • the IAB donor DU is oriented to users who access the IAB node.
  • the protocol stack architecture above the IP layer, it can include the UDP layer and the GTP-U layer that are equivalent to the UDP layer and the GTP-U layer in the protocol stack architecture of the IAB node DU accessing the IAB node.
  • IPsec layer equivalent to the IAB node DU accessing the IAB node in the control plane protocol stack architecture of the IAB donor DU facing the accessing IAB node, above the IP layer, it can include the IAB node DU accessing the IAB node.
  • the SCTP layer and the F1AP layer in the protocol stack architecture are respectively equivalent to the SCTP layer and the SCTP layer, and may also include the IPsec layer or DTLS layer equivalent to the IAB node DU accessing the IAB node.
  • Figure 4 and Figure 5 also refer to the F1 interface.
  • the F1 interface refers to the logical interface between the IAB node DU of the IAB node and the IAB donor (or IAB donor CU or IAB donor DU).
  • the F1 interface can also be called the F1* interface, which supports the user plane and the control plane.
  • the protocol layer of the F1 interface refers to the communication protocol layer on the F1 interface.
  • the user plane protocol layer of the F1 interface may include one or more of an IP layer, a UDP layer, and a GTP-U layer.
  • the user plane protocol layer of the F1 interface further includes a PDCP layer and/or an IP security (IP Security, IPsec) layer.
  • IP Security IP Security, IPsec
  • control plane protocol layer of the F1 interface may include one or more of an IP layer, an F1AP layer, and an SCTP layer.
  • control plane protocol layer of the F1 interface further includes one or more of the PDCP layer, the IPsec layer, and the datagram transport layer security (DTLS) layer.
  • DTLS datagram transport layer security
  • FIG. 6 is a schematic diagram of a mapping relationship among RLC channels, logical channels and protocol entities.
  • the RLC channel (RLC channel) is a channel between the RLC layer and the upper protocol layer.
  • the configuration of the radio bearer corresponds to the configuration of the upper layer (eg, the PDCP layer) part and the lower layer (eg, the RLC layer and the MAC layer) part.
  • the configuration of the RLC bearer refers to the configuration corresponding to the RB at the RLC layer, and specifically includes the configuration of the RLC layer entity and the logical channel.
  • the IAB node is carried in the RLC of the backhaul link, including the RLC layer and the logical channel part.
  • the RLC channel on the backhaul link is the channel between the RLC layer and the upper protocol layer.
  • the RLC channel on the backhaul link is the channel between the RLC layer and the PDCP layer.
  • the RLC channel on the backhaul link is the channel between the RLC layer and the BAP layer. Therefore, the definition of the RLC channel depends on the upper protocol layer of the RLC layer.
  • the RLC channel on the backhaul link of the IAB node corresponds one-to-one to one RLC entity and one-to-one to one RLC bearer.
  • one BAP entity may correspond to multiple RLC entities, as shown in (a) of FIG. 6 , or one BAP entity may correspond to one RLC entity, as shown in (b) of FIG. 6 , which is not limited in this application.
  • the BAP layer has one or more of the following capabilities: adding routing information (routing information) to data that can be identified by the wireless backhaul node (IAB node), based on the Routing information performs routing, adds identification information to data that can be identified by wireless backhaul nodes related to quality of service (QoS) requirements, and performs QoS for data on multi-segment links that include wireless backhaul nodes Mapping, adding data type indication information to data, and sending flow control feedback information to nodes with flow control capability.
  • routing information routing information
  • IAB node wireless backhaul node
  • QoS quality of service
  • the routing information that can be identified by the IAB node can be the identity of the terminal, the identity of the IAB node accessed by the terminal, the identity of the IAB donor, the identity of the IAB donor DU, the identity of the IAB donor CU, the identity of the transmission path, etc. one or more of the information.
  • the QoS mapping on the multi-segment link may be: in the wireless backhaul link, based on the identification of the RB of the terminal carried by the data, the execution from the RB of the terminal to the RLC bearer or the RLC channel or the logical channel on the wireless backhaul link is performed. or, based on the correspondence between any two or more of the RB, RLC bearer, RLC channel, and logical channel of the ingress link and the egress link, perform the RB or RLC bearer from the ingress link or the RLC bearer or RLC channel or logical channel, mapping to RB or RLC bearer or RLC channel or logical channel of the egress link.
  • the identification information related to the QoS requirement can be, for example: the identification of the QoS flow of the terminal (QoS flow identifier, QFI), the identification of the RB of the terminal, the differentiated services code point (differentiated services code point, DSCP), the Internet Protocol version 6 (internet One or more of the flow labels in the header of IP data of protocol version 6, IPv6).
  • QFI QoS flow identifier
  • DSCP differentiated services code point
  • IP version 6 Internet Protocol version 6
  • protocol layer with these capabilities is not necessarily the BAP layer, and may also be other names. Those skilled in the art can understand that as long as the protocol layer having these capabilities can be understood as the BAP layer in this embodiment of the present application.
  • routing and bearer mapping are also involved in this application.
  • Routing Used to select next-hop nodes for information (including data and/or signaling).
  • Bearer mapping also known as QoS mapping. Bearer mapping is used to select RLC bearers or RLC channels or logical channels to send information (including data and/or signaling).
  • an IAB node 120 shown in Figure 1
  • the IAB node#130 in 1 can also be connected to the IAB node#120 through the backhaul link 134, that is, both the IAB node#110 and the IAB node#120 are regarded as the superior nodes of the IAB node#130.
  • IAB node#110, IAB node#120, and IAB node#130 do not limit the deployment scenarios or networks, and can be any other names such as relay, RN, etc.
  • IAB node can generally refer to any node or device with relay function.
  • the use of IAB node and relay node in this application should be understood to have the same meaning, and the use of IAB node in this application is only for the convenience of description. .
  • wireless links 102, 112, 122, 132, 113, 123, 133, 134 can be bidirectional links, including uplink and downlink transmission links, in particular, wireless backhaul links 113, 123, 133, 134 can be used for upper-level nodes to provide services to lower-level nodes, such as upper-level node 100 for lower-level nodes 110 provides wireless backhaul services. It should be understood that the uplink and downlink of the backhaul link may be separate, ie the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to a superior node, such as node 100, transmitting information or data to a subordinate node, such as node 110
  • uplink transmission refers to a subordinate node, such as node 110, transmitting information or data to a superior node, such as node 100.
  • the node is not limited to being a network node or a terminal device.
  • a terminal device can act as a relay node to serve other terminal devices.
  • the wireless backhaul link can also be an access link in some scenarios.
  • the backhaul link 123 can also be regarded as an access link for the node 110, and the node 100 In the role of a common terminal device, the backhaul link 113 is also an access link of the node 100 .
  • the above-mentioned upper-level node may be a base station or a relay node
  • the lower-level node may be a relay node or a terminal device with a relay function.
  • the lower-level node may also be a terminal device.
  • nodes on the path between the IAB donor CU and the UE are under the unified control of the IAB donor CU.
  • F1-U service includes the transmission between the IAB node#2 DU and the IAB donor CU of the IAB node#2.
  • Data transmitted on the F1-U interface; F1-C services include signaling transmitted on the F1-C interface between the IAB node#2 DU and the IAB donor CU.
  • the downlink transmission of F1-U services between IAB donor and IAB node#2 includes:
  • the IAB donor CU encapsulates the PDCP PDU of the UE in the corresponding GTP tunnel, and then processes the IP layer to generate an IP packet.
  • the IP layer processing includes adding the corresponding DSCP or flow label value to the PDCP PDU. It is then carried in the IP header field, and the destination IP address (the IP address of the IAB node#2 DU) for sending the PDCP PDU is carried in the IP header.
  • the IAB donor CU sends the IP packet to the IAB donor DU.
  • the IAB donor DU After the IAB donor DU receives the IP packet, it extracts the target IP address from the IP packet, and extracts the DSCP or flow label value from the IP packet, and according to the mapping relationship previously obtained from the IAB donor CU, the IP address is The package performs route-mapping and bearer-mapping operations.
  • the IAB donor DU determines the mapping relationship (such as the mapping relationship between the target IP address and the routing ID (Routing ID), and the mapping relationship between the DSCP or flow label and the Routing ID) obtained from the IAB donor CU.
  • the routing identifier of the IP packet Then, according to the routing table obtained from the IAB donor CU (such as the mapping relationship between Routing ID and the BAP address of the next hop node), determine which next hop node the IP packet needs to be routed to (because the BAP address can be in an IAB Uniquely identifies an IAB node under the donor CU).
  • the IAB donor DU determines the mapping relationship (such as the mapping relationship between the target IP address and the BH RLC CH ID, and the mapping relationship between the DSCP or flow label and the BH RLC CH ID) obtained from the IAB donor CU. Which transport channel (BH RLC CH) the IP packet is mapped to and sent to the next hop node determined by the route.
  • mapping relationship such as the mapping relationship between the target IP address and the BH RLC CH ID, and the mapping relationship between the DSCP or flow label and the BH RLC CH ID
  • the IAB donor DU After the IAB donor DU determines the route and bearer mapping, it carries the determined Routing ID in the BAP layer and sends it to the next hop node (IAB node#1 MT) together with the IP packet.
  • the IAB node#1 MT After the IAB node#1 MT receives the IP packet from the transmission channel (called ingress BH RLC CH) with the IAB donor DU, it extracts the Routing ID from the BAP layer. The IAB node#1 MT sends the IP packet (or called BAP SDU) and the obtained Routing ID to the IAB node#1 DU through the internal interface. The IAB node#1 DU performs routing and bearer mapping operations on the IP packet according to the mapping relationship previously obtained from the IAB donor CU.
  • the IAB node#1 DU determines which next-hop node the IP packet needs to be routed to according to the routing table (such as the mapping relationship between the Routing ID and the BAP address of the next-hop node) obtained from the IAB donor CU.
  • the routing table such as the mapping relationship between the Routing ID and the BAP address of the next-hop node
  • IAB node#1 DU determines which transmission channel the IP packet is mapped to according to the mapping relationship (such as the mapping relationship between ingress BH RLC CH ID and egress BH RLC CH ID) obtained from IAB donor CU (egress BH RLC CH) is sent to the next hop node determined by the route.
  • mapping relationship such as the mapping relationship between ingress BH RLC CH ID and egress BH RLC CH ID
  • IAB node#2 MT Similar to the operation of IAB node#1 MT, after IAB node#2 MT receives the IP packet from the transmission channel (ingress BH RLC CH) with IAB node#1 DU, it sends the IP packet to IAB node through the internal interface #2 DU.
  • the IAB node#2 DU After the IAB node#2 DU sends the received IP packet to the GTP layer for processing, it extracts the UE's PDCP PDU from the corresponding GTP tunnel.
  • the downlink transmission of F1-C services between IAB donor and IAB node#2 includes:
  • the IAB donor CU generates an F1AP message (including a UE-associated F1AP message and a non-UE associated F1AP message, where the UE's RRC message is encapsulated in a UE-associated F1AP message for transmission), and sends the F1AP message to the
  • An IP packet is generated after processing by the IP layer, wherein the processing by the IP layer includes marking the F1AP message with the corresponding DSCP or flow label value and carrying it in the IP header field, and carrying the destination IP address of the F1AP message in the IP header (IP address of IAB-DU2).
  • the IAB donor CU sends the IP packet to the IAB donor DU.
  • the IAB node#2 DU of IAB node#2 sends the received IP packet to the F1AP layer for processing. If the RRC message of the UE is carried in the F1AP message for transmission, the IAB node#2 DU further extracts the UE from the F1AP message. RRC message.
  • route mapping and bearer mapping operations are only performed on the BAP layer of IAB donor DU and IAB node#1 DU.
  • the uplink transmission of F1-U services between IAB donor and IAB node#2 includes:
  • IAB node#2 receives the PDCP PDU sent by the UE from the DRB, encapsulates the PDCP PDU in the corresponding GTP tunnel, and then processes the IP layer to generate an IP packet. IAB node#2 sends the IP packet to IAB node#2 MT through the internal interface.
  • the IAB node#2 MT determines the routing identifier of the IP packet according to the mapping relationship (such as the mapping relationship between GTP FTEID and Routing ID) obtained from the IAB donor CU. Then, according to the routing table obtained from the IAB donor CU (such as the mapping relationship between the Routing ID and the BAP address of the next hop node), it is determined to which next hop node the IP packet needs to be routed.
  • GTP FTEID consists of GTP TEID and IP address.
  • IAB node#2 MT determines which transmission channel (BH RLC CH) the IP packet is mapped to and sent to The next hop node determined by the route.
  • BH RLC CH transmission channel
  • the IAB node#2 MT After the IAB node#2 MT determines the route and bearer mapping, it carries the determined Routing ID in the BAP layer and sends it to the next hop node (IAB node#1 DU) together with the IP packet.
  • the operations performed by the IAB node#1 MT to perform uplink route mapping and bearer mapping may follow the operations of the above-mentioned IAB node#1 DU to perform uplink route mapping and bearer mapping, and will not be repeated here.
  • the upstream transmission of F1-C services between IAB donor and IAB node#2 includes:
  • the IAB node#2 DU generates an F1AP message, and processes the F1AP message through the IP layer to generate an IP packet.
  • the IAB node#2 DU sends the IP packet to the IAB node#2 MT through the internal interface.
  • the IAB node#2 MT determines the routing identifier of the IP packet according to the mapping relationship (such as the mapping relationship between CP type and Routing ID) obtained from the IAB donor CU. Then, according to the routing table obtained from the IAB donor CU (such as the mapping relationship between the Routing ID and the BAP address of the next hop node), it is determined to which next hop node the IP packet needs to be routed.
  • the mapping relationship such as the mapping relationship between CP type and Routing ID
  • the routing table obtained from the IAB donor CU
  • CP type is used to indicate UE-associated F1AP message and non-UE associated F1AP message.
  • IAB node#2 MT determines which transmission channel (BH RLC CH) the IP packet is mapped to and sent to The next hop node determined by the route.
  • BH RLC CH transmission channel
  • the IAB node#2 MT After the IAB node#2 MT determines the route and bearer mapping, it carries the determined Routing ID in the BAP layer and sends it to the next hop node (IAB node#1 DU) together with the IP packet.
  • routing and bearer mapping in uplink transmission is mainly reflected in the different operations of accessing IAB node and IAB donor DU:
  • routing and bearer mapping operations are performed only on the BAP layer of IAB-MT2 and IAB-MT1.
  • the access IAB node determines the next hop node of the route according to the mapping relationship between GTP FTEID and Routing ID, as well as the mapping relationship between Routing ID and the BAP address of the next hop node , and at the same time, according to the mapping relationship between the GTP FTEID and the BH RLC CH ID, the transmission channel to be sent is determined.
  • the IAB donor DU determines the next hop node of the route according to the target IP address, the mapping relationship between the DSCP or flow label and the Routing ID, and the mapping relationship between the Routing ID and the BAP address of the next hop node.
  • the transmission channel to be sent is determined according to the target IP address and the mapping relationship between the DSCP or flow label and the BH RLC CH ID.
  • the access IAB node determines the next hop of the route according to the mapping relationship between CP type and Routing ID, as well as the mapping relationship between Routing ID and the BAP address of the next hop node
  • the node determines the transmission channel to be sent according to the mapping relationship between the CP type and the BH RLC CH ID.
  • the IAB donor DU is based on the mapping relationship between the destination IP address and the routing identifier Routing ID, and based on the mapping relationship between the DSCP or flow label and the routing identifier Routing ID, and based on the routing ID and the BAP of the next hop node.
  • the mapping relationship between addresses determines the next hop node of the route.
  • the mapping relationship between the target IP address and the BH RLC CH ID, and the mapping relationship between the DSCP or flow label and the BH RLC CH ID determine the The transmission channel sent.
  • the IAB donor DU and all IAB nodes on the path between the UE and the IAB donor CU are managed by the IAB donor CU, and the IAB donor CU uniformly controls the routing mapping and bearer mapping on the entire path, that is, the data And/or signaling (collectively referred to as information) is not transmitted across network topologies.
  • IAB nodes may switch across IAB donor CUs due to reasons such as movement or link quality, resulting in IAB donor DUs and all IAB nodes on the path between UE and IAB donor CU.
  • the management of different IAB donor CUs makes routing and bearer mapping on the entire path controlled by two different IAB donor CUs respectively.
  • the current technology cannot realize the transmission in the cross-network topology scenario.
  • the method for information transmission ensures the normal transmission of data/signaling in the cross-network topology scenario by establishing the routing and bearer mapping of data/signaling in the network topology scenario, which can improve data and/or Transport performance when signaling is transmitted across network topologies.
  • the border node is handed over. Take IAB node#1 MT performing handover as an example (IAB node#1MT switches from the source IAB donor DU to the target IAB donor DU), where the source IAB donor DU Connect to the source IAB donor CU, and the target IAB donor DU connects to the target IAB donor CU.
  • the transmission path of the information sent by the source IAB donor CU to the UE can be: source IAB donor CU--target IAB donor DU--IAB node#1 MT--IAB node#1 DU--IAB node#2 MT--IAB node#2 DU2--UE.
  • the IAB node#1 MT Since the IAB node#1 MT is switched, the IAB node#1 MT is managed by the target IAB donor CU. But since the IAB node#1 DU maintains the F1 connection with the source IAB donor CU, the IAB node#1 DU is managed by the source IAB donor CU. For IAB node#2 MT, IAB node#2 DU and UE, managed by the source IAB donor CU.
  • the entire transmission path consists of two network topologies, in which the path of the target IAB donor DU--IAB node#1MT is controlled by the target IAB donor CU (it can be understood that the network topology managed by the target IAB donor CU includes nodes: target IAB donor DU, IAB node#1 MT), the path of IAB node#1 DU--IAB node#2 MT--IAB node#2 DU2 is controlled by the source IAB donor CU (it can be understood that the network topology managed by the source IAB donor CU includes nodes : IAB node#1 DU, IAB node#2 MT, IAB node#2 DU2).
  • the boundary IAB node is connected to two parent nodes at the same time.
  • the IAB node#1 MT working in DC mode as an example, the IAB node#1 MT is connected to the source IAB donor DU and the target IAB donor DU at the same time, wherein the source IAB donor DU is connected to the source IAB donor CU, and the target IAB donor DU is connected to Target IAB donor CU.
  • the transmission path for the source IAB donor CU to send information to the UE can be: source IAB donor CU--target IAB donor DU--IAB node#1 MT--IAB node# 1DU--IAB node#2 MT--IAB node#2 DU2--UE.
  • the source IAB donor CU and the target IAB donor CU are both referred to as the first IAB donor CU
  • the target IAB donor CU and the secondary IAB donor CU are both referred to as the second IAB donor CU.
  • the network topologies shown in (a) and (b) in FIG. 7 include: the network topology managed by the target IAB donor CU and the network topology managed by the source IAB donor CU, wherein the network topology managed by the target IAB donor CU Including nodes: target IAB donor DU and IAB node#1 MT; the network topology managed by source IAB donor CU includes nodes: source IAB donor CU, IAB node#1 DU, IAB node#2 MT, IAB node#2 DU2.
  • IAB node there may be at least 1 other IAB node between the IAB node#1 MT and the source IAB donor DU in the diagram shown in (a) and (b) of FIG. 7 . There is at least 1 other IAB node between the IAB node#1 MT and the target IAB donor DU. There is at least 1 other IAB node between the IAB node#2 DU and the UE.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be executed to provide the method according to the embodiment of the present application.
  • the execution body of the method provided in the embodiment of the present application may be an IAB node or an IAB donor, or a functional module that can call a program and execute the program in the IAB node or IAB donor.
  • to indicate may be understood as “enable”, and “enable” may include direct enabling and indirect enabling.
  • Enable When describing that a certain information enables A, it may include that the information directly enables A or indirectly enables A, but it does not mean that the information must carry A.
  • the information enabled by the information is called the information to be enabled.
  • the information to be enabled can be directly enabled.
  • the information to be enabled may also be indirectly enabled by enabling other information, where there is an associated relationship between the other information and the information to be enabled. It is also possible to enable only a part of the information to be enabled, while other parts of the information to be enabled are known or agreed in advance.
  • the enabling of specific information may also be implemented by means of a pre-agreed (for example, a protocol stipulated) arrangement order of various information, thereby reducing enabling overhead to a certain extent.
  • the common part of each information can also be identified and enabled in a unified manner, so as to reduce the enabling overhead caused by enabling the same information separately.
  • the first, second and various numerical numbers (for example, "#1", “#2”, etc.) shown in this application are only for the convenience of description and are used for distinguishing objects and are not used to limit the present application. Scope of application examples. For example, distinguish between different indication information and so on. It is not intended to describe a particular order or sequence. It should be understood that the objects so described may be interchanged under appropriate circumstances so as to be able to describe solutions other than the embodiments of the present application.
  • preset may include predefined definitions, eg, protocol definitions.
  • pre-definition can be achieved by pre-saving corresponding codes, forms or other means that can be used to indicate relevant information in the device (for example, including an IAB node or IAB donor), and this application does not make any specific implementation methods. limited.
  • the "storage” involved in the embodiments of this application may refer to being stored in one or more memories.
  • the one or more memories may be set separately, or may be integrated in an encoder or a decoder, a processor, or a communication device.
  • the one or more memories may also be partially provided separately and partially integrated in a decoder, a processor, or a communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the "protocols” involved in the embodiments of this application may refer to standard protocols in the communication field, such as 5G protocols, new radio (NR) protocols, and related protocols applied in future communication systems.
  • the application is not limited.
  • the method for information transmission provided by the embodiments of the present application may be applied to the communication system shown in FIG. 1 . It should be understood that the methods for information transmission provided by the embodiments of the present application may also be applied to other communication systems, and details are not described herein again.
  • the steps performed by the receiver refer to the following IAB nodes
  • the steps performed by the sender refer to the following host nodes.
  • the transmission between the sender and the receiver can be transmitted through radio waves. , and can also be transmitted through transmission media such as visible light, laser, infrared, optical fiber, etc., which will not be repeated below.
  • the transmission of signaling has the same problem as follows.
  • any intermediate IAB node will, after receiving the BAP SDU sent by the parent node or child node, will perform the routing according to the Routing ID carried in the BAP layer. Check the routing table to determine the next node to send. During the entire air interface transmission process, the Routing ID carried in the BAP layer remains unchanged.
  • boundary IAB node ie: boundary IAB node
  • any intermediate IAB node receives the BAP SDU sent by the parent node or the child node from the ingress BH RLC CH, it will map the bearer according to the configuration of the IAB donor-CU (the difference between the ingress BH RLC CH and the egress BH RLC CH). The mapping relationship between them), send the data to the next node through the corresponding exit BH RLC CH.
  • the transmission paths of data are controlled by different IAB donor CUs.
  • which BH RLC CH the data is mapped to for transmission is controlled by the IAB donor-CU to which the network topology belongs.
  • the boundary IAB node belongs to the overlap of two different network topologies, the ingress BH RLC CH and the egress BH RLC CH belong to different IAB donor CU management and/or control respectively. Therefore, the boundary IAB node needs to perform different implementations for the transmission of the data. Bearer mapping transformation operations under network topology.
  • IAB nodes may switch across IAB donor CUs due to reasons such as movement or link quality, or, IAB nodes implement load balancing through dual connections, resulting in the path between UE and IAB donor CU.
  • the IAB donor DU and all IAB nodes are managed by different IAB donor CUs, so that the routing and bearer mapping on the entire path are controlled by different IAB donor CUs respectively.
  • the current technology cannot realize information transmission in cross-network topology scenarios.
  • the method for information transmission provided by the embodiments of the present application can realize information transmission in a network topology scenario, and improve the performance of information transmission in this scenario.
  • FIG. 8 is a schematic flowchart of a method for information transmission provided by an embodiment of the present application.
  • FIG. 8 Exemplarily, the embodiment shown in FIG. 8 includes the following possibilities:
  • the first IAB donor CU determines the signaling type of the first QoS information and/or signaling.
  • S810 includes the following possibilities:
  • the first IAB donor CU determines the first QoS information.
  • determining the first QoS information of the data by the first IAB donor CU includes: the first IAB donor CU determines the second QoS information and the first QoS information according to the QoS corresponding to the data (which may be referred to as the total QoS).
  • the first QoS information is used to determine the transmission of data in the second network topology managed by the second IAB donor CU; the second QoS information is used to determine the transmission of data in the first network topology managed by the first IAB donor CU.
  • the first network topology includes a first node and a second node (IAB node#1 and IAB node#2 as shown in (a) and (b) of FIG. 7 ).
  • the first node is a border node (also referred to as a border node)
  • the second node is an access node (also referred to as an access IAB node)
  • the access node provides an access function for terminal equipment
  • the border node is a data
  • the transport performs routing translation operations under different network topologies.
  • the second node may be a child node of the first node, that is, other IAB nodes are not included between the access node and the border node in the first network topology.
  • the second node is a node (directly or indirectly) connected to a child node of the first node, that is, the access node and the border node in the first network topology include at least one other node.
  • the first network topology further includes child nodes of the first node.
  • the second network topology includes the above-mentioned first node and third node (IAB node#1 and target IAB donor DU as shown in (a) and (b) in FIG. 7 ).
  • the third node is the second IAB donor DU.
  • the third node is the parent node of the first node, that is, other IAB nodes are not included between the second IAB donor DU and the border node in the second network topology. ;
  • the third node is a node (directly or indirectly) connected to the parent node of the first node, that is, the second IAB donor DU and the border node in the second network topology include at least an other node.
  • the first network topology further includes a parent node of the first node.
  • the first IAB donor CU obtains the QoS information corresponding to the data from the core network device.
  • the core network equipment involved in the embodiments of the present application may be an access and mobility management function (access and mobility management function, AMF) entity in the core network, and the AMF entity may be responsible for access management and mobility management of terminal equipment.
  • AMF access and mobility management function
  • AMF access and mobility management function
  • the second QoS information may be referred to as QoS_S information for short
  • the first QoS information may be referred to as QoS_T information for short.
  • FIG. 9 is a schematic diagram of QoS information division provided by an embodiment of the present application.
  • the first IAB donor CU divides the QoS information corresponding to the data into two parts: QoS_S information (or called second QoS information, source QoS information or main QoS information, QoS_S information is used for the data in the first QoS guarantee for transmission within the network topology managed by an IAB donor CU) and QoS_T information (or referred to as first QoS information, target QoS information or secondary QoS information, QoS_T information is used for the data in the network topology managed by the second IAB donor CU QoS guarantees for intra-transmission).
  • QoS_S information or called second QoS information, source QoS information or main QoS information
  • QoS_S information is used for the data in the first QoS guarantee for transmission within the network topology managed by an IAB donor CU
  • QoS_T information or referred to as first QoS information, target QoS information or secondary QoS information
  • QoS_T information is used for the
  • the QoS information, the second QoS information, and the first QoS information corresponding to the data include at least one of the following information: packet loss rate (packet error rate), packet delay budget (packet delay budget), guaranteed bit rate (guaranteed) bit rate, GBR), aggregate maximum bit rate (aggregate maximum bit rate, AMBR).
  • packet loss rate packet error rate
  • packet delay budget packet delay budget
  • guaranteed bit rate guaranteed bit rate
  • GBR guaranteed bit rate
  • AMBR aggregate maximum bit rate
  • the second QoS information is the first packet delay budget
  • the first QoS information is the second packet delay budget
  • the first packet delay budget and the second The sum of the packet delay budget cannot exceed the total packet delay budget, that is to say, when the source IAB donor CU divides the QoS information, it can transmit the first packet according to the network topology managed by the first IAB donor CU.
  • the delay budget determines the second packet delay budget for the transmission of the data packet in the network topology managed by the second AB donor CU.
  • the total packet delay budget is 10ms
  • the transmission packet delay of the data packet in the network topology managed by the first IAB donor CU is 6ms
  • the first QoS information obtained by dividing the source IAB donor CU cannot exceed 4ms.
  • the QoS information is the total packet loss rate
  • the second QoS information is the first packet loss rate
  • the first QoS information is the second packet loss rate
  • the sum of the first packet loss rate and the second packet loss rate cannot be exceeds the total packet loss rate
  • the above-mentioned method of dividing the QoS information corresponding to the data into the second QoS information and the first QoS information is only an example, and the protection scope of the present application is not limited.
  • the QoS guarantee of transmission in the network topology managed by the first IAB donor CU and the first QoS information can be used for the QoS guarantee of data packet transmission in the network topology managed by the second IAB donor CU, and the specific segmentation methods will not be illustrated one by one. .
  • the IAB node MT and the IAB node DU of an IAB node are controlled by different IAB donor CUs, respectively, and the IAB node is called a boundary IAB node (boundary IAB node) in the embodiment of this application.
  • the IAB node#1 MT is controlled by the target IAB donor CU, while the IAB node#1 DU is still controlled by the source IAB donor CU. Therefore, IAB node#1 is the boundary IAB node.
  • the first IAB donor CU determines the signaling type to which the signaling to be transmitted belongs.
  • the signaling type is used to determine the transmission of signaling in the first network topology; the signaling type is also used to determine the transmission of signaling in the second network topology.
  • the following signaling types are included: a terminal device-related (UE-associated) F1 application layer protocol (F1 application layer protocol, F1AP) message, a non-UE associated (non-UE associated) F1AP message with the terminal device .
  • F1 application layer protocol F1 application layer protocol
  • F1AP non-UE associated
  • the signaling plane transmission may further include signaling type: non-F1 message (non-F1). Possibly three, when the information to be transmitted includes data and signaling, the first IAB donor CU determines the first QoS information and signaling type.
  • the first IAB donor CU needs to send the above-mentioned first QoS information and/or the signaling type of signaling to the second IAB donor CU, as shown in FIG. 8 .
  • the method flow shown further includes: S820, the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message includes first QoS information and/or signaling type indication information.
  • the S820 includes the following three possibilities:
  • the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message includes first QoS information
  • the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message includes indication information of the signaling type
  • the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message includes first QoS information and indication information of the signaling type.
  • the transmission mode of data and/or signaling in the first network topology and the second network topology needs to be determined in the following manner.
  • the first IAB donor CU determines data transmission in the first network topology according to the second QoS information; and/or,
  • the first IAB donor CU determines the transmission of signaling in the first network topology according to the signaling type.
  • the transmission of data and/or signaling in the first network topology includes routing (a path for identifying routing through a routing identifier) and bearer mapping (a transmission channel for identifying bearer mapping through a BH RLC CH).
  • the above-mentioned first message also includes the first routing identification and/or the first BH RLC CH identification, the first routing identification is used to identify the first path for transmitting data between the first node and the second node, the first BH RLC CH identification The identification is used to identify the first BHRLC CH for data transmission between the first node and the child nodes of the first node.
  • the first IAB donor CU determines the first routing identifier and/or the first BH RLC CH information according to the second QoS information, wherein the first BH RLC CH information includes the first BH RLC CH identifier.
  • the first BH RLC CH information further includes the QoS information of the first BH RLC CH, that is, the first message may further include the QoS information of the first BH RLC CH.
  • the QoS information of the first BH RLC CH may be at least one kind of information among GBR, 5G quality of service identifier (5G quality of service identifier, 5QI) or packet delay budget (packet delay budget, PDB).
  • the first message further includes GTP tunnel information, where the GTP tunnel information is used to identify data.
  • the GTP tunnel information can be a GTP FTEID (for example, a GTP FTEID consists of a GTP TEID and an IP address), or the GTP tunnel information can also be a GTP TEID.
  • the first message further includes first indication information, where the first indication information is used to indicate that the first path and/or the first BH RLC CH are used for uplink transmission or downlink transmission, or the first indication The information is used to indicate that the path identified by the first routing identifier and/or the BH RLC CH identified by the first BH RLC CH identifier is used for uplink transmission or downlink transmission, or the first indication information is used to indicate that the first The routing identifier and/or the first BH RLC CH identifier is an uplink transmission identifier or a downlink transmission identifier.
  • the first IAB donor CU receives a second message from the second IAB donor CU, and the second message includes a second routing identifier corresponding to the first routing identifier, and/or a second routing identifier corresponding to the first BH RLC CH identifier.
  • the corresponding second BH RLC CH identifier, the second routing identifier is used to identify the second path for transmitting data and/signaling between the first node and the third node, and the second BH RLC CH identifier is used to identify the first node and the third node.
  • a second BH RLC CH for transmitting data and/or signaling between the parent nodes of a node.
  • the first IAB donor CU receives the second message from the second IAB donor CU, and the second message includes a first mapping relationship, and the first mapping relationship is used to indicate that the second routing identifier corresponds to the first routing identifier and/or, the second message includes a second mapping relationship, and the second mapping relationship is used to indicate that the second BH RLC CH identifier corresponds to the first BH RLC CH identifier.
  • the second message may further include the first routing identifier, or identification information of the first routing identifier (eg, an index of the first routing identifier).
  • the second message may further include the first BH RLC CH identifier, or the identifier information of the first BH RLC CH identifier (such as the index of the first BH RLC CH identifier).
  • the second message may further include second indication information to indicate that the second path and/or the second BH RLC CH are used for uplink transmission or downlink transmission, or the second indication information is used to indicate that the second path and/or the second BH RLC CH are used for uplink transmission or downlink transmission.
  • the path identified by the routing identifier and/or the BH RLC CH identified by the second BH RLC CH identifier is used for uplink transmission or downlink transmission, or the second indication information is used to indicate the first mapping relationship and/or the second The mapping relationship corresponds to uplink transmission or downlink transmission.
  • the first IAB donor CU receives a second message from the second IAB donor CU, where the second message includes a second routing identifier, and/or a second BH RLC CH identifier.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second path and/or the second BH RLC CH are used for uplink transmission or downlink transmission, or the second indication The information is used to indicate that the path identified by the second routing identifier and/or the BH RLC CH identified by the second BH RLC CH identifier is used for uplink transmission or downlink transmission, or the second indication information is used to indicate that the second The routing identifier and/or the second BH RLC CH identifier is an uplink transmission identifier or a downlink transmission identifier.
  • the first IAB donor CU determines the first route corresponding to the second routing identifier according to the second QoS information and/or signaling type and the received second routing identifier identify, and/or,
  • the first IAB donor CU is determined according to the second QoS information and/or signaling type and the second BH RLC CH identifier, and the received first BH RLC CH identifier corresponding to the second BH RLC CH identifier.
  • the first IAB donor CU determines the first routing identifier corresponding to the second routing identifier according to the second QoS information and/or the signaling type, and/or,
  • the first IAB donor CU determines the first BH RLC CH identifier corresponding to the second BH RLC CH identifier according to the second QoS information and/or the signaling type.
  • the first IAB donor CU can learn the first mapping relationship between the second routing identifier and the first routing identifier, and/or, the second BH RLC CH identifier and The second mapping relationship between the first BH RLC CH identities.
  • the first IAB donor CU may notify the first node of the first mapping relationship and/or the second mapping relationship.
  • the first IAB donor CU sends a third message to the first node, where the third message includes the first routing identifier and the second routing identifier, and/or the first BH RLC CH identifier and the second BH RLC CH identifier.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or downlink transmission, and/or, used to indicate that the first BH RLC CH and The second BH RLC CH is used for uplink transmission or downlink transmission.
  • the third indication information is used to indicate the first mapping relationship, and/or the second mapping relationship corresponds to uplink transmission or downlink transmission.
  • the first node can determine, according to the first routing identifier and the second routing identifier, the transmission of data and/or signaling in the first network topology managed by the first IAB donor CU and the transmission of data and/or signaling in the first network topology managed by the first IAB donor CU. Route translation between transmissions in the second network topology managed by the second IAB donor CU; and/or,
  • the second IAB donor CU determines routing and/or bearer mapping during data transmission.
  • FIG. 10 is a schematic flowchart of determining route mapping provided by the present application, including the following steps:
  • the first IAB donor CU determines QoS_S information and QoS_T information according to the QoS information.
  • the first IAB donor CU can determine the first routing identifier according to the QoS_S information.
  • the method flow shown in Figure 10 also includes:
  • the first IAB donor CU determines the first routing identifier according to the QoS_S information.
  • the first routing identifier is used to identify a first path through which data is transmitted between the first node and the second node.
  • Routing ID_S the first routing identifier
  • the first IAB donor CU determines the transmission path of the data between the boundary IAB node and the access IAB node according to the QoS_S information, and determines the corresponding routing identifier Routing ID_S.
  • Routing ID_S is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the boundary IAB node and the access IAB node.
  • the first IAB donor CU can send a first message to the second IAB donor CU, where the first message includes QoS_T information and at least one of the following information: GTP tunnel information, Routing ID_S, and first indication information.
  • the method flow shown in Figure 10 also includes:
  • the first IAB donor CU sends a first message to the second IAB donor CU.
  • the first message also includes Routing ID_S, or includes the indication information of Routing ID_S (such as the index of Routing ID_S);
  • the first message also includes GTP tunnel information, where the GTP tunnel information may be a GTP FTEID (for example, a GTP FTEID consists of a GTP TEID and an IP address), or the GTP tunnel information may also be a GTP TEID, the GTP tunnel information used to identify data;
  • GTP tunnel information may be a GTP FTEID (for example, a GTP FTEID consists of a GTP TEID and an IP address), or the GTP tunnel information may also be a GTP TEID, the GTP tunnel information used to identify data;
  • the first message further includes first indication information, where the first indication information is used to indicate whether the path identified by the Routing ID_S is used for UL routing or DL routing, or the first indication information is used to indicate the Routing ID_S Indicates whether it is an UL route or a DL route.
  • the first indication information is used to display and indicate whether the path identified by the Routing ID_S is used for UL routing or DL routing.
  • the first indication information is an indication of UL or DL: when the first indication information is UL, it indicates that the path identified by Routing ID_S is used for UL routing; when the first indication information is DL, it indicates that the path identified by Routing ID_S is used for DL routing .
  • the first indication information is used to implicitly indicate whether the path identified by the Routing ID_S is used for UL routing or DL routing.
  • the first indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the second IAB donor CU after the second IAB donor CU receives the first message, it can determine the second routing identification corresponding to the first routing identification according to the information carried in the first message.
  • the embodiment shown in Figure 10 also includes:
  • the second IAB donor CU determines a second routing identifier corresponding to the first routing identifier.
  • the second IAB donor CU determines the transmission path of the data between the second IAB donor DU and the boundary IAB node according to the QoS_T information received from the first IAB donor CU, and determines the routing ID_T corresponding to the Routing ID_S.
  • Routing ID_T is allocated by the second IAB donor CU, and can be used to identify a certain transmission path between the second IAB donor DU and the boundary IAB node.
  • Routing ID_T and Routing ID_S can be the same or different.
  • the second IAB donor CU sends the Routing ID_T corresponding to the Routing ID_S to the first IAB donor CU.
  • the embodiment shown in Figure 10 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second message includes a second routing identifier corresponding to the first routing identifier.
  • the second IAB donor CU sends the second routing identifier corresponding to the first routing identifier to the first IAB donor CU, which can be understood as the second IAB donor CU sending the second routing identifier and the first routing identifier to the first IAB donor CU. an indication of the routing identifier; or,
  • the second IAB donor CU sends the first routing identifier and the second routing identifier to the first IAB donor CU; or,
  • the second IAB donor CU sends the first mapping relationship to the first IAB donor CU, and the first mapping relationship includes the mapping relationship between the first routing identifier and the second routing identifier, and can be determined according to the first mapping relationship based on the first mapping relationship.
  • the second routing identifier corresponding to the first routing identifier.
  • the second message also includes second indication information, and the second indication information is used to indicate whether the second path identified by the Routing ID_T is used for UL or DL, or the second indication information is used to indicate that the first mapping relationship is used. UL or DL.
  • the second IAB donor CU can generate The following relationship table takes QoS information as the delay as an example to illustrate, as shown in Table 1 below:
  • the second IAB donor CU can perform the following decisions according to the QoS_T information and Routing ID_S received from the first IAB donor CU:
  • Routing ID_S corresponds to Routing ID_T1
  • Routing ID_S2 corresponds to Routing ID_T2.
  • Routing ID_S corresponds to Routing ID_T1
  • Routing ID_S2 corresponds to Routing ID_T1.
  • Routing ID_S and Routing ID_T are one-to-many mappings, for example: Routing ID_S1 corresponds to Routing ID_T1, and Routing ID_S1 corresponds to Routing ID_T2.
  • the first IAB donor CU can send the mapping relationship between Routing ID_S and Routing ID_T to the boundary IAB node, thereby making the boundary IAB node according to the The mapping relationship performs routing conversion processing between different network topologies.
  • the embodiment shown in Figure 10 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the third message includes a first routing identifier and a second routing identifier, or the third message includes a first mapping relationship between the first routing identifier and the second routing identifier, and the first mapping relationship can be determined based on the first mapping relationship.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first path and the second path are used for uplink transmission or downlink transmission, or the third indication information is used to indicate that the first path and the second path are used for uplink transmission or downlink transmission. Whether the mapping relationship is for UL or DL.
  • the IAB node MT or IAB node DU of the subsequent boundary IAB node can determine the routing conversion between data transmissions in different network topologies according to the correspondence between Routing ID_S and Routing ID_T.
  • the above-mentioned steps S1050 and S1060 may not be performed, but performed: the second IAB donor CU sends the first routing identifier and the second routing identifier to the MT of the first node through an RRC message, and the optional , the MT of the first node may also send the first routing identifier and the second routing identifier to the DU of the first node in one step.
  • FIG. 10 shows the process of determining the route mapping. It should be understood that determining the transmission of the data also needs to determine the bearer mapping, which will be described below with reference to FIG. 11 .
  • FIG. 11 is a schematic flowchart of determining bearer mapping provided by the present application, including the following steps:
  • the first IAB donor CU determines QoS_S information and QoS_T information according to the QoS information.
  • the first IAB donor CU determines the QoS_S information and the QoS_T information, it can determine the first BH RLC CH information according to the QoS_S information.
  • the method flow shown in Figure 11 also includes:
  • the first IAB donor CU determines the first BH RLC CH information according to the QoS_S information.
  • the first BH RLC CH information includes the first BH RLC CH identifier, optionally, the first BH RLC CH information may further include QoS information of the first BH RLC CH.
  • the QoS information of the first BH RLC CH may be at least one kind of information among GBR, 5G quality of service identifier (5G quality of service identifier, 5QI) or packet delay budget (packet delay budget, PDB).
  • 5G quality of service identifier 5QI
  • PDB packet delay budget
  • the first BH RLC CH identifier is used to indicate the first BH RLC CH between the first node and the child nodes of the first node, and the first BH RLC CH is used to transmit data between the first node and the child nodes of the first node .
  • the first BH RLC CH may be referred to as the first egress BH RLC CH; for UL transmission, the first BH RLC CH may be referred to as the first ingress BH RLC CH.
  • the first IAB donor CU determines, according to the QoS_S information, that the data is mapped to the first IAB node between the boundary IAB node and the child nodes of the boundary IAB node (IAB node#2 MT in FIG. 9 ) Transmission on BH RLC CH.
  • the first IAB donor CU decides that the boundary IAB node maps data to the first egress BH RLC CH and sends it to the child node of the boundary IAB node; for UL, the first IAB donor CU decides the The child nodes of the boundary IAB node map the data to the first boundaryingress BH RLC CH and send it to the boundary IAB node.
  • the first IAB donor CU can send a first message to the second IAB donor CU, where the first message includes QoS_T information and at least one of the following information: GTP tunnel information, first BH RLC CH identifier, first indication information .
  • the method flow shown in Figure 11 also includes:
  • the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message further includes the first BH RLC CH identifier, or includes indication information of the first BH RLC CH identifier (such as the index of the first BH RLC CH identifier);
  • the first message further includes QoS information of the first BH RLC CH;
  • the first message further includes GTP tunnel information
  • the first message further includes first indication information, where the first indication information is used to indicate whether the first BH RLC CH is used for UL bearer mapping or DL bearer mapping, or the first indication information is used to indicate that the first BH RLC CH is used for UL bearer mapping or DL bearer mapping.
  • a BH RLC CH identifies whether it corresponds to UL bearer mapping or DL bearer mapping.
  • the first indication information is used to display and indicate whether the first BH RLC CH is used for UL bearer mapping or DL bearer mapping.
  • the first indication information is an indication of UL or DL. If the first indication information is set to UL, the first BH RLC CH is the first ingress BH RLC CH; if the second indication information is set to DL, then the first BH RLC CH is the first ingress BH RLC CH. The first BH RLC CH is the first egress BH RLC CH.
  • the first indication information is used to implicitly indicate whether the first BH RLC CH is used for UL bearer mapping or DL bearer mapping.
  • the first indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the second IAB donor CU can determine the second BH RLC CH identifier corresponding to the first BH RLC CH identifier according to the information carried in the first message.
  • the embodiment shown in Figure 11 also includes:
  • the second IAB donor CU determines a second BH RLC CH identifier corresponding to the first BH RLC CH identifier.
  • the second IAB donor CU determines, according to the QoS_T information received from the first IAB donor CU, that the data is mapped to the second BH RLC CH between the boundary IAB node and the parent node of the boundary IAB node for transmission.
  • the second IAB donor CU decides that the parent node of the boundary IAB node maps the data to the second ingress BH RLC CH and sends it to the boundary node; for UL, the second IAB donor CU decides the data to be sent to the boundary node.
  • the IAB node maps the data to the second egress boundary BH RLC CH and sends it to the parent node of the boundary IAB node.
  • the second IAB donor CU determines that the first egress BH RLC CH ID received from the first IAB donor CU corresponds to the second ingress BH RLC CH ID (for DL), and/or, determines that the first egress BH RLC CH ID received from the first IAB donor CU corresponds to the second ingress BH RLC CH ID (for DL), and/or, determines The first ingress BH RLC CH ID received by the donor CU corresponds to the second egress BH RLC CH ID (for UL).
  • the values of the first egress BH RLC CH ID and the second ingress BH RLC CH ID may be the same or different.
  • the values of the first ingress BH RLC CH ID and the second egress BH RLC CH ID may be the same or different.
  • the second BH RLC CH identifier is allocated by the second IAB donor CU, and can be used to identify a certain channel between the parent node of the boundary IAB node and the boundary IAB node.
  • the second IAB donor CU sends the second BH RLC CH identification corresponding to the first BH RLC CH identification to the first IAB donor CU.
  • the embodiment shown in Figure 11 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second message includes a second BH RLC CH identifier corresponding to the first BH RLC CH identifier.
  • the second IAB donor CU sends the determined ingress BH RLC CH ID and egress BH RLC CH ID to the first IAB donor CU, so that the first IAB donor CU sends the ingress BH RLC CH ID and the egress BH RLC CH ID To the boundary IAB node, so that the boundary IAB node can perform bearer mapping conversion processing between different network topologies according to the mapping relationship.
  • the second IAB donor CU sends the second BH RLC CH identifier corresponding to the first BH RLC CH identifier to the first IAB donor CU, which can be understood as the second IAB donor CU sending the second BH to the first IAB donor CU
  • the indication information of the RLC CH identity and the first BH RLC CH identity or,
  • the second IAB donor CU sends the first BH RLC CH identifier and the second BH RLC CH identifier to the first IAB donor CU; or,
  • the second IAB donor CU sends a second mapping relationship to the first IAB donor CU, and the second mapping relationship includes the mapping relationship between the first BH RLC CH identifier and the second BH RLC CH identifier. Based on the second mapping The relationship can be determined according to the second BH RLC CH identifier corresponding to the first BH RLC CH identifier.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second BH RLC CH (or the second mapping relationship) is used for uplink bearer mapping or downlink bearer mapping.
  • the second IAB donor CU according to the information included in the first message sent by the first IAB donor CU (for example, including GTP tunnel information, QoS_T information, first BH RLC CH information), the second IAB donor CU
  • the donor CU can generate the following relationship table, taking QoS information as the delay as an example, as shown in Table 2 below:
  • the second IAB donor CU can perform the following decision according to the QoS_T information and the first BH RLC CH information received from the first IAB donor CU:
  • the second IAB donor CU allocates different second BH RLC CH identifiers, that is, the first BH RLC CH identifier and the second BH RLC CH identifier are one-to-one mapping, for example :
  • the first BH RLC CH ID #1 corresponds to the second BH RLC CH ID #1
  • the first BH RLC CH ID #2 corresponds to the second BH RLC CH ID #2.
  • the second IAB donor CU allocates the same second BH RLC CH identifier, that is, the first BH RLC CH identifier and the second BH RLC CH identifier are a many-to-one mapping,
  • the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #1
  • the first BH RLC CH identifier #2 corresponds to the second BH RLC CH identifier #1.
  • the second IAB donor CU allocates different second BH RLC CH identifiers, that is, the first BH RLC CH identifier and the second BH RLC CH identifier are one-to-many mapping, For example, the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #1, and the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #2.
  • the first IAB donor CU can send the mapping relationship between the first BH RLC CH identifier and the second BH RLC CH identifier to the boundary IAB node, so that the boundary IAB node can perform bearer conversion processing between different network topologies according to the mapping relationship.
  • the embodiment shown in Figure 11 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the third message includes the first BH RLC CH identifier and the second BH RLC CH identifier.
  • the third message includes a second mapping relationship between the first BH RLC CH identifier and the second BH RLC CH identifier, and the first BH RLC CH identifier and the second BH RLC CH identifier can be determined based on the second mapping relationship.
  • the third message further includes third indication information, where the third indication information is used to indicate that the first BH RLC CH identifier and the second BH RLC CH identifier (or the second mapping relationship) are used for uplink bearer mapping or downlink Bearer mapping.
  • the IAB node MT or IAB node DU of the subsequent boundary IAB node can determine the bearer mapping conversion between data transmissions in different network topologies according to the correspondence between the first BH RLC CH identifier and the second BH RLC CH identifier.
  • the above steps S1150 and S1160 may not be performed, but performed: the second IAB donor CU sends the first BH RLC CH identifier and the second BH RLC CH identifier to the MT of the first node through an RRC message , optionally, the MT of the first node further sends the first BH RLC CH identifier and the second BH RLC CH identifier to the DU of the first node.
  • the first IAB donor CU determines the routing and/or bearer mapping in the data transmission path.
  • FIG. 12 is a schematic diagram of another route mapping process provided by the present application, including the following steps:
  • the first IAB donor CU determines QoS_S information and QoS_T information according to the QoS information.
  • the first IAB donor CU determines the QoS_S information and the QoS_T information, it can send a first message to the second IAB donor CU, where the first message includes the QoS_T information.
  • the method flow shown in Figure 12 also includes:
  • the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message further includes GTP tunnel information.
  • the second IAB donor CU can determine the second routing identifier according to the information carried in the first message.
  • the embodiment shown in Figure 12 also includes:
  • the second IAB donor CU determines the second routing identifier.
  • the second IAB donor CU determines the data transmission path between the second IAB donor DU and the boundary IAB node according to the QoS_T information received from the first IAB donor CU, and determines the routing identifier Routing ID_T.
  • Routing ID_T is allocated by the second IAB donor CU, and can be used to identify a certain transmission path between the second IAB donor DU and the boundary IAB node.
  • the embodiment shown in Figure 12 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second message includes a second routing identifier.
  • the second message further includes second indication information, where the second indication information is used to indicate whether the path identified by the Routing ID_T is used for UL routing or DL routing, or the second indication information is used to indicate the Routing ID_T Indicates whether it is an UL route or a DL route.
  • the second indication information is used to display and indicate whether the path identified by the Routing ID_T is used for UL routing or DL routing.
  • the second indication information is an indication of UL or DL;
  • the second indication information is used to implicitly indicate whether the path identified by the Routing ID_T is used for UL routing or DL routing.
  • the second indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the first IAB donor CU can determine the first routing identifier corresponding to the second routing identifier according to the second QoS information, and the embodiment shown in FIG. 12 also includes:
  • the first IAB donor CU determines the first routing identifier corresponding to the second routing identifier.
  • the first IAB donor CU determines the transmission path of data between the boundary IAB node and the access IAB node according to the QoS_S information and the second routing identifier, and determines the routing identifier Routing ID_S corresponding to the Routing ID_T.
  • Routing ID_S is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the boundary IAB node and the access IAB node.
  • the first IAB donor CU determines the transmission path of the data between the boundary IAB node and the access IAB node according to the QoS_S information, that is, determines the routing identifier Routing ID_S. Then, according to the second routing identifier, determine the routing identifier Routing ID_S corresponding to the Routing ID_T. Among them, Routing ID_S is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the boundary IAB node and the access IAB node. Wherein, the first IAB donor CU determines the routing identifier Routing ID_S according to the QoS_S information, which may be performed in S1210 or in S1250, which is not limited in this embodiment.
  • Routing ID_T and Routing ID_S can be the same or different.
  • the first IAB donor CU can generate the following relationship table according to the information (eg, Routing ID_T) included in the second message sent by the second IAB donor CU, to use QoS
  • the information is the delay as an example, as shown in Table 3 below:
  • the first IAB donor CU can execute the following decisions based on the Routing ID_T received from the second IAB donor CU:
  • Routing ID_T For different Routing ID_T, and the QoS_S information is the same, the first IAB donor CU allocates different Routing ID_S, that is, Routing ID_T and Routing ID_S are one-to-one mapping, for example: Routing ID_T#1 corresponds to Routing ID_S#1, and Routing ID_T#2 corresponds to Routing ID_S#2.
  • Routing ID_T For different Routing ID_T, but the QoS_S information is the same, the first IAB donor CU allocates the same Routing ID_S, that is, Routing ID_T and Routing ID_S are many-to-one mapping, for example: Routing ID_T#1 corresponds to Routing ID_S#1, Routing ID_T#2 Corresponds to Routing ID_S#1.
  • Routing ID_T and Routing ID_S are one-to-many mapping, for example: Routing ID_T#1 corresponds to Routing ID_S#1, Routing ID_T#1 Corresponds to Routing ID_S#2.
  • the first IAB donor CU can send the mapping relationship between Routing ID_S and Routing ID_T to the boundary IAB node, so that the boundary IAB node According to the mapping relationship, routing conversion processing between different network topologies is performed.
  • the embodiment shown in Figure 12 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the IAB node MT of the subsequent boundary IAB node can determine the routing conversion between data transmissions in different network topologies according to the correspondence between Routing ID_S and Routing ID_T.
  • FIG. 13 is another schematic flowchart of determining bearer mapping provided by the present application, including the following steps:
  • the first IAB donor CU determines QoS_S information and QoS_T information according to the QoS information.
  • the first IAB donor CU determines the QoS_S information and the QoS_T information, it can send a first message to the second IAB donor CU, where the first message includes the QoS_T information.
  • the method flow shown in Figure 13 also includes:
  • the first IAB donor CU sends a first message to the second IAB donor CU.
  • the second IAB donor CU can determine the second BH RLC CH information according to the information carried in the first message.
  • the embodiment shown in Figure 13 also includes:
  • the second IAB donor CU determines the second BH RLC CH information.
  • the second BH RLC CH information may include the second BH RLC CH identifier, or may also include the second BH RLC CH ID and the QoS information of the second BH RLC CH.
  • the QoS information of the second BH RLC CH may be at least one of GBR, 5QI or PDB.
  • the second IAB donor CU determines, according to the QoS_T information received from the first IAB donor CU, that the data is mapped to the second BH RLC CH between the boundary IAB node and the parent node of the boundary IAB node for transmission.
  • the second IAB donor CU decides that the parent node of the boundary IAB node maps the data to the second ingress BH RLC CH and sends it to the boundary node; for UL, the second IAB donor CU decides the data to be sent to the boundary node.
  • the IAB node maps the data to the second egress boundary BH RLC CH and sends it to the parent node of the boundary IAB node.
  • the second BH RLC CH identifier is allocated by the second IAB donor CU, and can be used to identify a certain channel between the parent node of the boundary IAB node and the boundary IAB node.
  • the embodiment shown in Figure 13 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second message includes a second BH RLC CH identifier, and the second BH RLC CH identifier corresponds to the GTP tunnel information.
  • the second message may further include QoS information of the second BH RLC CH.
  • the second message further includes second indication information, where the second indication information is used to indicate that the second BH RLC CH information corresponds to uplink bearer mapping or downlink bearer mapping.
  • the second indication information is used to indicate whether the second BH RLC CH information is used for UL bearer mapping or DL bearer mapping.
  • the second indication information is an indication of UL or DL. If the second indication information is set to UL, the first BH RLC CH is the first ingress BH RLC CH; if the second indication information is set to DL, then the first BH RLC CH is the first ingress BH RLC CH. The first BH RLC CH is the first egress BH RLC CH.
  • the second indication information is used to implicitly indicate whether the second BH RLC CH information is used for UL bearer mapping or DL bearer mapping.
  • the second indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the first IAB donor CU can determine the first BH RLC CH identifier corresponding to the second BH RLC CH identifier according to the second QoS information and the second BH RLC CH identifier, or, the first After receiving the second message, the IAB donor CU can determine the first BH RLC CH identifier corresponding to the second BH RLC CH identifier according to the second QoS information, and the embodiment shown in FIG. 13 further includes:
  • the first IAB donor CU determines the first BH RLC CH identifier corresponding to the second BH RLC CH identifier.
  • the first IAB donor CU determines that data is mapped between the boundary IAB node and the child nodes of the boundary IAB node (IAB node#2 MT in Figure 9) according to the QoS_S information of the UE service. transmitted on the first BH RLC CH.
  • the first IAB donor CU decides that the boundary IAB node maps data to the first egress BH RLC CH and sends it to the child node of the boundary IAB node; for UL, the first IAB donor CU decides the The child nodes of the IAB node map the data to the first boundaryingress BH RLC CH and send it to the boundary IAB node.
  • the first IAB donor CU determines that the second ingress BH RLC CH ID received from the second IAB donor CU corresponds to the first egress BH RLC CH ID (for DL), and/or, determines that the second ingress BH RLC CH ID received from the second IAB donor CU corresponds to the first egress BH RLC CH ID (for DL), and/or, determines The first egress BH RLC CH ID received by the donor CU corresponds to the second ingressBH RLC CH ID (for UL).
  • the values of the first egress BH RLC CH ID and the second ingress BH RLC CH ID may be the same or different.
  • the values of the first ingress BH RLC CH ID and the second egress BH RLC CH ID may be the same or different.
  • the first BH RLC CH is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the child node of the boundary IAB node and the boundary IAB node.
  • the first IAB donor CU can generate the following relationship according to the information included in the second message sent by the second IAB donor CU (for example, the second BH RLC CH identifier) Table, taking QoS information as the delay as an example, as shown in Table 4 below:
  • the first IAB donor CU can perform the following decisions according to the second BH RLC CH information received from the second IAB donor CU:
  • the first IAB donor CU allocates different first BH RLC CH identifiers, that is, the second BH RLC CH identifier and the first BH RLC CH identifier are one-to-one mapping, for example :
  • the second BH RLC CH ID #1 corresponds to the first BH RLC CH ID #1
  • the second BH RLC CH ID #2 corresponds to the first BH RLC CH ID #2.
  • the first IAB donor CU allocates the same first BH RLC CH identifier, that is, the second BH RLC CH identifier and the first BH RLC CH identifier are a many-to-one mapping,
  • the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #1
  • the second BH RLC CH identifier #2 corresponds to the first BH RLC CH identifier #1.
  • the first IAB donor CU allocates different first BH RLC CH identifiers, that is, the second BH RLC CH identifier and the first BH RLC CH identifier are one-to-many mapping,
  • the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #1
  • the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #2.
  • the first IAB donor CU can map the first BH RLC CH identifier and the second BH RLC CH identifier
  • the relationship is sent to the boundary IAB node, so that the boundary IAB node can perform channel conversion processing between different network topologies according to the mapping relationship.
  • the embodiment shown in Figure 13 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the IAB node MT or IAB node DU of the subsequent boundary IAB node can determine the bearer mapping conversion between data transmissions in different network topologies according to the correspondence between the first BH RLC CH identifier and the second BH RLC CH identifier.
  • signaling plane transmission includes the following signaling types: UE-associated (UE-associated) F1 application layer protocol (F1AP) messages, non-related to the terminal equipment (non- - UE associated) F1AP message.
  • F1AP application layer protocol
  • the signaling plane transmission may further include signaling type: non-F1 message (non-F1).
  • the signaling transmission on the signaling plane includes the following possibilities:
  • the second IAB donor CU determines the routing and/or bearer mapping in the signaling transmission path.
  • FIG. 14 is another schematic flow chart of determining route mapping provided by the present application, including the following steps:
  • the first IAB donor CU determines the first routing identifier according to the signaling type.
  • the first routing identifier is used to identify the first path through which signaling is transmitted between the first node and the second node.
  • the first routing identifier may be referred to as Routing ID_S.
  • the first IAB donor CU determines the transmission path of the signaling between the boundary IAB node and the access IAB node according to the signaling type, and determines the corresponding routing identifier Routing ID_S. Among them, Routing ID_S is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the boundary IAB node and the access IAB node.
  • the first IAB donor CU may send a first message to the second IAB donor CU, where the first message includes indication information of the signaling type and at least one of the following information: Routing ID_S, first indication information.
  • Routing ID_S is the routing identifier corresponding to the signaling transmission in the network topology managed by the first IAB donor CU.
  • the method flow shown in Figure 14 also includes:
  • the first IAB donor CU sends a first message to the second IAB donor CU.
  • the first message also includes Routing ID_S, or includes the indication information of Routing ID_S (such as the index of Routing ID_S);
  • the first message further includes first indication information, where the first indication information is used to indicate whether the Routing ID_S is used for UL routing or DL routing.
  • the first indication information is used to display and indicate whether the path identified by the Routing ID_S is used for UL routing or DL routing.
  • the first indication information is an indication of UL or DL: when the first indication information is UL, it indicates that the path identified by Routing ID_S is used for UL routing; when the first indication information is DL, it indicates that the path identified by Routing ID_S is used for DL routing .
  • the first indication information is used to implicitly indicate whether the path identified by the Routing ID_S is used for UL routing or DL routing.
  • the first indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the second IAB donor CU can determine the second routing identifier corresponding to the first routing identifier according to the information carried in the first message.
  • the embodiment shown in Figure 14 also includes:
  • the second IAB donor CU determines a second routing identifier corresponding to the first routing identifier.
  • the second IAB donor CU determines the transmission path of the signaling between the second IAB donor DU and the boundary IAB node according to the indication information of the signaling type received from the first IAB donor CU, and determines the routing identifier corresponding to the Routing ID_S Routing ID_T.
  • the second IAB donor CU determines the transmission path of the signaling between the second IAB donor DU and the boundary IAB node according to the indication information of the signaling type and the Routing ID_S received from the first IAB donor CU, and determines the routing The routing ID corresponding to ID_S is Routing ID_T.
  • Routing ID_T is allocated by the second IAB donor CU, and can be used to identify a certain transmission path between the second IAB donor DU and the boundary IAB node.
  • Routing ID_T and Routing ID_S can be the same or different.
  • the second IAB donor CU sends the Routing ID_T corresponding to the Routing ID_S to the first IAB donor CU.
  • the embodiment shown in Figure 14 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second IAB donor CU may perform the following decision according to the signaling type indication information and the Routing ID_S received from the first IAB donor CU:
  • Routing ID_S and Routing ID_T are one-to-one mapping, for example: Routing ID_S#1 corresponds to Routing ID_T#1, Routing ID_S#2 Corresponds to Routing ID_T#2.
  • Routing ID_S For different Routing ID_S, but the signaling type is the same, the second IAB donor CU allocates the same Routing ID_T, that is, Routing ID_S and Routing ID_T are many-to-one mappings, for example: Routing ID_S#1 corresponds to Routing ID_T#1, Routing ID_S #2 corresponds to Routing ID_T#1.
  • Routing ID_S and Routing ID_T are one-to-many mappings, for example: Routing ID_S#1 corresponds to Routing ID_T#1, Routing ID_S# 1 corresponds to Routing ID_T#2.
  • the first IAB donor CU can send the mapping relationship between Routing ID_S and Routing ID_T to the boundary IAB node, so that the boundary IAB node is based on The mapping relationship performs routing conversion processing between different network topologies.
  • the embodiment shown in Figure 14 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the IAB node MT of the subsequent boundary IAB node can determine the routing conversion between signaling transmissions in different network topologies according to the correspondence between Routing ID_S and Routing ID_T.
  • the above-mentioned steps S1440 and S1450 may not be performed, but performed: the second IAB donor CU sends the first routing identifier and the second routing identifier to the MT of the first node through an RRC message, and the optional , the MT of the first node may further send the first routing identifier and the second routing identifier to the DU of the first node.
  • FIG. 14 shows the process of determining route mapping. It should be understood that determining the transmission of signaling also needs to determine bearer mapping, which will be described below with reference to FIG. 15 .
  • FIG. 15 is another schematic flowchart of determining bearer mapping provided by the present application, including the following steps:
  • the first IAB donor determines the first BH RLC CH information according to the signaling type.
  • the first BH RLC CH information includes the first BH RLC CH identifier, optionally, the first BH RLC CH information may further include QoS information of the first BH RLC CH.
  • the first BH RLC CH identifier is used to indicate the first BH RLC CH between the first node and the child node of the first node, and the first BH RLC CH is used to transmit the terminal between the first node and the child node of the first node Device service signaling.
  • the first BH RLC CH may be referred to as the first egress BH RLC CH; for UL transmission, the first BH RLC CH may be referred to as the first ingress BH RLC CH.
  • the first IAB donor CU determines, according to the signaling type, that signaling is mapped between the boundary IAB node and the child nodes of the boundary IAB node (IAB node#2 MT in FIG. 9 ) transmitted on the first BH RLC CH.
  • the first IAB donor CU decides that the boundary IAB node maps the signaling to the first egress BH RLC CH and sends it to the child node of the boundary IAB node; for UL, the first IAB donor CU It is decided that the child node of the boundary IAB node maps the signaling to the first ingress BH RLC CH and sends it to the boundary IAB node.
  • the first IAB donor CU may send a first message to the second IAB donor CU, where the first message includes indication information of the signaling type and at least one of the following information: first BH RLC CH information, second indication information .
  • the method flow shown in Figure 15 also includes:
  • the first IAB donor CU sends the first message to the second IAB donor CU.
  • the first message further includes the first BH RLC CH identifier, or includes indication information of the first BH RLC CH identifier (such as the index of the first BH RLC CH identifier);
  • the first message further includes QoS information of the first BH RLC CH.
  • the first message further includes first indication information, where the first indication information is used to indicate whether the first BH RLC CH is used for UL bearer mapping or DL bearer mapping, or the first indication information is used to indicate that the first BH RLC CH is used for UL bearer mapping or DL bearer mapping.
  • a BH RLC CH information corresponds to UL bearer mapping or DL bearer mapping.
  • the first indication information is used to display and indicate whether the first BH RLC CH is used for UL bearer mapping or DL bearer mapping.
  • the first indication information is an indication of UL or DL. If the first indication information is set to UL, the first BH RLC CH is the first ingress BH RLC CH; if the first indication information is set to DL, then the first BH RLC CH is the first ingress BH RLC CH. The first BH RLC CH is the first egress BH RLC CH.
  • the first indication information is used to implicitly indicate whether the Routing ID_S is used for UL bearer mapping or DL bearer mapping.
  • the first indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the second IAB donor CU can determine the second BH RLC CH identifier corresponding to the first BH RLC CH identifier according to the information carried in the first message.
  • the embodiment shown in Figure 15 also includes:
  • the second IAB donor CU determines the second BH RLC CH identifier corresponding to the first BH RLC CH identifier.
  • the second IAB donor CU determines, according to the indication information of the signaling type received from the first IAB donor CU, that the signaling is mapped to the second BH RLC CH between the boundary IAB node and the parent node of the boundary IAB node for transmission.
  • the second IAB donor CU decides that the parent node of the boundary IAB node maps the signaling to the second ingress BH RLC CH and sends it to the boundary node; for UL, the second IAB donor CU decides The boundary IAB node maps the signaling to the second egress BH RLC CH and sends it to the parent node of the boundary IAB node.
  • the second IAB donor CU determines that the first egress BH RLC CH ID received from the first IAB donor CU corresponds to the second ingress BH RLC CH ID (for DL), and/or, determines that the first egress BH RLC CH ID received from the first IAB donor CU corresponds to the second ingress BH RLC CH ID (for DL), and/or, determines The first ingress BH RLC CH ID received by the donor CU corresponds to the second egress BH RLC CH ID (for UL).
  • the values of the first egress BH RLC CH ID and the second ingress BH RLC CH ID may be the same or different.
  • the values of the first ingress BH RLC CH ID and the second egress BH RLC CH ID may be the same or different.
  • the second BH RLC CH is allocated by the second IAB donor CU, and can be used to identify a certain transmission path between the parent node of the boundary IAB node and the boundary IAB node.
  • the second IAB donor CU sends the second BH RLC CH information corresponding to the first BH RLC CH information to the first IAB donor CU.
  • the embodiment shown in Figure 15 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second IAB donor CU may perform the following decision according to the signaling type indication information and the first BH RLC CH information received from the first IAB donor CU:
  • the second IAB donor CU allocates different second BH RLC CH identifiers, that is, the first BH RLC CH identifier and the second BH RLC CH identifier are one-to-one mapping
  • the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #1
  • the first BH RLC CH identifier #2 corresponds to the second BH RLC CH identifier #2.
  • the second IAB donor CU allocates the same second BH RLC CH identifier, that is, the first BH RLC CH identifier and the second BH RLC CH identifier are many-to-one Mapping, for example: the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #1, and the first BH RLC CH identifier #2 corresponds to the second BH RLC CH identifier #1.
  • the second IAB donor CU allocates different second BH RLC CH identifiers, that is, the first BH RLC CH identifier and the second BH RLC CH identifier are one-to-many Mapping, for example: the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #1, and the first BH RLC CH identifier #1 corresponds to the second BH RLC CH identifier #2.
  • the first IAB donor CU can send the mapping relationship between the first BH RLC CH identifier and the second BH RLC CH identifier to the boundary IAB node , so that the boundary IAB node performs routing conversion processing between different network topologies according to the mapping relationship.
  • the embodiment shown in Figure 15 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the IAB node MT or IAB node DU of the subsequent boundary IAB node can determine the bearer mapping conversion between signaling transmissions in different network topologies according to the correspondence between the first BH RLC CH identifier and the second BH RLC CH identifier .
  • the above steps S1540 and S1550 may not be performed, but performed: the second IAB donor CU sends the second BH RLC corresponding to the first BH RLC CH identifier to the MT of the first node through an RRC message CH identifier, optionally, the MT of the first node may further send the second BH RLC CH identifier corresponding to the first BH RLC CH identifier to the DU of the first node.
  • the first IAB donor CU determines the routing and/or bearer mapping in the signaling transmission path.
  • FIG. 16 is another schematic flow diagram of determining route mapping provided by the present application, including the following steps:
  • the first IAB donor CU sends a first message to the second IAB donor CU.
  • the first message includes indication information of the signaling type.
  • the second IAB donor CU can determine the second routing identifier according to the information carried in the first message.
  • the embodiment shown in Figure 16 also includes:
  • the second IAB donor CU determines the second routing identifier.
  • the second IAB donor CU determines the transmission path of the signaling between the second IAB donor DU and the boundary IAB node according to the indication information of the signaling type received from the first IAB donor CU, and determines the routing identifier Routing ID_T.
  • Routing ID_T is allocated by the second IAB donor CU, and can be used to identify a certain transmission path between the second IAB donor DU and the boundary IAB node.
  • the embodiment shown in Figure 16 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the first IAB donor CU can determine the first routing identification corresponding to the second routing identification according to the signaling type, or can determine the first routing identification corresponding to the second routing identification according to the signaling type and the second routing identification.
  • the first routing identifier corresponding to the routing identifier the embodiment shown in FIG. 16 further includes:
  • the first IAB donor CU determines the first routing identifier corresponding to the second routing identifier.
  • the first IAB donor CU determines the transmission path of the signaling between the boundary IAB node and the access IAB node according to the indication information of the signaling type, and determines the routing identifier Routing ID_S corresponding to the Routing ID_T.
  • Routing ID_S is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the boundary IAB node and the access IAB node.
  • the first IAB donor CU determines the transmission path of signaling between the boundary IAB node and the access IAB node, that is, determines the Routing ID_S, according to the indication information of the signaling type. Determine the routing ID Routing ID_S corresponding to the Routing ID_T according to the second routing ID. Among them, Routing ID_S is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the boundary IAB node and the access IAB node.
  • Routing ID_T and Routing ID_S can be the same or different.
  • the first IAB donor CU may execute the following judgments according to the Routing ID_T received from the second IAB donor CU:
  • Routing ID_T For different Routing ID_T, and the signaling type is the same, the first IAB donor CU allocates different Routing ID_S, that is, Routing ID_T and Routing ID_S are one-to-one mapping, for example: Routing ID_T#1 corresponds to Routing ID_S#1, Routing ID_T#2 Corresponds to Routing ID_S#2.
  • Routing ID_T For different Routing ID_T, but the signaling type is the same, the first IAB donor CU allocates the same Routing ID_S, that is, Routing ID_T and Routing ID_S are many-to-one mapping, for example: Routing ID_T#1 corresponds to Routing ID_S#1, Routing ID_T# 2 corresponds to Routing ID_S#1.
  • Routing ID_T and Routing ID_S are one-to-many mappings, for example: Routing ID_T#1 corresponds to Routing ID_S#1, Routing ID_T# 1 corresponds to Routing ID_S#2.
  • the first IAB donor CU can send the mapping relationship between Routing ID_S and Routing ID_T to the boundary IAB node, so that the boundary IAB node According to the mapping relationship, routing conversion processing between different network topologies is performed.
  • the embodiment shown in Figure 16 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the IAB node MT or IAB node DU of the subsequent boundary IAB node can determine the routing conversion between signaling transmissions in different network topologies according to the correspondence between Routing ID_S and Routing ID_T.
  • FIG. 16 shows the flow of determining route mapping. It should be understood that determining the transmission of signaling also needs to determine bearer mapping, which will be described below with reference to FIG. 17 .
  • FIG. 17 is another schematic flowchart of determining bearer mapping provided by the present application, including the following steps:
  • the first IAB donor CU sends a first message to the second IAB donor CU.
  • the second IAB donor CU can determine the second BH RLC CH information according to the information carried in the first message.
  • the embodiment shown in Figure 17 also includes:
  • the second IAB donor CU determines the second BH RLC CH information.
  • the second BH RLC CH information may include the second BH RLC CH identifier, or may also include the second BH RLC CH ID and the QoS information of the second BH RLC CH.
  • the QoS information of the second BH RLC CH may be at least one of GBR, 5QI or PDB.
  • the second IAB donor CU determines, according to the indication information of the signaling type received from the first IAB donor CU, that the signaling is mapped to the second BH RLC CH between the boundary IAB node and the parent node of the boundary IAB node for transmission.
  • the second IAB donor CU decides that the parent node of the boundary IAB node maps the signaling to the second ingress BH RLC CH and sends it to the boundary node; for UL, the second IAB donor CU decides The boundary IAB node maps the signaling to the second egress BH RLC CH and sends it to the parent node of the boundary IAB node.
  • the second BH RLC CH is allocated by the second IAB donor CU, and can be used to identify a transmission channel between the parent node of the boundary IAB node and the boundary IAB node.
  • the embodiment shown in Figure 17 also includes:
  • the second IAB donor CU sends a second message to the first IAB donor CU.
  • the second message includes second BH RLC CH information.
  • the second BH RLC CH information may include the second BH RLC CH ID, or may also include the second BH RLC CH ID and the second BH RLC CH QoS (for example, at least one of GBR, 5QI, and PDB information).
  • the second message further includes second indication information, where the second indication information is used to indicate that the second BH RLC CH information corresponds to uplink bearer mapping or downlink bearer mapping.
  • the second indication information is used to indicate whether the second BH RLC CH is used for UL bearer mapping or DL bearer mapping.
  • the second indication information is an indication of UL or DL. If the second indication information is set to UL, the first BH RLC CH is the first ingress BH RLC CH; if the second indication information is set to DL, then the first BH RLC CH is the first ingress BH RLC CH. The first BH RLC CH is the first egress BH RLC CH.
  • the second indication information is used to implicitly indicate whether the second BH RLC CH information is used for UL bearer mapping or DL bearer mapping.
  • the second indication information is the identification or address information of the previous hop node (for UL) or the next hop node (for DL).
  • the first IAB donor CU can determine the first BH RLC CH identifier corresponding to the second BH RLC CH identifier according to the signaling type, or can determine the first BH RLC CH identifier according to the signaling type and the second BH RLC CH identifier.
  • the CH identifier determines the first BH RLC CH identifier corresponding to the second BH RLC CH identifier, and the embodiment shown in FIG. 17 also includes:
  • the first IAB donor CU determines the first BH RLC CH identifier corresponding to the second BH RLC CH identifier.
  • the first IAB donor CU determines, according to the indication information of the signaling type, that the signaling is mapped to the first IAB node between the boundary IAB node and the child nodes of the boundary IAB node (as shown in the IAB node#2 MT in Figure 9). transmitted on BH RLC CHs.
  • the first IAB donor CU decides that the boundary IAB node maps the signaling to the first egress BH RLC CH and sends it to the child node of the boundary IAB node; for UL, the first IAB donor CU It is decided that the child node of the boundary IAB node maps the signaling to the first ingress BH RLC CH and sends it to the boundary IAB node.
  • the first IAB donor CU determines that the second ingressBH RLC CH ID received from the second IAB donor CU corresponds to the first egress BH RLC CH ID (for DL), and/or, determines that the second ingressBH RLC CH ID received from the second IAB donor CU corresponds to the first egress BH RLC CH ID (for DL), and/or, determines The first egress BH RLC CH ID received by the CU corresponds to the second ingressBH RLC CH ID (for UL).
  • the values of the first egress BH RLC CH ID and the second ingress BH RLC CH ID may be the same or different.
  • the values of the first ingress BH RLC CH ID and the second egress BH RLC CH ID may be the same or different.
  • the first BH RLC CH is allocated by the first IAB donor CU, and can be used to identify a certain transmission path between the child node of the boundary IAB node and the boundary IAB node.
  • the first IAB donor CU may perform the following decision according to the second BH RLC CH information received from the second IAB donor CU:
  • the first IAB donor CU allocates different first BH RLC CH identifiers, that is, the second BH RLC CH identifier and the first BH RLC CH identifier are one-to-one mapping
  • the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #1
  • the second BH RLC CH identifier #2 corresponds to the first BH RLC CH identifier #2.
  • the first IAB donor CU allocates the same first BH RLC CH identifier, that is, the second BH RLC CH identifier and the first BH RLC CH identifier are many-to-one Mapping, for example: the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #1, and the second BH RLC CH identifier #2 corresponds to the first BH RLC CH identifier #1.
  • the first IAB donor CU allocates different first BH RLC CH identifiers, that is, the second BH RLC CH identifier and the first BH RLC CH identifier are one-to-many Mapping, for example: the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #1, and the second BH RLC CH identifier #1 corresponds to the first BH RLC CH identifier #2.
  • the first IAB donor CU can map the first BH RLC CH identifier and the second BH RLC CH identifier
  • the relationship is sent to the boundary IAB node, so that the boundary IAB node can perform channel conversion processing between different network topologies according to the mapping relationship.
  • the embodiment shown in Figure 17 also includes:
  • the first IAB donor CU sends a third message to the first node.
  • the IAB node MT or IAB node DU of the subsequent boundary IAB node can determine the bearer mapping conversion between signaling transmissions in different network topologies according to the correspondence between the first BH RLC CH identifier and the second BH RLC CH identifier .
  • the first message sent by the first IAB donor CU to the second IAB donor CU may be a handover request message.
  • the first message sent by the first IAB donor CU to the second IAB donor CU may be the auxiliary between the first IAB donor-CU and the second IAB donor-CU.
  • the station adds and/or the secondary station modifies the relevant signaling.
  • the first message may be a secondary station addition request message or a secondary station addition response message; for example, the first message may be a secondary station modification request message or a secondary station modification response message.
  • the above-mentioned information sent by the first IAB donor CU to the second IAB donor CU may be carried in a newly added message between the first IAB donor CU and the second IAB donor CU.
  • how the first IAB donor CU sends the above-mentioned information to the second IAB donor CU is not limited.
  • the second message sent by the second IAB donor CU to the first IAB donor CU may be a handover request response message.
  • the second message sent by the second IAB donor CU to the first IAB donor CU may be a secondary message between the first IAB donor-CU and the second IAB donor-CU.
  • the station adds and/or the secondary station modifies the relevant signaling.
  • the second message may be a secondary station addition request message or a secondary station addition response message; for example, the second message may be a secondary station modification request message or a secondary station modification response message.
  • This embodiment mainly solves the routing and bearer mapping mechanism for the transmission of the user plane and the signaling plane in the cross-network topology scenario, so as to ensure the normal transmission of the user plane and the signaling plane in the cross-network topology scenario, and by considering the QoS characteristics (for example, The above-mentioned first QoS information, second QoS information, QoS information of the first BH RLC CH and QoS information of the second BH RLC CH) select the most suitable path and the most suitable channel to realize the QoS guarantee in the transmission process.
  • the QoS characteristics for example, The above-mentioned first QoS information, second QoS information, QoS information of the first BH RLC CH and QoS information of the second BH RLC CH
  • the present application also provides another method for information transmission, indicating the path of uplink F1-C transmission through indication information, so that uplink F1-C can be sent through the secondary cell group (secondary cell group, SCG) path, improving the uplink F1-C transmission path. -C transfer path flexibility.
  • the IAB donor can adopt the CP-UP separation architecture, exemplarily, including two CP-UP separation scenarios as shown in FIG. 18 .
  • FIG. 18 are schematic diagrams of the CP-UP separation scenario of the IAB donor provided by the embodiment of the present application.
  • F1-C is transmitted through the primary base station (non-IAB donor) using the NR access link
  • F1-U is transmitted through the secondary base station (IAB donor) using the backhaul link
  • F1-C is the signaling transmitted between IAB node2 DU and S-donor-CU
  • F1-U is the data transmitted between IAB node2 DU and S-donor-CU.
  • F1-C is transmitted through the secondary base station (non-IAB donor) using the NR access link
  • F1-U is transmitted through the primary base station (IAB donor) using the backhaul link
  • F1-C is the signaling transmitted between IAB node2 DU and M-donor-CU
  • F1-U is the data transmitted between IAB node2 DU and M-donor-CU.
  • Step 1 The CU part of the secondary base station (S-donor-CU shown in (a) in FIG. 18 ) generates an F1-C, carries the F1-C in a fourth message (for example, an XnAP message) and sends it to the The master base station (M-gNB as shown in (a) in Fig. 18).
  • S-donor-CU shown in (a) in FIG. 18
  • M-gNB The master base station
  • Step 2 After extracting the F1-C from the fourth message, the master base station encapsulates the F1-C in the fifth message (for example, the NR RRC message) and sends it to the IAB through a signaling radio bearer (signal radio bear2, SRB2).
  • a signaling radio bearer signal radio bear2, SRB2.
  • a node IAB node#2 shown in (a) of Figure 18).
  • the uplink transmission mechanism in the scenario shown in (a) of FIG. 18 is similar to the downlink transmission mechanism, except that the transmission direction is changed, which will not be repeated here.
  • Option 1 Transmission through SRB3.
  • split SRB includes split SRB1 or split SRB2.
  • the IAB node (IAB node#2 shown in (b) in Figure 18) can only transmit the upstream F1-C. Transmission is performed through the master cell group (MCG) path, but cannot be transmitted through the SCG path.
  • MCG master cell group
  • the MCG path includes: IAB node#2 sends the upstream F1-C to M-donor-CU through IAB node#1 and M-donor-DU;
  • the SCG path includes: IAB node#2 sends the upstream F1-C through S-donor-CU gNB sends to M-donor-CU.
  • M-donor-CU indicates the upstream F1-C transmission path of IAB node#2, for example: MCG path or SCG path. If the upstream F1-C transmission path is instructed to be SCG, and IAB node#2 is instructed to use split SRB1 or split SRB2 to transmit upstream F1-C, then IAB node#2 changes the main path corresponding to the PDCP entity of the split SRB from MCG to SCG, so that IAB node#2 transmits the upstream F1-C through the SCG path.
  • the RRC layer of IAB node#2 needs to be transmitted to the bottom layer (for example, the PDCP layer of IAB node#2) Send an indication information to indicate the transmission path of the NR RRC message, such as the MCG path or the SCG path; or, the indication information is used to indicate whether the NR RRC message carries F1-C, if it carries F1-C, the NR The RRC message is transmitted over the SCG path, otherwise, the NR RRC message is transmitted over the MCG path. That is to say, the bottom layer (for example, the PDCP layer) of the IAB node can flexibly adjust the transmission path for sending the NR RRC message according to the indication information received from the upper layer (for example, the RRC layer).
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application. . And it may not be necessary to perform all the operations in the above method embodiments.
  • IAB node and/or the host node in the above method embodiments may perform some or all of the steps in the embodiments, these steps or operations are only examples, and the embodiments of the present application may also include performing other operations or variations of various operations .
  • the method implemented by the IAB node can also be implemented by a component (such as a chip or circuit, etc.) that can be used in the IAB node, and the method implemented by the host node can also be implemented by the host node. component implementation.
  • FIG. 19 is a schematic diagram of an apparatus 1800 for information transmission proposed in the present application.
  • the apparatus 1800 includes a processing unit 1810 and a sending unit 1820 .
  • a processing unit 1810 configured to determine the first quality of service QoS information of the data and/or the signaling type of signaling, where the first QoS information is used to determine the transmission of the data in the second network topology managed by the second IAB donor CU , the signaling type is used to determine the transmission of the signaling in the second network topology;
  • a sending unit 1820 configured to send a first message to the second IAB donor CU, where the first message includes the first QoS information and/or the indication information of the signaling type,
  • the data and/or signaling are transmitted through the first network topology and the second network topology managed by the first IAB donor CU.
  • the processing unit determines that the first quality of service QoS information of the data includes:
  • the processing unit determines the second QoS information and the first QoS information according to the QoS corresponding to the data
  • the processing unit is further configured to determine the transmission of the data in the first network topology according to the second QoS information, and/or
  • the transmission of the signaling in the first network topology is determined according to the signaling type.
  • the device further includes:
  • a receiving unit 1830 configured to receive a second message from the second IAB donor CU, where the second message includes a second routing identifier corresponding to the first routing identifier, and/or, and the first BH RLC CH identifier the corresponding second BH RLC CH identifier;
  • the sending unit is further configured to send a third message to the first node, where the third message includes the first routing identifier and the second routing identifier, and/or the first BH RLC CH identifier and the second BH RLC CH logo;
  • the second routing identifier is used to identify the second path for transmitting the data and/or signaling between the first node and the third node
  • the second BH RLC CH identifier is used to identify the first node and the first node.
  • the second BH RLC CH of the data and/or signaling is transmitted between the parent nodes of the nodes, and the third node is the second donor DU.
  • the device further includes:
  • a receiving unit configured to receive a second message from the second IAB donor CU, where the second message includes a second routing identifier, and/or a second BH RLC CH identifier;
  • the second routing identifier is used to identify the data and/signaling path between the first node and the third node
  • the second BH RLC CH identifier is used to identify the first node and the first node The BH RLC CH that transmits the data and/or signaling between the parent nodes.
  • the apparatus 1800 completely corresponds to the first IAB donor CU in the method embodiment, and the apparatus 1800 may be the first IAB donor CU in the method embodiment; the apparatus 1800 may also be a chip or a functional module inside the first IAB donor CU.
  • the corresponding units of the apparatus 1800 are configured to perform the corresponding steps performed by the first IAB donor CU in the method embodiments shown in FIGS. 8 to 17 .
  • the processing unit 1810 in the apparatus 1800 executes the steps of internal implementation or processing in the method embodiment.
  • the sending unit 1820 performs the steps of sending in the method embodiment.
  • the apparatus 1800 may further include a receiving unit 1830 for performing the step of receiving.
  • the sending unit 1820 and the receiving unit 1830 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the sending unit 1820 may be a transmitter, and the receiving unit 1830 may be a receiver.
  • the receiver and transmitter can be integrated together to form a transceiver.
  • FIG. 20 is a schematic structural diagram of a first IAB donor CU applicable to an embodiment of the present application.
  • the first IAB donor CU includes a processor 1910, a memory 1920, and a transceiver 1930.
  • the processor is used to control the transceiver to send and receive information
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding flow and/or operation performed by the first IAB donor CU of the present application. It will not be repeated here.
  • FIG. 20 only shows one memory and a processor. In an actual system, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • FIG. 21 is a schematic diagram of an apparatus 2000 for information transmission proposed in this application.
  • the apparatus 2000 includes a processing unit 2010 and a receiving unit 2020 .
  • a receiving unit 2020 configured to receive the first message from the first IAB donor CU, where the first message includes the first quality of service QoS information and/or the indication information of the signaling type;
  • a processing unit 2010, configured to determine the transmission of the data in the second network topology managed by the second IAB donor CU according to the first QoS information;
  • the transmission of the signaling in the second network topology is determined according to the signaling type.
  • the device further includes:
  • Sending unit 2030 for sending a second message to the first IAB donor CU, the second message includes a second routing identification corresponding to the first routing identification, and/or, corresponding to the first BH RLC CH identification
  • the second routing identifier is used to identify the second path for transmitting the data and/or signaling between the first node and the third node
  • the second BH RLC CH identifier is used to identify the first node and the third node.
  • the second BH RLC CH for transmitting the data and/or signaling between the parent nodes of a node.
  • the device further includes:
  • a sending unit 2030 configured to send a second message to the first IAB donor CU, where the second message includes a second routing identifier, and/or a second BH RLC CH identifier;
  • the second routing identifier is used to identify the data and/signaling path between the first node and the third node
  • the second BH RLC CH identifier is used to identify the first node and the first node The BH RLC CH that transmits the data and/or signaling between the parent nodes.
  • the apparatus 2000 completely corresponds to the second IAB donor CU in the method embodiment, and the apparatus 2000 may be the second IAB donor CU in the method embodiment; the apparatus 2000 may also be a chip or a functional module inside the second IAB donor CU.
  • the corresponding units of the apparatus 2000 are configured to perform the corresponding steps performed by the second IAB donor CU in the method embodiments shown in FIGS. 8 to 17 .
  • the processing unit 2010 in the apparatus 2000 executes the steps of internal implementation or processing in the method embodiment.
  • the receiving unit 2020 performs the steps of receiving in the method embodiment.
  • the apparatus 2000 may further include a sending unit 2030 for performing the step of sending.
  • the sending unit 2030 and the receiving unit 2020 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the sending unit 2030 may be a transmitter, and the receiving unit 2020 may be a receiver.
  • the receiver and transmitter can be integrated together to form a transceiver.
  • FIG. 22 is a schematic structural diagram of a second IAB donor CU applicable to an embodiment of the present application.
  • the second IAB donor CU includes a processor 2110, a memory 2120, and a transceiver 2130.
  • the processor is used to control the transceiver to send and receive information
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding flow and/or operation performed by the second IAB donor CU of the present application. It will not be repeated here.
  • FIG. 22 only shows one memory and one processor. In an actual system, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • FIG. 23 is a schematic diagram of an apparatus 2200 for information transmission proposed in the present application.
  • the apparatus 2200 includes a processing unit 2210 and a receiving unit 2220 .
  • Receiving unit 2220 for receiving the third message from the first IAB donor CU, the third message includes the first routing identification and the second routing identification, and/or, the first BH RLC CH identification and the second BH RLC CH identification ,
  • Processing unit 2210 for determining the transmission of data and/or signaling in the first network topology managed by the first IAB donor CU and the management at the second IAB donor CU according to the first routing identification and the second routing identification Route translation between transmissions in the second network topology;
  • the processing unit is further configured to determine the transmission of the data and/or the signaling in the first network topology and the transmission in the second network topology according to the first BH RLC CH identifier and the second BH RLC CH identifier Bearer mapping conversion between;
  • the first network topology includes the device and the second node
  • the first routing identifier is used to identify the first path for transmitting the data and/or the signaling between the device and the second node
  • the first BH The RLC CH identifier is used to identify the first BH RLC CH for transmitting the data and/or the signaling between the device and the child nodes of the first node
  • the device is a border node
  • the second node is the access point of the terminal equipment node
  • the second network topology includes the device and a third node, the second routing identifier is used to identify a second path for transmitting the data and/or signaling between the device and the third node, and the second BH RLC CH identifier is used for A second BH RLC CH for transmitting the data and/or signaling between the device and the parent node of the first node, the third node being the second IAB donor DU.
  • the apparatus 2200 completely corresponds to the first node in the method embodiment, and the apparatus 2200 may be the first node in the method embodiment; the apparatus 2200 may also be a chip or a functional module inside the first node. Corresponding units of the apparatus 2200 are configured to perform the corresponding steps performed by the first node in the method embodiments shown in FIG. 8 to FIG. 17 .
  • the processing unit 2210 in the apparatus 2200 executes the steps of internal implementation or processing in the method embodiment.
  • the receiving unit 2220 performs the steps of receiving in the method embodiment.
  • the apparatus 2200 may further include a sending unit for performing the step of sending.
  • the sending unit and the receiving unit 2220 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the sending unit may be a transmitter, and the receiving unit 2222 may be a receiver.
  • the receiver and transmitter can be integrated together to form a transceiver.
  • FIG. 24 is a schematic structural diagram of a first node applicable to this embodiment of the present application.
  • the first node includes a processor 2310 , a memory 2320 , and a transceiver 2330 .
  • the processor is used to control the transceiver to send and receive information
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding process and/or operation performed by the first node of the present application. It will not be repeated here.
  • FIG. 24 only shows one memory and a processor. In an actual system, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the present application also provides a communication system, including the first node as described in the method embodiment, one or more of the first IAB donor CU and the second IAB donor CU.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on the computer, the computer is made to perform the corresponding operations performed by the first node in any method embodiment and/or or processing.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on the computer, the computer is made to perform the corresponding operations performed by the first IAB donor CU in any method embodiment. and/or processing.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on the computer, the computer is made to perform the corresponding operations performed by the second IAB donor CU in any method embodiment. and/or processing.
  • the present application further provides a computer program product, where the computer program product includes computer program code, and when the computer program code is run on a computer, causes the computer to perform the corresponding operation performed by the first node in any method embodiment of the present application and/or deal with.
  • the present application also provides a computer program product, the computer program product includes computer program code, when the computer program code is run on the computer, the computer program code enables the computer to perform the corresponding operations performed by the first IAB donor CU in any method embodiment of the present application and / or processing.
  • the present application also provides a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, the computer program code enables the computer to perform the corresponding operations performed by the second IAB donor CU in any method embodiment of the present application and / or processing.
  • the present application also provides a chip including a processor.
  • the processor is configured to invoke and run the computer program stored in the memory to perform corresponding operations and/or processing performed by the first node in any method embodiment of the present application.
  • the chip further includes a memory, and the memory is connected to the processor.
  • the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used for receiving signals and/or data to be processed, and the processor acquires the signals and/or data to be processed from the communication interface and processes them.
  • the present application also provides a chip including a processor.
  • the processor is configured to call and run the computer program stored in the memory to perform the corresponding operation and/or processing performed by the first IAB donor CU in any method embodiment of the present application.
  • the chip further includes a memory, and the memory is connected to the processor.
  • the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used for receiving signals and/or data to be processed, and the processor obtains the signals and/or data to be processed from the communication interface and processes them.
  • the present application also provides a chip including a processor.
  • the processor is configured to call and run the computer program stored in the memory to perform the corresponding operation and/or processing performed by the second IAB donor CU in any method embodiment of the present application.
  • the chip further includes a memory, and the memory is connected to the processor.
  • the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive signals and/or data to be processed, and the processor acquires the signals and/or data to be processed from the communication interface and processes them.
  • the above-mentioned communication interface may be an input/output interface, and may specifically include an input interface and an output interface.
  • the communication interface may be an input/output circuit, and may specifically include an input interface circuit and an output interface circuit.
  • the memory and the memory involved in the above embodiments may be physically independent units, or the memory may also be integrated with the processor.
  • the processor may be a central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more of them for controlling the technology of the present application. Program execution of integrated circuits, etc.
  • the processor may be a digital signal processor device, a microprocessor device, an analog-to-digital converter, a digital-to-analog converter, or the like.
  • the processor can distribute the control and signal processing functions of the terminal equipment or the network equipment among these devices according to their respective functions.
  • the processor may have the functionality to operate one or more software programs, which may be stored in the memory.
  • the functions of the processor may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the memory may be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or may also be capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other medium accessed by a computer, etc.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于信息传输的方法和装置,能够实现跨网络拓扑场景下的信息传输。该方法包括:第一IAB donor CU确定信令的类型和/或数据的第一QoS信息,该第一QoS信息用于确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输,该信令类型用于确定该信令在该第二网络拓扑中的传输;该第一IAB donor CU向该第二IAB donor CU发送该第一QoS信息和/或信令类型的指示信息。通过第一IAB donor CU确定并向第二IAB donor CU发送第二IAB donor CU所需的QoS信息和/或信令的信令类型,以保障数据和/或信令能够实现跨网络拓扑传输。

Description

用于信息传输的方法和装置
本申请要求于2021年04月01日提交中国专利局、申请号为202110358294.5、申请名称为“用于信息传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及接入回传一体化IAB网络,尤其涉及一种用于信息传输的方法和装置。
背景技术
为满足第五代(the 5th generation,5G)移动通信系统的超高容量需求,高频小站组网成为主流。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量、密集部署小站。相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案。另外,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。接入回传一体化(integrated access and backhaul,IAB)技术为解决上述问题提供了思路。IAB网络的接入链路(access Link)和回传链路(backhaul link)皆采用无线传输方案,可以避免光纤部署。
随着IAB技术的发展,终端设备和宿主节点的集中式单元(integrated access and backhaul donor central unit,IAB donor CU)之间信息(包括数据和信令)的传输可能受不同IAB donor CU的控制,即信息可能需要跨网络拓扑传输。但是目前在IAB网络中,终端设备和IAB donor CU之间的信息传输由该IAB donor CU统一控制,无法实现跨网络拓扑场景下的信息传输,影响跨网络拓扑场景下的信息传输的性能(如,信息中断时延大、网络负载不均衡等),因此如何实现跨网络拓扑场景下的信息传输,并提升信息传输的性能成为亟待解决的问题。
发明内容
本申请提供一种用于信息传输的方法和装置,能够实现跨网络拓扑场景下的信息传输。
第一方面,本申请提供一种用于信息传输的方法,该用于信息传输的方法可以由第一宿主节点的集中式单元(integrated access and backhaul donor central unit,IAB donor CU)执行,或者,也可以由设置于第一IAB donor CU中的芯片或电路执行,本申请对此不作限定。
该用于信息传输的方法包括:
第一宿主节点的集中式单元IAB donor CU确定数据的第一服务质量QoS信息和/或信令的信令类型,该第一QoS信息用于确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输,该信令类型用于确定该信令在该第二网络拓扑中的传输;该第一IAB donor  CU向该第二IAB donor CU发送第一消息,该第一消息包括该第一QoS信息和/或信令类型的指示信息,其中,该数据和/或信令经过该第一IAB donor CU管理的第一网络拓扑和该第二网络拓扑传输。
本申请实施例提供的用于信息传输的方法,在数据和/或信令需要跨网络拓扑传输的场景下,通过第一IAB donor CU确定并向第二IAB donor CU发送第二IAB donor CU所需的QoS信息和/或信令的信令类型,以保障数据和/或信令能够实现跨网络拓扑传输,能够提高数据和/或信令跨网络拓扑传输时的传输性能。
例如,某些跨网络拓扑传输场景下(如,第一IAB donor和第二IAB donor发生切换的场景)可以减少业务中断时延,如边界节点与第一网络拓扑中的父节点之间的链路质量不好,则该边界节点可以通过与第二网络拓扑中的父节点继续进行业务的传输。
还例如,某些跨网络拓扑传输场景下(如,第一IAB donor和第二IAB donor构成双连接的场景下)可以用于负载均衡,如边界节点同时连接到不同网络拓扑中的两个父节点,则第一IAB donor可以根据负载情况,决定业务通过哪个父节点与边界节点之间传输数据,从而数据业务在不同路径上传输,使得网络负载达到均衡。
结合第一方面,在第一方面的某些实现方式中,该第一IAB donor CU确定数据的第一QoS信息包括:该第一IAB donor CU根据该数据对应的QoS确定第二QoS信息和该第一QoS信息;该方法还包括:该第一IAB donor CU根据第二QoS信息确定该数据在该第一网络拓扑中的传输,和/或该第一IAB donor CU根据该信令类型确定该信令在该第一网络拓扑中的传输。
本申请实施例提供的用于信息传输的方法,第一IAB donor CU能够根据数据对应的QoS信息确定出第一IAB donor CU所需的第二QoS信息和第二IAB donor CU所需的第一QoS信息,在保障数据能够实现跨网络拓扑传输的前提下,实现传输过程中的QoS保障。
结合第一方面,在第一方面的某些实现方式中,该第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;该第一网络拓扑包括第一节点和第二节点,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该第一节点和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第一节点为边界节点,该第二节点为终端设备的接入节点。
结合第一方面,在第一方面的某些实现方式中,该第一消息中还包括通用分组无线服务隧道协议(general packet radio service tunneling protocol,GTP)隧道信息,其中,该GTP隧道信息用于标识该数据。
结合第一方面,在第一方面的某些实现方式中,该第一消息中还包括第一BH RLC CH标识的QoS。
结合第一方面,在第一方面的某些实现方式中,该第一消息中还包括第一指示信息,该第一指示信息用于指示该第一路径和/或该第一BH RLC CH用于上行传输或者下行传输。
结合第一方面,在第一方面的某些实现方式中,该第二网络拓扑包括该第一节点和第三节点,该方法还包括:该第一IAB donor CU接收来自该第二IAB donor CU的第二消息,该第二消息中包括与该第一路由标识对应的第二路由标识,和/或,与该第一BH RLC CH 标识对应的第二BH RLC CH标识。
结合第一方面,在第一方面的某些实现方式中,该第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一IAB donor CU向该第一节点发送第三消息,该第三消息包括该第一路由标识和该第二路由标识,和/或,该第一BH RLC CH标识和该第二BH RLC CH标识;其中,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
本申请实施例提供的用于信息传输的方法,信息的传输有传输路径和BH RLC CH,通过确定标识路径路由标识和标识BH RLC CH的标识能够准确确定出信息在网络拓扑中的传输。
结合第一方面,在第一方面的某些实现方式中,该第三消息中还包括第三指示信息,该第三指示信息用于指示该第一路径和该第二路径用于上行传输或者下行传输,和/或,用于指示该第一BH RLC CH和该第二BH RLC CH用于上行传输或者下行传输。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一IAB donor CU从该第二IAB donor CU接收第二消息,该第二消息包括第二路由标识,和/或,第二BH RLC CH标识;其中,该第二网络拓扑包括第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第一节点为边界节点,该第三节点为第二IAB donor DU。
结合第一方面,在第一方面的某些实现方式中,该第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输。
结合第一方面,在第一方面的某些实现方式中,该第一网络拓扑包括该第一节点和第二节点,该方法还包括:该第一IAB donor CU确定与该第二路由标识对应的第一路由标识,和/或,与该第二BH RLC CH标识对应的第一BH RLC CH标识。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一IAB donor CU向该第一节点发送第三消息,该第三消息包括该第一路由标识和该第二路由标识,和/或,该第一BH RLC CH标识和该第二BH RLC CH标识;其中,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令在的路径,该第一BH RLC CH标识用于标识该第一节点和第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第二节点为终端设备的接入节点。
结合第一方面,在第一方面的某些实现方式中,该第三消息中还包括第三指示信息,该第三指示信息用于指示该第一路径和该第二路径用于上行传输或者下行传输,和/或,用于指示该第一BH RLC CH和该第二BH RLC CH用于上行传输或者下行传输。
第二方面,提供了一种用于信息传输的方法,该用于用于信息传输的方法可以由第二IAB donor CU执行,或者,也可以由设置于第二IAB donor CU中的芯片或电路执行,本 申请对此不作限定。
该用于信息传输的方法包括:
第二IAB donor CU接收来自第一IAB donor CU的第一消息,该第一消息包括第一服务质量QoS信息和/或信令类型的指示信息;该第二IAB donor CU根据该第一QoS信息确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输;和/或该第二IAB donor CU根据该信令类型确定该信令在该第二网络拓扑中的传输。
本申请实施例提供的用于信息传输的方法,在数据和/或信令需要跨网络拓扑传输的场景下,通过第一IAB donor CU确定并向第二IAB donor CU发送第二IAB donor CU所需的QoS信息和/或信令的信令类型,以保障数据和/或信令能够实现跨网络拓扑传输。
结合第二方面,在第二方面的某些实现方式中,该第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;该第一IAB donor CU管理的第一网络拓扑包括第一节点和第二节点,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该第一节点和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第一节点为边界节点,该第二节点为终端设备的接入节点。
结合第二方面,在第二方面的某些实现方式中,该第一消息中还包括GTP隧道信息,其中,该GTP隧道信息用于标识该数据。
结合第二方面,在第二方面的某些实现方式中,该第一消息中还包括第一BH RLC CH标识的QoS。
结合第二方面,在第二方面的某些实现方式中,该第一消息中还包括第一指示信息,该第一指示信息用于指示该第一路径和/或该第一BH RLC CH用于上行传输或者下行传输。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第二IAB donor CU向该第一IAB donor CU发送第二消息,该第二消息中包括与该第一路由标识对应的第二路由标识,和/或,与该第一BH RLC CH标识对应的第二BH RLC CH标识;其中,该第二网络拓扑包括该第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第二IAB donor CU向该第一IAB donor CU发送第二消息,该第二消息包括第二路由标识,和/或,第二BH RLC CH标识;其中,该第二网络拓扑包括第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第一节点为边界节点,该第三节点为第二IAB donor DU。
结合第二方面,在第二方面的某些实现方式中,该第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输。
第三方面,提供了一种用于信息传输的方法,该用于用于信息传输的方法可以由第一 节点执行,或者,也可以由设置于第一节点中的芯片或电路执行,本申请对此不作限定。
该用于信息传输的方法包括:
第一节点接收来自第一IAB donor CU的第三消息,该第三消息包括第一路由标识和第二路由标识,和/或,第一BH RLC CH标识和第二BH RLC CH标识,该第一节点根据该第一路由标识和该第二路由标识,确定数据和/或信令在该第一IAB donor CU管理的第一网络拓扑中的传输和在第二IAB donor CU管理的第二网络拓扑中的传输之间的路由转换;该第一节点根据该第一BH RLC CH标识和第二BH RLC CH标识,确定该数据和/或该信令在该第一网络拓扑中的传输和在该第二网络拓扑中的传输之间的承载映射转换;其中,该第一网络拓扑包括该第一节点和第二节点,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该第一节点和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第一节点为边界节点,该第二节点为终端设备的接入节点,该第二网络拓扑包括该第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
本申请实施例提供的用于信息传输的方法,在数据和/或信令需要跨网络拓扑传输的场景下,通过第一IAB donor CU向第一节点发送数据和/或信令在第一网络拓扑和第二网络拓扑中的传输所需的信息,以保障能够实现跨网络拓扑传输。
结合第三方面,在第三方面的某些实现方式中,该第三消息中还包括第三指示信息,该第三指示信息用于指示该第一路径和该第二路径用于上行传输或者下行传输,和/或,用于指示该第一BH RLC CH和该第二BH RLC CH用于上行传输或者下行传输。
第四方面,提供一种用于信息传输的装置,该用于信息传输的装置包括:
处理单元,用于确定数据的第一服务质量QoS信息和/或信令的信令类型,该第一QoS信息用于确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输,该信令类型用于确定该信令在该第二网络拓扑中的传输;
发送单元,用于向该第二IAB donor CU发送第一消息,该第一消息包括该第一QoS信息和/或信令类型的指示信息,
其中,该数据和/或信令经过该第一IAB donor CU管理的第一网络拓扑和该第二网络拓扑传输。
结合第四方面,在第四方面的某些实现方式中,该处理单元确定数据的第一服务质量QoS信息包括:
该处理单元根据该数据对应的QoS确定第二QoS信息和该第一QoS信息;
该处理单元还用于根据第二QoS信息确定该数据在该第一网络拓扑中的传输,和/或
根据该信令类型确定该信令在该第一网络拓扑中的传输。
结合第四方面,在第四方面的某些实现方式中,该第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;
该第一网络拓扑包括第一节点和第二节点,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该第一节点和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第一节 点为边界节点,该第二节点为终端设备的接入节点。
结合第四方面,在第四方面的某些实现方式中,该第一消息中还包括第一指示信息,该第一指示信息用于指示该第一路径和/或该第一BH RLC CH用于上行传输或者下行传输。
结合第四方面,在第四方面的某些实现方式中,该装置还包括:
接收单元,用于接收来自该第二IAB donor CU的第二消息,该第二消息中包括与该第一路由标识对应的第二路由标识,和/或,与该第一BH RLC CH标识对应的第二BH RLC CH标识;
该发送单元还用于向该第一节点发送第三消息,该第三消息包括该第一路由标识和该第二路由标识,和/或,该第一BH RLC CH标识和该第二BH RLC CH标识;
其中,该第二网络拓扑包括该第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
结合第四方面,在第四方面的某些实现方式中,该第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输;
该第三消息中还包括第三指示信息,该第三指示信息用于指示该第一路径和该第二路径用于上行传输或者下行传输,和/或,用于指示该第一BH RLC CH和该第二BH RLC CH用于上行传输或者下行传输。
结合第四方面,在第四方面的某些实现方式中,该装置还包括:
接收单元,用于从该第二IAB donor CU接收第二消息,该第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
其中,该第二网络拓扑包括第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第一节点为边界节点,该第三节点为第二IAB donor DU。
结合第四方面,在第四方面的某些实现方式中,该第一网络拓扑包括该第一节点和第二节点,该方法还包括:
该处理单元,还用于确定与该第二路由标识对应的第一路由标识和与该第二BH RLC CH标识对应的第一BH RLC CH标识;
该发送单元,还用于向该第一节点发送第三消息,该第三消息包括该第一路由标识和该第二路由标识,和/或,该第一BH RLC CH标识和该第二BH RLC CH标识;
其中,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该第一节点和第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第二节点为终端设备的接入节点。
结合第四方面,在第四方面的某些实现方式中,该第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输;
该第三消息中还包括第三指示信息,该第三指示信息用于指示该第一路径和该第二路径用于上行传输或者下行传输,和/或,用于指示该第一BH RLC CH和该第二BH RLC CH用于上行传输或者下行传输。
第五方面,提供一种用于信息传输的装置,该用于信息传输的装置包括:
接收单元,用于接收来自第一IAB donor CU的第一消息,该第一消息包括第一服务质量QoS信息和/或信令类型的指示信息;
处理单元,用于根据该第一QoS信息确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输;和/或
根据该信令类型确定该信令在该第二网络拓扑中的传输。
结合第五方面,在第五方面的某些实现方式中,该第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;
该第一IAB donor CU管理的第一网络拓扑包括第一节点和第二节点,该第一路由标识用于标识该第一节点和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该第一节点和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该第一节点为边界节点,该第二节点为终端设备的接入节点。
结合第五方面,在第五方面的某些实现方式中,该第一消息中还包括第一指示信息,该第一指示信息用于指示该第一路径和/或该第一BH RLC CH用于上行传输或者下行传输。
结合第五方面,在第五方面的某些实现方式中,该装置还包括:
发送单元,用于向该第一IAB donor CU发送第二消息,该第二消息中包括与该第一路由标识对应的第二路由标识,和/或,与该第一BH RLC CH标识对应的第二BH RLC CH标识;
其中,该第二网络拓扑包括该第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
结合第五方面,在第五方面的某些实现方式中,该第一消息中还包括第一指示信息,该第一指示信息用于指示该第一路径和/或该第一BH RLC CH用于上行传输或者下行传输;
该第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输。
结合第五方面,在第五方面的某些实现方式中,该装置还包括:
发送单元,用于向该第一IAB donor CU发送第二消息,该第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
其中,该第二网络拓扑包括第一节点和第三节点,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第一节点为边界节点,该第三节点为第二IAB donor DU。
结合第五方面,在第五方面的某些实现方式中,该第二消息中还包括第二指示信息, 该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输。
第六方面,提供一种用于信息传输的装置,该用于信息传输的装置包括:
接收单元,用于接收来自第一IAB donor CU的第三消息,该第三消息包括第一路由标识和第二路由标识,和/或,第一BH RLC CH标识和第二BH RLC CH标识,
处理单元,用于根据该第一路由标识和该第二路由标识,确定数据和/或信令在该第一IAB donor CU管理的第一网络拓扑中的传输和在第二IAB donor CU管理的第二网络拓扑中的传输之间的路由转换;
该处理单元还用于根据该第一BH RLC CH标识和第二BH RLC CH标识,确定该数据和/或该信令在该第一网络拓扑中的传输和在该第二网络拓扑中的传输之间的承载映射转换;
其中,该第一网络拓扑包括该装置和第二节点,该第一路由标识用于标识该装置和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该装置和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该装置为边界节点,该第二节点为终端设备的接入节点,
该第二网络拓扑包括该装置和第三节点,该第二路由标识用于标识该装置和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该装置和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
结合第六方面,在第六方面的某些实现方式中,该第三消息中还包括第三指示信息,该第三指示信息用于指示该第一路径和该第二路径用于上行传输或者下行传输,和/或,用于指示该第一BH RLC CH和该第二BH RLC CH用于上行传输或者下行传输。
第七方面,提供一种用于信息传输的装置,该用于信息传输的装置包括处理器,用于实现上述第一方面描述的方法中第一IAB donor CU的功能。
可选地,该用于信息传输的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一方面描述的方法中第一IAB donor CU的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面描述的方法中第一IAB donor CU的功能。
可选地,该用于信息传输的装置还可以包括通信接口,该通信接口用于该用于信息传输的装置与其它设备进行通信。当该用于信息传输的装置为第一IAB donor CU时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该用于信息传输的装置包括:处理器和通信接口,
该处理器用于运行计算机程序,以使得该用于信息传输的装置实现上述第一方面描述的任一种方法;
该处理器利用该通信接口与外部通信。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该用于信息传输的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电 路等。该处理器也可以体现为处理电路或逻辑电路。
第八方面,提供一种用于用于信息传输的装置,该用于用于信息传输的装置包括处理器,用于实现上述第二方面描述的方法中第二IAB donor CU的功能。
可选地,该用于用于信息传输的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二方面描述的方法中第二IAB donor CU的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面描述的方法中第二IAB donor CU的功能。
可选地,该用于用于信息传输的装置还可以包括通信接口,该通信接口用于该用于用于信息传输的装置与其它设备进行通信。当该用于用于信息传输的装置为第二IAB donor CU时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该用于用于信息传输的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该用于用于信息传输的装置实现上述第二方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该用于用于信息传输的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第九方面,提供一种用于用于信息传输的装置,该用于用于信息传输的装置包括处理器,用于实现上述第三方面描述的方法中第一节点的功能。
可选地,该用于用于信息传输的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第三方面描述的方法中第一节点的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第三方面描述的方法中第一节点的功能。
可选地,该用于用于信息传输的装置还可以包括通信接口,该通信接口用于该用于用于信息传输的装置与其它设备进行通信。当该用于用于信息传输的装置为第一节点时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该用于用于信息传输的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该用于用于信息传输的装置实现上述第三方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该用于用于信息传输的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十一方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十二方面,提供了一种通信系统,包括第四方面所示的用于信息传输的装置、第五方面所示的用于用于信息传输的装置和第六方面所示的用于用于信息传输的装置。
第十三方面,提供了一种芯片装置,包括处理电路,该处理电路用于从存储器中调用并运行程序,使得安装有该芯片装置的通信设备执行上述第一至第三方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请的技术方案的IAB系统的架构图。
图2为信息回传的场景图。
图3中的(a)和(b)为中间IAB节点的协议栈架构的示例。
图4为多跳IAB网络的用户面协议栈架构的一种示例。
图5为多跳IAB网络的控制面协议栈架构的一种示例。
图6为RLC信道、逻辑信道以及协议实体之间映射关系的示意图。
图7中的(a)和(b)为本申请实施例提供的用于信息传输的方法可能涉及的场景。
图8是本申请实施例提供的用于信息传输的方法的示意性流程图。
图9是本申请实施例提供的一种QoS信息划分示意图。
图10是本申请提供的一种确定路由映射流程示意图。
图11是本申请提供的一种确定承载映射流程示意图。
图12是本申请提供的另一种确定路由映射流程示意图。
图13是本申请提供的另一种确定承载映射流程示意图。
图14是本申请提供的又一种确定路由映射流程示意图。
图15是本申请提供的又一种确定承载映射流程示意图。
图16是本申请提供的又一种确定路由映射流程示意图。
图17是本申请提供的又一种确定承载映射流程示意图。
图18中的(a)和(b)是本申请实施例提供的IAB donor的CP-UP分离场景示意图。
图19是本申请提出的用于信息传输的装置1800的示意图。
图20是适用于本申请实施例的第一IAB donor CU的结构示意图。
图21是本申请提出的用于信息传输的装置2000的示意图。
图22是适用于本申请实施例的第二IAB donor CU的结构示意图。
图23是本申请提出的用于信息传输的装置2200的示意图。
图24是适用于本申请实施例的第一节点的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并 且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中所有节点、消息的名称仅仅是为了描述方便而设定的名称,在实际网络中的名称可能不同,不应该理解本申请限定各种节点、消息的名称。任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、5G移动通信系统或者5G之后的通信系统,例如NR、设备到设备(device to device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of Things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备(terminal equipment)可以指无人机(unmanned aerial vehicle,UAV)、接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收基站或节点的控制信息与下行数据,并发送电磁波,向基站或节点传输上行数据。
本申请实施例中的基站可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。基站包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G系统,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,本申请实施例中的基站可以是指集中式单元(central unit,CU)或者DU。或者,基站包括CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,基站可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的基站,也可以将CU划分为核心网(core network,CN)中的基站,本申请对此不做限定。
进一步地,CU还可以划分为控制面的中央单元(CU-CP)和用户面的中央单元(CU-UP)。其中,CU-CP和CU-UP也可以部署在不同的物理设备上,CU-CP负责控制面功能,主要包含RRC层和PDCP-C层。PDCP-C层主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP层和PDCP-U层。其中SDAP层主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U层主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等至少一种功能。具体地,CU-CP和CU-UP通过通信接口(例如,E1接口)连接。CU-CP代表基站通过通信接口(例如,Ng接口)和核心网设备连接,通过通信接口(例如,F1-C(控制面)接口)和DU连接。CU-UP通过通信接口(例如,F1-U(用户面)接口)和DU连接。
还有一种可能的实现,PDCP-C层也包含在CU-UP中。
可以理解的是,以上关于CU和DU,以及CU-CP和CU-UP的协议层划分仅为示例,也可能有其他的划分方式,本申请实施例对此不做限定。
本申请实施例所提及的基站可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。
除了上述的基站和终端设备,本申请实施例中还涉及无线回传节点(也可以称为IAB节点)用于为接入无线回传网络的设备(例如,终端设备)提供无线回传(backhaul,BH) 服务。其中,无线回传服务是指通过无线回传链路提供的数据和/或信令回传服务。IAB节点是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。在包含IAB节点的网络(以下简称IAB网络)中,IAB节点可以为终端设备提供无线接入服务,并通过无线回传链路连接到宿主基站(donor gNB)传输用户的业务数据。
示例性的,IAB节点还可以是用户驻地设备(customer premises equipment,CPE)、家庭网关(residential gateway,RG)等设备。该情况下,本申请实施例提供的方法还可以应用于家庭连接(home access)的场景中。
下文中将结合附图对IAB节点进行详述,这里不再赘述。
基站、终端设备和IAB节点可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球或者卫星上。本申请实施例中对基站和终端设备所处的场景不做限定。
在本申请实施例中,终端设备或基站或IAB节点包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
参见图1,图1是适用于本申请的技术方案的IAB系统的架构图。如图1所示,一个IAB系统至少包括一个基站100,以及基站100所服务的一个或多个终端设备101,一个或多个中继节点(也即,IAB节点)110,以及IAB节点110所服务的一个或多个终端设备111。IAB节点110通过无线回传链路113连接到基站100。通常,基站100被称为宿主基站。可替换地,宿主基站在本申请中也称为宿主节点或donor节点或IAB宿主(为了便于描述下文中统称为IAB donor)。除此之外,IAB网络系统还可以包括一个或多个中间IAB节点(为了便于描述下文中统称为IAB node)。例如,IAB节点120和IAB节点130。
IAB donor可以是一个具有完整基站功能的接入网网元,还可以是CU和DU分离的形态,即IAB donor由IAB donor的集中式单元和IAB donor的分布式单元组成。本文中,IAB donor的集中式单元也称为IAB donor CU(也可称作donor CU,或直接称为CU,为了便于描述下文中统称为IAB donor CU)。IAB donor的分布式单元也称为IAB donor DU (或称作donor DU,为了便于描述下文中统称为IAB donor DU)。
IAB donor由IAB donor CU和IAB donor DU两部分组成。类似于上述的基站,IAB donor可以由1个IAB donor CU以及1个或者多个IAB donor-DU组成。IAB donor-CU与上述的基站CU的功能类似,主要实现PDCP层、SDAP层和RRC层的功能,IAB donor-DU与上述的基站DU的功能类似,主要实现L1和L2协议栈的功能,包括PHY层、MAC层和RLC层的功能,这里不再赘述。
示例性地,IAB donor CU还有可能是控制面(control plane,CP)(为了便于描述下文中统称为IAB donor CU-CP)和用户面(user plane,UP)(为了便于描述下文中统称为IAB donor CU-UP)分离的形态。例如CU可由一个CU-CP和一个或多个CU-UP组成。
本申请实施例中以及附图中均以IAB donor由IAB donor-CU和IAB donor-DU组成为例对本申请实施例提供的方法作示例性说明。
为便于理解本申请实施例,首先对本申请实施例中涉及的概念做简单说明。应理解,下文中所介绍的基本概念是以NR协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于NR系统。因此,以NR系统为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,可以对应的扩展到其它系统,比如2G、3G、4G或未来通信系统中。
1、基本概念。
链路:是指一条路径中的两个相邻节点之间的路径。
接入链路:终端设备与基站之间,或者终端设备与IAB node之间,或者终端设备与IAB donor之间,或者终端设备与IAB donor DU之间的链路。或者,接入链路包括某个IAB node作为普通终端设备角色时和它的父节点进行通信时所使用的无线链路。IAB node作为普通终端设备角色时,不为任何子节点提供回传服务。接入链路包括上行接入链路和下行接入链路。本申请中,终端设备的接入链路为无线链路,故接入链路也可被称为无线接入链路。
回传链路:IAB node作为无线回传节点时与父节点之间的链路。IAB node作为无线回传节点时,为子节点提供无线回传服务。回传链路包括上行回传链路,以及下行回传链路。本申请中,IAB node与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
父节点与子节点:每个IAB node将为其提供无线接入服务和/或无线回传服务的相邻节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。
可替换地,子节点也可以称为下级节点,父节点也可以称为上级节点。
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据(或者称为数据包)的节点。可以理解为,节点的上一跳节点可以包括上行传输中该节点的上一跳节点,和下行传输中该节点的上一跳节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据的节点。可以理解为,节点的下一跳节点可以包括上行传输中该节点的下一跳节点,和下行传输中该节点的下一跳节点。
节点的入口(ingress)链路:是指该节点与该节点的上一跳节点之间的链路,也可以 称为节点的上一跳链路。可以理解为,节点的入口链路可以包括该节点在上行传输中的入口链路,和该节点在下行传输中的入口链路。
节点的出口(egress)链路:是指该节点与该节点的下一跳节点之间的链路,也可以称为节点的下一跳链路。可以理解为,节点的出口链路可以包括该节点在上行传输中的出口链路,和该节点在下行传输中的出口链路。
示例性地,入口链路和出口链路中涉及的链路可以称为无线回传无线链路控制信道(backhaul radio link control channel,BH RLC CH),为了便于描述,下文中简称为BH RLC CH。
接入IAB node:是指终端设备接入的IAB node,或者说为终端设备提供接入服务的IAB node。
中间IAB node:是指为其它IAB node(例如,接入IAB node和IAB donor之间路径上的IAB node)提供无线回传服务的IAB node。
2、IAB node的组成。
IAB node可以具有移动终端(mobile terminal,MT)的部分(为了便于描述下文中统称为IAB node MT)以及DU的部分(为了便于描述下文中统称为IAB node DU)。其中,IAB node MT也可以称为IAB node UE,本文不做限定。IAB node利用IAB node MT与其父节点进行通信,IAB node利用IAB node DU与其子节点(子节点可能是终端设备或另一IAB node)通信。一个IAB node可以通过IAB node MT与该IAB node的至少一个父节点之间建立回传连接。一个IAB node的IAB node DU可以为终端设备或其他IAB node的IAB node MT提供接入服务。下面结合图2进行示例说明。
参见图2,图2为信息回传的场景图。从图2中可以看出IAB node的组成的示意图。UE通过IAB node#2和IAB node#1(如图2中所示的IAB节点#2和IAB节点#1)连接到IAB donor(如图2中所示的宿主节点)。其中,IAB node#2包括IAB node#2 DU和IAB node#2 MT、IAB node#1包括IAB node#1 DU和IAB node#1 MT。
IAB node#2 DU为UE提供接入服务。IAB node#1 DU为IAB node#2 MT部分提供接入服务。IAB donor DU为IAB node#1 MT提供接入服务。
示例性地,IAB donor CU通过通信接口(如图2所示的NG接口)连接到5G核心网(5G core,5GC)、IAB donor DU和IAB donor CU之间通过通信接口(如图2所示的F1接口)连接,应理解本申请实施例中对通信接口的名称不做限定。
为了便于理解,还需要对IAB网络的协议栈进行介绍。IAB网络的协议栈包括用户面协议栈和控制面协议栈。
3、接入IAB node、中间IAB node、IAB donor DU、IAB donor CU以及终端设备的协议栈架构。
中间IAB node在用户面和控制面的协议栈相同。图3的(a)和(b)为中间IAB node的协议栈架构的示例。其中,中间IAB node的IAB node MT和IAB node DU可以不共用回传自适应协议(backhaul adaptation protocol,BAP)层,如图3的(a)所示。中间IAB node的IAB node MT和IAB node DU也可以共用BAP层,如图3的(b)所示。
接入IAB node在用户面和控制面的协议栈不同,可分别参见4和图5所示。
参见图4,图4为多跳IAB网络的用户面协议栈架构的一种示例。如图4中所示,在 图4所示的协议架构中,各个协议层的含义为:业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、网络互连协议(internet protocol,IP)层、L2层(layer 2)、L1层(layer 1)、无线链路控制(radio link control,RLC)层、媒介接入控制(medium access control,MAC)层、物理(physical,PHY)层、无线资源控制(radio resource control,RRC)层、F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层。
其中,L2层为链路层。示例性的,L2层可以为开放式通信系统互联(open systems interconnection,OSI)参考模型中的数据链路层。
L1层可以为物理层。示例性的,L1层可以为OSI参考模型中的物理层。
为了满足终端设备不同类型业务的业务质量要求,无线网络中引入了一个或多个无线承载(radio bearer,RB),无线承载包括数据无线承载(data radio bearer,DRB)和信令无线承载(signaling raido bearer,SRB),用于在UE和基站之间传输不同类型的业务数据(包括控制面信令以及用户面数据)。在IAB网络中,RB可以认为是UE和IAB donor之间传输数据的逻辑通道。
具体地,图4中UE和IAB node#2之间的无线接入链路可以称为DRB、IAB node#2和IAB node#1之间的无线回传链路,以及IAB node#1和IAB donor的IAB donor DU之间的无线回传链路可以为BH RLC CH。
每个协议层都会被配置与之对应的协议层实体,例如PDCP实体,RLC实体以及MAC实体等。在上行传输中,UE的数据(例如IP数据包,下文中简称为数据)在PDCP层经过相应处理之后,依次经过RLC层,MAC层和PHY层发送给接入回传节点(例如图4中所示的IAB节点2)的PHY层。
如上文所述,在IAB网络中,IAB node可以包含IAB node DU和IAB node MT。在IAB node作为无线回传节点时,IAB node的IAB node MT在回传链路执行数据转发不需要终端设备在无线接入链路的完整协议栈。
例如,图4中所示的IAB node#2对于IAB node#1而言,IAB node#2对为IAB node#1的子节点。IAB node#2将来自UE的数据发送给IAB node#1时,IAB node#2的IAB node#2 MT不需要PDCP层,数据的转发是在BAP层之下作转发的。因此,在图4中,IAB node作为无线回传节点向其父节点发送数据时,只涉及到BAP层以下的协议层,这对所有的IAB node都是适用的,不再赘述。
当IAB node作为无线终端的角色时,其与父节点之间的通信链路的协议栈与UE和接入IAB node之间的无线接入链路的协议栈相同,其与宿主CU之间的协议栈与UE和宿主CU之间的协议栈相同。
另外,图4中还示出了IAB donor CU和接入IAB node(如图4中的IAB node#2)之间的F1接口的用户面协议栈(如图4所示的F1-U)。F1接口通过GTP-U协议层建立的GTP-U隧道和UE的数据无线承载DRB是一一对应的。换句话说,一个UE的每个数据无线承载都有一个GTP隧道与之一一对应。
参见图5,图5为多跳IAB网络的控制面协议栈架构的一种示例。IAB donor采用CP-UP 分离架构,则IAB node#2 DU和IAB donor CU-CP之间建立F1-C接口。UE的RRC消息封装在F1-C接口的F1AP消息中传输。
图4中对各协议层的介绍在图5中也是适用的,但是也存在一些区别。例如,图5中接入IAB node和IAB donor CU之间的F1接口采用的是F1控制面(F1-C)协议栈。
需要说明的是,图4和5分别示出了IAB网络中传输UE的数据业务的端到端用户面和控制面协议栈架构一种示例。可选地,协议栈架构还可以有其它的可能性。例如,在IAB node#2和IAB donor CU之间的F1接口引入用于安全保护的协议层,则协议栈架构会发生变化。
另外,若IAB donor是功能完整的实体,则IAB donor保留IAB donor DU和IAB donor CU对外部节点接口的协议栈即可,IAB donor DU和IAB donor CU之间的内部接口上的协议层不是必须的。类似地,IAB node的协议栈,对外部而言,可以不区分IAB node DU和IAB node MT,只统一展示对外部节点接口的协议栈。
另外,不论是控制面的协议栈架构还是用户面的协议栈架构,在IAB donor CU为IAB donor DU和IAB node之间的F1接口的代理节点时,IAB donor DU中面向接入IAB node的用户面协议栈架构中,在IP层之上,可以包括与接入IAB node的IAB node DU的协议栈架构中的UDP层和GTP-U层分别对等的UDP层和GTP-U层,还可以包含与接入IAB node的IAB node DU对等的IPsec层;IAB donor DU中面向接入IAB node的控制面协议栈架构中,在IP层之上,可以包括与接入IAB node的IAB node DU的协议栈架构中的SCTP层和F1AP层分别对等的SCTP层和SCTP层,还可以包含与接入IAB node的IAB node DU对等的IPsec层或DTLS层。
此外,图4和图5中还涉及到F1接口。
4、F1接口、F1接口的协议层
其中,F1接口是指IAB node的IAB node DU和IAB donor(或IAB donor CU或IAB donor DU)之间的逻辑接口,F1接口也可以称为F1*接口,支持用户面以及控制面。F1接口的协议层是指在F1接口上的通信协议层。
示例性的,F1接口的用户面协议层可以包括IP层、UDP层、GTP-U层中的一个或多个。可选的,F1接口的用户面协议层还包括PDCP层和/或IP安全(IP Security,IPsec)层。
示例性的,F1接口的控制面协议层可以包括IP层、F1AP层、SCTP层中的一个或多个。可选的,F1接口的控制面协议层还包括PDCP层、IPsec层和数据报文传输层安全(datagram transport layer security,DTLS)层中的一个或多个。
参见图6,图6为RLC信道、逻辑信道以及协议实体之间映射关系的示意图。如图6所示,RLC信道(RLC channel)是RLC层和上层协议层之间的信道。无线承载的配置对应有高层(例如,PDCP层)部分和低层(例如,RLC层和MAC层)部分的配置。
其中,RLC承载的配置是指RB在RLC层对应的配置,具体包括RLC层实体和逻辑信道的配置。本文中,IAB节点在回传链路的RLC承载,包括RLC层和逻辑信道部分。而回传链路上的RLC信道,即为RLC层和上层协议层之间的信道。例如,若RLC层的上层为PDCP层,则回传链路上的RLC信道是RLC层与PDCP层之间的信道。又例如,若RLC层的上层为BAP层,则回传链路上的RLC信道是RLC层和BAP层之间的信道。 因此,RLC信道的定义具体视RLC层的上层协议层而定。IAB节点在回传链路上的RLC信道一一对应于一个RLC实体,也一一对应于一个RLC承载。
其中,BAP实体和RLC实体之间可以是一个BAP实体对应多个RLC实体,如图6的(a)所示,也可以是一个BAP实体对应一个RLC实体,如图6的(b)所示,本申请对此不作限定。
另外,BAP层具备以下能力中的一种或多种:为数据添加能被无线回传节点(IAB node)识别出的路由信息(routing information)、基于所述能被无线回传节点识别出的路由信息执行路由选择、为数据添加能被无线回传节点识别出的与服务质量(quality of service,QoS)需求相关的标识信息、为数据执行在包含无线回传节点的多段链路上的QoS映射、为数据添加数据类型指示信息、向具有流量控制能力的节点发送流控反馈信息。
其中,所述能被IAB node识别出的路由信息可以是终端的标识,终端接入的IAB node的标识,IAB donor的标识,IAB donor DU的标识,IAB donor CU的标识,传输路径的标识等信息中的一种或多种。
所述多段链路上的QoS映射可以为:在无线回传链路中基于数据携带的终端的RB的标识,执行从终端的RB到无线回传链路上的RLC承载或RLC信道或逻辑信道的映射;或者,基于入口链路和出口链路的RB、RLC承载、RLC信道和逻辑信道中的任意两个或更多个之间的对应关系,执行从入口链路的RB或RLC承载或RLC信道或逻辑信道,到出口链路的RB或RLC承载或RLC信道或逻辑信道的映射。
与QoS需求相关的标识信息可以为例如:终端的QoS流的标识(QoS flow identifier,QFI),终端的RB的标识,差分服务代码点(differentiated services code point,DSCP),互联网协议版本6(internet protocol version 6,IPv6)的IP数据的包头中的流标签(flow label)等中的一种或多种。
需要说明的是,具备这些能力的协议层的名称不一定为BAP层,也可以为其它名称。本领域技术人员可以理解,只要具备这些能力的协议层均可以理解为本申请实施例中的BAP层。
此外,本申请中还涉及到路由选择和承载映射。
路由选择:用于为信息(包括数据和/或信令)选择下一跳节点。
承载映射,也可以称为QoS映射。承载映射用于选择发送信息(包括数据和/或信令)的RLC承载或RLC信道或逻辑信道。
应理解,图1所示的一体化接入和回传系统中,一个IAB node连接一个上级节点。但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB node(如图1中所示的120),可以有多个上级节点同时为一个IAB node提供服务,如图1中的IAB node#130还可以通过回传链路134连接到IAB node#120,即,IAB node#110和IAB node#120都视为IAB node#130的上级节点。IAB node#110,IAB node#120,IAB node#130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。在本申请中,IAB node可以泛指任何具有中继功能的节点或设备,本申请中的IAB node和中继节点的使用应理解具有相同的含义,本申请使用IAB node仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134可以用于上级节点为下级节点 提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,例如节点100,向下级节点,例如节点110,传输信息或数据,上行传输是指下级节点,例如节点110,向上级节点,例如节点100,传输信息或数据。所述节点不限于是网络节点还是终端设备,例如,在D2D场景下,终端设备可以充当中继节点为其他终端设备服务。无线回传链路在某些场景下又可以是接入链路,如节点110作为普通终端设备角色时,回传链路123对节点110来说也可以被视作接入链路,节点100作为普通终端设备角色时,回传链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,例如D2D场景下,下级节点也可以是终端设备。
一种信息传输的方法,如图2所示IAB donor CU和UE之间路径上的节点(包括IAB donor DU和所有IAB node)均受IAB donor CU的统一控制。
分别对F1-U业务和F1-C业务在IAB donor和IAB node#2之间传输进行说明,其中,F1-U业务包括在IAB node#2的IAB node#2 DU和IAB donor CU之间的F1-U接口上传输的数据;F1-C业务包括在IAB node#2 DU和IAB donor CU之间的F1-C接口上传输的信令。
F1-U业务在IAB donor和IAB node#2之间下行传输包括:
1)IAB donor CU至IAB donor DU路径上的传输:
如图4所示,IAB donor CU将UE的PDCP PDU封装在对应的GTP隧道后,再通过IP层处理生成IP包,其中,经过IP层处理包括为该PDCP PDU打上对应的DSCP或flow label值后携带在IP头字段中,并在IP头中携带发送该PDCP PDU的目标IP地址(IAB node#2 DU的IP地址)。IAB donor CU将该IP包发送到IAB donor DU。
2)IAB donor DU至IAB node#1 MT路径上的传输:
IAB donor DU收到该IP包后,从该IP包中提取出目标IP地址,以及从该IP包中提取出DSCP或flow label值,并根据之前从IAB donor CU获取到的映射关系对该IP包执行路由映射和承载映射操作。
路由映射:IAB donor DU根据从IAB donor CU获取到的映射关系(如目标IP地址与路由标识(Routing ID)之间的映射关系,以及DSCP或flow label与Routing ID之间的映射关系)确定该IP包的路由标识。然后再根据从IAB donor CU获取到的路由表(如Routing ID与下一跳节点的BAP地址之间的映射关系)确定该IP包需要路由到哪个下一跳节点(因为BAP地址可以在一个IAB donor CU下唯一标识一个IAB node)。
承载映射:IAB donor DU根据从IAB donor CU获取到的映射关系(如目标IP地址与BH RLC CH ID之间的映射关系,以及DSCP或flow label与BH RLC CH ID之间的映射关系)确定该IP包映射到哪个传输通道(BH RLC CH)上发送给路由确定的下一跳节点。
IAB donor DU在确定路由和承载映射后,在BAP层中携带确定的Routing ID随该IP包一起发送到下一跳节点(IAB node#1 MT)。
3)IAB node#1 DU至IAB node#2 MT路径上的传输:
IAB node#1 MT从与IAB donor DU之间的传输通道(称为入口ingress BH RLC CH)接收该IP包后,从BAP层中提取出Routing ID。IAB node#1 MT通过内部接口将该IP 包(或者称为BAP SDU)以及获取到的Routing ID发送到IAB node#1 DU。IAB node#1 DU根据之前从IAB donor CU获取到的映射关系对该IP包执行路由和承载映射操作。
路由映射:IAB node#1 DU根据从IAB donor CU获取到的路由表(如Routing ID与下一跳节点的BAP地址之间的映射关系)确定该IP包需要路由到哪个下一跳节点。
承载映射:IAB node#1 DU根据从IAB donor CU获取到的映射关系(如ingress BH RLC CH ID与egress BH RLC CH ID之间的映射关系)确定该IP包映射到哪个传输通道上(egress BH RLC CH)发送给路由确定的下一跳节点。
类似于IAB node#1 MT的操作,IAB node#2 MT从与IAB node#1 DU之间的传输通道(ingress BH RLC CH)接收该IP包后,通过内部接口将该IP包发送到IAB node#2 DU。
IAB node#2 DU将收到的IP包送到GTP层处理后,从对应的GTP隧道中提取出UE的PDCP PDU。
F1-C业务在IAB donor和IAB node#2之间下行传输包括:
如图5所示,IAB donor CU生成F1AP消息(包括UE-associated F1AP消息和non-UE associated F1AP消息,其中,UE的RRC消息被封装在UE-associated F1AP消息中传输),并将该F1AP消息经过IP层处理后生成IP包,其中,经过IP层处理包括为该F1AP消息打上对应的DSCP或flow label值后携带在IP头字段中,并在IP头中携带发送该F1AP消息的目标IP地址(IAB-DU2的IP地址)。IAB donor CU将该IP包发送到IAB donor DU。
同F1-U业务,F1-C业务在各路径上的路由和承载映射方式与上述F1-U业务的操作完全相同,不再赘述。IAB node#2的IAB node#2 DU将收到的IP包送到F1AP层处理,若UE的RRC消息中携带在F1AP消息中传输时,则IAB node#2 DU进一步从F1AP消息中提取出UE的RRC消息。
对下行传输而言,路由映射和承载映射操作只在IAB donor DU和IAB node#1 DU的BAP层上执行。
F1-U业务在IAB donor和IAB node#2之间上行传输包括:
如图4所示,IAB node#2从DRB中接收UE发送的PDCP PDU,将该PDCP PDU封装在对应的GTP隧道后,再通过IP层处理生成IP包。IAB node#2将该IP包通过内部接口发送到IAB node#2 MT。
1)IAB node#2 MT至IAB node#1 DU路径上的传输:
路由映射:IAB node#2 MT根据从IAB donor CU获取到的映射关系(如GTP FTEID与Routing ID之间的映射关系)确定该IP包的路由标识。然后再根据从IAB donor CU获取到的路由表(如Routing ID与下一跳节点的BAP地址之间的映射关系)确定该IP包需要路由到哪个下一跳节点。其中,GTP FTEID由GTP TEID和IP地址组成。
承载映射:IAB node#2 MT根据从IAB donor CU获取到的映射关系(如GTP FTEID与BH RLC CH ID之间的映射关系)确定该IP包映射到哪个传输通道(BH RLC CH)上发送给路由确定的下一跳节点。
IAB node#2 MT在确定路由和承载映射后,在BAP层中携带确定的Routing ID随该IP包一起发送到下一跳节点(IAB node#1 DU)。
2)IAB node#1 MT至IAB donor DU路径上的传输:
IAB node#1 MT执行上行路由映射和承载映射的操作可沿用上述IAB node#1 DU执行 上行路由映射和承载映射的操作,不再赘述。
F1-C业务在IAB donor和IAB node#2之间上行传输包括:
如图5所示,IAB node#2 DU生成F1AP消息,并将该F1AP消息经过IP层处理后生成IP包。IAB node#2 DU将该IP包通过内部接口发送到IAB node#2 MT。
1)IAB node#2 MT至IAB node#1 DU路径上的传输:
路由映射:IAB node#2 MT根据从IAB donor CU获取到的映射关系(如CP type与Routing ID之间的映射关系)确定该IP包的路由标识。然后再根据从IAB donor CU获取到的路由表(如Routing ID与下一跳节点的BAP地址之间的映射关系)确定该IP包需要路由到哪个下一跳节点。其中,CP type用于指示UE-associated F1AP消息和non-UE associated F1AP消息。
承载映射:IAB node#2 MT根据从IAB donor CU获取到的映射关系(如CP type与BH RLC CH ID之间的映射关系)确定该IP包映射到哪个传输通道(BH RLC CH)上发送给路由确定的下一跳节点。
IAB node#2 MT在确定路由和承载映射后,在BAP层中携带确定的Routing ID随该IP包一起发送到下一跳节点(IAB node#1 DU)。
2)IAB node#1 MT至IAB donor DU路径上的传输:
与该路径上行F1-U业务的路由和承载映射操作完全相同,这里不再赘述。
上行传输中的路由和承载映射与下行传输中的路由和承载映射的区别主要体现在接入IAB node和IAB donor DU的操作不同:
对上行传输而言,路由和承载映射操作只在IAB-MT2和IAB-MT1的BAP层上执行。
综上所述,针对F1-U业务:
UL方向中,接入IAB node(IAB node#2 MT)根据GTP FTEID与Routing ID之间映射关系,以及Routing ID与下一跳节点的BAP地址之间的映射关系,确定路由的下一跳节点,同时,根据GTP FTEID与BH RLC CH ID之间的映射关系,确定发送的传输通道。
DL方向中,IAB donor DU根据目标IP地址以及DSCP或flow label与Routing ID之间的映射关系,以及Routing ID与下一跳节点的BAP地址之间的映射关系,确定路由的下一跳节点,同时,根据目标IP地址以及DSCP或flow label与BH RLC CH ID之间的映射关系,确定发送的传输通道。
针对F1-C业务:
UL方向中,接入IAB node(IAB node#2 MT)根据CP type与Routing ID之间的映射关系,以及Routing ID与下一跳节点的BAP地址之间的映射关系,确定路由的下一跳节点,同时,根据CP type与BH RLC CH ID之间的映射关系,确定发送的传输通道。
DL方向中,IAB donor DU根据目标IP地址与路由标识Routing ID之间的映射关系,以及根据DSCP或flow label与路由标识Routing ID之间的映射关系,以及根据Routing ID与下一跳节点的BAP地址之间的映射关系,确定路由的下一跳节点,同时,根据目标IP地址与BH RLC CH ID之间的映射关系,以及根据DSCP或flow label与BH RLC CH ID之间的映射关系,确定发送的传输通道。
由上述可知,UE和IAB donor CU之间路径上的IAB donor DU和所有IAB node均受该IAB donor CU的管理,IAB donor CU统一控制整个路径上的路由映射和承载映射,也 就是说,数据和/或信令(统称为信息)不会跨网络拓扑的传输。随着IAB技术的发展,IAB节点由于移动或者链路质量等原因可能发生跨IAB donor CU的切换,从而导致UE和IAB donor CU之间路径上的IAB donor DU和所有IAB node可以分别受两个不同IAB donor CU的管理,使得整个路径上的路由和承载映射分别由两个不同的IAB donor CU来控制。但是目前技术无法实现跨网络拓扑场景下的传输。
本申请实施例提供的用于信息传输的方法,通过建立网络拓扑场景下数据/信令的路由和承载映射,保证数据/信令在跨网络拓扑场景下的正常传输,能够提高数据和/或信令跨网络拓扑传输时的传输性能。
下面将对本申请实施例提供的用于信息传输的方法进行详述。
首先结合图7中的(a)和(b)介绍本申请实施例提供的用于信息传输的方法可能涉及的场景。
图7中的(a)是一种IAB donor CU发生切换的场景。
如图7中的(a)所示,边界节点发生切换,以IAB node#1 MT执行切换为例(IAB node#1MT从源IAB donor DU切换到目标IAB donor DU),其中,源IAB donor DU连接到源IAB donor CU,目标IAB donor DU连接到目标IAB donor CU。
一旦IAB node#1 MT成功切换到目标IAB donor DU,则源IAB donor CU给UE发送的信息的传输路径可以为:源IAB donor CU--目标IAB donor DU--IAB node#1 MT--IAB node#1 DU--IAB node#2 MT--IAB node#2 DU2--UE。
由于IAB node#1 MT发生切换,因此,IAB node#1 MT由目标IAB donor CU管理。但由于IAB node#1 DU维持与源IAB donor CU的F1连接,因此,IAB node#1 DU由源IAB donor CU管理。对于IAB node#2 MT、IAB node#2 DU和UE而言,受源IAB donor CU的管理。因此,整个传输路径由两个网络拓扑构成,其中,目标IAB donor DU--IAB node#1MT的路径由目标IAB donor CU控制(可以理解为目标IAB donor CU管理的网络拓扑包括节点:目标IAB donor DU、IAB node#1 MT),IAB node#1 DU--IAB node#2 MT--IAB node#2 DU2的路径由源IAB donor CU控制(可以理解为源IAB donor CU管理的网络拓扑包括节点:IAB node#1 DU、IAB node#2 MT、IAB node#2 DU2)。
图7中的(b)是一种IAB donor CU支持双连接(dual connectivity,DC)的场景。
如图7中的(b)所示,与图7中的(a)所示的切换场景不同,DC场景下,边界IAB node同时连接到两个父节点。以IAB node#1 MT工作在DC模式为例,IAB node#1 MT同时连接到源IAB donor DU和目标IAB donor DU,其中,源IAB donor DU连接到源IAB donor CU,目标IAB donor DU连接到目标IAB donor CU。
该场景下也存在跨网络拓扑的信息传输,例如,源IAB donor CU给UE发送信息的传输路径可以为:源IAB donor CU--目标IAB donor DU--IAB node#1 MT--IAB node#1DU--IAB node#2 MT--IAB node#2 DU2--UE。
为了便于区分图7中的(b)所示所示的场景中源IAB donor CU也可以称为主IAB donor CU、目标IAB donor CU也可以称为辅IAB donor CU。为了便于描述,下文实施例中不做区分,源IAB donor CU和主IAB donor CU均称为第一IAB donor CU,目标IAB donor CU和辅IAB donor CU均称为第二IAB donor CU。
示例性地,图7中的(a)和(b)所示的网络拓扑包括:目标IAB donor CU管理的 网络拓扑和源IAB donor CU管理的网络拓扑,其中,目标IAB donor CU管理的网络拓扑包括节点:目标IAB donor DU和IAB node#1 MT;源IAB donor CU管理的网络拓扑包括节点:源IAB donor CU、IAB node#1 DU、IAB node#2 MT、IAB node#2 DU2。
应理解,图7中的(a)和(b)只是举例说明可能存在的跨网络拓扑场景,对本申请的保护范围不构成任何的限定,其他的IAB网络中UE和IAB donor CU之间路径上的IAB donor DU和所有IAB node分别受多个不同IAB donor CU的管理的场景也在本申请的保护范围之内。
例如,图7中的(a)和(b)所示的图中IAB node#1 MT与源IAB donor DU之间可以存在至少1个其他IAB节点。IAB node#1 MT与目标IAB donor DU之间至少存在1个其他IAB node点。IAB node#2 DU和UE之间至少存在1个其他IAB node。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是IAB node或IAB donor,或者,是IAB node或IAB donor中能够调用程序并执行程序的功能模块。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以理解为“使能”,“使能”可以包括直接使能和间接使能。当描述某一信息使能A时,可以包括该信息直接使能A或间接使能A,而并不代表该信息中一定携带有A。
将信息所使能的信息称为待使能信息,则具体实现过程中,对待使能信息进行使能的方式有很多种,例如但不限于,可以直接使能待使能信息,如待使能信息本身或者该待使能信息的索引等。也可以通过使能其他信息来间接使能待使能信息,其中该其他信息与待使能信息之间存在关联关系。还可以仅仅使能待使能信息的一部分,而待使能信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的使能,从而在一定程度上降低使能开销。同时,还可以识别各个信息的通用部分并统一使能,以降低单独使能同样的信息而带来的使能开销。
第二,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同指示信息等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第三,在本申请中,“预设的”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括IAB node或IAB donor)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请 对此不做限定。
本申请实施例提供用于信息传输的方法可以应用于图1中所示的通信系统。应理解,本申请实施例提供用于信息传输的方法还可以应用于其他的通信系统中,这里不再赘述。
应用在某个通信系统中,接收端所执行的步骤参考下述的IAB节点,发送端所执行的步骤参考下述的宿主节点,发送端和接收端之间的传输,可以通过无线电波来传输,也可以通过可见光、激光、红外、光纤等传输媒介来传输,下面不再赘述。
以下,不失一般性,以IAB node和IAB donor之间的交互为例详细说明本申请实施例提供的用于信息传输的方法。
以数据的传输为例进行说明,信令的传输存在以下同样的问题。目前IAB网络中,由于数据的传输路径是在一个IAB donor CU控制的网络拓扑内,则任何一个中间IAB node收到父节点或子节点发送的BAP SDU后,将根据BAP层中携带的Routing ID查路由表,确定发送的下一个节点,整个空口传输过程中,BAP层中携带的Routing ID不变。
可是,在跨网络拓扑传输时,数据/信令的传输路径由不同IAB donor CU控制,在不同网络拓扑内,该数据的路由分别由该网络拓扑所归属的IAB donor CU控制,由于边界IAB node(即:boundary IAB node)属于两个不同网络拓扑的交叠,因此,boundary IAB node需要为该数据的传输执行不同网络拓扑下的路由转换操作。
同理,目前IAB网络中,由于数据的传输路径是在一个IAB donor CU控制的网络拓扑内,则该数据被映射到路径上的哪个BH RLC CH通道上传输也是由该IAB donor-CU统一控制,任何一个中间IAB节点从入口BH RLC CH上收到父节点或子节点发送的BAP SDU后,将根据该IAB donor-CU配置的承载映射关系(入口ingress BH RLC CH和出口egress BH RLC CH之间的映射关系),通过对应的出口BH RLC CH将该数据发送到下一个节点。
可是,在跨网络拓扑传输时,数据的传输路径由不同IAB donor CU控制,在不同网络拓扑内,该数据被映射到哪个BH RLC CH上传输分别由该网络拓扑所归属的IAB donor-CU控制,由于boundary IAB node属于两个不同网络拓扑的交叠,ingress BH RLC CH和egress BH RLC CH分别归属不同的IAB donor CU管理和/或控制,因此,boundary IAB node需要为该数据的传输执行不同网络拓扑下的承载映射转换操作。
由上述可知,UE和IAB donor CU之间的信息(包括数据和信令)传输由该IAB donor CU统一控制。随着IAB技术的发展,IAB节点由于移动或者链路质量等原因可能发生跨IAB donor CU的切换,或者,IAB节点通过双连接来实现负载均衡,从而导致UE和IAB donor CU之间路径上的IAB donor DU和所有IAB node分别受不同IAB donor CU的管理,使得整个路径上的路由和承载映射分别由不同的IAB donor CU来控制,可是,目前技术无法实现跨网络拓扑场景下的信息传输,从而影响该场景下的信息传输的性能(如,信息中断时延大、网络负载不均衡等),因此如何实现跨网络拓扑场景下的信息传输,并提升该场景下信息传输的性能成为亟待解决的问题。本申请实施例提供的用于信息传输的方法能够实现网络拓扑场景下的信息传输,并提升该场景下信息传输的性能。
图8是本申请实施例提供的用于信息传输的方法的示意性流程图。
示例性地,图8所示的实施例包括以下几种可能:
S810,第一IAB donor CU确定第一QoS信息和/或信令的信令类型。
具体地,S810包括以下几种可能:
可能一、待传输的信息为数据的情况下,第一IAB donor CU确定第一QoS信息。
具体地,第一IAB donor CU确定数据的第一QoS信息包括:第一IAB donor CU根据数据对应的QoS(可以称为总的QoS)确定第二QoS信息和该第一QoS信息。该第一QoS信息用于确定数据在第二IAB donor CU管理的第二网络拓扑中的传输;该第二QoS信息用于确定数据在第一IAB donor CU管理的第一网络拓扑中的传输。
示例性地,第一网络拓扑包括第一节点和第二节点(如图7中的(a)和(b)所示的IAB node#1和IAB node#2)。其中,第一节点为边界节点(还可以称为边界节点)、第二节点为接入节点(还可以称为接入IAB节点),接入节点为终端设备提供接入功能,边界节点为数据的传输执行不同网络拓扑下的路由转换操作。
作为一种可能的实现方式,第二节点可以为第一节点的子节点,也就是说,第一网络拓扑中接入节点和边界节点之间未包括其他IAB节点。
作为另一种可能的实现方式,第二节点为与第一节点的子节点(直接或间接)连接的节点,也就是说,第一网络拓扑中接入节点和边界节点之间包括至少一个其他节点。在该实现方式下,第一网络拓扑还包括第一节点的子节点。
第二网络拓扑包括上述的第一节点和第三节点(如图7中的(a)和(b)所示的IAB node#1和目标IAB donor DU)。第三节点为第二IAB donor DU。
作为一种可能的实现方式,第三节点为第一节点的父节点,也就是说,第二网络拓扑中第二IAB donor DU和边界节点之间未包括其他IAB节点。;
作为另一种可能的实现方式,第三节点为与第一节点的父节点(直接或间接)连接的节点,也就是说,第二网络拓扑中第二IAB donor DU和边界节点之间包括至少一个其他节点。在该实现方式下,第一网络拓扑还包括第一节点的父节点。
示例性地,第一IAB donor CU从核心网设备获取数据对应的QoS信息。本申请实施例中涉及的核心网设备可以为核心网中的接入和移动性管理功能(access and mobility management function,AMF)实体,AMF实体可以负责终端设备的接入管理和移动性管理。为了便于描述AMF实体,可以简称为AMF或AMF网元等。
示例性地,为了便于区分下文中可以将第二QoS信息简称为QoS_S信息,第一QoS信息简称为QoS_T信息。
例如,如图9所示,图9是本申请实施例提供的一种QoS信息划分示意图。
从图9中可以看出第一IAB donor CU将数据对应的QoS信息分割成两部分:QoS_S信息(或者称为第二QoS信息、源QoS信息或主QoS信息,QoS_S信息用于该数据在第一IAB donor CU管理的网络拓扑内传输的QoS保证)和QoS_T信息(或者称为第一QoS信息、目标QoS信息或辅QoS信息,QoS_T信息用于该数据在第二IAB donor CU管理的网络拓扑内传输的QoS保证)。
示例性地,数据对应的QoS信息、第二QoS信息和第一QoS信息包括以下至少一种信息:丢包率(packet error rate)、包时延预算(packet delay budget)、保证比特率(guaranteed bit rate,GBR)、聚合最大比特率(aggregate maximum bit rate,AMBR)。
例如,当数据对应的QoS信息为总的包时延预算、第二QoS信息为第一包时延预算、第一QoS信息为第二包时延预算时,第一包时延预算和第二包时延预算的总和不能超过 总的包时延预算,也就是说源IAB donor CU在对QoS信息进行分割时,可以根据第一IAB donor CU管理的网络拓扑中数据包传输的第一包时延预算,确定数据包在第二AB donor CU管理的网络拓扑中的传输的第二包时延预算。如,总的包时延预算为10ms,数据包在第一IAB donor CU管理的网络拓扑中的传输包时延为6ms,源IAB donor CU分割得到的第一QoS信息不能超过4ms。
还例如,当QoS信息为总的丢包率、第二QoS信息为第一丢包率、第一QoS信息为第二丢包率时,第一丢包率和第二丢包率的总和不能超过总的丢包率。
应理解,上述的将数据对应的QoS信息分割成第二QoS信息和第一QoS信息的方式只是举例对本申请的保护范围不做限定,本申请实施例中第二QoS信息能够用于数据包在第一IAB donor CU管理的网络拓扑内传输的QoS保证、第一QoS信息能够用于数据包在第二IAB donor CU管理的网络拓扑内传输的QoS保证,具体的分割方式不再一一举例说明。
在跨网络拓扑传输时,一个IAB node的IAB node MT和IAB node DU分别由不同的IAB donor CU控制,本申请实施例中称该IAB node为边界IAB node(boundary IAB node)。如图9所示,IAB node#1 MT执行切换后,IAB node#1 MT由目标IAB donor CU控制,而IAB node#1 DU还是由源IAB donor CU控制,因此,IAB node#1为boundary IAB node。
可能二、待传输的信息为信令的情况下,第一IAB donor CU确定待传输的信令所属的信令类型。
其中,信令类型用于确定信令在第一网络拓扑中的传输;信令类型还用于确定信令在第二网络拓扑中的传输。
示例性地,包括以下信令类型:与终端设备相关的(UE-associated)F1应用层协议(F1 application layer protocol,F1AP)消息、与所述终端设备不相关的(non-UE associated)F1AP消息。
可选的,信令面传输还可以包括信令类型:非F1消息(non-F1)。可能三、待传输的信息包括数据和信令的情况下,第一IAB donor CU确定第一QoS信息和信令类型。
本申请实施例中,为了实现数据跨网络拓扑场景下的信息传输,第一IAB donor CU需要将上述的第一QoS信息和/或信令的信令类型发送给第二IAB donor CU,图8所示的方法流程还包括:S820,第一IAB donor CU向第二IAB donor CU发送第一消息。第一消息中包括第一QoS信息和/或信令类型的指示信息。
分别对应于上述的可能一至可能三,S820包括以下三种可能:
可能一、第一IAB donor CU向第二IAB donor CU发送第一消息。第一消息中包括第一QoS信息;
可能二、第一IAB donor CU向第二IAB donor CU发送第一消息。第一消息中包括信令类型的指示信息;
可能二、第一IAB donor CU向第二IAB donor CU发送第一消息。第一消息中包括第一QoS信息和信令类型的指示信息。
进一步地,需要通过以下方式确定数据和/或信令在第一网络拓扑和第二网络拓扑中的传输方式。
方式一:
具体地,第一IAB donor CU根据第二QoS信息确定数据在第一网络拓扑中的传输;和/或,
第一IAB donor CU根据信令类型确定信令在第一网络拓扑中的传输。
其中,数据和/或信令在第一网络拓扑中的传输包括路由(通过路由标识进行标识路由的路径)和承载映射(通过BH RLC CH进行标识承载映射的传输通道)。
上述的第一消息中还包括第一路由标识和/或第一BH RLC CH标识,第一路由标识用于标识第一节点和第二节点之间传输数据的第一路径,第一BH RLC CH标识用于标识第一节点和第一节点的子节点之间传输数据的第一BH RLC CH。
在该方式一下,第一IAB donor CU根据第二QoS信息确定第一路由标识和/或第一BH RLC CH信息,其中,第一BH RLC CH信息包括第一BH RLC CH标识。
可选地,第一BH RLC CH信息还包括第一BH RLC CH的QoS信息,即第一消息中还可以包括第一BH RLC CH的QoS信息。第一BH RLC CH的QoS信息可以是GBR、5G网络的服务质量标识符(5G quality of service identifier,5QI)或包时延预算(packet delay budget,PDB)中的至少一种信息。
可选地,第一消息中还包括GTP隧道信息,该GTP隧道信息用于标识数据。GTP隧道信息可以是GTP FTEID(如GTP FTEID由GTP TEID和IP地址组成),或者GTP隧道信息也可以是GTP TEID。
可选地,第一消息中还包括第一指示信息,该第一指示信息用于指示该第一路径和/或该第一BH RLC CH用于上行传输或者下行传输,或者说该第一指示信息用于指示该第一路由标识所标识的路径和/或该第一BH RLC CH标识所标识的BH RLC CH用于上行传输或者下行传输,或者说该第一指示信息用于指示该第一路由标识和/或该第一BH RLC CH标识为上行传输标识或者下行传输标识。
在该方式一下,第一IAB donor CU接收来自第二IAB donor CU的第二消息,第二消息中包括与第一路由标识对应的第二路由标识,和/或,与第一BH RLC CH标识对应的第二BH RLC CH标识,第二路由标识用于标识第一节点和第三节点之间传输数据和/信令的第二路径,第二BH RLC CH标识用于标识第一节点和第一节点的父节点之间传输数据和/或信令的第二BH RLC CH。
或者理解为,第一IAB donor CU接收来自第二IAB donor CU的第二消息,第二消息中包括第一映射关系,该第一映射关系用于指示第二路由标识和第一路由标识相对应;和/或,第二消息中包括第二映射关系,该第二映射关系用于指示第二BH RLC CH标识和第一BH RLC CH标识相对应。
可选地,第二消息中还可以包括第一路由标识,或者第一路由标识的标识信息(如第一路由标识的索引)。
可选地,第二消息中还可以包括第一BH RLC CH标识,或者第一BH RLC CH标识的标识信息(如第一BH RLC CH标识的索引)。
可选地,第二消息中还可以包括第二指示信息用于指示第二路径和/或第二BH RLC CH用于上行传输或者下行传输,或者说该第二指示信息用于指示该第二路由标识所标识的路径和/或该第二BH RLC CH标识所标识的BH RLC CH用于上行传输或者下行传输,或者说该第二指示信息用于指示该第一映射关系和/或第二映射关系对应上行传输或者下 行传输。
方式二:
第一IAB donor CU接收来自第二IAB donor CU的第二消息,第二消息中包括第二路由标识,和/或,第二BH RLC CH标识。
可选地,第二消息中还包括第二指示信息,该第二指示信息用于指示该第二路径和/或该第二BH RLC CH用于上行传输或者下行传输,或者说该第二指示信息用于指示该第二路由标识所标识的路径和/或该第二BH RLC CH标识所标识的BH RLC CH用于上行传输或者下行传输,或者说该第二指示信息用于指示该第二路由标识和/或该第二BH RLC CH标识为上行传输标识或者下行传输标识。
作为一种可能的实现方式,在该方式二下,第一IAB donor CU根据第二QoS信息和/或信令类型,以及接收到的第二路由标识确定与第二路由标识对应的第一路由标识,和/或,
在该方式二下,第一IAB donor CU根据第二QoS信息和/或信令类型与第二BH RLC CH标识确定,以及接收到的第二BH RLC CH标识对应的第一BH RLC CH标识。
作为另一种可能的实现方式,在该方式二下,第一IAB donor CU根据第二QoS信息和/或信令类型确定与第二路由标识对应的第一路由标识,和/或,
在该方式二下,第一IAB donor CU根据第二QoS信息和/或信令类型确定与第二BH RLC CH标识对应的第一BH RLC CH标识。
由上述可知,通过上述的方式一和/或方式二,第一IAB donor CU能够获知第二路由标识和第一路由标识之间的第一映射关系,和/或,第二BH RLC CH标识和第一BH RLC CH标识之间的第二映射关系。
示例性地,第一IAB donor CU可以将第一映射关系,和/或,第二映射关系通知给第一节点。
例如,第一IAB donor CU向第一节点发送第三消息,第三消息包括第一路由标识和第二路由标识,和/或,第一BH RLC CH标识和第二BH RLC CH标识。
可选地,第三消息中还包括第三指示信息,第三指示信息用于指示第一路径和第二路径用于上行传输或者下行传输,和/或,用于指示第一BH RLC CH和第二BH RLC CH用于上行传输或者下行传输。
或者,该第三指示信息用于指示第一映射关系,和/或,第二映射关系对应上行传输或者下行传输。
示例性地,第一节点接收到第三消息之后,能够根据第一路由标识和第二路由标识,确定数据和/或信令在第一IAB donor CU管理的第一网络拓扑中的传输和在第二IAB donor CU管理的第二网络拓扑中的传输之间的路由转换;和/或,
能够根据第一BH RLC CH标识和第二BH RLC CH标识,确定数据和/或信令在第一网络拓扑中的传输和在第二网络拓扑中的传输之间的承载映射转换,从而实现数据和/或信令的跨网络拓扑传输。
为了便于理解,下面集合具体实施例以用户面的数据传输和信令面的信令传输分别进行说明。
一、用户面的数据传输,包括以下几种可能:
可能一、第二IAB donor CU确定数据传输过程中的路由和/或承载映射。
示例性地,如图10所示,图10是本申请提供的一种确定路由映射流程示意图,包括以下步骤:
S1010,第一IAB donor CU根据QoS信息确定QoS_S信息和QoS_T信息。
参考上述S810中关于确定第二QoS信息和该第一QoS信息的描述,这里不再赘述。
图10所示的实施例中,第一IAB donor CU确定QoS_S信息和QoS_T信息之后,第一IAB donor CU可以根据QoS_S信息确定第一路由标识。图10所示的方法流程还包括:
S1020,第一IAB donor CU根据QoS_S信息确定第一路由标识。
具体地,第一路由标识用于标识数据在第一节点和第二节点之间传输的第一路径。
为了便于区分下文中可以将第一路由标识称为Routing ID_S。
图10所示的实施例中,第一IAB donor CU根据QoS_S信息,确定数据在boundary IAB node和接入IAB node之间的传输路径,并确定对应的路由标识Routing ID_S。
其中,Routing ID_S由第一IAB donor CU分配,可用于标识boundary IAB node和接入IAB node之间的某一条传输路径。
进一步地,第一IAB donor CU可以向第二IAB donor CU发送第一消息,该第一消息中包括QoS_T信息以及以下至少一种信息:GTP隧道信息、Routing ID_S、第一指示信息。
图10所示的方法流程还包括:
S1030,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与上述S820的内容相互参考。
图10所示的实施例中,第一消息中还包括Routing ID_S,或者包括Routing ID_S的指示信息(如Routing ID_S的索引);
示例性地,第一消息中还包括GTP隧道信息,其中,GTP隧道信息可以是GTP FTEID(如GTP FTEID由GTP TEID和IP地址组成),或者GTP隧道信息也可以是GTP TEID,该GTP隧道信息用于标识数据;
示例性地,第一消息中还包括第一指示信息,该第一指示信息用于指示该Routing ID_S所标识的路径用于UL路由还是DL路由,或者说该第一指示信息用于指示Routing ID_S是UL路由还是DL路由的标识。
作为一种可能的实现方式,该第一指示信息用于显示指示该Routing ID_S所标识的路径用于UL路由还是DL路由。例如,第一指示信息为UL或DL的指示:第一指示信息为UL时表示Routing ID_S所标识的路径用于UL路由;第一指示信息为DL时表示Routing ID_S所标识的路径用于DL路由。
作为另一种可能的实现方式,该第一指示信息用于隐式指示该Routing ID_S所标识的路径用于UL路由还是DL路由。例如,第一指示信息为上一跳节点(对于UL)或下一跳节点(对于DL)的标识或地址信息。图10所示的实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定与第一路由标识对应的第二路由标识。图10所示的实施例还包括:
S1040,第二IAB donor CU确定与第一路由标识对应的第二路由标识。
第二IAB donor CU根据从第一IAB donor CU收到的QoS_T信息,确定该数据在第二IAB donor DU和boundary IAB node之间的传输路径,并确定与Routing ID_S对应的路 由标识Routing ID_T。
其中,Routing ID_T由第二IAB donor CU分配,可用于标识第二IAB donor DU和boundary IAB node之间的某一条传输路径。
可选的,Routing ID_T和Routing ID_S的取值可以相同,也可以不同。
进一步地,第二IAB donor CU将与Routing ID_S对应的Routing ID_T发送给第一IAB donor CU。图10所示的实施例还包括:
S1050,第二IAB donor CU向第一IAB donor CU发送第二消息。
该第二消息中包括与第一路由标识对应的第二路由标识。
示例性地,第二IAB donor CU向第一IAB donor CU发送与第一路由标识对应的第二路由标识,可以理解为第二IAB donor CU向第一IAB donor CU发送第二路由标识和第一路由标识的指示信息;或者,
可以理解为第二IAB donor CU向第一IAB donor CU发送第一路由标识和第二路由标识;或者,
可以理解为第二IAB donor CU向第一IAB donor CU发送第一映射关系,该第一映射关系包括第一路由标识和第二路由标识之间的映射关系,基于该第一映射关系能够根据确定第一路由标识对应的第二路由标识。
可选地,第二消息中还包括第二指示信息,第二指示信息用于指示该Routing ID_T标识的第二路径用于UL还是DL,或者说第二指示信息用于指示第一映射关系用于UL还是DL。
作为一种可能的实现方式,第二IAB donor CU根据第一IAB donor CU发送的第一消息中包括的信息(如,包括GTP隧道信息、QoS_T信息、Routing ID_S),第二IAB donor CU可以生成以下一张关系表,以QoS信息为时延为例进行说明,如下表1所示:
Figure PCTCN2022077847-appb-000001
也就是说,第二IAB donor CU根据从第一IAB donor CU收到的QoS_T信息和Routing ID_S可以执行以下判决:
针对不同的Routing ID_S,且QoS_T信息相同,第二IAB donor CU分配不同的Routing ID_T,即Routing ID_S和Routing ID_T为一一映射,例如:Routing ID_S1对应Routing ID_T1,Routing ID_S2对应Routing ID_T2。
针对不同的Routing ID_S,但QoS_T信息相同,第二IAB donor CU分配同一个Routing ID_T,即Routing ID_S和Routing ID_T为多对一映射,例如:Routing ID_S1对应Routing ID_T1,Routing ID_S2对应Routing ID_T1。
针对同一个Routing ID_S,但QoS_T信息不同,第二IAB donor CU分配不同的Routing ID_T,即Routing ID_S和Routing ID_T为一对多映射,例如:Routing ID_S1对应Routing ID_T1,Routing ID_S1对应Routing ID_T2。
具体地,第一IAB donor CU接收到上述的第二消息中携带的信息之后,第一IAB donor  CU可以将Routing ID_S和Routing ID_T之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的路由转换处理。图10所示的实施例还包括:
S1060,第一IAB donor CU向第一节点发送第三消息。
该第三消息中包括第一路由标识和第二路由标识,或者,第三消息中包括第一路由标识和第二路由标识之间的第一映射关系,基于该第一映射关系能够确定第一路由标识和第二路由标识。
可选地,第三消息中还包括第三指示信息,第三指示信息用于指示第一路径和所述第二路径用于上行传输或者下行传输,或者说第三指示信息用于指示第一映射关系用于UL还是DL。
后续boundary IAB node的IAB node MT或IAB node DU可以根据Routing ID_S和Routing ID_T之间的对应关系,确定数据在不同的网络拓扑中的传输之间的路由转换。
作为一种可能的实现方式,上述的步骤S1050和S1060可以不执行,而是执行:第二IAB donor CU通过RRC消息向第一节点的MT发送第一路由标识和第二路由标识,可选的,第一节点的MT还可以仅一步将第一路由标识和第二路由标识发送给第一节点的DU。
图10所示的为确定路由映射的流程,应理解确定数据的传输还需要确定承载映射,下面结合图11进行说明。
示例性地,如图11所示,图11是本申请提供的一种确定承载映射流程示意图,包括以下步骤:
S1110,第一IAB donor CU根据QoS信息确定QoS_S信息和QoS_T信息。
参考上述S810中关于确定第二QoS信息和该第一QoS信息的描述,这里不再赘述。
图11所示的实施例中,第一IAB donor CU确定QoS_S信息和QoS_T信息之后,可以根据QoS_S信息确定第一BH RLC CH信息。图11所示的方法流程还包括:
S1120,第一IAB donor CU根据QoS_S信息确定第一BH RLC CH信息。
第一BH RLC CH信息包括第一BH RLC CH标识,可选地,第一BH RLC CH信息还可以包括第一BH RLC CH的QoS信息。
第一BH RLC CH的QoS信息可以是GBR、5G网络的服务质量标识符(5G quality of service identifier,5QI)或包时延预算(packet delay budget,PDB)中的至少一种信息。
第一BH RLC CH标识用于指示第一节点和第一节点的子节点之间的第一BH RLC CH,第一BH RLC CH用于在第一节点和第一节点的子节点之间传输数据。对于DL传输,第一BH RLC CH可以称为第一egress BH RLC CH;对于UL传输,第一BH RLC CH可以称为第一ingress BH RLC CH。
图11所示的实施例中,第一IAB donor CU根据QoS_S信息,确定数据映射到boundary IAB node和该boundary IAB node的子节点之间(如图9中的IAB node#2 MT)的第一BH RLC CH上传输。
具体的,对DL而言,第一IAB donor CU决定该boundary IAB node将数据映射到第一egress BH RLC CH发送到该boundary IAB node的子节点;对UL而言,第一IAB donor CU决定该boundary IAB node的子节点将该数据映射到第一ingress BH RLC CH发送到该boundary IAB node。
进一步地,第一IAB donor CU可以向第二IAB donor CU发送第一消息,该第一消息中包括QoS_T信息以及以下至少一种信息:GTP隧道信息、第一BH RLC CH标识、第一指示信息。
图11所示的方法流程还包括:
S1130,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与上述S820的内容相互参考。
图11所示的实施例中,第一消息中还包括第一BH RLC CH标识,或者包括第一BH RLC CH标识的指示信息(如第一BH RLC CH标识的索引);
示例性地,第一消息中还包括第一BH RLC CH的QoS信息;
示例性地,第一消息中还包括GTP隧道信息;
示例性地,第一消息中还包括第一指示信息,该第一指示信息用于指示该第一BH RLC CH用于UL承载映射还是DL承载映射,或者说第一指示信息用于指示该第一BH RLC CH标识对应UL承载映射还是DL承载映射。
作为一种可能的实现方式,该第一指示信息用于显示指示该第一BH RLC CH用于UL承载映射还是DL承载映射。例如,第一指示信息为UL或DL的指示,若该第一指示信息设置为UL,则该第一BH RLC CH为第一ingress BH RLC CH;若该第二指示信息设置为DL,则该第一BH RLC CH为第一egress BH RLC CH。
作为另一种可能的实现方式,该第一指示信息用于隐式指示该第一BH RLC CH用于UL承载映射还是DL承载映射。例如,第一指示信息为上一跳节点(对于UL)或下一跳节点(对于DL)的标识或地址信息。
该实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定与第一BH RLC CH标识对应的第二BH RLC CH标识。图11所示的实施例还包括:
S1140,第二IAB donor CU确定与第一BH RLC CH标识对应的第二BH RLC CH标识。
第二IAB donor CU根据从第一IAB donor CU收到的QoS_T信息,确定数据映射到boundary IAB node和该boundary IAB node的父节点之间的第二BH RLC CH上传输。
具体的,对DL而言,第二IAB donor CU决定该boundary IAB node的父节点将该数据映射到第二ingress BH RLC CH发送到该边界节点;对UL而言,第二IAB donor CU决定该boundary IAB node将该数据映射到第二egress BH RLC CH发送到该boundary IAB node的父节点。
可以理解为,第二IAB donor CU确定从第一IAB donor CU收到的第一egress BH RLC CH ID与第二ingress BH RLC CH ID对应(用于DL),和/或,确定从第一IAB donor CU收到的第一ingress BH RLC CH ID与第二egress BH RLC CH ID对应(用于UL)。
可选的,第一egress BH RLC CH ID和第二ingress BH RLC CH ID的取值可以相同,也可以不同。
可选的,第一ingress BH RLC CH ID和第二egress BH RLC CH ID的取值可以相同,也可以不同。
其中,第二BH RLC CH标识由第二IAB donor CU分配,可用于标识boundary IAB node 的父节点和boundary IAB node之间的某一条通道。
进一步地,第二IAB donor CU将与第一BH RLC CH标识对应的第二BH RLC CH标识发送给第一IAB donor CU。图11所示的实施例还包括:
S1150,第二IAB donor CU向第一IAB donor CU发送第二消息。
该第二消息中包括与第一BH RLC CH标识对应的第二BH RLC CH标识。
示例性地,第二IAB donor CU将确定的ingress BH RLC CH ID和egress BH RLC CH ID发送到第一IAB donor CU,以便第一IAB donor CU将ingress BH RLC CH ID和egress BH RLC CH ID发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的承载映射转换处理。
示例性地,第二IAB donor CU向第一IAB donor CU发送与第一BH RLC CH标识对应的第二BH RLC CH标识,可以理解为第二IAB donor CU向第一IAB donor CU发送第二BH RLC CH标识和第一BH RLC CH标识的指示信息;或者,
可以理解为第二IAB donor CU向第一IAB donor CU发送第一BH RLC CH标识和第二BH RLC CH标识;或者,
可以理解为第二IAB donor CU向第一IAB donor CU发送第二映射关系,该第二映射关系包括第一BH RLC CH标识和第二BH RLC CH标识之间的映射关系,基于该第二映射关系能够根据确定第一BH RLC CH标识对应的第二BH RLC CH标识。
可选地,第二消息中还包括第二指示信息,第二指示信息用于指示第二BH RLC CH(或者说第二映射关系)用于上行承载映射或者下行承载映射。
作为一种可能的实现方式,第二IAB donor CU根据第一IAB donor CU发送的第一消息中包括的信息(如,包括GTP隧道信息、QoS_T信息、第一BH RLC CH信息),第二IAB donor CU可以生成以下一张关系表,以QoS信息为时延为例进行说明,如下表2所示:
Figure PCTCN2022077847-appb-000002
也就是说,第二IAB donor CU根据从第一IAB donor CU收到的QoS_T信息和第一BH RLC CH信息可以执行以下判决:
针对不同的第一BH RLC CH标识,且QoS_T信息相同,第二IAB donor CU分配不同的第二BH RLC CH标识,即第一BH RLC CH标识和第二BH RLC CH标识为一一映射,例如:第一BH RLC CH标识#1对应第二BH RLC CH标识#1,第一BH RLC CH标识#2对应第二BH RLC CH标识#2。
针对不同的第一BH RLC CH标识,但QoS_T信息相同,第二IAB donor CU分配同一个第二BH RLC CH标识,即第一BH RLC CH标识和第二BH RLC CH标识为多对一映射,例如:第一BH RLC CH标识#1对应第二BH RLC CH标识#1,第一BH RLC CH标识#2对应第二BH RLC CH标识#1。
针对同一个第一BH RLC CH标识,但QoS_T信息不同,第二IAB donor CU分配不同的第二BH RLC CH标识,即第一BH RLC CH标识和第二BH RLC CH标识为一对多映 射,例如:第一BH RLC CH标识#1对应第二BH RLC CH标识#1,第一BH RLC CH标识#1对应第二BH RLC CH标识#2。
具体地,第一IAB donor CU接收到上述的第二消息中携带的信息之后,第一IAB donor CU可以将第一BH RLC CH标识和第二BH RLC CH标识之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的承载转换处理。图11所示的实施例还包括:
S1160,第一IAB donor CU向第一节点发送第三消息。
该第三消息中包括第一BH RLC CH标识和第二BH RLC CH标识。
或者,第三消息中包括第一BH RLC CH标识和第二BH RLC CH标识之间的第二映射关系,基于该第二映射关系能够确定第一BH RLC CH标识和第二BH RLC CH标识。
可选地,第三消息中还包括第三指示信息,第三指示信息用于指示第一BH RLC CH标识和第二BH RLC CH标识(或者说第二映射关系)用于上行承载映射或者下行承载映射。
后续boundary IAB node的IAB node MT或IAB node DU可以根据第一BH RLC CH标识和第二BH RLC CH标识之间的对应关系,确定数据在不同的网络拓扑中的传输之间的承载映射转换。
作为一种可能的实现方式,上述的步骤S1150和S1160可以不执行,而是执行:第二IAB donor CU通过RRC消息向第一节点的MT发送第一BH RLC CH标识和第二BH RLC CH标识,可选的,第一节点的MT进一步将第一BH RLC CH标识和第二BH RLC CH标识发送给第一节点的DU。
可能二、第一IAB donor CU确定数据传输路径中的路由和/或承载映射。
示例性地,如图12所示,图12是本申请提供的另一种确定路由映射流程示意图,包括以下步骤:
S1210,第一IAB donor CU根据QoS信息确定QoS_S信息和QoS_T信息。
参考上述S810中关于确定第二QoS信息和该第一QoS信息的描述,这里不再赘述。
图12所示的实施例中,第一IAB donor CU确定QoS_S信息和QoS_T信息之后,可以向第二IAB donor CU发送第一消息,该第一消息中包括QoS_T信息。
图12所示的方法流程还包括:
S1220,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与上述S820中的描述相互参考。
图12所示的实施例中,第一消息中还包括GTP隧道信息。
该实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定第二路由标识。图12所示的实施例还包括:
S1230,第二IAB donor CU确定第二路由标识。
第二IAB donor CU根据从第一IAB donor CU收到的QoS_T信息,确定数据在第二IAB donor DU和boundary IAB node之间的传输路径,并确定路由标识Routing ID_T。
其中,Routing ID_T由第二IAB donor CU分配,可用于标识第二IAB donor DU和boundary IAB node之间的某一条传输路径。
进一步地,第二IAB donor CU将Routing ID_T发送给第一IAB donor CU。图12所 示的实施例还包括:
S1240,第二IAB donor CU向第一IAB donor CU发送第二消息。
该第二消息中包括第二路由标识。
示例性地,第二消息中还包括第二指示信息,该第二指示信息用于指示该Routing ID_T所标识的路径用于UL路由还是DL路由,或者说该第二指示信息用于指示Routing ID_T是UL路由还是DL路由的标识。
作为一种可能的实现方式,该第二指示信息用于显示指示该Routing ID_T所标识的路径用于UL路由还是DL路由。例如,第二指示信息为UL或DL的指示;
作为另一种可能的实现方式,该第二指示信息用于隐式指示该Routing ID_T所标识的路径用于UL路由还是DL路由。例如,第二指示信息为上一跳节点(对于UL)或下一跳节点(对于DL)的标识或地址信息。
进一步地,第一IAB donor CU在接收到第二消息之后,能够根据第二QoS信息确定与第二路由标识对应的第一路由标识,图12所示的实施例还包括:
S1250,第一IAB donor CU确定与第二路由标识对应的第一路由标识。
该方案中,第一IAB donor CU根据QoS_S信息和第二路由标识,确定数据在boundary IAB node和接入IAB node之间的传输路径,并确定Routing ID_T对应的路由标识Routing ID_S。其中,Routing ID_S由第一IAB donor CU分配,可用于标识boundary IAB node和接入IAB node之间的某一条传输路径。
或者,该方案中,第一IAB donor CU根据QoS_S信息,确定数据在boundary IAB node和接入IAB node之间的传输路径,即确定路由标识Routing ID_S。再根据第二路由标识,确定Routing ID_T对应的路由标识Routing ID_S。其中,Routing ID_S由第一IAB donor CU分配,可用于标识boundary IAB node和接入IAB node之间的某一条传输路径。其中,第一IAB donor CU根据QoS_S信息确定路由标识Routing ID_S可以在S1210中执行,也可以在S1250中执行,本实施例并不限定。
可选的,Routing ID_T和Routing ID_S的取值可以相同,也可以不同。
作为一种可能的实现方式,第一IAB donor CU根据第二IAB donor CU发送的第二消息中包括的信息(如,Routing ID_T),第一IAB donor CU可以生成以下一张关系表,以QoS信息为时延为例进行说明,如下表3所示:
Figure PCTCN2022077847-appb-000003
也就是说,第一IAB donor CU根据从第二IAB donor CU收到的Routing ID_T可以执行以下判决:
针对不同的Routing ID_T,且QoS_S信息相同,第一IAB donor CU分配不同的Routing ID_S,即Routing ID_T和Routing ID_S为一一映射,例如:Routing ID_T#1对应Routing ID_S#1,Routing ID_T#2对应Routing ID_S#2。
针对不同的Routing ID_T,但QoS_S信息相同,第一IAB donor CU分配同一个Routing  ID_S,即Routing ID_T和Routing ID_S为多对一映射,例如:Routing ID_T#1对应Routing ID_S#1,Routing ID_T#2对应Routing ID_S#1。
针对同一个Routing ID_T,但QoS_S信息不同,第一IAB donor CU分配不同的Routing ID_S,即Routing ID_T和Routing ID_S为一对多映射,例如:Routing ID_T#1对应Routing ID_S#1,Routing ID_T#1对应Routing ID_S#2。
具体地,第一IAB donor CU生成与第二路由标识对应的第一路由标识之后,第一IAB donor CU可以将Routing ID_S和Routing ID_T之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的路由转换处理。图12所示的实施例还包括:
S1260,第一IAB donor CU向第一节点发送第三消息。
可以与上述S1060的内容相互参考。
后续boundary IAB node的IAB node MT可以根据Routing ID_S和Routing ID_T之间的对应关系,确定数据在不同的网络拓扑中的传输之间的路由转换。
示例性地,如图13所示,图13是本申请提供的另一种确定承载映射流程示意图,包括以下步骤:
S1310,第一IAB donor CU根据QoS信息确定QoS_S信息和QoS_T信息。
参考上述S810中关于确定第二QoS信息和该第一QoS信息的描述,这里不再赘述,S1310和S810可以相互参考。
图13所示的实施例中,第一IAB donor CU确定QoS_S信息和QoS_T信息之后,可以向第二IAB donor CU发送第一消息,该第一消息中包括QoS_T信息。
图13所示的方法流程还包括:
S1320,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与S1220中的内容相互参考,这里不再赘述。
图13所示的实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定第二BH RLC CH信息。图13所示的实施例还包括:
S1330,第二IAB donor CU确定第二BH RLC CH信息。
第二BH RLC CH信息可以包括第二BH RLC CH标识,或者也可以包括第二BH RLC CH ID和第二BH RLC CH的QoS信息。
第二BH RLC CH的QoS信息可以是GBR、5QI或PDB中的至少一种信息。
第二IAB donor CU根据从第一IAB donor CU收到的QoS_T信息,确定数据映射到boundary IAB node和该boundary IAB node的父节点之间的第二BH RLC CH上传输。
具体的,对DL而言,第二IAB donor CU决定该boundary IAB node的父节点将该数据映射到第二ingress BH RLC CH发送到该边界节点;对UL而言,第二IAB donor CU决定该boundary IAB node将该数据映射到第二egress BH RLC CH发送到该boundary IAB node的父节点。
其中,第二BH RLC CH标识由第二IAB donor CU分配,可用于标识boundary IAB node的父节点和boundary IAB node之间的某一条通道。
进一步地,第二IAB donor CU将第二BH RLC CH信息发送给第一IAB donor CU。图13所示的实施例还包括:
S1340,第二IAB donor CU向第一IAB donor CU发送第二消息。
该第二消息中包括第二BH RLC CH标识,该第二BH RLC CH标识与GTP隧道信息相对应。
可选地,该第二消息中还可以包括第二BH RLC CH的QoS信息。
可选地,第二消息中还包括第二指示信息,第二指示信息用于指示第二BH RLC CH信息对应上行承载映射或者下行承载映射。
作为一种可能的实现方式,该第二指示信息用于显示指示该第二BH RLC CH信息用于UL承载映射还是DL承载映射。例如,第二指示信息为UL或DL的指示,若该第二指示信息设置为UL,则该第一BH RLC CH为第一ingress BH RLC CH;若该第二指示信息设置为DL,则该第一BH RLC CH为第一egress BH RLC CH。
作为另一种可能的实现方式,该第二指示信息用于隐式指示该第二BH RLC CH信息用于UL承载映射还是DL承载映射。例如,第二指示信息为上一跳节点(对于UL)或下一跳节点(对于DL)的标识或地址信息。
进一步地,第一IAB donor CU在接收到第二消息之后,能够根据第二QoS信息和第二BH RLC CH标识确定与第二BH RLC CH标识对应的第一BH RLC CH标识,或者,第一IAB donor CU在接收到第二消息之后,能够根据第二QoS信息确定与第二BH RLC CH标识对应的第一BH RLC CH标识,图13所示的实施例还包括:
S1350,第一IAB donor CU确定与第二BH RLC CH标识对应的第一BH RLC CH标识。
图13所示的实施例中,第一IAB donor CU根据UE业务的QoS_S信息,确定数据映射到boundary IAB node和该boundary IAB node的子节点之间(如图9中的IAB node#2 MT)的第一个BH RLC CH上传输。
具体的,对DL而言,第一IAB donor CU决定该boundary IAB node将数据映射到第一egress BH RLC CH发送到该boundary IAB node的子节点;对UL而言,第一IAB donor CU决定该boundary IAB node的子节点将数据映射到第一ingress BH RLC CH发送到该boundary IAB node。
可以理解为,第一IAB donor CU确定从第二IAB donor CU收到的第二ingress BH RLC CH ID与第一egress BH RLC CH ID对应(用于DL),和/或,确定从第二IAB donor CU收到的第一egress BH RLC CH ID与第二ingressBH RLC CH ID对应(用于UL)。
可选的,第一egress BH RLC CH ID和第二ingress BH RLC CH ID的取值可以相同,也可以不同。
可选的,第一ingress BH RLC CH ID和第二egress BH RLC CH ID的取值可以相同,也可以不同。
其中,第一BH RLC CH由第一IAB donor CU分配,可用于标识boundary IAB node的子节点和boundary IAB node之间的某一条传输路径。
作为一种可能的实现方式,第一IAB donor CU根据第二IAB donor CU发送的第二消息中包括的信息(如,第二BH RLC CH标识),第一IAB donor CU可以生成以下一张关系表,以QoS信息为时延为例进行说明,如下表4所示:
GTP隧道信息 QoS_T 第一BH RLC CH标识 第二BH RLC CH标识
(e.g.GTP TEID)      
01 5ms 00a 001
02 5ms 00a/00b 002
03 2ms 00c 001
也就是说,第一IAB donor CU根据从第二IAB donor CU收到的第二BH RLC CH信息可以执行以下判决:
针对不同的第二BH RLC CH标识,且QoS_S信息相同,第一IAB donor CU分配不同的第一BH RLC CH标识,即第二BH RLC CH标识和第一BH RLC CH标识为一一映射,例如:第二BH RLC CH标识#1对应第一BH RLC CH标识#1,第二BH RLC CH标识#2对应第一BH RLC CH标识#2。
针对不同的第二BH RLC CH标识,但QoS_S信息相同,第一IAB donor CU分配同一个第一BH RLC CH标识,即第二BH RLC CH标识和第一BH RLC CH标识为多对一映射,例如:第二BH RLC CH标识#1对应第一BH RLC CH标识#1,第二BH RLC CH标识#2对应第一BH RLC CH标识#1。
针对同一个第二BH RLC CH标识,但QoS_S信息不同,第一IAB donor CU分配不同的第一BH RLC CH标识,即第二BH RLC CH标识和第一BH RLC CH标识为一对多映射,例如:第二BH RLC CH标识#1对应第一BH RLC CH标识#1,第二BH RLC CH标识#1对应第一BH RLC CH标识#2。
具体地,第一IAB donor CU生成与第二BH RLC CH标识对应的第一BH RLC CH标识之后,第一IAB donor CU可以将第一BH RLC CH标识和第二BH RLC CH标识之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的通道转换处理。图13所示的实施例还包括:
S1360,第一IAB donor CU向第一节点发送第三消息。
S1360可以与上述S1160的描述相互参考,这里不再赘述。
后续boundary IAB node的IAB node MT或IAB node DU可以根据第一BH RLC CH标识和第二BH RLC CH标识之间的对应关系,确定数据在不同的网络拓扑中的传输之间的承载映射转换。
二、信令面的信令传输。
不同于用户面传输,信令面传输包括以下信令类型:与终端设备相关的(UE-associated)F1应用层协议(F1 application layer protocol,F1AP)消息、与所述终端设备不相关的(non-UE associated)F1AP消息。可选的,信令面传输还可以包括信令类型:非F1消息(non-F1)。
信令面的信令传输,包括以下几种可能:
可能一、第二IAB donor CU确定信令传输路径中的路由和/或承载映射。
示例性地,如图14所示,图14是本申请提供的又一种确定路由映射流程示意图,包括以下步骤:
S1410,第一IAB donor CU根据信令类型确定第一路由标识。
具体地,第一路由标识用于标识信令在第一节点和第二节点之间传输的第一路径。
示例性地,第一路由标识可以称为Routing ID_S。
图14所示的实施例中,第一IAB donor CU根据信令类型,确定信令在boundary IAB node和接入IAB node之间的传输路径,并确定对应的路由标识Routing ID_S。其中,Routing ID_S由第一IAB donor CU分配,可用于标识boundary IAB node和接入IAB node之间的某一条传输路径。
进一步地,第一IAB donor CU可以向第二IAB donor CU发送第一消息,该第一消息中包括信令类型的指示信息以及以下至少一种信息:Routing ID_S、第一指示信息。
其中,信令类型的指示信息用于指示信令的类型,Routing ID_S为信令在第一IAB donor CU管理的网络拓扑内传输对应的路由标识。图14所示的方法流程还包括:
S1420,第一IAB donor CU向第二IAB donor CU发送第一消息。
S1420可以与上述S820相互参考。
图14所示的实施例中,第一消息中还包括Routing ID_S,或者包括Routing ID_S的指示信息(如Routing ID_S的索引);
示例性地,该实施例中,第一消息中还包括第一指示信息,该第一指示信息用于指示该Routing ID_S用于UL路由还是DL路由。
作为一种可能的实现方式,该第一指示信息用于显示指示该Routing ID_S所标识的路径用于UL路由还是DL路由。例如,第一指示信息为UL或DL的指示:第一指示信息为UL时表示Routing ID_S所标识的路径用于UL路由;第一指示信息为DL时表示Routing ID_S所标识的路径用于DL路由。
作为另一种可能的实现方式,该第一指示信息用于隐式指示该Routing ID_S所标识的路径用于UL路由还是DL路由。例如,第一指示信息为上一跳节点(对于UL)或下一跳节点(对于DL)的标识或地址信息。
该实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定与第一路由标识对应的第二路由标识。图14所示的实施例还包括:
S1430,第二IAB donor CU确定与第一路由标识对应的第二路由标识。
第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息,确定该信令在第二IAB donor DU和boundary IAB node之间的传输路径,并确定Routing ID_S对应的路由标识Routing ID_T。
或者,第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息和Routing ID_S,确定该信令在第二IAB donor DU和boundary IAB node之间的传输路径,并确定Routing ID_S对应的路由标识Routing ID_T。
其中,Routing ID_T由第二IAB donor CU分配,可用于标识第二IAB donor DU和boundary IAB node之间的某一条传输路径。
可选的,Routing ID_T和Routing ID_S的取值可以相同,也可以不同。
进一步地,第二IAB donor CU将Routing ID_S对应的Routing ID_T发送给第一IAB donor CU。图14所示的实施例还包括:
S1440,第二IAB donor CU向第一IAB donor CU发送第二消息。
S1440可以与上述S1040的内容相互参考,这里不再赘述。
作为一种可能的实现方式,第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息和Routing ID_S可以执行以下判决:
针对不同的Routing ID_S,且信令类型相同,第二IAB donor CU分配不同的Routing ID_T,即Routing ID_S和Routing ID_T为一一映射,例如:Routing ID_S#1对应Routing ID_T#1,Routing ID_S#2对应Routing ID_T#2。
针对不同的Routing ID_S,但信令类型息相同,第二IAB donor CU分配同一个Routing ID_T,即Routing ID_S和Routing ID_T为多对一映射,例如:Routing ID_S#1对应Routing ID_T#1,Routing ID_S#2对应Routing ID_T#1。
针对同一个Routing ID_S,但信令类型不同,第二IAB donor CU分配不同的Routing ID_T,即Routing ID_S和Routing ID_T为一对多映射,例如:Routing ID_S#1对应Routing ID_T#1,Routing ID_S#1对应Routing ID_T#2。
具体地,第一IAB donor CU接收到上述的第二消息中携带的信息之后,第一IAB donor CU可以将Routing ID_S和Routing ID_T之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的路由转换处理。图14所示的实施例还包括:
S1450,第一IAB donor CU向第一节点发送第三消息。
可以与上述S1060的内容相互参考,这里不再赘述。
后续boundary IAB node的IAB node MT可以根据Routing ID_S和Routing ID_T之间的对应关系,确定信令在不同的网络拓扑中的传输之间的路由转换。
作为一种可能的实现方式,上述的步骤S1440和S1450可以不执行,而是执行:第二IAB donor CU通过RRC消息向第一节点的MT发送第一路由标识和第二路由标识,可选的,第一节点的MT还可以进一步将第一路由标识和第二路由标识发送给第一节点的DU。
图14所示的为确定路由映射的流程,应理解确定信令的传输还需要确定承载映射,下面结合图15进行说明。
示例性地,如图15所示,图15是本申请提供的又一种确定承载映射流程示意图,包括以下步骤:
S1510,第一IAB donor根据信令类型确定第一BH RLC CH信息。
第一BH RLC CH信息包括第一BH RLC CH标识,可选地,第一BH RLC CH信息还可以包括第一BH RLC CH的QoS信息。
第一BH RLC CH标识用于指示第一节点和第一节点的子节点之间的第一BH RLC CH,第一BH RLC CH用于在第一节点和第一节点的子节点之间传输终端设备的业务信令。对于DL传输,第一BH RLC CH可以称为第一egress BH RLC CH;对于UL传输,第一BH RLC CH可以称为第一ingress BH RLC CH。
图15所示的实施例中,第一IAB donor CU根据信令类型,确定信令映射到boundary IAB node和该boundary IAB node的子节点之间(如图9中的IAB node#2 MT)的第一BH RLC CH上传输。
具体的,对DL而言,第一IAB donor CU决定该boundary IAB node将该信令映射到第一egress BH RLC CH发送到该boundary IAB node的子节点;对UL而言,第一IAB donor CU决定该boundary IAB node的子节点将该信令映射到第一ingress BH RLC CH发送到该boundary IAB node。
进一步地,第一IAB donor CU可以向第二IAB donor CU发送第一消息,该第一消息 中包括信令类型的指示信息以及以下至少一种信息:第一BH RLC CH信息、第二指示信息。
图15所示的方法流程还包括:
S1520,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与上述S820中的内容相互参考。
图15所示的实施例中,第一消息中还包括第一BH RLC CH标识,或者包括第一BH RLC CH标识的指示信息(如第一BH RLC CH标识的索引);
示例性地,第一消息中还包括第一BH RLC CH的QoS信息。
示例性地,第一消息中还包括第一指示信息,该第一指示信息用于指示该第一BH RLC CH用于UL承载映射还是DL承载映射,或者说第一指示信息用于指示该第一BH RLC CH信息对应UL承载映射还是DL承载映射。
作为一种可能的实现方式,该第一指示信息用于显示指示该第一BH RLC CH用于UL承载映射还是DL承载映射。例如,第一指示信息为UL或DL的指示,若该第一指示信息设置为UL,则该第一BH RLC CH为第一ingress BH RLC CH;若该第一指示信息设置为DL,则该第一BH RLC CH为第一egress BH RLC CH。
作为另一种可能的实现方式,该第一指示信息用于隐式指示该Routing ID_S用于UL承载映射还是DL承载映射。例如,第一指示信息为上一跳节点(对于UL)或下一跳节点(对于DL)的标识或地址信息。
该实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定与第一BH RLC CH标识对应的第二BH RLC CH标识。图15所示的实施例还包括:
S1530,第二IAB donor CU确定与第一BH RLC CH标识对应的第二BH RLC CH标识。
第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息,确定该信令映射到boundary IAB node和该boundary IAB node的父节点之间的第二BH RLC CH上传输。
具体的,对DL而言,第二IAB donor CU决定该boundary IAB node的父节点将该信令映射到第二ingress BH RLC CH发送到该边界节点;对UL而言,第二IAB donor CU决定该boundary IAB node将该信令映射到第二egress BH RLC CH发送到该boundary IAB node的父节点。
可以理解为,第二IAB donor CU确定从第一IAB donor CU收到的第一egress BH RLC CH ID与第二ingress BH RLC CH ID对应(用于DL),和/或,确定从第一IAB donor CU收到的第一ingress BH RLC CH ID与第二egress BH RLC CH ID对应(用于UL)。
可选的,第一egress BH RLC CH ID和第二ingress BH RLC CH ID的取值可以相同,也可以不同。
可选的,第一ingress BH RLC CH ID和第二egress BH RLC CH ID的取值可以相同,也可以不同。
其中,第二BH RLC CH由第二IAB donor CU分配,可用于标识boundary IAB node的父节点和boundary IAB node之间的某一条传输路径。
进一步地,第二IAB donor CU将与第一BH RLC CH信息对应的第二BH RLC CH信息发送给第一IAB donor CU。图15所示的实施例还包括:
S1540,第二IAB donor CU向第一IAB donor CU发送第二消息。
可以与上述S1150的内容相互参考,这里不再赘述。
作为一种可能的实现方式,第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息和第一BH RLC CH信息可以执行以下判决:
针对不同的第一BH RLC CH标识,且信令类型相同,则第二IAB donor CU分配不同的第二BH RLC CH标识,即第一BH RLC CH标识和第二BH RLC CH标识为一一映射,例如:第一BH RLC CH标识#1对应第二BH RLC CH标识#1,第一BH RLC CH标识#2对应第二BH RLC CH标识#2。
针对不同的第一BH RLC CH标识,但信令类型相同,则第二IAB donor CU分配同一个第二BH RLC CH标识,即第一BH RLC CH标识和第二BH RLC CH标识为多对一映射,例如:第一BH RLC CH标识#1对应第二BH RLC CH标识#1,第一BH RLC CH标识#2对应第二BH RLC CH标识#1。
针对同一个第一BH RLC CH标识,但信令类型不同,则第二IAB donor CU分配不同的第二BH RLC CH标识,即第一BH RLC CH标识和第二BH RLC CH标识为一对多映射,例如:第一BH RLC CH标识#1对应第二BH RLC CH标识#1,第一BH RLC CH标识#1对应第二BH RLC CH标识#2。
具体地,第一IAB donor CU接收到上述的第二消息中携带的标识之后,第一IAB donor CU可以第一BH RLC CH标识和第二BH RLC CH标识之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的路由转换处理。图15所示的实施例还包括:
S1550,第一IAB donor CU向第一节点发送第三消息。
可以与上述S1160的内容相互参考,这里不再赘述。
后续boundary IAB node的IAB node MT或IAB node DU可以根据第一BH RLC CH标识和第二BH RLC CH标识之间的对应关系,确定信令在不同的网络拓扑中的传输之间的承载映射转换。
作为一种可能的实现方式,上述的步骤S1540和S1550可以不执行,而是执行:第二IAB donor CU通过RRC消息向第一节点的MT发送与第一BH RLC CH标识对应的第二BH RLC CH标识,可选的,第一节点的MT可以进一步将与第一BH RLC CH标识对应的第二BH RLC CH标识发送给第一节点的DU。
可能二、第一IAB donor CU确定信令传输路径中的路由和/或承载映射。
示例性地,如图16所示,图16是本申请提供的又一种确定路由映射流程示意图,包括以下步骤:
S1610,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与上述S820中的内容相互参考。
该第一消息中包括信令类型的指示信息。
该实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定第二路由标识。图16所示的实施例还包括:
S1620,第二IAB donor CU确定第二路由标识。
第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息,确定该信令在第二IAB donor DU和boundary IAB node之间的传输路径,并确定路由标识Routing ID_T。
其中,Routing ID_T由第二IAB donor CU分配,可用于标识第二IAB donor DU和boundary IAB node之间的某一条传输路径。
进一步地,第二IAB donor CU将Routing ID_T发送给第一IAB donor CU。图16所示的实施例还包括:
S1630,第二IAB donor CU向第一IAB donor CU发送第二消息。
可以与上述S1240的内容相互参考,这里不再赘述。
进一步地,第一IAB donor CU在接收到第二消息之后,能够根据信令类型确定与第二路由标识对应的第一路由标识,或者,能够根据信令类型和第二路由标识确定与第二路由标识对应的第一路由标识,图16所示的实施例还包括:
S1640,第一IAB donor CU确定与第二路由标识对应的第一路由标识。
该方案中,第一IAB donor CU根据信令类型的指示信息,确定信令在boundary IAB node和接入IAB node之间的传输路径,并确定Routing ID_T对应的路由标识Routing ID_S。其中,Routing ID_S由第一IAB donor CU分配,可用于标识boundary IAB node和接入IAB node之间的某一条传输路径。
或者,
该方案中,第一IAB donor CU根据信令类型的指示信息,确定信令在boundary IAB node和接入IAB node之间的传输路径,即确定Routing ID_S。在根据第二路由标识,确定Routing ID_T对应的路由标识Routing ID_S。其中,Routing ID_S由第一IAB donor CU分配,可用于标识boundary IAB node和接入IAB node之间的某一条传输路径。
可选的,Routing ID_T和Routing ID_S的取值可以相同,也可以不同。
作为一种可能的实现方式,第一IAB donor CU根据从第二IAB donor CU收到的Routing ID_T可以执行以下判决:
针对不同的Routing ID_T,且信令类型相同,第一IAB donor CU分配不同的Routing ID_S,即Routing ID_T和Routing ID_S为一一映射,例如:Routing ID_T#1对应Routing ID_S#1,Routing ID_T#2对应Routing ID_S#2。
针对不同的Routing ID_T,但信令类型相同,第一IAB donor CU分配同一个Routing ID_S,即Routing ID_T和Routing ID_S为多对一映射,例如:Routing ID_T#1对应Routing ID_S#1,Routing ID_T#2对应Routing ID_S#1。
针对同一个Routing ID_T,但信令类型不同,第一IAB donor CU分配不同的Routing ID_S,即Routing ID_T和Routing ID_S为一对多映射,例如:Routing ID_T#1对应Routing ID_S#1,Routing ID_T#1对应Routing ID_S#2。
具体地,第一IAB donor CU生成与第二路由标识对应的第一路由标识之后,第一IAB donor CU可以将Routing ID_S和Routing ID_T之间的映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的路由转换处理。图16所示的实施例还包括:
S1650,第一IAB donor CU向第一节点发送第三消息。
可以与参考上述S1060的内容相互参考,这里不再赘述。
后续boundary IAB node的IAB node MT或IAB node DU可以根据Routing ID_S和Routing ID_T之间的对应关系,确定信令在不同的网络拓扑中的传输之间的路由转换。
图16所示的为确定路由映射的流程,应理解确定信令的传输还需要确定承载映射,下面结合图17进行说明。
示例性地,如图17所示,图17是本申请提供的又一种确定承载映射流程示意图,包括以下步骤:
S1710,第一IAB donor CU向第二IAB donor CU发送第一消息。
可以与上述S1610的内容相互参考,这里不再赘述。
该实施例中,第二IAB donor CU接收到第一消息之后,能够根据第一消息中携带的信息确定第二BH RLC CH信息。图17所示的实施例还包括:
S1720,第二IAB donor CU确定第二BH RLC CH信息。
第二BH RLC CH信息可以包括第二BH RLC CH标识,或者也可以包括第二BH RLC CH ID和第二BH RLC CH的QoS信息。
第二BH RLC CH的QoS信息可以是GBR、5QI或PDB中的至少一种信息。
第二IAB donor CU根据从第一IAB donor CU收到的信令类型的指示信息,确定该信令映射到boundary IAB node和该boundary IAB node的父节点之间的第二BH RLC CH上传输。
具体的,对DL而言,第二IAB donor CU决定该boundary IAB node的父节点将该信令映射到第二ingress BH RLC CH发送到该边界节点;对UL而言,第二IAB donor CU决定该boundary IAB node将该信令映射到第二egress BH RLC CH发送到该boundary IAB node的父节点。
其中,第二BH RLC CH由第二IAB donor CU分配,可用于标识boundary IAB node的父节点和boundary IAB node之间的某一条传输通道。
进一步地,第二IAB donor CU将第二BH RLC CH信息发送给第一IAB donor CU。图17所示的实施例还包括:
S1730,第二IAB donor CU向第一IAB donor CU发送第二消息。
该第二消息中包括第二BH RLC CH信息。
第二BH RLC CH信息可以包括第二BH RLC CH ID,或者也可以包括第二BH RLC CH ID和第二BH RLC CH QoS(例如,GBR、5QI、PDB中的至少一种信息)。
可选地,第二消息中还包括第二指示信息,第二指示信息用于指示第二BH RLC CH信息对应上行承载映射或者下行承载映射。
作为一种可能的实现方式,该第二指示信息用于显示指示该第二BH RLC CH用于UL承载映射还是DL承载映射。例如,第二指示信息为UL或DL的指示,若该第二指示信息设置为UL,则该第一BH RLC CH为第一ingress BH RLC CH;若该第二指示信息设置为DL,则该第一BH RLC CH为第一egress BH RLC CH。
作为另一种可能的实现方式,该第二指示信息用于隐式指示该第二BH RLC CH信息用于UL承载映射还是DL承载映射。例如,第二指示信息为上一跳节点(对于UL)或 下一跳节点(对于DL)的标识或地址信息。
进一步地,第一IAB donor CU在接收到第二消息之后,能够根据信令类型确定与第二BH RLC CH标识对应的第一BH RLC CH标识,或者,能够根据信令类型和第二BH RLC CH标识确定与第二BH RLC CH标识对应的第一BH RLC CH标识,图17所示的实施例还包括:
S1740,第一IAB donor CU确定与第二BH RLC CH标识对应的第一BH RLC CH标识。
该方案中,第一IAB donor CU根据信令类型的指示信息,确定信令映射到boundary IAB node和该boundary IAB node的子节点之间(如图9中的IAB node#2 MT)的第一个BH RLC CH上传输。
具体的,对DL而言,第一IAB donor CU决定该boundary IAB node将该信令映射到第一egress BH RLC CH发送到该boundary IAB node的子节点;对UL而言,第一IAB donor CU决定该boundary IAB node的子节点将该信令映射到第一ingress BH RLC CH发送到该boundary IAB node。
可以理解为,第一IAB donor CU确定从第二IAB donor CU收到的第二ingressBH RLC CH ID与第一egress BH RLC CH ID对应(用于DL),和/或,确定从第二IAB donor CU收到的第一egress BH RLC CH ID与第二ingressBH RLC CH ID对应(用于UL)。
可选的,第一egress BH RLC CH ID和第二ingress BH RLC CH ID的取值可以相同,也可以不同。
可选的,第一ingress BH RLC CH ID和第二egress BH RLC CH ID的取值可以相同,也可以不同。
其中,第一BH RLC CH由第一IAB donor CU分配,可用于标识boundary IAB node的子节点和boundary IAB node之间的某一条传输路径。
作为一种可能的实现方式,第一IAB donor CU根据从第二IAB donor CU收到的第二BH RLC CH信息可以执行以下判决:
针对不同的第二BH RLC CH标识,且信令类型相同,则第一IAB donor CU分配不同的第一BH RLC CH标识,即第二BH RLC CH标识和第一BH RLC CH标识为一一映射,例如:第二BH RLC CH标识#1对应第一BH RLC CH标识#1,第二BH RLC CH标识#2对应第一BH RLC CH标识#2。
针对不同的第二BH RLC CH标识,但信令类型相同,则第一IAB donor CU分配同一个第一BH RLC CH标识,即第二BH RLC CH标识和第一BH RLC CH标识为多对一映射,例如:第二BH RLC CH标识#1对应第一BH RLC CH标识#1,第二BH RLC CH标识#2对应第一BH RLC CH标识#1。
针对同一个第二BH RLC CH标识,但信令类型不同,则第一IAB donor CU分配不同的第一BH RLC CH标识,即第二BH RLC CH标识和第一BH RLC CH标识为一对多映射,例如:第二BH RLC CH标识#1对应第一BH RLC CH标识#1,第二BH RLC CH标识#1对应第一BH RLC CH标识#2。
具体地,第一IAB donor CU生成与第二BH RLC CH标识对应的第一BH RLC CH标识之后,第一IAB donor CU可以将第一BH RLC CH标识和第二BH RLC CH标识之间的 映射关系发送给boundary IAB node,从而使得boundary IAB node根据该映射关系,执行不同网络拓扑间的通道转换处理。图17所示的实施例还包括:
S1750,第一IAB donor CU向第一节点发送第三消息。
可以与上述S1160的内容相互参考,这里不再赘述。
后续boundary IAB node的IAB node MT或IAB node DU可以根据第一BH RLC CH标识和第二BH RLC CH标识之间的对应关系,确定信令在不同的网络拓扑中的传输之间的承载映射转换。
上述实施例中节点之间的信令交互可以复用已有信令或不复用已有的信令:
例如,对应于上述图7中的(a)所示的场景下:第一IAB donor CU向第二IAB donor CU发送的第一消息可以为切换请求消息。
对应于上述图7中的(b)所示的场景下:第一IAB donor CU向第二IAB donor CU发送的第一消息可以为第一IAB donor-CU和第二IAB donor-CU之间辅站添加和/或辅站修改相关信令。例如,第一消息可以为辅站添加请求消息或辅站添加响应消息;还例如,第一消息可以为辅站修改请求消息或辅站修改响应消息。
或者,第一IAB donor CU向第二IAB donor CU发送的上述信息可以携带在第一IAB donor CU和第二IAB donor CU之间新增的消息中。
本申请实施例中对第一IAB donor CU如何向第二IAB donor CU发送上述的信息不做限定。
还例如,对应于上述图7中的(a)所示的场景下:第二IAB donor CU向第一IAB donor CU发送的第二消息可以为切换请求响应消息。
对应于上述图7中的(b)所示的场景下:第二IAB donor CU向第一IAB donor CU发送的第二消息可以为第一IAB donor-CU和第二IAB donor-CU之间辅站添加和/或辅站修改相关信令。例如,第二消息可以为辅站添加请求消息或辅站添加响应消息;还例如,第二消息可以为辅站修改请求消息或辅站修改响应消息。
本实施例主要解决跨网络拓扑场景下用户面和信令面传输的路由和承载映射机制,从而保证用户面和信令面在跨网络拓扑场景下的正常传输,并通过考虑QoS特性(如,上述的第一QoS信息、第二QoS信息、第一BH RLC CH的QoS信息以及第二BH RLC CH的QoS信息)选择最合适的路径和最合适的通道以实现传输过程中的QoS保障。
本申请还提供了另一种用于信息传输的方法,通过指示信息指示上行F1-C传输的路径,使得上行F1-C能够通过辅小区组(secondary cell group,SCG)路径发送,提高上行F1-C传输路径的灵活性。
下面结合附图对该用于信息传输的方法进行说明。
由上述可知,IAB donor可以采用CP-UP分离架构,示例性地,包括如图18所示的两种CP-UP分离场景。
图18中的(a)和(b)是本申请实施例提供的IAB donor的CP-UP分离场景示意图。
从图18中的(a)可以看出F1-C通过主基站(非IAB donor)使用NR接入链路进行传输,F1-U通过辅基站(IAB donor)使用回传链路进行传输,其中,F1-C为IAB node2 DU和S-donor-CU之间传输的信令;F1-U为IAB node2 DU和S-donor-CU之间传输的数据。
从图18中的(b)可以看出F1-C通过辅基站(非IAB donor)使用NR接入链路进行 传输,F1-U通过主基站(IAB donor)使用回传链路进行传输,其中,F1-C为IAB node2 DU和M-donor-CU之间传输的信令;F1-U为IAB node2 DU和M-donor-CU之间传输的数据。
对于图18中的(a)所示的场景可以沿用目前相关技术中关于在LTE中的F1-C(F1-C over LTE)的传输机制。
示例性地,针对下行传输来说:
步骤一:辅基站的CU部分(如图18中的(a)所示的S-donor-CU)生成F1-C,将该F1-C携带在第四消息中(例如,XnAP消息)发送到主基站(如图18中的(a)所示的M-gNB)。
步骤二:主基站从第四消息中提取出F1-C后,将该F1-C封装在第五消息(例如,NR RRC消息)中通过信令无线承载(signal radio bear2,SRB2)发送到IAB节点(如图18中的(a)所示的IAB node#2)。
图18中的(a)所示的场景下的上行传输机制与下行传输机制类似,只是传输方向发生改变,这里不再赘述。
对于图18中的(b)所示的场景F1-C在SCG上的传输存在两种方案:
方案一:通过SRB3传输。
方案二:通过分离(split)SRB传输。split SRB包括split SRB1或split SRB2。
对上行而言,若使用split SRB来传输F1-C,按照目前双连接DC的传输机制,IAB节点(如图18中的(b)所示的IAB node#2)只能将上行F1-C通过主小区组(master cell group,MCG)路径进行传输,而无法通过SCG路径进行传输。
其中,MCG路径包括:IAB node#2将上行F1-C通过IAB node#1和M-donor-DU发送到M-donor-CU;SCG路径包括:IAB node#2将上行F1-C通过S-gNB发送到M-donor-CU。
为了实现图18中的(b)所示的场景中,使用split SRB将上行F1-C通过SCG路径发送,需要进行以下改动:
M-donor-CU指示IAB node#2上行F1-C传输的路径,例如:MCG路径或SCG路径。若指示上行F1-C传输路径为SCG,同时IAB node#2被指示使用split SRB1或split SRB2传输上行F1-C时,则IAB node#2将split SRB的PDCP实体对应的主路径由MCG改为SCG,从而实现IAB node#2将上行F1-C通过SCG路径进行传输。
图18中的(b)所示的场景中,由于F1-C是封装在NR RRC消息中通过split SRB进行传输,因此,一旦将上行F1-C通过SCG路径传输,将会导致所有NR RRC消息也都通过SCG路径传输,使得NR RRC消息无法通过MCG路径传输。
若需要使封装了上行F1-C的NR RRC消息通过SCG路径传输,而其他NR RRC消息通过MCG路径传输,则IAB node#2的RRC层需要给底层(例如,IAB node#2的PDCP层)发送一个指示信息,用于指示NR RRC消息的传输路径,例如:MCG路径或SCG路径;或者,该指示信息用于指示NR RRC消息中是否携带F1-C,若携带F1-C,则该NR RRC消息通过SCG路径传输,否则,该NR RRC消息通过MCG路径传输。也就是说,IAB节点的底层(例如,PDCP层)根据从上层(例如,RRC层)收到的该指示信息,可以灵活的调整NR RRC消息发送的传输路径。
上述方法实施例中,上述各过程的序列号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。 并且有可能并非要执行上述方法实施例中的全部操作。
应理解,上述方法实施例中IAB节点和/或宿主节点可以执行施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
可以理解的是,上述方法实施例中,由IAB节点实现的方法,也可以由可用于IAB节点的部件(例如芯片或者电路等)实现,由宿主节点实现的方法,也可以由可用于宿主节点的部件实现。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上面结合图8-图17详细介绍了本申请实施例中的用于信息传输的方法,下面结合图19-图24详细介绍本申请实施例提供的装置。
参见图19,图19是本申请提出的用于信息传输的装置1800的示意图。如图19所示,装置1800包括处理单元1810和发送单元1820。
处理单元1810,用于确定数据的第一服务质量QoS信息和/或信令的信令类型,该第一QoS信息用于确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输,该信令类型用于确定该信令在该第二网络拓扑中的传输;
发送单元1820,用于向该第二IAB donor CU发送第一消息,该第一消息包括该第一QoS信息和/或信令类型的指示信息,
其中,该数据和/或信令经过该第一IAB donor CU管理的第一网络拓扑和该第二网络拓扑传输。
示例性地,该处理单元确定数据的第一服务质量QoS信息包括:
该处理单元根据该数据对应的QoS确定第二QoS信息和该第一QoS信息;
该处理单元还用于根据第二QoS信息确定该数据在该第一网络拓扑中的传输,和/或
根据该信令类型确定该信令在该第一网络拓扑中的传输。
示例性地,该装置还包括:
接收单元1830,用于接收来自该第二IAB donor CU的第二消息,该第二消息中包括与该第一路由标识对应的第二路由标识,和/或,与该第一BH RLC CH标识对应的第二BH RLC CH标识;
该发送单元还用于向该第一节点发送第三消息,该第三消息包括该第一路由标识和该第二路由标识,和/或,该第一BH RLC CH标识和该第二BH RLC CH标识;
其中,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二donor DU。
示例性地,该装置还包括:
接收单元,用于从该第二IAB donor CU接收第二消息,该第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
其中,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数 据和/或信令的BH RLC CH。
装置1800和方法实施例中的第一IAB donor CU完全对应,装置1800可以是方法实施例中的第一IAB donor CU;装置1800还可以是第一IAB donor CU内部的芯片或功能模块。装置1800的相应单元用于执行图8至图17所示的方法实施例中由第一IAB donor CU执行的相应步骤。
其中,装置1800中的处理单元1810执行方法实施例中内部实现或处理的步骤。发送单元1820执行方法实施例中发送的步骤。装置1800还可以包括接收单元1830,用于执行接收的步骤。发送单元1820和接收单元1830可以组成收发单元,同时具有接收和发送的功能。其中,发送单元1820可以是发射器,接收单元1830可以是接收器。接收器和发射器可以集成在一起组成收发器。
参见图20,图20是适用于本申请实施例的第一IAB donor CU的结构示意图。为了便于说明,图20仅示出了第一IAB donor CU的主要部件。如图20所示,第一IAB donor CU包括处理器1910、存储器1920、收发器1930。处理器用于控制收发器收发信息,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请第一IAB donor CU执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图20仅示出了一个存储器和处理器。在实际的系统中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图21,图21是本申请提出的用于信息传输的装置2000的示意图。如图21所示,装置2000包括处理单元2010和接收单元2020。
接收单元2020,用于接收来自第一IAB donor CU的第一消息,该第一消息包括第一服务质量QoS信息和/或信令类型的指示信息;
处理单元2010,用于根据该第一QoS信息确定该数据在第二IAB donor CU管理的第二网络拓扑中的传输;和/或
根据该信令类型确定该信令在该第二网络拓扑中的传输。
示例性地,该装置还包括:
发送单元2030,用于向该第一IAB donor CU发送第二消息,该第二消息中包括与该第一路由标识对应的第二路由标识,和/或,与该第一BH RLC CH标识对应的第二BH RLC CH标识;
其中,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH。
示例性地,该装置还包括:
发送单元2030,用于向该第一IAB donor CU发送第二消息,该第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
其中,该第二路由标识用于标识该第一节点和该第三节点之间传输该数据和/信令的路径,该第二BH RLC CH标识用于标识该第一节点和该第一节点的父节点之间传输该数据和/或信令的BH RLC CH。
装置2000和方法实施例中的第二IAB donor CU完全对应,装置2000可以是方法实 施例中的第二IAB donor CU;装置2000还可以是第二IAB donor CU内部的芯片或功能模块。装置2000的相应单元用于执行图8至图17所示的方法实施例中由第二IAB donor CU执行的相应步骤。
其中,装置2000中的处理单元2010执行方法实施例中内部实现或处理的步骤。接收单元2020执行方法实施例中接收的步骤。装置2000还可以包括发送单元2030,用于执行发送的步骤。发送单元2030和接收单元2020可以组成收发单元,同时具有接收和发送的功能。其中,发送单元2030可以是发射器,接收单元2020可以是接收器。接收器和发射器可以集成在一起组成收发器。
参见图22,图22是适用于本申请实施例的第二IAB donor CU的结构示意图。为了便于说明,图22仅示出了第二IAB donor CU的主要部件。如图22所示,第二IAB donor CU包括处理器2110、存储器2120、收发器2130。处理器用于控制收发器收发信息,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请第二IAB donor CU执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图22仅示出了一个存储器和处理器。在实际的系统中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图23,图23是本申请提出的用于信息传输的装置2200的示意图。如图23所示,装置2200包括处理单元2210和接收单元2220。
接收单元2220,用于接收来自第一IAB donor CU的第三消息,该第三消息包括第一路由标识和第二路由标识,和/或,第一BH RLC CH标识和第二BH RLC CH标识,
处理单元2210,用于根据该第一路由标识和该第二路由标识,确定数据和/或信令在该第一IAB donor CU管理的第一网络拓扑中的传输和在第二IAB donor CU管理的第二网络拓扑中的传输之间的路由转换;
该处理单元还用于根据该第一BH RLC CH标识和第二BH RLC CH标识,确定该数据和/或该信令在该第一网络拓扑中的传输和在该第二网络拓扑中的传输之间的承载映射转换;
其中,该第一网络拓扑包括该装置和第二节点,该第一路由标识用于标识该装置和该第二节点之间传输该数据和/或该信令的第一路径,该第一BH RLC CH标识用于标识该装置和该第一节点的子节点之间传输该数据和/或该信令的第一BH RLC CH,该装置为边界节点,该第二节点为终端设备的接入节点,
该第二网络拓扑包括该装置和第三节点,该第二路由标识用于标识该装置和该第三节点之间传输该数据和/信令的第二路径,该第二BH RLC CH标识用于标识该装置和该第一节点的父节点之间传输该数据和/或信令的第二BH RLC CH,该第三节点为第二IAB donor DU。
装置2200和方法实施例中的第一节点完全对应,装置2200可以是方法实施例中的第一节点;装置2200还可以是第一节点内部的芯片或功能模块。装置2200的相应单元用于执行图8至图17所示的方法实施例中由第一节点执行的相应步骤。
其中,装置2200中的处理单元2210执行方法实施例中内部实现或处理的步骤。接收单元2220执行方法实施例中接收的步骤。装置2200还可以包括发送单元,用于执行发送 的步骤。发送单元和接收单元2220可以组成收发单元,同时具有接收和发送的功能。其中,发送单元可以是发射器,接收单元2222可以是接收器。接收器和发射器可以集成在一起组成收发器。
参见图24,图24是适用于本申请实施例的第一节点的结构示意图。为了便于说明,图24仅示出了第一节点的主要部件。如图24所示,第一节点包括处理器2310、存储器2320、收发器2330。处理器用于控制收发器收发信息,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请第一节点执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图24仅示出了一个存储器和处理器。在实际的系统中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
此外,本申请还提供一种通信系统,包括如方法实施例中所述的第一节点,第一IAB donor CU以及第二IAB donor CU中的一个或多个。
本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行任一方法实施例中由第一节点执行的相应操作和/或处理。
本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行任一方法实施例中由第一IAB donor CU执行的相应操作和/或处理。
本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行任一方法实施例中由第二IAB donor CU执行的相应操作和/或处理。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请任一方法实施例中由第一节点执行的相应操作和/或处理。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请任一方法实施例中由第一IAB donor CU执行的相应操作和/或处理。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请任一方法实施例中由第二IAB donor CU执行的相应操作和/或处理。
本申请还提供一种芯片,包括处理器。处理器用于调用并运行存储器中存储的计算机程序,以执行本申请任一方法实施例中由第一节点执行的相应操作和/或处理。
可选地,所述芯片还包括存储器,存储器与处理器连接。处理器用于读取并执行存储器中的计算机程序。
进一步可选地,芯片还包括通信接口,处理器与通信接口连接。通信接口用于接收待处理的信号和/或数据,处理器从通信接口获取该待处理的信号和/或数据,并对其进行处理。
本申请还提供一种芯片,包括处理器。处理器用于调用并运行存储器中存储的计算机 程序,以执行本申请任一方法实施例中由第一IAB donor CU执行的相应操作和/或处理。
可选地,所述芯片还包括存储器,存储器与处理器连接。处理器用于读取并执行存储器中的计算机程序。
进一步可选地,芯片还包括通信接口,处理器与通信接口连接。通信接口用于接收待处理的信号和/或数据,处理器从通信接口获取该待处理的信号和/或数据,并对其进行处理。
本申请还提供一种芯片,包括处理器。处理器用于调用并运行存储器中存储的计算机程序,以执行本申请任一方法实施例中由第二IAB donor CU执行的相应操作和/或处理。
可选地,所述芯片还包括存储器,存储器与处理器连接。处理器用于读取并执行存储器中的计算机程序。
进一步可选地,芯片还包括通信接口,处理器与通信接口连接。通信接口用于接收待处理的信号和/或数据,处理器从通信接口获取待处理的信号和/或数据,并对其进行处理。
可选地,上述通信接口可以是输入输出接口,具体可以包括输入接口和输出接口。或者,通信接口可以是输入输出电路,具体可以包括输入接口电路和输出接口电路。
上述各实施例中涉及的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
以上各实施例中,处理器可以为中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。例如,处理器可以是数字信号处理器设备、微处理器设备、模数转换器、数模转换器等。处理器可以根据这些设备各自的功能而在这些设备之间分配终端设备或网络设备的控制和信号处理的功能。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。处理器的所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例只是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (59)

  1. 一种用于信息传输的方法,其特征在于,包括:
    第一宿主节点的集中式单元IAB donor CU确定数据的第一服务质量QoS信息和/或信令的信令类型,所述第一QoS信息用于确定所述数据在第二IAB donor CU管理的第二网络拓扑中的传输,所述信令类型用于确定所述信令在所述第二网络拓扑中的传输;
    所述第一IAB donor CU向所述第二IAB donor CU发送第一消息,所述第一消息包括所述第一QoS信息和/或信令类型的指示信息;
    其中,所述数据和/或所述信令经过所述第一IAB donor CU管理的第一网络拓扑和所述第二网络拓扑传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一IAB donor CU确定所述数据的第一QoS信息包括:
    所述第一IAB donor CU根据所述数据对应的QoS确定第二QoS信息和所述第一QoS信息;
    所述方法还包括:
    所述第一IAB donor CU根据所述第二QoS信息确定所述数据在所述第一网络拓扑中的传输,和/或
    所述第一IAB donor CU根据所述信令类型确定所述信令在所述第一网络拓扑中的传输。
  3. 根据权利要求2所述的方法,其特征在于,所述第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;
    所述第一网络拓扑包括第一节点和第二节点,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和所述第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述第一节点为边界节点,所述第二节点为终端设备的接入节点。
  4. 根据权利要求3所述的方法,其特征在于,所述第一消息中还包括第一指示信息,所述第一指示信息用于指示所述第一路径和/或所述第一BH RLC CH用于上行传输或者下行传输。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一消息中还包括通用分组无线服务隧道协议GTP隧道信息,其中,所述GTP隧道信息用于标识所述数据。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述第一消息中还包括所述第一BH RLC CH标识的QoS。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB donor CU接收来自所述第二IAB donor CU的第二消息,所述第二消息中包括与所述第一路由标识对应的第二路由标识,和/或,与所述第一BH RLC CH标识对应的第二BH RLC CH标识。
  8. 根据权利要求7所述的方法,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第二路径和/或所述第二BH RLC CH用于上行传输或者 下行传输。
  9. 根据权利要求3至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB donor CU向所述第一节点发送第三消息,所述第三消息包括所述第一路由标识和所述第二路由标识,和/或,所述第一BH RLC CH标识和所述第二BH RLC CH标识;
    其中,所述第二网络拓扑包括所述第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/或所述信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或所述信令的第二BH RLC CH,所述第三节点为第二IAB donor DU。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第三消息中还包括第三指示信息,所述第三指示信息用于指示所述第一路径和所述第二路径用于上行传输或者下行传输,和/或,用于指示所述第一BH RLC CH和所述第二BH RLC CH用于上行传输或者下行传输。
  11. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一IAB donor CU从所述第二IAB donor CU接收第二消息,所述第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
    其中,所述第二网络拓扑包括第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/或所述信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或所述信令的第二BH RLC CH,所述第一节点为边界节点,所述第三节点为第二IAB donor DU。
  12. 根据权利要求11所述的方法,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第二路径和/或所述第二BH RLC CH用于上行传输或者下行传输。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一网络拓扑包括所述第一节点和第二节点,所述方法还包括:所述第一IAB donor CU确定与所述第二路由标识对应的第一路由标识,和/或,与所述第二BH RLC CH标识对应的第一BH RLC CH标识。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB donor CU向所述第一节点发送第三消息,所述第三消息包括所述第一路由标识和所述第二路由标识,和/或,所述第一BH RLC CH标识和所述第二BH RLC CH标识;
    其中,所述第一网络拓扑包括所述第一节点和第二节点,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述第二节点为终端设备的接入节点。
  15. 根据权利要求14所述的方法,其特征在于,所述第三消息中还包括第三指示信息,所述第三指示信息用于指示所述第一路径和所述第二路径用于上行传输或者下行传输,和/或,用于指示所述第一BH RLC CH和所述第二BH RLC CH用于上行传输或者下行传输。
  16. 一种用于信息传输的方法,其特征在于,包括:
    第二IAB donor CU接收来自第一IAB donor CU的第一消息,所述第一消息包括第一服务质量QoS信息和/或信令类型的指示信息;
    所述第二IAB donor CU根据所述第一QoS信息确定数据在所述第二IAB donor CU管理的第二网络拓扑中的传输;和/或,所述第二IAB donor CU根据所述信令类型确定信令在所述第二网络拓扑中的传输。
  17. 根据权利要求16所述的方法,其特征在于,所述第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;
    所述第一IAB donor CU管理的第一网络拓扑包括第一节点和第二节点,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和所述第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述第一节点为边界节点,所述第二节点为终端设备的接入节点。
  18. 根据权利要求17所述的方法,其特征在于,所述第一消息中还包括第一指示信息,所述第一指示信息用于指示所述第一路径和/或所述第一BH RLC CH用于上行传输或者下行传输。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一消息中还包括通用分组无线服务隧道协议GTP隧道信息,其中,所述GTP隧道信息用于标识所述数据。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第一消息中还包括所述第一BH RLC CH标识的QoS。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二IAB donor CU向所述第一IAB donor CU发送第二消息,所述第二消息中包括与所述第一路由标识对应的第二路由标识,和/或,与所述第一BH RLC CH标识对应的第二BH RLC CH标识;
    其中,所述第二网络拓扑包括所述第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/或所述信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或所述信令的第二BH RLC CH,所述第三节点为第二IAB donor DU。
  22. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第二IAB donor CU向所述第一IAB donor CU发送第二消息,所述第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
    其中,所述第二网络拓扑包括第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/或所述信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或所述信令的第二BH RLC CH,所述第一节点为边界节点,所述第三节点为第二IAB donor DU。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第二路径和/或所述第二BH RLC CH用于上行传输或者下行传输。
  24. 一种用于信息传输的方法,其特征在于,包括:
    第一节点接收来自第一IAB donor CU的第三消息,所述第三消息包括第一路由标识 和第二路由标识,和/或,第一BH RLC CH标识和第二BH RLC CH标识,
    所述第一节点根据所述第一路由标识和所述第二路由标识,确定数据和/或信令在所述第一IAB donor CU管理的第一网络拓扑中的传输和在第二IAB donor CU管理的第二网络拓扑中的传输之间的路由转换;
    所述第一节点根据所述第一BH RLC CH标识和第二BH RLC CH标识,确定所述数据和/或所述信令在所述第一网络拓扑中的传输和在所述第二网络拓扑中的传输之间的承载映射转换;
    其中,所述第一网络拓扑包括所述第一节点和第二节点,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和所述第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述第一节点为边界节点,所述第二节点为终端设备的接入节点,
    所述第二网络拓扑包括所述第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/或所述信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或所述信令的第二BH RLC CH,所述第三节点为第二IAB donor DU。
  25. 根据权利要求24所述的方法,其特征在于,所述第三消息中还包括第三指示信息,所述第三指示信息用于指示所述第一路径和所述第二路径用于上行传输或者下行传输,和/或,用于指示所述第一BH RLC CH和所述第二BH RLC CH用于上行传输或者下行传输。
  26. 一种用于信息传输的装置,其特征在于,包括:
    处理单元,用于确定数据的第一服务质量QoS信息和/或信令的信令类型,所述第一QoS信息用于确定所述数据在第二IAB donor CU管理的第二网络拓扑中的传输,所述信令类型用于确定所述信令在所述第二网络拓扑中的传输;
    发送单元,用于向所述第二IAB donor CU发送第一消息,所述第一消息包括所述第一QoS信息和/或信令类型的指示信息,
    其中,所述数据和/或信令经过所述第一IAB donor CU管理的第一网络拓扑和所述第二网络拓扑传输。
  27. 根据权利要求26所述的装置,其特征在于,所述处理单元确定数据的第一服务质量QoS信息包括:
    所述处理单元根据所述数据对应的QoS确定第二QoS信息和所述第一QoS信息;
    所述处理单元还用于根据第二QoS信息确定所述数据在所述第一网络拓扑中的传输,和/或
    根据所述信令类型确定所述信令在所述第一网络拓扑中的传输。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;
    所述第一网络拓扑包括第一节点和第二节点,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和所述第一节点的子节点之间传输所述数据和/或所述信令的第 一BH RLC CH,所述第一节点为边界节点,所述第二节点为终端设备的接入节点。
  29. 根据权利要求28所述的装置,其特征在于,所述第一消息中还包括第一指示信息,所述第一指示信息用于指示所述第一路径和/或所述第一BH RLC CH用于上行传输或者下行传输。
  30. 根据权利要求28或29所述的装置,其特征在于,所述第一消息中还包括通用分组无线服务隧道协议GTP隧道信息,其中,所述GTP隧道信息用于标识所述数据。
  31. 根据权利要求28至30中任一项所述的装置,其特征在于,所述第一消息中还包括所述第一BH RLC CH标识的QoS。
  32. 根据权利要求28至31中任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收来自所述第二IAB donor CU的第二消息,所述第二消息中包括与所述第一路由标识对应的第二路由标识,和/或,与所述第一BH RLC CH标识对应的第二BH RLC CH标识。
  33. 根据权利要求32所述的装置,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第二路径和/或所述第二BH RLC CH用于上行传输或者下行传输。
  34. 根据权利要求28至33中任一项所述的装置,其特征在于,所述发送单元还用于向所述第一节点发送第三消息,所述第三消息包括所述第一路由标识和所述第二路由标识,和/或,所述第一BH RLC CH标识和所述第二BH RLC CH标识;
    其中,所述第二网络拓扑包括所述第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或信令的第二BH RLC CH,所述第三节点为第二IAB donor DU。
  35. 根据权利要求34所述的装置,其特征在于,所述第三消息中还包括第三指示信息,所述第三指示信息用于指示所述第一路径和所述第二路径用于上行传输或者下行传输,和/或,用于指示所述第一BH RLC CH和所述第二BH RLC CH用于上行传输或者下行传输。
  36. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    接收单元,用于从所述第二IAB donor CU接收第二消息,所述第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
    其中,所述第二网络拓扑包括第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或信令的第二BH RLC CH,所述第一节点为边界节点,所述第三节点为第二IAB donor DU。
  37. 根据权利要求36所述的装置,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第二路径和/或所述第二BH RLC CH用于上行传输或者下行传输。
  38. 根据权利要求36或37所述的装置,其特征在于,所述第一网络拓扑包括所述第一节点和第二节点,所述方法还包括:
    所述处理单元,还用于确定与所述第二路由标识对应的第一路由标识和与所述第二 BH RLC CH标识对应的第一BH RLC CH标识。
  39. 根据权利要求36至38中任一项所述的装置,其特征在于,所述发送单元,还用于向所述第一节点发送第三消息,所述第三消息包括所述第一路由标识和所述第二路由标识,和/或,所述第一BH RLC CH标识和所述第二BH RLC CH标识;
    其中,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述第二节点为终端设备的接入节点。
  40. 根据权利要求39所述的装置,其特征在于,所述第三消息中还包括第三指示信息,所述第三指示信息用于指示所述第一路径和所述第二路径用于上行传输或者下行传输,和/或,用于指示所述第一BH RLC CH和所述第二BH RLC CH用于上行传输或者下行传输。
  41. 一种用于信息传输的装置,其特征在于,包括:
    接收单元,用于接收来自第一IAB donor CU的第一消息,所述第一消息包括第一服务质量QoS信息和/或信令类型的指示信息;
    处理单元,用于根据所述第一QoS信息确定所述数据在第二IAB donor CU管理的第二网络拓扑中的传输;和/或
    根据所述信令类型确定所述信令在所述第二网络拓扑中的传输。
  42. 根据权利要求41所述的装置,其特征在于,所述第一消息还包括第一路由标识和/或第一回传无线链路控制信道BH RLC CH标识;
    所述第一IAB donor CU管理的第一网络拓扑包括第一节点和第二节点,所述第一路由标识用于标识所述第一节点和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述第一节点和所述第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述第一节点为边界节点,所述第二节点为终端设备的接入节点。
  43. 根据权利要求42所述的装置,其特征在于,所述第一消息中还包括第一指示信息,所述第一指示信息用于指示所述第一路径和/或所述第一BH RLC CH用于上行传输或者下行传输。
  44. 根据权利要求42或43所述的装置,其特征在于,所述第一消息中还包括通用分组无线服务隧道协议GTP隧道信息,其中,所述GTP隧道信息用于标识所述数据。
  45. 根据权利要求42至44中任一项所述的装置,其特征在于,所述第一消息中还包括所述第一BH RLC CH标识的QoS。
  46. 根据权利要求42至45中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述第一IAB donor CU发送第二消息,所述第二消息中包括与所述第一路由标识对应的第二路由标识,和/或,与所述第一BH RLC CH标识对应的第二BH RLC CH标识;
    其中,所述第二网络拓扑包括所述第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或信令的 第二BH RLC CH,所述第三节点为第二IAB donor DU。
  47. 根据权利要求41所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述第一IAB donor CU发送第二消息,所述第二消息包括第二路由标识,和/或,第二BH RLC CH标识;
    其中,所述第二网络拓扑包括第一节点和第三节点,所述第二路由标识用于标识所述第一节点和所述第三节点之间传输所述数据和/信令的第二路径,所述第二BH RLC CH标识用于标识所述第一节点和所述第一节点的父节点之间传输所述数据和/或信令的第二BH RLC CH,所述第一节点为边界节点,所述第三节点为第二IAB donor DU。
  48. 根据权利要求46或47所述的装置,其特征在于,所述第二消息中还包括第二指示信息,所述第二指示信息用于指示所述第二路径和/或所述第二BH RLC CH用于上行传输或者下行传输。
  49. 一种用于信息传输的装置,其特征在于,包括:
    接收单元,用于接收来自第一IAB donor CU的第三消息,所述第三消息包括第一路由标识和第二路由标识,和/或,第一BH RLC CH标识和第二BH RLC CH标识,
    处理单元,用于根据所述第一路由标识和所述第二路由标识,确定数据和/或信令在所述第一IAB donor CU管理的第一网络拓扑中的传输和在第二IAB donor CU管理的第二网络拓扑中的传输之间的路由转换;
    所述处理单元还用于根据所述第一BH RLC CH标识和第二BH RLC CH标识,确定所述数据和/或所述信令在所述第一网络拓扑中的传输和在所述第二网络拓扑中的传输之间的承载映射转换;
    其中,所述第一网络拓扑包括所述装置和第二节点,所述第一路由标识用于标识所述装置和所述第二节点之间传输所述数据和/或所述信令的第一路径,所述第一BH RLC CH标识用于标识所述装置和所述第一节点的子节点之间传输所述数据和/或所述信令的第一BH RLC CH,所述装置为边界节点,所述第二节点为终端设备的接入节点,
    所述第二网络拓扑包括所述装置和第三节点,所述第二路由标识用于标识所述装置和所述第三节点之间传输所述数据和/信令的第二路径,所述第二BH RLC CH标识用于标识所述装置和所述第一节点的父节点之间传输所述数据和/或信令的第二BH RLC CH,所述第三节点为第二IAB donor DU。
  50. 根据权利要求49所述的装置,其特征在于,所述第三消息中还包括第三指示信息,所述第三指示信息用于指示所述第一路径和所述第二路径用于上行传输或者下行传输,和/或,用于指示所述第一BH RLC CH和所述第二BH RLC CH用于上行传输或者下行传输。
  51. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,使得权利要求1至15中任一所述的方法。
  52. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,使得权利要求16至23中任一所述的方法。
  53. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储 器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,使得权利要求24或25所述的方法。
  54. 一种通信系统,其特征在于,包括至少一个如权利要求26至40中任一所述的装置、至少一个如权利要求41至48中任一所述的装置和至少一个如权利要求49或50所述的装置。
  55. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,使得计算机执行如权利要求1至15中任一项所述的方法,或者,使得所述计算机执行如权利要求16至23中任一项所述的方法,或者,使得所述计算机执行如权利要求23或25所述的方法。
  56. 一种包含指令的计算机程序产品,其特征在于,当所指令在计算机上运行时,使得计算机执行如权利要求1至15中任一项所述的方法,或者,使得所述计算机执行如权利要求16至23中任一项所述的方法,或者,使得所述计算机执行如权利要求24或25所述的方法。
  57. 一种通信装置,其特征在于,用于执行如权利要求1至15中任一所述的方法。
  58. 一种通信装置,其特征在于,用于执行如权利要求16至23中任一所述的方法。
  59. 一种通信装置,其特征在于,用于执行如权利要求24或25所述的方法。
PCT/CN2022/077847 2021-04-01 2022-02-25 用于信息传输的方法和装置 WO2022206234A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112023019919A BR112023019919A2 (pt) 2021-04-01 2022-02-25 Métodos de transmissão de informações, sistema de comunicação, meio de armazenamento legível por computador e aparelho de comunicação
EP22778419.6A EP4311301A4 (en) 2021-04-01 2022-02-25 METHOD AND APPARATUS FOR TRANSMITTING INFORMATION
US18/476,218 US20240022990A1 (en) 2021-04-01 2023-09-27 Information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110358294.5 2021-04-01
CN202110358294.5A CN115190536A (zh) 2021-04-01 2021-04-01 用于信息传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,218 Continuation US20240022990A1 (en) 2021-04-01 2023-09-27 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022206234A1 true WO2022206234A1 (zh) 2022-10-06

Family

ID=83455182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077847 WO2022206234A1 (zh) 2021-04-01 2022-02-25 用于信息传输的方法和装置

Country Status (5)

Country Link
US (1) US20240022990A1 (zh)
EP (1) EP4311301A4 (zh)
CN (1) CN115190536A (zh)
BR (1) BR112023019919A2 (zh)
WO (1) WO2022206234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056149A (zh) * 2023-03-27 2023-05-02 广州世炬网络科技有限公司 一种iab宿主节点的单工作业方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093286A (zh) * 2019-08-15 2020-05-01 中兴通讯股份有限公司 连接建立方法、装置、集合接入回传节点及存储介质
CN111586709A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种映射方法、节点、通信装置及存储介质
CN111865802A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种通信方法及装置
WO2021033036A1 (en) * 2019-08-22 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Internet protocol address allocation for integrated access and backhaul nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586709A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种映射方法、节点、通信装置及存储介质
CN111865802A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种通信方法及装置
CN111093286A (zh) * 2019-08-15 2020-05-01 中兴通讯股份有限公司 连接建立方法、装置、集合接入回传节点及存储介质
WO2021033036A1 (en) * 2019-08-22 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Internet protocol address allocation for integrated access and backhaul nodes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Discussion on the inter-donor topology management", 3GPP DRAFT; R3-210549, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210125 - 20210204, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051968977 *
SAMSUNG (MODERATOR): "Summary of offline discussion on topology redundancy", 3GPP DRAFT; R3-211202, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210125 - 20210204, 5 February 2021 (2021-02-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051978486 *
See also references of EP4311301A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056149A (zh) * 2023-03-27 2023-05-02 广州世炬网络科技有限公司 一种iab宿主节点的单工作业方法、装置、设备及介质

Also Published As

Publication number Publication date
US20240022990A1 (en) 2024-01-18
BR112023019919A2 (pt) 2023-11-14
EP4311301A1 (en) 2024-01-24
EP4311301A4 (en) 2024-08-14
CN115190536A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
KR102345654B1 (ko) 이중 접속 수립 방법 및 디바이스
US11864085B2 (en) Method and apparatus for transmitting data to a network node in a wireless communication system
KR101944097B1 (ko) 무선 통신 시스템에서 cu-cp와 cu-up의 분리를 위한 보안을 지원하는 방법 및 장치
WO2019128947A1 (zh) 通信方法和通信设备
US12052784B2 (en) Method for transmitting control signaling in relay network, configuration method and device
CN114026913B (zh) 能够实现支持集成接入回程网络中的多连接性的上行链路路由
WO2022028493A1 (zh) 一种iab节点的配置方法及通信装置
EP4132097A1 (en) Communication method, apparatus and system
WO2015032043A1 (zh) 传输数据的方法、装置和系统
WO2022082679A1 (zh) 一种通信方法及相关设备
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
CN114258731B (zh) 集成接入回程网络中的集中式单元及其操作方法
US10939485B2 (en) Mechanism for realizing LWA/LWIP aggregator function
WO2021062803A1 (zh) 一种数据包传输方法及装置
CN113728720A (zh) 用于集成接入和回程链路的承载映射
WO2019245423A1 (en) Qos mapping for integrated access backhaul systems
US20240022990A1 (en) Information transmission method and apparatus
EP4136930A1 (en) First node, second node and methods performed thereby for handling transmissions in a communications network
WO2024000412A1 (zh) 通信方法和通信装置
WO2022206418A1 (zh) 通信方法及通信装置
WO2022056708A1 (zh) 通信设备、数据传输的方法和装置
EP4443977A1 (en) Communication method and communication apparatus
WO2024193378A1 (zh) 通信方法及相关装置
WO2024207363A1 (zh) 信号的收发方法、装置和通信系统
WO2023150976A1 (zh) Iab宿主设备以及传输迁移管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778419

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019919

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022778419

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778419

Country of ref document: EP

Effective date: 20231016

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023019919

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230927