WO2022056708A1 - 通信设备、数据传输的方法和装置 - Google Patents

通信设备、数据传输的方法和装置 Download PDF

Info

Publication number
WO2022056708A1
WO2022056708A1 PCT/CN2020/115531 CN2020115531W WO2022056708A1 WO 2022056708 A1 WO2022056708 A1 WO 2022056708A1 CN 2020115531 W CN2020115531 W CN 2020115531W WO 2022056708 A1 WO2022056708 A1 WO 2022056708A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
access technology
terminal
technology terminal
sdu
Prior art date
Application number
PCT/CN2020/115531
Other languages
English (en)
French (fr)
Inventor
朱元萍
罗海燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080103539.3A priority Critical patent/CN116097890A/zh
Priority to PCT/CN2020/115531 priority patent/WO2022056708A1/zh
Publication of WO2022056708A1 publication Critical patent/WO2022056708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to communication networks, and in particular, to a communication device, a method and apparatus for data transmission.
  • FBB fixed broadband access technology
  • FBB fixed broadband access technology
  • FBB fixed broadband access technology
  • FBB fiber to the x
  • ADSL asymmetric digital subscriber line
  • ADSL cable television (cable television) access
  • wireless broadband access wireless broadband/wireless to the X, WBB/WTTx
  • WBB/WTTx wireless broadband/wireless to the X
  • the terminal equipment In some indoor scenarios, such as the indoor scenario of the home environment, the terminal equipment has a variety of different access technologies, so how to support the home terminal equipment with diversified access technologies to interact with local exchange services is an urgent problem to be solved. .
  • the present application provides a communication device, a method and an apparatus for data transmission, in order to support local exchange services of home terminal devices with diversified access technologies.
  • a communication device configured to determine the destination node of the service data unit SDU of the first access technology terminal; the communication device is further configured to, when the destination node of the SDU is the second access technology terminal, not The SDU is transparently transmitted to the second access technology terminal through the base station and core network device connected to the communication device; wherein the first access technology terminal and the second access technology terminal are connected the communication device.
  • the communication device determines the destination node of the service data unit SDU of the first access technology terminal, that is, the communication device determines the destination node of the data transmitted by the first access technology terminal, or the communication device determines the first access technology. To which device the data transmitted by the terminal is sent.
  • the destination node of the SDU is the second access technology terminal, that is, the destination node of the SDU transmitted by the first access technology terminal is the second access technology terminal, or in other words, the first access technology terminal
  • the SDU transmitted by the technology terminal is sent to the second access technology terminal.
  • the communication device may be an indoor access point, or the communication device may be a chip or a chip system or circuit configured in the indoor access point.
  • the first access technology terminal is connected to the communication device, which means that the first access technology terminal accesses the communication device through the first access technology, or in other words, the first access technology terminal communicates with the communication device through the first access technology.
  • the second access technology terminal is connected to the communication device, indicating that the second access technology terminal accesses the communication device through the second access technology, or in other words, the second access technology terminal establishes a communication connection with the communication device through the second access technology .
  • the first access technology terminal and the second access technology terminal may be understood as a first home terminal and a second home terminal.
  • the first access technology terminal and the second access technology terminal are terminal devices (eg, home terminals) accessed using different access technologies.
  • the first access technology terminal is a home terminal supporting 3GPP access technology
  • the second access technology terminal is a home terminal supporting non-3GPP access technology. It should be understood that the interaction of terminals with the same access technology is also applicable to this application.
  • transparent transmission can mean that the communication device can directly forward the SDU of the first access technology terminal to the second access technology terminal, and at least the application layer of the communication device does not need to parse the SDU.
  • the destination node includes one or more of the following: a communication device, a second access technology terminal, a base station and/or a core network device connected to the communication device.
  • the first access technology terminal and the second access technology terminal can be connected to the communication device.
  • the first access technology terminal and the second access technology terminal exchange services, if the first access technology terminal sends When the terminal of the second access technology sends the SDU, it can be forwarded through the communication device without passing through the base station and the core network device, so that the terminals of different access technologies can exchange local services.
  • terminals with different access technologies can all access the communication device, for example, both the first access technology terminal and the second access technology terminal can be connected to the communication device, that is, the first access technology terminal can be connected to the communication device.
  • Both the terminal and the second access technology terminal can be communicatively connected to the communication device. Therefore, it is also possible to support diversified terminal devices (such as home terminals) to access the network.
  • the communication device is further configured to: in the case that the destination node of the SDU is the base station or the core network device, send the communication device to the base station Or the core network device forwards the SDU; or, when the destination node of the SDU is the communication device, the communication device parses the content of the SDU.
  • the destination node of the SDU is a base station, which means that the destination node of the SDU transmitted by the first access technology terminal is a base station, or in other words, the SDU transmitted by the first access technology terminal is sent to the base station .
  • the destination node of the SDU is a core network device, which means that the destination node of the SDU transmitted by the first access technology terminal is a core network device, or in other words, the SDU transmitted by the first access technology terminal It is sent to the core network equipment.
  • the communication device may first forward the SDU to the base station, and then the base station may forward the SDU to the core network device.
  • the destination node of the SDU is a communication device, which means that the destination node of the SDU transmitted by the first access technology terminal is a communication device, or in other words, the SDU transmitted by the first access technology terminal is a communication device. for communication equipment.
  • the communication device may perform corresponding processing according to the destination node of the SDU transmitted by the first access technology terminal.
  • the communication device is specifically configured to: determine the The destination node of the SDU.
  • the service type indication is used to indicate that the service type of the SDU is local service or non-local service.
  • the service type carried by the first access technology terminal is indicated as a local service
  • the service type carried by the data is indicated as a local service, which may indicate that the data is a service transmitted to a communication device, or the destination node of the data is Communication equipment; or it can also indicate that the data is a service transmitted to other terminal equipment, or the destination node of the data is other terminal equipment.
  • it can be further determined in combination with the identifier of the destination node carried by the data.
  • the service type carried in the first access technology terminal is indicated as a non-local service
  • the service type carried in the data is indicated as a non-local service, which may indicate that the data is a service transmitted to a base station or a core network device, or It is said that the destination node of the data is a base station or a core network device.
  • the service type indication may be implemented by a field of x bits, where x is an integer greater than 1 or equal to 1. Taking 1 bit as an example, the value of the 1-bit field is "0", indicating a local service; the value of the 1-bit field is "1", indicating a non-local service.
  • the identifier of the destination node may indicate the destination node of the SDU, which does not limit the node corresponding to the identifier to be the destination node of the SDU.
  • the identifiers of the corresponding destination nodes may be the same.
  • the identification of the destination node is a communication device
  • the destination node of the SDU may be the communication device itself, or may be the base station and/or core network device connected to the communication device.
  • it can be determined in combination with the service type indication, or it can also be determined by further indication, which is not limited.
  • the communication device can determine the corresponding destination node according to the identifier of the destination node and/or the service type indication carried by the first access technology terminal, and then route the SDU to the destination node.
  • the communication device is specifically configured to: in the case where the identifier of the destination node is the identifier of the communication device, and the service type indicates a local service next, determine that the destination node is the communication device; or, when the identifier of the destination node is the identifier of the communication device and the service type indicates a non-local service, determine that the destination node is the communication device the base station or the core network device; or, when the identifier of the destination node is the identifier of the second access technology terminal, determine that the destination node is the second access technology terminal.
  • the identity of the destination node is the identity of the communication device
  • it can be further determined according to the service type indication whether the SDU transmitted by the first access technology terminal is transmitted to the communication device itself, or to the base station and/or core network equipment.
  • the communication device is further configured to: receive a message sent by the first access technology terminal and carried on a common signaling radio bearer, and transmit a message carried on a public signaling radio bearer.
  • the configuration information required for the message on the common signaling radio bearer is predefined by the protocol, or the configuration information required for transmitting the message carried on the common signaling radio bearer is pre-configured by the communication device .
  • the configuration information required for transmitting the message carried on the common signaling radio bearer includes quality of service (quality of service, QoS) information required for the message carried on the common signaling radio bearer, such as a QoS identifier.
  • quality of service quality of service
  • the communication device is further configured to: determine whether the first access technology terminal needs to be authenticated in the core network; The access technology terminal does not need to send indication information to the base station when the core network performs authentication, and the indication information is used to indicate that the first access technology terminal is a reliable device.
  • a reliable device refers to a device that does not need to be authenticated in the core network.
  • Core network authentication means that the core network needs to authenticate and authorize the devices that access the network.
  • a device can access the network only after passing the authentication.
  • the terminal device that is, the terminal device that does not need to be authenticated in the core network, for example, the authentication device that has passed the authentication of the communication device or the authentication device built in the communication device, or the authentication device that has been authenticated on the Internet via the communication device.
  • the device authentication is completed in the middle of the system) to perform additional authentication and authentication, so as to save the overhead and delay caused by authentication and authentication.
  • the communication device is further configured to: acquire a corresponding relationship, where the corresponding relationship includes the radio bearer identifier of the first access technology terminal and the first access technology terminal.
  • the corresponding relationship includes the radio bearer identifier of the first access technology terminal and the first access technology terminal. The correspondence between the radio bearer identifiers of the two access technology terminals.
  • the radio bearer of the first access technology terminal may represent the radio bearer between the first access technology terminal and the communication device.
  • the radio bearer of the second access technology terminal may represent the radio bearer between the second access technology terminal and the communication device.
  • the communication device when the communication device acquires the corresponding relationship, it may be understood that the communication device maintains the corresponding relationship.
  • the communication device can maintain the correspondence between the radio bearer identities of multiple terminal devices, for example, the correspondence between the radio bearer identity of the first access technology terminal and the radio bearer identity of the second access technology terminal , so that the communication device can forward the local services exchanged between the terminal devices between different terminal devices according to the QoS requirements corresponding to the services.
  • the communication performance can be improved as much as possible.
  • the communication device is specifically configured to: receive wireless data from the first access technology terminal and the second access technology terminal from the base station bearer QoS parameters, and generate the corresponding relationship based on the QoS parameters of the radio bearer of the first access technology terminal and the QoS parameters of the radio bearer of the second access technology terminal; or, receive the The information of the corresponding relationship sent by the base station.
  • the communication device may determine the corresponding relationship by itself, or the base station may determine the corresponding relationship and indicate the corresponding relationship.
  • the communication device is specifically configured to: receive the SDU transmitted by the first access technology terminal at the first protocol layer of the communication device,
  • the configuration information of the first protocol layer of the communication device is configured by the communication device, or the configuration information of the first protocol layer of the communication device is configured by the base station.
  • the configuration information of the first protocol layer of the communication device is configured by the communication device. That is, the communication device can configure the configuration information of the first protocol layer by itself, or the configuration information of the first protocol layer can be generated by the communication device itself.
  • the communication device may generate the configuration information of the first protocol layer by itself, or may also generate and indicate the configuration information of the first protocol layer by the base station.
  • the configuration information of the first protocol layer of the communication device includes one or more of the following: an identifier of the first protocol layer of the communication device, the The identifier of the first protocol layer of the first access technology terminal, the correspondence between the layer 2 identifier of the first access technology terminal in the communication link and the identifier of the first protocol layer, the wireless connection of the first access technology terminal
  • a method for data transmission is provided.
  • the method may be executed by a communication device, or may also be executed by a chip or a chip system or a circuit configured in the communication device, which is not limited in this application.
  • the method may include: a communication device receives a service data unit SDU transmitted by a first access technology terminal; the communication device determines a destination node of the SDU; in the case that the destination node of the SDU is a second access technology terminal , the communication device transparently transmits the SDU to the second access technology terminal without passing through the base station and core network device connected to the communication device; wherein the first access technology terminal and the second access technology terminal Two access technology terminals are connected to the communication device.
  • the communication device when the destination node of the SDU is the base station or the core network device, the communication device sends the base station or the core network device to the base station or the core network device. The device forwards the SDU; or, if the destination node of the SDU is the communication device, the communication device parses the content of the SDU.
  • the first access technology terminal carries the identifier of the destination node and/or the service type indication; the communication device determines the destination node of the SDU, It includes: the communication device determines the destination node of the SDU according to the identifier of the destination node and/or the service type indication.
  • the communication device determines that the The destination node of the SDU is the communication device; or, when the identity of the destination node is the identity of the communication device and the service type indicates a non-local service, the communication device determines the purpose of the SDU The node is the base station or the core network device; or, when the identifier of the destination node is the identifier of the second access technology terminal, the communication device determines that the destination node of the SDU is the The second access technology terminal.
  • the method further includes: receiving, by the communication device, a message sent by the first access technology terminal and carried on a common signaling radio bearer, and transmitting the bearer
  • the configuration information required for the message on the public signaling radio bearer is predefined by the protocol, or the configuration information required for the transmission of the message carried on the public signaling radio bearer is pre-configured by the communication device of.
  • the method further includes: determining, by the communication device, whether the first access technology terminal needs to be authenticated in the core network; When the access technology terminal does not need to be authenticated by the core network, the communication device sends indication information to the base station, where the indication information is used to indicate that the first access technology terminal is a reliable device.
  • the method further includes: acquiring, by the communication device, a correspondence relationship, where the correspondence relationship includes the radio bearer identifier of the first access technology terminal and the Correspondence between radio bearer identifiers of the second access technology terminal.
  • obtaining, by the communication device, the corresponding relationship includes: the communication device receiving, by the communication device, the first access technology terminal and the second access technology from the base station. the quality of service parameter of the radio bearer of the access technology terminal, and the corresponding relationship is generated based on the quality of service parameter of the radio bearer of the first access technology terminal and the quality of service parameter of the radio bearer of the second access technology terminal; Or, the communication device receives the information of the corresponding relationship sent by the base station.
  • the communication device receiving the SDU transmitted by the first access technology terminal includes: the communication device receiving the SDU at a first protocol layer of the communication device SDU, wherein the configuration information of the first protocol layer of the communication device is configured by the communication device, or the configuration information of the first protocol layer of the communication device is configured by the base station.
  • the configuration information of the first protocol layer of the communication device includes one or more of the following: an identifier of the first protocol layer of the communication device, the The identifier of the first protocol layer of the first access technology terminal, the correspondence between the layer 2 identifier of the first access technology terminal in the communication link and the identifier of the first protocol layer, the first access technology terminal The correspondence between the radio bearer and the quality of service of the communication link, the correspondence between the radio bearer identity of the first access technology terminal and the radio bearer identity of the second access technology terminal; wherein , the communication link is a link between the communication device and the first access technology terminal.
  • a method for data transmission is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a chip system or a circuit configured in the terminal device, which is not limited in this application.
  • the following is mainly described by taking the terminal device as the first access technology terminal as an example.
  • the method may include: a first access technology terminal is connected to a communication device, and the first access technology terminal is connected to a base station and a core network device through the communication device; the first access technology terminal is connected to the communication device
  • the device sends a service data unit SDU, wherein the first access technology terminal carries the identity of the destination node and/or the service type indication, and the identity of the destination node and/or the service type indication are used to determine the SDU. destination node.
  • the destination node of the SDU when the identifier of the destination node is the identifier of the communication device, and the service type indicates a local service, the destination node of the SDU is the communication device; or, in the case where the identity of the destination node is the identity of the communication device and the service type indicates a non-local service, the destination node of the SDU is the base station or the core network equipment; or, in the case that the identifier of the destination node is the identifier of the second access technology terminal, the destination node of the SDU is the second access technology terminal.
  • the method further includes: the first access technology terminal sends, to the communication device, a message carried on a common signaling radio bearer, and the transmission is carried on a
  • the configuration information required for the message on the common signaling radio bearer is predefined by the protocol, or the configuration information required for transmitting the message carried on the common signaling radio bearer is pre-configured by the communication device .
  • the radio bearer identifier of the first access technology terminal there is a correspondence between the radio bearer identifier of the first access technology terminal and the radio bearer identifier of the second access technology terminal.
  • an apparatus for data transmission is provided, where the apparatus is configured to execute the method provided in the second aspect or the third aspect.
  • the apparatus may include a module for performing the method provided by the second aspect or the third aspect.
  • a data transmission apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in the second aspect and any possible implementation manner of the second aspect.
  • the apparatus further includes a memory.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the apparatus is a communication device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a system of chips.
  • the communication interface may be an input/output interface, and may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the apparatus is a chip or a chip system configured in a communication device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a data transmission apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method of the third aspect and any of the possible implementations of the third aspect.
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled, the communication interface being used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a system of chips.
  • the communication interface may be an input/output interface, and may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the apparatus is a chip or a chip system configured in a terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a seventh aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, causes the communication device to implement the second aspect or the third aspect, and the second aspect or the third aspect.
  • the communication method in any possible implementation manner of the three aspects.
  • a computer program product containing instructions, the instructions, when executed by a computer, cause a communication apparatus to implement the communication method provided in the second aspect or the third aspect.
  • a communication system including the aforementioned first access technology terminal and communication device; or, including the aforementioned first access technology terminal, the second access technology terminal, and the communication device; or, including the aforementioned first access technology terminal and communication device The first access technology terminal, the second access technology terminal, the communication equipment, the base station and/or the core network equipment.
  • FIG. 1 shows a schematic diagram of the architecture of a home network system suitable for this embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a home bandwidth access network applicable to this embodiment of the present application.
  • FIG. 3 shows a schematic diagram of an IAB system suitable for the embodiment of the present application.
  • FIG. 4 is an example of a user plane protocol stack architecture of a multi-hop IAB network.
  • FIG. 5 is an example of a control plane protocol stack architecture of a multi-hop IAB network.
  • FIG. 6 shows a schematic diagram of a user terminal acting as a relay node.
  • FIG. 7 is an example of a user plane protocol stack architecture in which a user terminal acts as a relay node.
  • FIG. 8 is an example of a control plane protocol stack architecture in which a user terminal acts as a relay node.
  • FIG. 9 shows a schematic diagram of a fixed network terminal accessing the 5GC through a fixed network.
  • FIG. 10 is a schematic block diagram of a data transmission method provided according to an embodiment of the present application.
  • FIG. 11 shows a possible protocol stack architecture applicable to U2N service transmission in this embodiment of the present application.
  • FIG. 12 shows a possible protocol stack architecture suitable for local service transmission in this embodiment of the present application.
  • FIG. 13 shows a possible process for a home terminal to access a network via HAP, which is applicable to this embodiment of the present application.
  • FIG. 14 shows a schematic flowchart of a data transmission method applicable to this embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 16 is another schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, a home network, a fifth generation (5G) system, a new radio (NR), and a long term evolution (LTE) system , LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) and so on.
  • LTE long term evolution
  • the technical solutions of the embodiments of the present application can also be applied to side link communication.
  • the technical solutions of the embodiments of the present application may also be applied to: device to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and Communication in car networking systems.
  • V2X the communication methods in the Internet of Vehicles system are collectively referred to as V2X (X stands for anything).
  • V2X communication includes: vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication ) communication, vehicle-to-pedestrian (V2P) or vehicle-to-network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • FIG. 1 and FIG. 2 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a schematic diagram of an architecture of a home network system suitable for an embodiment of the present application.
  • the system architecture may include: home terminal equipment (home user equipment, HUE), indoor access point (home access point, HAP), 5G base station (such as NR base station (next generation node B) , gNB)), base stations in 4G networks (such as evolved Node B (evolved Node B, eNB)), 5G core network (5G core, 5GC), 4G core network (such as evolved packet core network (evolved packet core, EPC) )).
  • HUE home terminal equipment
  • HAP indoor access point
  • 5G base station such as NR base station (next generation node B) , gNB)
  • 4G networks such as evolved Node B (evolved Node B, eNB)
  • 5G core network 5G core, 5GC
  • 4G core network such as evolved packet core network (evolved packet core, EPC)
  • EPC evolved packet core network
  • HUE home terminal equipment or simply referred to as home terminal.
  • the home terminal equipment or terminal equipment mentioned in the embodiments of this application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, Mobile equipment, user terminal, terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal
  • Mobile equipment user terminal, terminal, wireless communication device, user agent or user equipment.
  • the HUE or UE in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) Terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • the HUE can be connected to the HAP through a home access (HA) link.
  • HA home access
  • the gNB is a 5G base station that supports HAP nodes.
  • the 5G base station can be a gNB, or it can also be a 5G, such as NR, a transmission point (TRP or TP) in the system, one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, It can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BaseBand Unit, BBU), or a distributed unit (distributed unit, DU), etc., which is not limited.
  • BBU baseband unit
  • DU distributed unit
  • a gNB may include a centralized unit (CU) and a DU.
  • CU and DU can be softwareized or virtualized, and radio access network functions that require flexible combinations can run in CU, for example, Service Data Adaptation Protocol (SDAP) layer, Packet Data Convergence Protocol (Packet Data Convergence Protocol) , PDCP), radio resource control (Radio Resource Control, RRC) and other high-level functions; and RAN functions that are strongly related to hardware and require high real-time performance can run in the DU, such as radio link layer control protocol (Radio Link Control, RLC) layer, physical layer (physical layer, PHY), media access control layer (Media Access Control, MAC) and other underlying functions.
  • SDAP Service Data Adaptation Protocol
  • RLC Radio Link Control
  • PHY physical layer
  • Media Access Control Media Access Control
  • the CU and the DU are connected through a communication interface, such as an F1 interface.
  • the CU and the core network device are also connected through a communication interface, for example, an NG interface (specifically, an N2 interface on a control plane or an N3 interface on a user plane, etc.).
  • a gNB may include one or more gNB-DUs, as well as one gNB-CU.
  • One gNB-DU is connected to one gNB-CU, and one gNB-CU can be connected to multiple gNB-DUs.
  • the gNB-CU and its connected gNB-DUs are viewed by other gNBs and 5GCs as a gNB.
  • a CU may include a Centralized Unit-user plane (CU-UP) and a Centralized Unit-control plane (CU-CP) ).
  • the CU-UP and CU-CP may be on different physical devices.
  • CU-UP and CU-CP and DU can each have their own interfaces.
  • the interface between CU-CP and DU can be called F1-C interface
  • the interface between CU-UP and DU can be called F1 interface.
  • -U interface the interface between CU-CP and DU.
  • one gNB may also include one CU-CP, one or more CU-UPs, and multiple DUs.
  • the gNB may also include an active antenna unit (AAU).
  • AAU active antenna unit
  • the gNB when the HAP node works in the standalone (SA) mode, the gNB can be connected to the 5G core network (5G core, 5GC).
  • the gNB-CU-CP can be connected to the control plane network elements in the 5GC through the NG control plane interface, such as access and mobility management function (AMF) network elements.
  • gNB-CU-UP can be connected to user plane network elements in 5GC, such as user plane function (UPF) network elements, through the NG user plane interface.
  • UPF user plane function
  • AMF network elements are mainly used for mobility management and access management, such as user location update, user registration network, user handover, etc.
  • AMF can also be used to implement other functions than session management in mobility management entity (mobility management entity, MME). For example, legal interception, or access authorization (or authentication) and other functions.
  • the UPF network element can be responsible for the forwarding and receiving of user data in the terminal equipment.
  • the UPF network element can receive user data from the data network (DN), and transmit it to the terminal equipment through the access network equipment.
  • the UPF network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions that provide services to terminal equipment in the UPF network element are managed and controlled by the SMF network element.
  • An eNB is a base station in a 4G network. As shown in FIG. 1 , when the HAP node works in the NSA mode (or EN-DC mode), the eNB can act as the primary base station of the HAP, and the gNB can act as the secondary base station.
  • the eNB may be connected to the EPC through an S1 interface (including an S1 user plane interface and an S1 control plane interface), such as connecting to a service gateway (serving gateway, SGW).
  • SGW service gateway
  • the eNB and the HAP can be connected through the LTE Uu air interface, and the eNB and the gNB can be connected through the X2 interface.
  • 5GC the 5G core network
  • 5G core network may include, for example, the following key logical network elements or functional entities: AMF network element, session management function (SMF) network element, UPF network element, policy control function (policy control function) , PCF) network element and unified data management (unified data management, UDM) network element and so on.
  • AMF session management function
  • UPF User Plane Function
  • policy control function policy control function
  • PCF unified data management
  • UDM unified data management
  • 5GC can be used for authentication, mobility management, protocol data unit (PDU) session management, etc. for terminal equipment.
  • PDU protocol data unit
  • EPC the 4G core network
  • PDN public data network
  • MME mobility management entity
  • SGW Packet data network gateway
  • PGW Packet data network gateway
  • the HAP node may be used to provide access services for child nodes or UEs.
  • the HAP node may be one of the network devices or terminal devices with a forwarding function or the above-mentioned function of providing access services for sub-nodes or UEs, or may be an independent device form, which is not limited.
  • the HAP node may be, for example, a customer premises equipment (customer premises equipment, CPE), a residential gateway (residential gateway, RG) and other equipment.
  • CPE customer premises equipment
  • RG residential gateway
  • the names of the HAP nodes do not limit the protection scope of the embodiments of the present application, and the names used to represent the same functions in the future are all applicable to the embodiments of the present application.
  • the HAP node is mainly used as an example for illustration.
  • network elements such as AMF, SMF, UPF, SGW, and PGW can be understood as network elements in the core network for implementing different functions, for example, they can be combined into network slices as needed.
  • These core network elements may be independent devices, or may be integrated into the same device to implement different functions.
  • the present application does not limit the specific forms of the foregoing network elements.
  • the network device mentioned in the embodiments of the present application may be any device having a wireless transceiver function.
  • the device includes but is not limited to: eNB, home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) access point in the system (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., and can also be 5G, such as NR, in the system
  • FIG. 2 is a schematic diagram of a home broadband access network applicable to an embodiment of the present application. As shown in FIG. 2 , for a home terminal, it can communicate with the customer premises equipment through a wired/wireless local area access link, or communicate with a server located in the Internet through a wired/wireless broadband access link.
  • wireless broadband access wireless broadband/wireless to the X, WBB/WTTx
  • WBB/WTTx wireless broadband/wireless to the X
  • terminal devices In indoor scenarios of the home environment, terminal devices have a variety of different access technologies, such as mobile terminal devices supporting LTE or 5G, and a large number of non-3rd generation partnership project (3GPP) networks.
  • the terminal equipment used is other access technologies, such as WiFi or WLAN, Zigbee, Ziwave, Bluetooth (bluetooth), ultra wide band (UWB), radio frequency identification (radio frequency ientification, RFID) and so on.
  • These home terminals on the one hand, need to communicate with the network, for example, need to communicate with a server located in the Internet; on the other hand, there are also local mutual communication needs between some home terminals.
  • IAB integrated access and backhaul
  • 3GPP introduced the integrated access and backhaul (IAB) technology, and its access link and backhaul link both use wireless transmission scheme, which can avoid Reliance on fiber deployment in backhaul links.
  • IAB integrated access and backhaul
  • a relay node (RN) or IAB node (IAB node) can provide wireless access services for terminal equipment, and the service data of the terminal equipment can be sent back wirelessly by one or more IAB nodes
  • the link is connected to the host node (IAB donor).
  • the IAB donor may also be referred to as a donor node (donor node) or a donor base station (Donor gNodeB, DgNB).
  • the IAB node may be composed of a mobile terminal (mobile termination, MT) part and a DU part.
  • MT mobile terminal
  • DU DU part
  • the IAB node when the IAB node faces its parent node, it can act as a terminal device, that is, the role of the MT; when the IAB node faces its child node (the child node may be another IAB node, or a common UE), it is regarded as a network device, That is, the role of DU.
  • the MT part of the IAB node has part or all of the functions of the UE.
  • the donor base station may be an access network element with complete base station functions, or may be in a form in which CU and DU are separated, that is, the donor node consists of a centralized unit of the donor base station and a distributed unit of the donor base station.
  • the donor base station is connected to the core network (eg, connected to the 5G core network, 5GC) network elements serving the UE, and provides wireless backhaul functions for the IAB node.
  • the core network eg, connected to the 5G core network, 5GC
  • 5GC 5G core network
  • the centralized unit of the host node is referred to as donor CU (or directly referred to as CU), and the distributed unit of the host node is referred to as donor DU, where the donor CU may also be the control plane (control plane, CP) ( A form of separation from a user plane (user plane, UP) (herein abbreviated as CU-UP) (herein referred to as CU-CP).
  • CP control plane
  • CU-UP user plane
  • CU-CP user plane
  • CU-CP user plane
  • CU-CP user plane
  • a CU may consist of one CU-CP and one (or more) CU-UPs.
  • multi-hop networking may be used in the IAB network.
  • the IAB node can be made to support dual connectivity (DC) or multi-connectivity (multi-connectivity) to deal with possible abnormal situations in the backhaul link.
  • DC dual connectivity
  • multi-connectivity multi-connectivity
  • abnormal links such as interruption or blockage and load fluctuation can improve the reliability of transmission. Therefore, between the UE served by the IAB node and the IAB donor, there is at least one transmission path consisting of multi-segment links.
  • each IAB node regards the adjacent nodes that provide it with access and backhaul services as a parent node, and accordingly, each IAB node can be regarded as a child node of its parent node.
  • Link can represent a path between two adjacent nodes in a path.
  • Access link It can represent the link between the terminal device and the base station, or between the terminal device and the IAB node, or between the terminal device and the donor node, or between the terminal device and the donor DU.
  • the access link includes a wireless link used by an IAB node to communicate with its parent node when it acts as a common terminal device.
  • an IAB node acts as a common terminal device, it does not provide backhaul services for any child nodes.
  • Access links include uplink access links and downlink access links.
  • the access link of the terminal device is a wireless link, so the access link may also be referred to as a wireless access link.
  • Backhaul link It can represent the link between the IAB node and the parent node when it acts as a wireless backhaul node.
  • the IAB node acts as a wireless backhaul node, it provides wireless backhaul services for child nodes.
  • Backhaul links include uplink backhaul links and downlink backhaul links.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link may also be referred to as a wireless backhaul link.
  • Each IAB node regards the adjacent nodes that provide it with wireless access service and/or wireless backhaul service as a parent node. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • child nodes may also be referred to as subordinate nodes, and parent nodes may also be referred to as superior nodes.
  • the parent node of IAB node 1 is IAB donor, and IAB node 1 is the parent node of IAB node 2 and IAB node 3. Both IAB node 2 and IAB node 3 are the parent nodes of IAB node4, and IAB node 5 The parent node is IAB node 3.
  • the uplink data packets of the UE can be transmitted to the host site IAB donor through one or more IAB nodes, and then sent by the IAB donor to the mobile gateway device (for example, the user plane functional unit UPF in the 5G core network).
  • the downlink data packets of the UE will be received by the IAB donor from the mobile gateway device, and then sent to the UE through the IAB node.
  • Path 1 Terminal 1 ⁇ IAB Node 4 ⁇ IAB Node 3 ⁇ IAB Node 1 ⁇ Host Node, and Terminal 1 ⁇ IAB Node 4 ⁇ IAB Node 2 ⁇ IAB Node 1 ⁇ Host Node.
  • IAB networking scenario shown in Figure 3 is only exemplary, and in the IAB scenario combining multi-hop and multi-connection, there are more other possibilities, for example, the IAB donor in Figure 3 and another The IAB nodes under the IAB donor form dual connections to serve terminal devices, etc., which are not listed here.
  • both the IAB node and the UE establish connections with the network through the air interface of the NR network.
  • the backhaul adaptation protocol (BAP) layer which is located above the RLC layer and can be used to implement data packets. Routing in the wireless backhaul link, as well as bearer mapping and other functions.
  • BAP backhaul adaptation protocol
  • FIG. 4 and FIG. 5 are an example of a user plane protocol stack architecture and a control plane protocol stack architecture of a multi-hop IAB network, respectively.
  • the user plane protocol includes one or more of the following protocol layers: the general packet radio service tunneling protocol user plane (general packet radio service tunneling protocol user plane, GTP-U) layer, the user datagram protocol (user datagram protocol, UDP) layer, Protocol layers such as the Internet Protocol (IP) layer.
  • the control plane protocol includes one or more of the following: F1 application protocol (F1 application protocol, F1AP) layer, stream control transmission protocol (stream control transmission protocol, SCTP) layer, IP layer and other protocol layers.
  • the F1 interface refers to the logical interface between the DU part of the IAB node and the host node (or donor-CU or donor-DU).
  • the F1 interface can also be called the F1* interface. In this paper, for description, it is collectively referred to as F1 Interface, the name of which does not limit the protection scope of the embodiments of the present application.
  • the F1 interface supports user plane protocols (F1-U/F1*-U) and control plane protocols (F1-C/F1*-C).
  • the protocol layer of the F1 interface represents the communication protocol layer on the F1 interface.
  • the meanings of other protocol layers are: packet data convergence protocol (PDCP) layer, L2 layer (layer 2), L1 layer (layer 1 ), radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer, physical (physical, PHY) layer, radio resource control (radio resource control, RRC) layer.
  • PDCP packet data convergence protocol
  • L2 layer layer 2
  • L1 layer layer 1
  • radio link control radio link control
  • RLC medium access control
  • MAC medium access control
  • physical (physical, PHY) layer physical (physical, PHY) layer
  • radio resource control radio resource control
  • the L2 layer is the link layer.
  • the L2 layer may be a data link layer in an open systems interconnection (open systems interconnection, OSI) reference model.
  • the L1 layer may be the physical layer.
  • the L1 layer may be the physical layer in the OSI reference model.
  • the IAB node and the IAB host can perform interface management, manage the IAB-DU, and perform configuration related to the UE context.
  • functions such as user plane data transmission and downlink transmission status feedback can be performed between the IAB node and the IAB host.
  • the Uu interface of the access link part only considers the wireless access technology using the NR network. If the IAB network is introduced into the indoor scene, although the terminal equipment supporting NR can be provided with access. network services, but cannot provide access services for other types of terminals that are not 3GPP. In addition, the IAB node cannot currently provide local service exchange services for UEs accessing the node.
  • Mode 2 is based on the scheme of relay UE.
  • a terminal device in a 3GPP network, can access the relay node of the wireless network as another terminal device (referred to as a remote UE, for example), and connect other terminal devices to the relay node of the wireless network. into the network to provide relay services.
  • a D2D connection is established between the relay UE (relay UE) and the remote UE (remote UE).
  • the D2D connection can use the PC5 interface defined by 3GPP for communication, or can also use other direct communication technologies between terminals, such as Bluetooth, WiFi Wait.
  • a 3GPP air interface access link such as an LTE air interface link, is established between the relay UE and a radio access network (RAN) device.
  • RAN radio access network
  • the relay UE acts as a layer 2 relay to provide services for the remote UE to access the network.
  • FIG. 7 and FIG. 8 respectively show the schematic diagrams of the protocol stacks of the user plane and the control plane. It can be seen that, in the existing mode 2, the relay UE provides a layer 2 transmission function for the user plane and control plane messages of the remote UE.
  • the eNB acts as the PDCP layer anchor of the remote UE on the user plane, and acts as the RRC layer anchor of the remote UE on the control plane.
  • the remote UE is visible to the network side.
  • the UE acts as a layer 2 relay to provide the remote UE with access to the network, although it is considered that the access link between the remote UE and the relay UE may be a non-3GPP technology, However, in this technology, local service exchange between remote UEs is not considered.
  • the existing mode 2 there is no more specific solution design provided when the remote UE is a non-3GPP terminal device.
  • 5G-RG is called fixed wireless access (FWA) when it is accessed through 3GPP access, and performs the same function as UE.
  • FWA fixed wireless access
  • W-AGF wireless-access gateway function
  • the 5G-RG and the W-AGF can establish a PPPoE connection and access the 5GC via the W-AGF. Both control plane signaling and user plane data on the wired access network side can be transmitted through the PPPoE connection.
  • FN-RG and W-AGF establish Legacy fixed network connection, such as PPPoE connection.
  • W-AGF replaces FN-RG, generates and exchanges NAS and AS signaling, completes registration and establishes PDU session.
  • W-AGF acts as a relay function, and transmits uplink/downlink data in fixed network connection and PDU session respectively.
  • a home terminal that accesses the 5G core network through a home gateway (including 5G-RG and legacy RG), that is, a 5G capable UE (5G capable UE) (such as a 5G mobile phone/PC, etc.).
  • a home gateway including 5G-RG and legacy RG
  • 5G capable UE such as a 5G mobile phone/PC, etc.
  • 5G capable UE follows the architecture and scheme of trusted non-3GPP or non-trusted non-3GPP, uses 5G-RG/Legacy-RG as the access point, and accesses the 5G network by accessing TNAP/N3IWF.
  • the solution introduced in the above mode 3 is suitable for indoor terminal equipment that supports 5G to access the 5G core network through a fixed or mobile access network, and exchange NAS messages with the core network.
  • the solution of the above-mentioned mode 3 does not support the provision of local service switching services for indoor terminal equipment, and if these terminal equipment accesses the legacy RG through a non-3GPP access technology, the quality of service (QoS) of service transmission cannot be guaranteed. .
  • the present application provides a solution, so that in some networks, such as a home network, through a unified communication architecture, it is possible to support not only the access of diverse home terminals to the network, but also the interaction of diverse home terminals. Local exchange of business.
  • the following mainly takes a home network as an example for illustrative description, and describes various embodiments provided in the present application in detail with reference to the accompanying drawings. It should be understood that the solutions in the following embodiments are not limited to home access scenarios, and can also be applied to non-home scenarios. The solutions in the following embodiments can also be used in other indoor scenarios such as factories, office environments, laboratory environments, and campus environments. The solutions of the following embodiments can be used in any environment with diverse terminal devices and local service transmission requirements.
  • FIG. 10 is a schematic interaction diagram of a method 1000 for data transmission provided by an embodiment of the present application.
  • Method 1000 may include the following steps.
  • the communication device receives a service data unit (service data unit, SDU) transmitted by the first access technology terminal.
  • SDU service data unit
  • a terminal accessed through the first access technology sends a data packet to the communication device, and the communication device receives the data packet.
  • the communication equipment for example, is denoted as an indoor access point HAP (or CPE, etc.).
  • the first access technology terminal refers to a terminal accessed using the first access technology.
  • terminals for example, in a home scenario, it can be a home terminal; in other scenarios, such as a factory scenario, it can be a terminal in a factory scenario, which is not limited.
  • the following description mainly takes a home terminal, or a home terminal accessed by using the first access technology as an example.
  • the solutions of the embodiments of the present application can still be used.
  • the SDU may also be understood as data or data packets, or services, or the like.
  • the communication device receives the SDU transmitted by the first access technology terminal, it can also be understood that the communication device receives data or data packets transmitted by the first access technology terminal, or it can also be understood that the communication device receives the transmission of the first access technology terminal.
  • Business. The following is unified, and mainly takes a data packet as an example for illustrative description.
  • the SDU represents the SDU of the protocol layer, which represents the payload of the data packet of the protocol layer.
  • the protocol layer may be the first protocol layer (eg, the adaptation layer) mentioned in the embodiment of the present application, that is, the SDU is the SDU of the first protocol layer (eg, the SDU is the SDU of the adaptation layer).
  • the communication device transparently transmits the SDU to the second access technology terminal without passing through the base station and core network equipment connected to the communication device, wherein the first access technology terminal is The access technology terminal and the second access technology terminal are connected to the communication device.
  • the first access technology terminal and the second access technology terminal may be understood as home terminals accessed using different access technologies.
  • the first access technology terminal is a home terminal supporting the 3GPP access technology, that is, communication between the first access technology terminal and the communication device may be performed through a wireless interface of the 3GPP access technology.
  • the radio interface of the 3GPP access technology may include, but is not limited to, a Uu interface based on the LTE standard, or a Uu interface based on the NR standard, or a PC5 interface, and the like.
  • the second access technology terminal is a home terminal supporting a non-3GPP access technology, that is, communication between the second access technology terminal and the communication device is performed through an interface of the non-3GPP access technology.
  • interfaces of non-3GPP access technologies may include, but are not limited to, wireless interfaces such as WiFi, WLAN, Zigbee, Ziwave, Bluetooth (Bluetooth), UWB, and RFID, or wired interfaces based on Ethernet.
  • the access technology is used to represent the access technology used by the terminal to access the communication device.
  • the communication device transparently transmits the SDU to the second access technology terminal without passing through the base station and core network equipment connected to the communication device, or the communication device does not pass through the base station and core network equipment connected to the communication device, and transmits the SDU to the first access technology terminal.
  • the data transmitted by the terminal is transparently transmitted to the second access technology terminal, which means that when the first access technology terminal sends a data packet to the second access technology terminal, it can be forwarded through the communication device without passing through the base station and core network equipment.
  • the transparent transmission may indicate that the communication device can directly forward the data packet of the first access technology terminal to the second access technology terminal, and the communication device does not need to parse the data packet.
  • the application layer and the IP layer of the communication device do not need to parse the data packet.
  • HUE1 when HUE1 sends a data packet to HUE2, HUE1 can send the data packet to HAP, and the HAP forwards the data packet to HUE2 without passing through the base station or core network equipment.
  • a communication device (such as a HAP) can not only adapt to terminal devices of multiple access technologies, or in other words, the communication device can support multiple access technologies, and the communication device can route data packets transmitted by the terminal to the destination node corresponding to the packet.
  • method 1000 may further include step 1020 .
  • the communication device determines the destination node of the SDU.
  • the destination node or the destination address corresponding to the SDU is represented by the destination node.
  • the destination node of the SDU that is, the destination node or destination address corresponding to the SDU, or the device to which the SDU is transmitted.
  • the destination node may include one or more of the following: other home terminals (such as a second access technology terminal), a communication device itself, a gNB, and a core network device. That is, the communication device can route the SDU sent by the home terminal to other home terminals, or to the gNB, or to itself (for example, to parse the content of the SDU by itself).
  • the above description mainly takes the first access technology terminal and the second access technology terminal as examples for illustrative description, which is not limited thereto.
  • the communication device can also be connected to a larger number of terminals, or the communication device can also be connected to terminals with more access technologies.
  • the following mainly takes the home terminal sending data packets as an example for illustrative description, and the data packets mentioned in the following can be replaced with SDUs transmitted by the first access technology terminal in the method 1000 .
  • a communication protocol layer (ie, the first protocol layer) can be added to the HAP, through which the communication protocol layer can be used for the access of terminal devices with multiple access technologies, and the data packets transmitted by the terminal can be routed to the data The destination node corresponding to the package.
  • the communication protocol layer on the one hand, through the communication protocol layer, terminal devices with different access technologies can be accessed; Interactive service, which is described in detail below in conjunction with the content of aspect 2.
  • an indoor access point HAP (or CPE) may be regarded as a special type of IAB node.
  • a communication protocol layer ie, the first protocol layer, such as the Adapt layer
  • a home terminal such as a home terminal supporting 3GPP access technology or a home terminal supporting non-3GPP access technology, can also support multiple services, such as services from the home terminal to the network side and service interaction between the home terminals.
  • the communication protocol layer may be an adaptation layer.
  • the following is for brevity, referred to as the Adapt layer.
  • the configuration of the Adapt layer is described in detail below.
  • the data from the home terminal to the network side is recorded as the data of the U2N service
  • the data between different home terminals within at least one HAP service range without passing through the base station and the core network is recorded as the local (local) service The data.
  • Figure 11 shows a possible protocol stack architecture.
  • the protocol stack for U2N service transmission includes an upper protocol layer, an intermediate HAP management layer, and a lower protocol layer.
  • the upper protocol layer may include the PDCP layer. In the control plane, the upper protocol layer may also include the RRC layer.
  • the upper protocol layer is the peer-to-peer protocol layer between the home terminal and the base station.
  • the middle HAP management layer can learn from the F1 interface protocol layer in the CU-DU separation architecture.
  • An intermediate HAP management layer can support the user plane and the control plane.
  • the user plane protocol layer of the HAP management layer may include one or more of an IP layer, a UDP layer, and a GTP-U layer.
  • the user plane protocol layer of the HAP management layer further includes a PDCP layer and/or an IP security (IP Security, IPsec) layer.
  • the control plane protocol layer of the HAP management layer may include one or more of the IP layer, the F1AP layer, and the SCTP layer.
  • control plane protocol layer of the HAP management layer further includes one or more of the PDCP layer, the IPsec layer, and the datagram transport layer security (DTLS) layer.
  • PDCP layer the control plane protocol layer of the HAP management layer
  • IPsec layer the IPsec layer
  • DTLS datagram transport layer security
  • the lower protocol layer in the part of the home network backhaul (home backhaul, HB) link, mainly includes the BAP protocol layer, the L2 protocol layer of the HB link and the L1 protocol layer of the HB link.
  • the L2 protocol layer of the HB link is abbreviated as HB L2
  • the L1 protocol layer of the HB link is abbreviated as HB L1.
  • the HB L2 part includes the RLC layer and the MAC layer
  • the HB L1 is the physical layer PHY based on the NR air interface.
  • the lower protocol layer in the part of the home network access (home access, HA) link, mainly includes the Adapt layer, the L2 protocol layer of the HA link and the L1 protocol layer of the HA link.
  • the L2 protocol layer of the HA link is abbreviated as HA L2
  • the L1 protocol layer of the HA link is abbreviated as HA L1.
  • the protocol layers of HA L1 and HA L2 may be determined according to the communication technology adopted by the HA link.
  • the protocol layer corresponding to HA L2 may include the MAC layer of the IEEE 802.11 series of technologies, and the protocol layer corresponding to HA L1 may include The PHY layer of the IEEE 802.11 family of technologies.
  • the protocol layer corresponding to the HA L2 may include IEEE802.15 series technologies (such as Bluetooth corresponding to IEEE802.15.1). technology, or the MAC layer of the Zigbee technology corresponding to IEEE802.15.4, etc.)
  • the protocol layer corresponding to HAL1 may include the PHY layer of the IEEE802.15 series of technologies.
  • the Adapt layer is an optional protocol layer.
  • the Adapt layer may not be required; when the HA link adopts a non-3GPP radio access technology, the Adapt layer is required.
  • service interaction between home terminals eg, service interaction between a first access technology terminal and a second access technology terminal
  • service interaction between home terminals at least the following two ways may be included.
  • a D2D direct link can be established between two home terminals, so that the two home terminals can communicate directly through the D2D link.
  • a direct communication link based on the PC5 interface can be established between two home terminals, or a direct transmission link based on WiFi direct technology can be established between the two home terminals, or two A direct connection transmission link based on Bluetooth/zigbee can be established between home terminals.
  • the two home terminals may communicate in the manner of relaying and forwarding through the HAP, for example, referring to the communication protocol stack shown in FIG. 12 .
  • a direct link may not be established between two home terminals, for example, the distance between the two home terminals is too far; or there is an obstruction between the two home terminals, and the signal quality of the direct link is poor; Or the access technologies supported by the two home terminals are different, and so on. If a direct link cannot be established between two home terminals, but there is still a demand for data exchange between the two home terminals, a communication channel between the two can be provided by relaying and forwarding through HAP.
  • the Adapt layer is an optional protocol layer in the HA link.
  • HUE1 and HUE2 Take two home terminals as an example, for example, denoted as HUE1 and HUE2.
  • HUE 1 and HUE 2 there is a peer-to-peer PDCP protocol layer between HUE 1 and HUE 2, and HUE 1 and HUE 2 can perform local service interaction through HAP.
  • HAP and HUE 1 can communicate based on HA link
  • HAP and HUE 2 can also communicate based on HA link.
  • the HA link between the HAP and the HUE 1 and the HA link between the HAP and the HUE 2 may use the same communication technology or different communication technologies, which is not limited.
  • FIG. 11 and FIG. 12 are only exemplary descriptions, and are not limited thereto.
  • Aspect 1 the home terminal accesses the network through the HAP.
  • a home terminal When a home terminal accesses a network, such as accessing a gNB, a core network, etc., the home terminal can access the network through the assistance of the HAP and use network resources.
  • a network such as accessing a gNB, a core network, etc.
  • both the home terminal and the HAP may obtain a set of corresponding configuration information in advance, and the configuration information may be used to transmit the home terminal to establish an RRC connection with the gNB.
  • messages to be transmitted For example, the configuration information can be used to transmit a message corresponding to the uplink common control channel.
  • the configuration information can be used to transmit one or more of the following messages: RRC setup request (RRCSetupRequest) message, RRC reestablishment request (RRCReestablishmentRequest) message, RRC ResumeRequest (RRCResumeRequest) message, etc.; for another example, the configuration information may be used to transmit messages corresponding to the downlink common control channel, such as the configuration information may be used to transmit an RRC Setup (RRCSetup) message and/or an RRC Reject ( RRCReject) message.
  • RRCSetup RRC Setup
  • RRCReject RRC Reject
  • the pre-obtained configuration information includes configuration information required for transmitting messages carried on a common signaling radio bearer (signaling radio bearer, SRB).
  • the pre-obtained configuration information includes configuration information required for transmitting the message carried on the SRB0, such as QoS information required for the message carried on the SRB0.
  • the configuration information required for transmitting the message carried on the SRB0 is recorded as the configuration corresponding to the SRB0.
  • the home terminal sends an RRC setup request message to the gNB, and the RRC setup request message is transmitted based on a pre-obtained configuration corresponding to SRB0.
  • the pre-obtained configuration information (eg, the configuration corresponding to the SRB0) may be pre-defined according to the protocol and configured on the home terminal and the HAP.
  • the pre-obtained configuration information (eg, the configuration corresponding to SRB0 ) may also be configured by the HAP itself, and after the HAP is generated, the configuration information (eg, the configuration corresponding to SRB0 ) is sent to the home terminal.
  • the embodiments of the present application can ensure that the home terminal obtains the configuration corresponding to the SRB0 in advance before establishing an RRC connection with the gNB, so as to be able to transmit the messages sent by the home terminal that need to be carried on the SRB0, such as facilitating the transmission of the RRC establishment of the home terminal Requests and other messages carried on SRB0.
  • the method 1300 shown in FIG. 13 may include the following steps.
  • the HAP accesses the network, and performs authentication and authentication in the network.
  • the HAP first accesses the network in the manner of a terminal device, and then an F1 connection is established between the HAP and the gNB.
  • the HAP can also indicate to the network that it is a HAP or a CPE, that is, it is a device that can provide access for home terminals.
  • the gNB may perform some configurations for the HAP, such as configuring the Adapt layer of the HAP for the HAP.
  • the home terminal establishes a connection with the HAP, and the HAP performs initial access control.
  • a home terminal can establish a connection with the HAP through various access technologies.
  • the home terminal can establish a connection with the HAP through the access technology formulated by the 3GPP organization.
  • the access technologies formulated by the 3GPP organization may include, but are not limited to, one or more of the following technologies: LTE Uu interface, NR Uu interface, sidelink, etc.
  • the home terminal can establish a connection with the HAP through an access technology not formulated by the 3GPP organization.
  • the access technologies formulated by non-3GPP organizations may include, but are not limited to, one or more of the following technologies: WiFi, WLAN, Zigbee, Ziwave, Bluetooth, UWB, RFID, and the like.
  • the HAP or the home terminal may notify the gNB of the access technology (such as WiFi, WLAN, etc.) adopted by the home access link between the HAP and the home terminal. , Zigbee, Ziwave, Bluetooth, UWB, RFID, etc.).
  • the access technology such as WiFi, WLAN, etc.
  • the HAP or the home terminal may notify the gNB of the access technology (such as WiFi, WLAN, etc.) adopted by the home access link between the HAP and the home terminal. , Zigbee, Ziwave, Bluetooth, UWB, RFID, etc.).
  • the HAP notifies the gNB of the communication technology used in the home access link between the HAP and the home terminal.
  • the information may be carried in a radio resource control (radio resource control, RRC) message or an F1 interface application layer protocol (F1 application protocol, F1AP) message sent by the HAP to the gNB.
  • RRC radio resource control
  • F1 application protocol, F1AP F1 interface application layer protocol
  • the home terminal notifies the gNB of the communication technology used for the home access link between the HAP and the home terminal.
  • the information may be carried in the RRC message sent by the home terminal to the gNB.
  • the HAP performs initial access control for the home terminal.
  • the HAP can perform authentication with the home terminal.
  • the HAP can authenticate with the home terminal through a link authentication method based on a shared key (Shared key authentication) in the WLAN.
  • the authentication server can also authenticate the home terminal.
  • the home terminal is authenticated by the authentication server by popping up a portal website (such as Portal) and then entering a user name and password.
  • an authentication method based on an extensible authentication protocol (EAP) is performed between the authentication server and the authentication server.
  • EAP extensible authentication protocol
  • the authentication server may be co-deployed with the HAP, or the authentication server may be integrated in the HAP, which is not limited.
  • the HAP may allocate a local identifier of the home terminal (local identifier of HUE, LID-HUE) to the home terminal.
  • the local identity of the home terminal can be used to identify the home terminal within the home network.
  • the HAP can send its own local identity to the home terminal.
  • the local identifier of HAP (local identifier of HAP, LID-HAP) can be used for routing or addressing during service transmission between the home terminal and the HAP.
  • the home terminal After the home terminal establishes the connection with the HAP, it can establish the connection with the gNB.
  • the home terminal initiates an RRC establishment process to the gNB.
  • step 1330 can be executed.
  • this step 1330 the following steps may be included.
  • the home terminal sends an RRC setup request message to the gNB.
  • the home terminal sends an RRC setup request message to the gNB via the HAP. That is, the home terminal first sends an RRC establishment request message to the HAP, and the HAP then forwards the RRC establishment request message to the gNB.
  • the HAP may encapsulate the RRC establishment request message of the home terminal in the uplink F1AP message, and transmit it to the gNB via the F1 interface carried on the backhaul link between the HAP and the gNB.
  • the F1AP message can carry the identity used to identify the home terminal and the identity of the SRB0 on the F1 interface between the HAP and the gNB, and then use the bearer
  • the F1 interface on the backhaul link between the HAP and the gNB is transmitted to the gNB.
  • the RRC setup request message is transmitted based on pre-obtained configuration information.
  • the pre-obtained configuration information includes the configuration corresponding to the SRB0 (ie, the configuration information required for transmitting the message carried on the SRB0). That is, the RRC setup request message is transmitted based on the pre-obtained configuration corresponding to SRB0.
  • a set of corresponding configurations such as the configuration corresponding to SRB0, is required between the home terminal and the HAP.
  • the configuration corresponding to SRB0 may be used to transmit RRC messages carried on SRB0, such as an RRC establishment request message, an RRC re-establishment request message, and the like.
  • the pre-obtained configuration information (eg, the configuration corresponding to the SRB0) may be pre-defined according to the protocol and configured on the home terminal and the HAP.
  • the pre-obtained configuration information (eg, the configuration corresponding to SRB0 ) may also be configured by the HAP itself, and after the HAP is generated, the configuration information (eg, the configuration corresponding to SRB0 ) is sent to the home terminal. For example, after step 1320, the HAP generates a configuration corresponding to SRB0 and sends it to the home terminal.
  • the configuration corresponding to the SRB0 may include a QoS identifier corresponding to the SRB0 on the HA link.
  • the QoS identifier can be, for example, in any of the following forms: a payload compression protocol (PCP) field of a virtual local area network (virtual local area network, VLAN) tag, a virtual local area network identifier (VLAN ID), an Ethernet type (EtherType), a differential Differentiated services code point (DSCP), IP precedence (IP Precedence), access category (AC) in WLAN, EXP field of multi-protocol label switching (MPLS), IP quintuple information (protocol type, source IP address, destination IP address, source port number, destination port number), source MAC address information, destination MAC address information, or other additional tags that can be used to indicate QoS requirements.
  • PCP payload compression protocol
  • VLAN ID virtual local area network
  • EthernetType Ethernet type
  • DSCP differential Differentiated services code point
  • IP Precedence IP
  • the Adapt layer of the HA link can carry one or more of the following: the identity of the SRB0, the local identity of the HAP (LID-HAP), the local identity of the home terminal ( LID-HUE). Wherein, by carrying the identifier of SRB0, it can be used for HAP to be added to the F1AP message carrying the uplink RRC message of the home terminal.
  • the gNB After the gNB receives the RRC setup request message from the home terminal, it processes and responds based on the RRC setup request message.
  • the gNB sends an RRC setup message to the home terminal.
  • the gNB sends an RRC setup message to the home terminal via the HAP. That is, the gNB first sends an RRC setup message to the HAP, and the HAP then forwards the RRC setup message to the home terminal.
  • the gNB can encapsulate the RRC setup message in a downlink F1AP message and send it to the HAP, and the HAP then forwards the RRC setup message to the home terminal.
  • the RRC setup message sent by the gNB to the HAP may include the identity of the home terminal on the F1 interface and the identity of the SRB0, so that the HAP may send the RRC setup message to the home terminal through the home access link.
  • the HAP may add the SRB0 identifier of the home terminal and/or the local identifier LID-HUE of the home terminal in the header information of the Adapt layer.
  • the HAP may also add a QoS label corresponding to the home terminal SRB0, for example, the HAP adds a QoS label corresponding to the home terminal SRB0 in the link layer protocol header corresponding to the home link.
  • the home terminal sends an RRC setup complete (RRCSetupComplete) message to the gNB.
  • the home terminal sends an RRC setup complete message to the gNB via the HAP. That is, the home terminal first sends an RRC establishment complete message to the HAP, and the HAP then forwards the RRC establishment complete message to the gNB.
  • the RRC establishment complete message of the home terminal is carried on SRB1.
  • the home terminal can transmit to the HAP on the HA link through the QoS label corresponding to SRB1 (or in other words, the QoS label corresponding to SRB1).
  • the QoS label corresponding to SRB1 may be predefined by the protocol, or may be configured to the home terminal by the HAP, or may be carried by the gNB in the downlink RRC message and sent to the home terminal in step 2 , which is not limited.
  • the home terminal establishes an RRC connection with the gNB.
  • the home terminal performs authentication and authentication in the network.
  • the HAP can determine whether the home terminal needs to perform authentication and authorization in the core network.
  • the authentication and authentication of the home terminal in the core network at least include the following two situations.
  • the home terminal needs to perform authentication and authentication on the core network.
  • HAP determines that the home terminal needs to perform authentication and authorization in the core network.
  • the home terminal can perform authentication and authentication in the core network, which is not limited in this embodiment of the present application.
  • the gNB can forward the non-access stratum (non-access stratum) of the home terminal to the network element (eg, the access management function AMF) in the core network.
  • the network element eg, the access management function AMF
  • NAS network element
  • the core network can perform the process of authenticating and authenticating the home terminal, so that the home terminal can complete the authentication and authentication in the core network (eg 5G core network).
  • the home terminal does not need to perform authentication and authentication in the core network.
  • HAP determines that the home terminal does not need to perform authentication and authorization in the core network.
  • the HAP can send indication information to the gNB, the indication information is used to indicate to the gNB that the home terminal does not need to be authenticated, or the indication information is used to indicate to the gNB that the home terminal is a reliable device.
  • the HAP can send indication information to the gNB (for example, in step 1330), indicating that the home terminal device does not need to perform the authentication process in the core network again.
  • the core network can avoid performing additional authentication and authentication on the home terminal device (ie, the home terminal device that does not need to be authenticated in the core network), thereby saving the overhead and delay caused by the authentication and authentication.
  • the indication information can be carried in the F1AP message sent by the HAP to the gNB, for example, the indication information can be carried in the uplink F1AP message corresponding to the home terminal (such as in the F1AP message of the above step 3, that is, The HAP is used to transmit the F1AP message of the RRC setup complete message of the home terminal to the gNB).
  • the indication information may be carried in the RRC message sent by the HAP to the gNB.
  • the home terminal can access the network via the HAP and communicate.
  • steps 1330 and 1340 may not be included.
  • steps 1330 and 1340 may be combined.
  • the home terminal performs service transmission.
  • the network architecture proposed in this application supports the U2N service between the home terminal and the network, as well as the transmission of the local service in the home network, the transmission of the two types of services may need to be transmitted through the HAP.
  • HAP when HAP receives data packets from home terminals, it includes at least the following three scenarios:
  • Scenario 1 The data packet sent by the home terminal is the data packet sent to the local service of the HAP itself;
  • Scenario 2 The data packet sent by the home terminal is the data packet of the U2N service forwarded to the gNB via HAP;
  • Scenario 3 The data packets sent by the home terminal are data packets forwarded to other home terminals via the HAP.
  • the HAP not only needs to be capable of assisting the home terminal to transmit service data or signaling to the network side, but also needs to be capable of forwarding service data or signaling between different home terminals. Interaction of service data or signaling between the capability and the home terminal. Therefore, in the data transmission of the HA link, by introducing the Adapt layer, at least the following two problems can be solved: the routing of the data packet, and the protocol adaptation between the upper protocol layer (PDCP layer) and the lower protocol layer of the HA link. .
  • HAP can route data packets according to the identifier of the destination node.
  • the identifier of the destination node may be the identifier of the HAP.
  • the identity of the destination node may be the identity of HUE2.
  • a mapping relationship from a radio bearer (RB) to the QoS identifier of the HA link can be configured for the home terminal, and the radio bearer can be a signaling radio bearer SRB or a data radio bearer (DRB).
  • the radio bearers include DRB and SRB, which are used to transmit different types of service data (including the control plane) between the home terminal and the base station. signaling and user plane data).
  • the home terminal When the home terminal sends a data packet, it encapsulates the PDCP PDU corresponding to the radio bearer in the Adapt layer, adds the radio bearer identifier of the home terminal to the header information of the Adapt layer, and executes the data packet from the radio bearer in the Adapt layer.
  • the mapping to the QoS identifier of the HA link, and then the L2 of the HA link can guarantee the QoS requirement of the data packet transmission based on the specific QoS identifier.
  • the HAP may determine which of the above scenarios belongs to according to the service type of the data packet and/or the identifier of the destination node.
  • Example 1 in the case that the HAP identifier is carried in the data packet, and the service type indication is used to indicate that the service type of the data packet is a local service, the HAP can parse the content of the data packet by itself. If the Adapt layer of HAP receives a data packet sent to itself, it can submit the data packet to the upper protocol layer of the Adapt layer.
  • the HAP After the HAP receives the data packet sent by the home terminal, at the Adapt layer of the HA link, if the identity of the destination node is the identity of the HAP itself, then the HAP needs to further distinguish that the data packet is the local service transmitted by the home terminal to the HAP itself.
  • the data packet is still the data packet of the U2N service that needs to be forwarded to the gNB via HAP. This can be determined by the service type indication carried in the Adapt layer of the data packet. Specifically, in Example 1, the Adapt layer of the HAP receives a data packet from the home terminal whose destination address of the Adapt layer is itself, and the service type carried in the data packet is indicated as a local service, then the HAP can remove the Adapt layer header. Afterwards, submit the SDU of the Adapt layer to its own upper-layer protocol layer (for example, the IP layer, or the application layer, etc.).
  • Example 2 when the data packet carries the HAP identifier, and the service type indication is used to indicate that the service type of the data packet is a U2N service, the HAP forwards the data packet to the gNB.
  • the HAP After the HAP receives the data packet sent by the home terminal, at the Adapt layer of the HA link, if the identity of the destination node is the identity of the HAP itself, then the HAP needs to further distinguish that the data packet is the local service transmitted by the home terminal to the HAP itself.
  • the data packet is still the data packet of the U2N service that needs to be forwarded to the gNB via HAP. This can be determined by the service type indication carried in the Adapt layer of the data packet.
  • the Adapt layer of the HAP receives a data packet from the home terminal whose destination address of the Adapt layer is itself, and the service type carried in the data packet is indicated as a U2N service, then the HAP can remove the Adapt layer header. Then, submit the SDU of the Adapt layer to its own F1 interface protocol layer (eg GTP-U protocol layer, or F1AP protocol layer), and then transmit it to the gNB after being processed by the F1 interface protocol layer.
  • F1 interface protocol layer e
  • Example 3 The data packets carry the identifiers of other home terminals, and the HAP forwards the data packets to other home terminals.
  • the HAP After the HAP receives the data packet from the home terminal, at the Adapt layer of the HA link, if the identity of the destination node is the identity of other home terminals, it forwards it to the corresponding destination node (ie, other home terminals).
  • the HAP can map the data packet to the QoS identifier of L2 with the HUE2 at the Adapt layer, and further, the HAP can send the data packet to the HUE2 through the HA link between the HAP and the HUE2.
  • the HAP can maintain the correspondence between RB IDs of different home terminals, for example, the correspondence between the RB IDs of the terminals of the first access technology and the RB IDs of the terminals of the second access technology. Specifically, for the local service of the transited home network, the HAP can maintain the corresponding relationship with the RB IDs between different home terminals.
  • the correspondence between RB IDs between home terminals maintained by the HAP can be obtained at least in any of the following ways.
  • HAP generates (or determines) the correspondence between RB IDs between home terminals by itself.
  • the HAP determines the correspondence between RB IDs between different home terminals, and maintains the correspondence.
  • the HAP needs to exchange data between HUE1 and HUE2, RB1 of HUE1 and RB2 of HUE2 can be configured as corresponding radio bearers.
  • the HAP obtains the correspondence between the RB IDs between the home terminals from the gNB.
  • the gNB determines the correspondence between the RB IDs of different home terminals, and sends the information of the correspondence to the HAP, and then the HAP maintains the correspondence.
  • the configuration information sent by the gNB to the HAP may include the correspondence between the RB1 of the HUE1 and the RB2 of the HUE2.
  • the corresponding relationship between the RB IDs of the home terminals maintained by the HAP can enable the HAP to forward the local services interacted between the home terminals between different home terminals according to the QoS requirements corresponding to the services.
  • the communication performance can be improved as much as possible.
  • the configuration of the Adapt layer of the HAP may be generated by the HAP itself, that is, the HAP itself configures the configuration of the Adapt layer of the HAP.
  • the configuration of the Adapt layer of the HAP may be configured by the gNB and sent to the HAP by the gNB, for example, the gNB sends the configuration of the Adapt layer of the HAP to the HAP through an RRC message or an F1AP message.
  • the configuration of the Adapt layer may include, but is not limited to, one or more items: the identification of the Adapt layer of the HAP, the identification of the Adapt layer of the home terminal, the L2 identification of the home terminal in the HA link, and the identification of the Adapt layer of the home terminal.
  • the configuration of the Adapt layer of the home terminal can be configured for the home terminal by the HAP.
  • the configuration of the Adapt layer of the home terminal may be configured for the home terminal by the gNB, for example, the gNB configures the home terminal through an RRC message.
  • the Adapt layer configuration of the home terminal may include, but is not limited to, one or more items: the identification of the Adapt layer of the HAP, the Adapt layer identification of the home terminal, the correspondence between the RB of the home terminal and the QoS identification of the HA link, The correspondence between the Adapt layer identifiers of other home terminals, the L2 identifiers of other home terminals in the HA link, and the Adapt layer identifiers.
  • the configuration scheme of the Adapt layer is introduced in conjunction with aspect 3 above.
  • the HAP and the home terminal can obtain the configuration of the Adapt layer, so that the subsequent service transmission can be performed.
  • the home terminal accesses the network through HAP, the home terminal performs service transmission, and the Adapt layer configuration, respectively.
  • the contents of the above aspects can be used alone or in combination.
  • a possible complete process is briefly described below with reference to FIG. 14 .
  • the method 1400 shown in FIG. 14 may include the following steps.
  • the HAP accesses the network, and performs authentication and authentication in the network.
  • Step 1410 is similar to the specific process of step 1310 in method 1300 above. Since step 1310 has been described in detail in the above method 1300, for the sake of brevity, details are not repeated here.
  • the home terminal establishes a connection with the HAP, and the HAP performs initial access control.
  • Step 1420 is similar to the specific process of step 1320 in method 1300 above. Since step 1320 has been described in detail in the method 1300 above, for the sake of brevity, it will not be repeated here.
  • the home terminal sends a data packet to the HAP.
  • the data packet sent by the home terminal is the data packet sent to the local service of the HAP itself.
  • the method 1400 may include the following step 1441.
  • the HAP After the HAP removes the Adapt layer header, it submits the SDU of the Adapt layer to its own upper-layer protocol layer.
  • the data packet carries the HAP identifier, and the service type indication is used to indicate that the service type of the data packet is a local service.
  • the Adapt layer of HAP receives a data packet with the destination address of the Adapt layer as its own from the home terminal, and the service type carried in the data packet is indicated as a local service, then the HAP can remove the Adapt layer header and send the Adapt layer SDU to the It is submitted by its own upper protocol layer (such as IP layer, or application layer, etc.).
  • the data packet sent by the home terminal is a data packet sent to the local service of the HAP itself.
  • method 1400 may include step 1442 as follows.
  • the HAP forwards the data packet to the gNB.
  • the data packet carries the HAP identifier, and the service type indication is used to indicate that the service type of the data packet is a U2N service.
  • the Adapt layer of the HAP receives a data packet from the home terminal whose destination address of the Adapt layer is itself, and the service type carried in the data packet is indicated as U2N service, then the HAP can remove the Adapt layer header and send the Adapt layer SDU to the
  • the F1 interface protocol layer (for example, the GTP-U protocol layer, or the F1AP protocol layer) is submitted, processed by the F1 interface protocol layer, and then transmitted to the gNB.
  • the data packet sent by the home terminal is a data packet sent to the local service of the HAP itself.
  • method 1400 may include step 1443 as follows.
  • the HAP forwards the data packet to other home terminals.
  • Other home terminals may include one home terminal, or may include multiple home terminals, which are not limited.
  • the HAP receives the data packet from the home terminal, at the Adapt layer of the HA link, if the identity of the destination node is the identity of other home terminals, it forwards it to the corresponding destination node (ie, other home terminals).
  • the RB ID of HUE1 carried in the Adapt layer in the received data packet is replaced with the RB ID of HUE2.
  • the HAP can map the data packet to the QoS identifier of L2 with the HUE2 at the Adapt layer, and further, the HAP can send the data packet to the HUE2 through the HA link between the HAP and the HUE2.
  • the HAP can maintain the corresponding relationship of RB IDs between different home terminals. Specifically, reference may be made to the description in aspect 2 above, which is not repeated here for brevity.
  • the home terminal may also initiate an RRC establishment process to the gNB, and specifically, reference may be made to step 1330 in method 1300.
  • the home terminal may also perform authentication and authentication in the network. Specifically, reference may be made to step 1340 in the method 1300 .
  • the family scene is mainly used as an example for description, but this does not limit the application. Any environment with terminals with multiple access technologies and local service transmission requirements is applicable to the application. Example.
  • the SDU is used as an example for illustration, and those skilled in the art should understand its meaning.
  • the SDU can also be replaced by data, for example.
  • the destination node of the SDU and the destination node of the data are sometimes used interchangeably, both of which are used to indicate the destination node of the data, or to which device the data is transmitted.
  • terminals with different access technologies are mainly used as examples for illustrative description. It should be understood that the solutions of the embodiments of the present application are also applicable to terminals with the same access technologies.
  • the terminal of the device can also use the service transmission solution provided by the embodiment of this application.
  • the technology for the terminal to access the communication device is recorded as an access technology, and it should be understood that the naming does not limit the protection scope of the embodiments of the present application.
  • the access technology can also be replaced by the access standard.
  • the indoor access point HAP (or CPE) can be regarded as a special type of IAB node.
  • a communication protocol layer ie, the first protocol layer, such as the Adapt layer
  • a home terminal such as a home terminal supporting 3GPP access technology or a home terminal supporting non-3GPP access technology, can also support multiple services, such as services from the home terminal to the network side and service interaction between the home terminals.
  • the methods and operations implemented by a terminal device may also be implemented by a component (such as a chip or circuit) that can be used in the terminal device, and by a network device (such as a home terminal or HAP).
  • a terminal device such as a home terminal or HAP
  • a component such as a chip or circuit
  • a network device such as a home terminal or HAP
  • the methods and operations implemented by the HAP or base station can also be implemented by components (eg, chips or circuits) that can be used in network equipment.
  • each network element such as a transmitter device or a receiver device, includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by taking as an example that each function module is divided corresponding to each function.
  • FIG. 15 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 1500 includes a transceiver unit 1510 and a processing unit 1520 .
  • the transceiver unit 1510 can implement corresponding communication functions, and the processing unit 1510 is used for data processing.
  • Transceiver unit 1510 may also be referred to as a communication interface or a communication unit.
  • the communication apparatus 1500 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 1520 may read the instructions and/or data in the storage unit, so that the communication apparatus implements the foregoing method Example.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 1520 may read the instructions and/or data in the storage unit, so that the communication apparatus implements the foregoing method Example.
  • the communication apparatus 1500 may be used to perform the actions performed by the communication device (such as HAP) in the above method embodiments.
  • the communication apparatus 1500 may be a communication device (such as a HAP) or may be configured in a communication device (such as a HAP).
  • the transceiver unit 1510 is configured to perform the operations related to the sending and receiving of the communication device (eg HAP) side in the above method embodiments
  • the processing unit 1520 is configured to perform the processing related operations on the communication device (eg HAP) side in the above method embodiments operation.
  • the communication apparatus 1500 may be configured to perform the actions performed by the first access technology terminal (such as a home terminal) in the above method embodiments.
  • the communication apparatus 1500 may be the first access technology terminal (such as a home terminal). terminal) or a component that can be configured on a first access technology terminal (such as a home terminal)
  • the transceiver unit 1510 is configured to perform the operations related to the sending and receiving on the side of the first access technology terminal (such as a home terminal) in the above method embodiments
  • the processing unit 1520 is configured to perform processing-related operations on the side of the first access technology terminal (eg, a home terminal) in the above method embodiments.
  • the communication apparatus 1500 is configured to perform the actions performed by the communication device (such as the HAP) in the embodiments shown in FIG. 10 to FIG. 14 , and the processing unit 1520 is configured to: determine the service of the first access technology terminal
  • the destination node of the data unit SDU; the transceiver unit 1510 is used for: in the case that the destination node of the SDU is the second access technology terminal, without passing through the base station and core network equipment connected to the communication device 1500, the SDU is transparently transmitted to the second access technology terminal.
  • the transceiver unit 1510 is further configured to: if the destination node is a base station or a core network device, forward the SDU to the base station or core network device; or, the processing unit 1520 is further configured to: when the destination node is the communication apparatus 1500 case, parse the content of the SDU.
  • the processing unit 1520 is specifically configured to: determine the destination node of the SDU according to the identifier of the destination node and/or the service type indication carried by the first access technology terminal.
  • the processing unit 1520 is specifically configured to: in the case that the identifier of the destination node is the identifier of the communication device 1500 and the service type indicates the local service, determine that the destination node is the communication device 1500; or, when the identifier of the destination node is The identity of the communication device 1500, and the service type indicates a non-local service, determine that the destination node is a base station or a core network device; or, in the case where the identity of the destination node is the identity of the second access technology terminal, determine that the destination node is is the second access technology terminal.
  • the transceiver unit 1510 is further configured to: receive a message carried by the first access technology terminal and carried on the common signaling radio bearer, and the configuration information required for transmitting the message carried on the common signaling radio bearer is a protocol Predefined, or, configuration information required to transmit messages carried on the common signaling radio bearer is pre-configured by the communication apparatus 1500 .
  • the processing unit 1520 is further configured to: determine whether the first access technology terminal needs to be authenticated in the core network; if the first access technology terminal does not need to be authenticated in the core network, the transceiver unit 1510 also uses To: send indication information to the base station, where the indication information is used to indicate that the first access technology terminal is a reliable device.
  • the transceiver unit 1510 is further configured to obtain a correspondence relationship, where the correspondence relationship includes a correspondence relationship between the radio bearer identifier of the first access technology terminal and the radio bearer identifier of the second access technology terminal.
  • the transceiver unit 1510 is specifically configured to: receive quality of service parameters of the radio bearers of the first access technology terminal and the second access technology terminal from the base station, and based on the quality of service parameters of the radio bearers of the first access technology terminal A corresponding relationship is generated between the quality of service parameter and the quality of service parameter of the radio bearer of the second access technology terminal; or, information about the corresponding relationship sent by the base station is received.
  • the transceiver unit 1510 is specifically configured to: receive an SDU at the communication protocol layer, where the configuration information of the communication protocol layer is configured by the communication apparatus 1500, or the configuration information of the communication protocol layer is configured by the base station.
  • the configuration information of the communication protocol layer includes one or more of the following: the identification of the communication protocol layer of the communication apparatus 1500, the identification of the communication protocol layer of the first access technology terminal, the identification of the first access technology terminal in the communication The correspondence between the layer 2 identification of the link and the communication protocol layer identification, the correspondence between the radio bearer of the first access technology terminal and the quality of service of the communication link, the radio bearer identification of the first access technology terminal and the second Correspondence between radio bearer identifiers of the access technology terminals; wherein, the communication link is the link between the communication apparatus 1500 and the first access technology terminal.
  • the communication apparatus 1500 may implement steps or processes corresponding to the communication equipment (such as HAP) performed in the method embodiments of the present application, and the communication apparatus 1500 may include a communication apparatus for performing the communication equipment in the embodiments shown in FIG. 10 to FIG. 14 .
  • a unit of a method (such as HAP) that executes.
  • each unit in the communication apparatus 1500 and the above-mentioned other operations and/or functions are respectively to implement the corresponding processes in the embodiments shown in FIG. 10 to FIG. 14 .
  • the transceiver unit 1510 can be used to execute steps 1010 and 1030 of the method 1000
  • the processing unit 1520 can be used to execute the step 1020 of the method 1000 .
  • the transceiver unit 1510 can be used to perform the step 1330 of the method 1300
  • the processing unit 1520 can be used to perform the steps 1310 and 1320 of the method 1300 .
  • the transceiver unit 1510 can be used to perform steps 1430 , 1442 and 1443 in the method 1400
  • the processing unit 1520 can be used to perform steps 1410 , 1420 and 1441 of the method 1400 .
  • the communication apparatus 1500 is configured to perform the actions performed by the first access technology terminal (such as a home terminal) in the embodiments shown in FIG. 10 to FIG. 14
  • the processing unit 1520 is configured to: connect to the communication device , and connected to the base station and the core network equipment through the communication equipment; the transceiver unit 1510 is used for: sending the SDU to the communication equipment, wherein the communication device 1500 carries the identification of the destination node and/or the service type indication, the identification of the destination node and/or the service Type indicates the destination node used to determine the SDU.
  • the destination node of the SDU is the communication device; or, when the identity of the destination node is the identity of the communication device, and the service type indicates the identity of the communication device In the case of non-local services, the destination node of the SDU is the base station or core network equipment;
  • the transceiver unit 1510 is further configured to: send the message carried on the common signaling radio bearer to the communication device, the configuration information required for transmitting the message carried on the common signaling radio bearer is predefined by the protocol, or , the configuration information required to transmit the message carried on the public signaling radio bearer is pre-configured by the communication device.
  • radio bearer identifier of the communication apparatus 1500 there is a correspondence between the radio bearer identifier of the communication apparatus 1500 and the radio bearer identifier of the second access technology terminal.
  • the communication apparatus 1500 may implement steps or processes corresponding to the first access technology terminal (such as a home terminal) in the method embodiment of the present application.
  • a unit of a method performed by a first access technology terminal eg, a home terminal
  • each unit in the communication apparatus 1500 and the above-mentioned other operations and/or functions are respectively to implement the corresponding processes in the embodiments shown in FIG. 10 to FIG. 14 .
  • the transceiver unit 1510 can be used to execute the step 1010 in the method 1000 .
  • the transceiver unit 1510 can be used to execute the step 1330 of the method 1300
  • the processing unit 1520 can be used to execute the step 1320 of the method 1300 .
  • the transceiver unit 1510 can be used to perform step 1430 in the method 1400
  • the processing unit 1520 can be used to perform the step 1420 in the method 1400 .
  • the processing unit 1520 in the above embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver unit 1510 may be implemented by a transceiver or a transceiver-related circuit.
  • Transceiver unit 1510 may also be referred to as a communication unit or a communication interface.
  • the storage unit may be implemented by at least one memory.
  • an embodiment of the present application further provides a communication apparatus 1600 .
  • the communication device 1600 includes a processor 1610 coupled to a memory 1620 for storing computer programs or instructions and/or data, and the processor 1610 for executing the computer programs or instructions and/or data stored in the memory 1620, The methods in the above method embodiments are caused to be executed.
  • the communication apparatus 1600 includes one or more processors 1610 .
  • the communication apparatus 1600 may further include a memory 1620 .
  • the communication device 1600 may include one or more memories 1620 .
  • the memory 1620 may be integrated with the processor 1610, or provided separately.
  • the communication apparatus 1600 may further include a transceiver 1630, and the transceiver 1630 is used for signal reception and/or transmission.
  • the processor 1610 is used to control the transceiver 1630 to receive and/or transmit signals.
  • the communication apparatus 1600 is configured to implement the operations performed by the communication device (eg, HAP) in the above method embodiments.
  • the communication device eg, HAP
  • the processor 1610 is configured to implement the processing-related operations performed by the HAP in the above method embodiments
  • the transceiver 1630 is configured to implement the transceiving-related operations performed by the HAP in the above method embodiments.
  • the communication apparatus 1600 is configured to implement the operations performed by the first access technology terminal (eg, a home terminal) in the above method embodiments.
  • the first access technology terminal eg, a home terminal
  • the processor 1610 is configured to implement the processing-related operations performed by the home terminal in the above method embodiments
  • the transceiver 1630 is configured to implement the above-mentioned method embodiments performed by the home terminal.
  • the embodiment of the present application further provides a communication apparatus 1700, where the communication apparatus 1700 may be a terminal device or a chip.
  • the communication apparatus 1700 may be used to perform the operations performed by the home terminal in the foregoing method embodiments.
  • FIG. 17 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1710 and a processing unit 1720 .
  • the transceiver unit 1710 may also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit 1720 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1710 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1710 may be regarded as a sending unit, that is, the transceiver unit 1710 includes a receiving unit and a sending unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the processing unit 1720 is configured to perform the processing actions on the home terminal side in FIGS. 10 to 14 .
  • the processing unit 1720 is used to perform the processing steps in FIGS. 10 to 14 ;
  • the transceiving unit 1710 is used to perform the transceiving operations in FIGS. 10 to 14 .
  • FIG. 17 is only an example and not a limitation, and the above-mentioned terminal device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 17 .
  • the chip When the communication device 1700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • This embodiment of the present application further provides a communication apparatus 1800, where the communication apparatus 1800 may be a communication device or a chip.
  • the communication apparatus 1800 can be used to perform the operations performed by a communication device (such as a HAP or a gNB) in the above method embodiments.
  • FIG. 18 shows a simplified schematic diagram of the structure of a communication device.
  • the communication device includes part 1810 and part 1820.
  • the 1810 part is mainly used for sending and receiving radio frequency signals and the conversion of radio frequency signals and baseband signals; the 1820 part is mainly used for baseband processing and control of network equipment.
  • the 1810 part may generally be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 1820 part is usually the control center of the network device, which may be generally referred to as a processing unit, and is used to control the network device to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of the 1810 part which may also be called a transceiver or a transceiver, etc., includes an antenna and a radio frequency circuit, where the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the part 1810 may be regarded as a receiving unit, and the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the part 1810 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, and the like, and the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the 1820 portion may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and control the base station. If there are multiple boards, each board can be interconnected to enhance the processing capability.
  • one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • the transceiving unit of part 1810 is used to perform the steps related to transceiving performed by the communication device in the embodiments shown in FIG. 10 to FIG. 14 ; part 1820 is used to perform the implementation shown in FIG. 10 to FIG. 14 . Steps related to the processing performed by the communication device in this example.
  • FIG. 18 is only an example and not a limitation, and the above-mentioned communication device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 18 .
  • the chip When the communication device 1800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • Embodiments of the present application further provide a computer-readable storage medium, on which is stored a method for implementing the method executed by a first access technology terminal (such as a home terminal) in the above method embodiments, or executed by a communication device (such as a HAP) computer instructions for the method.
  • a first access technology terminal such as a home terminal
  • a communication device such as a HAP
  • the computer program when executed by a computer, the computer can implement the method executed by the first access technology terminal (such as a home terminal) or the method executed by a communication device (such as a HAP) in the above method embodiments.
  • the first access technology terminal such as a home terminal
  • a communication device such as a HAP
  • Embodiments of the present application further provide a computer program product including instructions, which, when executed by a computer, cause the computer to implement the method executed by the first access technology terminal (such as a home terminal) in the above method embodiments, or the communication device (e.g. HAP) method.
  • the first access technology terminal such as a home terminal
  • the communication device e.g. HAP
  • An embodiment of the present application further provides a communication system, where the communication system includes the first access technology terminal (eg, a home terminal) and a communication device (eg, a HAP) in the foregoing embodiment; or, the communication system includes the foregoing embodiment a first access technology terminal (such as a home terminal), a second access technology terminal (such as a home terminal), and a communication device (such as a HAP) in the A technology terminal (such as a home terminal), a second access technology terminal (such as a home terminal), a communication device (such as a HAP), a base station and/or a core network device.
  • the communication system includes the foregoing embodiment a first access technology terminal (such as a home terminal), a second access technology terminal (such as a home terminal), and a communication device (such as a HAP) in the A technology terminal (such as a home terminal), a second access technology terminal (such as a home terminal), a communication device (such as a HAP), a base station and/
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system of the operating system layer may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program in which the codes of the methods provided by the embodiments of the present application are recorded can be executed to execute the methods according to the embodiments of the present application.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture as used herein may encompass a computer program accessible from any computer-readable device, carrier or media.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc., which includes one or more available mediums integrated.
  • Useful media may include, but are not limited to, magnetic media or magnetic storage devices (eg, floppy disks, hard disks (eg, removable hard disks), magnetic tapes), optical media (eg, optical disks, compact discs) , CD), digital versatile disc (digital versatile disc, DVD), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc. ), or semiconductor media (such as solid state disk (SSD), etc., U disk, read-only memory (ROM), random access memory (RAM), etc. that can store programs medium of code.
  • SSD solid state disk
  • Various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to implement the solution provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • a computer can be: a general purpose computer, a personal computer, a special purpose computer, a computer network, a server, a network device, or other programmable devices.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium. Regarding the computer-readable storage medium, reference may be made to the above description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信设备、数据传输的方法和装置。该通信设备用于判断第一接入技术终端传输的数据的目的地址;该通信设备,还用于在确定第一接入终端向其他终端传输数据时,如数据的目的地址为第二接入技术终端时,不经过与通信设备连接的基站和核心网设备,就可以将第一接入技术终端传输的数据透传给第二接入技术终端;其中,第一接入技术终端和第二接入技术终端连接通信设备。通过本申请,不仅可以实现支持多样化的家庭终端设备接入到网络,且可以支持多样化的家庭终端设备交互本地交换的业务。

Description

通信设备、数据传输的方法和装置 技术领域
本申请涉及通信网络,尤其涉及一种通信设备、数据传输的方法和装置。
背景技术
近年来,全球宽带接入网络建设大力发展,宽带普及率逐步增长。当前的室内宽带接入技术,仍然以固定(有线)宽带接入技术(fixed broad band,FBB)为主,包括例如光纤接入(fiber to the x,FTTx)、非对称数字用户线路(asymmetric digital subscriber line,ADSL)、有线电视(cable television)接入等。各类视频相关的应用以及其他新兴多媒体业务的涌现,对网络能提供速率的要求越来越高,传统的有线连接方式,比如ADSL,可能无法满足宽带业务的提速需求,因此需要进行通过大量部署光纤来予以改善。
然而在一些老城区或一些地广人稀的偏远地区,线路改造和光纤铺设的代价大,施工成本高,网络运营商无法接受,因此,无线宽带接入(wireless broad band/wireless to the X,WBB/WTTx)也成了一种可选择的室内宽带接入技术。
在一些室内场景中,如家庭环境的室内场景中,终端设备有多种不同的接入技术,那么如何可以支持多样化接入技术的家庭终端设备交互本地交换的业务,是亟需解决的问题。
发明内容
本申请提供一种通信设备、数据传输的方法和装置,以期可以支持多样化接入技术的家庭终端设备交互本地交换的业务。
第一方面,提供了一种通信设备。所述通信设备,用于判断第一接入技术终端的业务数据单元SDU的目的节点;所述通信设备,还用于在所述SDU的目的节点为第二接入技术终端的情况下,不经过与所述通信设备连接的基站和核心网设备,将所述SDU透传给所述第二接入技术终端;其中,所述第一接入技术终端和所述第二接入技术终端连接所述通信设备。
示例地,通信设备判断第一接入技术终端的业务数据单元SDU的目的节点,即表示通信设备判断第一接入技术终端传输的数据的目的节点,或者说,通信设备判断第一接入技术终端传输的数据是发给哪个设备的。
示例地,所述SDU的目的节点为第二接入技术终端,即表示所述第一接入技术终端传输的SDU的目的节点为第二接入技术终端,或者说,所述第一接入技术终端传输的SDU是发给第二接入技术终端的。
示例地,通信设备可以为室内的接入点,或者,通信设备可以为配置于室内的接入点中的芯片或芯片系统或电路。
示例地,第一接入技术终端连接通信设备,表示第一接入技术终端通过第一接入技术 接入到通信设备,或者说,第一接入技术终端通过第一接入技术与通信设备建立通信连接。第二接入技术终端连接通信设备,表示第二接入技术终端通过第二接入技术接入到通信设备,或者说,第二接入技术终端通过第二接入技术与通信设备建立通信连接。
示例地,第一接入技术终端和第二接入技术终端,可以理解为第一家庭终端和第二家庭终端。例如,第一接入技术终端和第二接入技术终端为使用不同接入技术接入的终端设备(如家庭终端)。一示例,第一接入技术终端为支持3GPP接入技术的家庭终端,第二接入技术终端为支持非3GPP接入技术的家庭终端。应理解,接入技术相同的终端在交互时,也适用于本申请。
示例地,透传,可以表示通信设备可以直接将第一接入技术终端的SDU转发给第二接入技术终端,至少该通信设备的应用层不需要解析该SDU。
示例地,目的节点包括以下一项或多项:通信设备、第二接入技术终端、与所述通信设备连接的基站和/或核心网设备。
基于上述技术方案,第一接入技术终端和第二接入技术终端可连接到通信设备,在第一接入技术终端和第二接入技术终端交互业务时,如第一接入技术终端向第二接入技术终端发送SDU时,可以经过通信设备来转发,不需要经过基站和核心网设备,因此可以实现不同接入技术的终端交互本地业务。此外,在本申请实施例中,可以设计不同接入技术终端均可以接入通信设备,如第一接入技术终端和第二接入技术终端均可连接到通信设备,即第一接入技术终端和第二接入技术终端均可与通信设备通信连接,因此,还可以支持多样化的终端设备(如家庭终端)接入到网络。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,还用于:在所述SDU的目的节点为所述基站或所述核心网设备的情况下,向所述基站或所述核心网设备转发所述SDU;或者,在所述SDU的目的节点为所述通信设备的情况下,所述通信设备解析所述SDU的内容。
一示例,所述SDU的目的节点为基站,即表示所述第一接入技术终端传输的SDU的目的节点为基站,或者说,所述第一接入技术终端传输的SDU是发给基站的。
又一示例,所述SDU的目的节点为核心网设备,即表示所述第一接入技术终端传输的SDU的目的节点为核心网设备,或者说,所述第一接入技术终端传输的SDU是发给核心网设备的。具体地,在该示例下,例如,通信设备可以先将该SDU转发给基站,再由基站转发给核心网设备。
又一示例,所述SDU的目的节点为通信设备,即表示所述第一接入技术终端传输的SDU的目的节点为通信设备,或者说,所述第一接入技术终端传输的SDU是发给通信设备的。
基于上述技术方案,通信设备可以根据第一接入技术终端传输的SDU的目的节点,进行相应的处理。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,具体用于:根据所述第一接入技术终端携带的目的节点的标识和/或业务类型指示,判断所述SDU的目的节点。
其中,所述业务类型指示用于指示SDU的业务类型为本地业务或非本地业务。
示例地,所述第一接入技术终端携带的业务类型指示为本地业务,或者说数据携带的业务类型指示为本地业务,可以表示数据为传输给通信设备的业务,或者说数据的目的节 点为通信设备;或者也可以表示数据为传输给其他终端设备的业务,或者说数据的目的节点为其他终端设备。具体地,可以结合数据携带的目的节点的标识进一步确定。
示例地,所述第一接入技术终端中携带的业务类型指示为非本地业务,或者说数据携带的业务类型指示为非本地业务,可以表示数据为传输给基站或核心网设备的业务,或者说数据的目的节点为基站或核心网设备。
示例地,业务类型指示可以通过x比特的字段实现,x为大于1或等于1的整数。以1比特为例,该1比特字段的取值为“0”,表示本地业务;该1比特字段的取值为“1”,表示非本地业务。
应理解,目的节点的标识可以指示SDU的目的节点,其并不限定标识对应的节点一定为SDU的目的节点。例如,SDU的目的节点不同,其对应的目的节点的标识可能相同。例如,目的节点的标识为通信设备时,SDU的目的节点可能是通信设备本身,也可能是与通信设备相连的基站和/或核心网设备。进一步地,关于SDU的目的节点为哪个,例如可以结合业务类型指示确定,又如也可以通过进一步的指示确定,对此不作限定。
基于上述技术方案,通信设备可以根据第一接入技术终端携带的目的节点的标识和/或业务类型指示,确定相应的目的节点,进而将SDU向该目的节点路由。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,具体用于:在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示本地业务的情况下,判断所述目的节点为所述通信设备;或者,在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示非本地业务的情况下,判断所述目的节点为所述基站或所述核心网设备;或者,在所述目的节点的标识为所述第二接入技术终端的标识的情况下,判断所述目的节点为所述第二接入技术终端。
基于上述技术方案,在目的节点的标识为通信设备的标识的情况下,可以进一步根据业务类型指示确定第一接入技术终端传输的SDU是传给通信设备本身的,还是传给基站和/或核心网设备的。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,还用于:接收所述第一接入技术终端发送的承载于公共信令无线承载上的消息,传输承载于所述公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于所述公共信令无线承载上的消息所需要的配置信息是由所述通信设备预先配置的。
示例地,传输承载于所述公共信令无线承载上的消息所需要的配置信息包括承载于公共信令无线承载上的消息所需的服务质量(quality of service,QoS)信息,如QoS标识。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,还用于:判断所述第一接入技术终端是否需要在所述核心网进行认证;在所述第一接入技术终端不需要在所述核心网进行认证的情况下,向所述基站发送指示信息,所述指示信息用于向指示所述第一接入技术终端为可靠设备。
示例地,可靠设备即表示无需在核心网进行认证鉴权的设备。核心网认证,即表示核心网要对接入网络的设备进行身份认证和授权,一个设备只有通过了认证后,才可以接入网络。
基于上述技术方案,可以避免核心网对终端设备(即无需在核心网认证的终端设备,例如,已经通过通信设备或者通信设备中内置的认证设备的认证,或者已经经由通信设备 在互联网的认证设备中完成了设备认证)进行额外的认证鉴权,从而可以节省认证鉴权带来的开销和时延。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,还用于:获取对应关系,所述对应关系包括所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系。
示例地,第一接入技术终端的无线承载,可以表示第一接入技术终端与通信设备之间的无线承载。示例地,第二接入技术终端的无线承载,可以表示第二接入技术终端与通信设备之间的无线承载。
示例地,所述通信设备获取对应关系,可以理解为,所述通信设备维护对应关系。
基于上述技术方案,通信设备可以维护多个终端设备的无线承载标识之间的对应关系,例如第一接入技术终端的无线承载标识与第二接入技术终端的无线承载标识之间的对应关系,从而可以使得通信设备能在不同终端设备之间,按照业务对应的QoS要求,转发终端设备之间交互的本地业务。从而,可以尽可能地提高通信性能。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,具体用于:接收来自所述基站的所述第一接入技术终端和所述第二接入技术终端的无线承载的服务质量参数,并基于所述第一接入技术终端的无线承载的服务质量参数和所述第二接入技术终端的无线承载的服务质量参数生成所述对应关系;或者,接收所述基站发送的所述对应关系的信息。
应理解,生成所述对应关系,也可以理解为确定对应关系。
基于上述技术方案,通信设备可以自身确定对应关系,或者也可以是由基站确定对应关系并指示该对应关系。
结合第一方面,在第一方面的某些实现方式中,所述通信设备,具体用于:在所述通信设备的第一协议层接收所述第一接入技术终端传输的所述SDU,其中,所述通信设备的第一协议层的配置信息是所述通信设备配置的,或者,所述通信设备的第一协议层的配置信息是所述基站配置的。
一示例,所述通信设备的第一协议层的配置信息是所述通信设备配置的。也就是说,通信设备可以自己配置第一协议层的配置信息,或者说第一协议层的配置信息可以由通信设备自身生成。
基于上述技术方案,通信设备可以自身生成第一协议层的配置信息,或者也可以是由基站生成并指示该第一协议层的配置信息。
结合第一方面,在第一方面的某些实现方式中,所述通信设备的第一协议层的配置信息包括以下一项或多项:所述通信设备的第一协议层的标识、所述第一接入技术终端的第一协议层的标识、所述第一接入技术终端在通信链路的层2标识和第一协议层标识的对应关系、所述第一接入技术终端的无线承载和所述通信链路的服务质量之间的对应关系、所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系;其中,所述通信链路为所述通信设备与所述第一接入技术终端通信的链路。
第二方面,提供了一种数据传输的方法。该方法可以由通信设备执行,或者,也可以由配置于通信设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:通信设备接收第一接入技术终端传输的业务数据单元SDU;所述 通信设备判断所述SDU的目的节点;在所述SDU的目的节点为第二接入技术终端的情况下,所述通信设备不经过与所述通信设备连接的基站和核心网设备,将所述SDU透传给所述第二接入技术终端;其中,所述第一接入技术终端和所述第二接入技术终端连接所述通信设备。
结合第二方面,在第二方面的某些实现方式中,在所述SDU的目的节点为所述基站或所述核心网设备的情况下,所述通信设备向所述基站或所述核心网设备转发所述SDU;或者,在所述SDU的目的节点为所述通信设备的情况下,所述通信设备解析所述SDU的内容。
结合第二方面,在第二方面的某些实现方式中,所述第一接入技术终端携带所述目的节点的标识和/或业务类型指示;所述通信设备判断所述SDU的目的节点,包括:所述通信设备根据所述目的节点的标识和/或所述业务类型指示,判断所述SDU的目的节点。
结合第二方面,在第二方面的某些实现方式中,在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示本地业务的情况下,所述通信设备判断所述SDU的目的节点为所述通信设备;或者,在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示非本地业务的情况下,所述通信设备判断所述SDU的目的节点为所述基站或所述核心网设备;或者,在所述目的节点的标识为所述第二接入技术终端的标识的情况下,所述通信设备判断所述SDU的目的节点为所述第二接入技术终端。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述通信设备接收所述第一接入技术终端发送的承载于公共信令无线承载上的消息,传输承载于所述公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于所述公共信令无线承载上的消息所需要的配置信息是由所述通信设备预先配置的。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述通信设备判断所述第一接入技术终端是否需要在所述核心网进行认证;在所述第一接入技术终端不需要在所述核心网进行认证的情况下,所述通信设备向所述基站发送指示信息,所述指示信息用于向指示所述第一接入技术终端为可靠设备。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述通信设备获取对应关系,所述对应关系包括所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系。
结合第二方面,在第二方面的某些实现方式中,所述通信设备获取对应关系,包括:所述通信设备接收来自所述基站的所述第一接入技术终端和所述第二接入技术终端的无线承载的服务质量参数,并基于所述第一接入技术终端的无线承载的服务质量参数和所述第二接入技术终端的无线承载的服务质量参数生成所述对应关系;或者,所述通信设备接收所述基站发送的所述对应关系的信息。
结合第二方面,在第二方面的某些实现方式中,所述通信设备接收第一接入技术终端传输的SDU,包括:所述通信设备在所述通信设备的第一协议层接收所述SDU,其中,所述通信设备的第一协议层的配置信息是所述通信设备配置的,或者,所述通信设备的第一协议层的配置信息是所述基站配置的。
结合第二方面,在第二方面的某些实现方式中,所述通信设备的第一协议层的配置信息包括以下一项或多项:所述通信设备的第一协议层的标识、所述第一接入技术终端的第 一协议层的标识、所述第一接入技术终端在通信链路的层2标识和所述第一协议层标识的对应关系、所述第一接入技术终端的无线承载和所述通信链路的服务质量之间的对应关系、所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系;其中,所述通信链路为所述通信设备与所述第一接入技术终端通信的链路。
第三方面,提供了一种数据传输的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。下面主要以终端设备为第一接入技术终端为例说明。
该方法可以包括:第一接入技术终端连接到通信设备,且所述第一接入技术终端通过所述通信设备连接到基站和核心网设备;所述第一接入技术终端向所述通信设备发送业务数据单元SDU,其中,所述第一接入技术终端携带目的节点的标识和/或业务类型指示,所述目的节点的标识和/或所述业务类型指示用于确定所述SDU的目的节点。
结合第三方面,在第三方面的某些实现方式中,在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示本地业务的情况下,所述SDU的目的节点为所述通信设备;或者,在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示非本地业务的情况下,所述SDU的目的节点为所述基站或所述核心网设备;或者,在所述目的节点的标识为所述第二接入技术终端的标识的情况下,所述SDU的目的节点为第二接入技术终端。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一接入技术终端向所述通信设备发送承载于公共信令无线承载上的消息,传输承载于所述公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于所述公共信令无线承载上的消息所需要的配置信息是由所述通信设备预先配置的。
结合第三方面,在第三方面的某些实现方式中,所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间具有对应关系。
第四方面,提供一种数据传输的装置,所述装置用于执行上述第二方面或第三方面提供的方法。具体地,所述装置可以包括用于执行第二方面或第三方面提供的方法的模块。
第五方面,提供一种数据传输的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该装置为通信设备。当该装置为通信设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该装置为配置于通信设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供一种数据传输的装置,包括处理器。该处理器与存储器耦合,可用于 执行存储器中的指令,以实现上述第三方面以及第三方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面或第三方面,以及第二方面或第三方面的任一可能的实现方式中的通信方法。
第八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面或第三方面提供的通信方法。
第九方面,提供了一种通信系统,包括前述的第一接入技术终端和通信设备;或者,包括前述的第一接入技术终端、第二接入技术终端和通信设备;或者,包括前述的第一接入技术终端、第二接入技术终端、通信设备、基站和/或核心网设备。
附图说明
图1示出了适用于本申请实施例的家庭网络系统架构的一示意图。
图2示出了适用于本申请实施例的家庭带宽接入网络的一示意图。
图3示出了适用于本申请实施例的IAB系统的一示意图。
图4为多跳IAB网络的用户面协议栈架构的一种示例。
图5为多跳IAB网络的控制面协议栈架构的一种示例。
图6示出了用户终端作为中继节点的一示意图。
图7为用户终端作为中继节点的用户面协议栈架构的一种示例。
图8为用户终端作为中继节点的控制面协议栈架构的一种示例。
图9示出了固网终端通过固定网络接入5GC的示意图。
图10是根据本申请实施例提供的数据传输的方法的示意性框图。
图11示出了适用于本申请实施例的U2N业务传输可能的协议栈架构。
图12示出了适用于本申请实施例的本地业务传输可能的协议栈架构。
图13示出了适用于本申请实施例的家庭终端经由HAP接入网络的可能流程。
图14示出了适用于本申请实施例的数据传输的方法的示意性流程图。
图15是本申请实施例提供的通信装置的示意性框图。
图16是本申请实施例提供的通信装置的另一示意性框图。
图17是本申请实施例提供的终端设备的示意性框图。
图18是本申请实施例提供的通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:家庭网络,第五代(5th generation,5G)系统或新无线(new radio,NR),长期演进(long term evolution,LTE)系统,LTE频分双工(frequency division duplex,FDD)系统,LTE时分双工(time division duplex,TDD)等。本申请实施例的技术方案还可以应用于侧链路通信。例如,本申请实施例的技术方案还可以应用于:设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。其中,车联网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信,车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的家庭网络系统架构的一示意图。如图1所示,在该系统架构中,可以包括:家庭终端设备(home user equipment,HUE)、室内的接入点(home access point,HAP)、5G基站(如NR基站(next generation node B,gNB))、4G网络中的基站(如演进型节点B(evolved Node B,eNB))、5G核心网(5G core,5GC)、4G核心网(如演进分组核心网(evolved packet core,EPC))。下面简单介绍各个网元。
1、HUE
HUE,即家庭终端设备或者简称为家庭终端。本申请实施例中提及的家庭终端设备或者终端设备,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的HUE或者UE可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
如图1所示,HUE可以通过家庭接入(home access,HA)链路连接到HAP。应理解,HA链路仅是为区分做的命名,其命名不对本申请实施例的保护范围造成限定。
2、gNB
gNB为支持HAP节点的5G基站。5G基站可以为gNB,或者,还可以为5G,如,NR,系统中的传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BaseBand Unit,BBU),或,分布式单元(distributed unit,DU)等,对此不作限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。CU和DU 可软件化或虚拟化,需要灵活组合的无线接入网络功能可以运行在CU中,例如,业务数据适应协议(Service Data Adaptation Protocol,SDAP)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP),无线资源控制(Radio Resource Control,RRC)等高层功能;而与硬件强相关并且实时性要求较高的RAN功能可以运行在DU中,例如无线链路层控制协议(Radio Link Control,RLC)层、物理层(physical layer,PHY),媒体介入控制层(Media Access Control,MAC)等底层功能。应理解,对CU和DU处理功能按照上述方式进行划分仅仅是一种举例,也可以按照其他的方式进行划分,本申请实施例并不做限定。
CU和DU之间通过通信接口相连,例如可以是F1接口。CU与核心网设备之间也通过通信接口相连,例如可以是NG接口(具体可以是控制面的N2接口或用户面的N3接口等)。
在一可能的设计中,gNB可以包括一个或多个gNB-DU,以及一个gNB-CU。一个gNB-DU连接到一个gNB-CU,一个gNB-CU可以连接到多个gNB-DU。gNB-CU和它连接的gNB-DUs在其它gNB和5GC看来就是一个gNB。
此外,在一些部署中,CU(如gNB-CU)可以包括集中式单元-用户面(Centralized Unit-user plane,CU-UP)和集中式单元-控制面(Centralized Unit-control plane,CU-CP)。其中CU-UP和CU-CP可以是在不同的物理设备上。CU-UP和CU-CP之间可以存在一个开放的接口,该接口可以称为E1接口。与此同时,CU-UP和CU-CP与DU均可以有各自的接口,例如,可以称CU-CP与DU之间的接口为F1-C接口,CU-UP与DU之间的接口为F1-U接口。
应理解,图1所示的架构仅是示例性说明,对此不作限定。例如,一个gNB还可以包括一个CU-CP、一个或多个CU-UP、多个DU。又如,在一些部署中,gNB还可以包括有源天线单元(active antenna unit,AAU)。
如图1所示,在HAP节点工作在独立(standalone,SA)模式时,gNB可以连接到5G核心网(5G core,5GC)。其中,gNB-CU-CP可以通过NG控制面接口连接到5GC中的控制面网元,如接入和移动性管理功能(access and mobility management function,AMF)网元。其中,gNB-CU-UP可以通过NG用户面接口连接到5GC中的用户面网元,如用户面功能(user plane function,UPF)网元。
AMF网元主要用于移动性管理和接入管理等,如用户位置更新、用户注册网络、用户切换等。AMF还可用于实现移动性管理实体(mobility management entity,MME)中除会话管理之外的其它功能。例如,合法监听、或接入授权(或鉴权)等功能。UPF网元可以负责终端设备中用户数据的转发和接收。UPF网元可以从数据网络(data network,DN)接收用户数据,通过接入网设备传输给终端设备。UPF网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。UPF网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。
3、eNB
eNB为4G网络中的基站。如图1所示,在HAP节点工作在NSA模式(或者说EN-DC模式)时,eNB可以作为HAP的主基站,gNB可以作为辅基站。eNB可以通过S1接口(包括S1用户面接口,以及S1控制面接口)连接到EPC,如连接到业务网关(serving  gateway,SGW)。eNB与HAP之间可以通过LTE Uu空口连接,eNB与gNB之间可以通过X2接口连接。
4、5GC
5GC,即5G核心网,例如可以包括以下几个关键逻辑网元或者说功能实体:AMF网元、会话管理功能(session management function,SMF)网元、UPF网元、策略控制功能(policy control function,PCF)网元和统一数据管理(unified data management,UDM)网元等。5GC可用于对终端设备进行鉴权、移动性管理、协议数据单元(protocol data unit,PDU)会话(PDU session)管理等。
5、EPC
EPC,即4G核心网,例如可以包括以下几个网元或者说功能实体:公共数据网(public data network,PDN)网关(gateway)实体、移动性管理实体(mobility management entity,MME)、SGW、分组数据网络网关(packet data network gateway,PGW)等。EPC可用于对终端设备进行鉴权、移动性管理、PDN连接管理等。
6、HAP节点
HAP节点可以用于为子节点或者UE提供接入服务。HAP节点可以是一种具有转发功能或者具有上述为子节点或者UE提供接入服务功能的网络设备或者终端设备中的一种,也可以是一种独立的设备形态,对此不作限定。示例性地,HAP节点例如可以是用户驻地设备(customer premises equipment,CPE)、家庭网关(residential gateway,RG)等设备。应理解,HAP节点的命名不对本申请实施例的保护范围造成限定,在未来用于表示同样功能的命名,都适用于本申请实施例。下文为便于描述,主要以HAP节点为例进行示例说明。
应理解,上述应用于本申请实施例的系统架构仅是举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
还应理解,上文所述的AMF、SMF、UPF、SGW、PGW等网元,可以理解为核心网中用于实现不同功能的网元,例如可以按需组合成网络切片。这些核心网网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
还应理解,本申请实施例中提及的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:eNB、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G, 如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,DU等。
图2是适用于本申请实施例的家庭宽带接入网络的一示意图。如图2所示,对于家庭终端来说,可以通过有线/无线局域接入链路与用户驻地设备通信,也可以通过有线/无线宽带接入链路与位于互联网中的服务器通信。
近年来,全球宽带接入网络建设大力发展,宽带普及率逐步增长。随着各类视频相关的应用以及其他新兴多媒体业务的涌现,对网络能提供速率的要求越来越高,因此,无线宽带接入(wireless broad band/wireless to the X,WBB/WTTx)也成了一种可选择的室内宽带接入技术。
在家庭环境的室内场景中,终端设备有多种不同的接入技术,例如支持LTE,或者5G的移动终端设备,还有大量的非第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的终端设备,采用的是其他接入技术,例如WiFi或者WLAN,Zigbee,Ziwave,蓝牙(bluetooth),超宽带(ultra wide band,UWB),射频识别(radio frequency ientification,RFID)等。这些家庭终端,一方面有与网络通信的需求,例如需要与位于互联网中的服务器通信;另一方面,也有一些家庭终端之间的本地相互通信需求。
为便于理解本申请实施例,下面首先对本申请中涉及的回传接入回传一体化(integrated access and backhaul,IAB)技术做简单介绍。
在5G技术中,3GPP引入了接入回传一体化(Integrated access and backhaul,IAB)技术,其接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,可以避免在回传链路对光纤部署的依赖。
在IAB网络中,中继节点(relay node,RN)或者称IAB节点(IAB node),可以为终端设备提供无线接入服务,终端设备的业务数据可以由一个或多个IAB节点通过无线回传链路连接到宿主节点(IAB donor)。在本申请实施例中,IAB donor也可称为宿主节点(donor node)或宿主基站(Donor gNodeB,DgNB)。
IAB节点可以由移动终端(mobile termination,MT)部分和DU部分组成。其中,当IAB节点面向其父节点时,可以作为终端设备,即MT的角色;当IAB面向其子节点(子节点可能是另一IAB节点,或者普通UE)时,其被视为网络设备,即作为DU的角色。其中,IAB节点的MT部分,具有UE的部分或全部功能。
宿主基站可以是一个具有完整基站功能的接入网网元,还可以是CU和DU分离的形态,即宿主节点由宿主基站的集中式单元和宿主基站的分布式单元组成。宿主基站连接到为UE服务的核心网(例如连接到5G核心网,5GC)网元,并为IAB节点提供无线回传功能。为便于表述,将宿主节点的集中式单元简称为donor CU(或直接称为CU),宿主节点的分布式单元简称为donor DU,其中donor CU还有可能是控制面(control plane,CP)(本文中简称为CU-CP)和用户面(user plane,UP)(本文中简称为CU-UP)分离的形态。例如CU可由一个CU-CP和一个(或多个)CU-UP组成。
在5G当前的标准讨论中,在IAB网络中可能采用多跳组网。此外,考虑到业务传输可靠性的需求,可以使IAB节点支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况。例如,链路的中断或阻塞 (blockage)及负载波动等异常,提高传输的可靠性保障。因此,在由IAB节点服务的UE和IAB donor之间,存在至少一条由多段链路组成的传输路径。在一条传输路径上,包含多个节点,如UE,一个或多个IAB节点,IAB donor(若IAB donor为CU和DU分离的形态,则还包含IAB-donor-DU部分和IAB-donor-CU部分),每个IAB节点将为其提供接入和回传服务的相邻节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。
链路:可以表示一条路径中的两个相邻节点之间的路径。
接入链路:可以表示终端设备与基站之间,或者终端设备与IAB节点之间,或者终端设备与宿主节点之间,或者终端设备与宿主DU之间的链路。或者,接入链路包括某个IAB节点作为普通终端设备角色时和它的父节点进行通信时所使用的无线链路。IAB节点作为普通终端设备角色时,不为任何子节点提供回传服务。接入链路包括上行接入链路和下行接入链路。本申请中,终端设备的接入链路为无线链路,故接入链路也可被称为无线接入链路。
回传链路:可以表示IAB节点作为无线回传节点时与父节点之间的链路。IAB节点作为无线回传节点时,为子节点提供无线回传服务。回传链路包括上行回传链路,以及下行回传链路。本申请中,IAB节点与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
父节点与子节点:每个IAB节点将为其提供无线接入服务和/或无线回传服务的相邻节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。
可替换地,子节点也可以称为下级节点,父节点也可以称为上级节点。
如图3所示,IAB node 1的父节点为IAB donor,IAB node 1又为IAB node 2和IAB node 3的父节点,IAB node 2和IAB node 3均为IAB node4的父节点,IAB node 5的父节点为IAB node 3。UE的上行数据包可以经一个或多个IAB节点传输至宿主站点IAB donor后,再由IAB donor发送至移动网关设备(例如,5G核心网中的用户平面功能单元UPF)。UE的下行数据包将由IAB donor从移动网关设备处接收后,再通过IAB节点发送至UE。其中,UE1和宿主基站之间的数据传输有两条可用的路径。路径1:终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点,以及终端1→IAB节点4→IAB节点2→IAB节点1→宿主节点。终端2和宿主节点之间数据包的传输有三条可用的路径,分别为:终端2→IAB节点4→IAB节点3→IAB节点1→宿主节点,终端2→IAB节点4→IAB节点2→IAB节点1→宿主节点,以及终端2→IAB节点5→IAB节点2→IAB节点1→宿主节点。
应理解,图3所示的IAB组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如,图3中的IAB donor和另一IAB donor下的IAB node组成双连接为终端设备服务等,这里不一一列举。
下面介绍现有技术中关于终端设备接入的几种可能的方式。
方式1,基于IAB技术的方案。
在现有技术中,在图3示出的IAB组网场景为IAB独立(standalone,SA)组网场景的情况下,IAB节点和UE均通过NR网络的空口与网络建立连接。
当前对IAB网络的讨论中,确定在无线回传链路引入一个新的协议层,回传适配协议 (backhaul adaptation protocol,BAP)层,该协议层位于RLC层之上,可用于实现数据包在无线回传链路的路由,以及承载映射等功能。
图4和图5分别为多跳IAB网络的用户面协议栈架构和控制面协议栈架构的一种示例。在IAB节点(IAB的DU部分)和宿主节点(或者IAB-donor-CU)之间,需要建立F1接口。用户面协议包括以下协议层的一个或多个:通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)层,用户数据报协议(user datagram protocol,UDP)层、网络互连协议(internet protocol,IP)层等协议层。控制面协议包括以下中的一个或者多个:F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层、IP层等协议层。
其中,F1接口是指IAB节点的DU部分和宿主节点(或donor-CU或donor-DU)之间的逻辑接口,F1接口也可以称为F1*接口,本文中,为描述,统一称为F1接口,其命名不对本申请实施例的保护范围造成限定。F1接口支持用户面协议(F1-U/F1*-U)和控制面协议(F1-C/F1*-C)。F1接口的协议层表示在F1接口上的通信协议层。
此外,关于图4或图5中所示的协议架构中,其他各个协议层的含义为:分组数据汇聚协议(packet data convergence protocol,PDCP)层、L2层(layer 2)、L1层(layer 1)、无线链路控制(radio link control,RLC)层、媒介接入控制(medium access control,MAC)层、物理(physical,PHY)层、无线资源控制(radio resource control,RRC)层。其中,L2层为链路层。示例性的,L2层可以为开放式通信系统互联(open systems interconnection,OSI)参考模型中的数据链路层。L1层可以为物理层。示例性的,L1层可以为OSI参考模型中的物理层。
在现有方式1中,通过F1接口的控制面,IAB节点和IAB宿主之间可以进行执行接口管理、对IAB-DU进行管理,以及执行UE上下文相关的配置等。通过F1接口的用户面,IAB节点和IAB宿主之间可以执行用户面数据的传输,以及下行传输状态反馈等功能。
然而,在现有的方式1中,接入链路部分的Uu接口只考虑了采用NR网络的无线接入技术,若将IAB网络引入到室内场景,虽然可以为支持NR的终端设备提供接入网络的服务,但无法为非3GPP的其他类型终端提供接入服务。此外,IAB节点目前也无法为接入到该节点的UE提供本地业务交换服务。
方式2,基于中继UE的方案。
如图6所示,在3GPP网络中,一个终端设备(例如记为中继UE)可以作为另一终端设备(例如记为远端UE)接入无线网络的中继节点,为其他终端设备接入网络提供中继服务。在中继UE(relay UE)和远端UE(remote UE)之间建立D2D连接,该D2D连接可以采用3GPP定义的PC5接口进行通信,或者也可以采用其他终端间直接通信技术,例如蓝牙、WiFi等。在中继UE和无线接入网(radio access network,RAN)设备之间建立3GPP的空口接入链路,例如LTE空口链路。
在方式2中,中继UE作为层2中继,为远端UE接入网络提供服务。假设D2D连接采用的是非3GPP接入技术,图7和图8分别给出了用户面和控制面的协议栈示意图。可以看出,在现有方式2中,中继UE为远端UE的用户面和控制面消息提供层2的传输功能。eNB在用户面作为远端UE的PDCP层锚点,在控制面作为远端UE的RRC层锚点。远端UE对网络侧可见。
然而,在现有的方式2中,UE作为层2中继对远端UE提供到网络接入的方案,虽然考虑了远端UE和中继UE之间的接入链路可以是非3GPP技术,但该技术中,也没有考虑远端UE之间的本地业务交换。且在现有的方式2中,缺乏在远端UE为非3GPP的终端设备的情况下,提供更具体的方案设计。
方式3,固定和移动网络融合的方案。
在3GPP R16中,研究了固定和移动网络融合(wireless wireline convergence)的课题,该课题中,主要考虑如何将传统的固网接入网和移动通信网络统一融合的接入到基于5G的移动核心网(5GC)中。如图9所示,大概有三种固网终端(5G-RG、FN-RG、5G Capable UE)需要通过固定网络接入5GC。
1)支持5G NAS功能的家庭网关(residential gateway,RG),即5G-RG。
5G-RG通过3GPP access接入时被称为固定无线接入(fixed wireless access,FWA),执行与UE一样的功能。5G-RG通过有线接入网时,引入支持N2接口的固网网关(如无线接入固网网关功能(wireless-access gateway function,W-AGF)),其拓扑位置等同3GPP的NG RAN。5G-RG与W-AGF可以建立PPPoE连接,并经由W-AGF接入5GC。在有线接入网侧的控制面信令和用户面数据均可通过PPPoE连接进行传输。
2)不支持5G NAS功能的家庭网关,如传统网关(Legacy-RG),或者叫固网RG(FN-RG)。
FN-RG与W-AGF建立Legacy固网连接,如PPPoE连接。控制面上,W-AGF替代FN-RG,生成并交互NAS和AS信令,并完成注册和建立PDU session。用户面上,W-AGF作为中继(relay)功能,将上/下行数据分别在固网连接和PDU session传输。
3)通过家庭网关(包括5G-RG和legacy RG)接入5G核心网的家庭终端,即能够支持5G的UE(5G capable UE)(如5G手机/PC等)。
5G capable UE沿用可信非3GPP或非可信非3GPP的架构和方案,将5G-RG/Legacy-RG作为接入点,通过接入TNAP/N3IWF接入5G网络。
上述方式3所介绍的方案,适用于支持5G的室内终端设备通过固定或者移动接入网,接入到5G核心网,与核心网之间交互NAS消息。然而,上述方式3的方案不支持为室内终端设备提供本地业务交换服务,且这些终端设备如果通过非3GPP接入技术接入到legacy RG,无法保证业务传输的服务质量(quality of service,QoS)。
上文简单的介绍了现有技术中常用的几种方式,具体的可以参考现有技术的描述,对此不作限定。由上文介绍的几种方式可知,在现有的方案中,有些仅支持NR无线接入技术,有些没有考虑家庭终端交互本地交换的业务的场景。
有鉴于此,本申请提供一种方案,使得在一些网络中,如家庭网络中,通过统一的通信架构,既可以支持多样化的家庭终端接入到网络,还可以支持多样化的家庭终端交互本地交换的业务。
下面主要以家庭网络为例进行示例性说明,结合附图详细说明本申请提供的各个实施例。应理解,下文实施例的方案不局限于家庭的接入场景,还可应用到非家庭场景中。如下文实施例的方案还可以用于工厂,办公室环境,实验室环境,校园环境等其它室内场景。下文实施例的方案可以用于任何具有多样化的终端设备和本地业务传输需求的环境。
图10是本申请实施例提供的一种数据传输的方法1000的示意性交互图。方法1000 可以包括如下步骤。
1010,通信设备接收第一接入技术终端传输的业务数据单元(service data unit,SDU)。
可以理解,在步骤1010中,通过第一接入技术接入的终端(如记为第一接入技术终端)向通信设备发送数据包,通信设备接收该数据包。通信设备,例如记为室内的接入点HAP(或者CPE等)。第一接入技术终端表示采用第一接入技术接入的终端。关于终端的形式有很多,例如在家庭场景中,可以为家庭终端;在其他场景,如工厂场景,可以为工厂场景下的终端,对此不作限定。为便于理解,作为示例,下文主要以家庭终端,或者说采用第一接入技术接入的家庭终端为例,进行说明。对于其他场景中的终端,仍可以使用本申请实施例的方案。
在本申请实施例中,SDU也可以理解为数据或数据包,或者业务等。通信设备接收第一接入技术终端传输的SDU,也可以理解为,通信设备接收第一接入技术终端传输的数据或数据包,或者也可以理解为,通信设备接收第一接入技术终端传输的业务。下文为统一,主要以数据包为例进行示例性说明。
可以理解的是,SDU表示协议层的SDU,其表示该协议层的数据包的载荷。例如,该协议层可以为本申请实施例提及的第一协议层(如适配层),也就是说,SDU为第一协议层的SDU(如SDU为适配层的SDU)。
1030,在SDU的目的节点为第二接入技术终端的情况下,通信设备不经过与通信设备连接的基站和核心网设备,将SDU透传给第二接入技术终端,其中,第一接入技术终端和第二接入技术终端连接通信设备。
第一接入技术终端和第二接入技术终端,可以理解为使用不同接入技术接入的家庭终端。一示例,第一接入技术终端为支持3GPP接入技术的家庭终端,即第一接入技术终端与通信设备之间可以通过3GPP接入技术的无线接口进行通信。作为示例而非限定,3GPP接入技术的无线接口可以包括但不限于:基于LTE制式的Uu接口,或者基于NR制式的Uu接口,或者PC5接口等。又一示例,第二接入技术终端为支持非3GPP接入技术的家庭终端,即第二接入技术终端与通信设备之间通过非3GPP接入技术的接口进行通信。作为示例而非限定,非3GPP接入技术的接口可以包括但不限于:WiFi、WLAN、Zigbee、Ziwave,蓝牙(Bluetooth)、UWB、RFID等无线接口,或者基于以太网的有线接口等。在本申请实施例中,接入技术用于表示终端接入通信设备所使用的接入技术。
通信设备不经过与通信设备连接的基站和核心网设备,将SDU透传给第二接入技术终端,或者说通信设备不经过与通信设备连接的基站和核心网设备,将第一接入技术终端传输的数据透传给第二接入技术终端,即表示第一接入技术终端向第二接入技术终端发送数据包时,可以通过通信设备进行转发,而不需要经过基站和核心网设备。其中,透传,可以表示通信设备可以直接将第一接入技术终端的数据包转发给第二接入技术终端,该通信设备不需要解析该数据包。具体地,例如,该通信设备的应用层和IP层等不需要解析该数据包。以图1所示的系统为例,当HUE1向HUE2发送数据包时,HUE1可以将数据包发送给HAP,由HAP将该数据包转发给HUE2,不需要经过基站或核心网设备。
在本申请实施例中,通信设备(如HAP)不仅可适配多种接入技术的终端设备,或者说,通信设备可支持多种接入技术,且通信设备可将终端传输的数据包路由到该数据包对应的目的节点。
可选地,方法1000还可以包括步骤1020。
1020,通信设备判断SDU的目的节点。
在本申请实施例中,为区分,用目的节点来表示SDU对应的目的节点或者目标地址。SDU的目的节点,即表示SDU对应的目的节点或者目标地址,或者说SDU是传输给哪个设备的。
可选地,目的节点可以包括以下一项或多项:其他家庭终端(如第二接入技术终端)、通信设备本身、gNB、核心网设备。也就是说,通信设备可以将家庭终端发送的SDU,向其他家庭终端路由,或者向gNB路由,或者向自己路由(如自己解析该SDU的内容)。
应理解,上文主要以第一接入技术终端和第二接入技术终端为例进行示例性说明,对此不作限定。例如,通信设备还可以连接更多数量的终端,或者,通信设备还可以连接更多接入技术的终端。
为便于理解,下文主要以HAP和家庭终端为例进行示例性说明。应理解,其命名不对本申请实施例的保护范围造成限定。
为简洁,下文主要以家庭终端发送数据包为例进行示例性说明,下文中提及的数据包均可替换为方法1000中的第一接入技术终端传输的SDU。
示例地,可以在HAP增加一通信协议层(即第一协议层),通过该通信协议层可用于多种接入技术的终端设备的接入,且可将终端传输的数据包路由到该数据包对应的目的节点。关于该通信协议层,一方面,通过该通信协议层,可以实现接入不同接入技术的终端设备;另一方面,通过该通信协议层,可以实现不同接入技术的终端设备之间也可以交互业务,对此,下文结合方面2的内容详细描述。
基于本申请实施例,在某些场景中,如基于IAB网络的无线回传架构,可以将室内的接入点HAP(或者可称为CPE)看做一类特殊的IAB节点。在接入链路部分进行扩展,即通过在HA链路新增一通信协议层(即第一协议层,如Adapt层),可以实现通过统一的通信架构,不仅可以适配不同接入技术的家庭终端,如支持3GPP接入技术的家庭终端或支持非3GPP接入技术的家庭终端,还可以支持多种业务,如家庭终端到网络侧的业务和家庭终端之间的业务交互。
作为示例而非限定,通信协议层可以为适配层(adaptation layer)。下文为简洁,简称为Adapt层。关于Adapt层的配置,下文详细说明。
下文,为便于描述,将家庭终端到网络侧的数据记为U2N业务的数据,将不经过基站和核心网,在至少一个HAP服务范围内不同家庭终端之间的数据记为本地(local)业务的数据。
下面结合图11和图12示出的协议栈的架构,分别介绍U2N业务传输和本地业务传输可能的协议栈架构。
一、U2N业务传输可能的协议栈架构。
图11示出了一可能的协议栈架构。如图11所示,U2N业务传输的协议栈中包括上层协议层(upper layer)、中间的HAP管理(management)层、以及低层协议层(lower layer)。
上层协议层,可以包含PDCP层。在控制面,上层协议层还可以包含RRC层。上层协议层是在家庭终端和基站之间对等的协议层。
中间的HAP管理层,可以借鉴CU-DU分离架构中的F1接口协议层。中间的HAP 管理层可以支持用户面和控制面。示例性的,HAP管理层的用户面协议层可以包括IP层、UDP层、GTP-U层中的一个或多个。可选地,HAP管理层的用户面协议层还包括PDCP层和/或IP安全(IP Security,IPsec)层。示例性的,HAP管理层的控制面协议层可以包括IP层、F1AP层、SCTP层中的一个或多个。可选地,HAP管理层的控制面协议层还包括PDCP层、IPsec层和数据报文传输层安全(datagram transport layer security,DTLS)层中的一个或多个。具体可以参考图4和图5所示意的IAB节点和宿主基站之间的F1接口的用户面和控制面协议层。
低层协议层,在家庭网络回传(home backhaul,HB)链路的部分,主要包含BAP协议层,以及HB链路的L2协议层和HB链路的L1协议层。为便于描述,将HB链路的L2协议层简记为HB L2,将HB链路的L1协议层简记为HB L1。其中HB L2部分有RLC层和MAC层,HB L1即为基于NR空口的物理层PHY。
低层协议层,在家庭网络接入(home access,HA)链路的部分,主要包含Adapt层,以及HA链路的L2协议层和HA链路的L1协议层。为便于描述,将HA链路的L2协议层简记为HA L2,将HA链路的L1协议层简记为HA L1。其中,HA L1和HA L2的协议层,可以具体视HA链路所采用的通信技术而定。一示例,若HA链路采用的是基于无线局域网(wireless local area network,WLAN)的通信方式,则HA L2对应的协议层可以包含IEEE 802.11系列技术的MAC层,HA L1对应的协议层可以包含IEEE 802.11系列技术的PHY层。又一示例,若HA链路采用的是基于无线个域网(wireless personal area network,WPAN)的通信方式,则HA L2对应的协议层可以包含IEEE802.15系列技术(例如IEEE802.15.1对应的蓝牙技术,或者IEEE802.15.4对应的Zigbee技术等)的MAC层,HA L1对应的协议层可以包含IEEE802.15系列技术的PHY层。应理解,在HA链路的部分,Adapt层为可选协议层。例如,在HA链路采用的是3GPP无线接入技术(radio access technology,RAT)时,可以无需Adapt层;在HA链路采用的是非3GPP无线接入技术时,需要Adapt层。
二、本地业务传输可能的协议栈架构。
基于本申请实施例中的HAP节点,可以支持家庭终端之间的业务交互(如第一接入技术终端和第二接入技术终端之间的业务交互)。关于家庭终端之间的业务交互,至少可以包括以下两种方式。
一种可能的方式,两个家庭终端之间可以建立D2D直连链路,从而这两个家庭终端之间可以通过D2D链路直接进行通信。例如,两个家庭终端之间可以建立基于PC5接口的直连通信链路,或者,两个家庭终端之间可以建立基于WiFi直连(WiFi direct)技术的直连传输链路,或者,两个家庭终端之间可以建立基于蓝牙/zigbee的直连传输链路。
又一种可能的方式,两个家庭终端可以通过HAP进行中继转发的方式进行通信,如参考图12所示的通信协议栈。在一些情况下,两个家庭终端之间可能无法建立直连链路,例如两个家庭终端之间的距离过远;或者两个家庭终端之间有遮挡,直连链路的信号质量差;或者两个家庭终端支持的接入技术各不相同等等。两个家庭终端之间无法建立直连链路,但两个家庭终端之间依然有交互数据的需求的情况下,可以通过HAP进行中继转发的方式提供两者之间的通信途径。此外,同样地,Adapt层在HA链路为可选协议层。
以两个家庭终端为例,例如记为HUE1和HUE2。如图12所示,HUE 1和HUE 2之 间有对等的PDCP协议层,HUE 1和HUE 2可以通过HAP进行本地业务交互。HAP与HUE 1可以基于HA链路通信,HAP与HUE 2也可以基于HA链路通信。应理解,HAP和HUE 1之间的HA链路,以及HAP和HUE 2之间的HA链路,可以采用相同的通信技术,也可以采用不同的通信技术,对此不作限定。
上文结合图11和图12分别介绍了U2N业务传输和本地业务传输可能的协议栈架构,基于上述架构,对于执行U2N业务的终端设备,由于PDCP层和RRC层的对等协议层均在gNB,因此,可以在室内外移动的过程中,基于RRC层控制切换流程,以及基于PDCP层数据包的转发保障业务连续性,进而可以实现终端设备在室内外移动的业务连续性保障。
应理解,图11和图12仅为示例性说明,对此不作限定。
下面结合几个方面,介绍本申请实施例。下面各个方面的内容可以单独使用,也可以结合使用,对此不作限定。
方面1,家庭终端通过HAP接入网络。
在家庭终端接入网络时,如接入gNB、核心网等,家庭终端可以通过HAP的协助接入网络,并使用网络资源。
可选地,在本申请实施例中,在家庭终端与gNB建立RRC连接之前,家庭终端和HAP均可以预先获得一套相应的配置信息,该配置信息可以用于传输家庭终端与gNB建立RRC连接时所需要传输的消息。例如,该配置信息可以用于传输对应于上行公共控制信道的消息,如该配置信息可以用于以下一项或多项消息的传输:RRC建立请求(RRCSetupRequest)消息、RRC重建立请求(RRCReestablishmentRequest)消息、RRC恢复请求(RRCResumeRequest)消息等;又如,该配置信息可以用于传输对应于下行公共控制信道的消息,如该配置信息可以用于传输RRC建立(RRCSetup)消息和/或RRC拒绝(RRCReject)消息。应理解,上述仅是示例性说明,对此不作限定。例如,也可以预先获得一套相应的配置信息,只要是用于传输家庭终端与gNB建立RRC连接时所需要传输的消息,均可以使用该配置信息。
一示例,预先获得的配置信息包括传输承载于公共信令无线承载(signaling radio bearer,SRB)上的消息所需要的配置信息。例如,预先获得的配置信息包括传输承载于SRB0上的消息所需要的配置信息,如承载于SRB0上的消息所需的QoS信息。下文,为简洁,将传输承载于SRB0上的消息所需要的配置信息记为对应于SRB0的配置。家庭终端向gNB发送RRC建立请求消息,RRC建立请求消息是基于预先获得的对应于SRB0的配置进行传输的。
其中,预先获得的配置信息(如对应于SRB0的配置),可以是根据协议预定义,配置在家庭终端和HAP上的。或者,预先获得的配置信息(如对应于SRB0的配置),也可以是HAP自身配置的,且HAP生成后,将该配置信息(如对应于SRB0的配置)发送给家庭终端。
通过本申请实施例,可以保障家庭终端在与gNB建立RRC连接之前,预先获取对应于SRB0的配置,以便于能传输家庭终端发送的需要承载于SRB0上的消息,如便于传输家庭终端的RRC建立请求等承载在SRB0上的消息。
下面结合图13,介绍家庭终端经由HAP接入网络的可能流程。图13所示的方法1300 可以包括如下步骤。
1310,HAP接入网络,在网络中执行认证鉴权。
关于HAP接入网络的过程,可以是参考IAB节点接入网络的方式。例如,一种可能的方式,HAP先按照终端设备的方式接入网络,然后HAP与gNB之间建立F1连接。
可选地,HAP还可以向网络表示自己是一个HAP或CPE,即自己是能为家庭终端提供接入的设备。示例地,gNB获知HAP为能够为家庭终端提供接入的设备后,可以为HAP执行一些配置,如为HAP配置HAP的Adapt层。
1320,家庭终端与HAP建立连接,HAP执行初始接入控制。
家庭终端可以通过多种接入技术与HAP建立连接。一种可能的方式,家庭终端可以通过3GPP组织制定的接入技术与HAP建立连接。3GPP组织制定的接入技术例如可以包括但不限于以下一项或多项技术:LTE Uu接口、NR Uu接口、侧行链路(sidelink)等。又一种可能的方式,家庭终端可以通过非3GPP组织制定的接入技术与HAP建立连接。非3GPP组织制定的接入技术例如可以包括但不限于以下一项或多项技术:WiFi、WLAN、Zigbee、Ziwave、蓝牙、UWB、RFID等。
可选地,家庭终端与gNB建立连接之后,例如在步骤1330中,HAP或者家庭终端可以向gNB通知,HAP与家庭终端之间的家庭接入链路所采用的接入技术(例如WiFi、WLAN、Zigbee、Ziwave、蓝牙、UWB、RFID等)。
一示例,HAP向gNB通知,HAP与家庭终端之间的家庭接入链路所采用的通信技术。在该示例下,该信息可以携带在HAP发给gNB的无线资源控制(radio resource control,RRC)消息或者F1接口应用层协议(F1application protocol,F1AP)消息中。又一示例,家庭终端向gNB通知,HAP与家庭终端之间的家庭接入链路所采用的通信技术。在该示例下,该信息可以携带在家庭终端发给gNB的RRC消息。
HAP对家庭终端执行初始接入控制。示例地,HAP可以与家庭终端之间进行认证。例如,HAP可以与家庭终端通过WLAN中基于共享秘钥(Shared key authentication)等链路认证方式进行认证。进一步地,认证服务器也可以对家庭终端进行认证。例如,在链路认证后,通过弹出门户网站(如Portal),然后输入用户名和密码的方式,由认证服务器对家庭终端进行认证。又如,在链路认证后,与认证服务器之间执行基于扩展认证协议(extensible authentication protocol,EAP)的认证方式等等。其中,认证服务器可以和HAP共部署,或者,认证服务器可以集成设置在HAP中,对此不作限定。
可选地,HAP可以为家庭终端分配家庭终端的本地标识(local identifier of HUE,LID-HUE)。家庭终端的本地标识可以用于在家庭网络内标识该家庭终端。
可选地,HAP可以将自己本地标识发送给家庭终端。HAP的本地标识(local identifier of HAP,LID-HAP)可以用于家庭终端与HAP之间进行业务传输时的路由或寻址。
家庭终端与HAP建立连接后,可以与gNB建立连接。
1330,家庭终端向gNB发起RRC建立过程。
可选地,在家庭终端具有与网络建立RRC连接的能力,或者说,具有接入5G接入网的能力的情况下,可执行步骤1330。
具体地,在该步骤1330中,可以包括以下步骤。
1、家庭终端向gNB发送RRC建立请求消息。
具体地,家庭终端经由HAP向gNB发送RRC建立请求消息。也就是说,家庭终端先向HAP发送RRC建立请求消息,HAP再将该RRC建立请求消息转发给gNB。一种可能的实现方式,HAP可将家庭终端的RRC建立请求消息封装在上行的F1AP消息中,经由承载在HAP与gNB之间回传链路上的F1接口,传输至gNB。例如,HAP将家庭终端的RRC消息封装在上行的F1AP消息中时,在F1AP消息中可以携带用于在HAP与gNB之间的F1接口上识别家庭终端的标识、以及SRB0的标识,然后经由承载在HAP与gNB之间回传链路上的F1接口传输至gNB。
可选地,RRC建立请求消息是基于预先获得的配置信息传输的。一示例,预先获得的配置信息包括对应于SRB0的配置(即传输承载于SRB0上消息所需要的配置信息)。也就是说,RRC建立请求消息是基于预先获得的对应于SRB0的配置进行传输的。
为了使家庭终端能顺利将RRC建立请求消息发至HAP,并被HAP识别出来,在家庭终端和HAP之间,需要一套相对应的配置,如对应于SRB0的配置。该对应于SRB0的配置可以用于传输SRB0上承载的RRC消息,例如RRC建立请求消息、RRC重建立请求消息等。
其中,预先获得的配置信息(如对应于SRB0的配置),可以是根据协议预定义,配置在家庭终端和HAP上的。或者,预先获得的配置信息(如对应于SRB0的配置),也可以是HAP自身配置的,且HAP生成后,将该配置信息(如对应于SRB0的配置)发送给家庭终端。例如,在步骤1320之后,HAP生成对应于SRB0的配置,并发送给家庭终端。
可选地,在家庭终端与HAP之间的HA链路上,该对应于SRB0的配置可以包括HA链路上与SRB0对应的QoS标识。QoS标识例如可以为以下任一形式:虚拟局域网(virtual local area network,VLAN)标签的载荷压缩协议(payload compression protocol,PCP)字段、虚拟局域网标识(VLAN ID)、以太网类型(EtherType)、差分服务代码点(differentiated services code point,DSCP)、IP优先级(IP Precedence)、WLAN中的接入类型(access category,AC)、多协议标签交换(multi-protocol label switching,MPLS)的EXP字段、IP五元组信息(协议类型,源IP地址,目的IP地址,源端口号,目的端口号)、源MAC地址信息、目的MAC地址信息、或其他可用于表明QoS需求的附加标签。
家庭终端向HAP发送SRB0上承载的RRC消息时,在HA链路的Adapt层,可以携带以下一项或多项:SRB0的标识、HAP的本地标识(LID-HAP)、家庭终端的本地标识(LID-HUE)。其中,通过携带SRB0的标识,可以用于HAP添加在携带有家庭终端上行RRC消息的F1AP消息中。
gNB接收到来自家庭终端的RRC建立请求消息后,基于该RRC建立请求消息进行处理和响应。
2、gNB向家庭终端发送RRC建立消息。
具体地,gNB经由HAP向家庭终端发送RRC建立消息。也就是说,gNB先向HAP发送RRC建立消息,HAP再将该RRC建立消息转发给家庭终端。一种可能的实现方式,gNB可以将RRC建立消息封装在下行F1AP消息中发送给HAP,HAP再将该RRC建立消息转发给家庭终端。示例地,gNB向HAP发送的RRC建立消息中可以包含家庭终端在F1接口上的标识以及SRB0的标识,这样,HAP可以将RRC建立消息通过家庭接入链路 发送给家庭终端。示例地,HAP在将RRC消息发送给家庭终端的时候,HAP在Adapt层的头信息中,可以添加家庭终端的SRB0的标识和/或家庭终端的本地标识LID-HUE。此外,HAP还可以添加对应于家庭终端SRB0的QoS标签,如HAP在家庭链路对应的链路层协议头中添加对应于家庭终端SRB0的QoS标签。
3、家庭终端向gNB发送RRC建立完成(RRCSetupComplete)消息。
具体地,家庭终端经由HAP向gNB发送RRC建立完成消息。也就是说,家庭终端先向HAP发送RRC建立完成消息,HAP再将该RRC建立完成消息转发给gNB。
家庭终端的RRC建立完成消息承载在SRB1上。例如,家庭终端可以通过SRB 1对应的QoS标签(或者说与SRB1对应的QoS标签),在HA链路上向HAP传输。其中,与SRB1对应的QoS标签,可以是由协议预定义的,或者,也可以是由HAP配置给家庭终端的,或者,可以是在步骤2中由gNB携带在下行RRC消息中发送给家庭终端,对此不作限定。
通过上述步骤,家庭终端与gNB建立RRC连接。
1340,家庭终端在网络中进行认证鉴权。
可选地,HAP可以判断家庭终端是否需要在核心网中进行认证授权。
在申请实施例中,关于家庭终端在核心网中的认证鉴权,至少包括以下两种情况。
一情况,家庭终端需要在核心网进行认证鉴权。
例如,HAP判断家庭终端需要在核心网中进行认证授权。在该情况下,关于家庭终端在核心网进行认证鉴权的方式有很多,本申请实施例不作限定。例如,如果家庭终端需要在核心网进行认证鉴权,则在该步骤1340后,gNB可以向核心网中的网元(例如接入管理功能AMF)转发家庭终端的非接入层(non access stratum,NAS)消息,基于该NAS消息,核心网可以执行对家庭终端进行认证和鉴权的过程,以便于家庭终端在核心网(如5G核心网)中完成认证鉴权。
又一情况,家庭终端不需要在核心网进行认证鉴权。
例如,HAP判断家庭终端不需要在核心网中进行认证授权。在该情况下,HAP可以向gNB发送指示信息,该指示信息用于向gNB指示家庭终端不需要进行认证鉴权,或者该指示信息用于向gNB指示家庭终端为可靠设备,可靠设备即表示无需在核心网认证的家庭终端设备。也就是说,对于一些不需要在5G核心网中认证和鉴权的家庭终端(例如,已经通过HAP或者HAP中内置的认证设备的认证,或者已经经由HAP在互联网的认证设备中完成了设备认证),HAP可以向gNB发送指示信息(例如在步骤1330中),表明该家庭终端设备无需在核心网再执行认证过程。通过该方式,可以避免核心网对家庭终端设备(即无需在核心网认证的家庭终端设备)进行额外的认证鉴权,从而可以节省认证鉴权带来的开销和时延。
一种可能的实现方式,该指示信息可以携带在HAP发送给gNB的F1AP消息中,例如该指示信息可以携带在对应于该家庭终端的上行F1AP消息中(如上述步骤3的F1AP消息中,即HAP用于向gNB传输家庭终端的RRC建立完成消息的F1AP消息)。又一种可能的实现方式,该指示信息可以携带在HAP发送给gNB的RRC消息中。
通过上述步骤,家庭终端可以经由HAP接入网络,并进行通信。
应理解,上述各个步骤仅是示例性说明,对此不作限定。例如,也可以不包括步骤 1330和步骤1340。
还应理解,各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。例如,步骤1330和步骤1340可以合并。
上文结合方面1介绍了家庭终端通过HAP接入网络的方案,下面结合方面2介绍家庭终端进行业务传输的方案。
方面2,家庭终端进行业务传输。
考虑到本申请提出的网络架构,支持家庭终端和网络之间的U2N业务,以及家庭网络内的本地业务的传输,两类业务的传输可能都需要经由HAP传输。
对于HAP来说,HAP收到家庭终端发来的数据包,至少包括以下三种场景:
场景1:家庭终端发送的数据包是发送给HAP自身的本地业务的数据包;
场景2:家庭终端发送的数据包是经由HAP转发给gNB的U2N业务的数据包;
场景3:家庭终端发送的数据包是经由HAP转发给其他家庭终端的数据包。
应理解,对于家庭终端之间的本地业务,可以通过家庭终端之间的通信链路进行通信,在该情况下,不需要HAP转发。
在本申请实施例中,HAP既需要有能力协助家庭终端传输到网络侧的业务数据或信令,又需要有能力在不同的家庭终端之间进行业务数据或信令的转发,还可能需要有能力与家庭终端之间进行业务数据或信令的交互。因此,在HA链路的数据传输,通过引入Adapt层,至少可以解决以下两个问题:数据包的路由,在上层协议层(PDCP层)和HA链路的低层协议层之间进行协议适配。
1、关于数据包的路由。
一种可能的方式,在Adapt层中引入目的节点的标识。通过该方式,HAP可以根据该目的节点的标识进行数据包的路由。例如,对于U2N业务,从家庭终端往HAP传输时,目的节点的标识可以为HAP的标识。又如,对于家庭网络的本地业务传输,假设HUE1要经由HAP向HUE2发数据包时,目的节点的标识可以为HUE2的标识。
2、关于在上层协议层(PDCP层)和HA链路的低层协议层之间进行协议适配。
可以为家庭终端配置从无线承载(radio bearer,RB)到HA链路的QoS标识的映射关系,该无线承载可以是信令无线承载SRB或者数据无线承载(data radio bearer,DRB)。为了满足终端设备不同类型业务的业务质量要求,无线网络中引入了一个或多个无线承载,无线承载包括DRB和SRB,用于在家庭终端和基站之间传输不同类型的业务数据(包括控制面信令以及用户面数据)。
家庭终端在发送数据包的时候,将无线承载对应的PDCP的PDU封装在Adapt层中,在Adapt层的头信息中添加家庭终端的无线承载标识,并在Adapt层中对数据包执行从无线承载映射到HA链路的QoS标识的映射,然后在HA链路的L2可基于具体的QoS标识保障数据包传输的QoS要求。
下面结合上述三种场景,分别介绍三个示例。
可选地,HAP可以根据数据包的业务类型和/或目的节点的标识,确定属于上述哪种场景。
示例1,在数据包中携带HAP的标识,且业务类型指示用于指示数据包的业务类型为本地业务的情况下,HAP可以自己解析数据包的内容。如HAP的Adapt层接收到一个 发给自己的数据包,可以将该数据包向Adapt层的上层协议层递交。
HAP接收到家庭终端发来的数据包后,在HA链路的Adapt层,如果目的节点的标识是HAP自己的标识,那么HAP需要进一步区分,该数据包是家庭终端传输给HAP自己的本地业务的数据包,还是需要经由HAP转发给gNB的U2N业务的数据包。对此,可以通过数据包的Adapt层中携带的业务类型指示确定。具体地,在示例1下,HAP的Adapt层从家庭终端收到一个Adapt层目标地址为自己的数据包,且数据包中携带的业务类型指示为本地业务,则HAP可以将Adapt层头移除后,将Adapt层的SDU向自己的上层协议层(例如IP层,或者应用层等)递交。
示例2,在数据包中携带HAP的标识,且业务类型指示用于指示数据包的业务类型为U2N业务的情况下,HAP向gNB转发数据包。
HAP接收到家庭终端发来的数据包后,在HA链路的Adapt层,如果目的节点的标识是HAP自己的标识,那么HAP需要进一步区分,该数据包是家庭终端传输给HAP自己的本地业务的数据包,还是需要经由HAP转发给gNB的U2N业务的数据包。对此,可以通过数据包的Adapt层中携带的业务类型指示确定。具体地,在示例2下,HAP的Adapt层从家庭终端收到一个Adapt层目标地址为自己的数据包,且数据包中携带的业务类型指示为U2N业务,则HAP可以将Adapt层头移除后,将Adapt层的SDU向自己的F1接口协议层(例如GTP-U协议层,或者F1AP协议层)递交,经由F1接口协议层的处理后,再向gNB传输。
示例3,在数据包中携带其他家庭终端的标识,HAP向其他家庭终端转发数据包。
HAP接收到家庭终端发来的数据包后,在HA链路的Adapt层,如果目的节点的标识是其他家庭终端的标识,则向相应的目的节点(即其他家庭终端)转发。
以HUE1和HUE2为例,在接收到HUE1的数据包后,若确定要向HUE2转发,则将接收到的数据包中Adapt层携带的HUE1的RB标识(identifier,ID)(RB ID),替换为HUE2的RB ID。并且,HAP可以将数据包在Adapt层映射为与HUE2之间L2的QoS标识,进而,HAP可以通过其与HUE2之间的HA链路,向HUE2发送数据包。
可选地,HAP可以维护不同家庭终端之间RB ID的对应关系,例如第一接入技术的终端的RB ID与第二接入技术的终端的RB ID之间的对应关系。具体地,对于中转的家庭网络的本地业务,HAP可以维护和不同家庭终端之间RB ID的对应关系。
HAP维护的家庭终端之间RB ID的对应关系,至少可以通过以下任一方式获得。
1)HAP自己生成(或者说确定)家庭终端之间RB ID的对应关系。
例如,HAP基于从gNB收到的不同家庭终端的无线承载的QoS参数,确定不同家庭终端之间RB ID的对应关系,并且维护该对应关系。以HUE1和HUE2为例,若HUE1的RB1和HUE2的RB2有相似QoS参数,则HAP在HUE1和HUE2之间有交换数据需求时,可以将HUE1的RB1和HUE2的RB2配置为对应的无线承载。
2)HAP从gNB获得家庭终端之间RB ID的对应关系。
例如,gNB确定不同家庭终端之间RB ID的对应关系,并且将该对应关系的信息发送给HAP,进而HAP维护该对应关系。以HUE1和HUE2为例,gNB发给HAP的配置信息中,可以包含HUE1的RB1和HUE2的RB2之间的对应关系。
在本申请实施例中,HAP维护的家庭终端之间RB ID的对应关系,可以使得HAP能 在不同家庭终端之间,按照业务对应的QoS要求,转发家庭终端之间交互的本地业务。从而,可以尽可能地提高通信性能。
应理解,上述仅是示例性说明,上述示例1至示例3中,HAP具体的处理过程可以根据实际通信情况进行相应的处理,对此不作限定。
上文结合方面2介绍了家庭终端进行业务传输的方案。通过本申请实施例,可以使得HAP在同时支持U2N业务和本地业务的传输的情况下,还能对两种类型的业务进行区分,以做不同的处理。
下面结合方面3介绍关于Adapt层的配置。
方面3,Adapt层的配置。
1、HAP的Adapt层的配置。
HAP的Adapt层的配置可以由HAP自己生成,即HAP自身配置HAP的Adapt层的配置。或者,HAP的Adapt层的配置可以由gNB配置,并且由gNB发送给HAP,如gNB通过RRC消息或者F1AP消息,将HAP的Adapt层的配置发送给HAP。
对于HAP来说,Adapt层的配置,例如可以包括但不限于一项或多项:HAP的Adapt层的标识、家庭终端的Adapt层标识、家庭终端在HA链路的L2标识和Adapt层标识的对应关系、家庭终端的无线承载和HA链路的QoS标识之间的对应关系、不同的家庭终端的RB之间的对应关系。
2、家庭终端的Adapt层配置。
家庭终端的Adapt层的配置可以由HAP给家庭终端配置。或者,家庭终端的Adapt层的配置可以由gNB给家庭终端配置,如gNB通过RRC消息给家庭终端配置。
家庭终端的Adapt层配置,例如可以包括但不限于一项或多项:HAP的Adapt层的标识、家庭终端的Adapt层标识、家庭终端的RB和HA链路的QoS标识之间的对应关系、其他家庭终端的Adapt层标识、其他家庭终端在HA链路的L2标识和Adapt层标识的对应关系。
上文结合方面3介绍了Adapt层的配置的方案。通过本申请实施例,可以使得HAP和家庭终端能获取到Adapt层的配置,以便于后续能进行业务的传输。
上文结合方面1至方面3分别介绍了家庭终端通过HAP接入网络、家庭终端进行业务传输、以及Adapt层配置,上述各个方面的内容可以单独使用,也可以结合使用。为便于理解,作为示例,下面结合图14,简单介绍一可能的完整流程。图14所示的方法1400可以包括如下步骤。
1410,HAP接入网络,在网络中执行认证鉴权。
步骤1410与上文方法1300中的步骤1310的具体过程相似。由于上文方法1300中已经对步骤1310做了详细说明,为了简洁,这里不再赘述。
1420,家庭终端与HAP建立连接,HAP执行初始接入控制。
步骤1420与上文方法1300中的步骤1320的具体过程相似。由于上文方法1300中已经对步骤1320做了详细说明,为了简洁,这里不再赘述。
1430,家庭终端向HAP发送数据包。
一种可能的场景,家庭终端发送的数据包是发送给HAP自身的本地业务的数据包。在该场景下,方法1400可以包括如下步骤1441。
1441,HAP将Adapt层头移除后,将Adapt层的SDU向自己的上层协议层递交。
例如,数据包中携带HAP的标识,且业务类型指示用于指示数据包的业务类型为本地业务。HAP的Adapt层从家庭终端收到一个Adapt层目标地址为自己的数据包,且数据包中携带的业务类型指示为本地业务,则HAP可以将Adapt层头移除后,将Adapt层的SDU向自己的上层协议层(例如IP层,或者应用层等)递交。
又一种可能的场景,家庭终端发送的数据包是发送给HAP自身的本地业务的数据包。在该场景下,方法1400可以包括如下步骤1442。
1442,HAP向gNB转发数据包。
例如,数据包中携带HAP的标识,且业务类型指示用于指示数据包的业务类型为U2N业务。HAP的Adapt层从家庭终端收到一个Adapt层目标地址为自己的数据包,且数据包中携带的业务类型指示为U2N业务,则HAP可以将Adapt层头移除后,将Adapt层的SDU向自己的F1接口协议层(例如GTP-U协议层,或者F1AP协议层)递交,经由F1接口协议层的处理后,再向gNB传输。
又一种可能的场景,家庭终端发送的数据包是发送给HAP自身的本地业务的数据包。在该场景下,方法1400可以包括如下步骤1443。
1443,HAP向其他家庭终端转发数据包。
其他家庭终端,可以包括一个家庭终端,也可以包括多个家庭终端,对此不作限定。
例如,HAP接收到家庭终端发来的数据包后,在HA链路的Adapt层,如果目的节点的标识是其他家庭终端的标识,则向相应的目的节点(即其他家庭终端)转发。以HUE1和HUE2为例,在接收到HUE1的数据包后,若确定要向HUE2转发,则将接收到的数据包中Adapt层携带的HUE1的RB ID,替换为HUE2的RB ID。并且,HAP可以将数据包在Adapt层映射为与HUE2之间L2的QoS标识,进而,HAP可以通过其与HUE2之间的HA链路,向HUE2发送数据包。
可选地,HAP可以维护不同家庭终端之间RB ID的对应关系。具体地,可以参考上文方面2中的描述,为了简洁,这里不再赘述。
应理解,上述各个步骤仅是示例性说明,对此不作限定。例如,在步骤1430之前,家庭终端还可以向gNB发起RRC建立过程,具体地,可以参考方法1300中的步骤1330。又如,家庭终端还可以在网络中进行认证鉴权,具体地,可以参考方法1300中的步骤1340。
应理解,在上述一些实施例中,主要以家庭场景为例进行描述,但这并不对本申请造成限定,任何具有多种接入技术终端和有本地业务传输需求的环境中均适用于本申请实施例。
还应理解,在上文一些实施例中,以SDU为例进行示例性说明,对此本领域技术人员应理解其含义。SDU例如也可以替换为数据。
还应理解,在上文一些实施例中,SDU的目的节点和数据的目的节点有时交替使用,其均用于表示数据的目的节点,或者说数据是传输给哪个设备的。
还应理解,在上述一些实施例中,主要以接入技术不同的终端为例进行示例性说明,应理解,接入技术相同的终端也适用于本申请实施例的方案,如接入技术相同的终端也可以使用本申请实施例提供的业务传输的方案。
还应理解,在上述一些实施例中,将终端接入通信设备的技术记为接入技术,应理解, 其命名不对本申请实施例的保护范围造成限定。例如,接入技术也可以替换为接入制式。
基于上述技术方案,基于IAB网络的无线回传架构,可以将室内的接入点HAP(或者可称为CPE)看做一类特殊的IAB节点。在接入链路部分进行扩展,即通过在HA链路新增一通信协议层(即第一协议层,如Adapt层),可以实现通过统一的通信架构,不仅可以适配多接入技术的家庭终端,如支持3GPP接入技术的家庭终端或支持非3GPP接入技术的家庭终端,还可以支持多种业务,如家庭终端到网络侧的业务和家庭终端之间的业务交互。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备(如家庭终端或HAP)实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备(如HAP或者基站)实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图3至图14详细说明了本申请实施例提供的方法。以下,结合图15至图18详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图15是本申请实施例提供的通信装置的示意性框图。该通信装置1500包括收发单元1510和处理单元1520。收发单元1510可以实现相应的通信功能,处理单元1510用于进行数据处理。收发单元1510还可以称为通信接口或通信单元。
可选地,该通信装置1500还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1520可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1500可以用于执行上文方法实施例中通信设备(如HAP)所执行的动作,这时,该通信装置1500可以为通信设备(如HAP)或者可配置于通信设备(如HAP)的部件,收发单元1510用于执行上文方法实施例中通信设备(如HAP)侧的收发相关的操作,处理单元1520用于执行上文方法实施例中通信设备(如HAP)侧的处理相关的操作。
或者,该通信装置1500可以用于执行上文方法实施例中第一接入技术终端(如家庭终端)所执行的动作,这时,该通信装置1500可以为第一接入技术终端(如家庭终端)或者可配置于第一接入技术终端(如家庭终端)的部件,收发单元1510用于执行上文方 法实施例中第一接入技术终端(如家庭终端)侧的收发相关的操作,处理单元1520用于执行上文方法实施例中第一接入技术终端(如家庭终端)侧的处理相关的操作。
作为一种设计,该通信装置1500用于执行上文图10至图14所示实施例中通信设备(如HAP)所执行的动作,处理单元1520用于:判断第一接入技术终端的业务数据单元SDU的目的节点;收发单元1510用于:在SDU的目的节点为第二接入技术终端的情况下,不经过与通信装置1500连接的基站和核心网设备,将SDU透传给第二接入技术终端;其中,第一接入技术终端和第二接入技术终端连接通信装置1500。
作为一示例,收发单元1510还用于:在目的节点为基站或核心网设备的情况下,向基站或核心网设备转发SDU;或者,处理单元1520还用于:在目的节点为通信装置1500的情况下,解析SDU的内容。
作为又一示例,处理单元1520具体用于:根据第一接入技术终端携带的目的节点的标识和/或业务类型指示,判断SDU的目的节点。
作为又一示例,处理单元1520具体用于:在目的节点的标识为通信装置1500的标识,且业务类型指示本地业务的情况下,判断目的节点为通信装置1500;或者,在目的节点的标识为通信装置1500的标识,且业务类型指示非本地业务的情况下,判断目的节点为基站或核心网设备;或者,在目的节点的标识为第二接入技术终端的标识的情况下,判断目的节点为第二接入技术终端。
作为又一示例,收发单元1510还用于:接收第一接入技术终端发送的承载于公共信令无线承载上的消息,传输承载于公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于公共信令无线承载上的消息所需要的配置信息是由通信装置1500预先配置的。
作为又一示例,处理单元1520还用于:判断第一接入技术终端是否需要在核心网进行认证;在第一接入技术终端不需要在核心网进行认证的情况下,收发单元1510还用于:向基站发送指示信息,指示信息用于向指示第一接入技术终端为可靠设备。
作为又一示例,收发单元1510还用于:获取对应关系,对应关系包括第一接入技术终端的无线承载标识与第二接入技术终端的无线承载标识之间的对应关系。
作为又一示例,收发单元1510具体用于:接收来自所基站的第一接入技术终端和第二接入技术终端的无线承载的服务质量参数,并基于第一接入技术终端的无线承载的服务质量参数和第二接入技术终端的无线承载的服务质量参数生成对应关系;或者,接收基站发送的对应关系的信息。
作为又一示例,收发单元1510具体用于:在通信协议层接收SDU,其中,通信协议层的配置信息是通信装置1500配置的,或者,通信协议层的配置信息是基站配置的。
作为又一示例,通信协议层的配置信息包括以下一项或多项:通信装置1500的通信协议层的标识、第一接入技术终端的通信协议层的标识、第一接入技术终端在通信链路的层2标识和通信协议层标识的对应关系、第一接入技术终端的无线承载和通信链路的服务质量之间的对应关系、第一接入技术终端的无线承载标识与第二接入技术终端的无线承载标识之间的对应关系;其中,通信链路为通信装置1500与第一接入技术终端通信的链路。
该通信装置1500可实现对应于根据本申请方法实施例中的通信设备(如HAP)执行的步骤或者流程,该通信装置1500可以包括用于执行图10至图14所示实施例中的通信 设备(如HAP)执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图10至图14所示实施例中的相应流程。
其中,当该通信装置1500用于执行图10中的方法1000时,收发单元1510可用于执行方法1000中的步骤1010和1030,处理单元1520可用于执行方法1000中的步骤1020。
当该通信装置1500用于执行图13中的方法1300时,收发单元1510可用于执行方法1300中的步骤1330,处理单元1520可用于执行方法1300中的步骤1310、1320。
当该通信装置1500用于执行图14中的方法1400时,收发单元1510可用于执行方法1400中的步骤1430、1442、1443,处理单元1520可用于执行方法1400中的步骤1410、1420、1441。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,通信装置1500用于执行上文图10至图14所示实施例中第一接入技术终端(如家庭终端)所执行的动作,处理单元1520用于:连接到通信设备,且通过通信设备连接到基站和核心网设备;收发单元1510用于:向通信设备发送SDU,其中,通信装置1500携带目的节点的标识和/或业务类型指示,目的节点的标识和/或业务类型指示用于确定SDU的目的节点。
作为一示例,在目的节点的标识为通信设备的标识,且业务类型指示本地业务的情况下,SDU的目的节点为通信设备;或者,在目的节点的标识为通信设备的标识,且业务类型指示非本地业务的情况下,SDU的目的节点为基站或核心网设备;或者,在目的节点的标识为通信装置1500的标识的情况下,SDU的目的节点为通信装置1500。
作为又一示例,收发单元1510还用于:向通信设备发送承载于公共信令无线承载上的消息,传输承载于公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于公共信令无线承载上的消息所需要的配置信息是由通信设备预先配置的。
作为又一示例,通信装置1500的无线承载标识与第二接入技术终端的无线承载标识之间具有对应关系。
该通信装置1500可实现对应于根据本申请方法实施例中的第一接入技术终端(如家庭终端)执行的步骤或者流程,该通信装置1500可以包括用于执行图10至图14所示实施例中的第一接入技术终端(如家庭终端)执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图10至图14所示实施例中的相应流程。
其中,当该通信装置1500用于执行图10中的方法1000时,收发单元1510可用于执行方法1000中的步骤1010。
当该通信装置1500用于执行图13中的方法1300时,收发单元1510可用于执行方法1300中的步骤1330,处理单元1520可用于执行方法1300中的步骤1320。
当该通信装置1500用于执行图14中的方法1400时,收发单元1510可用于执行方法1400中的步骤1430,处理单元1520可用于执行方法1400中的步骤1420。
上文实施例中的处理单元1520可以由至少一个处理器或处理器相关电路实现。收发单元1510可以由收发器或收发器相关电路实现。收发单元1510还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
如图16所示,本申请实施例还提供一种通信装置1600。该通信装置1600包括处理器1610,处理器1610与存储器1620耦合,存储器1620用于存储计算机程序或指令和/或数据,处理器1610用于执行存储器1620存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1600包括的处理器1610为一个或多个。
可选地,如图16所示,该通信装置1600还可以包括存储器1620。
可选地,该通信装置1600包括的存储器1620可以为一个或多个。
可选地,该存储器1620可以与该处理器1610集成在一起,或者分离设置。
可选地,如图16所示,该通信装置1600还可以包括收发器1630,收发器1630用于信号的接收和/或发送。例如,处理器1610用于控制收发器1630进行信号的接收和/或发送。
作为一种方案,该通信装置1600用于实现上文方法实施例中由通信设备(如HAP)执行的操作。
例如,处理器1610用于实现上文方法实施例中由HAP执行的处理相关的操作,收发器1630用于实现上文方法实施例中由HAP执行的收发相关的操作。
作为另一种方案,该通信装置1600用于实现上文方法实施例中由第一接入技术终端(如家庭终端)执行的操作。
例如,处理器1610用于实现上文方法实施例中由家庭终端执行的处理相关的操作,收发器1630用于实现上文方法实施例中由家庭终端执行的收发相关的操作。
本申请实施例还提供一种通信装置1700,该通信装置1700可以是终端设备也可以是芯片。该通信装置1700可以用于执行上述方法实施例中由家庭终端所执行的操作。
当该通信装置1700为终端设备时,图17示出了一种简化的终端设备的结构示意图。如图17所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图17中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图17所示,终端设备包括收发单元1710和处理单元1720。收发单元1710也可以 称为收发器、收发机、收发装置等。处理单元1720也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1710中用于实现接收功能的器件视为接收单元,将收发单元1710中用于实现发送功能的器件视为发送单元,即收发单元1710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1720用于执行图10至图14中家庭终端侧的处理动作。例如,处理单元1720用于执行图10至图14中的处理步骤;收发单元1710用于执行图10至图14中的收发操作。
应理解,图17仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图17所示的结构。
当该通信装置1700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1800,该通信装置1800可以是通信设备也可以是芯片。该通信装置1800可以用于执行上述方法实施例中由通信设备(如HAP或gNB)所执行的操作。
当该通信装置1800为通信设备时。图18示出了一种简化的通信设备结构示意图。通信设备包括1810部分以及1820部分。1810部分主要用于射频信号的收发以及射频信号与基带信号的转换;1820部分主要用于基带处理,对网络设备进行控制等。1810部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1820部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述方法实施例中网络设备侧的处理操作。
1810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1810部分的收发单元用于执行图10至图14所示实施例中由通信设备执行的收发相关的步骤;1820部分用于执行图10至图14所示实施例中由通信设备执行的处理相关的步骤。
应理解,图18仅为示例而非限定,上述包括收发单元和处理单元的通信设备可以不依赖于图18所示的结构。
当该通信装置1800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第一接入技术终端(如家庭终端)执行的方法,或由通信设备(如HAP)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由第一接入技术终端(如家庭终端)执行的方法,或由通信设备(如HAP)执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由第一接入技术终端(如家庭终端)执行的方法,或由通信设备(如HAP)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的第一接入技术终端(如家庭终端)与通信设备(如HAP);或者,该通信系统包括上文实施例中的第一接入技术终端(如家庭终端)、第二接入技术终端(如家庭终端)、以及通信设备(如HAP);或者,该通信系统包括上文实施例中的第一接入技术终端(如家庭终端)、第二接入技术终端(如家庭终端)、通信设备(如HAP)、基站和/或核心网设备。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬 盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是:通用计算机,个人计算机,专用计算机,计算机网络,服务器,网络设备,或者其他可编程装置等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (25)

  1. 一种通信设备,其特征在于,包括:
    所述通信设备,用于判断第一接入技术终端的业务数据单元SDU的目的节点;
    所述通信设备,还用于在所述SDU的目的节点为第二接入技术终端的情况下,不经过与所述通信设备连接的基站和核心网设备,将所述SDU透传给所述第二接入技术终端;
    其中,所述第一接入技术终端和所述第二接入技术终端连接所述通信设备。
  2. 根据权利要求1所述的通信设备,其特征在于,所述通信设备,还用于:
    在所述SDU的目的节点为所述基站或所述核心网设备的情况下,向所述基站或所述核心网设备转发所述SDU;或者,
    在所述SDU的目的节点为所述通信设备的情况下,解析所述SDU的内容。
  3. 根据权利要求1或2所述的通信设备,其特征在于,所述通信设备,具体用于:
    根据所述第一接入技术终端携带的目的节点的标识和/或业务类型指示,判断所述SDU的目的节点。
  4. 根据权利要求3所述的通信设备,其特征在于,所述通信设备,具体用于:
    在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示本地业务的情况下,判断所述SDU的目的节点为所述通信设备;或者,
    在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示非本地业务的情况下,判断所述SDU的目的节点为所述基站或所述核心网设备;或者,
    在所述目的节点的标识为所述第二接入技术终端的标识的情况下,判断所述SDU的目的节点为所述第二接入技术终端。
  5. 根据权利要求1至4中任一项所述的通信设备,其特征在于,所述通信设备,还用于:
    接收所述第一接入技术终端发送的承载于公共信令无线承载上的消息,传输承载于所述公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于所述公共信令无线承载上的消息所需要的配置信息是由所述通信设备预先配置的。
  6. 根据权利要求1至5中任一项所述的通信设备,其特征在于,所述通信设备,还用于:
    判断所述第一接入技术终端是否需要在所述核心网进行认证;
    在所述第一接入技术终端不需要在所述核心网进行认证的情况下,向所述基站发送指示信息,所述指示信息用于向指示所述第一接入技术终端为可靠设备。
  7. 根据权利要求1至6中任一项所述的通信设备,其特征在于,所述通信设备,还用于:
    获取对应关系,所述对应关系包括所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系。
  8. 根据权利要求7所述的通信设备,其特征在于,所述通信设备,具体用于:
    接收来自所述基站的所述第一接入技术终端和所述第二接入技术终端的无线承载的服务质量参数,并基于所述第一接入技术终端的无线承载的服务质量参数和所述第二接入 技术终端的无线承载的服务质量参数生成所述对应关系;或者,
    接收所述基站发送的所述对应关系的信息。
  9. 根据权利要求1至8中任一项所述的通信设备,其特征在于,所述通信设备,具体用于:
    在所述通信设备的第一协议层接收所述第一接入技术终端传输的所述SDU,其中,所述所述通信设备的第一协议层的配置信息是所述通信设备配置的,或者,所述通信设备的第一协议层的配置信息是所述基站配置的。
  10. 一种数据传输的方法,其特征在于,包括:
    通信设备接收第一接入技术终端传输的业务数据单元SDU;
    所述通信设备判断所述SDU的目的节点;
    在所述SDU的目的节点为第二接入技术终端的情况下,所述通信设备不经过与所述通信设备连接的基站和核心网设备,将所述SDU透传给所述第二接入技术终端;
    其中,所述第一接入技术终端和所述第二接入技术终端连接所述通信设备。
  11. 根据权利要求10所述的方法,其特征在于,
    在所述SDU的目的节点为所述基站或所述核心网设备的情况下,所述通信设备向所述基站或所述核心网设备转发所述SDU;或者,
    在所述SDU的目的节点为所述通信设备的情况下,所述通信设备解析所述SDU的内容。
  12. 根据权利要求10或11所述的方法,其特征在于,所述通信设备判断所述SDU的目的节点,包括:
    所述通信设备根据所述第一接入技术终端携带的目的节点的标识和/或业务类型指示,判断所述SDU的目的节点。
  13. 根据权利要求12所述的方法,其特征在于,
    在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示本地业务的情况下,所述通信设备判断所述SDU的目的节点为所述通信设备;或者,
    在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示非本地业务的情况下,所述通信设备判断所述SDU的目的节点为所述基站或所述核心网设备;或者,
    在所述目的节点的标识为所述第二接入技术终端的标识的情况下,所述通信设备判断所述SDU的目的节点为所述第二接入技术终端。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备接收所述第一接入技术终端发送的承载于公共信令无线承载上的消息,传输承载于所述公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于所述公共信令无线承载上的消息所需要的配置信息是由所述通信设备预先配置的。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备判断所述第一接入技术终端是否需要在所述核心网进行认证;
    在所述第一接入技术终端不需要在所述核心网进行认证的情况下,所述通信设备向所述基站发送指示信息,所述指示信息用于向指示所述第一接入技术终端为可靠设备。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备获取对应关系,所述对应关系包括所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系。
  17. 根据权利要求16所述的方法,其特征在于,所述通信设备获取对应关系,包括:
    所述通信设备接收来自所述基站的所述第一接入技术终端和所述第二接入技术终端的无线承载的服务质量参数,并基于所述第一接入技术终端的无线承载的服务质量参数和所述第二接入技术终端的无线承载的服务质量参数生成所述对应关系;或者,
    所述通信设备接收所述基站发送的所述对应关系的信息。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,
    所述通信设备接收第一接入技术终端传输的SDU,包括:
    所述通信设备在所述通信设备的第一协议层接收所述SDU,其中,所述通信设备的第一协议层的配置信息是所述通信设备配置的,或者,所述通信设备的第一协议层的配置信息是所述基站配置的。
  19. 根据权利要求18所述的方法,其特征在于,所述通信设备的第一协议层的配置信息包括以下一项或多项:
    所述通信设备的第一协议层的标识、所述第一接入技术终端的第一协议层的标识、所述第一接入技术终端在通信链路的层2标识和所述第一协议层标识的对应关系、所述第一接入技术终端的无线承载和所述通信链路的服务质量之间的对应关系、所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间的对应关系;
    其中,所述通信链路为所述通信设备与所述第一接入技术终端通信的链路。
  20. 一种数据传输的方法,其特征在于,包括:
    第一接入技术终端连接到通信设备,且所述第一接入技术终端通过所述通信设备连接到基站和核心网设备;
    所述第一接入技术终端向所述通信设备发送业务数据单元SDU,其中,所述第一接入技术终端携带目的节点的标识和/或业务类型指示,所述目的节点的标识和/或所述业务类型指示用于确定所述SDU的目的节点。
  21. 根据权利要求20所述的方法,其特征在于,
    在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示本地业务的情况下,所述SDU的目的节点为所述通信设备;或者,
    在所述目的节点的标识为所述通信设备的标识,且所述业务类型指示非本地业务的情况下,所述SDU的目的节点为所述基站或所述核心网设备;或者,
    在所述目的节点的标识为所述第二接入技术终端的标识的情况下,所述SDU的目的节点为第二接入技术终端。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述第一接入技术终端向所述通信设备发送承载于公共信令无线承载上的消息,传输承载于所述公共信令无线承载上的消息所需要的配置信息是协议预定义的,或者,传输承载于所述公共信令无线承载上的消息所需要的配置信息是由所述通信设备预先配置的。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,
    所述第一接入技术终端的无线承载标识与所述第二接入技术终端的无线承载标识之间具有对应关系。
  24. 一种数据传输的装置,其特征在于,包括:至少一个处理器,所述至少一个处理器用于执行权利要求10至23中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求10至23中任一项所述的方法。
PCT/CN2020/115531 2020-09-16 2020-09-16 通信设备、数据传输的方法和装置 WO2022056708A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080103539.3A CN116097890A (zh) 2020-09-16 2020-09-16 通信设备、数据传输的方法和装置
PCT/CN2020/115531 WO2022056708A1 (zh) 2020-09-16 2020-09-16 通信设备、数据传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115531 WO2022056708A1 (zh) 2020-09-16 2020-09-16 通信设备、数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2022056708A1 true WO2022056708A1 (zh) 2022-03-24

Family

ID=80777534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115531 WO2022056708A1 (zh) 2020-09-16 2020-09-16 通信设备、数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN116097890A (zh)
WO (1) WO2022056708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955688A (zh) * 2023-03-03 2023-04-11 新华三技术有限公司 一种应用于5g的数据传输方法、系统、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172078A (zh) * 2008-10-01 2011-08-31 爱立信电话股份有限公司 用于使家庭基站能够在上行链路数据分组的本地与远程传输之间选择的方法
US20130067056A1 (en) * 2011-09-12 2013-03-14 Qualcomm Atheros, Inc. Providing communication path information in a hybrid communication network
CN103297947A (zh) * 2012-02-22 2013-09-11 中兴通讯股份有限公司 一种实现本地ip业务的方法及系统
CN103404184A (zh) * 2011-02-24 2013-11-20 交互数字专利控股公司 稳定本地出口概念及使用
WO2020143061A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 用于资源建立的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172078A (zh) * 2008-10-01 2011-08-31 爱立信电话股份有限公司 用于使家庭基站能够在上行链路数据分组的本地与远程传输之间选择的方法
CN103404184A (zh) * 2011-02-24 2013-11-20 交互数字专利控股公司 稳定本地出口概念及使用
US20130067056A1 (en) * 2011-09-12 2013-03-14 Qualcomm Atheros, Inc. Providing communication path information in a hybrid communication network
CN103297947A (zh) * 2012-02-22 2013-09-11 中兴通讯股份有限公司 一种实现本地ip业务的方法及系统
WO2020143061A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 用于资源建立的方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955688A (zh) * 2023-03-03 2023-04-11 新华三技术有限公司 一种应用于5g的数据传输方法、系统、装置及电子设备
CN115955688B (zh) * 2023-03-03 2023-05-26 新华三技术有限公司 一种应用于5g的数据传输方法、系统、装置及电子设备

Also Published As

Publication number Publication date
CN116097890A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US11470666B2 (en) Autonomous formation for backhaul networks
WO2019128947A1 (zh) 通信方法和通信设备
US11647561B2 (en) Node and communication method
JP7516578B2 (ja) Iabネットワーク通信方法及び関連デバイス
WO2022028493A1 (zh) 一种iab节点的配置方法及通信装置
WO2019047197A1 (en) METHOD AND SYSTEM FOR INTEGRATING FIXED ACCESS IN A CONVERGED 5G HEART
WO2019157985A1 (zh) 一种无线回传通信处理方法和相关设备
WO2016173078A1 (zh) 一种数据中转传输方法、系统和具备中继功能的ue
WO2017118191A1 (zh) 一种控制面信息的传输方法及装置
EP2835937A1 (en) Method, ue and access network device for implementing data transmission of convergence network
WO2016078278A1 (zh) 一种无线中继站及其接入核心网的方法和系统
CN114467288A (zh) 一种数据包传输方法及装置
WO2016184150A1 (zh) 一种多跳通信系统及其节点
WO2014036728A1 (zh) 一种空口传输方法及相关设备、系统
WO2022151296A1 (zh) 通信方法及装置
WO2022056708A1 (zh) 通信设备、数据传输的方法和装置
CN106454754B (zh) 数据传输方法及宽带集群系统
US20220264602A1 (en) Communication method and apparatus
JP6156843B2 (ja) 無線通信方法、そのシステムおよび無線基地局
WO2019232683A1 (zh) 小区建立的方法和装置
WO2022160288A1 (zh) 一种无线通信的方法和装置
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2014205838A1 (zh) 数据转发方法、中继节点设备及网络系统
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953568

Country of ref document: EP

Kind code of ref document: A1