WO2022205993A1 - 一种数据重传方法及相关设备 - Google Patents

一种数据重传方法及相关设备 Download PDF

Info

Publication number
WO2022205993A1
WO2022205993A1 PCT/CN2021/135417 CN2021135417W WO2022205993A1 WO 2022205993 A1 WO2022205993 A1 WO 2022205993A1 CN 2021135417 W CN2021135417 W CN 2021135417W WO 2022205993 A1 WO2022205993 A1 WO 2022205993A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
retransmission
retransmission timer
harq feedback
information
Prior art date
Application number
PCT/CN2021/135417
Other languages
English (en)
French (fr)
Inventor
卢前溪
冷冰雪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180095919.1A priority Critical patent/CN117063582A/zh
Priority to EP21934629.3A priority patent/EP4301073A1/en
Priority to KR1020237035279A priority patent/KR20230164086A/ko
Priority to JP2023559140A priority patent/JP2024514070A/ja
Publication of WO2022205993A1 publication Critical patent/WO2022205993A1/zh
Priority to US18/471,697 priority patent/US20240014945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of network technologies, and in particular, to a data retransmission method and related equipment.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • DRX is based on the round trip time timer (round trip timer).
  • timer, RTT) and re-transmission timer are implemented, that is, during the operation of RTT, the user equipment (user equipment, UE) does not need to perform downlink monitoring, and then performs downlink during the operation of the retransmission timer. monitor.
  • R16 introduces a flexible HARQ feedback activation/deactivation mechanism.
  • the resource scheduling time interval is uncertain.
  • the receiving UE on the sidelink since it does not know the HARQ feedback activation/deactivation decision of the transmitting UE, it is unclear how to monitor the retransmitted data, which affects the data transmission efficiency.
  • Embodiments of the present invention provide a data retransmission method and related equipment, which can save power consumption and improve data transmission efficiency.
  • an embodiment of the present application provides a data retransmission method, including:
  • the first device receives first information from the second device, where the first information includes a hybrid automatic repeat request HARQ feedback indication;
  • the first device uses the first retransmission timer duration to monitor the retransmission data sent by the second device, and when the HARQ feedback indication is to disable HARQ feedback In this case, the first device uses the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device in the sidelink, can select a retransmission timer according to different HARQ feedback instructions to monitor the retransmission timer sent by the second device (the UE at the transmitting end).
  • data is transmitted, so that the second device is in a dormant state before starting the retransmission timer, thereby saving power.
  • the success rate of data transmission is guaranteed and the data transmission efficiency is improved.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • the duration of the first retransmission timer and the duration of the second retransmission timer are pre-configured.
  • the first device receives second information from the second device, where the second information includes the first retransmission timer duration and the second retransmission timer duration.
  • the first device receives configuration information from a network device, where the configuration information includes the first retransmission timer duration and the second retransmission timer duration.
  • the first device using the first retransmission timer to receive the retransmission data sent by the second device includes:
  • the first device starts the first round-trip time timer RTT duration
  • the first device monitors the retransmission data sent by the second device by using the first retransmission timer duration after the first RTT duration expires.
  • the first device using the second retransmission timer duration to monitor the retransmission data sent by the second device includes:
  • the first device uses the second retransmission timer duration to monitor the retransmission data sent by the second device at the first moment.
  • the first moment is after receiving the first information, after receiving the data channel corresponding to the first information, after receiving the first information after a preset time period, and after receiving the first information. At least one of the data channels corresponding to a piece of information after a preset time period has elapsed.
  • the first device using the second retransmission timer duration to monitor the retransmission data sent by the second device includes:
  • the first device starts the second round trip time timer RTT duration
  • the first device uses the second retransmission timer duration to monitor the retransmission data sent by the second device after the second RTT duration expires.
  • an embodiment of the present application provides a data retransmission method, including:
  • the second device sends first information to the first device, where the first information includes the HARQ feedback indication, and if the HARQ feedback indication is to enable HARQ feedback, the HARQ feedback enable is used to indicate that the HARQ feedback is enabled.
  • a retransmission timer is used to monitor the retransmission data sent by the second device.
  • the HARQ feedback disable is used to indicate that the second retransmission timer is used to monitor the retransmission data sent by the second device. the retransmission data sent by the second device.
  • the second device in the sidelink, can send the HARQ feedback indication determined by the second device to the first device, so that the first device (the UE at the receiving end) can
  • the HARQ feedback indication of the retransmission timer is selected to monitor the retransmission data sent by the second device (the sender UE), so that the second device is in a dormant state before starting the retransmission timer, thereby saving power.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • determining the HARQ feedback indication of the HARQ by the second device includes:
  • the second device receives the HARQ feedback indication from a network device.
  • the second device sends the HARQ feedback indication to the network device.
  • the second device sends second information to the first device, where the second information includes the duration of the first retransmission timer and the duration of the second retransmission timer.
  • an embodiment of the present application provides a data retransmission method, including:
  • the network device receives the HARQ feedback indication of the hybrid automatic repeat request from the second device, or sends the HARQ feedback indication to the second device;
  • the network device allocates time-frequency resources according to the HARQ feedback indication.
  • the network device when the network device schedules sidelink resources, since the network device knows the status of HARQ feedback on or off to allocate time-frequency resources, the network device can determine the resource scheduling time interval, which is beneficial to The first device configures a corresponding DRX mechanism to receive data.
  • the HARQ feedback indication is used to instruct the second device to turn on HARQ feedback or turn off HARQ feedback on a specific time-frequency resource.
  • an embodiment of the present application provides a data retransmission method, including:
  • the first device receives first information from the network or pre-configured, where the first information includes the HARQ feedback channel configuration of the HARQ;
  • the first device uses the first round-trip time timer RTT timer duration and/or the first retransmission timer duration to monitor the second The retransmission data sent by the device, in the case that the HARQ feedback channel configuration indication is that the PSFCH is not configured, the first device uses the second RTT timer duration and/or the second retransmission timer duration to monitor the second Retransmitted data sent by the device.
  • whether the PSFCH is configured is indicated based on HARQ with feedback, that is, the HARQ feedback channel configuration is used to indicate whether the PSFCH has been configured, and according to the HARQ feedback channel configuration indicates the difference (one is the PSFCH configured, one is that the PSFCH is not configured) to correspondingly select the RTT duration and/or the retransmission timer duration to monitor the retransmission data sent by the second device, thereby facilitating data retransmission and ensuring the success rate of data transmission, Improve data transmission efficiency.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the first retransmission timer is greater than the duration of the second retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • the first RTT duration is different from the second RTT duration.
  • the first RTT duration is longer than the second RTT duration.
  • the first RTT duration is the same as the second RTT duration.
  • the duration of the first retransmission timer and the duration of the second retransmission timer are pre-configured.
  • the first RTT duration and the second RTT duration are pre-configured.
  • the first device receives second information from the second device, where the second information includes the first retransmission timer duration, the second retransmission timer duration, the first retransmission timer duration, the At least one of an RTT duration and the second RTT duration.
  • the first device receives configuration information from the network device, where the configuration information includes the first retransmission timer duration, the second retransmission timer duration, and the first RTT duration and at least one of the second RTT durations.
  • an embodiment of the present application provides a data retransmission device, including:
  • a receiving module configured to receive first information from a second device, where the first information includes a hybrid automatic repeat request HARQ feedback indication;
  • a processing module configured to use the first retransmission timer duration to monitor the retransmission data sent by the second device when the HARQ feedback indication is to turn on HARQ feedback, and when the HARQ feedback indication is to turn off HARQ feedback In this case, use the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • the duration of the first retransmission timer and the duration of the second retransmission timer are pre-configured.
  • the receiving module is further configured to receive second information from the second device, where the second information includes the duration of the first retransmission timer and the duration of the second retransmission timer.
  • the receiving module is further configured to receive configuration information from a network device, where the configuration information includes the duration of the first retransmission timer and the duration of the second retransmission timer.
  • the device further includes:
  • a sending module configured to send feedback information to the second device
  • the processing module is further configured to start the first round-trip time timer RTT duration; and use the first retransmission timer duration to monitor the retransmission data sent by the second device after the first RTT duration expires.
  • the processing module is further configured to use the second retransmission timer duration to monitor the retransmission data sent by the second device at the first moment.
  • the first moment is after receiving the first information, after receiving the data channel corresponding to the first information, after receiving the first information after a preset time period, and after receiving all the information. at least one of the data channels corresponding to the first information after a preset time period has elapsed.
  • the processing module is further configured to start the second round-trip time timer RTT duration; after the second RTT duration times out, use the second retransmission timer duration to monitor the retransmission sent by the second device. transmit data.
  • an embodiment of the present application provides a data retransmission device, including:
  • a processing module configured to determine the HARQ feedback indication of the hybrid automatic repeat request
  • a sending module configured to send first information to a first device, where the first information includes the HARQ feedback indication, and in the case that the HARQ feedback indication is to enable HARQ feedback, the HARQ feedback enable is used to indicate the use of the HARQ feedback
  • a retransmission timer is used to monitor the retransmission data sent by the second device.
  • the HARQ feedback disable is used to indicate that the second retransmission timer is used to monitor the retransmission data sent by the second device. the retransmission data sent by the second device.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • the device further includes:
  • a receiving module configured to receive the HARQ feedback indication from the network device.
  • the sending module is further configured to send the HARQ feedback indication to the network device.
  • the sending module is further configured to send second information to the first device, where the second information includes the first retransmission timer duration and the second retransmission timer duration
  • an embodiment of the present application provides a data retransmission apparatus, including:
  • a communication module configured to receive a HARQ feedback indication of a hybrid automatic repeat request from a second device, or send a HARQ feedback indication to the second device;
  • a processing module configured to allocate time-frequency resources according to the HARQ feedback indication.
  • the HARQ feedback indication is used to instruct the second device to turn on HARQ feedback or turn off HARQ feedback on a specific time-frequency resource.
  • an embodiment of the present application provides a data retransmission device, including:
  • a receiving module configured to receive first information from the network or preconfigured, where the first information includes the HARQ feedback channel configuration of the HARQ;
  • a processing module configured to use the first round-trip time timer RTT duration and/or the first retransmission timer duration to monitor the transmission of the second device when the HARQ feedback channel configuration indication is that the physical side chain feedback channel PSFCH has been configured If the HARQ feedback channel configuration indication is that the PSFCH is not configured, use the second RTT duration and/or the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the present application provides an apparatus, the apparatus includes a processor, when the processor calls a computer program in a memory, such as any of the first aspect, the second aspect, the third aspect or the fourth aspect A described method is performed.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store instructions, when the instructions are executed, make the first aspect, the second aspect, the third aspect or the The method of any one of the fourth aspects is implemented.
  • the present application provides a computer program product comprising instructions that, when executed, cause the method of any one of the first, second, third or fourth aspects is realized.
  • an embodiment of the present application provides a communication system, where the communication system includes a first device, a second device, and a network device, where the first device is configured to perform the steps in the first aspect or the fourth aspect. , the second device is configured to perform the steps in the second aspect, and the network device is configured to perform the steps in the third aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a DRX mechanism provided by an embodiment of the present application.
  • FIG. 3(A) is a schematic diagram of a resource scheduling provided by an embodiment of the present application.
  • FIG. 3(B) is a schematic diagram of another resource scheduling provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a data retransmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another data retransmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another data retransmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a data retransmission apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another data retransmission apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another data retransmission apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another data retransmission apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • At least one refers to one or more, and multiple refers to two or more.
  • a and/or B in this embodiment of the present application describes the association relationship between associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, which can indicate the following three situations: A exists alone, and A and B exist at the same time , B alone exists. Among them, A and B can be singular or plural.
  • the character "/" can indicate that the related objects are an "or” relationship.
  • the symbol “/” can also represent a division sign, that is, a division operation is performed.
  • At least one of the following items refers to any combination of these items, including any combination of a single item (item) or a plurality of items (item).
  • at least one (a) of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
  • each of a, b, c can be an element or a set containing one or more elements.
  • connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in any way.
  • a communication system is a communication network.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110 and terminal devices 101 to 106 . It should be understood that more or less network devices or terminal devices may be included in the communication system 100 to which the methods of the embodiments of the present application may be applied.
  • the network device or the terminal device may be hardware, software divided by functions, or a combination of the above two.
  • the network device and the terminal device can communicate through other devices or network elements.
  • the network device 110 can send downlink data to the terminal devices 101 to 106 .
  • the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110 .
  • Terminal devices 101 to 106 may be cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, personal digital assistants (PDAs) and/or for wireless Any other suitable device that communicates over the communication system 100, and the like.
  • the network device 110 may be a long term evolution (LTE) and/or NR network device, specifically a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next-generation mobile Communication base station (Next generation Node B, gNB), the base station in the future mobile communication system or the access node in the Wi-Fi system.
  • LTE long term evolution
  • NR network device specifically a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next-generation mobile Communication base station (Next generation Node B, gNB), the base station in the future mobile communication system or the access node in the Wi-Fi system.
  • the communication system 100 may adopt a public land mobile network (PLMN), a vehicle to everything (V2X), a device-to-device (D2D) network, a machine to machine (machine to machine, M2M) network, internet of things (IoT) or other networks.
  • PLMN public land mobile network
  • V2X vehicle to everything
  • D2D device-to-device
  • M2M machine to machine
  • IoT internet of things
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106 .
  • the methods in the embodiments of the present application may be applied to the communication system 100 shown in FIG. 1 .
  • the methods in the embodiments of the present application may be applied to the communication system 100 shown in FIG. 1 .
  • the first device or the second device involved in this application may be any terminal device in the communication system.
  • the UE is described below as a terminal device.
  • FIG. 2 is a schematic diagram of a DRX mechanism provided by an embodiment of the present application.
  • the UE starts an inactive timer (inactive timer), and the UE continuously tries to receive the physical downlink control channel (PDCCH). If the UE receives the scheduling downlink control information on the PDCCH ( downlink control information, DCI), the UE restarts the inactivity timer. If the UE does not receive DCI for a period of time and the inactivity timer expires, the UE will enter the DRX state.
  • the basic time unit in the DRX state is a DRX cycle (DRX cycle).
  • a DRX cycle consists of a sleep period in sleep mode (sleep) and a wake-up period in wake-up mode (on duration).
  • the sleep mode the UE in the sleep mode can completely turn off communication devices such as the receiver and the baseband processor to reduce power consumption.
  • Wake-up mode When the DRX cycle enters the wake-up mode, the UE will wake up and monitor the PDCCH. Once the DCI is received on the PDCCH, the UE will restart the inactivity timer. If the UE does not receive any DCI during the awake mode and the awake mode ends, or if the UE receives DCI but the inactivity timer expires, the UE will re-enter sleep mode.
  • the UE will monitor the PDCCH discontinuously according to the DRX configuration to save power.
  • the PDCCH carries the wireless network temporary identifier (such as C-RNTI, CI-RNTI, CS-RNTI, INT -RNTI, SFI-RNTI, SP-CSI-RNTI)
  • the UE will perform the corresponding DRX operation according to the control information.
  • the network device can control the DRX behavior of the UE by configuring a series of parameters.
  • the UE is in the DRX active state in the following cases: during the running of the DRX wake-up timer (drx-onDurationTimer) or the DRX activation timer (drx-InactivityTimer); downlink DRX retransmission timer (drx-RetransmissionTimerDL) or downlink DRX retransmission timer (drx-RetransmissionTimerUL) is running; contention resolution timer (ra-ContentionResolutionTimer) or message response window (msgB-ResponseWindow) is running; there are unprocessed
  • the selective repeat (SR) resource of the PDCCH indicates that there is a new transmission period.
  • V2X vehicle to everything
  • D2D is a sidelink (sidelink, SL) transmission technology, which is different from the way in which communication data is received or sent by a base station in a traditional cellular system.
  • the V2X system adopts D2D direct communication, so it has higher spectral efficiency and lower transmission delay.
  • Two transmission modes are defined in the 3rd generation partnership project (3GPP), including mode A and mode B.
  • Mode A As shown in Figure 3(A), the transmission resources of the UE are allocated by the network equipment, the UE sends data on the sidelink according to the transmission resources allocated by the network equipment, and the network equipment can allocate a single transmission to the UE. resources, and semi-static transmission resources can also be allocated to the UE.
  • Mode B As shown in Figure 3(B), the UE selects a resource in the resource pool for data transmission.
  • D2D is divided into different stages for research.
  • Proximity based service Device-to-device communication in Rel-12/13 is studied for ProSe scenarios, mainly for public safety services.
  • ProSe by configuring the location of the resource pool in the time domain, for example, the resource pool is not continuous in the time domain, so that the UE can send data or receive data discontinuously on the sidelink, thereby achieving the effect of power saving.
  • V2X Vehicle to everything
  • FeD2D Further enhancement of D2D
  • Rel-14 this scenario is studied for the scenario where the wearable device accesses the network through the UE, mainly for the scenario of low moving speed and low power access.
  • 3GPP concluded that the network equipment can configure the DRX parameters of the remote UE through a relay UE, but since the subject has not further entered the standardization stage, how to configure the DRX parameters in detail Details are inconclusive.
  • NR V2X can be applied not only to broadcast scenarios, but also to unicast and multicast scenarios. Similar to LTE V2X, NR V2X defines two resource authorization modes of Mode A and Mode B above. Further, the UE can not only use mode A to obtain time-frequency resources, but also use mode B to obtain time-frequency resources.
  • the time-frequency resources can be indicated by means of sidelink grants, that is, the sidelink grants are used to indicate the corresponding physical sidelink control channel (PSCCH) and the physical sidelink shared channel The time-frequency location of the (physical sidelink shared channel, PSSCH) resource.
  • sidelink grants that is, the sidelink grants are used to indicate the corresponding physical sidelink control channel (PSCCH) and the physical sidelink shared channel
  • PSSCH physical sidelink shared channel
  • NR V2X introduces HARQ retransmission based on feedback in addition to HARQ retransmission without feedback and initiated by the UE autonomously, and is applied to unicast communication and multicast communication.
  • LTE V2X in NR V2X, since the vehicle system has continuous power supply, power efficiency is not the main problem, but the delay of data transmission is the main problem, so the system design requires the UE to perform continuous transmission and reception. .
  • NR-V2X communication introduces some new features, such as support for a large number of aperiodic services, an increase in the number of retransmissions, and a more flexible resource reservation period. These features have a great influence on the mode of UE autonomous resource selection. Therefore, 3GPP re-discussed and designed a resource selection scheme suitable for NR-V2X, denoted as Mode 2.
  • the UE selects resources in the resource pool that are not reserved by other UEs or reserved by other UEs but have low received power by decoding the SCI sent by other UEs and measuring the received power of the sidelink.
  • the resource selection method in Mode 2 mainly includes two steps, that is, the UE first determines a candidate resource set, and then selects resources from the candidate resource set to send data.
  • Step 1 The UE determines a candidate resource set.
  • the UE takes all available resources in the resource selection window as resource set A. Then, the UE determines whether the resource is reserved by other UEs according to the listening result in the resource listening window. The UE performs resource exclusion according to the unlistened time slot and the first SCI heard. After completing the resource exclusion, if the number of remaining resources in the resource set A is less than a certain percentage, the UE will increase the RSRP threshold by 3dB, and repeat the steps. 1 until the number of remaining resources in resource set A is greater than or equal to this ratio. Compared with the fixed ratio of 20% in LTE-V2X, the value of this ratio in NR-V2X is more flexible. The value of this ratio can be 20%, 35% or 50%. Units are configured or preconfigured by the network. Finally, the resource set A after resource exclusion is the candidate resource set of the UE.
  • Step 2 The UE selects a transmission resource from the candidate resource set.
  • the UE randomly selects one or more transmission resources in the resource set A with moderate probability. It should be pointed out that, when selecting the multiple transmission resources, the following constraints in the time domain must be satisfied. (1) After removing some exceptions, the UE shall enable the selected certain retransmission resource to be indicated by the first SCI sent before. The above exceptions include: after the UE performs resource exclusion, it cannot select resources from the resource set A that satisfy the time domain restriction. Due to factors such as resource preemption, congestion control, and conflict with uplink services, the UE abandons transmission, so that the transmission resources of a certain retransmission are not indicated by the first SCI sent before. (2) The UE shall guarantee any two selected time-frequency resources.
  • the two resources are separated by at least Z in the time domain.
  • the selected time-frequency resources cannot meet the time-domain restriction, for example, when the interval is short but the number of retransmissions is large, depending on the implementation of the UE, the selection of some retransmission resources can be abandoned or deactivated for certain transmissions.
  • HARQ feedback is a short period of time-frequency resources that can be abandoned or deactivated for certain transmissions.
  • DRX is designed based on the HARQ retransmission mechanism with feedback. Therefore, DRX is implemented based on RTT and retx timer, that is, during the RTT operation, the UE does not need to perform downlink monitoring, and then at the retransmission timing Downlink monitoring is performed during the operation of the server.
  • R16 introduces a flexible HARQ feedback activation/deactivation mechanism, that is, based on the indication in the sidelink control information (SCI), the receiving end UE is notified whether to perform feedback.
  • SCI sidelink control information
  • the time-frequency resource authorization of the transmitting UE may come from the network equipment (mode A)
  • the HARQ feedback activation/deactivation decision is determined by the transmitting UE, and the network equipment does not know whether to activate/deactivate HARQ feedback is activated, resulting in uncertainty of resource scheduling time interval.
  • mode A network equipment may tend to allow sufficient time interval before providing retransmission resources, but this will affect data transmission efficiency.
  • the time-frequency resource grant of the transmitting UE may also come from the transmitting UE itself (mode B).
  • the UE at the transmitting end Since the UE at the transmitting end knows the decision of activation/deactivation of the HARQ feedback, the UE at the transmitting end can select time-frequency resources to send data to the UE at the receiving end according to the activation/deactivation state of the HARQ feedback.
  • the DRX mechanism of Uu is designed for the receiving end UE, and for the receiving end UE on the sidelink, there is no regulation on how to monitor data, which affects the data transmission efficiency.
  • FIG. 4 is a schematic flowchart of a data retransmission method provided by an embodiment of the present invention.
  • the method of the embodiment of the present application includes at least the following steps:
  • the second device sends first information to the first device, where the first information includes a hybrid automatic repeat request HARQ feedback indication.
  • the first information may be carried in PSCCH or PSSCH.
  • the first information may be a HARQ feedback indication of a hybrid automatic repeat request, and the HARQ feedback indication may include enabling HARQ feedback or disabling HARQ feedback.
  • the HARQ feedback indication may be used to indicate whether the second device will enable or disable HARQ feedback on a specific time-frequency resource, for example, for a specific configured grant (configured grant).
  • the first device may pre-configure a first re-transmission timer (re-transmission timer) duration and a second re-transmission timer duration.
  • the first device may also pre-configure the first RTT duration and the second RTT duration.
  • the second device may send second information to the first device, where the second information includes the first retransmission timer duration and the first retransmission timer.
  • the second information may also include the first RTT duration and the second RTT duration.
  • the network device may send configuration information to the first device through a system information block (system information block, SIB) or proprietary signaling, and the first device may receive the configuration information.
  • SIB system information block
  • Configuration information from a network device, where the configuration information includes the first retransmission timer duration and the second retransmission timer duration.
  • the configuration information may also include the first RTT duration and the second RTT duration.
  • the first device and the second device may both be terminal devices.
  • the first device monitors the retransmission data sent by the second device using the first retransmission timer duration, and the HARQ feedback indication is to disable HARQ feedback
  • the first device uses the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device fails to receive the data sent by the second device or the data received by the first device is incorrect, the first device needs to use the first retransmission timer duration or the second retransmission timer duration to Monitor the retransmission data sent by the second device. Otherwise, the first device does not need to start the first retransmission timer duration or the second retransmission timer duration.
  • the second device may send data to the first device, where the data is carried on the data channel.
  • the first device may send feedback information to the second device, where the feedback information may be a physical sidelink feedback channel (PSFCH), and the feedback information may be used for Indicates that data transmission fails, or indicates that the second device needs to resend data.
  • PSFCH physical sidelink feedback channel
  • the first device After the first device sends the feedback information to the second device, it starts the first round-trip time timer RTT duration. The second device will not send retransmission data to the first device within the first RTT duration. At this time, the first device can Stop monitoring the retransmission data sent by the second device.
  • the second device After waiting for the first RTT duration to expire, the second device starts to send retransmission data to the first device.
  • the first device wakes up, starts the first retransmission timer duration, and uses the first retransmission timer duration to monitor Retransmission data sent by the second device. If the first device monitors the retransmission data sent by the second device within the duration of the first retransmission timer, it starts to receive the retransmission data.
  • the second device may send data to the first device, where the data is carried on the data channel.
  • the HARQ feedback indication is to disable HARQ feedback
  • the first device will not send feedback information to the second device until the second retransmission timer is started at the first moment, and the second retransmission timer is used to monitor all the retransmission data sent by the second device.
  • the first moment is after receiving the first information, after receiving the data channel corresponding to the first information, after receiving the first information after a preset time period, and after receiving the first information. At least one of the data channels corresponding to a piece of information after a preset time period has elapsed.
  • the first device may start a second round-trip time timer RTT duration, and the second device will not send retransmissions to the first device within the second RTT duration.
  • the first device may stop monitoring the retransmitted data sent by the second device.
  • the second retransmission timer duration is used to monitor the retransmission data sent by the second device.
  • the second RTT duration when HARQ feedback is turned off may be different from or the same as the first RTT duration when HARQ feedback is turned on.
  • the first RTT duration and the second RTT duration may be set by the same timer, or may be set by different timers.
  • the second device may send the retransmission data on the sidelink according to the time-frequency resource allocated by the network device, or may select a time-frequency resource from the resource pool to send the retransmission data.
  • the duration of the first retransmission timer and the duration of the second retransmission timer can be set through one retransmission timer under different HARQ feedback indications, or the duration of the first retransmission timer can be set through two retransmission timers in different HARQ feedback indications.
  • the first retransmission timer and the second retransmission timer are respectively set.
  • One of the retransmission timers sets the first retransmission timer, and the other retransmission timer sets the second retransmission timer. Retransmission timer duration.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer. Further, the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the second device cannot receive the feedback information sent by the first device, and the second device or the network device cannot determine whether it needs to send retransmission resources or the timing of sending retransmission resources, so the second retransmission timing
  • the timer duration can be set to be longer, so that the first device can monitor the retransmission resources sent by the second device within the second retransmission timer duration.
  • the second device can send retransmission resources after receiving the feedback information, so the first retransmission timer can be set to a shorter duration to save power.
  • the duration of the second retransmission timer may also be equal to the duration of the first retransmission timer.
  • the duration of the second retransmission timer may also be shorter than the duration of the first retransmission timer. This application does not limit the duration of the first retransmission timer and the duration of the second retransmission timer.
  • the first device in the sidelink, may select the first retransmission timer duration or the second retransmission timer duration to monitor the second retransmission timer according to different HARQ feedback indications.
  • the retransmission data sent by the device causes the second device to be in a dormant state before starting the retransmission timer, thereby saving power.
  • the success rate of data transmission is guaranteed and the data transmission efficiency is improved.
  • FIG. 5 is a schematic flowchart of another data retransmission method provided by an embodiment of the present invention.
  • the method of the embodiment of the present application includes at least the following steps:
  • a network device receives a HARQ feedback indication of a hybrid automatic repeat request from a second device, or sends a HARQ feedback indication to the second device.
  • the network device allocates time-frequency resources according to the HARQ feedback indication.
  • the network device can know whether the HARQ feedback between the first device and the second device on the sidelink is turned off or on, because the second device schedules
  • the time interval of time-frequency resources is related to turning off HARQ feedback or turning on HARQ feedback, so the network device can determine the time interval at which the second device schedules time-frequency resources, and allocate time-frequency resources to the second device according to the HARQ feedback indication.
  • the HARQ feedback indication may be used to indicate whether the second device will turn on/off HARQ feedback on a specific time-frequency resource, for example, for a specific configured grant (configured grant).
  • the time interval between the time-frequency resources of the initial transmission data and the time-frequency resources of the retransmitted data allocated by the network device is relatively long; and when the HARQ feedback indication is to turn on HARQ feedback, The time interval between the time-frequency resources of the initially transmitted data and the time-frequency resources of the retransmitted data allocated by the network device is short.
  • the time interval between the time-frequency resources of the initial transmission data and the time-frequency resources of the retransmitted data allocated by the network device is short; and when the HARQ feedback indication is to turn on HARQ feedback, The time interval between the time-frequency resources of the initially transmitted data and the time-frequency resources of the retransmitted data allocated by the network device is relatively long.
  • the second device selects time-frequency resources from the time-frequency resources allocated by the network device to send data to the first device, since the time interval of these time-frequency resources is determined according to the HARQ feedback indication, the data is performed on the sidelink.
  • the second device it is not only beneficial for the second device to select corresponding time-frequency resources to send data, but also beneficial for the first device to configure the corresponding DRX mechanism for data transmission, that is, to select different retransmission timers to monitor the data sent by the second device. Retransmit data.
  • the network device may send a set of time-frequency resources to the second device, so that the second device may select time-frequency resources from the set of time-frequency resources to send data to the first device.
  • the network device may send data to the second device, and after receiving the data, the second device sends acknowledgement (acknowledgement, ACK) information or negative acknowledgement (negative acknowledgement, NACK) information to the network device.
  • acknowledgement acknowledgement
  • NACK negative acknowledgement
  • the second device sends first information to the first device, where the first information includes a HARQ feedback indication of a hybrid automatic repeat request.
  • the first information may be carried in PSCCH or PSSCH.
  • the first information may be a HARQ feedback indication of a hybrid automatic repeat request, and the HARQ feedback indication may include enabling HARQ feedback or disabling HARQ feedback.
  • the first device may pre-configure the duration of the first re-transmission timer (re-transmission timer) and the duration of the second re-transmission timer.
  • the first device may also pre-configure the first RTT duration and the second RTT duration.
  • the second device may send second information to the first device, where the second information includes the first retransmission timer duration and the first retransmission timer.
  • the second information may also include the first RTT duration and the second RTT duration.
  • the network device may send configuration information to the first device through SIB or proprietary signaling, and the first device may receive configuration information from the network device, the
  • the configuration information includes the first retransmission timer duration and the second retransmission timer duration.
  • the configuration information may also include the first RTT duration and the second RTT duration.
  • the first device monitors the retransmission data sent by the second device by using the first retransmission timer duration, and the HARQ feedback indication is to disable HARQ In the case of feedback, the first device uses the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device if the first device fails to receive the data sent by the second device or the data received by the first device is incorrect, the first device needs to select the first retransmission timer duration or the second retransmission timer duration. Monitor the retransmission data sent by the second device. Otherwise, the first device does not need to start the first retransmission timer duration or the second retransmission timer duration.
  • the second device may send data to the first device, where the data is carried on the data channel.
  • the first device may send feedback information to the second device, where the feedback information may be PSFCH, and the feedback information may be used to indicate data transmission failure, or to indicate the second device Data needs to be resent.
  • the first device sends the feedback information to the second device, it starts the first round-trip time timer RTT duration.
  • the second device will not send retransmission data to the first device within the first RTT duration. At this time, the first device can Stop monitoring the retransmission data sent by the second device.
  • the second device After waiting for the first RTT duration to expire, the second device starts to send retransmission data to the first device.
  • the first device wakes up, starts the first retransmission timer duration, and uses the first retransmission timer duration to monitor Retransmission data sent by the second device. If the first device monitors the retransmission data sent by the second device within the duration of the first retransmission timer, it starts to receive the retransmission data.
  • the second device may send data to the first device, where the data is carried on the data channel.
  • the HARQ feedback indication is to disable HARQ feedback
  • the first device will not send feedback information to the second device until the second retransmission timer is started at the first moment, and the second retransmission timer is used to monitor all the retransmission data sent by the second device.
  • the first moment is after receiving the first information, after receiving the data channel corresponding to the first information, after receiving the first information after a preset time period, and after receiving the first information. At least one of the data channels corresponding to a piece of information after a preset time period has elapsed.
  • the first device may start a second round-trip time timer RTT duration, and the second device will not send retransmissions to the first device within the second RTT duration.
  • the first device may stop monitoring the retransmitted data sent by the second device.
  • the second retransmission timer duration is used to monitor the retransmission data sent by the second device.
  • the second RTT duration when HARQ feedback is turned off may be different from or the same as the first RTT duration when HARQ feedback is turned on.
  • the first RTT duration and the second RTT duration may be set by the same timer, or may be set by different timers.
  • the second device may send the retransmission data on the sidelink according to the time-frequency resource allocated by the network device, or may select a time-frequency resource from the resource pool to send the retransmission data.
  • the duration of the first retransmission timer and the duration of the second retransmission timer can be set through one retransmission timer under different HARQ feedback indications, or the duration of the first retransmission timer can be set through two retransmission timers in different HARQ feedback indications.
  • the first retransmission timer and the second retransmission timer are respectively set.
  • One of the retransmission timers sets the first retransmission timer, and the other retransmission timer sets the second retransmission timer. Retransmission timer duration.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the second device cannot receive the feedback information sent by the first device, and the second device or the network device cannot determine whether it needs to send retransmission resources or the timing of sending retransmission resources, so the second retransmission timing
  • the timer duration can be set to be longer, so that the first device can monitor the retransmission resources sent by the second device within the second retransmission timer duration.
  • the second device can send retransmission resources after receiving the feedback information, so the first retransmission timer can be set to a shorter duration to save power.
  • the duration of the second retransmission timer may also be equal to the duration of the first retransmission timer.
  • the duration of the second retransmission timer may also be shorter than the duration of the first retransmission timer. This application does not limit the duration of the first retransmission timer and the duration of the second retransmission timer.
  • the network device when the network device schedules sidelink resources, since the network device knows the status of HARQ feedback on or off, the network device can determine the resource scheduling time interval, which is beneficial for the first device to configure the corresponding DRX mechanism to receive data.
  • the first device (receiving UE) can select the first retransmission timer duration or the second retransmission timer duration to monitor the second device (transmitting UE) according to different HARQ feedback instructions. ), so that the second device is in a dormant state before starting the retransmission timer, thereby saving power.
  • the success rate of data transmission is guaranteed and the data transmission efficiency is improved.
  • the first device can use different HARQ feedback indications (the HARQ feedback indications can be used to indicate whether the second device will turn on or turn off HARQ on a specific time-frequency resource). feedback), select the first retransmission timer duration or the second retransmission timer duration to monitor the retransmission data sent by the second device (the sender UE), so as to implement data retransmission based on HARQ with feedback.
  • the sending and receiving of the HARQ feedback indication is implemented in a dynamic scheduling manner, that is, the HARQ feedback indication is carried based on the SCI.
  • the first device in this embodiment of the present application may configure different HARQ feedback channels (the HARQ feedback channel configurations may be used to indicate whether the PSFCH has been configured) ), select at least one of the first RTT duration, the first retransmission timer duration, the second RTT duration, and the second retransmission timer duration to monitor the retransmission data sent by the second device (the sender UE).
  • the transmission and reception of the HARQ feedback channel configuration are implemented in a static configuration manner. This will be specifically described below.
  • FIG. 6 is a schematic flowchart of another data retransmission method provided by an embodiment of the present application.
  • the method of the embodiment of the present application includes at least the following steps:
  • the first device acquires network or pre-configured first information, where the first information includes a HARQ feedback channel configuration for a hybrid automatic repeat request.
  • the network device can perform cell search, cell access, cell camping, cell reselection, initial access, random access, cell handover, uplink and downlink synchronization, RRC reconfiguration and other processes.
  • the sidelink communication between the first device and the second device configures the resource pool.
  • the resource pool may be configured with a physical sidelink feedback channel (PSFCH), or may not be configured with a PSFCH.
  • PSFCH physical sidelink feedback channel
  • the first device When a PSFCH is configured in the resource pool, the first device (receiving UE) can feed back on the PSFCH whether data transmission fails or whether the second device (transmitting UE) needs to re-send data, which is conducive to realizing the transmission of data to the opposite end. Feedback data reception results, but there may also be a waste of resources.
  • the first device When the PSFCH is not configured in the resource pool, the first device does not need to feed back the data reception result to the second device, which is conducive to saving resources, but there may be a possibility that the data reception result cannot be fed back to the opposite end.
  • the first device may face the problem of how to use the RTT or the retransmission timer. For example, the first device is using the RTT or the retransmission timer. How long to use when the device is used.
  • the embodiment of the present application may rely on network configuration or pre-configured first information to indicate whether a PSFCH is configured in the resource pool, that is, the HARQ feedback channel configuration in the first information may be used to indicate whether the PSFCH has been configured, and according to the HARQ
  • the difference indicated by the feedback channel configuration (one is the resource pool that has been configured on the PSFCH, and the other is the resource pool that is not configured on the PSFCH) to correspondingly select the RTT duration and/or the retransmission timer duration to monitor the retransmission sent by the second device. transmit data.
  • the HARQ feedback channel configuration may include that the PSFCH is configured or the PSFCH is not configured. In other words, the HARQ feedback channel configuration is used to indicate that the PSFCH is configured, or the HARQ feedback channel configuration is used to indicate that the PSFCH is not configured.
  • the first information may be network-configured or pre-configured.
  • the network device may send the first information in a static configuration manner, that is, the first device receives the first information from the network device.
  • the first information (or the HARQ feedback channel configuration) can be carried in high-layer signaling.
  • the high-layer signaling may be RRC signaling or MAC CE or the like.
  • the first device may preconfigure or network configure any of the first retransmission timer duration, the second retransmission timer duration, the first RTT duration, and the second RTT duration. at least one.
  • the network device may send a request to the first cell during cell search, cell access, cell camping, cell reselection, initial access, random access, cell handover, uplink and downlink synchronization, and RRC reconfiguration.
  • the device sends information for configuring at least one of the first retransmission timer duration, the second retransmission timer duration, the first RTT duration, and the second RTT duration, so that the network configures the first retransmission through the information At least one of the timer duration, the second retransmission timer duration, the first RTT duration, and the second RTT duration.
  • the information may be system information, proprietary information, or high-level signaling.
  • the second device may send second information to the first device, where the second information includes the first retransmission timer duration, the second At least one of the retransmission timer duration, the first RTT duration, and the second RTT duration.
  • the network device may send configuration information to the first device through a system information block (system information block, SIB) or proprietary signaling, and the first device may receive information from Configuration information of the network device, the configuration information includes at least one of the first retransmission timer duration, the second retransmission timer duration, the first RTT duration, and the second RTT duration.
  • SIB system information block
  • the first device and the second device may both be terminal devices.
  • the first device uses the first round-trip time timer RTT duration and/or the first retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device uses the second RTT duration and/or the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device in this embodiment of the present application may configure the HARQ feedback channel according to different HARQ feedback channel configurations (the HARQ feedback channel configuration may be used to indicate whether the PSFCH has configuration), select at least one of the first RTT duration, the first retransmission timer duration, the second RTT duration, and the second retransmission timer duration to monitor the retransmission data sent by the second device (sender UE) .
  • the first device may use the first RTT timer duration to monitor the retransmission data sent by the second device. Since the second device will not send retransmission data to the first device within the first RTT duration, the first device can stop monitoring the retransmission data sent by the second device. Therefore, the first device uses the first RTT timer duration. Monitoring the retransmission data sent by the second device can be understood as that the first device starts the first RTT, and monitors the retransmission data sent by the second device after the first RTT time period expires.
  • the first device may use the first retransmission timer duration to monitor the retransmission data sent by the second device. Since the second device can send retransmission data to the first device within the first retransmission timer duration, the first device uses the first retransmission timer duration to monitor the retransmission data sent by the second device, which can be understood as: A device starts a first retransmission timer, and monitors the retransmission data sent by the second device within the duration of the first retransmission timer.
  • the first device may use the first RTT duration and the first retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device uses the first RTT duration and the first retransmission timer duration to monitor the retransmission data sent by the second device. It can be understood that the first device starts the first retransmission after waiting for the first RTT duration to expire. timer, and monitor the retransmission data sent by the second device within the first retransmission timer.
  • the first device may use the second RTT timer duration to monitor the retransmission data sent by the second device. Since the second device will not send retransmission data to the first device within the second RTT duration, the first device can stop monitoring the retransmission data sent by the second device. Therefore, the first device uses the second RTT timer duration Monitoring the retransmission data sent by the second device can be understood as that the first device starts the second RTT, and monitors the retransmission data sent by the second device after the second RTT time period expires.
  • the second RTT duration when the PSFCH is not configured may be different from or the same as the first RTT duration when the PSFCH is configured.
  • the first RTT duration and the second RTT duration may be set by the same timer, or may be set by different timers, which are not specifically limited.
  • the first device may use the second retransmission timer duration to monitor the retransmission data sent by the second device. Since the second device can send retransmission data to the first device within the second retransmission timer duration, the first device uses the second retransmission timer duration to monitor the retransmission data sent by the second device, which can be understood as: A device starts a second retransmission timer, and monitors the retransmission data sent by the second device within the duration of the second retransmission timer.
  • the duration of the second retransmission timer when the PSFCH is not configured may be different from or the same as the duration of the first retransmission timer when the PSFCH is configured.
  • the duration of the first retransmission timer and the duration of the second retransmission timer may be set by the same timer, or may be set by different timers, which are not specifically limited.
  • the first device may use the second RTT duration and the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • the first device uses the second RTT duration and the second retransmission timer duration to monitor the retransmission data sent by the second device. It can be understood that the first device starts the second retransmission after waiting for the second RTT duration to expire. timer, and monitor the retransmission data sent by the second device in the second retransmission timer.
  • the first retransmission timer duration is different from the second retransmission timer duration.
  • the first retransmission timer duration may be greater than the second retransmission timer duration.
  • the duration of the retransmission timer can be understood as the second device from the current data transmission to the next data transmission (between two data transmissions) a time interval.
  • the PSFCH is configured, there is a feedback result on the PSFCH between the two data transmissions.
  • the second device transmitting UE
  • the time interval between two data transmissions needs to be increased, that is, the retransmission timer duration is increased. , so as to ensure that the retransmission data sent by the second device can be monitored within the retransmission timer duration.
  • the PSFCH is not configured, there is no feedback result on the PSFCH between the two data transmissions.
  • the time interval between two data transmissions can be reduced, that is, the retransmission timer duration is shorter, which is beneficial to save the power consumed by the first device for monitoring during the retransmission timer duration, so as to save energy.
  • the duration of the second retransmission timer may be equal to the duration of the first retransmission timer, which is beneficial to provide diversity and flexibility in configuring the duration of the retransmission timer and ensure the flexibility of the communication process.
  • the following is a detailed description of the first RTT duration and the second RTT duration.
  • the first RTT duration is different from the second RTT duration.
  • the first RTT duration may be greater than the second RTT duration.
  • the RTT duration can be understood as the second device from the current data transmission to the next data transmission (between two data transmissions) ) a time interval. If the PSFCH is configured, there is a feedback result on the PSFCH between the two data transmissions. At this time, the second device (transmitting UE) needs to wait for the feedback result on the PSFCH, and then judge whether data retransmission needs to be performed according to the feedback result.
  • the second device since the second device (the sender UE) has some processing delays in the process of waiting for the feedback result and processing the feedback result, it is necessary to increase the time interval between two data transmissions, that is, the RTT duration is increased, so that there are It is beneficial to ensure that sufficient time intervals are left for data result feedback and data processing, etc., thereby ensuring the robustness and reliability of communication.
  • the time interval (the shortest time interval) between two data transmissions can be reduced, that is, the RTT duration is small, so as to reduce unnecessary waiting as much as possible, thereby improving communication efficiency.
  • the second RTT duration may be equal to the first RTT duration, which is beneficial to provide diversity and flexibility in configuring the RTT duration and ensure the flexibility of the communication process.
  • the methods and operations implemented by a terminal device may also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the network
  • components such as chips or circuits
  • the methods and operations implemented by the device can also be implemented by components (eg, chips or circuits) that can be used in network devices.
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by using the division of each function module corresponding to each function as an example.
  • FIG. 7 is a schematic structural diagram of a data retransmission apparatus provided by an embodiment of the present application.
  • the data retransmission apparatus may include a receiving module 701 and a sending module 703 , and optionally, may further include a processing module 702 .
  • the receiving module 701 and the sending module 703 can communicate with the outside, and the processing module 702 is used for processing, such as monitoring retransmission data using a retransmission timer.
  • the receiving module 701 and the sending module 703 may also be referred to as a communication interface, a transceiving unit or a transceiving module.
  • the receiving module 701 and the sending module 703 may be configured to perform the actions performed by the first device in the above method embodiments.
  • the receiving module 701 and the sending module 703 may also be called a transceiver module or a transceiver unit (including a receiving unit and/or a sending unit), and are respectively used to perform the steps of sending and receiving by the first device in the above method embodiments.
  • the data retransmission apparatus may implement steps or processes corresponding to the first device in the above method embodiments, for example, may be the first device or a chip configured in the first device or circuit.
  • the receiving module 701 and the sending module 703 are configured to perform the transceiving related operations of the first device in the above method embodiments, and the processing module 702 is configured to perform the processing related operations of the first device in the above method embodiments.
  • a receiving module 701 configured to receive first information from a second device, where the first information includes a hybrid automatic repeat request HARQ feedback indication;
  • a processing module 702 configured to use a first retransmission timer duration to monitor retransmission data sent by the second device when the HARQ feedback indication is to turn on HARQ feedback, and when the HARQ feedback indication is to turn off HARQ feedback In the case of using the second retransmission timer duration, the retransmission data sent by the second device is monitored.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • the duration of the first retransmission timer and the duration of the second retransmission timer are pre-configured.
  • the receiving module 701 is further configured to receive second information from the second device, where the second information includes the duration of the first retransmission timer and the duration of the second retransmission timer.
  • the receiving module 701 is further configured to receive configuration information from a network device, where the configuration information includes the duration of the first retransmission timer and the duration of the second retransmission timer.
  • a sending module 703, configured to send feedback information to the second device
  • the processing module 702 is further configured to start the first round trip time timer RTT duration; after the first RTT duration expires, use the first retransmission timer duration to monitor the retransmission data sent by the second device.
  • the processing module 702 is further configured to use the second retransmission timer duration to monitor the retransmission data sent by the second device at the first moment.
  • the first moment is after receiving the first information, after receiving the data channel corresponding to the first information, after receiving the first information after a preset time period, and after receiving all the information. at least one of the data channels corresponding to the first information after a preset time period has elapsed.
  • the processing module 702 is further configured to start a second round-trip time timer RTT duration; after the second RTT duration times out, use the second retransmission timer duration to monitor the retransmission sent by the second device data.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 4 and FIG. 5 to execute the methods and functions performed by the first device in the foregoing embodiments.
  • FIG. 8 is a schematic structural diagram of another data retransmission apparatus provided by an embodiment of the present application.
  • the data retransmission apparatus may include a receiving module 801 and a sending module 803 , and optionally, may further include a processing module 802 .
  • the receiving module 801 and the sending module 803 can communicate with the outside, and the processing module 802 is used for processing, such as monitoring retransmission data using a retransmission timer.
  • the receiving module 801 and the sending module 803 may also be referred to as a communication interface, a transceiving unit or a transceiving module.
  • the receiving module 801 and the sending module 803 may be configured to perform the actions performed by the second device in the above method embodiments.
  • the receiving module 801 and the sending module 803 may also be called a transceiver module or a transceiver unit (including a receiving unit and/or a sending unit), and are respectively used to perform the steps of sending and receiving by the second device in the above method embodiments.
  • the data retransmission apparatus may implement steps or processes corresponding to those performed by the second device in the above method embodiments, for example, may be the second device or a chip configured in the second device or circuit.
  • the receiving module 801 and the sending module 803 are configured to perform the transceiving related operations of the second device in the above method embodiments, and the processing module 802 is configured to perform the processing related operations of the second device in the above method embodiments.
  • a processing module 802 configured to determine a HARQ feedback indication of a hybrid automatic repeat request
  • a sending module 803, configured to send first information to a first device, where the first information includes the HARQ feedback indication, and in the case that the HARQ feedback indication is to enable HARQ feedback, the HARQ feedback is used to indicate the use of The first retransmission timer duration monitors the retransmission data sent by the second device, and in the case that the HARQ feedback indication is to disable HARQ feedback, the HARQ feedback disable is used to indicate that the second retransmission timer duration is used for monitoring Retransmission data sent by the second device.
  • the duration of the first retransmission timer is different from the duration of the second retransmission timer.
  • the duration of the second retransmission timer is greater than the duration of the first retransmission timer.
  • the duration of the first retransmission timer is the same as the duration of the second retransmission timer.
  • the receiving module 801 is configured to receive the HARQ feedback indication from the network device.
  • the sending module 803 is further configured to send the HARQ feedback indication to the network device.
  • the sending module 803 is further configured to send second information to the first device, where the second information includes the duration of the first retransmission timer and the duration of the second retransmission timer.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 4 and FIG. 5 to execute the methods and functions performed by the second device in the foregoing embodiments.
  • FIG. 9 is a schematic structural diagram of another data retransmission apparatus provided by an embodiment of the present application.
  • the data retransmission apparatus may include a communication module 901 and a processing module 902 .
  • the communication module 901 can communicate with the outside, and the processing module 902 is used for processing, such as allocating time-frequency resources.
  • the communication module 901 may also be referred to as a communication interface, a transceiving module or a transceiving unit.
  • the communication module 901 may be configured to perform the actions performed by the network device in the above method embodiments.
  • the communication module 901 may also be referred to as a transceiver module or a transceiver unit (including a sending unit and/or a receiving unit), and is respectively configured to perform the steps of sending and receiving by the network device in the above method embodiments.
  • the data retransmission apparatus may implement steps or processes corresponding to those performed by the network device in the above method embodiments, for example, it may be a network device, or a chip or circuit configured in the network device.
  • the communication module 901 is configured to perform the transceiving related operations on the network device side in the above method embodiments
  • the processing module 902 is configured to perform processing related operations on the network device side in the above method embodiments.
  • a communication module 901 configured to receive a HARQ feedback indication of a hybrid automatic repeat request from a second device, or send a HARQ feedback indication to the second device; a processing module 902, configured to allocate time-frequency resources according to the HARQ feedback indication .
  • the HARQ feedback indication is used to instruct the second device to turn on HARQ feedback or turn off HARQ feedback on a specific time-frequency resource.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 4 and FIG. 5 to execute the methods and functions performed by the network device in the foregoing embodiments.
  • FIG. 10 is a schematic structural diagram of another data retransmission apparatus provided by an embodiment of the present application.
  • the data retransmission apparatus may include a receiving module 1001 and a sending module 1003 , and optionally, may further include a processing module 1002 .
  • the receiving module 1001 and the sending module 1003 can communicate with the outside, and the processing module 1002 is used for processing, such as monitoring retransmission data using a retransmission timer.
  • the receiving module 1001 and the transmitting module 1003 may also be referred to as a communication interface, a transceiving unit or a transceiving module.
  • the receiving module 1001 and the sending module 1003 may be configured to perform the actions performed by the first device in the above method embodiments.
  • the receiving module 1001 and the sending module 1003 may also be called a transceiver module or a transceiver unit (including a receiving unit and/or a sending unit), and are respectively used to perform the steps of sending and receiving by the first device in the above method embodiments.
  • the data retransmission apparatus may implement steps or processes corresponding to the first device in the above method embodiments, for example, may be the first device or a chip configured in the first device or circuit.
  • the receiving module 1001 and the sending module 1003 are configured to perform the transceiving related operations of the first device in the above method embodiments, and the processing module 1002 is configured to perform the processing related operations of the first device in the above method embodiments.
  • a receiving module 1001 configured to receive first information from a network or pre-configured, where the first information includes a HARQ feedback channel configuration of a hybrid automatic repeat request;
  • the processing module 1002 is configured to use the first round-trip time timer RTT duration and/or the first retransmission timer duration to monitor the data sent by the second device when the HARQ feedback channel configuration indication is that the physical side chain feedback channel PSFCH has been configured. For retransmission data, when the HARQ feedback channel configuration indication is that the PSFCH is not configured, use the second RTT duration and/or the second retransmission timer duration to monitor the retransmission data sent by the second device.
  • each module may also correspond to the corresponding description of the method embodiment shown in FIG. 6 to execute the method and function executed by the first device in the foregoing embodiment.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system as shown in FIG. 1 to perform the functions of the first device or the second device in the above method embodiments, or implement the steps or processes performed by the first device or the second device in the above method embodiments .
  • the terminal device includes a processor 1101 and a transceiver 102 .
  • the terminal device further includes a memory 1103 .
  • the processor 1101, the transceiver 1102 and the memory 1103 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 1103 is used to store computer programs, and the processor 1101 is used to retrieve data from the memory 1103.
  • the computer program is invoked and executed to control the transceiver 1102 to send and receive signals.
  • the terminal device may further include an antenna for sending the uplink data or uplink control signaling output by the transceiver 1102 through wireless signals.
  • the above-mentioned processor 1101 and the memory 1103 can be combined into a processing device, and the processor 1101 is configured to execute the program codes stored in the memory 1103 to realize the above-mentioned functions.
  • the memory 1103 may also be integrated in the processor 1101 or independent of the processor 1101 .
  • the processor 1101 may correspond to the processing module in FIG. 7 , FIG. 8 or FIG. 10 .
  • the foregoing transceiver 1102 may correspond to the receiving module and the transmitting module in FIG. 7 , FIG. 8 or FIG. 10 , and may also be referred to as a transceiver unit or a transceiver module.
  • the transceiver 1102 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device shown in FIG. 11 can implement each process involving the first device or the second device in the method embodiment shown in FIG. 4 , FIG. 5 or FIG. 6 .
  • the operations and/or functions of each module in the terminal device are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 1101 can be used to perform the actions implemented inside the terminal device described in the previous method embodiments, and the transceiver 1102 can be used to perform the sending or receiving of the first device or the second device described in the previous method embodiments. action.
  • the transceiver 1102 can be used to perform the sending or receiving of the first device or the second device described in the previous method embodiments. action.
  • the processor 1101 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor 1101 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication bus 1104 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus, or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the communication bus 1104 is used to implement the connection communication between these components.
  • the transceiver 1102 in this embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1103 may include volatile memory, such as nonvolatile dynamic random access memory (NVRAM), phase change random access memory (PRAM), magnetoresistive random access memory (magetoresistive) RAM, MRAM), etc., and may also include non-volatile memory, such as at least one magnetic disk storage device, electronically erasable programmable read-only memory (EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or NAND flash memory, semiconductor devices, such as solid state disk (SSD), etc.
  • the memory 1103 may also be at least one storage device located away from the aforementioned processor 1101 .
  • memory 1103 may also store a set of computer program code or configuration information.
  • the processor 1101 can also execute the program stored in the memory 1103 .
  • the processor may cooperate with the memory and the transceiver to execute any one of the methods and functions of the terminal device in the foregoing application embodiments.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments, or implement the steps or processes performed by the network device in the foregoing method embodiments.
  • the network device includes a processor 1201 and a transceiver 1202 .
  • the network device further includes a memory 1203 .
  • the processor 1201, the transceiver 1202 and the memory 1203 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 1202 to send and receive signals.
  • the network device may further include an antenna for sending the uplink data or uplink control signaling output by the transceiver 1202 through wireless signals.
  • the above-mentioned processor 1201 and the memory 1203 can be combined into a processing device, and the processor 1201 is configured to execute the program codes stored in the memory 1203 to realize the above-mentioned functions.
  • the memory 1203 may also be integrated in the processor 1201 or independent of the processor 1201 .
  • the processor 1201 may correspond to the processing module in FIG. 9 .
  • the foregoing transceiver 1202 may correspond to the communication module in FIG. 9 , and may also be referred to as a transceiver unit or a transceiver module.
  • the transceiver 1202 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the network device shown in FIG. 12 can implement various processes involving the network device in the method embodiments shown in FIG. 4 to FIG. 5 .
  • the operations and/or functions of each module in the network device are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 1201 may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the transceiver 1202 may be used to execute the network device described in the foregoing method embodiments. Send to or receive from the terminal device. action.
  • the transceiver 1202 may be used to execute the network device described in the foregoing method embodiments. Send to or receive from the terminal device. action.
  • the processor 1201 may be various types of processors mentioned above.
  • the communication bus 1204 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus, or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the communication bus 1204 is used to implement the connection communication between these components.
  • the transceiver 1202 of the device in this embodiment of the present application is used for signaling or data communication with other devices.
  • the memory 1203 may be the various types of memory mentioned above. Optionally, the memory 1203 may also be at least one storage device located away from the aforementioned processor 1201 .
  • a set of computer program codes or configuration information is stored in the memory 1203 , and the processor 1201 executes the programs in the memory 1203 .
  • the processor may cooperate with the memory and the transceiver to execute any one of the methods and functions of the network device in the above application embodiments.
  • An embodiment of the present application further provides a chip system, where the chip system includes a processor, configured to support a terminal device or a network device to implement the functions involved in any of the foregoing embodiments, such as generating or processing the functions involved in the foregoing method. HARQ feedback indication.
  • the chip system may further include a memory, where the memory is used for necessary program instructions and data of the terminal device or the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices. The input and output of the chip system respectively correspond to the receiving and sending operations of the terminal device or the network device in the method embodiment.
  • the present application also provides a computer program product, the computer program product includes: a computer program, when the computer program is run on a computer, the computer is made to execute the implementation shown in FIG. 4 to FIG. 6 .
  • the present application further provides a computer-readable medium, where the computer-readable medium stores a computer program, and when the computer program is run on a computer, the computer is made to execute the steps shown in FIG. 4 to FIG. 6 .
  • the present application further provides a system, which includes the aforementioned first device, the second device, and one or more network devices.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种数据重传方法及相关设备,包括:第一设备接收来自第二设备的第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示;在所述HARQ反馈指示为开启HARQ反馈的情况下,所述第一设备使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据。采用本发明实施例,可以减少功耗,提高数据传输效率。

Description

一种数据重传方法及相关设备 技术领域
本发明涉及网络技术领域,尤其涉及一种数据重传方法及相关设备。
背景技术
在Uu的不连续接收(discontinuous reception,DRX)机制中,基于带反馈的混合自动重传请求(hybrid automatic repeat request,HARQ)重传机制进行DRX的设计,因此DRX基于往返时间定时器(round trip timer,RTT)和重传定时器(re-transmission timer,retx timer)实现,即在RTT运行期间,用户设备(user equipment,UE)不需要进行下行监听,之后在重传定时器运行期间进行下行监听。而在侧行链路(sidelink)内,R16引入了灵活的HARQ反馈激活/去激活机制。在侧行链路中,由于网络设备并不知道发送端UE是否会激活HARQ反馈,导致资源调度时间间隔的不确定。并且对于侧行链路上的接收端UE,由于不知道发送端UE的HARQ反馈激活/去激活的决策,不清楚如何监听重传数据,影响数据传输效率。
发明内容
本发明实施例提供了一种数据重传方法及相关设备,能够节省功耗,提高数据传输效率。
第一方面,本申请实施例提供了一种数据重传方法,包括:
第一设备接收来自第二设备的第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示;
在所述HARQ反馈指示为开启HARQ反馈的情况下,所述第一设备使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据。
可见,实施本申请实施例中,在侧行链路中,第一设备(接收端UE)可以根据不同的HARQ反馈指示,选择重传定时器来监听第二设备(发送端UE)发送的重传数据,使得第二设备在启动重传定时器之前处于休眠状态,从而节省电量。通过在重传定时器运行期间监听重传数据,保障数据传输的成功率,提高数据传输效率。
其中,所述第一重传定时器时长与所述第二重传定时器时长不同。
其中,所述第二重传定时器时长大于所述第一重传定时器时长。
其中,所述第一重传定时器时长与所述第二重传定时器时长相同。
其中,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
可选的,所述第一设备接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
可选的,所述第一设备接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。
可选的,所述在所述HARQ反馈指示为开启HARQ反馈的情况下,所述第一设备使用第一重传定时器接收所述第二设备发送的重传数据包括:
所述第一设备向所述第二设备发送反馈信息;
所述第一设备启动第一往返时间定时器RTT时长;
所述第一设备在所述第一RTT时长超时后使用所述第一重传定时器时长监听所述第二设备发送的重传数据。
可选的,所述在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据包括:
所述第一设备在第一时刻使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
其中,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接收到所述第一信息经过预设时间段后、和接收到所述第一信息对应的数据信道经过预设时间段后中的至少一种。
可选的,所述在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据包括:
所述第一设备启动第二往返时间定时器RTT时长;
所述第一设备在所述第二RTT时长超时后使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
第二方面,本申请实施例提供了一种数据重传方法,包括:
所述第二设备确定混合自动重传请求HARQ反馈指示;
所述第二设备向第一设备发送第一信息,所述第一信息包括所述HARQ反馈指示,在所述HARQ反馈指示为开启HARQ反馈的情况下,所述开启HARQ反馈用于指示使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述关闭HARQ反馈用于指示使用第二重传定时器时长监听所述第二设备发送的重传数据。
可见,实施本申请实施例中,在侧行链路中,第二设备(发送端UE)可以向第一设备发送其所确定的HARQ反馈指示,使得第一设备(接收端UE)可以根据不同的HARQ反馈指示,选择重传定时器来监听第二设备(发送端UE)发送的重传数据,使得第二设备在启动重传定时器之前处于休眠状态,从而节省电量。通过在重传定时器运行期间监听重传数据,保障数据传输的成功率,提高数据传输效率。
其中,所述第一重传定时器时长与所述第二重传定时器时长不同。
其中,所述第二重传定时器时长大于所述第一重传定时器时长。
其中,所述第一重传定时器时长与所述第二重传定时器时长相同。
其中,所述第二设备确定混合自动重传请求HARQ反馈指示包括:
所述第二设备接收来自网络设备的所述HARQ反馈指示。
可选的,所述第二设备向网络设备发送所述HARQ反馈指示。
可选的,所述第二设备向所述第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
第三方面,本申请实施例提供了一种数据重传方法,包括:
网络设备接收来自第二设备的混合自动重传请求HARQ反馈指示、或向所述第二设备发送HARQ反馈指示;
所述网络设备根据所述HARQ反馈指示,分配时频资源。
可见,实施本申请实施例中,当网络设备调度侧行链路资源时,由于网络设备知道HARQ反馈开启或关闭的状况以分配时频资源,使得网络设备能够确定资源调度时间间隔,从而有利于第一设备配 置相应的DRX机制来接收数据。
其中,所述HARQ反馈指示用于指示所述第二设备在特定时频资源上打开HARQ反馈或关闭HARQ反馈。
第四方面,本申请实施例提供了一种数据重传方法,包括:
第一设备接收来自网络或预配置的第一信息,所述第一信息包括混合自动重传请求HARQ反馈信道配置;
在所述HARQ反馈信道配置指示为物理侧链反馈信道PSFCH已配置的情况下,所述第一设备使用第一往返时间定时器RTT定时器时长和/或第一重传定时器时长监听第二设备发送的重传数据,在所述HARQ反馈信道配置指示为PSFCH未配置的情况下,所述第一设备使用第二RTT定时器时长和/或第二重传定时器时长监听所述第二设备发送的重传数据。
可见,实施本申请实施例中,基于带反馈的HARQ来指示是否配置有PSFCH,即HARQ反馈信道配置用于指示PSFCH是否已配置,并根据该HARQ反馈信道配置所指示的不同(一种是PSFCH已配置,一种是PSFCH未配置)来对应的选择RTT时长和/或重传定时器时长以监听第二设备发送的重传数据,从而有利于实现数据重传,保障数据传输的成功率,提高数据传输效率。
其中,所述第一重传定时器时长与所述第二重传定时器时长不同。
其中,所述第一重传定时器时长大于所述第二重传定时器时长。
其中,所述第一重传定时器时长与所述第二重传定时器时长相同。
其中,所述第一RTT时长与所述第二RTT时长不同。
其中,所述第一RTT时长大于所述第二RTT时长。
其中,所述第一RTT时长与所述第二RTT时长相同。
其中,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
其中,所述第一RTT时长和所述第二RTT时长为预先配置的。
可选的,所述第一设备接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长、所述第二重传定时器时长、所述第一RTT时长、所述第二RTT时长中的至少之一项。
可选的,所述第一设备接收来自所述网络设备的配置信息,所述配置信息包括所述第一重传定时器时长、所述第二重传定时器时长、所述第一RTT时长、所述第二RTT时长中的至少之一项。
第五方面,本申请实施例提供了一种数据重传装置,包括:
接收模块,用于接收来自第二设备的第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示;
处理模块,用于在所述HARQ反馈指示为开启HARQ反馈的情况下,使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,使用第二重传定时器时长监听所述第二设备发送的重传数据。
其中,所述第一重传定时器时长与所述第二重传定时器时长不同。
其中,所述第二重传定时器时长大于所述第一重传定时器时长。
其中,所述第一重传定时器时长与所述第二重传定时器时长相同。
其中,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
可选的,所述接收模块,还用于接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
可选的,所述接收模块,还用于接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。
可选的,所述装置还包括:
发送模块,用于向所述第二设备发送反馈信息;
所述处理模块,还用于启动第一往返时间定时器RTT时长;在所述第一RTT时长超时后使用所述第一重传定时器时长监听所述第二设备发送的重传数据。
可选的,所述处理模块,还用于在第一时刻使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
可选的,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接收到所述第一信息经过预设时间段后、和接收到所述第一信息对应的数据信道经过预设时间段后中的至少一种。
可选的,所述处理模块,还用于启动第二往返时间定时器RTT时长;在所述第二RTT时长超时后使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
第六方面,本申请实施例提供了一种数据重传装置,包括:
处理模块,用于确定混合自动重传请求HARQ反馈指示;
发送模块,用于向第一设备发送第一信息,所述第一信息包括所述HARQ反馈指示,在所述HARQ反馈指示为开启HARQ反馈的情况下,所述开启HARQ反馈用于指示使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述关闭HARQ反馈用于指示使用第二重传定时器时长监听所述第二设备发送的重传数据。
其中,所述第一重传定时器时长与所述第二重传定时器时长不同。
其中,所述第二重传定时器时长大于所述第一重传定时器时长。
其中,所述第一重传定时器时长与所述第二重传定时器时长相同。
可选的,所述装置还包括:
接收模块,用于接收来自网络设备的所述HARQ反馈指示。
可选的,所述发送模块,还用于向网络设备发送所述HARQ反馈指示。
可选的,所述发送模块,还用于向所述第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长
第七方面,本申请实施例提供了一种数据重传装置,包括:
通信模块,用于接收来自第二设备的混合自动重传请求HARQ反馈指示、或向所述第二设备发送HARQ反馈指示;
处理模块,用于根据所述HARQ反馈指示,分配时频资源。
其中,所述HARQ反馈指示用于指示所述第二设备在特定时频资源上打开HARQ反馈或关闭HARQ反馈。
第八方面,本申请实施例提供了一种数据重传装置,包括:
接收模块,用于接收来自网络或预配置的第一信息,所述第一信息包括混合自动重传请求HARQ反馈信道配置;
处理模块,用于在所述HARQ反馈信道配置指示为物理侧链反馈信道PSFCH已配置的情况下,使用第一往返时间定时器RTT时长和/或第一重传定时器时长监听第二设备发送的重传数据,在所述 HARQ反馈信道配置指示为PSFCH未配置的情况下,使用第二RTT时长和/或第二重传定时器时长监听所述第二设备发送的重传数据。
第九方面,本申请提供了一种装置,所述装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面、第二方面、第三方面或第四方面中任意一项所述的方法被执行。
第十方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如第一方面、第二方面、第三方面或第四方面中任意一项所述的方法被实现。
第十一方面,本申请提供一种包括指令的计算机程序产品,当所述指令被执行时,使得如第一方面、第二方面、第三方面或第四方面中任意一项所述的方法被实现。
第十二方面,本申请实施例提供了一种通信系统,该通信系统包括第一设备、第二设备和至网络设备,该第一设备用于执行上述第一方面或第四方面中的步骤,该第二设备用于执行上述第二方面中的步骤,该网络设备用于执行上述第三方面中的步骤。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种DRX机制的示意图;
图3(A)是本申请实施例提供的一种资源调度的示意图;
图3(B)是本申请实施例提供的另一种资源调度的示意图;
图4是本申请实施例提供的一种数据重传方法的流程示意图;
图5是本申请实施例提供的另一种数据重传方法的流程示意图;
图6是本申请实施例提供的另一种数据重传方法的流程示意图;
图7是本申请实施例提供的一种数据重传装置的结构示意图;
图8是本申请实施例提供的另一种数据重传装置的结构示意图;
图9是本申请实施例提供的另一种数据重传装置的结构示意图;
图10是本申请实施例提供的另一种数据重传装置的结构示意图;
图11是本申请实施例提供的一种终端设备的结构示意图;
图12是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请实施例中涉及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的“至少一个”,指的是一个或多个,多个指的是两个或两个以上。
本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示如下三种情况:单独存在A,同时存在A和B,单独存在B。其中,A、B可以是单数或者复数。字符“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。
本申请实施例中的“以下至少一项(个)”或其类似表达,指的是这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。
本申请实施例中的“网络”与“系统”可以表达为同一概念,通信系统即为通信网络。
下面结合本发明实施例中的附图对本发明实施例进行描述。
如图1所示,图1是本申请实施例提供的一种通信系统100的架构示意图。该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,可以应用本申请实施例的方法的通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以通过其他设备或网元通信。在该通信系统100中,网络设备110可以向终端设备101~终端设备106发送下行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据。终端设备101~终端设备106可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、掌上电脑(personal digital assistant,PDA)和/或用于在无线通信系统100上通信的任意其它适合设备等等。网络设备110可以为是长期演进(long term evolution,LTE)和/或NR的网络设备,具体的可以是基站(NodeB)、演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(Next generation Node B,gNB),未来移动通信系统中的基站或Wi-Fi系统中的接入节点。
通信系统100可以采用公共陆地移动网络(public land mobile network,PLMN)、车联网(vehicle to everything,V2X)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或其他网络。此外,终端设备104~终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行数据给终端设备104或终端设备106。在本申请实施例中的方法可以应用于图1所示的通信系统100中。
在本申请实施例中的方法可以应用于图1所示的通信系统100中。本申请涉及的第一设备或第二设备可以为该通信系统中的任何一个终端设备。以下UE作为终端设备进行说明。
如图2所示,图2是本申请实施例提供的一种DRX机制的示意图。UE在RRC连接态的激活状态下,启动一个非激活定时器(inactive timer),UE在不断尝试接收下行控制信道(physical downlink control channel,PDCCH),如果UE接收到PDCCH上的调度下行控制信息(downlink control information,DCI),UE重启非激活定时器。如果UE在一段时间内没有接收到DCI,并且非激活定时器超时,UE会进入DRX状态。DRX状态下的基本时间单位为一个DRX周期(DRX cycle),一个DRX cycle由一个处于休眠模式(sleep)的休眠期和处于唤醒模式(on duration)的唤醒期组成。其中,休眠模式:处于休眠模式下的UE可以完全关闭接收机和基带处理器等通信器件以降低功耗。唤醒模 式:当DRX cycle进入到唤醒模式时,UE将被唤醒并监听PDCCH,一旦在PDCCH上接收到DCI,UE将重新启动非激活定时器。如果UE在唤醒模式期间内没有接收到任何DCI且唤醒模式结束,或者UE接收到DCI但非激活定时器超时,UE将重新回到休眠模式。
对于Uu的DRX机制,UE会根据DRX配置不连续的监控PDCCH以达到省电的目的,当PDCCH中携带与UE对应的无线网络临时标识(例如C-RNTI,CI-RNTI,CS-RNTI,INT-RNTI,SFI-RNTI,SP-CSI-RNTI)时,UE会根据控制信息进行相应的DRX操作。网络设备可以通过配置一系列参数来控制UE的DRX行为,例如,在如下情况下UE处于DRX激活状态:DRX唤醒定时器(drx-onDurationTimer)或DRX激活定时器(drx-InactivityTimer)运行期间;下行DRX重传定时器(drx-RetransmissionTimerDL)或下行DRX重传定时器(drx-RetransmissionTimerUL)运行期间;竞争解决定时器(ra-ContentionResolutionTimer)或消息响应窗口(msgB-ResponseWindow)运行期间;有未被处理的选择重传(selective repeat,SR)资源,PDCCH指示有新的传输期间。
LTE车联网(vehicle to everything,V2X):
D2D的一种侧行链路(sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同。V2X系统采用D2D直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在第三代合作伙伴计划(3rd generation partnership project,3GPP)定义了两种传输模式,包括:模式A和模式B。
模式A:如图3(A)所示,UE的传输资源是由网络设备分配的,UE根据网络设备分配的传输资源在侧行链路上发送数据,网络设备可以为UE分配单次传输的资源,也可以为UE分配半静态传输的资源。
模式B:如图3(B)所示,UE在资源池中选取一个资源进行数据的传输。
在3GPP中,D2D分成了不同的阶段进行研究。
(1)邻近服务(proximity based service,ProSe):在Rel-12/13中设备到设备通信,是针对ProSe的场景进行了研究,主要针对公共安全类的业务。在ProSe中,通过配置资源池在时域上的位置,例如资源池在时域上非连续,达到UE在侧行链路上非连续发送数据或者接收数据,从而达到省电的效果。
(2)车联网(vehicle to everything,V2X):在Rel-14/15中,车联网系统针对车与车通信的场景进行了研究,主要面向相对高速移动的车车、车人通信的业务。在V2X中,由于车载系统具有持续的供电,因此功率效率不是主要问题,而数据传输的时延是主要问题,因此在系统设计上要求UE进行连续的发送和接收。
(3)进一步增强D2D(FeD2D):在Rel-14中,该场景对于可穿戴设备通过UE接入网络的场景进行了研究,主要面向是低移动速度以及低功率接入的场景。在FeD2D中,在预研阶段3GPP结论为网络设备可以通过一个中继(relay)UE去配置远端(remote)UE的DRX参数,但是由于该课题没有进一步进入标准化阶段,如何进行DRX配置的具体细节没有结论。
新无线(new radio,NR)V2X:
NR V2X在LTE V2X的基础上,不仅可以应用于广播场景,也可以应用于单播和组播场景。类似于LTE V2X,NR V2X定义了上述模式A和模式B的两种资源授权模式。更进一步的,UE不仅可以使用模式A获取时频资源,同时也可以使用模式B来获取时频资源。其中,时频资源可以通过侧行链路授权的方式指示,即侧行链路授权用于指示相应的物理侧行链路控制信道(physical sidelink control  channel,PSCCH)与物理侧行链路共享信道(physical sidelink shared channel,PSSCH)资源的时频位置。
与LTE V2X不同的是,NR V2X除了无反馈的、UE自主发起的HARQ重传,同时引入了基于反馈的HARQ重传,并应用于单播通信和组播通信。与LTE V2X相同的是,在NR V2X中,由于车载系统具有持续的供电,因此功率效率不是主要问题,而数据传输的时延是主要问题,因此在系统设计上要求UE进行连续的发送和接收。
NR-V2X通信引入了一些新的特征,例如支持大量非周期业务、重传次数的增多以及更灵活的资源预留周期等。这些特征对UE自主资源选择的模式有较大影响。因此,3GPP重新讨论并设计了适用于NR-V2X的资源选择方案,记为模式2。
在模式2中,UE通过解码其他UE发送的SCI和测量侧行链路接收功率,在资源池中选择未被其他UE预留或者被其他UE预留但接收功率较低的资源。对于NR-V2X,模式2的资源选择方法主要包括两个步骤,即UE首先确定候选资源集合,然后从候选资源集合中选择资源发送数据。
步骤1:UE确定候选资源集合。
首先,UE将资源选择窗内所有的可用资源作为资源集合A。然后UE根据资源侦听窗内的侦听结果,判断资源是否被其他UE预留。UE根据未侦听时隙与侦听到的第一个SCI进行资源排除,在完成资源排除后,如果资源集合A中的剩余资源数目小于一定比例,UE将提升RSRP阈值3dB,并重复执行步骤1直到资源集合A中的剩余资源数目大于等于该比例。相比较LTE-V2X中该比例固定为20%,NR-V2X中该比例的取值更为灵活,该比例的取值可以为20%、35%或50%,该取值可以以资源池为单位由网络配置或者预配置。最终,经过资源排除后的资源集合A即为UE的候选资源集合。
步骤2:UE在候选资源集合中选择传输资源。
UE在资源集合A中等概率随机选择一个或多个传输资源。需要指出的是,在选择该多个传输资源时要满足如下时域上的限制。(1)在除去一些例外情况后,UE应使选择的某个重传资源能够被之前发送的第一个SCI指示。上述例外情况包括:UE在进行资源排除后,无法从资源集合A中选择出满足该时域限制的资源。由于资源抢占、拥塞控制以及与上行业务冲突等因素,UE放弃传输从而导致某次重传的传输资源没有被之前发送的第一个SCI指示。(2)UE应保证任意两个选择的时频资源,如果前一个传输资源需要HARQ反馈,则这两个资源在时域上至少间隔时长Z。当选择的时频资源无法满足该时域限制时,例如间隔时长较短但重传次数较多的情况下,取决于UE实现,可以放弃选择某些重传资源或者针对某几次传输去激活HARQ反馈。
在LTE系统的DRX机制中,都是基于带反馈的HARQ重传机制进行DRX的设计,因此DRX基于RTT和retx timer实现,即在RTT运行期间,UE不需要进行下行监听,之后在重传定时器运行期间进行下行监听。而在侧行链路内,R16引入了灵活的HARQ反馈激活/去激活机制,即基于侧行链路控制信息(sidelink control information,SCI)内的指示,通知接收端UE是否进行反馈。
在侧行链路系统中,由于发送端UE的时频资源授权可能来自于网络设备(模式A),HARQ反馈激活/去激活的决策由发送端UE决定,网络设备并不知道是否激活/去激活HARQ反馈,导致资源调度时间间隔的不确定。网络设备在模式A下可能倾向于在提供重传资源前,留出足够的时间间隔,但是会影响数据传输效率。另一方面,发送端UE的时频资源授权也可能来自于发端UE自己(模式B)。由于发送端UE自己知道HARQ反馈激活/去激活的决策,因此发送端UE可以根据HARQ反馈激活/去激活的状态,选择时频资源向接收端UE发送数据。但是,Uu的DRX机制是针对接收端UE设计 的,而对于侧行链路上的接收端UE,并没有规定如何监听数据,影响数据传输效率。
请参见图4,图4是本发明实施例提供的一种数据重传方法的流程示意图,本申请实施例的方法至少包括如下步骤:
S401,第二设备向第一设备发送第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示。
其中,第一信息可以承载在PSCCH或PSSCH中。第一信息可以为混合自动重传请求HARQ反馈指示,HARQ反馈指示可以包括开启HARQ反馈或关闭HARQ反馈。
其中,所述HARQ反馈指示可以用于指示第二设备在特定时频资源上是否会打开或关闭HARQ反馈,例如对于特定配置资源(configured grant)。
可选的,在第二设备向第一设备发送第一信息之前,第一设备可以预先配置第一重传定时器(re-transmission timer)时长和第二重传定时器时长。可选的,第一设备也可以预先配置第一RTT时长和第二RTT时长。
可选的,在第二设备向第一设备发送第一信息之前,第二设备可以向第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。第二信息也可以包括第一RTT时长和第二RTT时长。
可选的,在第二设备向第一设备发送第一信息之前,网络设备可以通过系统信息块(system information block,SIB)或专有信令向第一设备发送配置信息,第一设备可以接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。配置信息也可以包括第一RTT时长和第二RTT时长。
其中,第一设备和第二设备可以均为终端设备。
S402,在所述HARQ反馈指示为开启HARQ反馈的情况下,所第一设备使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据。
需要说明的是,如果第一设备接收第二设备发送的数据失败或者是第一设备接收到的数据错误,则第一设备需要使用第一重传定时器时长或第二重传定时器时长来监听第二设备发送的重传数据。否则,第一设备不需要启动第一重传定时器时长或第二重传定时器时长来。
可选的,第二设备向第一设备发送第一信息之后,可以向第一设备发送数据,该数据承载于数据信道上。在HARQ反馈指示为开启HARQ反馈的情况下,第一设备可以向第二设备发送反馈信息,其中,反馈信息可以为物理侧链反馈信道(physical sidelink feedback channel,PSFCH),该反馈信息可以用于指示数据传输失败、或指示第二设备需要重新发送数据。第一设备向第二设备发送反馈信息之后,启动第一往返时间定时器RTT时长,在所述第一RTT时长内第二设备不会向第一设备发送重传数据,此时第一设备可以停止监听所述第二设备发送的重传数据。在等待所述第一RTT时长超时后,第二设备开始向第一设备发送重传数据,此时第一设备被唤醒,启动第一重传定时器时长,使用第一重传定时器时长监听第二设备发送的重传数据。如果第一设备在第一重传定时器时长内监听到第二设备发送的重传数据,开始接收重传数据。
可选的,第二设备向第一设备发送第一信息之后,可以向第一设备发送数据,该数据承载于数据信道上。在HARQ反馈指示为关闭HARQ反馈的情况下,第一设备不会向第二设备发送反馈信息,直到等待到第一时刻启动第二重传定时器时长,使用第二重传定时器时长监听所述第二设备发送的重传数据。其中,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接 收到所述第一信息经过预设时间段后、和接收到所述第一信息对应的数据信道经过预设时间段后中至少一种。
可选的,在所述HARQ反馈指示为关闭HARQ反馈的情况下,第一设备可以启动第二往返时间定时器RTT时长,在第二RTT时长内第二设备不会向第一设备发送重传数据,此时第一设备可以停止监听所述第二设备发送的重传数据。在等待第二RTT时长超时后使用所述第二重传定时器时长监听第二设备发送的重传数据。需要说明的是,在关闭HARQ反馈的情况下的第二RTT时长与在打开HARQ反馈的情况下的第一RTT时长可以不同,也可以相同。第一RTT时长和第二RTT时长可以是由同一个定时器设定,也可以由不同的定时器设定。
可选的,第二设备可以根据网络设备分配的时频资源在侧行链路上发送重传数据,也可以从资源池中选取一个时频资源来发送重传数据。
需要说明的是,可以通过一个重传定时器在不同的HARQ反馈指示情况下设定第一重传定时器时长和第二重传定时器时长,也可以通过两个重传定时器在不同的HARQ反馈指示情况下分别设定第一重传定时器时长和第二重传定时器时长,其中一个重传定时器设定第一重传定时器时长,另一个重传定时器设定第二重传定时器时长。
可选的,所述第一重传定时器时长与所述第二重传定时器时长不同。进一步的,所述第二重传定时器时长大于所述第一重传定时器时长。在关闭HARQ反馈的情况下,第二设备接收不到第一设备发送的反馈信息,第二设备或网络设备无法确定是否需要发送重传资源或发送重传资源的时机,因此第二重传定时器时长可以设定较长,以便第一设备在第二重传定时器时长内能够监听到第二设备发送的重传资源。而在开启HARQ反馈的情况下,第二设备接收到反馈信息之后,就可以发送重传资源,因此第一重传定时器时长可以设定较短,以便节省电量。
可选的,所述第二重传定时器时长也可以等于所述第一重传定时器时长。或者,所述第二重传定时器时长也可以小于所述第一重传定时器时长。对于第一重传定时器时长和第二重传定时器时长,本申请并不限定。
在本申请实施例中,在侧行链路中,第一设备(接收端UE)可以根据不同的HARQ反馈指示,选择第一重传定时器时长或第二重传定时器时长来监听第二设备(发送端UE)发送的重传数据,使得第二设备在启动重传定时器之前处于休眠状态,从而节省电量。并且通过在重传定时器运行期间监听重传数据,保障数据传输的成功率,提高数据传输效率。
请参见图5,图5是本发明实施例提供的另一种数据重传方法的流程示意图,本申请实施例的方法至少包括如下步骤:
S501,网络设备接收来自第二设备的混合自动重传请求HARQ反馈指示、或向所述第二设备发送HARQ反馈指示。
S502,网络设备根据所述HARQ反馈指示,分配时频资源。
需要说明的是,网络设备与第二设备之间交互HARQ反馈指示之后,使得网络设备可以知道侧行链路上的第一设备与第二设备之间HARQ反馈关闭还是开启,由于第二设备调度时频资源的时间间隔与关闭HARQ反馈或开启HARQ反馈相关,因此网络设备可以确定第二设备调度时频资源的时间间隔,依据HARQ反馈指示来向第二设备分配时频资源。
其中,所述HARQ反馈指示可以用于指示第二设备在特定时频资源上是否会打开/关闭HARQ反馈,例如对于特定配置资源(configured grant)。
例如,在HARQ反馈指示为关闭HARQ反馈时,网络设备分配的初传数据的时频资源与重传数据的时频资源之间的时间间隔较长;而在HARQ反馈指示为开启HARQ反馈时,网络设备分配的初传数据的时频资源与重传数据的时频资源之间的时间间隔较短。或者,在HARQ反馈指示为关闭HARQ反馈时,网络设备分配的初传数据的时频资源与重传数据的时频资源之间的时间间隔较短;而在HARQ反馈指示为开启HARQ反馈时,网络设备分配的初传数据的时频资源与重传数据的时频资源之间的时间间隔较长。
这样,当第二设备从网络设备分配的时频资源中选取时频资源向第一设备发送数据时,由于这些时频资源的时间间隔是依据HARQ反馈指示确定的,在侧行链路上进行数据传输时,不仅有利于第二设备选择相应的时频资源发送数据,而且有利于第一设备配置相应的DRX机制进行数据传输,也即选择不同的重传定时器来监听第二设备发送的重传数据。
可选的,网络设备可以向第二设备发送时频资源集合,使得第二设备可以从时频资源集合中选取时频资源向第一设备发送数据。
可选的,网络设备可以向第二设备发送数据,第二设备接收到数据之后,向网络设备发送确认(acknowledgement,ACK)信息或否定确认(negative acknowledgement,NACK)信息。
S503,第二设备向第一设备发送第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示。
其中,第一信息可以承载在PSCCH或PSSCH中。第一信息可以为混合自动重传请求HARQ反馈指示,HARQ反馈指示可以包括开启HARQ反馈或关闭HARQ反馈。
可选的,在第二设备向第一设备发送第一信息之前,第一设备可以预先配置第一重传定时器(re-transmission timer)的时长和第二重传定时器时长。可选的,第一设备也可以预先配置第一RTT时长和第二RTT时长。
可选的,在第二设备向第一设备发送第一信息之前,第二设备可以向第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。第二信息也可以包括第一RTT时长和第二RTT时长。
可选的,在第二设备向第一设备发送第一信息之前,网络设备可以通过SIB或专有信令向第一设备发送配置信息,第一设备可以接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。配置信息也可以包括第一RTT时长和第二RTT时长。
S504,在所述HARQ反馈指示为开启HARQ反馈的情况下,所述第一设备使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据。
需要说明的是,如果第一设备接收第二设备发送的数据失败或者是第一设备接收到的数据错误,则第一设备需要选取第一重传定时器时长或第二重传定时器时长来监听第二设备发送的重传数据。否则,第一设备不需要启动第一重传定时器时长或第二重传定时器时长。
可选的,第二设备向第一设备发送第一信息之后,可以向第一设备发送数据,该数据承载于数据信道上。在所述HARQ反馈指示为开启HARQ反馈的情况下,第一设备可以向第二设备发送反馈信息,其中,反馈信息可以为PSFCH,该反馈信息可以用于指示数据传输失败、或指示第二设备需要重新发送数据。第一设备向第二设备发送反馈信息之后,启动第一往返时间定时器RTT时长,在所述第一RTT时长内第二设备不会向第一设备发送重传数据,此时第一设备可以停止监听所述第二设备发送的重传数据。在等待所述第一RTT时长超时后,第二设备开始向第一设备发送重传数据,此时第一设 备被唤醒,启动第一重传定时器时长,使用第一重传定时器时长监听第二设备发送的重传数据。如果第一设备在第一重传定时器时长内监听到第二设备发送的重传数据,开始接收重传数据。
可选的,第二设备向第一设备发送第一信息之后,可以向第一设备发送数据,该数据承载于数据信道上。在HARQ反馈指示为关闭HARQ反馈的情况下,第一设备不会向第二设备发送反馈信息,直到等待到第一时刻启动第二重传定时器时长,使用第二重传定时器时长监听所述第二设备发送的重传数据。其中,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接收到所述第一信息经过预设时间段后、和接收到所述第一信息对应的数据信道经过预设时间段后中的至少一种。
可选的,在所述HARQ反馈指示为关闭HARQ反馈的情况下,第一设备可以启动第二往返时间定时器RTT时长,在第二RTT时长内第二设备不会向第一设备发送重传数据,此时第一设备可以停止监听所述第二设备发送的重传数据。在等待第二RTT时长超时后使用所述第二重传定时器时长监听第二设备发送的重传数据。需要说明的是,在关闭HARQ反馈的情况下的第二RTT时长与在打开HARQ反馈的情况下的第一RTT时长可以不同,也可以相同。第一RTT时长和第二RTT时长可以是由同一个定时器设定,也可以由不同的定时器设定。
可选的,第二设备可以根据网络设备分配的时频资源在侧行链路上发送重传数据,也可以从资源池中选取一个时频资源来发送重传数据。
需要说明的是,可以通过一个重传定时器在不同的HARQ反馈指示情况下设定第一重传定时器时长和第二重传定时器时长,也可以通过两个重传定时器在不同的HARQ反馈指示情况下分别设定第一重传定时器时长和第二重传定时器时长,其中一个重传定时器设定第一重传定时器时长,另一个重传定时器设定第二重传定时器时长。
可选的,所述第一重传定时器时长与所述第二重传定时器时长不同。所述第二重传定时器时长大于所述第一重传定时器时长。在关闭HARQ反馈的情况下,第二设备接收不到第一设备发送的反馈信息,第二设备或网络设备无法确定是否需要发送重传资源或发送重传资源的时机,因此第二重传定时器时长可以设定较长,以便第一设备在第二重传定时器时长内能够监听到第二设备发送的重传资源。而在开启HARQ反馈的情况下,第二设备接收到反馈信息之后,就可以发送重传资源,因此第一重传定时器时长可以设定较短,以便节省电量。
可选的,所述第二重传定时器时长也可以等于所述第一重传定时器时长。或者,所述第二重传定时器时长也可以小于所述第一重传定时器时长。对于第一重传定时器时长和第二重传定时器时长,本申请并不限定。
在本申请实施例中,当网络设备调度侧行链路资源时,由于网络设备知道HARQ反馈开启或关闭的状况,使得网络设备能够确定资源调度时间间隔,从而有利于第一设备配置相应的DRX机制来接收数据。并且,在侧行链路中,第一设备(接收端UE)可以根据不同的HARQ反馈指示,选择第一重传定时器时长或第二重传定时器时长来监听第二设备(发送端UE)发送的重传数据,使得第二设备在启动重传定时器之前处于休眠状态,从而节省电量。通过在重传定时器运行期间监听重传数据,保障数据传输的成功率,提高数据传输效率。
结合上述可知,在侧行链路内,第一设备(接收端UE)可以根据不同的HARQ反馈指示(该HARQ反馈指示可以用于指示第二设备在特定时频资源上是否会打开或关闭HARQ反馈),选择第一重传定时器时长或第二重传定时器时长来监听第二设备(发送端UE)发送的重传数据,从而基于带反馈的 HARQ来实现数据重传。其中,该HARQ反馈指示的发送和接收是采用动态调度的方式来实现的,即基于SCI来携带该HARQ反馈指示。
另外,在基于带反馈的HARQ来实现数据重传中,本申请实施例的第一设备(接收端UE)可以根据不同的HARQ反馈信道配置(该HARQ反馈信道配置可以用于指示PSFCH是否已配置),选择第一RTT时长、第一重传定时器时长、第二RTT时长、第二重传定时器时长中的至少之一项来监听第二设备(发送端UE)发送的重传数据。其中,该HARQ反馈信道配置的发送和接收是采用静态配置的方式来实现。下面对此进行具体说明。
请参见图6,图6是本申请实施例提供的另一种数据重传方法的流程示意图,本申请实施例的方法至少包括如下步骤:
S601、第一设备获取网络或预配置的第一信息,该第一信息包括混合自动重传请求HARQ反馈信道配置。
需要说明的是,结合上述可知,网络设备可以在小区搜索、小区接入、小区驻留、小区重选、初始接入、随机接入、小区切换、上下行同步、RRC重配置等过程中向第一设备与第二设备之间的侧行链路通信配置资源池。其中,该资源池中可以配置有物理侧链反馈信道(physical sidelink feedback channel,PSFCH),可以未配置有PSFCH。
当资源池中配置有PSFCH时,第一设备(接收端UE)可以在该PSFCH上反馈数据是否传输失败或者反馈第二设备(发送端UE)是否需要重新发送数据,从而有利于实现向对端反馈数据接收结果,但也可能存在资源浪费。
当资源池中未配置有PSFCH时,第一设备无需向第二设备反馈数据接收结果,从而有利于节省资源,但也可能存在无法向对端反馈数据接收结果。
然而,当第一设备需要利用该资源池来接收第二设备的重传数据时,第一设备可能存在如何面临使用RTT或重传定时器的问题,例如第一设备在使用RTT或重传定时器时需要采用多大的时长。
基于此,本申请实施例可以依靠网络配置或者预配置第一信息来指示资源池中是否配置有PSFCH,即第一信息中的HARQ反馈信道配置可以用于指示PSFCH是否已配置,并根据该HARQ反馈信道配置所指示的不同(一种是PSFCH已配置的资源池,一种是PSFCH未配置的资源池)来对应的选择RTT时长和/或重传定时器时长以监听第二设备发送的重传数据。其中,该HARQ反馈信道配置可以包括PSFCH已配置或者PSFCH未配置。或者说,该HARQ反馈信道配置用于指示PSFCH已配置,或者该HARQ反馈信道配置用于指示PSFCH未配置。
另外,第一信息可以是网络配置的或者预配置的。
在网络配置第一信息时,网络设备可以通过静态配置的方式来发送第一信息,即第一设备接收来自网络设备的第一信息。
由于该HARQ反馈信道配置的发送和接收是采用静态配置的方式来实现的,因此第一信息(或该HARQ反馈信道配置)可以携带在高层信令中。例如,该高层信令可以为RRC信令或MAC CE等。
可选的,在第一设备获取第一信息之前,第一设备可以预配置或网络配置第一重传定时器时长、第二重传定时器时长、第一RTT时长、第二RTT时长中的至少之一项。
例如,在网络配置时,网络设备可以在小区搜索、小区接入、小区驻留、小区重选、初始接入、随机接入、小区切换、上下行同步、RRC重配置等过程中向第一设备发送用于配置第一重传定时器时长、第二重传定时器时长、第一RTT时长、第二RTT时长中的至少之一项的信息,从而通过该信息 实现网络配置第一重传定时器时长、第二重传定时器时长、第一RTT时长、第二RTT时长中的至少之一项。其中,该信息可以是系统信息、专有信息或高层信令等。
又例如,在网络配置时,在第二设备向第一设备发送第一信息之前,第二设备可以向第一设备发送第二信息,该第二信息包括第一重传定时器时长、第二重传定时器时长、第一RTT时长、第二RTT时长中的至少之一项。
又例如,在第二设备向第一设备发送第一信息之前,网络设备可以通过系统信息块(system information block,SIB)或专有信令向第一设备发送配置信息,第一设备可以接收来自网络设备的配置信息,该配置信息包括第一重传定时器时长、第二重传定时器时长、第一RTT时长、第二RTT时长中的至少之一项。
其中,第一设备和第二设备可以均为终端设备。
S602、在该HARQ反馈信道配置指示为PSFCH已配置的情况下,第一设备使用第一往返时间定时器RTT时长和/或第一重传定时器时长监听第二设备发送的重传数据,在该HARQ反馈信道配置指示为PSFCH未配置的情况下,第一设备使用第二RTT时长和/或第二重传定时器时长监听第二设备发送的重传数据。
需要说明的是,如果第一设备接收第二设备发送的数据失败或者第一设备接收到的数据错误,则第二设备可能需要向第一设备重传数据。此时,在基于带反馈的HARQ来实现数据重传中,本申请实施例的第一设备(接收端UE)可以根据不同的HARQ反馈信道配置(该HARQ反馈信道配置可以用于指示PSFCH是否已配置),选择第一RTT时长、第一重传定时器时长、第二RTT时长、第二重传定时器时长中的至少之一项来监听第二设备(发送端UE)发送的重传数据。
例如,在该HARQ反馈信道配置指示为PSFCH已配置的情况下,第一设备可以使用第一RTT定时器时长监听第二设备发送的重传数据。由于在第一RTT时长内第二设备不会向第一设备发送重传数据,此时第一设备可以停止监听第二设备发送的重传数据,因此,第一设备使用第一RTT定时器时长监听第二设备发送的重传数据,可以理解为,第一设备启动第一RTT,并在第一RTT时长超时后监听第二设备发送的重传数据。
又例如,在该HARQ反馈信道配置指示为PSFCH已配置的情况下,第一设备可以使用第一重传定时器时长监听第二设备发送的重传数据。由于在第一重传定时器时长内第二设备可以向第一设备发送重传数据,因此第一设备使用第一重传定时器时长监听第二设备发送的重传数据,可以理解为,第一设备启动第一重传定时器,并在第一重传定时器时长内监听第二设备发送的重传数据。
又例如,在该HARQ反馈信道配置指示为PSFCH已配置的情况下,第一设备可以使用第一RTT时长和第一重传定时器时长监听第二设备发送的重传数据。结合上述可知,第一设备使用第一RTT时长和第一重传定时器时长监听第二设备发送的重传数据,可以理解为,第一设备在等待第一RTT时长超时后启动第一重传定时器,并在第一重传定时器内监听第二设备发送的重传数据。
同理,例如,在该HARQ反馈信道配置指示为PSFCH未配置的情况下,第一设备可以使用第二RTT定时器时长监听第二设备发送的重传数据。由于在第二RTT时长内第二设备不会向第一设备发送重传数据,此时第一设备可以停止监听第二设备发送的重传数据,因此,第一设备使用第二RTT定时器时长监听第二设备发送的重传数据,可以理解为,第一设备启动第二RTT,并在第二RTT时长超时后监听第二设备发送的重传数据。
另外,在PSFCH未配置的情况下的第二RTT时长与在PSFCH已配置的情况下的第一RTT时长 可以不同,也可以相同。其中,第一RTT时长和第二RTT时长可以是由同一个定时器设定,也可以由不同的定时器设定,对此不作具体限制。
又例如,在该HARQ反馈信道配置指示为PSFCH未配置的情况下,第一设备可以使用第二重传定时器时长监听第二设备发送的重传数据。由于在第二重传定时器时长内第二设备可以向第一设备发送重传数据,因此第一设备使用第二重传定时器时长监听第二设备发送的重传数据,可以理解为,第一设备启动第二重传定时器,并在第二重传定时器时长内监听第二设备发送的重传数据。
另外,在PSFCH未配置的情况下的第二重传定时器时长与在PSFCH已配置的情况下的第一重传定时器时长可以不同,也可以相同。其中,第一重传定时器时长和第二重传定时器时长可以是由同一个定时器设定,也可以由不同的定时器设定,对此不作具体限制。
又例如,在该HARQ反馈信道配置指示为PSFCH未配置的情况下,第一设备可以使用第二RTT时长和第二重传定时器时长监听第二设备发送的重传数据。结合上述可知,第一设备使用第二RTT时长和第二重传定时器时长监听第二设备发送的重传数据,可以理解为,第一设备在等待第二RTT时长超时后启动第二重传定时器,并在第二重传定时器内监听第二设备发送的重传数据。
下面对第一重传定时器时长和第二重传定时器时长的具体说明。
在一些可能的设计中,第一重传定时器时长与第二重传定时器时长不同。
例如,第一重传定时器时长可以大于第二重传定时器时长。
这是因为,从第二设备(发送端UE)的角度来说,重传定时器时长,可以理解为,第二设备从当前数据传输到下一次数据传输之间(两次数据传输之间)的一个时间间隔。如果PSFCH已配置,则该两次数据传输之间存在PSFCH上的反馈结果。此时,第二设备(发送端UE)需要等待该PSFCH上的反馈结果,再根据该反馈结果来判断是否需要执行数据重传。由于第二设备(发送端UE)在等待反馈结果以及处理反馈结果的过程中存在一些处理时延等,因此需要将两次数据传输之间的时间间隔增大,即重传定时器时长增大,从而有利于保证在该重传定时器时长内能够监听到第二设备发送的重传数据。
同理,如果PSFCH未配置,则该两次数据传输之间不存在PSFCH上的反馈结果。此时,可以将两次数据传输之间的时间间隔减小,即重传定时器时长较小,从而有利于节省第一设备在该重传定时器时长内监听所消耗的电量,以便节能。
可见,PSFCH是否配置对于重传定时器时长的配置具有一定的影响。
在一些可能的设计中,第二重传定时器时长可以等于第一重传定时器时长,从而有利于提供配置重传定时器时长的多样性和灵活性,保证通信过程的灵活性。
下面对第一RTT时长和第二RTT时长的具体说明。
在一些可能的设计中,第一RTT时长与第二RTT时长不同。
例如,第一RTT时长可以大于第二RTT时长。
这是因为,与上述类似,从第二设备(发送端UE)的角度来说,RTT时长,可以理解为,第二设备从当前数据传输到下一次数据传输之间(两次数据传输之间)的一个时间间隔。如果PSFCH已配置,则该两次数据传输之间存在PSFCH上的反馈结果。此时,第二设备(发送端UE)需要等待该PSFCH上的反馈结果,再根据该反馈结果来判断是否需要执行数据重传。由于第二设备(发送端UE)在等待反馈结果以及处理反馈结果的过程中存在一些处理时延等,因此需要将两次数据传输之间的时间间隔增大,即RTT时长增大,从而有利于保证留有尽可能充足的时间间隔来进行数据结果反馈以及 数据处理等,进而保证通信的鲁棒性和可靠性。
同理,如果PSFCH未配置,则该两次数据传输之间不存在PSFCH上的反馈结果。此时,可以将两次数据传输之间的时间间隔(最短时间间隔)减小,即RTT时长较小,从而有利于尽可能减少不必要的等待,进而提高通信效率。
可见,PSFCH是否配置对于RTT时长的配置具有一定的影响。
在一些可能的设计中,第二RTT时长可以等于第一RTT时长,从而有利于提供配置RTT时长的多样性和灵活性,保证通信过程的灵活性。
可以理解的是,上述各个方法实施例中,由终端设备(例如第一设备或第二设备)实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图4至图6详细说明了本申请实施例提供的方法。以下,结合图7至图10详细说明本申请实施例提供的数据重传装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
请参见图7,图7是本申请实施例提供的一种数据重传装置的结构示意图。该数据重传装置可以包括接收模块701和发送模块703,可选地,还可以包括处理模块702。接收模块701和发送模块703可以与外部进行通信,处理模块702用于进行处理,如使用重传定时器监听重传数据等。接收模块701和发送模块703还可以称为通信接口、收发单元或收发模块。该接收模块701和发送模块703可以用于执行上文方法实施例中第一设备所执行的动作。
例如:接收模块701和发送模块703也可以称为收发模块或收发单元(包括接收单元和/或发送单元),分别用于执行上文方法实施例中第一设备发送和接收的步骤。
在一种可能的设计中,该数据重传装置可实现对应于上文方法实施例中的第一设备执行的步骤或者流程,例如,可以为第一设备,或者配置于第一设备中的芯片或电路。接收模块701和发送模块703用于执行上文方法实施例中第一设备的收发相关操作,处理模块702用于执行上文方法实施例中第一设备的处理相关操作。
接收模块701,用于接收来自第二设备的第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示;
处理模块702,用于在所述HARQ反馈指示为开启HARQ反馈的情况下,使用第一重传定时器时 长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,使用第二重传定时器时长监听所述第二设备发送的重传数据。
可选的,所述第一重传定时器时长与所述第二重传定时器时长不同。
可选的,所述第二重传定时器时长大于所述第一重传定时器时长。
可选的,所述第一重传定时器时长与所述第二重传定时器时长相同。
可选的,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
可选的,接收模块701,还用于接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
可选的,接收模块701,还用于接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。
可选的,发送模块703,用于向所述第二设备发送反馈信息;
处理模块702,还用于启动第一往返时间定时器RTT时长;在所述第一RTT时长超时后使用所述第一重传定时器时长监听所述第二设备发送的重传数据。
可选的,处理模块702,还用于在第一时刻使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
可选的,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接收到所述第一信息经过预设时间段后、和接收到所述第一信息对应的数据信道经过预设时间段后中的至少一种。
可选的,处理模块702,还用于启动第二往返时间定时器RTT时长;在所述第二RTT时长超时后使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
需要说明的是,各个模块的实现还可以对应参照图4和图5所示的方法实施例的相应描述,执行上述实施例中第一设备所执行的方法和功能。
请参见图8,图8是本申请实施例提供的另一种数据重传装置的结构示意图。该数据重传装置可以包括接收模块801和发送模块803,可选地,还可以包括处理模块802。接收模块801和发送模块803可以与外部进行通信,处理模块802用于进行处理,如使用重传定时器监听重传数据等。接收模块801和发送模块803还可以称为通信接口、收发单元或收发模块。该接收模块801和发送模块803可以用于执行上文方法实施例中第二设备所执行的动作。
例如:接收模块801和发送模块803也可以称为收发模块或收发单元(包括接收单元和/或发送单元),分别用于执行上文方法实施例中第二设备发送和接收的步骤。
在一种可能的设计中,该数据重传装置可实现对应于上文方法实施例中的第二设备执行的步骤或者流程,例如,可以为第二设备,或者配置于第二设备中的芯片或电路。接收模块801和发送模块803用于执行上文方法实施例中第二设备的收发相关操作,处理模块802用于执行上文方法实施例中第二设备的处理相关操作。
处理模块802,用于确定混合自动重传请求HARQ反馈指示;
发送模块803,用于向第一设备发送第一信息,所述第一信息包括所述HARQ反馈指示,在所述HARQ反馈指示为开启HARQ反馈的情况下,所述开启HARQ反馈用于指示使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述关闭HARQ反馈用于指示使用第二重传定时器时长监听所述第二设备发送的重传数据。
可选的,所述第一重传定时器时长与所述第二重传定时器时长不同。
可选的,所述第二重传定时器时长大于所述第一重传定时器时长。
可选的,所述第一重传定时器时长与所述第二重传定时器时长相同。
可选的,接收模块801,用于接收来自网络设备的所述HARQ反馈指示。
可选的,发送模块803,还用于向网络设备发送所述HARQ反馈指示。
可选的,发送模块803,还用于向所述第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
需要说明的是,各个模块的实现还可以对应参照图4和图5所示的方法实施例的相应描述,执行上述实施例中第二设备所执行的方法和功能。
请参见图9,图9是本申请实施例提供的另一种数据重传装置的结构示意图。该数据重传装置可以包括通信模块901和处理模块902。通信模块901可以与外部进行通信,处理模块902用于进行处理,如分配时频资源等。通信模块901还可以称为通信接口、收发模块或收发单元。该通信模块901可以用于执行上文方法实施例中网络设备所执行的动作。
例如:通信模块901也可以称为收发模块或收发单元(包括发送单元和/或接收单元),分别用于执行上文方法实施例中网络设备发送和接收的步骤。
在一种可能的设计中,该数据重传装置可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。通信模块901用于执行上文方法实施例中网络设备侧的收发相关操作,处理模块902用于执行上文方法实施例中网络设备的处理相关操作。
通信模块901,用于接收来自第二设备的混合自动重传请求HARQ反馈指示、或向所述第二设备发送HARQ反馈指示;处理模块902,用于根据所述HARQ反馈指示,分配时频资源。
其中,所述HARQ反馈指示用于指示所述第二设备在特定时频资源上打开HARQ反馈或关闭HARQ反馈。
需要说明的是,各个模块的实现还可以对应参照图4和图5所示的方法实施例的相应描述,执行上述实施例中网络设备所执行的方法和功能。
请参见图10,图10是本申请实施例提供的另一种数据重传装置的结构示意图。该数据重传装置可以包括接收模块1001和发送模块1003,可选地,还可以包括处理模块1002。接收模块1001和发送模块1003可以与外部进行通信,处理模块1002用于进行处理,如使用重传定时器监听重传数据等。接收模块1001和发送模块1003还可以称为通信接口、收发单元或收发模块。该接收模块1001和发送模块1003可以用于执行上文方法实施例中第一设备所执行的动作。
例如:接收模块1001和发送模块1003也可以称为收发模块或收发单元(包括接收单元和/或发送单元),分别用于执行上文方法实施例中第一设备发送和接收的步骤。
在一种可能的设计中,该数据重传装置可实现对应于上文方法实施例中的第一设备执行的步骤或者流程,例如,可以为第一设备,或者配置于第一设备中的芯片或电路。接收模块1001和发送模块1003用于执行上文方法实施例中第一设备的收发相关操作,处理模块1002用于执行上文方法实施例中第一设备的处理相关操作。
接收模块1001,用于接收来自网络或预配置的第一信息,该第一信息包括混合自动重传请求HARQ反馈信道配置;
处理模块1002,用于在HARQ反馈信道配置指示为物理侧链反馈信道PSFCH已配置的情况下,使用第一往返时间定时器RTT时长和/或第一重传定时器时长监听第二设备发送的重传数据,在HARQ反馈信道配置指示为PSFCH未配置的情况下,使用第二RTT时长和/或第二重传定时器时长监听第二设备发送的重传数据。
需要说明的是,各个模块的实现还可以对应参照图6所示的方法实施例的相应描述,执行上述实施例中第一设备所执行的方法和功能。
图11是本申请实施例提供的一种终端设备的结构示意图。该终端设备可应用于如图1所示的系统中,执行上述方法实施例中第一设备或第二设备的功能,或者实现上述方法实施例中第一设备或第二设备执行的步骤或者流程。
如图11所示,该终端设备包括处理器1101和收发器102。可选地,该终端设备还包括存储器1103。其中,处理器1101、收发器1102和存储器1103之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1103用于存储计算机程序,该处理器1101用于从该存储器1103中调用并运行该计算机程序,以控制该收发器1102收发信号。可选地,终端设备还可以包括天线,用于将收发器1102输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器1101可以和存储器1103可以合成一个处理装置,处理器1101用于执行存储器1103中存储的程序代码来实现上述功能。具体实现时,该存储器1103也可以集成在处理器1101中,或者独立于处理器1101。该处理器1101可以与图7、图8或图10中的处理模块对应。
上述收发器1102可以与图7、图8或图10中的接收模块和发送模块对应,也可以称为收发单元或收发模块。收发器1102可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图11所示的终端设备能够实现图4、图5或图6所示方法实施例中涉及第一设备或第二设备的各个过程。终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器1101可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器1102可以用于执行前面方法实施例中描述的第一设备或第二设备的发送或接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
其中,处理器1101可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器1101也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线1104可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线1104用于实现这些组件之间的连接通信。其中,本申请实施例中收发器1102用于与其他节点设备进行信令或数据的通信。存储器1103可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash  memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器1103可选的还可以是至少一个位于远离前述处理器1101的存储装置。存储器1103中可选的还可以存储一组计算机程序代码或配置信息。可选的,处理器1101还可以执行存储器1103中所存储的程序。处理器可以与存储器和收发器相配合,执行上述申请实施例中终端设备的任意一种方法和功能。
图12是本申请实施例提供的一种网络设备的结构示意图。该网络设备可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能,或者实现上述方法实施例中网络设备执行的步骤或者流程。
如图12所示,该网络设备包括处理器1201和收发器1202。可选地,该网络设备还包括存储器1203。其中,处理器1201、收发器1202和存储器1203之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1203用于存储计算机程序,该处理器1201用于从该存储器1203中调用并运行该计算机程序,以控制该收发器1202收发信号。可选地,网络设备还可以包括天线,用于将收发器1202输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器1201可以和存储器1203可以合成一个处理装置,处理器1201用于执行存储器1203中存储的程序代码来实现上述功能。具体实现时,该存储器1203也可以集成在处理器1201中,或者独立于处理器1201。该处理器1201可以与图9中的处理模块对应。
上述收发器1202可以与图9中的通信模块对应,也可以称为收发单元或收发模块。收发器1202可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图12所示的网络设备能够实现图4至图5所示方法实施例中涉及网络设备的各个过程。网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器1201可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器1202可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
其中,处理器1201可以是前文提及的各种类型的处理器。通信总线1204可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线1204用于实现这些组件之间的连接通信。其中,本申请实施例中设备的收发器1202用于与其他设备进行信令或数据的通信。存储器1203可以是前文提及的各种类型的存储器。存储器1203可选的还可以是至少一个位于远离前述处理器1201的存储装置。存储器1203中存储一组计算机程序代码或配置信息,且处理器1201执行存储器1203中程序。处理器可以与存储器和收发器相配合,执行上述申请实施例中网络设备的任意一种方法和功能。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备或网络设备以实现上述任一实施例中所涉及的功能,例如生成或处理上述方法中所涉及的HARQ反馈指示。在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于终端设备或网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。其中,芯片系统的输入和输出,分别对应方法实施例终端设备或网络设备的接收与发送操作。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计 算机程序,当该计算机程序在计算机上运行时,使得该计算机执行图4至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行图4至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的第一设备、第二设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (65)

  1. 一种数据重传方法,其特征在于,所述方法包括:
    第一设备接收来自第二设备的第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示;
    在所述HARQ反馈指示为开启HARQ反馈的情况下,所述第一设备使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长不同。
  3. 如权利要求2所述的方法,其特征在于,所述第二重传定时器时长大于所述第一重传定时器时长。
  4. 如权利要求1所述的方法,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长相同。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
  7. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述在所述HARQ反馈指示为开启HARQ反馈的情况下,所述第一设备使用第一重传定时器时长监听所述第二设备发送的重传数据包括:
    所述第一设备向所述第二设备发送反馈信息;
    所述第一设备启动第一往返时间定时器RTT时长;
    所述第一设备在所述第一RTT时长超时后使用所述第一重传定时器时长监听所述第二设备发送的重传数据。
  9. 如权利要求1-7任一项所述的方法,其特征在于,所述在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据包括:
    所述第一设备在第一时刻使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
  10. 如权利要求9所述的方法,其特征在于,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接收到所述第一信息经过预设时间段后和接收到所述第一信息对应的数据信道经过预设时间段后中的至少一种。
  11. 如权利要求1-7任一项所述的方法,其特征在于,所述在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述第一设备使用第二重传定时器时长监听所述第二设备发送的重传数据包括:
    所述第一设备启动第二往返时间定时器RTT时长;
    所述第一设备在所述第二RTT时长超时后使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
  12. 一种数据重传方法,其特征在于,所述方法包括:
    所述第二设备确定混合自动重传请求HARQ反馈指示;
    所述第二设备向第一设备发送第一信息,所述第一信息包括所述HARQ反馈指示,在所述HARQ反馈指示为开启HARQ反馈的情况下,所述开启HARQ反馈用于指示使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述关闭HARQ反馈用于指示使用第二重传定时器时长监听所述第二设备发送的重传数据。
  13. 如权利要求12所述的方法,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长不同。
  14. 如权利要求13所述的方法,其特征在于,所述第二重传定时器时长大于所述第一重传定时器时长。
  15. 如权利要求12所述的方法,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长相同。
  16. 如权利要求12-15任一项所述的方法,其特征在于,所述第二设备确定混合自动重传请求HARQ反馈指示包括:
    所述第二设备接收来自网络设备的所述HARQ反馈指示。
  17. 如权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向网络设备发送所述HARQ反馈指示。
  18. 如权利要求12-17任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
  19. 一种数据重传方法,其特征在于,所述方法包括:
    网络设备接收来自第二设备的混合自动重传请求HARQ反馈指示、或向所述第二设备发送HARQ反馈指示;
    所述网络设备根据所述HARQ反馈指示,分配时频资源。
  20. 如权利要求19所述的方法,其特征在于,所述HARQ反馈指示用于指示所述第二设备在特定时频资源上打开HARQ反馈或关闭HARQ反馈。
  21. 一种数据重传方法,其特征在于,所述方法包括:
    第一设备接收来自网络或预配置的第一信息,所述第一信息包括混合自动重传请求HARQ反馈信道配置;
    在所述HARQ反馈信道配置指示为物理侧链反馈信道PSFCH已配置的情况下,所述第一设备使用第一往返时间定时器RTT时长和/或第一重传定时器时长监听第二设备发送的重传数据,在所述HARQ反馈信道配置指示为PSFCH未配置的情况下,所述第一设备使用第二RTT定时器时长和/或第二重传定时器时长监听所述第二设备发送的重传数据。
  22. 根据权利要求21所述的方法,其特征在于,所述第一设备接收来自网络的第一信息,包括:
    所述第一设备接收来自网络设备的所述第一信息。
  23. 如权利要求21所述的方法,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长不同。
  24. 如权利要求21所述的方法,其特征在于,所述第一重传定时器时长与所述第二重传定时器时 长相同。
  25. 如权利要求21所述的方法,其特征在于,所述第一RTT时长与所述第二RTT时长不同。
  26. 如权利要求21所述的方法,其特征在于,所述第一RTT时长与所述第二RTT时长相同。
  27. 如权利要求21-26任一项所述的方法,其特征在于,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
  28. 如权利要求21-26任一项所述的方法,其特征在于,所述第一RTT时长和所述第二RTT时长为预先配置的。
  29. 如权利要求21-26任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长、所述第二重传定时器时长、所述第一RTT时长、所述第二RTT时长中的至少之一项。
  30. 如权利要求21-26任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述网络设备的配置信息,所述配置信息包括所述第一重传定时器时长、所述第二重传定时器时长、所述第一RTT时长、所述第二RTT时长中的至少之一项。
  31. 一种数据重传装置,其特征在于,所述装置包括:
    接收模块,用于接收来自第二设备的第一信息,所述第一信息包括混合自动重传请求HARQ反馈指示;
    处理模块,用于在所述HARQ反馈指示为开启HARQ反馈的情况下,使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,使用第二重传定时器时长监听所述第二设备发送的重传数据。
  32. 如权利要求31所述的装置,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长不同。
  33. 如权利要求32所述的装置,其特征在于,所述第二重传定时器时长大于所述第一重传定时器时长。
  34. 如权利要求31所述的装置,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长相同。
  35. 如权利要求31-34任一项所述的装置,其特征在于,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
  36. 如权利要求31-34任一项所述的装置,其特征在于,
    所述接收模块,还用于接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
  37. 如权利要求31-34任一项所述的装置,其特征在于,
    所述接收模块,还用于接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长和所述第二重传定时器时长。
  38. 如权利要求31-37任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述第二设备发送反馈信息;
    所述处理模块,还用于启动第一往返时间定时器RTT时长;在所述第一RTT时长超时后使用所述第一重传定时器时长监听所述第二设备发送的重传数据。
  39. 如权利要求31-37任一项所述的装置,其特征在于,
    所述处理模块,还用于在第一时刻使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
  40. 如权利要求39所述的装置,其特征在于,所述第一时刻为接收到所述第一信息后、接收到所述第一信息对应的数据信道后、接收到所述第一信息经过预设时间段后、和接收到所述第一信息对应的数据信道经过预设时间段后中的至少一种。
  41. 如权利要求31-37任一项所述的方法,其特征在于,
    所述处理模块,还用于启动第二往返时间定时器RTT时长;在所述第二RTT时长超时后使用所述第二重传定时器时长监听所述第二设备发送的重传数据。
  42. 一种数据重传装置,其特征在于,所述装置包括:
    处理模块,用于确定混合自动重传请求HARQ反馈指示;
    发送模块,用于向第一设备发送第一信息,所述第一信息包括所述HARQ反馈指示,在所述HARQ反馈指示为开启HARQ反馈的情况下,所述开启HARQ反馈用于指示使用第一重传定时器时长监听所述第二设备发送的重传数据,在所述HARQ反馈指示为关闭HARQ反馈的情况下,所述关闭HARQ反馈用于指示使用第二重传定时器时长监听所述第二设备发送的重传数据。
  43. 如权利要求42所述的装置,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长不同。
  44. 如权利要求43所述的装置,其特征在于,所述第二重传定时器时长大于所述第一重传定时器时长。
  45. 如权利要求42所述的装置,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长相同。
  46. 如权利要求42-45任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自网络设备的所述HARQ反馈指示。
  47. 如权利要求42-45任一项所述的装置,其特征在于,
    所述发送模块,还用于向网络设备发送所述HARQ反馈指示。
  48. 如权利要求42-47任一项所述的装置,其特征在于,
    所述发送模块,还用于向所述第一设备发送第二信息,所述第二信息包括所述第一重传定时器时长和所述第二重传定时器时长。
  49. 一种数据重传装置,其特征在于,所述装置包括:
    通信模块,用于接收来自第二设备的混合自动重传请求HARQ反馈指示、或向所述第二设备发送HARQ反馈指示;
    处理模块,用于根据所述HARQ反馈指示,分配时频资源。
  50. 如权利要求49所述的装置,其特征在于,所述HARQ反馈指示用于指示所述第二设备在特定时频资源上打开HARQ反馈或关闭HARQ反馈。
  51. 一种数据重传装置,其特征在于,所述装置包括:
    接收模块,用于接收来自网络或预配置的第一信息,所述第一信息包括混合自动重传请求HARQ反馈信道配置;
    处理模块,用于在所述HARQ反馈信道配置指示为物理侧链反馈信道PSFCH已配置的情况下,使用第一往返时间定时器RTT时长和/或第一重传定时器时长监听第二设备发送的重传数据,在所述 HARQ反馈信道配置指示为PSFCH未配置的情况下,使用第二RTT时长和/或第二重传定时器时长监听所述第二设备发送的重传数据。
  52. 如权利要求51所述的装置,其特征在于,在接收来自网络的第一信息方法,所述接收模块,用于接收来自所述第二设备的所述第一信息。
  53. 如权利要求51所述的装置,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长不同。
  54. 如权利要求51所述的装置,其特征在于,所述第一重传定时器时长与所述第二重传定时器时长相同。
  55. 如权利要求51所述的装置,其特征在于,所述第一RTT定时器时长与所述第二RTT定时器时长不同。
  56. 如权利要求51所述的装置,其特征在于,所述第一RTT定时器时长与所述第二RTT定时器时长相同。
  57. 如权利要求51-56任一项所述的装置,其特征在于,所述第一重传定时器时长和所述第二重传定时器时长为预先配置的。
  58. 如权利要求51-56任一项所述的装置,其特征在于,所述第一RTT时长和所述第二RTT时长为预先配置的。
  59. 如权利要求51-58任一项所述的装置,其特征在于,所述方法还包括:
    所述接收模块,还用于接收来自所述第二设备的第二信息,所述第二信息包括所述第一重传定时器时长、所述第二重传定时器时长、所述第一RTT时长、所述第二RTT时长中的至少之一项。
  60. 如权利要求51-58任一项所述的装置,其特征在于,所述方法还包括:
    所述接收模块,还用于接收来自网络设备的配置信息,所述配置信息包括所述第一重传定时器时长、所述第二重传定时器时长、所述第一RTT时长、所述第二RTT时长中的至少之一项。
  61. 一种装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使得所述装置执行权利要求1至32中任一项所述的方法。
  62. 一种芯片,其特征在于,所述芯片为第一设备、第二设备或终端设备内的芯片,所述芯片包括处理器和与所述处理器连接的输入接口和输出接口,所述芯片还包括存储器,当所述存储器中计算机程序被执行时,所述权利要求1至30中任一项所述的方法被执行。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1至30中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使所述计算机执行权利要求1至30中任一项所述的方法。
  65. 一种通信系统,其特征在于,所述系统包括第一设备、第二设备和网络设备,所述第一设备执行权利要求1-11或21-30中任一项所述的方法,所述第二设备执行权利要求12-18中任一项所述的方法,所述网络设备执行权利要求19或20所述的方法。
PCT/CN2021/135417 2021-04-02 2021-12-03 一种数据重传方法及相关设备 WO2022205993A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180095919.1A CN117063582A (zh) 2021-04-02 2021-12-03 一种数据重传方法及相关设备
EP21934629.3A EP4301073A1 (en) 2021-04-02 2021-12-03 Data retransmission method and related devices
KR1020237035279A KR20230164086A (ko) 2021-04-02 2021-12-03 데이터 재전송 방법 및 관련 장치
JP2023559140A JP2024514070A (ja) 2021-04-02 2021-12-03 データ再送方法及び関連装置
US18/471,697 US20240014945A1 (en) 2021-04-02 2023-09-21 Method for data retransmission and related devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/085372 WO2022205445A1 (zh) 2021-04-02 2021-04-02 一种数据重传方法及相关设备
CNPCT/CN2021/085372 2021-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,697 Continuation US20240014945A1 (en) 2021-04-02 2023-09-21 Method for data retransmission and related devices

Publications (1)

Publication Number Publication Date
WO2022205993A1 true WO2022205993A1 (zh) 2022-10-06

Family

ID=83455523

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/085372 WO2022205445A1 (zh) 2021-04-02 2021-04-02 一种数据重传方法及相关设备
PCT/CN2021/135417 WO2022205993A1 (zh) 2021-04-02 2021-12-03 一种数据重传方法及相关设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085372 WO2022205445A1 (zh) 2021-04-02 2021-04-02 一种数据重传方法及相关设备

Country Status (6)

Country Link
US (1) US20240014945A1 (zh)
EP (1) EP4301073A1 (zh)
JP (1) JP2024514070A (zh)
KR (1) KR20230164086A (zh)
CN (1) CN117063582A (zh)
WO (2) WO2022205445A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200322095A1 (en) * 2019-04-07 2020-10-08 Lg Electronics Inc. Method of operating ue in relation to sidelink communication and feedback in wireless communication system
CN111756495A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种混合自动重传请求harq反馈控制方法及相关设备
CN112399644A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 非连续接收方法、相关装置及系统
CN112543442A (zh) * 2019-09-20 2021-03-23 维沃移动通信有限公司 非连续接收参数配置方法及设备
WO2021060786A1 (ko) * 2019-09-27 2021-04-01 주식회사 케이티 사이드링크 통신을 제어하는 방법 및 그 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756495A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种混合自动重传请求harq反馈控制方法及相关设备
US20200322095A1 (en) * 2019-04-07 2020-10-08 Lg Electronics Inc. Method of operating ue in relation to sidelink communication and feedback in wireless communication system
CN112399644A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 非连续接收方法、相关装置及系统
CN112543442A (zh) * 2019-09-20 2021-03-23 维沃移动通信有限公司 非连续接收参数配置方法及设备
WO2021060786A1 (ko) * 2019-09-27 2021-04-01 주식회사 케이티 사이드링크 통신을 제어하는 방법 및 그 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Discussion on HARQ and related timers", 3GPP DRAFT; R2-2009140, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942160 *

Also Published As

Publication number Publication date
WO2022205445A1 (zh) 2022-10-06
KR20230164086A (ko) 2023-12-01
CN117063582A (zh) 2023-11-14
US20240014945A1 (en) 2024-01-11
EP4301073A1 (en) 2024-01-03
JP2024514070A (ja) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2021031934A1 (zh) 边链路非连续发送、接收方法与装置及终端设备
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
WO2020215332A1 (zh) 非连续接收的方法和设备
US20220377709A1 (en) Resource selection method and apparatus, and terminal device
US20230224091A1 (en) Wireless communication method and device
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021233164A1 (zh) 一种通信方法及装置
CN116963313A (zh) 用于d2d通信的资源选择中的活动接收状态的考虑
CN112771913A (zh) 方法、装置和计算机程序产品
WO2021068173A1 (zh) 一种信号传输方法及装置、终端设备
WO2022206925A1 (zh) 一种侧行链路的传输方法及装置
WO2022205993A1 (zh) 一种数据重传方法及相关设备
WO2022077395A1 (zh) 侧行链路的传输方法和终端
WO2021155603A1 (zh) 基于drx的侧行反馈方法及相关装置
EP4280798A1 (en) Timer control method and apparatus, and terminal device
WO2022165843A1 (zh) 侧行传输方法和终端
US20240015846A1 (en) Sidelink communication method and communication device
US20230422342A1 (en) Sidelink Discontinuous Reception Configuration Method, Device, and Non-transitory Computer-Readable Storage Medium
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
WO2022152120A1 (zh) 传输配置方法、装置及相关设备
WO2024092659A1 (zh) 非连续接收的方法、终端设备和网络设备
US20240188181A1 (en) Methods and apparatuses for sidelink communication
WO2023102788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023066102A1 (zh) 一种无线通信的方法和装置
WO2023274017A1 (zh) 配置方法、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095919.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023559140

Country of ref document: JP

Ref document number: 2021934629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021934629

Country of ref document: EP

Effective date: 20230926

ENP Entry into the national phase

Ref document number: 20237035279

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE