WO2021031934A1 - 边链路非连续发送、接收方法与装置及终端设备 - Google Patents

边链路非连续发送、接收方法与装置及终端设备 Download PDF

Info

Publication number
WO2021031934A1
WO2021031934A1 PCT/CN2020/108456 CN2020108456W WO2021031934A1 WO 2021031934 A1 WO2021031934 A1 WO 2021031934A1 CN 2020108456 W CN2020108456 W CN 2020108456W WO 2021031934 A1 WO2021031934 A1 WO 2021031934A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
user terminal
transmission
sending
target
Prior art date
Application number
PCT/CN2020/108456
Other languages
English (en)
French (fr)
Inventor
鲍炜
杨晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20854280.3A priority Critical patent/EP4021139A4/en
Priority to KR1020227008960A priority patent/KR20220051362A/ko
Publication of WO2021031934A1 publication Critical patent/WO2021031934A1/zh
Priority to US17/676,532 priority patent/US20220183103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method and device for side link discontinuous transmission and reception, and terminal equipment.
  • LTE Long Term Evolution
  • UE User Equipment
  • the current solution only configures the power saving mechanism for the user terminal when the user terminal communicates with the base station.
  • both ends of the communication have power saving requirements.
  • the current power saving mechanism is designed for a User Equipment (Uu) interface for communication between a user terminal and a base station, and cannot be applied to the aforementioned sidelink interface. Therefore, when current user terminals communicate through side links, the power saving requirements of the user terminals cannot be met.
  • Uu User Equipment
  • the present disclosure provides a side link discontinuous reception method, which is applied to a first user terminal, and the method includes:
  • DRX Discontinuous Reception
  • the present disclosure also provides a side link discontinuous receiving device, which is applied to a first user terminal, and includes:
  • the information receiving unit is configured to perform data scheduling or transmission monitoring, or data scheduling or transmission reception, under the control of a timer based on the DRX mechanism, during the operation of the target receiving timer in the timer.
  • the present disclosure also provides a terminal device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a terminal device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the present disclosure also provides a side link discontinuous transmission method, which is applied to a second user terminal, and the method includes:
  • the present disclosure also provides a side link discontinuous transmission device, which is applied to a second user terminal, and the device includes:
  • the information sending unit is configured to, under the control of a timer based on the DRX mechanism, allow data scheduling or transmission to the first user terminal during the operation of the target sending timer in the timer, or to the first user terminal Perform data scheduling or transmission.
  • the present disclosure also provides a terminal device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a terminal device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor, The steps of implementing the side link discontinuous transmission method as described in the fourth aspect of the present disclosure.
  • the above-mentioned at least one technical solution adopted by the embodiments of the present disclosure can achieve the following beneficial effects: when user terminals communicate through side links, under the control of a timer based on the DRX mechanism, only the target in the timer is controlled. During the operation period of the receiving timer, monitoring of data scheduling or transmission, or receiving of data scheduling or transmission, or allowing data scheduling or transmission to the first user terminal, or data scheduling or transmission to the first user terminal, can satisfy Power saving needs at both ends of the communication.
  • FIG. 1 is a schematic diagram of interaction between a first user terminal, a base station, and a second user terminal provided by an embodiment of the disclosure
  • FIG. 2 is a flowchart of the first embodiment of the side link discontinuous reception method provided by the present disclosure
  • FIG. 3 is a flowchart of a second embodiment of the side link discontinuous reception method provided by the present disclosure.
  • FIG. 5 is a flowchart of the third embodiment of the side link discontinuous reception method provided by the present disclosure.
  • FIG. 6 is a timing diagram of the second embodiment of the side link discontinuous reception method provided by the present disclosure.
  • FIG. 7 is a flowchart of a fourth embodiment of the side link discontinuous reception method provided by the present disclosure.
  • FIG. 8 is a block diagram of functional units of the first embodiment of the side link discontinuous receiving apparatus provided by the present disclosure.
  • FIG. 9 is a block diagram of functional units of the second embodiment of the side link discontinuous receiving apparatus provided by the present disclosure.
  • FIG. 10 is a block diagram of functional units of the third embodiment of the side link discontinuous receiving apparatus provided by the present disclosure.
  • FIG. 11 is a block diagram of functional units of the fourth embodiment of the side link discontinuous receiving apparatus provided by the present disclosure.
  • FIG. 12 is a flowchart of the first embodiment of the side link discontinuous transmission method provided by the present disclosure.
  • FIG. 13 is a flowchart of the second embodiment of the side link discontinuous transmission method provided by the present disclosure.
  • FIG. 14 is a sequence diagram of the first embodiment of the side link discontinuous transmission method provided by the present disclosure.
  • 16 is a sequence diagram of the second embodiment of the side link discontinuous transmission method provided by the present disclosure.
  • FIG. 17 is a flowchart of the fourth embodiment of the side link discontinuous transmission method provided by the present disclosure.
  • 19 is a block diagram of functional units of the second embodiment of the side link discontinuous sending apparatus provided by the present disclosure.
  • 20 is a block diagram of functional units of the third embodiment of the side link discontinuous sending device provided by the present disclosure.
  • FIG. 21 is a block diagram of functional units of the fourth embodiment of the side link discontinuous sending apparatus provided by the present disclosure.
  • FIG. 22 is a circuit connection block diagram of an embodiment of a terminal device provided by the present disclosure.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE/Long Term Evolution Advanced LTE-A
  • NR New Radio
  • the UE can also be called terminal equipment (Mobile Terminal), mobile user equipment, etc., and can communicate with one or more core networks via a radio access network (RAN).
  • the user equipment can be a terminal device, such as mobile Telephones (or "cellular" phones) and computers with terminal equipment, for example, portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network .
  • the base station can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (evolutional Node B, eNB or e-NodeB) in LTE and
  • BTS Base Transceiver Station
  • NodeB base station
  • evolutional Node B, eNB or e-NodeB evolved base station
  • the 5G base station is not limited in the present disclosure, but for the convenience of description, the following embodiments take gNB as an example for description.
  • the Long Term Evolution (LTE) system supports sidelink sidelink communication, which is used between UEs and can directly transmit data without going through the base station.
  • the current sidelink communication mainly includes the transmission forms of broadcast, groupcast, and unicast.
  • Discontinuous reception DRX It is configured in the user terminal to save power.
  • the user terminal in the DRX state does not need to connect to monitor the control channel, which can save power. However, if the user terminal does not monitor the control channel for a long time, once data arrives, the data transmission delay will increase.
  • the time the user terminal monitors the channel can be divided into a long DRX cycle and a short DRX cycle. If the user terminal data arrives frequently or the service is sensitive to delay, you can configure the DRX short cycle; if the user terminal's data volume is sparse and insensitive to delay, you can configure the DRX long cycle.
  • DRX continuous monitoring timer OnDuration timer: During the running of the DRX continuous monitoring timer, the user terminal needs to continuously monitor the physical Downlink Control Channel (PDCCH) of the network.
  • PDCCH Physical Downlink Control Channel
  • DRX continuous allowable transmission timer (OnDuration timer): During the running period of the DRX continuous allowable transmission timer, data scheduling or transmission is allowed.
  • the DRX inactivity timer is started at the first symbol after the user terminal receives the data scheduling PDCCH signaling. During the DRX inactivity timer is running, the user terminal needs to continuously monitor the control channel or Allow sending data scheduling or transmission.
  • Hybrid Automatic Repeat Request (HARQ) RTT timer (Round-Trip Time timer): The length of the HARQ RTT timer is the minimum time interval between the HARQ feedback moment and the receipt of the HARQ retransmission for the process . Only if the data corresponding to the current process is not successfully decoded, the user terminal will start the timer at the first symbol after the HARQ NACK feedback of the process. If the current terminal only has the HARQ RTT timer running, the user terminal does not need to monitor the PDCCH or allow sending data scheduling or transmission.
  • Retransmission timer The next symbol after the HARQ RTT timer expires starts the retransmission timer.
  • the user terminal monitors the control channel of the network or allows sending data scheduling or transmission, and if the scheduling/data for the process is received, the retransmission timer is started.
  • the present disclosure provides a side link discontinuous reception method, which is applied to the first user terminal 101, in other words, the method can be executed by software or hardware installed in the terminal device.
  • the first user terminal 101 and the second user terminal 102 communicate through a side link (that is, the first user terminal 101 and the second user terminal 102 communicate with each other using a sidelink interface);
  • the terminal 102 and the base station 103 communicate via a 3G/4G/5G network.
  • the method includes:
  • the above-mentioned monitoring of data scheduling or transmission, or receiving of data scheduling or transmission is performed based on side links.
  • multiple target receiving timers in the timer can run simultaneously, or can run individually. Understandably, after the target reception timer in the timer is closed, the monitoring of data scheduling or transmission, or the reception of data scheduling or transmission is stopped.
  • the second user terminal 102 may report service parameters and power saving requirements to the base station 103.
  • the base station 103 generates DRX mechanism data according to the service parameters and power saving requirements, and then the second user terminal 102 receives the base station
  • the DRX mechanism data sent by 103 is configured and the first user terminal 101 receives and configures the DRX mechanism data sent by the second user terminal 102 through the side link.
  • the configuration method of the DRX mechanism may also be that the second user terminal 102 directly generates and configures DRX mechanism data according to service parameters and power saving requirements, and then sends the DRX mechanism data to the first user terminal 101.
  • the configuration of the DRX mechanism is not limited to the above two types, and it is only an example here.
  • the side-link discontinuous reception method provided by the embodiments of the present disclosure, when the user terminals communicate through the side-link, under the control of the timer based on the DRX mechanism, only the target reception timer in the timer runs During this period, monitoring of data scheduling or transmission, or reception of data scheduling or transmission can meet the power saving needs of both ends of the communication.
  • the target receiving timer includes a continuous listening receiving timer and an inactive receiving timer.
  • S21 includes:
  • S31 Monitor the data scheduling or transmission of the second user terminal 102 during the operation period of the continuous monitoring receiving timer;
  • the protruding part in the Y (vertical) direction in FIG. 4 indicates that the data scheduling or transmission of the second user terminal 102 is being monitored, and the low flat part in the Y direction indicates the dormant state (that is, stopping monitoring the second user terminal 102).
  • Data scheduling or transmission) the X (horizontal) direction is the time axis.
  • the DRX cycle is set to 40ms
  • the running time of the continuous listening receiving timer is set to 5ms
  • the running time of the inactive receiving timer is set to 8ms.
  • the continuous monitoring receiving timer starts to run, and the first user terminal 101 performs data scheduling or transmission monitoring and receiving at this time.
  • the receiving first user terminal 101 monitors the data scheduling or transmission of the second user terminal 102 at 0-5ms, and if the data scheduling or transmission is not received, it will be at 5- 40ms to enter the sleep state, 40ms-80ms is the second DRX cycle, the receiving timer is continuously monitored for 40ms-45ms to monitor data scheduling or transmission, if the data scheduling or transmission is received at 44ms, the inactive reception timing is started at 44ms The inactive receiving timer is valid in 44-52ms.
  • the first user terminal 101 continues to monitor during this period. If data scheduling or transmission is received, the inactive receiving timer is restarted until the inactive receiving timer expires, and the first user terminal 101 enters the dormant period until the next DRX cycle , Keep monitoring the receiving timer to wake up again.
  • the above-mentioned essence is that when data transmission/scheduling is received, the continuous monitoring reception timer is started/restarted, which prolongs the monitoring time for data scheduling or transmission.
  • start/restart of the inactive reception timer caused by the data scheduling or transmission mentioned above can only refer to newly transmitted data, or it can include both newly transmitted data and retransmitted data. Configurable/selectable.
  • the first user terminal 101 is also configured with a HARQ feedback mechanism
  • the timer also includes a HARQ round trip delay reception timer
  • the target reception timer also includes a retransmission reception timer, as shown in FIG. 5,
  • the method also includes S51 and S52.
  • the HARQ negative acknowledgement is fed back to the second user terminal 102 to inform the second user terminal 102 that it needs to perform data scheduling or data transmission again to ensure the reliability of data transmission.
  • the retransmission reception timer is started to monitor the retransmission data scheduling or data transmission of the second user terminal 102.
  • the HARQ round-trip delay receiving timer When the HARQ round-trip delay receiving timer is running, if there is a target receiving timer running at the same time, then monitoring data scheduling or transmission, if no target receiving timer is running at the same time, then stopping monitoring data scheduling or transmission, so as to satisfy the first user terminal 101 power saving needs.
  • the protruding part in the Y (vertical) direction represents the monitoring data scheduling or transmission state
  • the low flat part in the X (horizontal) direction represents the sleep state
  • the X (horizontal) direction is the time axis.
  • data transmission/scheduling is received, and the inactive reception timer is started.
  • the second user terminal 102 feeds back the HARQ negative acknowledgement, and the HARQ round trip delay reception timer is started.
  • the inactive reception timer is at time t3. time out. It can be seen that between t3-t4, since no target reception timer is valid, the first user terminal 101 can stop monitoring data transmission/scheduling.
  • the HARQ round-trip delay reception timer expires, and retransmission reception is started.
  • the timer starts to monitor the data retransmission/scheduling, the first retransmission/scheduling is received at t5, and the retransmission reception timer is turned off. If the HARQ negative acknowledgement is still fed back for the first retransmission at time t6, the HARQ round-trip delay reception timer is restarted, and the first user terminal 101 can stop monitoring data transmission/scheduling.
  • the HARQ round-trip delay reception timer expires, Then restart the retransmission reception timer, start monitoring data retransmission/scheduling, receive the second retransmission/scheduling at t8, turn off the retransmission reception timer, and the second user terminal 102 stops monitoring data transmission/scheduling, and then For the second retransmission feedback confirmation that the reception is successful, the HARQ process ends. Wait for the continuous monitoring and receiving timer of the next DRX cycle to run, and then monitor the data transmission/scheduling.
  • the above-mentioned first user terminal 101 is used as the receiving end user equipment.
  • the timer further includes a target sending timer, and before S21, as shown in FIG. 7, the method further includes S20.
  • the target sending timer is turned off according to the DRX mechanism.
  • the DRX mechanism stipulates that the sending priority of the second user terminal 102 is higher than the sending priority of the first user terminal 101.
  • the target receiving timer of the first user terminal 101 when the target receiving timer of the first user terminal 101 is in operation, since the first user terminal 101 and the second user terminal 102 have the same DRX mechanism, correspondingly, the target of the second user terminal 102 The sending timer is also running. It can be seen that when the target sending timer and the target receiving timer are both in operation, the first user terminal 101 and the second user terminal 102 both have data transmission requirements, because the user terminal is limited by factors such as transceiver hardware and interference. , It is difficult to achieve simultaneous reception and transmission. At this time, it is necessary to coordinate the data scheduling or transmission of the first user terminal 101 and the second user terminal 102 to ensure the data reception effect and power saving characteristics. Therefore, it is necessary to determine which user terminal transmits data first through the transmission priority.
  • the way of agreeing to send priority is: according to the pre-configured highest priority of at least one service parameter to be processed by the first user terminal 101, and the to be processed by the second user terminal 102
  • the highest priority of at least one service parameter determines the sending priority of the first user terminal 101 relative to the second user terminal 102.
  • the first user terminal 101 includes three service parameters A, B, and C, and the sending priority is 2, 2, and 3 respectively
  • the second user terminal 102 includes three service parameters D, E, and F, and the sending priority is They are 1, 2, and 3. It can be seen that the highest priority level of the service parameter to be processed of the first user terminal 101 is 2, and the highest priority level of the service parameter to be processed of the second user terminal 102 is 1. It can be seen that the highest priority level of the second user terminal 102 It is higher than the highest priority level of the first user terminal 101, and therefore, it is determined that the second user terminal 102 preferentially performs data transmission.
  • the way of agreeing on the sending priority can also be: according to the type of the target sending timer and the target receiving timer run by the first user terminal 101, determining the relative value of the first user terminal 101 The sending priority of the second user terminal 102.
  • the DRX mechanism stipulates that the priority of the retransmission sending timer is higher than the priority of the continuous monitoring receiving timer.
  • the continuous running sending timer of the first user terminal 101 and the retransmission receiving timer are running simultaneously, the continuous listening receiving timer and the retransmitting sending timer of the second user terminal 102 also run at the same time. At this time, turn off The continuous running sending timer of the first user terminal 101 and the continuous listening receiving timer of the second user terminal 102; at this time, there are only the retransmission sending timer of the second user terminal 102 and the retransmission receiving timer of the first user terminal 101 Run, that is, retransmitted data is sent first.
  • the way of agreeing on the sending priority can also be: determining the first user terminal according to the time when the target sending timer and the target receiving timer run by the first user terminal 101 The transmission priority of 101 relative to the second user terminal 102.
  • the DRX mechanism stipulates that in the 0-320ms of the DRX cycle, the transmission priority of the first user terminal 101 is higher than the transmission priority of the second user terminal; 320-640ms, the second user terminal The transmission priority of 102 is higher than the transmission priority of the first user terminal 101. Therefore, during the 0-320ms period of the DRX cycle, the first user terminal 101 can start the target sending timer according to the DRX mechanism, and the second user terminal 102 can start the target receiving timer according to the DRX mechanism to determine the first user terminal 101 to send priority data.
  • the second user terminal 102 can start the target sending timer according to the DRX mechanism, and the first user terminal 101 can start the target receiving timer according to the DRX mechanism to determine the second user terminal 101 to send data preferentially.
  • the DRX mechanism stipulates that the first user terminal 101 continues to allow the sending timer to start at 0ms, and the second user terminal 102 continues to allow the sending timer to start at 160ms, then the first user The sending priority of the terminal 101 in 0-160 ms is higher than the sending priority of the second user terminal 102, and the sending priority of the second user terminal 102 in 160-640 ms is higher than the sending priority of the first user terminal 101.
  • the first user terminal 101 can enable the continuous allowable transmission timing according to the configuration time period (such as 0-20ms or 0-40ms, etc.) starting from 0ms during the 0-160ms according to the DRX mechanism.
  • the second user terminal 102 can start the continuous monitoring timer during the configuration time period (such as 0ms-20ms or 0-40ms, etc.) starting from 0ms during 0-160ms to determine that the first user terminal 101 sends data first .
  • the second user terminal 102 can start the continuous allowable sending timer during the 160-640ms period from 160ms (such as 160ms-180ms or 160-200ms) according to the DRX mechanism.
  • the terminal 101 may start the continuous listening timer during a configured time period (such as 160ms-180ms or 160-200ms) starting from 160ms during 160-640ms according to the DRX mechanism to determine that the second user terminal 102 sends data preferentially.
  • the present disclosure also provides a side link discontinuous receiving apparatus 800 applied to the first user terminal 101.
  • the basic principles and technical effects of the side-link discontinuous receiving device 800 provided by the present disclosure are the same as those of the above-mentioned embodiment.
  • the first user terminal 101 and the second user terminal 102 communicate through a side link (that is, the first user terminal 101 and the second user terminal 102 use the sidelink interface to communicate); the first user terminal
  • the communication between 101 and base station 103 is carried out through a 3G/4G/5G network.
  • the side link discontinuous receiving apparatus 800 includes:
  • the information receiving unit 801 is configured to perform data scheduling or transmission monitoring, or data scheduling or transmission reception during the operation of the target receiving timer in the timer under the control of a timer based on the DRX mechanism.
  • the above-mentioned monitoring of data scheduling or transmission, or receiving of data scheduling or transmission is performed based on side links.
  • multiple target receiving timers in the timer can run at the same time, or can run individually. Understandably, after the target reception timer in the timer is closed, the monitoring of data scheduling or transmission, or the reception of data scheduling or transmission is stopped.
  • the second user terminal 102 may report service parameters and power saving requirements to the base station 103.
  • the base station 103 generates DRX mechanism data according to the service parameters and power saving requirements, and then the second user terminal 102 receives the base station
  • the DRX mechanism data is directly generated and configured according to service parameters and power saving requirements, and then the DRX mechanism data is sent to the first user terminal 101.
  • the configuration of the DRX mechanism is not limited to the above two types, and it is only an example here.
  • the side-link discontinuous receiving apparatus 800 when communicating between user terminals through the side-link, is controlled by the timer based on the DRX mechanism, and only the target of the timer in the timer is received. During operation, monitoring of data scheduling or transmission, or reception of data scheduling or transmission can meet the power saving needs of both ends of the communication.
  • the target reception timer includes a continuous monitoring reception timer and an inactive reception timer.
  • the information receiving unit 801 is configured to monitor the data scheduling of the second user terminal 102 during the operation period of the continuous monitoring reception timer. Or transmission.
  • the apparatus 800 further includes a timer starting unit 901, configured to start an inactive reception timer if the data scheduling or transmission of the second user terminal 102 is received, so as to continuously monitor the second user Data scheduling or transmission of the terminal 102.
  • a timer starting unit 901 configured to start an inactive reception timer if the data scheduling or transmission of the second user terminal 102 is received, so as to continuously monitor the second user Data scheduling or transmission of the terminal 102.
  • the timer starting unit 901 may also be configured to restart the inactive receiving timer if the data scheduling or transmission transmitted by the second user terminal 102 is received again during the running of the inactive receiving timer.
  • the first user terminal 101 is further configured with a HARQ feedback mechanism
  • the timer further includes a HARQ round trip delay reception timer
  • the target reception timer further includes a retransmission reception timer.
  • the device 800 also includes:
  • the information sending unit 1001 is configured to start the HARQ round trip delay reception timer if it feeds back a HARQ negative acknowledgement to the second user terminal 102 after receiving the data.
  • the timer starting unit 901 may also be configured to start the retransmission receiving timer after the HARQ round trip delay receiving timer expires, so as to monitor the retransmission data scheduling or data transmission of the second user terminal 102.
  • the timer also includes a target sending timer. As shown in FIG. 11, the device 800 further includes:
  • the timer closing unit 1101 is configured to turn off the target sending timer according to the DRX mechanism if it detects that the target sending timer and the target receiving timer in the timer are both in the running period, where the DRX mechanism stipulates:
  • the sending priority of the user terminal 102 is higher than the sending priority of the first user terminal 101.
  • the way of agreeing on the sending priority can be: according to the pre-configured highest priority of at least one service parameter to be processed of the first user terminal 101, and at least one service to be processed of the second user terminal 102
  • the highest priority of the parameter determines the sending priority of the first user terminal 101 relative to the second user terminal 102.
  • the way to agree on the sending priority can also be: according to the type of the target sending timer and the target receiving timer run by the first user terminal 101, determine the first user terminal 101 relative to the second user terminal 102 Send priority.
  • the way to agree on the sending priority can be: according to the time when the target sending timer and the target receiving timer run by the first user terminal 101, determine the first user terminal 101 relative to the second user terminal 102 Send priority.
  • the present disclosure also provides a side link discontinuous transmission method, which is applied to the second user terminal 102.
  • the second user terminal 102 communicates with the first user terminal 101 through the side link (ie, user The terminals communicate using the sidelink interface); the second user terminal 102 and the base station 103 communicate through the 3G/4G/5G network.
  • the side link discontinuous transmission method includes:
  • the foregoing allowing data scheduling or transmission to the first user terminal 101, or data scheduling or transmission to the first user terminal 101 is performed based on a side link.
  • multiple target receiving timers in the timer can run at the same time, or can run individually. It is understandable that after the target sending timer in the timer is closed, data scheduling or transmission to the first user terminal 101 or data scheduling or transmission to the first user terminal 101 is stopped.
  • the second user terminal 102 may report service parameters and power saving requirements to the base station 103.
  • the base station 103 generates DRX mechanism data according to the service parameters and power saving requirements, and then the second user terminal 102 receives the base station
  • the DRX mechanism data is directly generated and configured according to service parameters and power saving requirements, and then the DRX mechanism data is sent to the first user terminal 101.
  • the configuration of the DRX mechanism is not limited to the above two types, and it is only an example here.
  • the side link discontinuous transmission method provided by the embodiment of the present disclosure, when the user terminals communicate through the side link, through the timer control based on the DRX mechanism, only the target receiving timer in the timer runs During the period, data scheduling or transmission to the first user terminal 101 is allowed, or data scheduling or transmission to the first user terminal 101, which can meet the power saving requirements of both ends of the communication.
  • the target sending timer includes a continuous allowable sending timer and an inactive sending timer.
  • S121 includes:
  • S131 Allow data scheduling or transmission to the first user terminal 101 during the operation period of the continuous allowable sending timer.
  • S132 If data scheduling or transmission is performed to the first user terminal 101, start the inactive transmission timer to continuously allow data scheduling or transmission to the first user terminal 101.
  • the second user terminal 102 stops allowing data scheduling or transmission.
  • the protruding part in the Y (vertical) direction in FIG. 14 indicates that data scheduling or transmission of the second user terminal 102 is being allowed, and the low flat part in the Y direction indicates the dormant state (that is, stopping allowing the second user terminal 102).
  • Data scheduling or transmission) the X (horizontal) direction is the time axis.
  • the DRX cycle is set to 40ms
  • the running duration of the continuous allowable sending timer is set to 5ms
  • the running duration of the inactive sending timer is set to 8ms.
  • the continuous allowable sending timer starts to run, and the second user terminal 102 allows data scheduling or transmission at this time.
  • the second user terminal 102 allows data scheduling or transmission in 0-5 ms, and if there is no sending data scheduling or transmission, it enters the dormant state in 5-40 ms.
  • 40ms-80ms is the second DRX cycle.
  • the continuous sending timer allows data scheduling or transmission during 40ms-45ms. If data scheduling or transmission is sent at 44ms, the inactive sending timer is started at 44ms.
  • This inactive sending The timer is valid for 44-52ms.
  • the second user terminal 102 continues to allow data scheduling or transmission during this period. If data scheduling or transmission is sent, the inactive transmission timer will be restarted. Until the inactive transmission timer expires, the second user terminal 102 The user terminal 102 enters the dormant period and continues to allow the sending timer to wake up again until the next DRX cycle.
  • the essence of the above is that when data transmission/scheduling is sent, the continuous allowable sending timer is started/restarted, which extends the time allowed for data scheduling or transmission.
  • start/restart of the inactive transmission timer caused by dispatching of data or transmission may only refer to newly transmitted data, or may include both newly transmitted data and retransmitted data. It is configurable/selectable.
  • the second user terminal 102 is further configured with a HARQ retransmission mechanism
  • the timer further includes a HARQ round trip delay transmission timer
  • the target transmission timer further includes a retransmission transmission timer.
  • the method further includes S152 and S153.
  • the retransmission transmission timer is started to allow retransmission data scheduling or data transmission to the first user terminal 101.
  • the HARQ negative acknowledgment When the data sent to the first user terminal 101 is received, and the HARQ negative acknowledgment is received from the first user terminal 101, it indicates that the data transmission has failed, and the data scheduling or data transmission needs to be performed again.
  • the Y (vertical) direction protruding part represents the monitoring data scheduling or transmission state
  • the X (horizontal) direction low flat part represents the dormant state
  • the X (horizontal) direction is the time axis.
  • send data transmission/scheduling start the inactive transmission timer, and receive the HARQ negative acknowledgement feedback from the first user terminal 101 at time t2, start the HARQ round trip delay transmission timer, and the inactive transmission timer is at t3 Time out. It can be seen that between t3-t4, since no target transmission timer is valid, the second user terminal 102 can stop allowing data transmission/scheduling.
  • the HARQ round trip delay transmission timer expires, and the retransmission is started.
  • the timer starts to allow data retransmission/scheduling, performs the first retransmission/scheduling at t5, and then closes the retransmission timer.
  • the first user terminal 101 receives the HARQ negative acknowledgement for the first retransmission feedback, restart the HARQ round trip delay transmission timer, and the second user terminal 102 can stop allowing data transmission/scheduling.
  • the HARQ round trip time If the transmission delay timer expires, the retransmission timer is restarted, and data retransmission/scheduling starts to be allowed.
  • the above-mentioned second user terminal 102 is used as the sending end user equipment.
  • the timer further includes a target reception timer.
  • the method further includes:
  • the DRX mechanism stipulates that the sending priority of the second user terminal 102 is higher than the sending priority of the first user terminal 101. Understandably, when the target receiving timer of the second user terminal 102 is in operation, since the first user terminal 101 and the second user terminal 102 have the same DRX mechanism, correspondingly, the target of the first user terminal 101 The sending timer is also running. It can be seen that when the target sending timer and the target receiving timer are both in operation, the first user terminal 101 and the second user terminal 102 both have data transmission requirements, because the user terminal is limited by factors such as transceiver hardware and interference. , It is difficult to achieve simultaneous reception and transmission. At this time, it is necessary to coordinate the data scheduling or transmission of the first user terminal 101 and the second user terminal 102 to ensure the data reception effect and power saving characteristics. Therefore, it is necessary to determine which user terminal performs data transmission first through the transmission priority.
  • the way of agreeing on the sending priority is: according to the pre-configured highest priority of at least one service parameter to be processed of the first user terminal 101, and the second user terminal 102 The highest priority of at least one service parameter to be processed determines the sending priority of the first user terminal 101 relative to the second user terminal 102.
  • the first user terminal 101 includes three service parameters A, B, and C, and the sending priority is 2, 2, and 3 respectively
  • the second user terminal 102 includes three service parameters D, E, and F, and the sending priority is It can be seen that the highest priority of the service parameter to be processed of the first user terminal 101 is 2, and the highest priority of the service parameter to be processed of the second user terminal 102 is 1. It can be seen that The highest priority level of the second user terminal 102 is higher than the highest priority level of the first user terminal 101.
  • the way of agreeing on the sending priority is: according to the type of the target sending timer that is running and the type of the target receiving timer, determine the difference between the first user terminal 101 and the second user terminal 102 Send priority.
  • the DRX mechanism stipulates that the priority of the retransmission sending timer is higher than the priority of the continuous monitoring receiving timer.
  • the continuous running sending timer of the first user terminal 101 and the retransmission receiving timer are running simultaneously, the continuous listening receiving timer and the retransmitting sending timer of the second user terminal 102 also run at the same time. At this time, turn off The continuous running sending timer of the first user terminal 101 and the continuous listening receiving timer of the second user terminal 102; at this time, only the retransmission sending timer of the second user terminal and the first user terminal retransmitting receiving timer are running, That is, retransmitted data is sent first.
  • the agreed sending priority method is: according to the running time of the target sending timer and target receiving timer, determine the first user terminal 101 relative to the second user terminal The sending priority of 102.
  • the DRX mechanism stipulates that in the 0-320ms of the DRX cycle, the transmission priority of the first user terminal 101 is higher than the transmission priority of the second user terminal; 320-640ms, the second user terminal The transmission priority of 102 is higher than the transmission priority of the first user terminal 101. Therefore, during the 0-320 ms of the DRX cycle, the first user terminal 101 can start the target sending timer according to the DRX mechanism, and the second user terminal 102 can start the target receiving timer according to the DRX mechanism to determine that the first user terminal 101 has priority send data.
  • the second user terminal 102 can start the target sending timer according to the DRX mechanism, and the first user terminal 101 can start the target receiving timer according to the DRX mechanism to determine the second user terminal 101 to send data preferentially.
  • the DRX mechanism stipulates that the first user terminal 101 continues to allow the sending timer to start at 0ms, and the second user terminal 102 continues to allow the sending timer to start at 160ms, then the first user The sending priority of the terminal 101 in 0-160 ms is higher than the sending priority of the second user terminal 102, and the sending priority of the second user terminal 102 in 160-640 ms is higher than the sending priority of the first user terminal 101.
  • the first user terminal 101 can enable the continuous allowable transmission timing according to the DRX mechanism during the 0-160ms configured time period starting from 0ms (such as 0-20ms or 0-40ms, etc.)
  • the second user terminal 102 can start the continuous monitoring timer during the configuration time period (such as 0ms-20ms or 0-40ms, etc.) starting from 0ms during 0-160ms to determine that the first user terminal 101 sends data first .
  • the second user terminal 102 can start the continuous allowable sending timer during the 160-640ms period from 160ms (such as 160ms-180ms or 160-200ms) according to the DRX mechanism.
  • the terminal 101 may start the continuous listening timer during a configured time period (such as 160ms-180ms or 160-200ms) starting from 160ms during 160-640ms according to the DRX mechanism to determine that the second user terminal 102 sends data preferentially.
  • the method further includes: if data scheduling or transmission is performed to the first user terminal 101, receiving HARQ feedback after a preset interval time.
  • the present disclosure also provides a side link discontinuous sending device 1800, which is applied to the second user terminal 102.
  • the side link discontinuous sending device 1800 provided in the present disclosure is basically The principle and the technical effects are the same as the above-mentioned embodiment of the side-link discontinuous transmission method.
  • the side link discontinuous sending device 1800 includes:
  • the information sending unit 1801 is configured to allow data scheduling or transmission to the first user terminal 101 or to the first user terminal 101 during the operation of the target sending timer in the timer under the control of a timer based on the DRX mechanism. 101 performs data scheduling or transmission.
  • the foregoing allowing data scheduling or transmission to the first user terminal 101, or data scheduling or transmission to the first user terminal 101 is performed based on a side link.
  • multiple target receiving timers in the timer can run at the same time, or can run individually. It is understandable that after the target sending timer in the timer is closed, data scheduling or transmission to the first user terminal 101 or data scheduling or transmission to the first user terminal 101 is stopped.
  • the second user terminal 102 may report service parameters and power saving requirements to the base station 103.
  • the base station 103 generates DRX mechanism data according to the service parameters and power saving requirements, and then the second user terminal 102 receives the base station
  • the DRX mechanism data is directly generated and configured according to service parameters and power saving requirements, and then the DRX mechanism data is sent to the first user terminal 101.
  • the configuration of the DRX mechanism is not limited to the above two types, and it is only an example here.
  • the side-link discontinuous sending device 1800 when communicating between user terminals through the side-link, is controlled by the timer based on the DRX mechanism, and only the target of the timer is received by the timer. During operation, data scheduling or transmission to the first user terminal 101 is allowed, or data scheduling or transmission to the first user terminal 101, which can meet the power saving requirements of both ends of the communication.
  • the target transmission timer includes a continuous allowable transmission timer and an inactive transmission timer.
  • the information transmission unit 1801 is specifically configured to allow data scheduling or data scheduling to the first user terminal 101 during the operation period of the continuous allowable transmission timer. transmission.
  • the apparatus 1800 further includes: a timer starting unit 1901, configured to start the inactive transmission timer if data scheduling or transmission is performed to the first user terminal 101 to continue to allow Perform data scheduling or transmission to the first user terminal 101.
  • a timer starting unit 1901 configured to start the inactive transmission timer if data scheduling or transmission is performed to the first user terminal 101 to continue to allow Perform data scheduling or transmission to the first user terminal 101.
  • the timer starting unit 1901 is further configured to restart the inactive transmission timer if data is scheduled or transmitted to the first user terminal 101 again during the operation of the inactive transmission timer.
  • the second user terminal 102 is also configured with a HARQ retransmission mechanism, the timer further includes a HARQ round trip delay transmission timer, and the target transmission timer further includes a retransmission transmission timer.
  • the timer starting unit 1901 is further configured to start the HARQ round trip delay transmission timer if the HARQ negative acknowledgement fed back by the first user terminal 101 is received.
  • the timer starting unit 1901 is further configured to start a retransmission timer after the HARQ round trip delay transmission timer expires, so as to allow retransmission data scheduling or data transmission to the first user terminal 101.
  • the timer also includes a target receiving timer. As shown in FIG. 20, the device 1800 further includes:
  • the timer closing unit 2001 is further configured to turn off the target receiving timer according to the DRX mechanism if it detects that the target sending timer and the target receiving timer in the timer are both in the running period, wherein the DRX mechanism stipulates :
  • the sending priority of the second user terminal 102 is higher than the sending priority of the first user terminal 101.
  • the way of agreeing on the sending priority is: according to the pre-configured highest priority of at least one service parameter to be processed of the first user terminal 101, the first 2.
  • the highest priority level of at least one service parameter to be processed by the user terminal 102, and the sending priority level of the first user terminal 101 relative to the second user terminal 102 is determined.
  • the sending priority mode is: according to the type of the target sending timer that is running and the type of the target receiving timer, it is determined that the first user terminal 101 is relative to The sending priority of the second user terminal 102.
  • the way of specifying the sending priority is: determining the first user terminal 101 according to the running target sending timer and the time at which the target receiving timer is running Relative to the sending priority of the second user terminal 102.
  • the device 1800 further includes:
  • the information receiving unit 2101 is configured to receive HARQ feedback after a preset interval time if data is scheduled or transmitted to the first user terminal 101.
  • the embodiments of the present disclosure also provide a terminal device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a terminal device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor, the above Each step of any embodiment of the side link discontinuous reception method or the side link discontinuous transmission method.
  • FIG. 22 shows a block diagram of a terminal device 2200 according to an embodiment of the present disclosure.
  • the terminal device 2200 shown in FIG. 22 includes: at least one processor 2201, a memory 2202, at least one network interface 2204, and a user interface 2203.
  • the various components in the terminal device 2200 are coupled together through the bus system 2205.
  • the bus system 2205 is used to implement connection and communication between these components.
  • the bus system 2205 also includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are marked as the bus system 2205 in FIG. 22.
  • the user interface 2203 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.
  • the memory 2202 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 2202 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 22021 and application programs 22022.
  • the operating system 22021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 22022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 22022.
  • the terminal device 2200 further includes: a computer program stored in a memory and capable of running on a processor, and the computer program is executed by the processor 2201 to implement the following steps:
  • the timer based on the DRX mechanism Under the control of the timer based on the DRX mechanism, during the operation of the target receiving timer in the timer, the monitoring of data scheduling or transmission, or the reception of data scheduling or transmission; or, the timer based on the DRX mechanism Under control, during the operation period of the target sending timer in the timer, data scheduling or transmission to the first user terminal or data scheduling or transmission to the first user terminal is allowed.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 2201 or implemented by the processor 2201.
  • the processor 2201 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 2201 or instructions in the form of software.
  • the aforementioned processor 2201 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer readable storage medium in the field, such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 2202, and the processor 2201 reads the information in the memory 2202, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 2201, each step of the method embodiment described above is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the following steps may be implemented: under the control of a timer based on the DRX mechanism, during the operation of the target receiving timer in the timer, data scheduling or transmission monitoring is performed , Or data scheduling or transmission reception; or, under the control of a timer based on the DRX mechanism, during the operation period of the target sending timer in the timer, data scheduling or transmission to the first user terminal is allowed, or to The first user terminal performs data scheduling or transmission.
  • the terminal device 2200 can implement various processes and effects implemented by the terminal device in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores one or more programs, and the one or more programs include instructions.
  • the portable electronic device can be made to perform the operation of any embodiment of the side link discontinuous reception method or the side link discontinuous transmission method described above.
  • the portable electronic device when the instruction is executed by the portable electronic device, can be caused to perform the following operations:
  • the portable electronic device Under the control of the timer based on the DRX mechanism, during the operation of the target receiving timer in the timer, data scheduling or transmission monitoring, or data scheduling or transmission reception is performed.
  • the portable electronic device when an instruction is executed by a portable electronic device, can be caused to perform the following operations: under the control of a timer based on the DRX mechanism, during the running period of the target sending timer in the timer, Allow data scheduling or transmission to the first user terminal, or data scheduling or transmission to the first user terminal.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • each block in the flowchart or block diagram may represent a unit, segment, or part of the code, and the unit, segment, or part of the code includes functions for implementing the specified logical function(s) One or more executable instructions.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified function or action, or It can be implemented by a combination of dedicated hardware and computer instructions.
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种边链路非连续发送、接收方法与装置及终端设备,涉及通信技术领域。利用该边链路非连续发送、接收方法与装置及终端设备,在用户终端之间通过边链路进行通信时,通过在基于DRX机制的定时器控制下,仅在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收,或允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。

Description

边链路非连续发送、接收方法与装置及终端设备
相关申请的交叉引用
本申请主张在2019年8月22日在中国提交的中国专利申请号201910780085.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种边链路非连续发送、接收方法与装置及终端设备。
背景技术
目前的长期演进(Long Term Evolution,LTE)系统支持边链路(sidelink),用于用户终端(User Equipment,UE)之间不通过基站,可以进行直接数据交互。
目前的方案,在用户终端与基站通信时,仅针对用户终端配置省电机制。然而,在利用sidelink接口进行用户终端之间通信的情况下,通信的两端都具有省电需求。而目前的省电机制,是针对用户终端与基站通信的用户设备(User Equipment,Uu)接口而设计的,无法应用于上述的sidelink接口。因而,在目前的用户终端之间通过边链路进行通信时,无法满足用户终端的省电需求。
发明内容
第一方面,本公开提供了一种边链路非连续接收方法,应用于第一用户终端,所述方法包括:
在基于非连续接收(Discontinuous Reception,DRX)机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。
第二方面,本公开还提供了一种边链路非连续接收装置,应用于第一用户终端,包括:
信息接收单元,被配置成在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。
第三方面,本公开还提供了一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本公开第一方面所述的边链路非连续接收方法的步骤。
第四方面,本公开还提供了一种边链路非连续发送方法,应用于第二用户终端,所述方法包括:
在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
第五方面,本公开还提供了一种边链路非连续发送装置,应用于第二用户终端,所述装置包括:
信息发送单元,被配置成在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
第六方面,本公开还提供了一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本公开第四方面所述的边链路非连续发送方法的步骤。
本公开实施例采用的上述至少一个技术方案能够达到以下有益效果:在用户终端之间通过边链路进行通信时,通过在基于DRX机制的定时器控制下,仅在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收,或允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输,可以满足通信的两端的省电需求。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的第一用户终端分别与基站、第二用户终端之间的交互示意图;
图2为本公开提供的边链路非连续接收方法的第一实施例的流程图;
图3为本公开提供的边链路非连续接收方法的第二实施例的流程图;
图4为本公开提供的边链路非连续接收方法的第一实施例的时序图;
图5为本公开提供的边链路非连续接收方法的第三实施例的流程图;
图6为本公开提供的边链路非连续接收方法的第二实施例的时序图;
图7为本公开提供的边链路非连续接收方法的第四实施例的流程图;
图8为本公开提供的边链路非连续接收装置的第一实施例的功能单元框图;
图9为本公开提供的边链路非连续接收装置的第二实施例的功能单元框图;
图10为本公开提供的边链路非连续接收装置的第三实施例的功能单元框图;
图11为本公开提供的边链路非连续接收装置的第四实施例的功能单元框图;
图12为本公开提供的边链路非连续发送方法的第一实施例的流程图;
图13为本公开提供的边链路非连续发送方法的第二实施例的流程图;
图14为本公开提供的边链路非连续发送方法的第一实施例的时序图;
图15为本公开提供的边链路非连续发送方法的第三实施例的流程图;
图16为本公开提供的边链路非连续发送方法的第二实施例的时序图;
图17为本公开提供的边链路非连续发送方法的第四实施例的流程图;
图18为本公开提供的边链路非连续发送装置的第一实施例的功能单元框图;
图19为本公开提供的边链路非连续发送装置的第二实施例的功能单元框图;
图20为本公开提供的边链路非连续发送装置的第三实施例的功能单元框图;
图21为本公开提供的边链路非连续发送装置的第四实施例的功能单元框图;
图22为本公开提供的终端设备的一实施例的电路连接框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),LTE/增强长期演进(Long Term Evolution Advanced,LTE-A),NR(New Radio)等。
UE也可称之为终端设备(Mobile Terminal)、移动用户设备等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是终端设备,如移动电话(或称为“蜂窝”电话)和具有终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),本公开并不限定,但为描述方便,下述实施例以gNB为例进行说明。
长期演进(Long Term Evolution,LTE)系统,支持边链路sidelink通信,用于UE之间,可以直接进行数据传输而不用通过基站。目前的边链路sidelink通信,主要包括广播(broadcast)、组播(groupcast)、单播(unicast)的传输形式。
非连续接收DRX:被配置于用户终端的目的是节电。处于DRX状态的用户终端,不需要连接监听控制信道,从而可以省电。但是,如果用户终端长时间不监听控制信道,一旦有数据达到,将会增加数据传输的时延。为了兼顾省电和传输时延,根据用户终端监听信道的时间长短,可以将用户终端监听信道的时间分为DRX长周期和DRX短周期。如果用户终端数据量到达比较频繁或者业务对时延比较敏感,则可以配置DRX短周期;如果用户终端的数据量比较稀疏且对时延不敏感,则可以配置DRX长周期。
DRX持续监听定时器(OnDuration timer):在DRX持续监听定时器运行期间,用户终端需要持续监听网络的物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)。
DRX持续允许发送定时器(OnDuration timer):在DRX持续允许发送定时器运行期间,允许发送数据调度或传输。
DRX非激活定时器(Inactivity timer):DRX非激活定时器在用户终端收到数据调度PDCCH信令后的第一个符号启动,在DRX非激活定时器运行期间,用户终端需要持续监听控制信道或允许发送数据调度或传输。
混合自动重复请求(Hybrid Automatic Repeat Request,HARQ)RTT定时器(Round-Trip Time timer):HARQ RTT定时器长度为从HARQ反馈时刻,到收到针对该进程的HARQ重传之间的最小时间间隔。只有当前进程对应的数据未成功解码,用户终端才会在该进程的HARQ NACK反馈之后的第一个符号启动该定时器。如果当前终端只有HARQ RTT定时器运行,则用户终端无需监听PDCCH或允许发送数据调度或传输。
重传定时器:HARQ RTT定时器超时后的下一个符号启动重传定时器。该重传定时器在运行期间,用户终端监听网络的控制信道或允许发送数据调度或传输,如果接收到针对该进程的调度/数据,则启动重传定时 器。
以下结合附图,详细说明本公开提供的技术方案。
本公开提供了一种边链路非连续接收方法,应用于第一用户终端101,换言之,所述方法可以由安装在终端设备的软件或硬件来执行。如图1所示,第一用户终端101与第二用户终端102之间通过边链路通信(即,第一用户终端101与第二用户终端102之间利用sidelink接口进行通信);第二用户终端102与基站103之间通过3G/4G/5G网络进行通信。如图2所示,所述方法包括:
S21:在基于DRX机制的定时器控制下,在定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。
明显地,上述的进行数据调度或传输的监听,或数据调度或传输的接收基于边链路进行。其中,基于DRX机制的控制,定时器中的目标接收定时器可以多个同时运行,也可以单独的一个运行。可以理解地,在定时器中的目标接收定时器关闭后,停止进行数据调度或传输的监听,或数据调度或传输的接收。
另外,对于DRX机制的配置方式,可以是第二用户终端102将业务参数、省电需求上报到基站103,基站103根据业务参数、省电需求生成DRX机制数据,然后第二用户终端102接收基站103下发的DRX机制数据并配置,第一用户终端101再通过边链路接收第二用户终端102发送的DRX机制数据并配置。另外,对DRX机制的配置方式,还可以是第二用户终端102根据业务参数、省电需求直接生成DRX机制数据并配置,然后将DRX机制数据发送至第一用户终端101。当然地,对于DRX机制的配置方式不仅仅限于上述的两种,在此仅仅是举例说明。
本公开实施例提供的边链路非连续接收方法,在用户终端之间通过边链路进行通信时,通过在基于DRX机制的定时器控制下,仅在定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收,可以满足通信的两端的省电需求。
可选地,作为其中一种实施方式,目标接收定时器包括持续监听接收定时器与非激活接收定时器,如图3所示,S21包括:
S31:在持续监听接收定时器运行期间内,监听第二用户终端102的数据调度或传输;
S32:如果接收到第二用户终端102的数据调度或传输,则开启非激活接收定时器,以持续监听第二用户终端102的数据调度或传输;
S33:在非激活接收定时器运行期间,如果再次接收到第二用户终端102传输的数据调度或传输,则重启非激活接收定时器。
可以理解地,当持续监听接收定时器、非激活接收定时器均超时后,停止监听第二用户终端102的数据调度或传输,从而满足第一用户终端的省电需求。
例如,如图4所示,图4中Y(垂直)方向的突出部分表示正在监听第二用户终端102的数据调度或传输,Y方向低平部分代表休眠状态(即停止监听第二用户终端102的数据调度或传输),X(水平)方向为时间轴。例如,DRX周期设置为40ms,持续监听接收定时器的运行时长设置为5ms,非激活接收定时器的运行时长设置为8ms。根据配置好的DRX机制中的目标接收定时器和持续监听接收定时器的起始时刻,持续监听接收定时器开始运行,此时第一用户终端101进行数据调度或传输的监听与接收。例如,假设持续监听接收定时器起始位置为0,则接收第一用户终端101在0-5ms监听第二用户终端102的数据调度或传输,如果没有接收到数据调度或传输,则在5-40ms进入休眠状态,40ms-80ms是第二个DRX周期,在40ms-45ms持续监听接收定时器监听数据调度或传输,如果在44ms时接收到数据调度或者传输,则在44ms时启动非激活接收定时器,该非激活接收定时器在44-52ms有效。第一用户终端101在此期间持续监听,如果接收到数据调度或传输,则重启非激活接收定时器,直至非激活接收定时器超时,第一用户终端101进入休眠期,直到下一个DRX周期中,持续监听接收定时器再次醒来。上述的本质为在接收到数据传输/调度时,启动/重启的持续监听接收定时器,延长了对数据调度或传输进行监听的时间。
需要说明的是,上述的数据调度或传输引起的非激活接收定时器的启动/重启,可以仅仅是指新传输的数据,也可以既包括新传输的数据也包括 重传的数据,二者是可配置/选择的。
作为另一种实施方式,第一用户终端101还配置有HARQ反馈机制,定时器还包括HARQ往返时延接收定时器,目标接收定时器还包括重传接收定时器,如图5所示,所述方法还包括S51和S52。
在S51,在接收到数据后,如果向第二用户终端102反馈HARQ否定确认,则启动HARQ往返时延接收定时器。
当接收到数据时,如果发现数据丢包,则向第二用户终端102反馈HARQ否定确认,以告知第二用户终端102需要重新进行数据调度或数据传输,以保证数据传输的可靠性。
在S52,待HARQ往返时延接收定时器超时后,启动重传接收定时器,以监听第二用户终端102的重传数据调度或数据传输。
在HARQ往返时延接收定时器运行时,若有目标接收定时器同时运行,则监听数据调度或传输,若没有目标接收定时器同时运行,则停止监听数据调度或传输,从而满足第一用户终端101的省电需求。
例如,如图6所示,图6中,Y(垂直)方向突出部分表征处于监听数据调度或传输状态,X(水平)方向低平部分表征休眠状态,X(水平)方向为时间轴。在t1时刻,接收到数据传输/调度,启动非激活接收定时器,在t2时刻第二用户终端102反馈了HARQ否定确认,则启动HARQ往返时延接收定时器,非激活接收定时器在t3时刻超时。可以看出,在t3-t4时刻之间,由于没有任何目标接收定时器有效,第一用户终端101可以停止监听数据传输/调度,t4时刻HARQ往返时延接收定时器超时,则启动重传接收定时器,开始监听数据重传/调度,在t5时刻接收到第一次重传/调度,关闭重传接收定时器。在t6时刻针对第一次重传仍旧反馈HARQ否定确认,则重新启动HARQ往返时延接收定时器,第一用户终端101可以停止监听数据传输/调度,t7时刻HARQ往返时延接收定时器超时,则重新启动重传接收定时器,开始监听数据重传/调度,在t8时刻接收到第二次重传/调度,关闭重传接收定时器,第二用户终端102停止监听数据传输/调度,之后针对第二次重传反馈接收成功确认,则该HARQ进程结束。等待下个DRX周期的持续监听接收定时器运行时,再进行数据传输/调度的监听。
可以理解地,在本公开实施例,上述的第一用户终端101被作为接收端用户设备使用。事实上,对于任何一个用户终端而言,在不同的阶段,是可以既被作为接收端用户设备使用,也可以作为发送端用户设备使用。因此,在两个用户终端进行交互时,需要先确定接收端用户设备、发送端用户设备。可选地,定时器还包括目标发送定时器,在S21之前,如图7所示,所述方法还包括S20。
在S20,如果检测到定时器中的目标发送定时器、目标接收定时器均处于运行期间,则根据DRX机制,将目标发送定时器关闭。其中,DRX机制约定:第二用户终端102的发送优先级高于第一用户终端101的发送优先级。
可以理解地,当第一用户终端101的目标接收定时器处于运行期间的情况下,由于第一用户终端101、第二用户终端102具备相同的DRX机制,对应地,第二用户终端102的目标发送定时器也处于运行期间。可见,在目标发送定时器、目标接收定时器均处于运行期间的情况下,第一用户终端101、第二用户终端102均具有数据发送的需求,由于用户终端受收发硬件和干扰等因素的限制,很难做到同时进行接收和发送,此时,需要对第一用户终端101、第二用户终端102的数据调度或传输进行协调,以保证数据接收效果、省电特性。因此,需要通过发送优先级决定哪个用户终端先进行数据发送。
在DRX机制中,作为其中一种实施方式,约定发送优先级方式为:根据预配置的第一用户终端101的待处理的至少一个业务参数的最高优先级别、第二用户终端102的待处理的至少一个业务参数的最高优先级别,确定第一用户终端101相对于第二用户终端102的发送优先级。
如,第一用户终端101包括A、B、C,3个业务参数,发送优先级分别为2、2、3,第二用户终端102包括D、E、F,3个业务参数,发送优先级分别为1、2、3。可以看出,第一用户终端101的待处理的业务参数的最高优先级别为2、第二用户终端102的待处理的业务参数的最高优先级别为1,可见第二用户终端102的最高优先级别高于第一用户终端101的最高优先级别,因此,确定第二用户终端102优先进行数据发送。
在DRX机制中,作为另一种实施方式,约定发送优先级方式还可以为:根据第一用户终端101运行的目标发送定时器的类型、目标接收定时器的类型,确定第一用户终端101相对于第二用户终端102的发送优先级。
例如,DRX机制约定:重传发送定时器的优先级高于持续监听接收定时器的优先级。在第一用户终端101的持续运行发送定时器、与重传接收定时器同时运行的情况下,第二用户终端102的持续监听接收定时器与重传发送定时器也同时运行,此时,关闭第一用户终端101的持续运行发送定时器与第二用户终端102的持续监听接收定时器;此时仅存在第二用户终端102的重传发送定时器与第一用户终端101重传接收定时器运行,即重传数据优先发送。
在DRX机制中,作为另一种实施方式,约定发送优先级方式还可以为:根据第一用户终端101运行的目标发送定时器、目标接收定时器运行时所处的时刻,确定第一用户终端101相对于第二用户终端102的发送优先级。
例如,如果配置的DRX周期为640ms,DRX机制约定:在DRX周期的0-320ms,第一用户终端101的发送优先级高于第二用户终端的发送优先级;320-640ms,第二用户终端102的发送优先级高于第一用户终端101的发送优先级。因此,在DRX周期的0-320ms期间,第一用户终端101可以根据DRX机制开启目标发送定时器,第二用户终端102可以根据DRX机制开启目标接收定时器,以确定第一用户终端101优先发送数据。在DRX周期的320-640ms期间,第二用户终端102可以根据DRX机制开启目标发送定时器,第一用户终端101可以根据DRX机制开启目标接收定时器,以确定第二用户终端101优先发送数据。
再例如,如果配置的DRX周期为640ms,DRX机制约定:第一用户终端101持续允许发送定时器起始点为0ms,第二用户终端102的持续允许发送定时器起始点为160ms,则第一用户终端101在0-160ms的发送优先级高于第二用户终端102的发送优先级,第二用户终端102在160-640ms的发送优先级高于第一用户终端101的发送优先级。可以理解地,在DRX 周期的0-160ms期间,第一用户终端101可以根据DRX机制在0-160ms期间从0ms开始的配置时间段(如0-20ms或0-40ms等)开启持续允许发送定时器,第二用户终端102可以根据DRX机制在0-160ms期间从0ms开始的配置时间段(如0ms-20ms或0-40ms等)开启持续监听定时器,以确定第一用户终端101优先发送数据。在DRX周期的160-640ms期间,第二用户终端102可以根据DRX机制在160-640ms期间从160ms开始的配置时间段(如160ms-180ms或160-200ms)开启持续允许发送定时器,第一用户终端101可以根据DRX机制在160-640ms期间从160ms开始的配置时间段(如160ms-180ms或160-200ms)开启持续监听定时器,以确定第二用户终端102优先发送数据。
可以理解地,上述的第一用户终端101相对于第二用户终端102的发送优先级确定方式仅仅是举例说明,在具体应用中,可以根据实际需求而确定。
请参阅图8,本公开还提供了一种边链路非连续接收装置800,应用于第一用户终端101。需要说明的是,本公开所提供的边链路非连续接收装置800,其基本原理及产生的技术效果和上述实施例相同,为简要描述,本实施例部分未提及之处,可参考上述提供的边链路非连续接收方法的实施例中相应内容。如图1所示,第一用户终端101与第二用户终端102之间通过边链路通信(即第一用户终端101与第二用户终端102之间利用sidelink接口进行通信);第一用户终端101与基站103之间通过3G/4G/5G网络进行通信。如图8所示,边链路非连续接收装置800包括:
信息接收单元801,被配置成在基于DRX机制的定时器控制下,在定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。
明显地,上述的进行数据调度或传输的监听,或数据调度或传输的接收基于边链路进行。其中,基于DRX机制的控制,定时器的中的目标接收定时器可以多个同时运行,也可以单独的一个运行。可以理解地,在定时器中的目标接收定时器关闭后,停止进行数据调度或传输的监听,或数据调度或传输的接收。
另外,对于DRX机制的配置方式,可以是第二用户终端102将业务参数、省电需求上报到基站103,基站103根据业务参数、省电需求生成DRX机制数据,然后第二用户终端102接收基站103下发的DRX机制数据并配置,第一用户终端101再通过边链路接收第二用户终端102发送的机制数据并配置;另外,对DRX机制的配置方式,还可以是第二用户终端102根据业务参数、省电需求直接生成DRX机制数据并配置,然后将DRX机制数据发送至第一用户终端101。当然地,对于DRX机制的配置方式不仅仅限于上述的两种,在此仅仅是举例说明。
本公开实施例提供的边链路非连续接收装置800,在用户终端之间通过边链路进行通信时,通过在基于DRX机制的定时器控制下,仅在定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收,可以满足通信的两端的省电需求。
可选地,目标接收定时器包括持续监听接收定时器、非激活接收定时器,具体地,信息接收单元801被配置成在持续监听接收定时器运行期间内,监听第二用户终端102的数据调度或传输。
如图9所示,所述装置800还包括:定时器开启单元901,被配置成如果接收到第二用户终端102的数据调度或传输,则开启非激活接收定时器,以持续监听第二用户终端102的数据调度或传输。
定时器开启单元901还可以被配置成在非激活接收定时器运行期间,如果再次接收到第二用户终端102传输的数据调度或传输,则重启非激活接收定时器。
可选地,第一用户终端101还配置有HARQ反馈机制,定时器还包括HARQ往返时延接收定时器,目标接收定时器还包括重传接收定时器,如图10所示,所述装置800还包括:
信息发送单元1001,被配置成在接收到数据后,如果向第二用户终端102反馈HARQ否定确认,则启动HARQ往返时延接收定时器。
定时器开启单元901还可以被配置成待HARQ往返时延接收定时器超时后,启动重传接收定时器,以监听第二用户终端102的重传数据调度或数据传输。
定时器还包括目标发送定时器,如图11所示,所述装置800还包括:
定时器关闭单元1101,被配置成如果检测到定时器中的目标发送定时器、目标接收定时器均处于运行期间,则根据DRX机制,将目标发送定时器关闭,其中,DRX机制约定:第二用户终端102的发送优先级高于第一用户终端101的发送优先级。
具体地,在DRX机制中,约定发送优先级方式可以为:根据预配置的第一用户终端101的待处理的至少一个业务参数的最高优先级别、第二用户终端102的待处理的至少一个业务参数的最高优先级别,确定第一用户终端101相对于第二用户终端102的发送优先级。
在DRX机制中,约定发送优先级方式还可以为:根据第一用户终端101运行的目标发送定时器的类型、目标接收定时器的类型,确定第一用户终端101相对于第二用户终端102的发送优先级。
在DRX机制中,约定发送优先级方式可以为:根据第一用户终端101运行的目标发送定时器、目标接收定时器运行时所处的时刻,确定第一用户终端101相对于第二用户终端102的发送优先级。
本公开还提供了一种边链路非连续发送方法,应用于第二用户终端102,如图1所示,第二用户终端102与第一用户终端101之间通过边链路通信(即用户终端之间利用sidelink接口进行通信);第二用户终端102与基站103之间通过3G/4G/5G网络进行通信。如图12所示,边链路非连续发送方法包括:
S121:在基于DRX机制的定时器控制下,在定时器中的目标发送定时器的运行期间,允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输。
明显地,上述的允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输基于边链路进行。其中,基于DRX机制的控制,定时器的中的目标接收定时器可以多个同时运行,也可以单独的一个运行。可以理解地,在定时器中的目标发送定时器关闭后,停止允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输。
另外,对于DRX机制的配置方式,可以是第二用户终端102将业务参数、省电需求上报到基站103,基站103根据业务参数、省电需求生成DRX机制数据,然后第二用户终端102接收基站103下发的DRX机制数据并配置,第一用户终端101再通过边链路接收第二用户终端102发送的机制数据并配置;另外,对DRX机制的配置方式,还可以是第二用户终端102根据业务参数、省电需求直接生成DRX机制数据并配置,然后将DRX机制数据发送至第一用户终端101。当然地,对于DRX机制的配置方式不仅仅限于上述的两种,在此仅仅是举例说明。
本公开实施例提供的边链路非连续发送方法,在用户终端之间通过边链路进行通信时,通过在基于DRX机制的定时器控制下,仅在定时器中的目标接收定时器的运行期间,允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输,可以满足通信的两端的省电需求。
可选地,目标发送定时器包括持续允许发送定时器、非激活发送定时器,如图13所示,S121包括:
S131:在持续允许发送定时器运行期间内,允许向第一用户终端101进行数据调度或传输。
S132:如果向第一用户终端101进行数据调度或传输,则开启非激活发送定时器,以持续允许向第一用户终端101进行数据调度或传输。
S133:在非激活发送定时器运行期间,如果再次向第一用户终端101进行数据调度或传输,则重启非激活发送定时器。
当持续允许发送定时器、非激活发送定时器均超时后,停止允许第二用户终端102的数据调度或传输。
例如,如图14所示,图14中Y(垂直)方向的突出部分表示正在允许第二用户终端102的数据调度或传输,Y方向低平部分代表休眠状态(即停止允许第二用户终端102的数据调度或传输),X(水平)方向为时间轴。例如,DRX周期设置为40ms,持续允许发送定时器的运行时长设置为5ms,非激活发送定时器的运行时长设置为8ms。根据配置好的DRX中的目标接收定时器和持续允许发送定时器的起始时刻,持续允许发 送定时器开始运行,此时第二用户终端102允许数据调度或传输。例如,假设持续允许发送定时器起始位置为0,则第二用户终端102在0-5ms允许数据调度或传输,如果没有发送数据调度或传输,则在5-40ms进入休眠状态。40ms-80ms是第二个DRX周期,在40ms-45ms持续允许发送定时器允许数据调度或传输,如果在44ms时发送数据调度或者传输,则在44ms时启动非激活发送定时器,该非激活发送定时器在44-52ms有效,第二用户终端102在此期间持续允许数据调度或传输,如果发出数据调度或传输,则会重启非激活发送定时器,直至非激活发送定时器超时,则第二用户终端102进入休眠期,直到下一个DRX周期中,持续允许发送定时器再次醒来。上述的本质为在发送出数据传输/调度时,启动/重启持续允许发送定时器,延长了对数据调度或传输进行允许的时间。
需要说明的是,上述的发出数据调度或传输引起的非激活发送定时器的启动/重启,可以仅仅是指新传输的数据,也可以既包括新传输的数据也包括重传的数据,二者是可配置/选择的。
可选地,第二用户终端102还配置有HARQ重传机制,定时器还包括HARQ往返时延发送定时器,目标发送定时器还包括重传发送定时器。如图15所示,所述方法还包括S152和S153。
在S152,如果接收到第一用户终端101反馈的HARQ否定确认,则启动HARQ往返时延发送定时器。
在S153,待HARQ往返时延发送定时器超时后,启动重传发送定时器,以允许向第一用户终端101进行重传数据调度或数据传输。
当接收到向第一用户终端101发出数据时,接收到第一用户终端101反馈HARQ否定确认,则说明数据发送失败,从而需要重新进行数据调度或数据传输。
例如,如图16所示,图16中,Y(垂直)方向突出部分表征处于监听数据调度或传输状态,X(水平)方向低平部分表征休眠状态,X(水平)方向为时间轴。在t1时刻,发出数据传输/调度,启动非激活发送定时器,在t2时刻接收到第一用户终端101反馈的HARQ否定确认,则启动HARQ往返时延发送定时器,非激活发送定时器在t3时刻超时。可以看 出,在t3-t4时刻之间,由于没有任何目标发送定时器有效,第二用户终端102可以停止允许数据传输/调度,t4时刻HARQ往返时延发送定时器超时,则启动重传发送定时器,开始允许数据重传/调度,在t5时刻进行第一次重传/调度,然后关闭重传发送定时器。在t6时刻接收第一用户终端101针对第一次重传反馈的HARQ否定确认,则重新启动HARQ往返时延发送定时器,第二用户终端102可以停止允许数据传输/调度,t7时刻HARQ往返时延发送定时器超时,则重新启动重传发送定时器,开始允许数据重传/调度,在t8时刻发送到第二次重传/调度,关闭重传发送定时器,第二用户终端102停止允许数据传输/调度,之后针对第二次重传反馈发送成功确认,则该HARQ进程结束。等待下个DRX周期的持续允许发送定时器运行时,再允许进行数据传输/调度。
可以理解地,在本公开实施例,上述的第二用户终端102被作为发送端用户设备使用。事实上,对于任何一个用户终端而言,在不同的阶段,是可以既被作为接收端用户设备使用,也可以作为发送端用户设备使用。因此,在两个用户终端进行交互时,需要先确定接收端用户设备、发送端用户设备。可选地,定时器还包括目标接收定时器,在S121之前,如图17所示,所述方法还包括:
S120:如果检测到定时器中的目标发送定时器、目标接收定时器均处于运行期间,则根据DRX机制,将目标接收定时器关闭。
其中,DRX机制约定:第二用户终端102的发送优先级高于第一用户终端101的发送优先级。可以理解地,当第二用户终端102的目标接收定时器处于运行期间的情况下,由于第一用户终端101、第二用户终端102具备相同的DRX机制,对应地,第一用户终端101的目标发送定时器也处于运行期间。可见,在目标发送定时器、目标接收定时器均处于运行期间的情况下,第一用户终端101、第二用户终端102均具有数据发送的需求,由于用户终端受收发硬件和干扰等因素的限制,很难做到同时进行接收和发送,此时,需要对第一用户终端101、第二用户终端102的数据调度或传输进行协调,以保证数据接收效果、省电特性。因此,需要通过发送优先级决定哪个用户终端先进行数据发送。
可选地,在DRX机制中,作为其中一种实施方式,约定发送优先级方式为:根据预配置的第一用户终端101的待处理的至少一个业务参数的最高优先级别、第二用户终端102的待处理的至少一个业务参数的最高优先级别,确定第一用户终端101相对于第二用户终端102的发送优先级。
如,第一用户终端101包括A、B、C,3个业务参数,发送优先级分别为2、2、3,第二用户终端102包括D、E、F,3个业务参数,发送优先级分别为1、2、3.可以看出,第一用户终端101的待处理的业务参数的最高优先级别为2、第二用户终端102的待处理的业务参数的最高优先级别为1,可见第二用户终端102的最高优先级别高于第一用户终端101的最高优先级别。
在DRX机制中,作为另一种实施方式,约定发送优先级方式为:根据运行的目标发送定时器的类型、目标接收定时器的类型,确定第一用户终端101相对于第二用户终端102的发送优先级。
例如,DRX机制约定:重传发送定时器的优先级高于持续监听接收定时器的优先级。在第一用户终端101的持续运行发送定时器、与重传接收定时器同时运行的情况下,第二用户终端102的持续监听接收定时器与重传发送定时器也同时运行,此时,关闭第一用户终端101的持续运行发送定时器与第二用户终端102的持续监听接收定时器;此时仅存在第二用户终端的重传发送定时器与第一用户终端重传接收定时器运行,即重传数据优先发送。
在DRX机制中,作为另一种实施方式,约定发送优先级方式为:根据运行的目标发送定时器、目标接收定时器运行时所处的时刻,确定第一用户终端101相对于第二用户终端102的发送优先级。
例如,如果配置的DRX周期为640ms,DRX机制约定:在DRX周期的0-320ms,第一用户终端101的发送优先级高于第二用户终端的发送优先级;320-640ms,第二用户终端102的发送优先级高于第一用户终端101的发送优先级。因此,在DRX周期的0-320ms期间,第一用户终端101可以根据DRX机制开启的目标发送定时器,第二用户终端102可以根据DRX机制开启目标接收定时器,以确定第一用户终端101优先发送数据。在 DRX周期的320-640ms期间,第二用户终端102可以根据DRX机制开启目标发送定时器,第一用户终端101可以根据DRX机制开启目标接收定时器,以确定第二用户终端101优先发送数据。
再例如,如果配置的DRX周期为640ms,DRX机制约定:第一用户终端101持续允许发送定时器起始点为0ms,第二用户终端102的持续允许发送定时器起始点为160ms,则第一用户终端101在0-160ms的发送优先级高于第二用户终端102的发送优先级,第二用户终端102在160-640ms的发送优先级高于第一用户终端101的发送优先级。可以理解地,在DRX周期的0-160ms期间,第一用户终端101可以根据DRX机制在0-160ms期间从0ms开始的配置时间段(如0-20ms或0-40ms等)开启持续允许发送定时器,第二用户终端102可以根据DRX机制在0-160ms期间从0ms开始的配置时间段(如0ms-20ms或0-40ms等)开启持续监听定时器,以确定第一用户终端101优先发送数据。在DRX周期的160-640ms期间,第二用户终端102可以根据DRX机制在160-640ms期间从160ms开始的配置时间段(如160ms-180ms或160-200ms)开启持续允许发送定时器,第一用户终端101可以根据DRX机制在160-640ms期间从160ms开始的配置时间段(如160ms-180ms或160-200ms)开启持续监听定时器,以确定第二用户终端102优先发送数据。
可选地,所述方法还包括:如果向第一用户终端101进行数据调度或传输,则在预设的间隔时间后接收HARQ反馈。
请参阅图18,本公开还提供了一种边链路非连续发送装置1800,应用于第二用户终端102,需要说明的是,本公开所提供的边链路非连续发送装置1800,其基本原理及产生的技术效果和上述提供的边链路非连续发送方法的实施例相同,为简要描述,本实施例部分未提及之处,可参考上述提供的边链路非连续发送方法的实施例中相应内容。所述装置1800包括:
信息发送单元1801,被配置成在基于DRX机制的定时器控制下,在定时器中的目标发送定时器的运行期间,允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输。
明显地,上述的允许向第一用户终端101进行数据调度或传输,或向 第一用户终端101进行数据调度或传输基于边链路进行。其中,基于DRX机制的控制,定时器的中的目标接收定时器可以多个同时运行,也可以单独的一个运行。可以理解地,在定时器中的目标发送定时器关闭后,停止允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输。
另外,对于DRX机制的配置方式,可以是第二用户终端102将业务参数、省电需求上报到基站103,基站103根据业务参数、省电需求生成DRX机制数据,然后第二用户终端102接收基站103下发的DRX机制数据并配置,第一用户终端101再通过边链路接收第二用户终端102发送的机制数据并配置;另外,对DRX机制的配置方式,还可以是第二用户终端102根据业务参数、省电需求直接生成DRX机制数据并配置,然后将DRX机制数据发送至第一用户终端101。当然地,对于DRX机制的配置方式不仅仅限于上述的两种,在此仅仅是举例说明。
本公开实施例提供的边链路非连续发送装置1800,在用户终端之间通过边链路进行通信时,通过在基于DRX机制的定时器控制下,仅在定时器中的目标接收定时器的运行期间,允许向第一用户终端101进行数据调度或传输,或向第一用户终端101进行数据调度或传输,可以满足通信的两端的省电需求。
所述目标发送定时器包括持续允许发送定时器、非激活发送定时器,信息发送单元1801被具体配置成在所述持续允许发送定时器运行期间内,允许向第一用户终端101进行数据调度或传输。
如图19所示,所述装置1800还包括:定时器开启单元1901,被配置成如果向所述第一用户终端101进行数据调度或传输,则开启所述非激活发送定时器,以持续允许向第一用户终端101进行数据调度或传输。
所述定时器开启单元1901还被配置成在所述非激活发送定时器运行期间,如果再次向所述第一用户终端101的进行数据调度或传输,则重启所述非激活发送定时器。
所述第二用户终端102还配置有HARQ重传机制,所述定时器还包括HARQ往返时延发送定时器,所述目标发送定时器还包括重传发送定时 器。
定时器开启单元1901还被配置成如果接收到第一用户终端101反馈的HARQ否定确认,则启动HARQ往返时延发送定时器。
定时器开启单元1901还被配置成待所述HARQ往返时延发送定时器超时后,启动重传发送定时器,以允许向第一用户终端101进行重传数据调度或数据传输。
所述定时器还包括目标接收定时器,如图20所示,所述装置1800还包括:
定时器关闭单元2001,还被配置成如果检测到定时器中的目标发送定时器、目标接收定时器均处于运行期间,则根据DRX机制,将所述目标接收定时器关闭,其中,DRX机制约定:所述第二用户终端102的发送优先级高于所述第一用户终端101的发送优先级。
在所述DRX机制中,作为其中一种实施方式,约定所述发送优先级方式为:根据预配置的所述第一用户终端101的待处理的至少一个业务参数的最高优先级别、所述第二用户终端102的待处理的至少一个业务参数的最高优先级别,确定所述第一用户终端101相对于所述第二用户终端102的发送优先级。
在所述DRX机制中,作为其中一种实施方式,约定所述发送优先级方式为:根据运行的目标发送定时器的类型、目标接收定时器的类型,确定所述第一用户终端101相对于所述第二用户终端102的发送优先级。
在所述DRX机制中,作为其中一种实施方式,约定所述发送优先级方式为:根据运行的目标发送定时器、目标接收定时器运行时所处的时刻,确定所述第一用户终端101相对于所述第二用户终端102的发送优先级。
如图21所示,所述装置1800还包括:
信息接收单元2101,被配置成如果向第一用户终端101进行数据调度或传输,则在预设的间隔时间后接收HARQ反馈。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附 图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本公开的实施例还提供一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的边链路非连续接收方法或边链路非连续发送方法的任一实施例的各个步骤。
图22示出了根据本公开的实施例的终端设备2200的框图。图22所示的终端设备2200包括:至少一个处理器2201、存储器2202、至少一个网络接口2204和用户接口2203。终端设备2200中的各个组件通过总线系统2205耦合在一起。可理解,总线系统2205用于实现这些组件之间的连接通信。总线系统2205除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图22中将各种总线都标为总线系统2205。
其中,用户接口2203可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器2202可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct  Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器2202旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器2202存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统22021和应用程序22022。
其中,操作系统22021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序22022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序22022中。
在本公开实施例中,终端设备2200还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器2201执行时实现如下步骤:
在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收;或,在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
上述本公开实施例揭示的方法可以应用于处理器2201中,或者由处理器2201实现。处理器2201可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2201中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2201可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件 模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器2202,处理器2201读取存储器2202中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器2201执行时实现如上述……方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,计算机程序被处理器2201执行时还可实现如下步骤:在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收;或,在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
终端设备2200能够实现前述实施例中终端设备实现的各个过程和效果,为避免重复,这里不再赘述。
本公开实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行如上所述的边链路非连续接收方法或边链路非连续发送方法的任一实施例的 操作。在一个实施例中,当指令被便携式电子设备执行时,能够使该便携式电子设备执行以下操作:
在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。另一实施例中,当指令被便携式电子设备执行时,能够使该便携式电子设备执行以下操作:在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
总之,以上所述仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
附图中的流程图和框图图示了根据本公开的各种实施例的系统、方法和计算机程序产品的可能实现方式的体系结构、功能和操作。在这点上,流程图或框图中的每个方框可代表一单元、片段或代码的一部分,所述单元、片段或代码的一部分包括用于实现(一个或多个)指定的逻辑功能的一个或多个可执行指令。还要注意,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以由执行指定的功能或动作的专用的基于硬件的系统来实现,或者可以由专用硬件和计算机指令的组合来实现。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可 擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质可以是指非暂态计算机可读存储介质,因此不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (17)

  1. 一种边链路非连续发送方法,应用于第二用户终端,所述方法包括:
    在基于非连续接收DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
  2. 根据权利要求1所述的方法,其中,所述目标发送定时器包括持续允许发送定时器、非激活发送定时器,所述在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度/传输,或向第一用户终端进行数据调度/传输,包括:
    在所述持续允许发送定时器运行期间内,允许向所述第一用户终端进行数据调度/传输;
    如果向所述第一用户终端进行数据调度/传输,则开启所述非激活发送定时器,以持续允许向所述第一用户终端进行数据调度/传输。
  3. 根据权利要求2所述的方法,其中,在所述如果向所述第一用户终端进行数据调度/传输,则开启所述非激活发送定时器,以持续允许向所述第一用户终端进行数据调度/传输后,所述方法还包括:
    在所述非激活发送定时器运行期间,如果再次向所述第一用户终端进行数据调度/传输,则重启所述非激活发送定时器。
  4. 根据权利要求2或3所述的方法,其中,所述第二用户终端还配置有混合自动重传请求HARQ重传机制,所述定时器还包括HARQ往返时延发送定时器,所述目标发送定时器还包括重传发送定时器,所述方法还包括:
    如果接收到第一用户终端反馈的HARQ否定确认,则启动所述HARQ往返时延发送定时器;
    待所述HARQ往返时延发送定时器超时后,启动所述重传发送定时器,以允许向所述第一用户终端进行重传数据调度或数据传输。
  5. 根据权利要求1所述的方法,其中,所述定时器还包括目标接收定时器,所述在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输之前,所述方法还包括:
    如果检测到定时器中的目标发送定时器、目标接收定时器均处于运行期间,则根据DRX机制,将所述目标接收定时器关闭,其中,所述DRX机制约定:所述第二用户终端的发送优先级高于所述第一用户终端的发送优先级。
  6. 根据权利要求5所述的方法,其中,在所述DRX机制中,约定所述发送优先级方式为:根据预配置的所述第一用户终端的待处理的至少一个业务参数的最高优先级别、所述第二用户终端的待处理的至少一个业务参数的最高优先级别,确定所述第一用户终端相对于所述第二用户终端的发送优先级。
  7. 根据权利要求5所述的方法,其中,在所述DRX机制中,约定所述发送优先级方式为:根据运行的目标发送定时器的类型、目标接收定时器的类型,确定所述第一用户终端相对于所述第二用户终端的发送优先级。
  8. 根据权利要求5所述的方法,其中,在所述DRX机制中,约定所述发送优先级方式为:根据运行的目标发送定时器、目标接收定时器运行时所处的时刻,确定所述第一用户终端相对于所述第二用户终端的发送优先级。
  9. 一种边链路非连续发送装置,应用于第二用户终端,所述装置包括:
    信息发送单元,被配置成在基于DRX机制的定时器控制下,在所述定时器中的目标发送定时器的运行期间,允许向第一用户终端进行数据调度或传输,或向第一用户终端进行数据调度或传输。
  10. 一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的边链路非连续发送方法的步骤。
  11. 一种边链路非连续接收方法,应用于第一用户终端,所述方法包括:
    在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。
  12. 根据权利要求11所述的方法,其中,所述定时器还包括目标发送定时器,所述在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收之前,所述方法还包括:
    如果检测到定时器中的目标发送定时器、目标接收定时器均处于运行期间,则根据DRX机制,将目标发送定时器关闭,其中,所述DRX机制约定:所述第二用户终端的发送优先级高于所述第一用户终端的发送优先级。
  13. 根据权利要求12所述的方法,其中,在所述DRX机制中,约定所述发送优先级方式为:根据预配置的所述第一用户终端的待处理的至少一个业务参数的最高优先级别、所述第二用户终端的待处理的至少一个业务参数的最高优先级别,确定所述第一用户终端相对于所述第二用户终端的发送优先级。
  14. 根据权利要求12所述的方法,其中,在所述DRX机制中,约定所述发送优先级方式为:根据所述第一用户终端运行的目标发送定时器的类型、目标接收定时器的类型,确定所述第一用户终端相对于所述第二用户终端的发送优先级。
  15. 根据权利要求12所述的方法,其中,在所述DRX机制中,约定所述发送优先级方式为:根据所述第一用户终端运行的目标发送定时器、目标接收定时器运行时所处的时刻,确定所述第一用户终端相对于所述第二用户终端的发送优先级。
  16. 一种边链路非连续接收装置,应用于第一用户终端,包括:
    信息接收单元,被配置成在基于DRX机制的定时器控制下,在所述定时器中的目标接收定时器的运行期间,进行数据调度或传输的监听,或数据调度或传输的接收。
  17. 一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求11至15中任一项所述的边链路非连续接收方法的步骤。
PCT/CN2020/108456 2019-08-22 2020-08-11 边链路非连续发送、接收方法与装置及终端设备 WO2021031934A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20854280.3A EP4021139A4 (en) 2019-08-22 2020-08-11 DISCONTINUOUS TRANSMISSION METHOD AND DEVICE AND DISCONTINUOUS RECEIVING METHOD AND DEVICE FOR SIDELINK AND TERMINAL
KR1020227008960A KR20220051362A (ko) 2019-08-22 2020-08-11 사이드링크 비연속 송신 방법, 수신 방법, 장치 및 단말 기기
US17/676,532 US20220183103A1 (en) 2019-08-22 2022-02-21 Sidelink dtx method and apparatus, sidelink drx method and apparatus, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910780085.2A CN111800893B (zh) 2019-08-22 2019-08-22 边链路非连续发送、接收方法与装置及终端设备
CN201910780085.2 2019-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/676,532 Continuation US20220183103A1 (en) 2019-08-22 2022-02-21 Sidelink dtx method and apparatus, sidelink drx method and apparatus, and terminal device

Publications (1)

Publication Number Publication Date
WO2021031934A1 true WO2021031934A1 (zh) 2021-02-25

Family

ID=72805026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108456 WO2021031934A1 (zh) 2019-08-22 2020-08-11 边链路非连续发送、接收方法与装置及终端设备

Country Status (5)

Country Link
US (1) US20220183103A1 (zh)
EP (1) EP4021139A4 (zh)
KR (1) KR20220051362A (zh)
CN (2) CN111800893B (zh)
WO (1) WO2021031934A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200960A1 (en) * 2022-04-14 2023-10-19 Qualcomm Incorporated Discontinuous reception alignment with respect to prioritization

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325944A (zh) * 2020-10-21 2023-06-23 华为技术有限公司 无线通信的方法和装置以及通信设备
WO2022086280A1 (ko) * 2020-10-22 2022-04-28 엘지전자 주식회사 Nr v2x에서 sl drx 동작을 수행하는 방법 및 장치
EP4231771A4 (en) * 2020-10-22 2023-12-27 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
CN116368756A (zh) * 2020-10-23 2023-06-30 华为技术有限公司 无线通信的方法和装置
WO2022141412A1 (zh) * 2020-12-31 2022-07-07 Oppo广东移动通信有限公司 无线通信的方法和终端设备
KR20230128116A (ko) * 2021-01-07 2023-09-01 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 사이드링크 제어 방법, 장치, 통신 기기 및 저장 매체(sidelink control method and apparatus, communication device, and storage medium)
KR20230118911A (ko) * 2021-01-13 2023-08-14 후지쯔 가부시끼가이샤 데이터 수신 방법, 장치 및 시스템
CN117376952A (zh) * 2021-01-14 2024-01-09 Oppo广东移动通信有限公司 参数配置方法、用户设备和存储介质
WO2022160106A1 (zh) * 2021-01-26 2022-08-04 Oppo广东移动通信有限公司 一种数据传输方法、电子设备及存储介质
CN115022815B (zh) * 2021-03-05 2023-07-21 维沃移动通信有限公司 多播业务的接收方法、装置及电子设备
CN115119182A (zh) * 2021-03-17 2022-09-27 维沃移动通信有限公司 定时器控制方法、装置及终端
WO2022205174A1 (zh) * 2021-03-31 2022-10-06 Oppo广东移动通信有限公司 一种控制定时器的方法及装置、终端设备
KR20230146656A (ko) * 2021-03-31 2023-10-19 후지쯔 가부시끼가이샤 사이드링크 불연속 수신 커맨드 트리거 방법, 장치, 및 시스템
CN115568038A (zh) * 2021-07-02 2023-01-03 维沃移动通信有限公司 非激活定时器的控制方法、装置及终端

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170913A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种系统信息传输方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017206661B2 (en) * 2016-01-11 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling connected mode DRX operations
WO2017138378A1 (ja) * 2016-02-08 2017-08-17 京セラ株式会社 無線端末
CN109479189B (zh) * 2016-07-21 2022-04-05 三星电子株式会社 设备到设备(d2d)通信中通过侧链路发现用户设备(ue)的系统和方法
WO2018027821A1 (zh) * 2016-08-11 2018-02-15 华为技术有限公司 一种通信方法、相关设备及系统
CN108307486A (zh) * 2016-08-11 2018-07-20 索尼公司 用于网络控制端和网络节点的电子设备和方法
EP3536083B1 (en) * 2016-11-03 2021-03-03 Telefonaktiebolaget LM Ericsson (publ) Method and wireless terminal device for sidelink wireless communications
TWI728281B (zh) * 2017-11-22 2021-05-21 香港商鴻穎創新有限公司 一種用於drx操作的使用者設備及方法
EP4151042A1 (en) * 2020-05-21 2023-03-22 FG Innovation Company Limited Method and user equipment for performing sidelink communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170913A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种系统信息传输方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION ET AL.: "DRX in sidelink", 3GPP TSG RAN WG2 MEETING #96; R2-167764.3RD GENERATION PARTNERSHIP PROJECT (3GPP), 18 November 2016 (2016-11-18), Reno, USA; 20161114 - 20161118, XP051177546 *
INTEL CORPORATION, ITL: "DRX in sidelink", 3GPP TSG RAN WG2#97; R2-1701309, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 February 2017 (2017-02-12), Athens, Greece; 20170213 - 20170217, XP051211974 *
ROHDE & SCHWARZ: "ProSe: Reference sensitivity test", 3GPP TSG-RAN WG5 MEETING #69 R5-155310R1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 19 November 2015 (2015-11-19), Anaheim, CA, USA; 20151116 - 20151120, XP051029937 *
See also references of EP4021139A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200960A1 (en) * 2022-04-14 2023-10-19 Qualcomm Incorporated Discontinuous reception alignment with respect to prioritization

Also Published As

Publication number Publication date
CN111800893B (zh) 2022-06-17
EP4021139A1 (en) 2022-06-29
CN111800893A (zh) 2020-10-20
CN115103424A (zh) 2022-09-23
KR20220051362A (ko) 2022-04-26
EP4021139A4 (en) 2022-10-19
US20220183103A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2021031934A1 (zh) 边链路非连续发送、接收方法与装置及终端设备
WO2021032194A1 (zh) Sidelink的drx配置方法和设备
WO2021031938A1 (zh) 边链路drx参数配置方法、装置及终端设备
US10470088B2 (en) Assisted management of radio resources across dual networks
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
EP2742768B1 (en) Deciding whether to send uplink control signaling based on the active time status of a user equipment configured with discontinuous reception (drx)
US10594447B2 (en) Data transmission method, terminal, and ran device
US20220173842A1 (en) Timer control method, apparatus, and system
WO2019192502A1 (zh) 一种控制定时器的方法和装置
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
US20230048959A1 (en) Channel monitoring method, electronic device, and storage medium
WO2016063113A1 (en) Enabling power efficient dual connectivity with reduced delay impact
WO2021082012A1 (zh) 用于确定非连续接收持续定时器的启动状态的方法及设备
CN110958088B (zh) 一种通信方法及装置
WO2020215332A1 (zh) 非连续接收的方法和设备
CN106464454B (zh) Drx休眠周期确定
TW202027536A (zh) 下行控制資訊dci的傳輸方法、終端和網路側設備
EP3378262A1 (en) Method and apparatus for triggering an active time to monitor for discontinuous reception
WO2018202045A1 (zh) 定时器配置方法、用户终端、网络侧设备和系统
CN109561488B (zh) 非连续接收的控制方法、终端设备和网络侧设备
JP2024502169A (ja) データ受信方法、装置及びシステム
CN112771913A (zh) 方法、装置和计算机程序产品
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019214460A1 (zh) 模糊期长度确定方法、终端和网络侧设备
WO2021155603A1 (zh) 基于drx的侧行反馈方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008960

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020854280

Country of ref document: EP

Effective date: 20220322