WO2022205656A1 - 一种磷化铟衬底的抛光装置及抛光工艺 - Google Patents

一种磷化铟衬底的抛光装置及抛光工艺 Download PDF

Info

Publication number
WO2022205656A1
WO2022205656A1 PCT/CN2021/104413 CN2021104413W WO2022205656A1 WO 2022205656 A1 WO2022205656 A1 WO 2022205656A1 CN 2021104413 W CN2021104413 W CN 2021104413W WO 2022205656 A1 WO2022205656 A1 WO 2022205656A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
polishing
anode
indium phosphide
disk
Prior art date
Application number
PCT/CN2021/104413
Other languages
English (en)
French (fr)
Inventor
王书杰
孙聂枫
王阳
李晓岚
史艳磊
邵会民
付莉杰
刘铮
孙同年
刘惠生
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120628422.9U external-priority patent/CN214723256U/zh
Priority claimed from CN202110331419.5A external-priority patent/CN112975592B/zh
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/797,395 priority Critical patent/US20240035192A1/en
Publication of WO2022205656A1 publication Critical patent/WO2022205656A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/02Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/30Polishing of semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the invention belongs to the technical field of indium phosphide polishing, in particular to an indium phosphide substrate polishing device and a polishing process.
  • InP material is an important III-V compound semiconductor material with the characteristics of high electron mobility and high saturation drift rate. It is the main basic material for realizing millimeter-wave circuits and terahertz electronic devices. InP-based devices have high frequency, Low noise, high efficiency, radiation resistance and other characteristics, it is the first choice for frequency bands above 100GHz, and has excellent performance in W-band and higher frequency millimeter-wave circuits, and is used in optical fiber communication, mobile communication, medical imaging, terahertz communication and other fields. widely.
  • the polishing technology of InP is an important indicator to measure its preparation level, and the smooth interface and low roughness of the polishing interface are very important for the subsequent epitaxial growth.
  • the polishing of InP single crystal substrates mainly adopts electrochemical polishing technology or mechanical polishing technology, but the polishing effect of the two is not stable and the polishing uniformity is not ideal, especially the chemical composition of the polishing liquid in the electrochemical polishing technology is relatively low. It is complex and has high requirements on the environment. Therefore, how to realize the InP polishing technology with low cost and ideal polishing effect has become an urgent problem to be solved.
  • the technical problem to be solved by the present invention is to provide an indium phosphide substrate polishing device and polishing process.
  • the The polishing process has greatly reduced environmental requirements, and the polishing effect is ideal.
  • a polishing device for an indium phosphide substrate comprising an electrolytic cell
  • the polishing device further comprises an anode disk support rod positioned at the center position of the bottom of the electrolytic cell by means of an anode lifting mechanism, hinged on the anode disk
  • the anode disk with the connecting mechanism arranged
  • the polishing process realized by the polishing device based on the indium phosphide substrate includes the following steps:
  • Step 1 Load the indium phosphide substrate into the substrate groove of the star wheel;
  • Step 2 With the help of the cathode lifting mechanism, the polishing cloth positioned on the lower end face of the cathode disk is brought into contact with the indium phosphide substrate, and the polishing pressure between the cathode disk and the graphite electrode plate is kept in the range of 40-400 g/cm 2 ;
  • Step 3 inject the assembly through the polishing liquid, and inject the electrolyte into the electrolytic cell until the cathode disc is not covered;
  • Step 4 With the drive of the anode rotating drive mechanism and the cathode rotating drive mechanism, the cathode disk and the graphite electrode plate are rotated in opposite directions, and at the same time, the polishing liquid is injected into the assembly through the polishing liquid; the cathode disk and the graphite electrode plate are rotated for 2- After 3 minutes, start the stirrer, connect the polishing DC power supply and open the shut-off valve of the electrolyte discharge pipe;
  • Step 5 After 9-12 minutes, turn off the polishing DC power supply, the driving of the anode rotating drive mechanism and the cathode rotating drive mechanism; separate the cathode disk and the graphite electrode plate with the help of the cathode lifting mechanism; and then use the anode lifting mechanism to make the indium phosphide substrate. Above the electrolyte level, take out the indium phosphide substrate;
  • Step 6 Test the roughness of the surface of the indium phosphide substrate facing the anode; when the required roughness is not reached, put the indium phosphide substrate into the substrate tank as it is, and repeat steps 2, 4 and 5; When the required roughness is reached, invert the indium phosphide substrate and put it into the substrate groove, and repeat steps 2, 4 and 5;
  • Step 7 After the polishing on both sides of the indium phosphide substrate is completed, stop the injection of the polishing liquid into the assembly to inject the polishing liquid and the electrolyte, stop the movement of the agitator, and drain the electrolyte;
  • Step 8 Clean, dry and pack the indium phosphide substrate that meets the polishing requirements.
  • the beneficial effects of the invention are as follows: by organically combining mechanical and chemical polishing, the roughness of the polishing surface of the indium phosphide substrate can reach 0.3 nm; the invention can change the selection range of electrolyte and polishing solution, and adopts low cost The electrolyte and polishing solution can meet the technical requirements and polishing effect, and greatly save the production cost.
  • Fig. 1 is the structural representation of the present invention
  • Figure 2 is a schematic diagram of the assembly of the planetary wheel and the intermediate drive mechanism
  • Figure 3 is a schematic diagram of a cruise star
  • FIG. 4 is a schematic view of a polishing cloth positioned on the lower end face of the cathode disk
  • 1 is the cathode plate
  • 1-1 is the polishing liquid injection branch pipe
  • 2 is the gear
  • 3 is the electrolytic cell
  • 4 is the stirrer
  • 5 is the indium phosphide substrate
  • 6 is the electrolyte
  • 7 is the anode plate
  • 8 is the anode disk support rod
  • 8-1 is the anode disk rotating snap ring
  • 9 is the graphite electrode plate
  • 10 is the fixing bolt
  • 11 is the anode polishing cloth clamp
  • 12 is the electrolyte discharge pipe
  • 13 is the polishing cloth
  • 13- 1 is the feeding hole
  • 13-2 is the gear hole
  • 14 is the internal gear
  • 14-1 is the fixing fixture
  • 15 is the wire
  • 16 is the cathode disk support rod
  • 16-1 is the polishing liquid injection branch
  • 16-2 is the slurry Material pipe
  • 16-3 is electrolyte injection pipe
  • 17 is star wheel
  • 17-1 is substrate tank
  • 17-2 is air guide hole
  • 18 ca
  • the polishing device of the indium phosphide substrate of the present invention includes an electrolytic cell 3, an anode disk support rod 8 positioned at the bottom center of the electrolytic cell 3 by means of an anode lifting mechanism, and an anode disk support rod 8 hinged on the upper end of the anode disk support rod 8.
  • the polishing cloth 13 between the planetary wheel 17, the anode rotating drive mechanism connected with the intermediate drive mechanism, the cathode rotating drive mechanism connected with the cathode disk support rod 16, and the anode disk support rod 8 and the cathode disk support rod respectively by means of wires 16 is connected to the polishing DC power supply 20, and the cathode disk support rod 16 is provided with a polishing
  • the intermediate drive mechanism includes a gear shaft 21 arranged in the anode disk support rod 8, a gear 2 connected with the gear shaft 21 and positioned at the central axis of the graphite electrode plate 9, and a fixed fixture 14-1.
  • the internal gear 14 is positioned on the upper end face of the graphite electrode plate 9, the pinwheel 17 meshes between the internal gear 14 and the gear 2, and the lower end of the gear shaft 21 is connected to the anode rotation drive mechanism.
  • the gear shaft 21 and the gear 2 are connected by a key 21-1.
  • the star wheel 17 is provided with a group of substrate grooves 17-1 and a group of air guide holes 17-2.
  • An electrolyte discharge pipe 12 with a shut-off valve is provided in the middle of the side of the electrolytic cell 3 .
  • a stirrer 4 is provided at the bottom of the electrolytic cell 3 .
  • the surface layers of the anode disk support rod 8 and the cathode disk support rod 16 are sequentially provided with a ceramic protective layer and an acid-proof paint layer from the inside to the outside.
  • the surface layer of the anode disk 7 in contact with the electrolyte is provided with a ceramic protective layer and an acid-proof paint layer.
  • the internal gear 14 is assembled to the fixing fixture 14 - 1 and fixed to the bottom of the electrolytic cell 3 .
  • the graphite electrode plate 9 and the anode disk 7 are fixed together by fixing bolts 10 .
  • a gear shaft 21 is assembled inside the anode disk support rod 8 .
  • the anode disk 7 is fixed on the anode disk support rod 8
  • the gear 2 is assembled on the gear shaft 21 .
  • the anode disk support rod 8 is passed through the anode disk rotation snap ring 8-1 and fixed to the anode rotation drive mechanism.
  • the gear shaft 21 is then assembled to the gear shaft drive 33-5.
  • the polishing cloth 13 is fixed on the graphite electrode plate 9 by the anode polishing cloth fixture 11 .
  • the planetary wheel 17 is placed on the anode polishing cloth 13, and cooperates with the inner gear 14 and the gear 2.
  • the polishing liquid injection assembly includes a polishing liquid injection main pipe 16-1 arranged in the cathode disk support rod 16, a polishing liquid injection main pipe 16-1 connected to the polishing liquid injection main pipe 16-1 and disposed in the cathode disk 1.
  • the liquid injection branch pipe 1-1 group, the upper end of the polishing liquid injection main pipe 16-1 is respectively provided with a slurry pipe 16-2 and an electrolyte injection pipe 16-3, and the polishing cloth 13 positioned on the lower end surface of the cathode disc 1 is provided with a slurry pipe 16-2 and an electrolyte injection pipe 16-3 respectively.
  • the slurry pipe 16-2 and the electrolyte injection pipe 16-3 are assembled together by the fixing rod 19, and then the fixing rod 19 is fixed by a rubber ring into the polishing liquid injection main pipe 16-1, and the cathode disk support rod 16 is passed through the upper part.
  • the disk rotation snap ring 16-5 is assembled on the cathode rotation drive mechanism to ensure that the cathode polishing disk 1 rotates smoothly.
  • the upper end of the fixing rod 19 is mounted on the fixing ring 16-4 for fixing the slurry pipe 16-2 and the electrolyte injection pipe 16-3.
  • the fixed ring 16-4 is connected to the cathode support table 32-1 through the fixed ring arm 32-4, and is used to ensure that during the rotation of the cathode disk support rod 16, the slurry pipe 16-2 and the electrolyte injection pipe 16-3 are stationary, and Stable fluid supply.
  • the cathode disk support rod 16 is assembled with the cathode polishing disk 1 .
  • the internal polishing liquid injection main pipe 16-1 cooperates with the polishing liquid injection branch pipe 1-1, and the polishing cloth 13 is fixed on the cathode polishing disc 1 by the cathode polishing cloth clamp 18.
  • the anode lifting mechanism and the cathode lifting mechanism are connected with the electrolytic cell 3 by means of the connecting column 31-2; 2.
  • the cathode support table 32-1 is arranged on the cathode guide column 31 by means of the cathode guide drive 32, and the cathode support table 32-1 is connected with the cathode disk support rod 16;
  • the column 31-2 is arranged on the anode guide column 34 under the side of the electrolytic cell 3, and the anode support table 33-1 is arranged on the anode guide column 34 by means of the anode guide drive 33, and the anode support table 33-1 is supported with the anode disk Rod 8 is connected.
  • the upper disk rotating snap ring 16-5 is connected to the cathode support table 32-1 through the cathode disk snap ring arm 32-3.
  • the cathode rotation driving mechanism is directly connected to the cathode support table 32-1.
  • the cathode support table 32-1 is connected with the cathode guide drive 32 to realize the up and down movement of the entire cathode;
  • the anode disk rotating snap ring 8-1 is connected to the anode support table 33-1 through the anode disk snap ring arm 33-4.
  • the cathode rotation drive mechanism is directly connected to the anode support table 33-1.
  • the gear shaft drive 33-5 is connected to the anode support table 33-1 through the gear shaft drive arm 33-3.
  • the anode support table 33-1 is connected with the anode guide drive 33 to realize the up and down movement of the whole anode.
  • the mechanism of action of the present invention in neutral or weakly acidic electrolytes such as sodium chloride and potassium chloride, the graphite electrode plate 9 is used as a cathode in the electrolytic cell 3, and porous pores are arranged on the graphite electrode plate 9 during electrochemical polishing.
  • the polishing cloth 13 is provided, and an anode is set in the electrolytic cell 3, and the indium phosphide substrate is electrochemically polished through the porous polishing cloth 13 and the chlorine generated by electrolysis; Aluminum or silicon dioxide slurry to achieve mechanical polishing of indium phosphide substrates.
  • the polishing slurry and the electrolyte are sent to the middle of the polishing disc for polishing.
  • the polishing disc is used as the electrode, and an electrochemical reaction occurs: cathode reaction: 2H + +2e ⁇ H 2 (g); anode reaction: 2Cl - -2e ⁇ Cl 2 (g); the formed chlorine reacts with the indium phosphide substrate: Cl 2 +In-P ⁇ In-Cl+P-Cl, and at the same time, due to the mechanical grinding effect of the polishing slurry, the phosphating Electrochemical and mechanical double polishing of indium substrates.
  • the polishing process of the present invention comprises the following steps:
  • Step 1 Load the indium phosphide substrate 5 into the substrate groove 17-1 of the star wheel 17;
  • Step 2 With the help of the cathode lifting mechanism, the polishing cloth 13 positioned on the lower end face of the cathode disk 1 is brought into contact with the indium phosphide substrate 5, and the polishing pressure between the cathode disk 1 and the graphite electrode plate 9 is maintained at 40-400 g/cm 2 range;
  • Step 3 inject the assembly through the polishing liquid, and inject the electrolyte into the electrolytic cell 3 until the cathode disk 1 is not exceeded;
  • Step 4 With the driving of the anode rotation drive mechanism and the cathode rotation drive mechanism, the cathode disk 1 and the graphite electrode plate 9 are rotated in opposite directions, and the polishing liquid is injected into the assembly through the polishing liquid injection assembly; 9 After rotating for 2-3min, start the stirrer 4, connect the polishing DC power supply 20 and open the stop valve of the electrolyte discharge pipe 12;
  • Step 5 After 9-12min, turn off the driving of the polishing DC power supply 20, the anode rotating drive mechanism and the cathode rotating drive mechanism; with the help of the cathode lifting mechanism, separate the cathode disk 1 and the graphite electrode plate 9; then with the anode lifting mechanism, make the phosphating.
  • the indium substrate 5 is located above the liquid level of the electrolyte 6, and the indium phosphide substrate 5 is taken out;
  • Step 6 Test the roughness of the surface of the indium phosphide substrate 5 facing the anode; when the required roughness is not reached, put the indium phosphide substrate 5 into the substrate tank 17-1 as it is, and repeat steps 2, 4 and 5; when the required roughness is reached, invert the indium phosphide substrate 5 and put it into the substrate groove 17-1, and repeat steps 2, 4 and 5;
  • Step 7 After the two sides of the indium phosphide substrate 5 are polished, stop the polishing liquid injection assembly into the polishing liquid and the electrolyte, stop the movement of the stirrer 4, and drain the electrolyte;
  • Step 8 Clean, dry and pack the indium phosphide substrate 5 that meets the polishing requirements.
  • the specific polishing process of the present invention the indium phosphide substrate 5 is placed in the substrate groove 17-1.
  • the electrolyte is injected into the electrolytic cell 3 until the cathode disk 1 can be covered, and the cathode disk 1 is lowered until the polishing cloth 13 is in contact with the indium phosphide substrate 5 .
  • the cathode disk 1 and the anode polishing disk 7 are rotated in opposite directions through the cathode support rod 16 and the anode support rod 8 .
  • the polishing liquid is injected into the polishing liquid injection main pipe 16-1 through the slurry pipe 16-2 and the electrolyte injection pipe 16-3, and sent to the polishing cloth 13 through the polishing liquid injection branch pipe 1-2, and passed through the polishing cloth 13.
  • the feeding hole 13-1 above enters the indium phosphide substrate 5 and the graphite electrode plate 9.
  • the DC power supply 20 is turned on to start electrochemical mechanical polishing, and simultaneously start stirring. 4, open the electrolyte discharge pipe 12.
  • the polishing DC power supply 20 is turned off, the rotation of the cathode disk 1 and the anode polishing disk 7 is stopped, and the cathode disk 1 and the anode polishing disk 7 are separated. Raise the cathode support rod 8 and the anode support rod 16 so that the indium phosphide substrate 5 is located above the electrolyte level, take out the indium phosphide substrate 5, and test the polishing condition.
  • the indium phosphide substrate 5 facing the anode is polished to the required roughness, the indium phosphide substrate 5 is reversed, and the above steps are repeated to start polishing the other side.
  • the slurry and electrolyte injection into the slurry pipe 16-2 and the electrolyte injection pipe 16-3 are stopped, and the electrolyte discharge pipe 12 is closed.
  • the rotation of the cathode disc 1 and the anode polishing disc 7 is stopped. Lift the cathode plate 1, stop the movement of the stirrer 4, drain the electrolyte, take out the indium phosphide substrate 5, clean it, dry it, and pack it.

Abstract

一种磷化铟衬底的抛光装置及抛光工艺,属于磷化铟抛光技术领域,包括电解槽,所述抛光装置还包括借助阳极升降机构定位在电解槽底部中心位置的阳极盘支撑杆、铰接在阳极盘支撑杆上端的阳极盘、借助阴极升降机构定位在阳极盘上方的阴极盘支撑杆、设置在阴极盘支撑杆下端的阴极盘、借助连接机构设置在阳极盘上的石墨电极板、借助中间驱动机构设置在石墨电极板上端面的游星轮组、与中间驱动机构连接的阳极转动驱动机构、与阴极盘支撑杆连接的阴极转动驱动机构以及借助导线分别与阳极盘支撑杆和阴极盘支撑杆的触点连接的抛光直流电源。通过对装置本身的结构和制作工艺进行改进,使得磷化铟的抛光过程对环境要求大为降低,实现电化学机械双重抛光。

Description

一种磷化铟衬底的抛光装置及抛光工艺 技术领域
本发明属于磷化铟抛光技术领域,具体涉及一种磷化铟衬底的抛光装置及抛光工艺。
背景技术
InP材料是一种重要的III-V族化合物半导体材料,具有电子迁移率高和饱和漂移速率大的特点,是实现毫米波电路和太赫兹电子器件的主要基础材料,InP基器件具有高频、低噪声、高效率、抗辐照等特点,是100GHz以上频段的首要选择,在W波段以及更高频率毫米波电路具有优异性能,在光纤通信、移动通信、医疗成像、太赫兹通信等领域应用广泛。
InP的抛光技术是衡量其制备水平重要指标,抛光界面平整、粗糙度低对于后续的外延生长至关重要。通常InP单晶衬底的抛光主要采用是电化学抛光技术或者机械抛光技术,但是两者抛光效果不太稳定、抛光均匀性不甚理想,尤其是采用电化学抛光技术中的抛光液化学成分较为复杂,对环境要求较高。因此如何实现低成本、抛光效果理想的InP的抛光技术成为亟待解决的难题。
发明内容
本发明要解决的技术问题是提供一种磷化铟衬底的抛光装置及抛光工艺,通过对装置本身的结构和工艺进行改进,结合电化学抛光、机械抛光技术的优点,使得磷化铟的抛光过程对环境要求大为降低,且抛光效果理想。
本发明采用的技术方案是:一种磷化铟衬底的抛光装置,包括电解槽,所述抛光装置还包括借助阳极升降机构定位在电解槽底部中心位置的阳极盘支撑杆、铰接在阳极盘支撑杆上端的阳极盘、借助阴极升降机构定位在阳极盘上方的阴极盘支撑杆、设置在阴极盘支撑杆下端的阴极盘、借助阴极抛光布卡具定位在阴极盘下端面的抛光布、借助连接机构设置在阳极盘上的石墨电极板、借助中间驱动机构设置在石墨电极板上端面的游星轮组、借助阳极抛光布卡具定位在石墨电极板和游星轮之间的抛光布、与中间驱动机构连接的阳极转动驱动机构、与阴极盘支撑杆连接的阴极转动驱动机构以及借助导线分别与阳极盘支撑杆和阴极盘支撑杆的触点连接的抛光直流电源,所述阴极盘支撑杆设有抛光液注入总成。
基于磷化铟衬底的抛光装置来实现的抛光工艺,包括以下步骤:
步骤①将磷化铟衬底装入游星轮的衬底槽中;
步骤②借助阴极升降机构,使得定位在阴极盘下端面的抛光布与磷化铟衬底接触,并使阴极盘和石墨电极板之间的抛光压力保持在40~400g/cm 2范围内;
步骤③通过抛光液注入总成,向电解槽中注入电解液直至没过阴极盘;
步骤④借助阳极转动驱动机构和阴极转动驱动机构的驱动,使得阴极盘和石墨电极板按着相反方向转动,同时通过抛光液注入总成开始注入抛光液;在阴极盘和石墨电极板转动2-3min后,启动搅拌器、接通抛光直流电源并打开电解液排出管的截止阀;
步骤⑤在9-12min后,关闭抛光直流电源、阳极转动驱动机构和阴极转动驱动机构的驱动;借助阴极升降机构,分离阴极盘和石墨电极板;再借助阳极升降机构,使得磷化铟衬底位于电解液液面以上,取出磷化铟衬底;
步骤⑥测试朝向阳极的磷化铟衬底一面的粗糙度;当达不到要求的粗糙度,将磷化铟衬底按原样放入衬底槽中,重复步骤②、④和⑤;当达到要求的粗糙度时,反转磷化铟衬底后放入衬底槽中,重复步骤②、④和⑤;
步骤⑦当磷化铟衬底两面抛光完毕后,停止抛光液注入总成注入抛光液和电解液,停止搅拌器运动,排净电解液,;
步骤⑧对达到抛光要求的磷化铟衬底进行清洗、烘干、包装工序。
采用本发明产生的有益效果:采用机械和化学抛光有机结合的方式,可使磷化铟衬底抛光面的粗糙度达到0.3nm;本发明可以改变电解液和抛光液的选用范围,采用低沉本的电解液和抛光液,即可达到技术要求和抛光效果,大幅度节省生产成本。
附图说明
图1是本发明的结构示意图;
图2是游星轮与中间驱动机构装配的示意图;
图3是游星轮的示意图;
图4是定位在阴极盘下端面的抛光布的示意图;
附图中:1是阴极盘,1-1是抛光液注入支管,2是齿轮,3是电解槽,4是搅拌器,5是磷化铟衬底,6是电解液,7是阳极盘,8是阳极盘支撑杆,8-1是阳极盘转动卡环,9是石墨电极板,10是固定螺栓,11是阳极抛光布卡具,12是电解液排出管,13是抛光布,13-1是送料孔,13-2是齿轮孔,14是内齿轮,14-1是固定卡具,15是导线,16是阴极盘支撑杆,16-1是抛光液注入支管,16-2是浆料管,16-3是电解液注入管,17是游星轮;17-1是衬底槽;17-2是导气孔;18:阴极抛光布卡具,19是固定棒,20是抛光直流电源,21是齿轮轴,21-1是键,31是阴极导向柱,31-1是底座;31-2是连接柱,32是阴极导向驱动,32-1是阴极支撑台,32-2是阴极转动驱动机构,32-3是阴极盘卡环臂,32-4是固定环臂,33是阳极导向驱动,33-1是阳极支撑台,33-2是阳极转动驱动机构,33-3是齿轮轴驱动臂,33-4是 阳极盘卡环臂,33-5是齿轮轴驱动,34是阳极导向柱。
具体实施方式
参看附图1,本发明的磷化铟衬底的抛光装置,包括电解槽3、借助阳极升降机构定位在电解槽3底部中心位置的阳极盘支撑杆8、铰接在阳极盘支撑杆8上端的阳极盘7、借助阴极升降机构定位在阳极盘7上方的阴极盘支撑杆16、设置在阴极盘支撑杆16下端的阴极盘1、借助阴极抛光布卡具18定位在阴极盘1下端面的抛光布13、借助连接机构设置在阳极盘7上的石墨电极板9、借助中间驱动机构设置在石墨电极板9上端面的游星轮17组、借助阳极抛光布卡具11定位在石墨电极板9和游星轮17之间的抛光布13、与中间驱动机构连接的阳极转动驱动机构、与阴极盘支撑杆16连接的阴极转动驱动机构以及借助导线分别与阳极盘支撑杆8和阴极盘支撑杆16的触点连接的抛光直流电源20,所述阴极盘支撑杆16设有抛光液注入总成。所述的连接机构是固定螺栓10。
参看附图2,所述中间驱动机构包括设置在阳极盘支撑杆8内的齿轮轴21、与齿轮轴21连接并定位在石墨电极板9中心轴位置的齿轮2以及借助固定卡具14-1定位在石墨电极板9上端面的内齿轮14,所述游星轮17啮合在内齿轮14和齿轮2之间,所述齿轮轴21下端连接阳极转动驱动机构。齿轮轴21和齿轮2之间采用键21-1连接。
参看附图3,所述游星轮17中设有衬底槽17-1组和导气孔17-2组。在电解槽3侧部中间位置设置有带有截止阀的电解液排出管12。在电解槽3内底部设置搅拌器4。所述阳极盘支撑杆8和阴极盘支撑杆16表层由内到外依次设有陶瓷保护层和防酸漆层。阳极盘7与电解液接触表层设有陶瓷保护层和防酸漆层。阳极盘7与石墨电极板9之间无陶瓷保护层和防酸漆层,其直接与石墨电极板9接触。阳极盘7与石墨电极板9中间放置石墨纸,通过固定螺栓10压紧,防止电解液进入二者接触面,同时起到良好的导电效果。
参看附图1,将内齿轮14装配到固定卡具14-1上,并固定到电解槽3底部。将石墨电极板9与阳极盘7通过固定螺栓10固定在一起。阳极盘支撑杆8内部装配齿轮轴21。将阳极盘7固定阳极盘支撑杆8上,齿轮2装配到齿轮轴21上。然后再将阳极盘支撑杆8穿过阳极盘转动卡环8-1固定到阳极转动驱动机构上。然后将齿轮轴21装配到齿轮轴驱动33-5上。然后将抛光布13通过阳极抛光布卡具11固定在石墨电极板9上。将游星轮17放置在阳极抛光布13上,并与内齿轮14和齿轮2配合。
参看附图1和4,所述抛光液注入总成包括设置在阴极盘支撑杆16中的抛光液注入主管16-1、与抛光液注入主管16-1连接且设置在阴极盘1内的抛光液注入支管1-1组,所述抛光液注入主管16-1的上端分别设有浆料管16-2和电解液注入管16-3,定位在阴极盘1 下端面的抛光布13上设有与抛光液注入支管1-1出口配合的送料孔13-1。浆料管16-2和电解液注入管16-3借助固定棒19装配在一起,然后将固定棒19通过橡皮圈固定进入抛光液注入主管16-1中,将阴极盘支撑杆16穿过上盘转动卡环16-5,装配到阴极转动驱动机构上,用于保证阴极抛光盘1转动平稳。将固定棒19上端安装到固定环16-4上,用于固定浆料管16-2和电解液注入管16-3。固定环16-4通过固定环臂32-4与阴极支撑台32-1相连,用于保证阴极盘支撑杆16转动过程中,浆料管16-2和电解液注入管16-3静止,并稳定供液。将阴极盘支撑杆16与阴极抛光盘1装配在一起。其内部抛光液注入主管16-1与抛光液注入支管1-1配合,利用阴极抛光布卡具18将抛光布13固定在阴极抛光盘1上。
参看附图1,所述阳极升降机构和阴极升降机构借助连接柱31-2与电解槽3连接;所述阴极升降机构包括借助连接柱31-2设置在电解槽3侧部的阴极导向柱31、借助阴极导向驱动32设置在阴极导向柱31上的阴极支撑台32-1,所述阴极支撑台32-1与阴极盘支撑杆16连接;所述阳极升降机构包括借助底座31-1和连接柱31-2设置在电解槽3侧部下方的阳极导向柱34、借助阳极导向驱动33设置在阳极导向柱34上的阳极支撑台33-1,所述阳极支撑台33-1与阳极盘支撑杆8连接。
参看附图1,上盘转动卡环16-5通过阴极盘卡环臂32-3与阴极支撑台32-1相连。阴极转动驱动机构直接与阴极支撑台32-1相连。阴极支撑台32-1与阴极导向驱动32相连,来实现整个阴极的上下运动;阳极盘转动卡环8-1通过阳极盘卡环臂33-4与阳极支撑台33-1相连。阴极转动驱动机构直接与阳极支撑台33-1相连。齿轮轴驱动33-5通过齿轮轴驱动臂33-3与阳极支撑台33-1相连。阳极支撑台33-1与阳极导向驱动33相连,来实现整个阳极的上下运动。
本发明的作用机理:在氯化钠、氯化钾等中性或者弱酸性电解液中,将石墨电极板9作为阴极至于电解槽3中,在电化学抛光在石墨电极板9上设置多孔隙的抛光布13,同时电解槽3中设置阳极,通过多孔隙的抛光布13和电解产生的氯气对磷化铟衬底进行电化学抛光;在此过程中,还可以向电解槽3放入氧化铝或者二氧化硅浆料,实现对磷化铟衬底的机械抛光。
将抛光浆料与电解液一起送至通过抛光盘中间进行抛光,抛光过程中以抛光盘为电极,发生电化学反应:阴极反应:2H ++2e→H 2(g);阳极反应:2Cl --2e→Cl 2(g);形成的氯气与磷化铟衬底反应:Cl 2+In-P→In-Cl+P-Cl,同时由于抛光浆料的机械磨削作用,实现对磷化铟衬底的电化学、机械双重抛光。
本发明的抛光工艺包括以下步骤:
步骤①将磷化铟衬底5装入游星轮17的衬底槽17-1中;
步骤②借助阴极升降机构,使得定位在阴极盘1下端面的抛光布13与磷化铟衬底5接触,并使阴极盘1和石墨电极板9之间的抛光压力保持在40~400g/cm 2范围内;
步骤③通过抛光液注入总成,向电解槽3中注入电解液直至没过阴极盘1;
步骤④借助阳极转动驱动机构和阴极转动驱动机构的驱动,使得阴极盘1和石墨电极板9按着相反方向转动,同时通过抛光液注入总成开始注入抛光液;在阴极盘1和石墨电极板9转动2-3min后,启动搅拌器4、接通抛光直流电源20并打开电解液排出管12的截止阀;
步骤⑤在9-12min后,关闭抛光直流电源20、阳极转动驱动机构和阴极转动驱动机构的驱动;借助阴极升降机构,分离阴极盘1和石墨电极板9;再借助阳极升降机构,使得磷化铟衬底5位于电解液6液面以上,取出磷化铟衬底5;
步骤⑥测试朝向阳极的磷化铟衬底5一面的粗糙度;当达不到要求的粗糙度,将磷化铟衬底5按原样放入衬底槽17-1中,重复步骤②、④和⑤;当达到要求的粗糙度时,反转磷化铟衬底5后放入衬底槽17-1中,重复步骤②、④和⑤;
步骤⑦当磷化铟衬底5两面抛光完毕后,停止抛光液注入总成注入抛光液和电解液,停止搅拌器4运动,排净电解液,;
步骤⑧对达到抛光要求的磷化铟衬底5进行清洗、烘干、包装工序。
本发明的具体抛光过程:将磷化铟衬底5置入衬底槽17-1中。向电解槽3中注入电解液直至可以没过阴极盘1,下降阴极盘1直至抛光布13与磷化铟衬底5接触。通过阴极支撑杆16与阳极支撑杆8使得阴极盘1与阳极抛光盘7按着相反方向转动。同时通过浆料管16-2和电解液注入管16-3将抛光液注入到抛光液注入主管16-1中,并通过抛光液注入支管1-2送至抛光布13,并通过抛光布13上的送料孔13-1进入磷化铟衬底5及石墨电极板9处,阴极盘1与阳极抛光盘7转动2-3min后,接通直流电源20,开始电化学机械抛光,同时启动搅拌器4,打开电解液排出管12。抛光过程中,间隔一段时间后,关闭抛光直流电源20,停止阴极盘1和阳极抛光盘7的转动,分离阴极盘1和阳极抛光盘7。上升阴极支撑杆8和阳极支撑杆16,使得磷化铟衬底5位于电解液液面以上,取出磷化铟衬底5,测试抛光情况。当朝向阳极测的磷化铟衬底5面被抛光至要求的粗糙度后,反转磷化铟衬底5,重复上述步骤,开始抛光另一侧面。抛光完毕后,停止向浆料管16-2和电解液注入管16-3注入浆料和电解液,关闭电解液排出管12。停止阴极盘1与阳极抛光盘7的转动。提起阴极盘1,停止搅拌器4运动,排净电解液,取出磷化铟衬底5,并对其清洗,烘干,包装。

Claims (9)

  1. 一种磷化铟衬底的抛光装置,包括电解槽(3),其特征在于:所述抛光装置还包括借助阳极升降机构定位在电解槽(3)底部中心位置的阳极盘支撑杆(8)、铰接在阳极盘支撑杆(8)上端的阳极盘(7)、借助阴极升降机构定位在阳极盘(7)上方的阴极盘支撑杆(16)、设置在阴极盘支撑杆(16)下端的阴极盘(1)、借助阴极抛光布卡具(18)定位在阴极盘(1)下端面的抛光布(13)、借助连接机构设置在阳极盘(7)上的石墨电极板(9)、借助中间驱动机构设置在石墨电极板(9)上端面的游星轮(17)组、借助阳极抛光布卡具(11)定位在石墨电极板(9)和游星轮(17)之间的抛光布(13)、与中间驱动机构连接的阳极转动驱动机构、与阴极盘支撑杆(16)连接的阴极转动驱动机构以及借助导线分别与阳极盘支撑杆(8)和阴极盘支撑杆(16)的触点连接的抛光直流电源(20),所述阴极盘支撑杆(16)设有抛光液注入总成。
  2. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:所述中间驱动机构包括设置在阳极盘支撑杆(8)内的齿轮轴(21)、与齿轮轴(21)连接并定位在石墨电极板(9)中心轴位置的齿轮(2)以及借助固定卡具(14-1)定位在石墨电极板(9)上端面的内齿轮(14),所述游星轮(17)啮合在内齿轮(14)和齿轮(2)之间,所述齿轮轴(21)下端连接阳极转动驱动机构。
  3. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:所述抛光液注入总成包括设置在阴极盘支撑杆(16)中的抛光液注入主管(16-1)、与抛光液注入主管(16-1)连接且设置在阴极盘(1)内的抛光液注入支管(1-1)组,所述抛光液注入主管(16-1)的上端分别设有浆料管(16-2)和电解液注入管(16-3),定位在阴极盘(1)下端面的抛光布(13)上设有与抛光液注入支管(1-1)出口配合的送料孔(13-1)。
  4. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:所述游星轮(17)中设有衬底槽(17-1)组和导气孔(17-2)组。
  5. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:在电解槽(3)侧部中间位置设置有带有截止阀的电解液排出管(12)。
  6. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:在电解槽(3)内底部设置搅拌器(4)。
  7. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:所述阳极盘支撑杆(8)和阴极盘支撑杆(16)表层由内到外依次设有陶瓷保护层和防酸漆层。
  8. 根据权利要求1所述的磷化铟衬底的抛光装置,其特征在于:所述阳极升降机构和阴极升降机构借助连接柱(31-2)与电解槽(3)连接;所述阴极升降机构包括借助连接柱(31- 2)设置在电解槽(3)侧部的阴极导向柱(31)、借助阴极导向驱动(32)设置在阴极导向柱(31)上的阴极支撑台(32-1),所述阴极支撑台(32-1)与阴极盘支撑杆(16)连接;所述阳极升降机构包括借助底座(31-1)和连接柱(31-2)设置在电解槽(3)侧部下方的阳极导向柱(34)、借助阳极导向驱动(33)设置在阳极导向柱(34)上的阳极支撑台(33-1),所述阳极支撑台(33-1)与阳极盘支撑杆(8)连接。
  9. 一种磷化铟衬底的抛光工艺,基于磷化铟衬底的抛光装置来实现,其特征在于所述抛光工艺包括以下步骤:
    步骤①将磷化铟衬底(5)装入游星轮(17)的衬底槽(17-1)中;
    步骤②借助阴极升降机构,使得定位在阴极盘(1)下端面的抛光布(13)与磷化铟衬底(5)接触,并使阴极盘(1)和石墨电极板(9)之间的抛光压力保持在40~400g/cm 2范围内;
    步骤③通过抛光液注入总成,向电解槽(3)中注入电解液直至没过阴极盘(1);
    步骤④借助阳极转动驱动机构和阴极转动驱动机构的驱动,使得阴极盘(1)和石墨电极板(9)按着相反方向转动,同时通过抛光液注入总成开始注入抛光液;在阴极盘(1)和石墨电极板(9)转动2-3min后,启动搅拌器(4)、接通抛光直流电源(20)并打开电解液排出管(12)的截止阀;
    步骤⑤在9-12min后,关闭抛光直流电源(20)、阳极转动驱动机构和阴极转动驱动机构的驱动;借助阴极升降机构,分离阴极盘(1)和石墨电极板(9);再借助阳极升降机构,使得磷化铟衬底(5)位于电解液(6)液面以上,取出磷化铟衬底(5);
    步骤⑥测试朝向阳极的磷化铟衬底(5)一面的粗糙度;当达不到要求的粗糙度,将磷化铟衬底(5)按原样放入衬底槽(17-1)中,重复步骤②、④和⑤;当达到要求的粗糙度时,反转磷化铟衬底(5)后放入衬底槽(17-1)中,重复步骤②、④和⑤;
    步骤⑦当磷化铟衬底(5)两面抛光完毕后,停止抛光液注入总成注入抛光液和电解液,停止搅拌器(4)运动,排净电解液;
    步骤⑧对达到抛光要求的磷化铟衬底(5)进行清洗、烘干、包装工序。
PCT/CN2021/104413 2021-03-29 2021-07-05 一种磷化铟衬底的抛光装置及抛光工艺 WO2022205656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/797,395 US20240035192A1 (en) 2021-03-29 2021-07-05 Polishing Device for Indium Phosphide Substrate, and Polishing Process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120628422.9 2021-03-29
CN202110331419.5 2021-03-29
CN202120628422.9U CN214723256U (zh) 2021-03-29 2021-03-29 一种磷化铟衬底的抛光装置
CN202110331419.5A CN112975592B (zh) 2021-03-29 2021-03-29 一种磷化铟衬底的抛光工艺

Publications (1)

Publication Number Publication Date
WO2022205656A1 true WO2022205656A1 (zh) 2022-10-06

Family

ID=83457851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104413 WO2022205656A1 (zh) 2021-03-29 2021-07-05 一种磷化铟衬底的抛光装置及抛光工艺

Country Status (2)

Country Link
US (1) US20240035192A1 (zh)
WO (1) WO2022205656A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155720A (ja) * 1995-12-11 1997-06-17 Nippon Light Metal Co Ltd 研磨布の研磨屑除去具
CN1646264A (zh) * 2002-03-04 2005-07-27 微米技术有限公司 用于微电子工件的电化学-机械加工的方法和设备
JP2010219461A (ja) * 2009-03-19 2010-09-30 Disco Abrasive Syst Ltd ウエーハの研磨方法
CN206706243U (zh) * 2017-05-05 2017-12-05 辽宁工业大学 电解机械抛光装置
CN109267143A (zh) * 2018-07-25 2019-01-25 哈尔滨工业大学(深圳) 一种自动控制电流、电压及时间的化学抛光设备及其方法
CN109648463A (zh) * 2018-12-14 2019-04-19 厦门大学 一种半导体晶片光电化学机械抛光加工方法
CN112847114A (zh) * 2021-03-29 2021-05-28 中国电子科技集团公司第十三研究所 一种磷化铟衬底的抛光装置
CN112975592A (zh) * 2021-03-29 2021-06-18 中国电子科技集团公司第十三研究所 一种磷化铟衬底的抛光工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155720A (ja) * 1995-12-11 1997-06-17 Nippon Light Metal Co Ltd 研磨布の研磨屑除去具
CN1646264A (zh) * 2002-03-04 2005-07-27 微米技术有限公司 用于微电子工件的电化学-机械加工的方法和设备
JP2010219461A (ja) * 2009-03-19 2010-09-30 Disco Abrasive Syst Ltd ウエーハの研磨方法
CN206706243U (zh) * 2017-05-05 2017-12-05 辽宁工业大学 电解机械抛光装置
CN109267143A (zh) * 2018-07-25 2019-01-25 哈尔滨工业大学(深圳) 一种自动控制电流、电压及时间的化学抛光设备及其方法
CN109648463A (zh) * 2018-12-14 2019-04-19 厦门大学 一种半导体晶片光电化学机械抛光加工方法
CN112847114A (zh) * 2021-03-29 2021-05-28 中国电子科技集团公司第十三研究所 一种磷化铟衬底的抛光装置
CN112975592A (zh) * 2021-03-29 2021-06-18 中国电子科技集团公司第十三研究所 一种磷化铟衬底的抛光工艺

Also Published As

Publication number Publication date
US20240035192A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
CN112975592B (zh) 一种磷化铟衬底的抛光工艺
CN105226187A (zh) 薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN102543469B (zh) 染料敏化太阳能电池氮掺杂石墨烯对电极及其制备方法
CN106058061B (zh) 一种疏水性钙钛矿太阳能电池及其制备方法和应用
CN102568855A (zh) 碳材料负载二氧化锰纳米线阵列复合材料及其制备方法
CN104577059B (zh) 泡沫镍基底上直接生长碳纳米管来制备电池电极的方法
CN104724758A (zh) 一种wo3纳米片层材料的制备方法
CN104332315A (zh) 量子点敏化太阳能电池多孔纳米晶Cu2S对电极的制备方法
WO2022205656A1 (zh) 一种磷化铟衬底的抛光装置及抛光工艺
Liu et al. A photo-rechargeable aqueous zinc–tellurium battery enabled by the janus-jointed perovskite/te photocathode
CN101562257B (zh) 一种全钒离子氧化还原液流的电池结构
US20170243767A1 (en) High-throughput batch porous silicon manufacturing equipment design and processing methods
CN111943175A (zh) 一种石墨烯薄膜和石墨烯材料的制作方法以及显示面板
CN214723256U (zh) 一种磷化铟衬底的抛光装置
Ding et al. P-type doping of rGO/NiO composite for carbon based perovskite solar cells
Zheng et al. Enhancing the performance and stability of carbon-based CsPbI2Br perovskite solar cells via tetrabutylammonium iodide surface passivation
CN112847114A (zh) 一种磷化铟衬底的抛光装置
CN108832001A (zh) 一种无铅钙钛矿太阳能电池器件及其制备方法
CN103178211A (zh) MoO3/MoS2复合薄膜作为阳极界面层的有机太阳能电池及其制备方法
Liu et al. An integrated solar redox flow battery using a single Si photoanode and near-neutral electrolytes
CN214736195U (zh) 一种磷化铟的单面抛光装置
CN105118888B (zh) 一种由硫酸铜制备氧化亚铜光电薄膜的方法
CN202894993U (zh) 晶体硅太阳能电池单面抛光夹具盒
Wu et al. Bias-free, solar-charged electric double-layer capacitors
Liu et al. A novel dual function acetic acid vapor-assisted thermal annealing process for high-performance TiO2 nanorods-based perovskite solar cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17797395

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934304

Country of ref document: EP

Kind code of ref document: A1