WO2022205501A1 - 一种在线变组分光固化3d打印装置及方法 - Google Patents

一种在线变组分光固化3d打印装置及方法 Download PDF

Info

Publication number
WO2022205501A1
WO2022205501A1 PCT/CN2021/086822 CN2021086822W WO2022205501A1 WO 2022205501 A1 WO2022205501 A1 WO 2022205501A1 CN 2021086822 W CN2021086822 W CN 2021086822W WO 2022205501 A1 WO2022205501 A1 WO 2022205501A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
scraper
mixing
printing platform
axis moving
Prior art date
Application number
PCT/CN2021/086822
Other languages
English (en)
French (fr)
Inventor
刘禹
谢梦梦
杨文振
章健
张阳
倪铭
张强
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022205501A1 publication Critical patent/WO2022205501A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment

Definitions

  • the invention relates to the technical field of 3D printing, in particular to an online variable component photocuring 3D printing device and method.
  • 3D printing also known as additive manufacturing, is a manufacturing method based on the idea of discrete accumulation and forming through material accumulation. This technology is supported by computer-aided design, with the help of digital model files, combined with software and numerical control.
  • Stereo Lithography Apparatus (SLA) as a mature 3D printing technology, has developed rapidly due to its advantages of high forming efficiency and good effect. A lot of applications and application potential.
  • Light curing forming technology is a technology based on liquid material forming. It uses the self-leveling property of the material to solidify layer by layer through dots, lines and surfaces under the action of the laser, and accumulate layer by layer until the entire printing is completed. Due to the limitations of its forming characteristics, SLA is more It is difficult to achieve solidified layer leveling of materials with a viscosity greater than 3000cP by using a material box for feeding, which limits the forming of high-viscosity materials.
  • High-viscosity materials usually refer to liquid silica gel, hydrogel, ceramic slurry, high-solid content resin with viscosity greater than 3000cP, which can significantly improve the performance of formed parts while having developed functions, based on traditional SLA forming for printing materials and more potential applications limits.
  • SLA simple light curing technology
  • Direct Ink Writing as an emerging manufacturing technology, can control the quantitative extrusion of slurry and transport high-viscosity materials. It has various materials, high production flexibility, and low requirements for processing environments. Advantages, but the forming accuracy is limited by the diameter and material of the nozzle, and it is difficult to realize the forming of fast and high-precision parts.
  • SLA mostly uses material boxes for feeding, and it is difficult to achieve solidified layer leveling of materials with a viscosity greater than 3000cP, which limits the formation of high-viscosity materials. Since traditional SLA uses the form of material for feeding, this forming technology can only achieve the printing of a single proportion of material, that is, the proportion of materials cannot be changed during the forming process, which limits the multi-material printing of some parts.
  • An online variable-component light-curing 3D printing device includes a base and a laser generating module installed on the base, a syringe pump, two or more syringes, a material mixing and feeding mechanism, an X-axis moving module, a scraper, a Y-axis moving module,
  • the printing platform and the Z-axis moving module, the syringe pump drives the syringe to realize material delivery, and the discharge port of the syringe is communicated with the internal mixing chamber of the mixing and feeding mechanism through the tube body, and the X-axis moving module drives the mixing and feeding mechanism to move to make the mixing and feeding.
  • the discharge port of the mechanism moves to the top of the printing platform
  • the Y-axis moving module drives the scraper to move to scrape the material on the printing platform
  • the Z-axis moving module drives the printing platform to move up and down
  • the laser printing port of the laser generating module is arranged in the Above the printing platform, the laser generating module is installed on the upper table of the manual translation stage.
  • the laser generating module includes a laser generator, a beam expander, a galvanometer and a field mirror.
  • One end of the beam expander is connected to the light outlet of the laser generator, the other end of the beam expander is connected to the galvanometer, and the field mirror is connected to the galvanometer.
  • the center of the light output port of the laser generator is coaxial with the center of the beam expander, the light entrance of the galvanometer mirror is coaxial with the light output port of the beam expander, and the light output port of the field lens faces the printing platform.
  • the mixing and feeding mechanism includes a motor 1, a mixing chamber shell, a nozzle and a feeding screw, the feeding screw is vertically arranged in the mixing chamber shell, the feeding screw is driven by the motor 1, and the lower end of the mixing chamber shell and the nozzle are Connected, the discharge port of the nozzle is arranged downward, the side wall of the mixing chamber shell is provided with a plurality of feeding ports, the number of feeding ports of the mixing chamber shell is the same as the number of syringes, and the output of each syringe is the same.
  • the material port is communicated with one of the feed ports of the mixing chamber shell through a pipe body, and the X-axis moving module drives the motor to move horizontally in the X-axis direction.
  • a horizontal reference plate is fixed above the base through a support column, the Y-axis moving module is fixed on the upper surface of the reference plate, the Y-axis moving module drives the scraper to move through the horizontal mounting plate, and the scraper is installed on the lower plate of the mounting plate On the surface, a plurality of fine-tuning screws are installed on the mounting plate, and the fine-tuning screws are connected with the scraper to realize the fine-tuning of the scraper up and down.
  • the upper plate surface of the reference plate is provided with a square groove, the upper surface and the lower surface of the middle part of the square groove are respectively fixed with a limit block 1 and a limit block 2, and a limit block penetrating the limit block 1 and the limit block 2 is set in the middle of the square groove. Position hole, the printing platform moves up and down along the limit hole.
  • the printing platform is mounted on the manual tilt table through the support seat, the manual tilt table is mounted on the Z-axis moving module through the mounting frame, and the Z-axis moving module drives the manual tilt table to move up and down.
  • the bottom of the square groove is provided with a square hole, a roller is installed in the square hole, the roller is driven by the second motor, the outer surface of the roller is covered with a brush for cleaning the scraper, the roller is arranged on one side of the limit block, and the center line of the roller It is parallel to the length of the blade of the scraper, and the center line of the drum is perpendicular to the moving direction of the scraper.
  • the laser generator is installed on the upper table surface of the manual displacement table, and the manual displacement table is installed above the base through the support frame.
  • An online variable component photocuring 3D printing method comprising the following steps:
  • the mixing and feeding mechanism uses a motor to drive the feeding screw to achieve uniform mixing and conveying of materials
  • the mixing and feeding mechanism conveys the material through the ink direct writing method.
  • the X-axis moving module drives the mixing and feeding mechanism to move to the top of the printing platform.
  • the mixed material is extruded to the printing plate through the outlet of the nozzle in the mixing and feeding mechanism on the platform;
  • the Y-axis moving module drives the scraper to move to cast and spread the material on the printing platform, so that the material covers the entire printing area; the laser generating module performs laser scanning to solidify the material in the printing area, while cleaning the scraper;
  • the printing platform drops the thickness of the single-layer slice, and the scraper resets
  • the viscosity range of the different materials after mixing in the mixing chamber is 500-10000cps
  • the thickness range of the single-layer slice when the printing platform descends is 50-200 ⁇ m
  • the light intensity range of the laser generating module is 0-800mW
  • the moving speed range of the scraper is 0.5-5mm/s.
  • the high-viscosity material is transported in the DIW mode, and the Y-axis moving module is used to drive the scraper to move to spread the material, so that the printing of the high-viscosity material can be realized, and the available material range is widened.
  • the present invention uses a syringe pump to control multiple The syringes are used for feeding, and each syringe can store different materials. Multiple syringes feed into the mixing chamber of the mixing and feeding mechanism, which can realize the mixing of two or more different materials, and control the mixing ratio online, eliminating the need for traditional Defects that can be printed with a single material can be adjusted online according to actual needs to realize the printing of gradient parts.
  • FIG. 1 is a structural diagram of the present invention.
  • FIG. 2 is a partial structural diagram of FIG. 1 .
  • FIG. 3 is a structural view of FIG. 2 from another angle.
  • Fig. 4 is the installation structure diagram of the reference board of the present invention.
  • the online variable-component photocuring 3D printing device of this embodiment includes a base 10 , a laser generating module installed on the base 10 , a syringe pump 20 , two or more syringes 30 , and a material mixing and feeding mechanism 40 .
  • the syringe pump 20 drives the syringe 30 to realize material delivery, and the discharge port of the syringe 30 passes through the tube body and mixing
  • the internal mixing chamber of the feeding mechanism 40 is connected
  • the X-axis moving module 50 drives the mixing and feeding mechanism 40 to move so that the discharge port of the mixing and feeding mechanism 40 moves to the top of the printing platform 80
  • the Y-axis moving module 70 drives the scraper 60 to move
  • the material on the printing platform 80 is scraped
  • the Z-axis moving module 90 drives the printing platform 80 to move up and down
  • the laser printing port of the laser generating module is arranged above the printing platform 80
  • the laser generating module is installed on the manual displacement platform 130. mesa.
  • the X-axis moving module 50 , the Y-axis moving module 70 and the Z-axis moving module 90 can all be linear modules or other modules that can realize linear
  • the laser generating module includes a laser generator 1, a beam expander 2, a galvanometer 3 and a field mirror 4.
  • One end of the beam expander 2 is connected to the light outlet of the laser generator 1, and the other end of the beam expander 2 is connected to the galvanometer 3.
  • the field mirror 4 is connected to the galvanometer mirror 3, the center of the light outlet of the laser generator 1 is coaxial with the center of the beam expander 2, the light entrance of the galvanometer 3 is coaxial with the light outlet of the beam expander 2, and the light outlet of the field mirror 4 faces Printing platform 80 .
  • the mixing and feeding mechanism 40 includes a motor one 41, a mixing chamber housing 42, a nozzle 43 and a feeding screw.
  • the feeding screw is vertically arranged in the mixing chamber housing 42, and the feeding screw is driven by the motor one 41.
  • the mixing chamber housing The lower end of 42 is communicated with the nozzle 43, the discharge port of the nozzle 43 is arranged downward, a plurality of feeding ports 44 are opened on the side wall of the mixing chamber shell 42, and the number of the feeding ports 44 of the mixing chamber shell 42 is equal to
  • the number of syringes 30 is the same, the discharge port of each syringe 30 is communicated with one of the feed ports 44 of the mixing chamber shell 42 through a pipe body, and the X-axis moving module 50 drives the motor-41 to achieve the horizontal direction of the X-axis. move.
  • the feeding screw can uniformly stir the material inside the mixing chamber shell 42 and then output it from the discharge port of the nozzle 43 .
  • the top of the base 10 is fixed with a horizontal reference plate 11 through a support column, the Y-axis moving module 70 is fixed on the upper surface of the reference plate 11, and the Y-axis moving module 70 drives the scraper 60 to move through the horizontal mounting plate 61, and the scraper 60 is installed On the lower surface of the mounting plate 61, a plurality of fine-tuning screws 62 are installed on the mounting board 61, and the fine-tuning screws 62 are connected with the scraper 60 so that the scraper 60 can be finely adjusted up and down.
  • the fine adjustment screw 62 is used to level the scraper 60 .
  • the upper plate surface of the reference plate 11 is provided with a square groove 12
  • the upper surface and the lower surface of the middle part of the square groove 12 are respectively fixed to the first limit block 13 and the second limit block 14
  • the middle part of the square groove 12 is provided with a through limit block one 13 and a limit block.
  • the limit hole 15 of the second block 14, and the printing platform 80 is limited to move up and down along the limit hole 15.
  • a sealing ring can be sleeved on the outer periphery of the printing platform 80 .
  • the printing platform 80 is mounted on the manual tilt table 110 through the support base 100 , the manual tilt table 110 is mounted on the Z-axis moving module 90 through the mounting frame, and the Z-axis moving module 90 drives the manual tilt table 110 to move up and down.
  • the Z-axis moving module 90 is used to drive the printing platform 80 to move up and down, so as to realize multi-layer and multi-gradient printing.
  • Manual tilt stage 110 is used to level print platform 80 .
  • the bottom of the square groove 12 is provided with a square hole.
  • the square hole is installed with a roller 120.
  • the roller 120 is driven by the second motor.
  • the outer surface of the roller 120 is covered with a brush for cleaning the scraper 60.
  • the center line of the drum 120 is parallel to the lengthwise direction of the blade of the scraper 60
  • the center line of the drum 120 is perpendicular to the moving direction of the scraper 60 .
  • the brush on the drum 120 can clean the residual material on the scraper 60 to ensure the cleanliness of the scraper 60 and ensure that the subsequent scraper 60 can scrape the material evenly.
  • the laser generator 1 is installed on the upper table surface of the manual displacement table 130 , and the manual displacement table 130 is installed above the base 10 through the support frame 140 .
  • the manual stage 130 can adjust the height of the laser generator 1 .
  • the online variable component photocuring 3D printing method of this embodiment includes the following steps:
  • the feeding device may use a syringe pump 20 to control a plurality of syringes 30 to extrude and feed the material.
  • the mixing and feeding mechanism 40 conveys materials by direct ink writing, and the X-axis moving module 50 drives the mixing and feeding mechanism 40 to move to the top of the printing platform 80 .
  • the mixed material passes through the nozzle 43 in the mixing and feeding mechanism 40 .
  • the material port is extruded onto the printing platform 80;
  • the Y-axis moving module 70 drives the scraper 60 to move to cast and spread the material on the printing platform 80, so that the material covers the entire printing area;
  • the laser generating module performs laser scanning to solidify the material in the printing area, and at the same time cleans the scraper 60;
  • the printing platform 80 is lowered by the thickness of the single-layer slice, and the scraper 60 is reset;
  • the above operations are repeated until the entire part is completely processed, the printing platform 80 is lifted, and the printed part is taken out.
  • the viscosity range of the different materials after mixing in the mixing chamber is 500-10000cps
  • the thickness range of the single-layer slice dropped by the printing platform 80 is 50-200 ⁇ m
  • the light intensity range of the laser generating module is 0-800mW
  • the movement of the scraper 60 The speed range is 0.5-5mm/s.
  • the high-viscosity material is transported in the DIW mode, and the Y-axis moving module 70 is used to drive the scraper 60 to move to spread the material, so as to realize the printing of the high-viscosity material and widen the available material range.
  • the present invention utilizes the syringe pump 20 Control multiple syringes 30 for feeding, each syringe 30 can store different materials, and multiple syringes 30 feed materials into the mixing chamber of the mixing and feeding mechanism 40, which can realize the mixing of two or more different materials, and control the mixing online.
  • the material ratio eliminates the traditional defect of only single material printing, and can be adjusted online according to actual needs to realize the printing of gradient parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

提供一种在线变组分光固化3D打印装置及方法,包括底座(10)以及底座(10)上安装的激光发生模块、注射泵(20)、两个以上的注射器(30)、混料送料机构(40)、X轴移动模组(50)、刮刀(60)、Y轴移动模组(70)、打印平台(80)和Z轴移动模组(90),注射泵(20)驱动注射器(30)实现材料输送,注射器(30)出料口通过管体和混料送料机构(40)内部混料腔连通,X轴移动模组(50)带动混料送料机构(40)移动使得混料送料机构(40)的出料口移动至打印平台(80)的上方,Y轴移动模组(70)带动刮刀(60)移动对打印平台(80)上的材料进行刮平,Z轴移动模组(90)带动打印平台(80)上下移动,激光发生模块的激光打印口布置在打印平台(80)的上方,其能够实现对高粘度材料的打印,也可以对多种材料进行不同配比的打印。

Description

一种在线变组分光固化3D打印装置及方法 技术领域
本发明涉及3D打印技术领域,尤其是一种在线变组分光固化3D打印装置及方法。
背景技术
3D打印,又称增材制造,是基于离散堆积思想,通过材料累积成形的一种制造方法,该技术以计算机辅助设计为支撑,借助数字模型文件,结合软件和数控进行实物的制造。立体光固化技术(Stereo Lithography Apparatus,SLA)作为一种成熟的3D打印技术,因其具有成形效率高、效果好等优点发展迅速,在航空航天、生物医学、模具制造、汽车零件等领域中具有极多的应用及应用潜力。
光固化成形技术是基于液体材料成形的技术,利用材料的自流平性,在激光的作用下通过点线面逐层固化,层层累积,直至完成整个打印,由于其成形特点的限制,SLA多采用料盒进行供料,难以实现粘度大于3000cP材料的固化层流平,限制了高粘度材料的成形。高粘度材料通常指粘度大于3000cP的液体硅胶、水凝胶、陶瓷浆料、高固含量树脂,在显著提高成形件性能的同时具有开发的功能,基于传统SLA成形对打印材料和更多潜在应用的限制。为探索SLA的更多可能性,拓宽SLA使用范围,满足不同领域和行业的需求,国内外研究人员立足于在传统光固化技术上进行改进和创新,以探索SLA更多的功用。
另外,由于传统SLA采用料盒的形式进行供料,该项成形技术只能实现单一配比材料的打印,即在成形过程中不可更改材料的配比,限制了部分零件的多材料打印。多材料混合技术由于其性能上的优势更适合工业发展,更符合当今发展和生产性能的要求,目前,多材料光固化成形多是采用多料盒形式进行供料,如发明专利CN202010611819.7采用多树脂槽进行转换,实现多种低粘度材料成形,在成形过程中难以实时更改材料配比,更难以实现高粘度多材料成形。直书写技术(Direct Ink Writing,DIW)作为新兴的制造技术,可控制浆料的定量挤出成形,进行高粘度材料的输送,其具有材料种类多样、生产灵活性高、对加工环境要求低等优势,但成形精度受喷头直径和材料限制,难以实现快速高精度零件的成形。
技术问题
SLA多采用料盒进行供料,难以实现粘度大于3000cP材料的固化层流平,限制了高粘度材料的成形。由于传统SLA采用料盒的形式进行供料,该项成形技术只能实现单一配比材料的打印,即在成形过程中不可更改材料的配比,限制了部分零件的多材料打印。
技术解决方案
一种在线变组分光固化3D打印装置,包括底座以及底座上安装的激光发生模块、注射泵、两个以上的注射器、混料送料机构、X轴移动模组、刮刀、Y轴移动模组、打印平台和Z轴移动模组,注射泵驱动注射器实现材料输送,注射器出料口通过管体和混料送料机构内部混料腔连通,X轴移动模组带动混料送料机构移动使得混料送料机构的出料口移动至打印平台的上方,Y轴移动模组带动刮刀移动对打印平台上的材料进行刮平,Z轴移动模组带动打印平台上下移动,激光发生模块的激光打印口布置在打印平台的上方,激光发生模块安装在手动位移台的上台面。
作为上述技术方案的进一步改进:
所述激光发生模块包括激光发生器、扩束镜、振镜和场镜,扩束镜的一端和激光发生器的出光口相连,扩束镜的另一端和振镜相连,场镜和振镜相连,激光发生器的出光口中心与扩束 镜中心同轴,振镜入光口与扩束镜出光口同轴,场镜的出光口面向打印平台。
所述混料送料机构包括电机一、混料腔壳体、喷嘴和送料螺杆,送料螺杆立式布置在混料腔壳体中,送料螺杆由电机一驱动,混料腔壳体的下端和喷嘴连通,喷嘴的出料口朝下布置,混料腔壳体的侧壁上开设多个进料口,混料腔壳体的进料口个数和注射器的个数相同,每个注射器的出料口通过一个管体和混料腔壳体的其中一个进料口连通,X轴移动模组带动电机一实现X轴方向水平移动。
所述底座的上方通过支撑柱固定有水平的基准板,Y轴移动模组固定在基准板的上板面,Y轴移动模组通过水平安装板带动刮刀移动,刮刀安装在安装板的下板面,安装板上安装多个微调螺杆,微调螺杆和刮刀相连实现刮刀的上下可微调。
所述基准板的上板面开设方形槽,方形槽的中部上表面和下表面分别固定限位块一和限位块二,方形槽的中部开设贯穿限位块一和限位块二的限位孔,打印平台沿限位孔作上下方向的限位移动。
所述打印平台通过支撑座安装在手动倾斜台上,手动倾斜台通过安装架安装在Z轴移动模组上,Z轴移动模组带动手动倾斜台上下移动。
所述方形槽的槽底开设方形孔,方形孔中安装滚筒,滚筒由电机二驱动,滚筒外表面覆盖有用于清扫刮刀的毛刷,滚筒布置在限位块一的一侧,滚筒的中心线和刮刀的刀刃长度方向平行,滚筒的中心线和刮刀的移动方向垂直。
所述激光发生器安装在手动位移台的上台面,手动位移台通过支撑架安装在底座的上方。一种在线变组分光固化3D打印方法,包括以下步骤:
根据制造要求,预先设定每一层打印所需的两种或多种材料的参数配比;
调整打印平台的高度,对打印平台进行调平,调整好刮刀的高度,并进行刮刀的调平;
通过供料装置对不同的材料进行物料输送,通过进料口进入到混料送料机构的混料腔内,混料送料机构中利用电机一驱动送料螺杆实现材料的均匀混合和输送;
混料送料机构通过墨水直写方式进行材料输送,通过X轴移动模组带动混料送料机构移动至打印平台的上方,混合好的材料通过混料送料机构中喷嘴的出料口挤出到打印平台上;
Y轴移动模组带动刮刀移动将打印平台上的材料进行流延铺展,使材料铺满整个打印区域;激光发生模块进行激光扫描使打印区域的材料固化,同时对刮刀进行清洁处理;
打印平台下降单层切片的厚度,刮刀复位;
重复上述操作,直到完整加工出整个零件为止,打印平台抬升,将打印好的零件取出。
作为上述技术方案的进一步改进:
所述不同材料在混料腔内混合后的粘度范围为500-10000cps,打印平台下降单层切片的厚度范围为50-200μm,激光发生模块的光强范围为0-800mW,刮刀的移动速度范围为0.5-5mm/s。
有益效果
本发明通过采用DIW方式进行高粘度材料的输送,利用Y轴移动模组带动刮刀移动进行材料的铺展,可实现高粘度材料的打印,拓宽了可用的材料范围,本发明利用注射泵控制多个注射器进行送料,每个注射器中可以存储不同的材料,多个注射器向混料送料机构的混料腔中送料,可实现两种及以上不同材料的混合,在线控制混料比例,消除了传统只能进行单一材料打印的缺陷,可根据实际需要在线调控,实现梯度零件的打印。
附图说明
图1是本发明的结构图。
图2是图1的部分结构图。
图3是图2的另一角度的结构图。
图4是本发明基准板的安装结构图。
其中:1、激光发生器;2、扩束镜;3、振镜;4、场镜;10、底座;11、基准板;12、方形槽;13、限位块一;14、限位块二;15、限位孔;20、注射泵;30、注射器;40、混料送料机构;41、电机一;42、混料腔壳体;43、喷嘴;44、进料口;50、X轴移动模组;60、刮刀;61、安装板;62、微调螺杆;70、Y轴移动模组;80、打印平台;90、Z轴移动模组;100、支撑座;110、手动倾斜台;120、滚筒;130、手动位移台;140、支撑架。
本发明的实施方式
下面结合附图,说明本发明的具体实施方式。
如图1-4所示,本实施例的在线变组分光固化3D打印装置,包括底座10以及底座10上安装的激光发生模块、注射泵20、两个以上的注射器30、混料送料机构40、X轴移动模组50、刮刀60、Y轴移动模组70、打印平台80和Z轴移动模组90,注射泵20驱动注射器30实现材料输送,注射器30出料口通过管体和混料送料机构40内部混料腔连通,X轴移动模组50带动混料送料机构40移动使得混料送料机构40的出料口移动至打印平台80的上方,Y轴移动模组70带动刮刀60移动对打印平台80上的材料进行刮平,Z轴移动模组90带动打印平台80上下移动,激光发生模块的激光打印口布置在打印平台80的上方,激光发生模块安装在手动位移台130的上台面。其中X轴移动模组50、Y轴移动模组70和Z轴移动模组90均可以为直线模组或其它可以实现直线移动的模组等。
激光发生模块包括激光发生器1、扩束镜2、振镜3和场镜4,扩束镜2的一端和激光发生器1的出光口相连,扩束镜2的另一端和振镜3相连,场镜4和振镜3相连,激光发生器1的出光口中心与扩束镜2中心同轴,振镜3入光口与扩束镜2出光口同轴,场镜4的出光口面向打印平台80。
混料送料机构40包括电机一41、混料腔壳体42、喷嘴43和送料螺杆,送料螺杆立式布置在混料腔壳体42中,送料螺杆由电机一41驱动,混料腔壳体42的下端和喷嘴43连通,喷嘴43的出料口朝下布置,混料腔壳体42的侧壁上开设多个进料口44,混料腔壳体42的进料口44个数和注射器30的个数相同,每个注射器30的出料口通过一个管体和混料腔壳体42的其中一个进料口44连通,X轴移动模组50带动电机一41实现X轴方向水平移动。送料螺杆可以对混料腔壳体42内部的材料进行均匀搅拌后从喷嘴43的出料口输出。
底座10的上方通过支撑柱固定有水平的基准板11,Y轴移动模组70固定在基准板11的上板面,Y轴移动模组70通过水平安装板61带动刮刀60移动,刮刀60安装在安装板61的下板面,安装板61上安装多个微调螺杆62,微调螺杆62和刮刀60相连实现刮刀60的上下可微调。微调螺杆62用于对刮刀60调平。
基准板11的上板面开设方形槽12,方形槽12的中部上表面和下表面分别固定限位块一13和限位块二14,方形槽12的中部开设贯穿限位块一13和限位块二14的限位孔15,打印平台80沿限位孔15作上下方向的限位移动。为了防止漏料,打印平台80的外周可以套设密封圈,打印平台80沿限位孔15上下方向时,打印平台80通过密封圈和限位孔15的内壁之间构成动密封。
打印平台80通过支撑座100安装在手动倾斜台110上,手动倾斜台110通过安装架安装在Z轴移动模组90上,Z轴移动模组90带动手动倾斜台110上下移动。利用Z轴移动模组90带动打印平台80上下移动,以便实现多层、多梯度的打印。手动倾斜台110用来将打印平台80调平。
方形槽12的槽底开设方形孔,方形孔中安装滚筒120,滚筒120由电机二驱动,滚筒120外表面覆盖有用于清扫刮刀60的毛刷,滚筒120布置在限位块一13的一侧,滚筒120的中心线和刮刀60的刀刃长度方向平行,滚筒120的中心线和刮刀60的移动方向垂直。滚筒 120上的毛刷可以将刮刀60上残留的材料清扫掉,保证刮刀60的干净,保证后续刮刀60能够平整的刮材料。
激光发生器1安装在手动位移台130的上台面,手动位移台130通过支撑架140安装在底座10的上方。手动位移台130可以调节激光发生器1的高度。
本实施例的在线变组分光固化3D打印方法,包括以下步骤:
根据制造要求,预先设定每一层打印所需的两种或多种材料的参数配比;
调整打印平台80的高度,对打印平台80进行调平,调整好刮刀60的高度,并进行刮刀60的调平;
通过供料装置对不同的材料进行物料输送,通过进料口进入到混料送料机构40的混料腔内,混料送料机构40中利用电机一41驱动送料螺杆实现材料的均匀混合和输送;其中供料装置可以采用注射泵20控制多个注射器30挤出供料。
混料送料机构40通过墨水直写方式进行材料输送,通过X轴移动模组50带动混料送料机构40移动至打印平台80的上方,混合好的材料通过混料送料机构40中喷嘴43的出料口挤出到打印平台80上;
Y轴移动模组70带动刮刀60移动将打印平台80上的材料进行流延铺展,使材料铺满整个打印区域;
激光发生模块进行激光扫描使打印区域的材料固化,同时对刮刀60进行清洁处理;
打印平台80下降单层切片的厚度,刮刀60复位;
重复上述操作,直到完整加工出整个零件为止,打印平台80抬升,将打印好的零件取出。所述不同材料在混料腔内混合后的粘度范围为500-10000cps,打印平台80下降单层切片的厚度范围为50-200μm,激光发生模块的光强范围为0-800mW,刮刀60的移动速度范围为0.5-5mm/s。
本发明通过采用DIW方式进行高粘度材料的输送,利用Y轴移动模组70带动刮刀60移动进行材料的铺展,可实现高粘度材料的打印,拓宽了可用的材料范围,本发明利用注射泵20控制多个注射器30进行送料,每个注射器30中可以存储不同的材料,多个注射器30向混料送料机构40的混料腔中送料,可实现两种及以上不同材料的混合,在线控制混料比例,消除了传统只能进行单一材料打印的缺陷,可根据实际需要在线调控,实现梯度零件的打印。以上描述是对本发明的解释,不是对发明的限定,本发明所限定的范围参见权利要求,在本发明的保护范围之内,可以作任何形式的修改。

Claims (10)

  1. 一种在线变组分光固化3D打印装置,其特征在于:包括底座(10)以及底座(10)上安装的激光发生模块、注射泵(20)、两个以上的注射器(30)、混料送料机构(40)、X轴移动模组(50)、刮刀(60)、Y轴移动模组(70)、打印平台(80)和Z轴移动模组(90),注射泵(20)驱动注射器(30)实现材料输送,注射器(30)出料口通过管体和混料送料机构(40)内部混料腔连通,X轴移动模组(50)带动混料送料机构(40)移动使得混料送料机构(40)的出料口移动至打印平台(80)的上方,Y轴移动模组(70)带动刮刀(60)移动对打印平台(80)上的材料进行刮平,Z轴移动模组(90)带动打印平台(80)上下移动,激光发生模块的激光打印口布置在打印平台(80)的上方,激光发生模块安装在手动位移台(130)的上台面。
  2. 如权利要求1所述的在线变组分光固化3D打印装置,其特征在于:所述激光发生模块包括激光发生器(1)、扩束镜(2)、振镜(3)和场镜(4),扩束镜(2)的一端和激光发生器(1)的出光口相连,扩束镜(2)的另一端和振镜(3)相连,场镜(4)和振镜(3)相连,激光发生器(1)的出光口中心与扩束镜(2)中心同轴,振镜(3)入光口与扩束镜(2)出光口同轴,场镜(4)的出光口面向打印平台(80)。
  3. 如权利要求2所述的在线变组分光固化3D打印装置,其特征在于:所述混料送料机构(40)包括电机一(41)、混料腔壳体(42)、喷嘴(43)和送料螺杆,送料螺杆立式布置在混料腔壳体(42)中,送料螺杆由电机一(41)驱动,混料腔壳体(42)的下端和喷嘴(43)连通,喷嘴(43)的出料口朝下布置,混料腔壳体(42)的侧壁上开设多个进料口(44),混料腔壳体(42)的进料口(44)个数和注射器(30)的个数相同,每个注射器(30)的出料口通过一个管体和混料腔壳体(42)的其中一个进料口(44)连通,X轴移动模组(50)带动电机一(41)实现X轴方向水平移动。
  4. 如权利要求3所述的在线变组分光固化3D打印装置,其特征 在于:所述底座(10)的上方通过支撑柱固定有水平的基准板(11),Y轴移动模组(70)固定在基准板(11)的上板面,Y轴移动模组(70)通过水平安装板(61)带动刮刀(60)移动,刮刀(60)安装在安装板(61)的下板面,安装板(61)上安装多个微调螺杆(62),微调螺杆(62)和刮刀(60)相连实现刮刀(60)的上下可微调。
  5. 如权利要求4所述的在线变组分光固化3D打印装置,其特征在于:所述基准板(11)的上板面开设方形槽(12),方形槽(12)的中部上表面和下表面分别固定限位块一(13)和限位块二(14),方形槽(12)的中部开设贯穿限位块一(13)和限位块二(14)的限位孔(15),打印平台(80)沿限位孔(15)作上下方向的限位移动。
  6. 如权利要求5所述的在线变组分光固化3D打印装置,其特征在于:所述打印平台(80)通过支撑座(100)安装在手动倾斜台(110)上,手动倾斜台(110)通过安装架安装在Z轴移动模组(90)上,Z轴移动模组(90)带动手动倾斜台(110)上下移动。
  7. 如权利要求5所述的在线变组分光固化3D打印装置,其特征在于:所述方形槽(12)的槽底开设方形孔,方形孔中安装滚筒(120),滚筒(120)由电机二驱动,滚筒(120)外表面覆盖有用于清扫刮刀(60)的毛刷,滚筒(120)布置在限位块一(13)的一侧,滚筒(120)的中心线和刮刀(60)的刀刃长度方向平行,滚筒(120)的中心线和刮刀(60)的移动方向垂直。
  8. 如权利要求2所述的在线变组分光固化3D打印装置,其特征在于:所述激光发生器(1)安装在手动位移台(130)的上台面,手动位移台(130)通过支撑架(140)安装在底座(10)的上方。
  9. 一种在线变组分光固化3D打印方法,包括以下步骤:
    根据制造要求,预先设定每一层打印所需的两种或多种材料的参数配比;
    调整打印平台(80)的高度,对打印平台(80)进行调平,调整好刮刀(60)的高度,并进行刮刀(60)的调平;
    通过供料装置对不同的材料进行物料输送,通过进料口(44)进入到混料送料机构(40)的混料腔内,混料送料机构(40)中利用电 机一(41)驱动送料螺杆实现材料的均匀混合和输送;
    混料送料机构(40)通过墨水直写方式进行材料输送,通过X轴移动模组(50)带动混料送料机构(40)移动至打印平台(80)的上方,混合好的材料通过混料送料机构(40)中喷嘴(43)的出料口挤出到打印平台(80)上;
    Y轴移动模组(70)带动刮刀(60)移动将打印平台(80)上的材料进行流延铺展,使材料铺满整个打印区域;
    激光发生模块进行激光扫描使打印区域的材料固化,同时对刮刀(60)进行清洁处理;
    打印平台(80)下降单层切片的厚度,刮刀(60)复位;
    重复上述操作,直到完整加工出整个零件为止,打印平台(80)抬升,将打印好的零件取出。
  10. 如权利要求9所述的在线变组分光固化3D打印方法,其特征在于:所述不同材料在混料腔内混合后的粘度范围为500-10000cps,打印平台(80)下降单层切片的厚度范围为50-200μm,激光发生模块的光强范围为0-800mW,刮刀(60)的移动速度范围为0.5-5mm/s。
PCT/CN2021/086822 2021-03-29 2021-04-13 一种在线变组分光固化3d打印装置及方法 WO2022205501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110332874.7A CN113059792A (zh) 2021-03-29 2021-03-29 一种在线变组分光固化3d打印装置及方法
CN202110332874.7 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022205501A1 true WO2022205501A1 (zh) 2022-10-06

Family

ID=76564247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086822 WO2022205501A1 (zh) 2021-03-29 2021-04-13 一种在线变组分光固化3d打印装置及方法

Country Status (2)

Country Link
CN (1) CN113059792A (zh)
WO (1) WO2022205501A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178004A (zh) * 2022-12-13 2023-05-30 中国科学院上海硅酸盐研究所 一种稀土渐变掺杂透明陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106626385A (zh) * 2017-01-22 2017-05-10 西安交通大学苏州研究院 一种倒置式约束型紫外光三维打印机
CN106738867A (zh) * 2017-01-10 2017-05-31 北京大学 一种宽频带压电振动刮刀及其喷涂式3d打印和打印方法
CN108568966A (zh) * 2018-07-04 2018-09-25 青岛理工大学 一种用于电场驱动喷射多材料3d打印的集成喷头
CN109940880A (zh) * 2019-04-12 2019-06-28 西安增材制造国家研究院有限公司 一种基于激光成型的三维立体扫描成形装置及成型方法
KR20190100854A (ko) * 2018-02-06 2019-08-29 고려대학교 산학협력단 경사기능형 복합소재 제조용 다종소재 기반 3d 프린팅 기술
CN111070374A (zh) * 2019-11-29 2020-04-28 华南理工大学 一种可变区域范围的浆料叠层自动供给装置及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207746413U (zh) * 2017-12-14 2018-08-21 深圳市华阳新材料科技有限公司 一种双刮刀结构及金属3d打印机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106738867A (zh) * 2017-01-10 2017-05-31 北京大学 一种宽频带压电振动刮刀及其喷涂式3d打印和打印方法
CN106626385A (zh) * 2017-01-22 2017-05-10 西安交通大学苏州研究院 一种倒置式约束型紫外光三维打印机
KR20190100854A (ko) * 2018-02-06 2019-08-29 고려대학교 산학협력단 경사기능형 복합소재 제조용 다종소재 기반 3d 프린팅 기술
CN108568966A (zh) * 2018-07-04 2018-09-25 青岛理工大学 一种用于电场驱动喷射多材料3d打印的集成喷头
CN109940880A (zh) * 2019-04-12 2019-06-28 西安增材制造国家研究院有限公司 一种基于激光成型的三维立体扫描成形装置及成型方法
CN111070374A (zh) * 2019-11-29 2020-04-28 华南理工大学 一种可变区域范围的浆料叠层自动供给装置及控制方法

Also Published As

Publication number Publication date
CN113059792A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN107053429B (zh) 一种可以实现陶瓷零件坯体精密成形的3d打印机及方法
CN105058789B (zh) 一种适用于多材质工件的3d打印设备
CN107471399B (zh) 一种打印陶瓷材料的新型激光3d打印机及控制方法
EP3711916B1 (en) Interlayer mixing apparatus for texturing man-made stone slabs
US11426934B2 (en) Slot die additive manufacturing apparatus and manufacturing method
WO2022205501A1 (zh) 一种在线变组分光固化3d打印装置及方法
CN113442258B (zh) 复合陶瓷功能梯度材料数字化制造的3d打印机及方法
CN110756805A (zh) 一种激光选区固化金属的3d打印装置及其使用方法
CN108943323B (zh) 一种陶瓷3d打印机
CN209794559U (zh) 功能梯度材料和成型结构一体化制造的3d打印机
CN111531880A (zh) 一种多方式多材料光固化3d打印设备
CN109676747A (zh) 一种多材质陶瓷光固化打印系统机构及粗坯制备方法
CN113511901B (zh) 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用
CN215095634U (zh) 一种光固化3d打印装置
JP5465962B2 (ja) 電極形成方法および電極形成装置
CN108081611A (zh) 光固化三维打印设备及打印方法
CN113320142A (zh) 一种多材料光固化3d打印设备
CN105346084A (zh) 一种新型3d打印机及其打印流程操控方法
CN113500772A (zh) 激光3d打印装置
CN111070374B (zh) 一种可变区域范围的浆料叠层自动供给装置及控制方法
CN205097563U (zh) 一种新型3d打印机
WO2020172899A1 (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
CN114347478B (zh) 一种用于多材料3d打印清洗装置及方法
CN220052901U (zh) 一种基于光聚合的多材料增材制造结构
CN218227871U (zh) 一种小型光固化打印机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934155

Country of ref document: EP

Kind code of ref document: A1