WO2022205401A1 - 压裂系统、压裂系统的控制系统和控制方法 - Google Patents

压裂系统、压裂系统的控制系统和控制方法 Download PDF

Info

Publication number
WO2022205401A1
WO2022205401A1 PCT/CN2021/085184 CN2021085184W WO2022205401A1 WO 2022205401 A1 WO2022205401 A1 WO 2022205401A1 CN 2021085184 W CN2021085184 W CN 2021085184W WO 2022205401 A1 WO2022205401 A1 WO 2022205401A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing
target
pressure
mixing
sand mixing
Prior art date
Application number
PCT/CN2021/085184
Other languages
English (en)
French (fr)
Inventor
刘凯深
李先策
崔树桢
毛竹青
刘伟韦
李亮
张鹏远
赵大伟
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3157096A priority Critical patent/CA3157096A1/en
Priority to PCT/CN2021/085184 priority patent/WO2022205401A1/zh
Publication of WO2022205401A1 publication Critical patent/WO2022205401A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Definitions

  • the present application relates to a control system in the field of wellsite operations such as drilling oilfields, and in particular, the present application relates to a control device for a fracturing system and a method for controlling a fracturing system in a wellsite operation.
  • the fracturing system In well field work such as drilling oil fields, fracturing systems are often used to form fractures in oil and gas layers.
  • the fracturing system generally includes fracturing equipment for pumping high-pressure fluid into the well, sand mixing equipment for mixing proppant and fracturing fluid and supplying fluid to the fracturing equipment, and the like.
  • the control of each device of the fracturing system is performed manually and each device is independently controlled, and it is difficult to realize the linkage control and management of the entire fracturing system.
  • the current mainstream fracturing system control software can realize the control function of equipment, but it cannot perform intelligent coordinated control of equipment between upstream and downstream, nor does it have the function of intelligent displacement and pressure control of fracturing equipment or fracturing mechanism . At the same time, the current fracturing system control software does not pay attention to the aspects of intelligent self-diagnosis and remote data transmission and maintenance of individual equipment.
  • the purpose of the present application is to realize the linkage control of each equipment of the fracturing system used in the well site, improve the work efficiency of the well site, ensure the safety of the fracturing system, and at least solve some of the above technical problems.
  • a control system for controlling wellsite operations
  • the fracturing system includes a fracturing device for fracturing oil and gas formations and a fracturing device for feeding fracturing A sand-mixing device to which a fluid is added and an admixture is supplied to a fracturing device, the control system controls the fracturing device and the sand-mixing device with respect to a target pressure at the wellhead, wherein the control system includes:
  • a fracturing control device wherein the fracturing control device can obtain a target fracturing pressure of the fracturing equipment, and takes the target fracturing pressure as a control target, performs closed-loop control on the fracturing equipment, and controls the fracturing equipment for the
  • the mixing equipment sets the target mixing pressure
  • a sand mixing control device wherein the sand mixing control device takes the target sand mixing pressure as a control target, and performs closed-loop control on the sand mixing equipment.
  • the fracturing system further includes a mixing device for preparing fracturing fluid and supplying it to the sand mixing device
  • the control system further includes a mixing control device, wherein,
  • the sand mixing control device sets a target mixing discharge amount for the mixing equipment, and the mixing control device takes the target mixing discharge amount as a control target, and performs closed-loop control on the mixing equipment and is a pressure control device.
  • the cracking system sets the desired feedstock supply.
  • the closed-loop control of the control system is performed as follows:
  • the fracturing control device acquires the fracturing pressure deviation between the target fracturing pressure and the current fracturing pressure of the fracturing equipment;
  • the sand mixing control device obtains the target sand mixing input amount of the sand mixing equipment according to the target sand mixing pressure;
  • the compounding device obtains the target compounding input amount of the compounding device for the target compounding discharge amount
  • the target compounding input and the compounding input increment are superimposed, and the desired feedstock supply is set for the fracturing system.
  • a static look-up table model is respectively provided for the fracturing equipment and/or the sand mixing equipment and/or the mixing equipment, wherein the static look-up table model is used
  • the target fracturing pressure and/or the target sand mixing input and/or the target mixing input are obtained.
  • a dynamic look-up table model is used to obtain the fracturing pressure increment from the fracturing pressure deviation; and/or Under the working point of the target sand mixing input amount, the dynamic look-up table model is used to obtain the sand mixing pressure deviation or the sand mixing input amount increment; and/or at the working point of the target mixing input amount
  • the compounding input amount increment is obtained from the compounding amount deviation by using a dynamic look-up table model.
  • control system monitors the actual output of the fracturing equipment and/or the sand mixing equipment and/or the mixing equipment to determine whether malfunction.
  • the fracturing control device further includes a fracturing pressure distribution unit, wherein, for the target fracturing pressure, the fracturing pressure distribution unit Fracturing fluid is distributed among the various fracturing mechanisms in the facility.
  • control system further includes a clean water tank control unit, wherein the liquid level of the clean water tank control unit in the clean water tank of the fracturing system is lower than a preset minimum liquid level. In the case of the position, control the fresh water tank to carry out water inflow.
  • the fracturing control device obtains the target pressure of the fracturing equipment by means of a target pressure for the wellhead, manual input, process requirements or software calculation. Crack discharge.
  • a fracturing system including a fracturing device for fracturing a hydrocarbon layer and a sand mixing device for adding a mixture to a fracturing fluid and supplying the fracturing device, wherein, The fracturing system further includes the control system according to any embodiment of the present application.
  • the sand mixing device includes a sand conveying belt and an auger, wherein the sand conveying belt provides sand proppant to the auger, and the auger is subjected to The sand mixing control device adjusts its rotational speed.
  • a method of controlling a fracturing system in a wellsite operation comprising the steps of:
  • the closed-loop control of the sand mixing equipment is performed.
  • the method further includes the following steps:
  • the compounding equipment is closed-loop controlled and a desired feedstock supply is set for the fracturing system.
  • the closed-loop control for the fracturing equipment and/or the sand mixing equipment and/or the mixing equipment includes the following steps:
  • For the target compounding discharge amount obtain the target compounding input amount of the compounding device
  • the target compounding input and the compounding input increment are superimposed, and the desired feedstock supply is set for the fracturing system.
  • a static look-up table model is respectively provided for the fracturing equipment and/or the sand mixing equipment and/or the mixing equipment, wherein the static look-up table model is used
  • the target fracturing pressure and/or the target sand mixing input and/or the target mixing input are obtained.
  • a dynamic look-up table model is used to obtain the fracturing pressure increment from the fracturing pressure deviation; and/or Under the working point of the target sand mixing input amount, the dynamic look-up table model is used to obtain the sand mixing pressure deviation or the sand mixing input amount increment; and/or at the working point of the target mixing input amount
  • the compounding input amount increment is obtained from the compounding amount deviation by using a dynamic look-up table model.
  • the actual output of the fracturing equipment and/or the sand mixing equipment and/or the mixing equipment is monitored, using to determine if a malfunction has occurred.
  • the method further includes the following steps:
  • Fracturing fluid is distributed among the various fracturing mechanisms in the fracturing apparatus for the target fracturing pressure discharge.
  • the method further includes the following steps:
  • the water supply to the clean water tank is controlled.
  • step S1 in step S1:
  • FIG. 1 exemplarily shows a structural diagram of a fracturing system used in wellsite operations
  • Figure 2 schematically shows a block diagram of the fracturing system
  • FIG. 3 schematically shows a structural block diagram of the control system disclosed in the present application.
  • Figure 4 schematically shows a flow chart of the method disclosed in the present application.
  • the fracturing system 100 often used in well site operations includes a clean water tank 104, a mixing device 103, a sand mixing device 102, a fracturing device 101, and the like.
  • Figure 1 shows very exemplarily the layout of the fracturing system in actual operation at the well site. Specifically, during the fracturing process of the oil and gas formation by the fracturing system 100, the clean water tank 104 is used to store clean water and quantitatively supply the clean water to the mixing device 103 when needed, and the mixing device 103 is used to mix the clean water with dry powder.
  • the generated fracturing fluid can be stored in a fracturing fluid tank, or can be directly supplied to the sand mixing equipment 102 for use. Then, the sand mixing device 102 mixes the fracturing fluid and proppant, such as sand and other chemical additives, in a certain proportion, and then supplies the fracturing device 101 through the low-pressure pipeline.
  • proppant such as sand and other chemical additives
  • fracturing equipment 101 generally includes a plurality (at least two) of fracturing mechanisms, such as fracturing pumps, capable of transporting a flow of fracturing fluid mixed with additives that is transported through a low-pressure pipeline The fracturing fluid is pumped to the wellhead to achieve a certain pressure.
  • fracturing mechanisms such as fracturing pumps
  • control system 10 for the above-mentioned fracturing system 100, which can control each device of the fracturing system 100 in linkage, so as to realize the overall control of the fracturing system 100 according to the wellhead demand pressure of the well site Function.
  • the control system 10 disclosed in the present application includes: a fracturing control device 1 for controlling the fracturing equipment 101 , a sand mixing control device 2 for controlling the sand mixing equipment 102 , and a mixing control device for controlling the mixing equipment 103 . 3.
  • the fracturing control device 1 can control the fracturing equipment 101 to control the pressure of the fracturing fluid discharged from the fracturing equipment 101 to achieve Wellhead target pressure.
  • the fracturing control device 1 controls and adjusts the pressure of the fracturing fluid input to the fracturing device 101, that is, the target sand mixing pressure, and transmits the control amount signal to the sand mixing control device 2; thus, the sand mixing control device 2 controls each device of the sand mixing device 102 to achieve the target sand mixing pressure, that is, to realize the discharge pressure of the fracturing fluid that needs to be discharged from the sand mixing device 102 , so as to meet the requirements of fracturing equipment.
  • the discharge manifold of the sand mixing equipment 102 is usually connected with the suction end of the plunger pump on the fracturing equipment 101 using a pipeline.
  • the sand mixing equipment 102 ensures the stability of the discharge pressure at the sand mixing end by controlling the rotational speed of the discharge pump, and its main function is to ensure that the suction end pressure of the fracturing equipment 101 can meet the operational requirements of the plunger pump.
  • the displacement of the fracturing equipment will change.
  • the sand mixing equipment 102 can adapt to the operating conditions under different displacements by changing the rotational speed of the discharge pump.
  • the sand mixing pressure can be characterized by the sand mixing discharge pressure of the sand mixing device 102, the fracturing suction pressure of the fracturing device 101, or the pressure of the connecting manifold between the two devices. That is, the target sand mixing pressure can be specifically set as the target sand mixing discharge pressure, the target fracturing suction pressure, or the target pressure of the connecting manifold.
  • the sand mixing control device 2 transmits the desired output flow signal of the mixing device 103 to the mixing control device 3 .
  • the mixing control device 3 controls and adjusts each device of the mixing device 103 based on the received desired output flow signal, that is, the suction pump used for inhaling additives in the mixing device 103 and the fresh water flow rate supplied by the clean water tank 104 And the amount of dry powder is controlled to achieve the desired output flow.
  • various communication methods can be used between each control device, such as analog signal, pulse signal, Ethernet, 485 communication, 232 communication, CAN communication form, WIFI signal, Bluetooth signal, etc. to realize data exchange.
  • each control device of the control system 10 performs linked closed-loop control for the fracturing equipment 101 and/or the sand mixing equipment 102 and/or the mixing equipment 103 respectively.
  • the pressure of the wellhead in the wellsite operation is proportional to the flow rate of the fracturing fluid output by the fracturing equipment 101, for the required wellhead pressure (ie, the target wellhead pressure), the total corresponding to the fracturing equipment 101 can be obtained.
  • the flow rate of fracturing fluid that needs to be output that is, the target fracturing output.
  • the target fracturing discharge volume (or the corresponding target fracturing pressure) can also be obtained in other ways, for example, it can be manually controlled by the on-site operator according to the on-site operation and construction conditions, or limited by the process requirements, or can also be The control system is automatically determined by the intelligent system through software calculation according to the working conditions in the well.
  • the fracturing pressure deviation between the target fracturing pressure and the current fracturing pressure of the fracturing equipment 101 is obtained, and this deviation is used as the input of dynamic feedback control;
  • the look-up table model obtains the fracturing pressure increment of the fracturing equipment 101 at this operating point (ie, the operating point corresponding to the target fracturing pressure); and then superimposes the target fracturing pressure and the fracturing pressure increment, and uses this
  • the discharge pressure of the fracturing fluid to be discharged that is, the target sand mixing pressure, is set for the sand mixing device 102 , and the signal is transmitted to the sand mixing control device 2 .
  • the sand mixing control device 2 obtains the target sand mixing input amount of the sand mixing device 102 for the target sand mixing discharge pressure, for example, by means of a static look-up table, that is, the rotational speed of the auger adding sand proppant and the mixing The flow rate of the fracturing fluid delivered by the device 103; and the sand mixing discharge pressure deviation (ie the sand mixing pressure deviation) between the target sand mixing discharge pressure and the current sand mixing discharge pressure of the sand mixing device 102 is obtained, so as to be based on the sand mixing
  • the discharge pressure deviation is obtained, for example, by dynamically looking up the table to obtain the sand mixing input amount increment of the sand mixing device 102;
  • the volume increment is used to set the required flow rate of the fracturing fluid to be discharged to the sand mixing device 102 for the mixing device
  • the compounding control device 3 obtains the target compounding input amount, that is, the required fresh water flow rate, for example, through a static look-up table for the target compounding discharge amount, that is, the flow rate of the fracturing fluid that needs to be delivered to the sand mixing device 102 . flow rate, dry powder flow rate, etc.; and obtain the mixing quantity deviation between the target mixing discharge quantity and the current mixing discharge quantity of the mixing device 103, so as to obtain the mixing quantity based on the mixing quantity deviation, for example, by dynamic look-up table.
  • the target compounding input amount that is, the required fresh water flow rate
  • the target compounding discharge amount that is, the flow rate of the fracturing fluid that needs to be delivered to the sand mixing device 102 . flow rate, dry powder flow rate, etc.
  • obtain the mixing quantity deviation between the target mixing discharge quantity and the current mixing discharge quantity of the mixing device 103 so as to obtain the mixing quantity based on the mixing quantity deviation, for example, by dynamic look-up table.
  • the input amount increment then by superimposing the target compounding input amount and the compounding input amount increment, the required expected raw material supply amount, that is, the amount of clean water, dry powder and other additives, is set for the fracturing system 100, so as to affect the entire fracturing system 100.
  • the cracking system 100 is controlled.
  • the mixing control device 3 may also target the liquid level of the mixing tank of the mixing device 103 as a control target.
  • the discharge port of the mixing tank is connected to the suction port of the sand mixing device 102, and the sand mixing pump sucks the liquid in the mixing tank.
  • the discharge volume changes, the liquid level in the mixing tank is affected.
  • adjust the mixing input amount input to the mixing tank that is, the required flow rate of clean water, the flow rate of dry powder, etc., to keep the liquid level in the mixing tank stable. Thereby, the control of the mixing device 103 is realized.
  • the fracturing control device 1 and/or the sand mixing control device 2 and/or the mixing control device 3 of the control system 10 may also control the fracturing equipment 101 and/or the sand mixing equipment 102 and/or the Or the actual output of the mixing equipment 103, that is, for example, the rotational speed of the auger, the rotational speed of the suction pump, the flow rate of the fracturing fluid, etc., are monitored to determine whether there is a device failure.
  • the fracturing control device 1 further includes a fracturing fluid distribution unit, which distributes the required pumping fluid to each fracturing mechanism, such as a fracturing pump, of the fracturing equipment 101 according to the target fracturing pressure or the target fracturing discharge amount.
  • the fracturing fluid flow.
  • the fracturing discharge distribution unit may distribute the required flow of fracturing fluid pumped out among the normally operating fracturing mechanisms.
  • control system 10 further includes a clean water tank control unit, which controls the clean water tank 104 to feed water when the liquid level of the clean water tank 104 of the fracturing system 100 is lower than a preset minimum liquid level.
  • the clean water tank control unit can also control the clean water tank 104 according to other control logics according to specific usage occasions and requirements.
  • the present application also relates to a fracturing system 100, which includes a clean water tank 104, a mixing device 103, a sand mixing device 102, a fracturing device 101, and the control system 10 according to any embodiment of the present application.
  • the sand mixing device 102 includes a sand conveying belt and an auger, wherein the sand conveying belt provides sand proppant to the auger, and the rotation speed of the auger is adjusted by the sand mixing control device 2 .
  • the setting of the fluidity storage mechanism of the sand conveying belt avoids that the stored sand proppant amount is insufficient to affect the operation of the fracturing system 100 in some cases.
  • the control system disclosed in the present application can realize the linkage control among the various equipment of the fracturing system, thereby reducing the cost and burden of manual control; at the same time, it can also monitor the state of each equipment of the fracturing system, when the output exceeds the output of the fracturing system. In the case of normal range, the failure of the equipment can be judged.
  • the present application also discloses a method for controlling the fracturing system 100 in the well site operation, which specifically includes the following steps:
  • Step S1 obtaining the target fracturing pressure of the fracturing equipment 101;
  • the target fracturing pressure of the fracturing equipment 101 can be obtained by means of wellhead pressure, manual input, process requirements or software calculation.
  • Step S2 take the target fracturing pressure as a control target, perform closed-loop control on the fracturing equipment 101, and set a target sand mixing pressure for the sand mixing equipment 102;
  • the pressure of the fracturing fluid input into the fracturing equipment 101 is controlled and adjusted.
  • Step S3 taking the target sand mixing pressure as a control target, perform closed-loop control on the sand mixing device 102 , and set a target mixing discharge amount for the mixing device 103 .
  • the rotation speed of the auger in the sand mixing device 102 ie, the amount of sand proppant mixed in
  • the flow rate of the mixed fracturing fluid output by 103 is controlled and adjusted, thereby obtaining the auger rotation speed required to realize the output flow rate of the sand mixing device 102 and the output flow rate of the mixing device 103, that is, the target mixing discharge volume.
  • Step S4 taking the target compounding discharge amount as a control target, perform closed-loop control on the compounding equipment 103 and set a desired raw material supply amount for the fracturing system 100 .
  • each device of the compounding device 103 is controlled and adjusted based on the received desired output flow signal, that is, the suction pump used for inhaling additives in the compounding device 103, the flow rate of clean water supplied by the clean water tank 104, and the The amount of dry powder is controlled to achieve the desired output flow.
  • the linked closed-loop control is performed on the fracturing equipment 101 and/or the sand mixing equipment 102 and/or the mixing equipment 103, respectively.
  • step S21 obtaining the target fracturing pressure of the fracturing device 101; here, step S22: simultaneously obtaining the fracturing pressure deviation between the target fracturing pressure and the current fracturing pressure of the fracturing device 101, and using This deviation is used as the input of dynamic feedback control; then step S23: based on the fracturing pressure deviation, for example, through a dynamic look-up table model, obtain the operating point of the fracturing equipment 101 (ie, the operating point corresponding to the target fracturing pressure) Then step S24: superimpose the target fracturing pressure and the fracturing pressure increment, and set the flow rate of the fracturing fluid to be discharged by the sand mixing device 102, ie, the target sand mixing pressure.
  • step S31 for the target sand mixing pressure, the target sand mixing input amount of the sand mixing device 102, that is to say, the rotational speed of the auger for adding sand proppant and the speed of the sand mixing device 103, is obtained by static look-up table, for example.
  • step S32 obtaining the sand mixing pressure deviation between the target sand mixing pressure and the current sand mixing pressure of the sand mixing device 102
  • step S33 based on the sand mixing pressure deviation, for example, by dynamically looking up a table
  • the sand mixing input amount increment of the sand mixing device 102 is obtained by means of the method; then, step S34: by superimposing the target sand mixing input amount obtained by the static look-up table under the stable condition and the sand mixing input amount increment obtained by the dynamic look-up table,
  • the flow rate of the fracturing fluid that needs to be discharged to the sand mixing device 102 is set for the mixing device 103 , that is, the target mixing discharge volume.
  • step S41 for the target compounding discharge amount, that is, the flow rate of the fracturing fluid that needs to be delivered to the sand mixing device 102, for example, the target compounding input amount, that is, the required flow rate of clean water, is obtained by static look-up table.
  • step S42 obtain the mixing volume deviation between the target mixing discharge volume and the current mixing discharge volume of the mixing device 103, thus, step S43: based on the mixing volume deviation, for example, by dynamically checking Obtaining the compounding input amount increment by means of a table; then, step S44: by superimposing the target compounding input amount and the compounding input amount increment, set the required expected raw material supply amount for the fracturing system 100, that is, clean water and dry powder and other additives to control the entire fracturing system 100 .
  • the adjustment and control of the flow of fresh water and the flow of dry powder can also be achieved by maintaining the liquid level in the mixing tank of the mixing device 103 at a predetermined level.
  • the actual output of the fracturing equipment 101 and/or the sand mixing equipment 102 and/or the mixing equipment 103 that is, for example, the rotational speed of the auger, the rotational speed of the suction pump, the fracturing fluid The flow rate, etc. are monitored to determine whether there is a device failure.
  • each fracturing mechanism of the fracturing apparatus 101 may also be assigned the required flow rate of fracturing fluid to be pumped.
  • the desired flow of fracturing fluid to be pumped may be distributed among the normally operating fracturing mechanisms.
  • the liquid level of the clean water tank 104 of the fracturing system 100 may also be controlled, that is, when the liquid level of the clean water tank 104 of the fracturing system 100 is lower than a preset minimum liquid level, the clean water is controlled.
  • Tank 104 is filled with water.
  • the clean water tank 104 can also be controlled according to other control logics according to specific application occasions and requirements.
  • the wellhead pressure in the wellsite operation is proportional to the flow rate of the fracturing fluid output by the fracturing equipment 101, for the required wellhead pressure (ie, the target wellhead pressure), the total corresponding to the fracturing equipment 101 can be obtained.
  • the flow rate of fracturing fluid that needs to be output that is, the target fracturing output.
  • a target fracturing pressure has a target fracturing input corresponding to it. Therefore, in the above control method, the adjustment and control of the fracturing pressure can also be achieved indirectly by adjusting and controlling the input and discharge amounts of the fracturing fluid of the fracturing equipment 101 . Such a method also falls within the scope of the inventive idea of the present application.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Accessories For Mixers (AREA)

Abstract

压裂系统(100)、压裂系统(100)的控制系统(10)和控制井场作业中的压裂系统(100)的方法,控制系统(10)包括:压裂控制装置(1),压裂控制装置(1)能够获取压裂设备(101)的目标压裂压力,并且以目标压裂压力为控制目标,对压裂设备(101)进行闭环控制,并且为混砂设备(102)设定目标混砂压力;混砂控制装置(2),混砂控制装置(2)以目标混砂压力为控制目标,对混砂设备(102)进行闭环控制。

Description

压裂系统、压裂系统的控制系统和控制方法 技术领域
本申请涉及钻井油田等井场作业领域的控制系统,具体而言,本申请涉及压裂系统的控制装置以及控制井场作业中的压裂系统的方法。
背景技术
在钻井油田等井场工作中,常常需要用到压裂系统来使得油气层形成裂缝。压裂系统一般包括用来向井内泵入高压流体的压裂设备,用来将支撑剂和压裂液混合并向压裂设备供液的混砂设备等。在传统模式下,压裂系统的各个设备的控制由人工手动进行并且各个设备独立地进行控制,而难以实现对整个压裂系统的联动控制管理。
目前主流的压裂系统控制软件能够实现对设备的控制功能,但无法对上下游之间的设备进行智能协调控制,也不具备对压裂设备或者压裂机构进行智能排量和压力控制的功能。同时,目前的压裂系统控制软件也没有关注到对单个设备进行智能自诊断以及数据远传和维护这一方面。
发明内容
本申请的目的在于,实现井场所使用的压裂系统的各个设备的联动控制,提高井场的工作效率并且保证了压裂系统的使用安全性,至少能够解决以上部分技术问题。
根据本申请的第一方面,提供了一种控制系统,用于控制井场作业的压裂系统,其中,所述压裂系统包括用于压裂油气层的压裂设备和用于给压裂液添加混合剂的并且供应给压裂设备的混砂设备,所述控制系统针对井口的目标压力来对所述压裂设备和所述混砂设备进行控制,其中,所述控制系统包括:
压裂控制装置,其中,所述压裂控制装置能够获取压裂设备的 目标压裂压力,并且以所述目标压裂压力为控制目标,对所述压裂设备进行闭环控制,并且为所述混砂设备设定目标混砂压力;以及
混砂控制装置,其中,所述混砂控制装置以所述目标混砂压力为控制目标,对所述混砂设备进行闭环控制。
可选地,在本申请的一些实施例中,所述压裂系统还包括制备压裂液并且供应给所述混砂设备的混配设备,所述控制系统还包括混配控制装置,其中,所述混砂控制装置为所述混配设备设定目标混配排出量,所述混配控制装置以所述目标混配排出量为控制目标,对所述混配设备进行闭环控制并且为压裂系统设定期望原料供应量。
可选地,在本申请的一些实施例中,所述控制系统的闭环控制如下地进行:
所述压裂控制装置获取所述目标压裂压力与所述压裂设备的当前压裂压力之间的压裂压力偏差;
基于所述压裂压力偏差获取所述压裂设备的压裂压力增量;
叠加所述目标压裂压力与所述压裂压力增量,并且为所述混砂设备设定目标混砂压力;
所述混砂控制装置针对所述目标混砂压力,获取所述混砂设备的目标混砂输入量;
获取所述目标混砂压力与所述混砂设备的当前混砂压力之间的混砂压力偏差;
基于所述混砂压力偏差获取所述混砂设备的混砂输入量增量;
叠加所述目标混砂输入量与所述混砂输入量增量,并且为所述混配设备设定目标混配排出量;以及
所述混配设备针对所述目标混配排出量,获取所述混配设备的目标混配输入量;
获取所述目标混配排出量与所述混配设备的当前混配排出量之间的混配量偏差;
基于所述混配量偏差获取所述混配设备的混配输入量增量;
叠加所述目标混配输入量与所述混配输入量增量,并且为所述压裂系统设定所述期望原料供应量。
可选地,在本申请的一些实施例中,针对于所述压裂设备和/或混砂设备和/或混配设备,分别设置有静态查表模型,其中,利用所述静态查表模型获得所述目标压裂压力和/或所述目标混砂输入量和/或所述目标混配输入量。
可选地,在本申请的一些实施例中,在所述目标压裂压力的工况点下,利用动态查表模型由所述压裂压力偏差获取所述压裂压力增量;并且/或者在所述目标混砂输入量的工况点下,利用动态查表模型由所述混砂压力偏差获取或所述混砂输入量增量;并且/或者在所述目标混配输入量的工况点下,利用动态查表模型由所述混配量偏差获取所述混配输入量增量。
可选地,在本申请的一些实施例中,所述控制系统对所述压裂设备和/或所述混砂设备和/或所述混配设备的实际输出量进行监控,用以判断是否发生故障。
可选地,在本申请的一些实施例中,所述压裂控制装置还包括压裂压力分配单元,其中,所述压裂压力分配单元针对于所述目标压裂压力,在所述压裂设备中的各个压裂机构之间分配压裂液。
可选地,在本申请的一些实施例中,所述控制系统还包括清水罐控制单元,其中,所述清水罐控制单元在压裂系统的清水罐的液位低于预先设定的最低液位的情况下,控制所述清水罐进行进水。
可选地,在本申请的一些实施例中,所述压裂控制装置以针对井口的目标压力、通过手动输入、针对工艺要求或通过软件计算的方式获取所述压裂设备的所述目标压裂排出量。
根据本申请的第二方面,提供一种压裂系统,包括用于压裂油气层的压裂设备和用于给压裂液添加混合剂的并且供应给压裂设备的混砂设备,其中,所述压裂系统还包括按照本申请任一实施例所述的控制系统。
可选地,在本申请的一些实施例中,所述混砂设备包括输砂带 和绞龙,其中,所述输砂带给所述绞龙提供砂支撑剂,并且所述绞龙受所述混砂控制装置调节其转速。
根据本申请的第三方面,提供一种控制井场作业中的压裂系统的方法,其中,所述方法包括如下步骤:
获取压裂设备的目标压裂压力;
以所述目标压裂排出量为控制目标,对所述压裂设备进行闭环控制,并且为混砂设备设定目标混砂压力;
以所述目标混砂压力为控制目标,对所述混砂设备进行闭环控制。
可选地,在本申请的一些实施例中,所述方法还包括如下步骤:
为混配设备设定目标混配排出量;
以所述目标混配排出量为控制目标,对所述混配设备进行闭环控制并且为压裂系统设定期望原料供应量。
可选地,在本申请的一些实施例中,针对所述压裂设备和/或所述混砂设备和/或所述混配设备的闭环控制包括如下步骤:
获取所述压裂设备的目标压裂压力;
获取所述目标压裂压力与所述压裂设备的当前压裂压力之间的压裂压力偏差;
基于所述压裂压力偏差获取所述压裂设备的压裂压力增量;
叠加所述目标压裂压力与所述压裂压力增量,并且为所述混砂设备设定目标混砂压力;和/或
针对所述目标混砂压力,获取所述混砂设备的目标混砂输入量;
获取所述目标混砂压力与所述混砂设备的当前混砂压力之间的混砂压力偏差;
基于所述混砂压力偏差获取所述混砂设备的混砂输入量增量;
叠加所述目标混砂输入量与所述混砂输入量增量,并且为所述混配设备设定目标混配排出量;和/或
针对所述目标混配排出量,获取所述混配设备的目标混配输入量;
获取所述目标混配排出量与所述混配设备的当前混配排出量之间的混配量偏差;
基于所述混配量偏差获取所述混配设备的混配输入量增量;
叠加所述目标混配输入量与所述混配输入量增量,并且为所述压裂系统设定所述期望原料供应量。
可选地,在本申请的一些实施例中,针对于所述压裂设备和/或混砂设备和/或混配设备,分别设置有静态查表模型,其中,利用所述静态查表模型获得所述目标压裂压力和/或所述目标混砂输入量和/或所述目标混配输入量。
可选地,在本申请的一些实施例中,在所述目标压裂压力的工况点下,利用动态查表模型由所述压裂压力偏差获取所述压裂压力增量;并且/或者在所述目标混砂输入量的工况点下,利用动态查表模型由所述混砂压力偏差获取或所述混砂输入量增量;并且/或者在所述目标混配输入量的工况点下,利用动态查表模型由所述混配量偏差获取所述混配输入量增量。
可选地,在本申请的一些实施例中,在所述闭环控制中,对所述压裂设备和/或所述混砂设备和/或所述混配设备的实际输出量进行监控,用以判断是否发生故障。
可选地,在本申请的一些实施例中,所述方法还包括如下步骤:
针对于所述目标压裂压力排出量,在所述压裂设备中的各个压裂机构之间分配压裂液。
可选地,在本申请的一些实施例中,所述方法还包括如下步骤:
在压裂系统的清水罐的液位低于预先设定的最低液位的情况下,控制对所述清水罐进行供水。
可选地,在本申请的一些实施例中,在步骤S1中:
以针对井口的压力、通过手动输入、针对工艺要求或通过软件计算的方式获取压裂设备的目标压裂压力。
附图说明
为了更好地理解本申请的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本申请的优选实施方式,对本申请的范围没有任何限制作用,其中,
图1示例性地示出井场作业中所使用的压裂系统的结构图;
图2示意性地示出了压裂系统的模块结构图;
图3示意性地示出了按照本申请所公开的控制系统的结构框图;以及
图4示意性地示出了按照本申请所公开的方法的流程图。
附图标记说明:
100 压裂系统
101 压裂设备
102 混砂设备
103 混配设备
104 清水罐
10  控制系统
1  压裂控制装置
2  混砂控制装置
3  混配控制装置
具体实施方式
现在参考附图,详细描述本申请的具体实施方式。这里所描述的仅仅是根据本申请的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本申请的其他方式,所述其他方式同样落入本申请的范围。
在井场作业中常常要用到的压裂系统100包括清水罐104、混配设备103、混砂设备102以及压裂设备101等。图1非常示例性地示出了在井场实际工作中的压裂系统的布局情况。具体而言,在压裂 系统100对油气层进行压裂过程中,清水罐104用来存储清水并且在需要时将清水定量地供应给混配设备103,混配设备103用来将清水与干粉等添加剂或者将干粉或液体增稠剂与清水混合后形成压裂作业使用的压裂液,并且生成的压裂液可以存储在压裂液罐中,也可以直接供给混砂设备102使用。而后,混砂设备102将压裂液和支撑剂、例如包括砂子以及其他化学添加剂按照一定的比例混合在一起,而后通过低压管路供给压裂设备101。在本申请的范围中,压裂设备101一般包括多台(至少两台)压裂机构、例如压裂泵,这些压裂机构能够将通过低压管路运输的、混合有添加剂的一定流量的压裂液泵送到井口处,以实现一定的压力。
而本申请公开了一种针对以上所述的压裂系统100的控制系统10,其能够联动地控制压裂系统100的各个设备,实现针对井场的井口需求压力对压裂系统100整体的控制功能。
本申请所公开的控制系统10包括:用来控制压裂设备101的压裂控制装置1、用来控制混砂设备102的混砂控制装置2以及用来控制混配设备103的混配控制装置3。
具体而言,在存在井口需求压力或者说井口目标压力的情况下,压裂控制装置1能够对压裂设备101进行控制,从而控制压裂设备101所排出的压裂液的压力,用以实现井口目标压力。在此情况下,根据井场设备的作业原理,压裂控制装置1控制调节输入压裂设备101的压裂液的压力,即目标混砂压力,并且将该控制量信号传递给混砂控制装置2;由此,混砂控制装置2对混砂设备102的各个装置进行控制,用以实现目标混砂压力,也就是说用以实现从混砂设备102中需求排出的压裂液的排出压力,从而满足压裂设备的要求。
可以理解,通常混砂设备102的排出管汇与压裂设备101上的柱塞泵的吸入端使用管线连接。混砂设备102通过控制排出泵的转速保证混砂端排出压力的稳定,其主要功能为保证压裂设备101的吸入端压力能够达到柱塞泵的作业要求。在作业过程中压裂设备的排量会产生变化,此时混砂设备102通过改变排出泵的转速以适应 不同排量下的作业工况。因此,混砂压力可以通过混砂设备102的混砂排出压力、压裂设备101的压裂吸入压力或者两个设备之间的连接管汇的压力来表征。也即,目标混砂压力具体可以设定为目标混砂排出压力、目标压裂吸入压力或连接管汇的目标压力等。
在此情况下,为了实现混砂设备102需求排出的压裂液的排出压力,需要对混砂设备102中的例如绞龙的转速(即混入砂支撑剂的量)和混配设备103所输出的混配压裂液的流量进行控制调节,由此得到为了实现混砂设备102的排出压力所需要的绞龙转速以及混配设备103的输出流量。在此,混砂控制装置2将期望的混配设备103输出流量信号传递给混配控制装置3。混配控制装置3基于接收到的期望的输出流量信号对混配设备103的各个装置进行控制调节,即对混配设备103中的用来吸入添加剂的吸入泵、清水罐104所供应的清水流量以及干粉量进行控制,从而实现期望的输出流量。在此过程中,各个控制装置间可以通过各种通讯方式,例如包括模拟量信号、脉冲信号、以太网、485通讯、232通讯、CAN通讯形式、WIFI信号、蓝牙信号等实现数据的交换。
在本申请的一些实施例中,能够设置,控制系统10的各个控制装置分别针对压裂设备101和/或混砂设备102和/或混配设备103进行联动闭环控制。
具体而言,由于井场作业中井口的压力正比于压裂设备101输出的压裂液的流量,针对于所需要的井口压力(即目标井口压力),能够获取压裂设备101总的对应的所需要输出的压裂液的流量,也就是说目标压裂排出量。此外,目标压裂排出量(或与之对应的目标压裂压力)还可以通过另外的方式获得,例如可以根据现场的作业施工情况由现场操作人员手动控制,或者由工艺要求限定,或者还可以是控制系统根据井内工况由智能系统通过软件计算的方式自动决定。
在此情况下,获取目标压裂压力与压裂设备101的当前压裂压力之间的压裂压力偏差,并且将此偏差作为动态反馈控制的输入量; 而后基于该压裂压力偏差例如通过动态查表模型获取压裂设备101在该工况点下(即对应于目标压裂压力的工况点)的压裂压力增量;而后叠加目标压裂压力与压裂压力增量,并且以此为混砂设备102设定所需要排出的压裂液的排出压力,即目标混砂压力,并且将该信号传递给混砂控制装置2。
以混砂设备102的混砂排出压力作为混砂压力的表征为例。同样地,混砂控制装置2针对目标混砂排出压力、例如通过静态查表的方式获取混砂设备102的目标混砂输入量、也就是说添加砂支撑剂的绞龙的转速和由混配设备103输送的压裂液的流量;并且获取目标混砂排出压力与混砂设备102的当前混砂排出压力之间的混砂排出压力偏差(也即混砂压力偏差),从而基于该混砂排出压力偏差例如通过动态查表的方式获取混砂设备102的混砂输入量增量;而后通过叠加通过静态查表获得的稳定情况下的目标混砂输入量与动态查表获得的混砂输入量增量,为混配设备103设定所需要排出给混砂设备102的压裂液的流量,即目标混配排出量,并且将该信号传递给混配控制装置3。
同样地,混配控制装置3针对目标混配排出量、即所需要输送给混砂设备102的压裂液的流量例如通过静态查表的方式获取目标混配输入量、即所需要的清水的流量、干粉的流量等;并且获取目标混配排出量与混配设备103的当前混配排出量之间的混配量偏差,从而基于该混配量偏差例如通过动态查表的方式获取混配输入量增量;而后通过叠加目标混配输入量与混配输入量增量,为压裂系统100设定所需要的期望原料供应量、即清水和干粉以及其他添加剂的量,从而对整个压裂系统100进行控制。
此外,混配控制装置3还可以针对混配设备103的混合罐的液位为控制目标。该混合罐的排出口连接混砂设备102的吸入口,混砂泵吸取混合罐内的液体。当排出量变化时,混合罐内的液位受到影响。此时,调整输入至混合罐的混配输入量,也即所需要的清水的流量、干粉的流量等,以保持混合罐内的液位稳定。从而实现对 混配设备103的控制。
在本申请的一些实施例中,控制系统10的压裂控制装置1和/或混砂控制装置2和/或混配控制装置3还可以对压裂设备101和/或混砂设备102和/或混配设备103的实际输出量、即例如绞龙的转速、吸入泵的转速、压裂液的流量等进行监控,用以判断是否有装置发生故障。
可选地,压裂控制装置1还包括压裂液分配单元,其针对于目标压裂压力或目标压裂排出量给压裂设备101的各个压裂机构、例如压裂泵分配所需要泵出的压裂液流量。例如,在压裂设备101中的一个或者一部分压裂机构发生故障时,压裂排出量分配单元可以在正常运行的压裂机构之间分配所需要泵出的压裂液流量。
可选地,控制系统10还包括清水罐控制单元,其在压裂系统100的清水罐104的液位低于预先设定的最低液位的情况下,控制所述清水罐104进行进水。当然,清水罐控制单元也可以根据具体的使用场合和需求按照其他控制逻辑对清水罐104进行控制。
此外,本申请还涉及一种压裂系统100,其包括清水罐104、混配设备103、混砂设备102、压裂设备101以及按照本申请任一实施例所述的控制系统10。在此可选地,混砂设备102包括输砂带和绞龙,其中,输砂带给绞龙提供砂支撑剂,并且绞龙受混砂控制装置2地调节其转速。输砂带这种流动性存储机构的设置避免了在有些情况下存储的砂支撑剂量不够而影响压裂系统100的运行。
本申请所公开的控制系统能够实现压裂系统的各个设备之间的联动控制,从而减轻了人工控制的成本和负担;同时也能够对压裂系统的各个设备进行状态监测,在其输出量超出正常范围的情况下能够判断出设备的故障。
本申请还公开了一种控制井场作业中的压裂系统100的方法,其具体包括以下步骤:
步骤S1:获取压裂设备101的目标压裂压力;
具体可以以针对井口的压力、通过手动输入、针对工艺要求或 通过软件计算的方式获取压裂设备101的目标压裂压力。步骤S2:以所述目标压裂压力为控制目标,对所述压裂设备101进行闭环控制,并且为混砂设备102设定目标混砂压力;
具体而言,控制调节输入压裂设备101的压裂液的压力,即目标混砂压力。
步骤S3:以所述目标混砂压力为控制目标,对所述混砂设备102进行闭环控制,并且为混配设备103设定目标混配排出量。
为了实现混砂设备102需求排出的压裂液的压力或压裂设备101的吸入端的压力,需要对混砂设备102中的例如绞龙的转速(即混入砂支撑剂的量)和混配设备103所输出的混配压裂液的流量进行控制调节,由此得到为了实现混砂设备102的输出流量所需要的绞龙转速以及混配设备103的输出流量、即目标混配排出量。
步骤S4:以所述目标混配排出量为控制目标,对所述混配设备103进行闭环控制并且为压裂系统100设定期望原料供应量。
具体而言,基于接收到的期望的输出流量信号对混配设备103的各个装置进行控制调节,即对混配设备103中的用来吸入添加剂的吸入泵、清水罐104所供应的清水流量以及干粉量进行控制,从而实现期望的输出流量。
可选地,在本申请的一些实施例中,分别针对压裂设备101和/或混砂设备102和/或混配设备103进行联动闭环控制。
具体而言,步骤S21:获取压裂设备101的目标压裂压力;在此,步骤S22:同时获取目标压裂压力与压裂设备101的当前压裂压力之间的压裂压力偏差,并且将此偏差作为动态反馈控制的输入量;而后步骤S23:基于该压裂压力偏差例如通过动态查表模型获取压裂设备101在该工况点下(即对应于目标压裂压力的工况点)的压裂压力增量;而后步骤S24:叠加目标压裂压力与压裂压力增量,并且以此为混砂设备102设定所需要排出的压裂液的流量,即目标混砂压力。
同样地,步骤S31:针对目标混砂压力例如通过静态查表的方式 获取混砂设备102的目标混砂输入量、也就是说添加砂支撑剂的绞龙的转速和由混配设备103输送的压裂液的流量;并且,步骤S32:获取目标混砂压力与混砂设备102的当前混砂压力之间的混砂压力偏差,从而,步骤S33:基于该混砂压力偏差例如通过动态查表的方式获取混砂设备102的混砂输入量增量;而后,步骤S34:通过叠加通过静态查表获得的稳定情况下的目标混砂输入量与动态查表获得的混砂输入量增量,为混配设备103设定所需要排出给混砂设备102的压裂液的流量,即目标混配排出量。
同样地,步骤S41:针对目标混配排出量、即所需要输送给混砂设备102的压裂液的流量例如通过静态查表的方式获取目标混配输入量、即所需要的清水的流量、干粉的流量等;并且,步骤S42:获取目标混配排出量与混配设备103的当前混配排出量之间的混配量偏差,从而,步骤S43:基于该混配量偏差例如通过动态查表的方式获取混配输入量增量;而后,步骤S44:通过叠加目标混配输入量与混配输入量增量,为压裂系统100设定所需要的期望原料供应量、即清水和干粉等其他添加剂的量,从而对整个压裂系统100进行控制。或者还可以通过将混配设备103的混合罐内的液位维持在预定水平的方式实现对清水的流量、干粉的流量的调整和控制。
在本申请的一些实施例中,还可以对压裂设备101和/或混砂设备102和/或混配设备103的实际输出量、即例如绞龙的转速、吸入泵的转速、压裂液的流量等进行监控,用以判断是否有装置发生故障。
可选地,还可以针对于目标压裂压力给压裂设备101的各个压裂机构、例如压裂泵分配所需要泵出的压裂液流量。例如,在压裂设备101中的一个或者一部分压裂机构发生故障时,可以在正常运行的压裂机构之间分配所需要泵出的压裂液流量。
可选地,还可以对压裂系统100的清水罐104液位进行控制,即在压裂系统100的清水罐104的液位低于预先设定的最低液位的情况下,控制所述清水罐104进行进水。当然,也可以根据具体的 使用场合和需求按照其他控制逻辑对清水罐104进行控制。
可以理解,由于井场作业中井口的压力正比于压裂设备101输出的压裂液的流量,针对于所需要的井口压力(即目标井口压力),能够获取压裂设备101总的对应的所需要输出的压裂液的流量,也就是说目标压裂排出量。例如,目标压裂压力具有与之对应的目标压裂输入量。因此,在上面的控制方法中,还可以通过对压裂设备101的压裂液的输入量和排出量进行调节和控制的方式来间接地实现对压裂压力的调节控制。这样的方法同样落入本申请的发明思想的范围内。
本申请的多种实施方式的以上描述出于描述的目的提供给相关领域的一个普通技术人员。不意图将本申请排他或局限于单个公开的实施方式。如上,以上教导的领域中的普通技术人员将明白本申请的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本申请旨在包括这里描述的本申请的所有替代、改型和变型,以及落入以上描述的本申请的精神和范围内的其他实施方式。

Claims (20)

  1. 一种控制系统(10),用于控制井场作业的压裂系统(100),其中,所述压裂系统(100)包括用于压裂油气层的压裂设备(101)和用于将压裂液和支撑剂进行混合并且供应给压裂设备(101)的混砂设备(102),其特征在于,所述控制系统(10)对所述压裂设备(101)和所述混砂设备(102)进行联动控制,其中,所述控制系统(10)包括:
    压裂控制装置(1),其中,所述压裂控制装置(1)能够获取压裂设备(101)的目标压裂压力,并且以所述目标压裂压力为控制目标,对所述压裂设备(101)进行闭环控制,并且根据所述目标压裂压力为所述混砂设备(102)设定目标混砂压力;以及
    混砂控制装置(2),其中,所述混砂控制装置(2)以所述目标混砂压力为控制目标,对所述混砂设备(102)进行闭环控制。
  2. 按照权利要求1所述的控制系统(10),其特征在于,所述压裂系统(100)还包括制备压裂液并且供应给所述混砂设备(102)的混配设备(103),所述控制系统(10)还包括混配控制装置(3),其中,所述混砂控制装置(2)为所述混配设备(103)设定目标混配排出量,所述混配控制装置(3)以所述目标混配排出量为控制目标,对所述混配设备(103)进行闭环控制并且为压裂系统(100)设定期望原料供应量。
  3. 按照权利要求2所述的控制系统(10),其特征在于,所述控制系统(10)的闭环控制如下地进行:
    所述压裂控制装置(1)获取所述目标压裂压力与所述压裂设备(101)的当前压裂压力之间的压裂压力偏差;
    基于所述压裂压力偏差获取所述压裂设备(101)的压裂压力增量;
    叠加所述目标压裂压力与所述压裂压力增量,并且为所述混砂设备(102)设定目标混砂压力;
    所述混砂控制装置(2)针对所述目标混砂压力,获取所述混砂设备(102)的目标混砂输入量;
    获取所述目标混砂压力与所述混砂设备(102)的当前混砂压力之间的混砂压力偏差;
    基于所述混砂压力偏差获取所述混砂设备(102)的混砂输入量增量;
    叠加所述目标混砂输入量与所述混砂输入量增量,并且为所述混配设备(103)设定目标混配排出量;以及
    所述混配设备(103)针对所述目标混配排出量,获取所述混配设备(103)的目标混配输入量;
    获取所述目标混配排出量与所述混配设备(103)的当前混配排出量之间的混配量偏差;
    基于所述混配量偏差获取所述混配设备(103)的混配输入量增量;
    叠加所述目标混配输入量与所述混配输入量增量,并且为所述压裂系统(100)设定所述期望原料供应量。
  4. 按照权利要求3所述的控制系统(10),其特征在于,针对于所述压裂设备(101)和/或混砂设备(102)和/或混配设备(103),分别设置有静态查表模型,其中,利用所述静态查表模型获得所述目标压裂压力和/或所述目标混砂输入量和/或所述目标混配输入量。
  5. 按照权利要求4所述的控制系统(10),其特征在于,在所述目标压裂压力的工况点下,利用动态查表模型由所述压裂压力偏差获取所述压裂压力增量;并且/或者在所述目标混砂输入量的工况点下,利用动态查表模型由所述混砂压力偏差获取或所述混砂输入量增量;并且/或者在所述目标混配输入量的工况点下,利用动态查表模型由所述混配量偏差获取所述混配输入量增量。
  6. 按照权利要求5所述的控制系统(10),其特征在于,所述控制系统(10)对所述压裂设备(101)和/或所述混砂设备(102)和/或所述混配设备(103)的实际输出量进行监控,用以判断是否发 生故障。
  7. 按照权利要求6所述的控制系统(10),其特征在于,所述压裂控制装置(1)还包括压裂压力分配单元,其中,所述压裂压力分配单元针对于所述目标压裂压力,在所述压裂设备(101)中的各个压裂机构之间分配压裂液。
  8. 按照权利要求7所述的控制系统(10),其特征在于,所述控制系统(10)还包括清水罐控制单元,其中,所述清水罐控制单元在压裂系统(100)的清水罐(104)的液位低于预先设定的最低液位的情况下,控制所述清水罐(104)进行进水。
  9. 按照权利要求1所述的控制系统(10),其特征在于,所述压裂控制装置(1)以针对井口的目标压力、通过手动输入、针对工艺要求或通过软件计算的方式获取所述压裂设备(101)的所述目标压裂压力。
  10. 一种压裂系统(100),包括用于压裂油气层的压裂设备(101)和用于给压裂液添加混合剂的并且供应给压裂设备(101)的混砂设备(102),其特征在于,所述压裂系统(100)还包括按照权利要求1至9中任一项所述的控制系统(10)。
  11. 按照权利要求10所述的压裂系统(100),其特征在于,所述混砂设备(102)包括输砂带和绞龙,其中,所述输砂带给所述绞龙提供砂支撑剂,并且所述绞龙受所述混砂控制装置(2)调节其转速。
  12. 一种控制井场作业中的压裂系统(100)的方法,其特征在于,所述方法包括如下步骤:
    获取压裂设备(101)的目标压裂压力(S1);
    以所述目标压裂压力为控制目标,对所述压裂设备(101)进行闭环控制,并且为混砂设备(102)设定目标混砂压力(S2)以所述目标混砂压力为控制目标,对所述混砂设备(102)进行闭环控制(S3)。
  13. 按照权利要求12所述的控制井场作业中的压裂系统(100) 的方法,其特征在于,所述方法还包括如下步骤:
    为混配设备(103)设定目标混配排出量(S3);
    以所述目标混配排出量为控制目标,对所述混配设备(103)进行闭环控制并且为压裂系统(100)设定期望原料供应量(S4)。
  14. 按照权利要求13所述的控制井场作业中的压裂系统(100)的方法,其特征在于,针对所述压裂设备(101)和/或所述混砂设备(102)和/或所述混配设备(103)的闭环控制包括如下步骤:
    获取所述压裂设备(101)的目标压裂压力(S21);
    获取所述目标压裂压力与所述压裂设备(101)的当前压裂压力之间的压裂压力偏差(S22);
    基于所述压裂压力偏差获取所述压裂设备(101)的压裂压力增量(S23);
    叠加所述目标压裂压力与所述压裂压力增量,并且为所述混砂设备(102)设定目标混砂压力(S24);和/或
    针对所述目标混砂压力,获取所述混砂设备(102)的目标混砂输入量(S31);
    获取所述目标混砂压力与所述混砂设备(102)的当前混砂压力之间的混砂压力偏差(S32);
    基于所述混砂压力偏差获取所述混砂设备(102)的混砂输入量增量(S33);
    叠加所述目标混砂输入量与所述混砂输入量增量,并且为所述混配设备(103)设定目标混配排出量(S34);和/或
    针对所述目标混配排出量,获取所述混配设备(103)的目标混配输入量(S41);
    获取所述目标混配排出量与所述混配设备(103)的当前混配排出量之间的混配量偏差(S42);
    基于所述混配量偏差获取所述混配设备(103)的混配输入量增量(S43);
    叠加所述目标混配输入量与所述混配输入量增量,并且为所述 压裂系统(100)设定所述期望原料供应量(S44)。
  15. 按照权利要求14所述的控制井场作业中的压裂系统(100)的方法,其特征在于,针对于所述压裂设备(101)和/或混砂设备(102)和/或混配设备(103),分别设置有静态查表模型,其中,利用所述静态查表模型获得所述目标压裂压力和/或所述目标混砂输入量和/或所述目标混配输入量。
  16. 按照权利要求15所述的控制井场作业中的压裂系统(100)的方法,其特征在于,在所述目标压裂压力的工况点下,利用动态查表模型由所述压裂压力偏差获取所述压裂压力增量;并且/或者在所述目标混砂输入量的工况点下,利用动态查表模型由所述混砂压力偏差获取所述混砂输入量增量;并且/或者在所述目标混配输入量的工况点下,利用动态查表模型由所述混配量偏差获取所述混配输入量增量。
  17. 按照权利要求13所述的控制井场作业中的压裂系统(100)的方法,其特征在于,在所述闭环控制中,对所述压裂设备(101)和/或所述混砂设备(102)和/或所述混配设备(103)的实际输出量进行监控,用以判断是否发生故障。
  18. 按照权利要求12所述的控制井场作业中的压裂系统(100)的方法,其特征在于,所述方法还包括如下步骤:
    针对于所述目标压裂压力,在所述压裂设备(101)中的各个压裂机构之间分配压裂液。
  19. 按照权利要求13所述的控制井场作业中的压裂系统(100)的方法,其特征在于,所述方法还包括如下步骤:
    在压裂系统(100)的清水罐(104)的液位低于预先设定的最低液位的情况下,控制对所述清水罐(104)进行供水。
  20. 按照权利要求12所述的控制井场作业中的压裂系统(100)的方法,其特征在于,在步骤S1中:
    以针对井口的压力、通过手动输入、针对工艺要求或通过软件计算的方式获取压裂设备(101)的目标压裂压力。
PCT/CN2021/085184 2021-04-02 2021-04-02 压裂系统、压裂系统的控制系统和控制方法 WO2022205401A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3157096A CA3157096A1 (en) 2021-04-02 2021-04-02 A fracturing system and control system and method for the fracturing system
PCT/CN2021/085184 WO2022205401A1 (zh) 2021-04-02 2021-04-02 压裂系统、压裂系统的控制系统和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085184 WO2022205401A1 (zh) 2021-04-02 2021-04-02 压裂系统、压裂系统的控制系统和控制方法

Publications (1)

Publication Number Publication Date
WO2022205401A1 true WO2022205401A1 (zh) 2022-10-06

Family

ID=83439937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085184 WO2022205401A1 (zh) 2021-04-02 2021-04-02 压裂系统、压裂系统的控制系统和控制方法

Country Status (2)

Country Link
CA (1) CA3157096A1 (zh)
WO (1) WO2022205401A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140138079A1 (en) * 2012-11-16 2014-05-22 Us Well Services Llc System for Pumping Hydraulic Fracturing Fluid Using Electric Pumps
CN111005710A (zh) * 2019-12-19 2020-04-14 中石化四机石油机械有限公司 输砂混排系统及控制方法
CN112412427A (zh) * 2020-12-02 2021-02-26 大庆石油管理局有限公司 一种远程联动供配液系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140138079A1 (en) * 2012-11-16 2014-05-22 Us Well Services Llc System for Pumping Hydraulic Fracturing Fluid Using Electric Pumps
CN111005710A (zh) * 2019-12-19 2020-04-14 中石化四机石油机械有限公司 输砂混排系统及控制方法
CN112412427A (zh) * 2020-12-02 2021-02-26 大庆石油管理局有限公司 一种远程联动供配液系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG WENDONG: "Research on the effectiveness of fully automatic remote fluid supply integrated linkage fracturing construction", MODERN ECONOMIC INFORMATION, no. 16, 25 August 2017 (2017-08-25), pages 343 - 343, XP055974562, ISSN: 1001-828X *

Also Published As

Publication number Publication date
CA3157096A1 (en) 2022-10-02

Similar Documents

Publication Publication Date Title
CN112943203B (zh) 压裂系统、压裂系统的控制系统和控制方法
AU690089B2 (en) Cellulose injection system and method
US8807960B2 (en) System and method for servicing a wellbore
US5803596A (en) Method and apparatus for high capacity production of finished aqueous foam with continuously adjustable proportioning
US20070125543A1 (en) Method and apparatus for centralized well treatment
US7090017B2 (en) Low cost method and apparatus for fracturing a subterranean formation with a sand suspension
CA2643743C (en) Method and apparatus for centralized proppant storage and metering
US20080236818A1 (en) Method and Apparatus for Controlling the Manufacture of Well Treatment Fluid
SA520410983B1 (ar) معدات تصدع هيدروليكي بقدرة غير هيدروليكية
US20070125544A1 (en) Method and apparatus for providing pressure for well treatment operations
US9222347B1 (en) Hydraulic fracturing system and method
CN105126669A (zh) 利用液态瓜胶实现连续混配系统及其混配工艺
US11148106B2 (en) Polymer dispersion system for use in a hydraulic fracturing operation
US20190233275A1 (en) Method and apparatus for metering flow during centralized well treatment
CN109622267A (zh) 一种移动式混凝土喷射机械手喷射物自动调节控制装置及方法
US20220403723A1 (en) Hydraulic fracturing blender system
WO2022205401A1 (zh) 压裂系统、压裂系统的控制系统和控制方法
CN205895246U (zh) 一种盾构用泡沫空气多段调节装置
RU2723791C1 (ru) Смесительно-зарядная система
US11834940B1 (en) System and method of controlling single or dual pump operation
CN215196704U (zh) 一种用于油田增产作业的压裂液制备的控制设备及系统
CN215464065U (zh) 一种压裂液在线混配撬装设备
US20220098941A1 (en) Device and method for continuous mixing of solid drag reducer
US11401759B2 (en) Horizontal directional drilling system and method of operating
CN109630895B (zh) 钻井压裂连续油管施工增压连续供液切换系统及使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934058

Country of ref document: EP

Kind code of ref document: A1