WO2022205225A1 - 电池及电子装置 - Google Patents

电池及电子装置 Download PDF

Info

Publication number
WO2022205225A1
WO2022205225A1 PCT/CN2021/084749 CN2021084749W WO2022205225A1 WO 2022205225 A1 WO2022205225 A1 WO 2022205225A1 CN 2021084749 W CN2021084749 W CN 2021084749W WO 2022205225 A1 WO2022205225 A1 WO 2022205225A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
layer
conductive
electrode assembly
metal
Prior art date
Application number
PCT/CN2021/084749
Other languages
English (en)
French (fr)
Inventor
闫东阳
曾巧
杨洪战
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202180003255.1A priority Critical patent/CN113826250A/zh
Priority to EP21933886.0A priority patent/EP4318747A1/en
Priority to PCT/CN2021/084749 priority patent/WO2022205225A1/zh
Publication of WO2022205225A1 publication Critical patent/WO2022205225A1/zh
Priority to US18/477,802 priority patent/US20240021966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/153Lids or covers characterised by their shape for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of battery manufacturing, and in particular, to a battery and an electronic device.
  • button batteries such as button batteries
  • insulating glue to bond the two shells of positive and negative electrodes, and play two roles of insulation and sealing at the same time.
  • the path and space for the glue material are increased, the volume energy density of the battery will decrease.
  • Embodiments of the present application provide a battery including a first conductive part, an electrode assembly, a second conductive part and a first layer
  • the first conductive part includes a concave part and a cover part
  • the concave part is connected to the cover part
  • the concave portion includes a first wall and a first side wall connected to the first wall
  • the electrode assembly is electrically connected to the first conductive portion, and is arranged in the concave portion
  • the second The conductive portion is electrically connected to the electrode assembly.
  • the second conductive portion overlaps with the electrode assembly, and the second conductive portion is located in the first conductive portion.
  • the conductive part includes a first surface and a second surface, the second surface faces away from the first conductive part, and the first layer includes a surface located between the first conductive part and the second conductive part and connected to the In the portion where the first surfaces meet, the first layer includes an insulating material.
  • the first layer is provided between the first conductive part and the second conductive part, so as to seal the space between the first conductive part and the second conductive part, and suppress the liquid, such as water vapor, from the first conductive part and the second conductive part.
  • the second conductive parts enter into the interior of the battery.
  • the first layer contains an insulating material, which can improve the situation that the electrical connection between the first conductive part and the second conductive part occurs, resulting in a short circuit of the battery. Meanwhile, disposing the first layer between the first conductive part and the second conductive part improves the sealing performance of the battery while maintaining the volume energy density of the battery.
  • the cover portion has an opening portion
  • the second conductive portion includes a first portion and a second portion protruding from the first portion, and viewed along the first direction, the At least part of the projection of the second portion coincides with the opening portion.
  • the second portion when viewed along a second direction, the second portion is disposed away from the opening portion, and the second direction is perpendicular to the first direction.
  • the first layer is in contact with the second part.
  • the first layer is provided separately from the second portion.
  • the first layer when viewed along the first direction, the first layer surrounds the second portion.
  • the second part has a third surface away from the first part, and the first layer is in contact with the third surface.
  • the second part has a third surface away from the first part, and the first layer is disposed away from the third surface.
  • the first portion is located outside the concave portion.
  • the cover portion includes a second wall surrounding the opening portion, and the first layer is in contact with the second wall.
  • the cover portion includes a fourth surface opposite to the first wall, and the first layer is in contact with the fourth surface.
  • the first layer is disposed away from the electrode assembly.
  • the first layer is in contact with the electrode assembly.
  • the cover portion includes a second wall, the cover portion has an opening portion, the second wall surrounds the opening portion, the first layer and the second wall connected.
  • the cover portion includes a fourth surface opposite to the first wall, and the first layer is in contact with the fourth surface.
  • the first layer when viewed along the first direction, includes a first region overlapping with the second conductive portion and a second region separated from the second conductive portion.
  • the battery further includes a second layer, the second layer includes an insulating material, and the second layer is disposed between the electrode assembly and the cover.
  • the electrode assembly includes a first pole piece and a first metal part connected to the first pole piece and the second conductive part, the second conductive part and the first metal part.
  • the metal part includes the same metal element
  • the first pole piece is a positive pole piece
  • the same metal element includes aluminum and/or manganese.
  • the electrode assembly includes a first pole piece and a first metal part connected to the first pole piece and the second conductive part, and the first metal part is connected to the second pole piece. Department connected.
  • the electrode assembly includes a second pole piece and a second metal part connected to the second pole piece and the first conductive part, the first conductive part and the second
  • the metal part includes the same metal element
  • the second pole piece is a negative pole piece
  • the same metal element includes at least one of iron, chromium, manganese, nickel or molybdenum.
  • the cover portion is located outside the concave portion.
  • the projected area of the second conductive portion is A1
  • the overlapping area of the projection of the second conductive portion and the projection of the cover portion is A2, Satisfy 1/5A1 ⁇ A2 ⁇ 4/5A1.
  • the first layer when viewed along the first direction, the first layer is disposed away from the opening.
  • the first layer when viewed along the first direction, is disposed away from the outer edge of the cover portion.
  • the second conductive portion includes a first portion and a second portion protruding from the first portion, and the second portion is connected to the electrode assembly through the opening portion.
  • the second portion viewed along the first direction, the second portion includes a second side wall and a first top surface surrounded by the second side wall, and the second side wall is along the first side wall. Tilt in one direction.
  • the included angle between the second side wall and the first top surface is an obtuse angle.
  • the electrode assembly includes a first metal portion, and the first metal portion is connected to the second conductive portion through the opening portion.
  • the second conductive portion includes a first portion and a second portion protruding from the first portion, and viewed along the first direction, the second portion includes a second side wall , and a first top surface surrounded by a second side wall, the second side wall is inclined along the first direction.
  • the included angle between the second side wall and the first top surface is an obtuse angle.
  • the battery further includes a second layer, the second layer includes an insulating material, and the second layer is disposed between the electrode assembly and the cover.
  • the electrode assembly further includes a second metal portion connected to the first wall.
  • the electrode assembly further includes a second metal portion connected to the first side wall.
  • the electrode assembly includes a first electrode layer, a second electrode layer and a third layer; the first electrode layer includes a first current collector and a first current collector formed on the first current collector. an active material, the second electrode layer includes a second current collector and a second active material formed on the second current collector, the third layer is disposed on the first electrode layer and the second electrode between the layers, and the third layer has insulating properties.
  • the first current collector includes a third region exposed from the first active material layer, and the third region passes between the second conductive portion and the first electrode layer. regional connection.
  • the first electrode layer further includes a first metal layer connected to the first current collector, the first metal part, the second conductive part and the first metal part are connected through the third area.
  • the second current collector includes a fourth region exposed from the second active material layer, and the second electrode layer further includes a second current collector connected to the second current collector. A metal part, the second metal part and the first wall are connected through the fourth region.
  • the second metal portion is in contact with the first side wall.
  • Embodiments of the present application further provide an electronic device, the electronic device including any one of the above-mentioned batteries.
  • the battery and electronic device provided by the present application, by arranging the first layer between the first conductive part and the second conductive part, the battery can be sealed, and the original volume energy density of the battery can be maintained at the same time.
  • FIG. 1 is a schematic three-dimensional structural diagram of a battery provided by a first embodiment of the present application.
  • FIG. 2 is a schematic top view of the battery shown in FIG. 1 .
  • FIG. 3 is a schematic cross-sectional view of the battery shown in FIG. 2 along the direction A-A.
  • FIG. 4 is a schematic cross-sectional view of the battery shown in FIG. 2 along the A-A direction in another embodiment.
  • FIG. 5 is a schematic cross-sectional view of the battery shown in FIG. 2 along the A-A direction in yet another embodiment.
  • FIG. 6 is a diagram showing a structure in which the polarity of the electrode assembly in the battery shown in FIG. 3 is reversed.
  • FIG. 7 is an exploded schematic view of the battery shown in FIG. 1 .
  • FIG. 8 is a schematic bottom view of the second conductive portion, the first layer, and the cover portion of the first conductive portion after assembly in FIG. 7 .
  • FIG. 9 shows the connection relationship between the first pole piece, the first metal part and the second conductive part on the basis of FIG. 2 .
  • FIG. 10 shows the connection relationship between the first pole piece and the first metal part on the basis of FIG. 2 .
  • FIG. 11 shows the connection relationship between the second pole piece, the second metal part and the first conductive part on the basis of the opposite direction to that of FIG. 2 .
  • FIG. 12 shows the connection relationship between the second pole piece and the second metal part on the basis of the opposite direction to that of FIG. 2 .
  • FIG. 13 is a schematic cross-sectional view of a battery in the second embodiment.
  • FIG. 14 is a schematic bottom view of the second conductive portion, the first layer, and the cover of the first conductive portion after assembly in FIG. 13 .
  • 15 is a schematic cross-sectional view of a battery in the third embodiment.
  • FIG. 16 is a schematic bottom view of the second conductive portion, the first layer and the cover portion of the first conductive portion after assembly in FIG. 15 .
  • FIG. 17 is a schematic cross-sectional view of the battery in the fourth embodiment.
  • FIG. 18 is a schematic cross-sectional view of the battery in the fifth embodiment.
  • FIG. 19 is a schematic bottom view of the second conductive portion, the first layer and the cover portion of the first conductive portion after assembly in FIG. 18 .
  • FIG. 20 is a schematic cross-sectional view of the battery in the sixth embodiment.
  • 21 is a schematic cross-sectional view of a battery in a seventh embodiment.
  • FIG. 22 is a schematic cross-sectional view of a battery in the eighth embodiment.
  • FIG. 23 is a schematic cross-sectional view of a battery in the ninth embodiment.
  • FIG. 24 is a schematic bottom view of the second conductive portion, the first layer, and the cover of the first conductive portion after assembly in FIG. 23 .
  • FIG. 25 is a schematic cross-sectional view of the battery in the tenth embodiment.
  • FIG. 26 is a schematic bottom view of the second conductive portion, the first layer, and the cover portion of the first conductive portion after assembly in FIG. 25 .
  • FIG. 27 is a schematic three-dimensional structure diagram of the battery in the eleventh embodiment.
  • FIG. 28 is a schematic top view of the battery shown in FIG. 27 .
  • FIG. 29 is a schematic cross-sectional view of the battery shown in FIG. 28 along the B-B direction.
  • FIG. 30 is an exploded schematic view of the battery shown in FIG. 27 .
  • FIG. 31 is a schematic bottom view of the second conductive portion, the first layer, and the cover of the first conductive portion after assembly in FIG. 30 .
  • FIG. 32 is based on FIG. 28 and shows the connection relationship between the first pole piece, the first metal part and the second conductive part.
  • FIG. 33 shows the connection relationship between the first pole piece and the first metal part on the basis of FIG. 28 .
  • FIG. 34 shows the connection relationship between the second pole piece, the second metal part and the first conductive part on the basis of FIG. 28 .
  • FIG. 35 shows the connection relationship between the second pole piece and the second metal part on the basis of FIG. 28 .
  • 36 is a schematic cross-sectional view of a battery in the twelfth embodiment.
  • 37 is a schematic cross-sectional view of a battery in the thirteenth embodiment.
  • 38 is a schematic cross-sectional view of a battery in the fourteenth embodiment.
  • 39 is a schematic cross-sectional view of a battery in the fifteenth embodiment.
  • 40 is a schematic cross-sectional view of the battery in the sixteenth embodiment.
  • FIG. 41 is a schematic bottom view of the two-dimensional code and the mark on the battery in the seventeenth embodiment.
  • FIG. 42 is a schematic bottom view of the battery in FIG. 41 with a two-dimensional code and another mark.
  • FIG. 43 is a schematic bottom view of the battery in FIG. 41 provided with a two-dimensional code and another mark.
  • FIG. 44 is a schematic three-dimensional structural diagram of the electronic device provided in the eighteenth embodiment.
  • the third side C is the third side C
  • the first electrode layer 33 is the first electrode layer 33
  • the first active material layer 332 is the first active material layer 332
  • the second active material layer 342 is the second active material layer 342
  • the third floor 35 is the third floor 35
  • the third part 80 is the third part 80
  • spatially relative terms such as “on” and the like, may be used herein for convenience of description to describe the relationship of one element or feature to another element(s) or feature(s) as illustrated in the figures. It will be understood that, in addition to the orientation depicted in the figures, spatially relative terms are intended to encompass different orientations of the device or apparatus in use or operation. For example, if the device in the figures is turned over, elements described as “above” or “over” other elements or features would then be oriented “below” or “beneath” the other elements or features. Thus, the exemplary term “upper” can include both an orientation of above and below. It will be understood that, although the terms first, second, third, etc.
  • Implementations of the present application provide a battery including a first conductive part, an electrode assembly, a second conductive part and a first layer, the first conductive part includes a concave part and a cover part, the concave part is connected to the cover part, and the concave part includes a first conductive part
  • the first conductive part includes a concave part and a cover part, the concave part is connected to the cover part, and the concave part includes a first conductive part
  • the wall and the first side wall connected to the first wall, the electrode assembly is electrically connected to the first conductive portion and is arranged in the recess, the second conductive portion is electrically connected to the electrode assembly, and viewed along the first direction, the second conductive portion
  • the electrode assembly has overlapping parts, and the second conductive part is located in the first conductive part, the second conductive part includes a first surface and a second surface, the second surface is away from the first conductive part, and the first layer includes the first conductive part and the second
  • the first layer is provided between the first conductive part and the second conductive part, so as to seal the space between the first conductive part and the second conductive part, and suppress the liquid, such as water vapor, from the first conductive part and the second conductive part.
  • the contents of the battery enter between the second conductive parts.
  • the first layer contains an insulating material, which can improve the situation that the electrical connection between the first conductive part and the second conductive part occurs, resulting in a short circuit of the battery. Meanwhile, disposing the first layer between the first conductive part and the second conductive part improves the sealing performance of the battery while maintaining the volume energy density of the battery.
  • Embodiments of the present application further provide an electronic device, where the electronic device includes the aforementioned battery.
  • the battery is used to provide electrical power to the electronic device to enable the electronic device to operate.
  • the battery also improves the sealing performance, so that the safety performance of the electronic device is improved when the battery is used.
  • a first embodiment of the present application provides a battery 100 including a first conductive part 10 , a second conductive part 20 , an electrode assembly 30 and a first layer 40 .
  • the preparation material of the first layer 40 includes a high molecular polymer.
  • the high molecular polymer includes polyethylene terephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (polyethylene, PE) or at least one of silicone rubber (Silicone rubber).
  • the electrode assembly 30 is disposed in the first conductive portion 10 and is electrically connected to the first conductive portion 10 , and the second conductive portion 20 is electrically connected to the electrode assembly 30 .
  • the first conductive portion 10 and the second conductive portion 20 jointly accommodate the electrode assembly 30 , so that the electrode assembly 30 is accommodated inside the battery 100 to protect the electrode assembly 30 .
  • the first layer 40 includes a part disposed between the first conductive part 10 and the second conductive part 20 , and the part of the first layer 40 is used to seal the connection between the first conductive part 10 and the second conductive part 20 .
  • the part of the first layer 40 seals the first conductive part 10 and the second conductive part 20 while still maintaining the original volumetric energy density of the battery 100 .
  • the first conductive portion 10 includes a concave portion 11 and a cover portion 12 , and the concave portion 11 is connected to the cover portion 12 .
  • the concave portion 11 is adapted to the electrode assembly 30 , which reduces the space occupied by the concave portion 11 and improves the space utilization of the battery 100 .
  • the cross-sectional shape of the concave portion 11 is not limited, and can also be replaced with other shapes according to specific needs.
  • the recessed portion 11 includes a first wall 111 and a first side wall 112 connected to the first wall 111 , the first wall 111 and the first side wall 112 are arranged substantially vertically, wherein “substantially vertical” should be understood as including the first wall 111 There is an included angle with the first side wall 112 , and the included angle ranges from ⁇ 5° to ⁇ 10°, and the first wall 111 is completely perpendicular to the first side wall 112 .
  • the electrode assembly 30 is disposed in the space formed by the first wall 111 and the first side wall 112 . Further, the electrode assembly 30 is disposed in the space surrounded by the first wall 111 , the first side wall 112 , the second conductive portion 20 and the first layer 40 .
  • the cover part 12 is in contact with the end of the first side wall 112 and is vertically arranged with the first side wall 112 , and the cover part 12 and the first wall 111 have overlapping parts, so that the cover part 12 can cover the electrode assembly of the part 12 30.
  • the cover 12 is located outside the recess 11 and includes a second wall 122 and an opening 121 .
  • the second wall 122 is in contact with the end of the first side wall 112 and is perpendicular to the first side wall 112 .
  • the opening 121 is formed by being surrounded by the second wall 122 .
  • the opening 121 can be formed at the center of the second wall 122 to facilitate the disposition of the second conductive portion 20 and the connection between the second conductive portion 20 and the electrode assembly 30 .
  • the cover portion 12 further includes a fourth surface D, which corresponds to the first wall 111 .
  • the fourth surface D is a surface corresponding to the second wall 122 and the first wall 111 , and the fourth surface D is closer to the electrode assembly 30 than the first layer 40 .
  • the position of the opening portion 121 is not limited to this, for example, it can also be provided at a position where the second wall 122 is close to the second side wall 221 .
  • the concave portion 11 and the cover portion 12 can be integrally formed, so that the first conductive portion 10 can be more easily manufactured. It can be understood that, in other implementations, the concave portion 11 and the cover portion 12 can also be replaced by independent structures connected to each other. Specifically, in an actual situation, the thickness of the first portion 21 in the Z direction is greater than the thickness of the first layer 40 (refer to FIG. 3 for details). However, in some cases, in order to make the battery 100 more suitable, the thickness of the first part 21 in the Z direction may also be equal to or smaller than the thickness of the first layer 40 .
  • the second conductive portion 20 overlaps with the electrode assembly 30 , and the second conductive portion 20 is located in the first conductive portion 10 .
  • the first direction is along the Z-axis direction.
  • the second conductive portion 20 and the electrode assembly 30 have overlapping portions, so that the second conductive portion 20 can cover part of the electrode assembly 30 .
  • the projection of the second conductive portion 20 is located in the first conductive portion 10 .
  • the projected area of the second conductive portion 20 is A1
  • the overlapping area of the projection of the second conductive portion 20 and the projection of the cover portion 12 is A2
  • the relationship between A1 and A2 satisfies 1/ 5A1 ⁇ A2 ⁇ 4/5A1
  • the volume energy density of the battery 100 can be further improved.
  • the second conductive portion 20 includes a first portion 21 and a second portion 22 protruding from the first portion 21 .
  • the first portion 21 has a sheet-like or plate-like structure and is arranged in parallel with the cover portion 12 , wherein the parallel arrangement refers to the first portion 22 . There is a slight included angle between the part 21 and the cover part 12 , for example, the range of the included angle is ⁇ 5°.
  • the first portion 21 is located outside the recessed portion 11 .
  • the first part 21 includes a first surface A and a second surface B, the first surface A is a surface close to the first conductive part 10 , and the second surface B is a surface away from the first conductive part 10 .
  • the second portion 22 protrudes from the first surface A toward the first conductive portion 10 .
  • the second conductive portion 20 and the electrode assembly 30 are connected at the position of the opening portion 121 , and further, the second conductive portion 20 is located outside the concave portion 11 , and the second conductive portion 20 It is provided so as to be separated from the opening portion 121 .
  • the projection of the second portion 22 at least partially overlaps with the opening portion 121 , and the second portion 22 is located in the opening portion 121 .
  • the second part 22 includes a third surface C, the third surface C is far from the first part 21 , that is, along the Z-axis direction, the third surface C is the lower end surface of the second part 22 , and the third surface C faces the electrode assembly 30 .
  • the second portion 22 includes a second side wall 221 and a first top surface 222 surrounded by the second side wall 221. Further, the first top surface 222 is equal to the third surface C, and the second side wall 221 is a side surface connected with the first surface A and the third surface C, the side surface is an inclined surface, and further, the side surface is inclined from the first surface A to the third surface C, so that the second part is narrow at the top and wide at the bottom. Structure. It can be understood that, in other embodiments, the second side wall 221 can also be a vertical surface.
  • the second portion 22 is a pole, and the pole has a cylindrical structure.
  • the first top surface 222 is perpendicular to the second side wall 221 .
  • the second side wall 221 is inclined along the Z-axis direction, the angle between the second side wall 221 and the first top surface 222 is an obtuse angle, and the second portion 22
  • the extension path of the first layer 40 is increased to improve the sealing performance of the battery 100 .
  • the second part 22 can also be replaced with other structures having equivalent functions or functions.
  • FIG. 8 The content shown in FIG. 8 is a schematic bottom view of the cover part 12 of the first conductive part 10 , the first layer 40 and the second conductive part 20 after assembly in FIG. 5 .
  • the cover part 12 covers the first layer 40 and part of the second conductive part 20, the second part 22 of the second conductive part 20 is located at the position of the opening part 121, the projection of the opening part 121 is larger than the projection of the second part 22, so as to reveal Part of the first portion 21 of the second conductive portion 20 is removed.
  • the first layer 40 is not in contact with the second part 22, so that the battery 100 has good exhaust performance.
  • the electrode assembly 30 is disposed in the first conductive portion 10 and connected to the first conductive portion 10 and the second conductive portion 20 respectively.
  • the electrode assembly 30 includes a first pole piece 31 , a second pole piece 32 and a third layer 35 , and the first pole piece 31 , the second pole piece 32 and the third layer 35 are stacked and wound. Specifically, after the first pole piece 31 , the second pole piece 32 and the third layer 35 are stacked and arranged, the stacked first pole piece 31 , the second pole piece 32 and the third layer 35 are then wound to form A coiled structure.
  • the electrode assembly 30 further includes a first metal part 311 and a second metal part 321.
  • the first metal part 311 is connected to the first pole piece 31 and the second conductive part 20 respectively. Further, the first metal part 311 and the second conductive part The second part 22 of 20 is connected.
  • the second metal part 321 is respectively connected with the second pole piece 32 and the first conductive part 10 , and further, the second metal part 321 is connected with the first wall 111 of the first conductive part 10 .
  • the first wall The 111 is made of conductive material, so that when the electrode assembly 30 is connected to the first conductive part 10 , the first wall 111 can be electrically connected to an external power-using device, and the first side wall 112 can be made of a conductive material.
  • the distance along the X-axis direction of the second metal portion 321 exceeds the central portion of the electrode assembly 30, and the distance along the X-axis direction exceeds the second portion 22.
  • Increasing the extension distance of the second metal portion 321 can increase the length of the second metal portion 321.
  • the contact area between the two metal parts 22 and the concave part 11 improves the stability of the connection between the two.
  • the second metal portion 321 can also be replaced with the first side wall 112 of the first conductive portion 10.
  • the first side wall 112 is made of conductive
  • the first side wall 112 can be electrically connected to an external electrical device, wherein the first wall 111 can be made of a conductive material.
  • the first pole piece 31 is a positive pole piece
  • the second pole piece 32 is a negative pole piece.
  • the first metal part 311 and the second conductive part 20 include the same metal element.
  • the first metal part 311 and the second part 22 of the second conductive part 20 are connected, the first metal part 311 and the second part 22 include the same metal element.
  • Metal elements the same metal elements are, for example, aluminum and/or manganese.
  • the second metal part 321 and the first conductive part 10 include the same metal element.
  • the first metal part 311 and the first wall 111 include the same metal element.
  • Metal elements, the same metal elements include, for example, at least one of iron, chromium, manganese, nickel or molybdenum.
  • the above-mentioned first pole piece 31 is composed of a metal piece and a conductive material layer coated on the metal piece. Further, the conductive material layer is an active material layer.
  • the metal sheets can be current collectors, as well as materials that can be used as current collectors.
  • the active material layer includes at least one of lithium cobalt oxide, lithium manganate, lithium iron phosphate, lithium iron manganese phosphate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate or lithium manganate nickel, and the positive electrode active material may be Doping and/or cladding.
  • a third layer 35 containing an insulating substance is arranged between the first pole piece 31 and the second pole piece 32, and the third layer 35 is used to separate the first pole piece 31 and the second pole piece 32 to avoid the first pole piece 35.
  • the contact between the tab 31 and the second pole tab 32 creates a risk of short circuit in the battery 100 .
  • the third layer 35 is an isolation film, and the isolation film includes at least one of polypropylene and polyethylene materials.
  • the first metal part 311 is connected to the second part 22 through the opening part 121 .
  • the end of the first metal portion 311 extends to the opening portion 121 and is connected to the second portion 22 to realize electrical communication between the electrode assembly 30 and the second conductive portion 20 .
  • the first metal portion 311 is a positive electrode tab
  • the second metal portion 321 is a negative electrode tab
  • the electrode assembly 30 is electrically connected to the first conductive portion 10 and the second conductive portion 20 through the tab.
  • the first pole piece 31 can also be a negative pole piece
  • the second pole piece 32 can be a positive pole piece.
  • the metal material included in the first metal part 311 and the second metal part 321 is not limited to this.
  • FIG. 9 The content shown in FIG. 9 is based on the angle of FIG. 2 and reflects the connection of the first pole piece 31 , the first metal part 311 and the second conductive part 20 , wherein the first pole piece 31 and The second pole piece 32 is represented by a dotted line, the first metal portion 311 is represented by a solid line with double dots and broken, and the second portion 22 is represented by a thin dot-dash line.
  • One end of the first metal part 311 is connected to the first pole piece 31 , the first metal part 311 is bent and extended and connected to the second conductive part 20 and connected to the second part 22 , and viewed from a top view, the second part 22 covers Part of the first metal part 311 .
  • FIG. 10 Please refer to FIG. 10 .
  • the content shown in FIG. 10 is based on the angle of FIG. 2 and reflects the connection of the first pole piece 31 and the first metal part 311 , wherein the first pole piece 31 and the second pole piece 32 use
  • the dotted line represents the first metal portion 311 is represented by a double-dotted solid line.
  • One end of the first metal portion 311 is connected to the first pole piece 31 , and the other end extends toward the second portion 22 along the X-axis direction.
  • FIG. 11 the content shown in FIG. 11 is based on the opposite direction to that of FIG. 2 , which reflects the connection of the second pole piece 32 , the second metal part 321 and the first conductive part 10 , that is, from the bottom view angle Observe, wherein, the first pole piece 31 and the second pole piece 32 are represented by dotted lines, and the second metal portion 321 is represented by a double-dotted solid line. One end of the second metal portion 321 is connected to the second pole piece 32 , and the second metal portion 321 is bent and extended and connected to the first wall 111 of the first conductive portion 10 .
  • FIG. 12 Please refer to FIG. 12 .
  • the content shown in FIG. 12 is based on the opposite direction to that of FIG. 2 , reflecting the connection between the second pole piece 32 and the second metal part 321 , that is, viewed from the bottom, wherein the first The pole piece 31 and the second pole piece 32 are represented by dashed lines, and the second metal portion 321 is represented by a solid line with double dots.
  • One end of the second metal portion 321 is connected to the second pole piece 32 , and the other end extends toward the second portion 22 in a direction opposite to the X axis.
  • the first layer 40 includes a portion provided between the first conductive portion 10 and the second conductive portion 20 , and the portion is provided on the first surface A, the cover portion 12 and the first conductive portion 20 .
  • the surface corresponding to the surface A is used to seal between the first conductive part 10 and the second conductive part 20 .
  • the first layer 40 includes an insulating material to isolate the first conductive portion 10 and the second conductive portion 20 and reduce the occurrence of electrical communication between the first conductive portion 10 and the second conductive portion 20 .
  • the first layer 40 includes a first region 41 overlapping with the second conductive portion 20 and a second region 42 away from the second conductive portion 20 .
  • the part of the first layer 40 between the first conductive part 10 and the second conductive part 20 is the first region 41 , and the first region 41 extends along the X-axis direction or in the direction opposite to the X-axis.
  • the region of layer 40 is the second region 42 .
  • the second region 42 increases the path for the first layer 40 to extend, and improves the sealing property of the battery 100 .
  • the first layer 40 is disposed away from the outer edge of the cover part 12 , that is, the second region 42 of the first layer 40 is located between the outer edge of the cover part 12 and the outer edge of the first part 21 .
  • the “outer edge” expressed here refers to the edge position, for example, the outer edge of the cover part 12 is the edge position where the cover part 12 connects with the recessed part 11 , and the outer edge of the first part 21 refers to the end of the first part 21 away from the second part 22 . edge position.
  • the first layer 40 is disposed on the first surface A of the cover portion 12 and the first portion 21 , along the second direction, for example, the second direction is along the X-axis direction, and the first layer 40 is separated from the opening portion 121
  • the first layer 40 does not extend to the opening portion 121 , and there is a gap between the first layer 40 and the second portion 22 .
  • the first layer 40 is arranged between the first conductive part 10 and the second conductive part 20 to seal the two, further, the cover part further includes a fifth surface E, and the first layer 40 is arranged on the first surface A and the fifth side E, thereby enhancing the safety of the battery 100 .
  • the first layer 40 extends to the opening portion 121 and is in contact with the second portion 22 , and the second portion 22 extends to the second side wall 221 of the second portion 22 .
  • the sealing performance of the battery 100 can be enhanced, and the entry of liquid, such as water vapor, into the interior of the battery 100 can be improved.
  • the first layer 40 surrounds the second portion 22 when viewed along the Z-axis. That is, along the Z-axis direction, the first layer 40 extends the same distance as the second sidewall 221 of the second portion 22, which further increases the space occupied by the first layer 40 and the extending distance along the Z-axis direction, thereby further increasing the The sealing performance of the battery 100 is greatly improved.
  • the first layer 40 is disposed away from the electrode assembly 30 . There is an interval between the first layer 40 and the electrode assembly 30 , so that other structures can be arranged at the interval, and the space utilization rate of the battery 100 is improved.
  • the first layer 40 is in contact with the electrode assembly 30 .
  • the first layer 40 extends toward the electrode assembly 30 until pressed against the surface of the electrode assembly 30 , so that the first layer 40 has a pressing force on the electrode assembly 30 , and the electrode assembly 30 is more stable when disposed in the first conductive portion 10 .
  • the battery 100 further includes a second layer 50 disposed between the electrode assembly 30 and the cover 12 , and the second layer 50 includes an insulating material.
  • the second layer 50 including the insulating material is provided between the electrode assembly 30 and the cover plate.
  • the second layer 50 is an insulating pad. It can be understood that, in other embodiments, the second layer 50 can also be replaced with a structure having the same function or function, for example, the second layer 50 can also be replaced with insulating paint, which is sprayed on the cover 12 or the electrode component 30.
  • FIG. 11 is a schematic cross-sectional view of the battery 100 in the second embodiment
  • FIG. 12 is the cover portion 12 , the first layer 40 and the second conductive portion 20 of the first conductive portion 10 in FIG. 11 Bottom view after assembly.
  • the structure of the battery 100 in the second embodiment is substantially the same as the structure of the battery 100 in the first embodiment, except that the second layer 50 is in contact with the third surface C of the second part 22 .
  • the first layer 40 extends a distance greater than the distance of the second sidewall 221 of the second portion 22, and the first layer 40 extends along the X-axis direction and the opposite direction along the X-axis, so that the first layer 40 and The third side C is connected.
  • the first layer 40 is in contact with a part of the third surface C, and a space is reserved so that the electrode assembly 30 can be connected with the second part 22 .
  • the first layer 40 is connected to the third surface C, when the battery 100 is placed in a preset environment for testing, for example, the battery 100 is fully charged to 4.2V, and placed in a 65°C, 90% humidity environment,
  • the electrode assembly 30 generates steam, and the steam pushes the first layer 40, so that the first layer 40 is pressed against the second conductive part 20, which improves the stability of the arrangement of the first layer 40, and the sealing performance of the battery 100 is better.
  • the voltage of the battery 100 is greater than 4.1V, and the performance of the electrode assembly 30 of the battery 100 is well maintained.
  • FIG. 15 is a schematic cross-sectional view of the battery 100 in the third embodiment
  • FIG. 16 is the cover portion 12 , the first layer 40 and the second conductive portion 20 of the first conductive portion 10 in FIG. 15 Bottom view after assembly.
  • the structure of the battery 100 in the third embodiment is substantially the same as the structure of the battery 100 in the first embodiment, the difference is that along the Z-axis direction, the distance of the first layer 40 extending is greater than the distance of the second sidewall 221 of the second portion 22 ,
  • the first layer 40 is disposed away from the third surface C, but directly faces the electrode assembly 30 , so as to increase the path and space for the first layer 40 to extend, thereby improving the sealing performance of the battery 100 .
  • FIG. 17 is a schematic cross-sectional view of the battery 100 in the fourth embodiment.
  • the structure of the battery 100 in the fourth embodiment is substantially the same as the structure of the battery 100 in the third embodiment, the difference is that the first layer 40 extends along the X-axis direction and the direction opposite to the X-axis to meet the fourth Face D is connected.
  • the first layer 40 is connected to the fourth surface D, when the battery 100 is placed in a preset environment for testing, for example, the battery 100 is fully charged to 4.2V, and placed in a 65°C, 90% humidity environment,
  • the electrode assembly 30 generates steam, and the steam pushes the first layer 40, so that the first layer 40 abuts on the cover 12 of the first conductive portion 10, which improves the stability of the arrangement of the first layer 40, and the sealing performance of the battery 100 is improved.
  • the voltage of the test battery 100 is greater than 4.1V, and the performance of the electrode assembly 30 of the battery 100 is well maintained.
  • FIG. 18 is a schematic cross-sectional view of the battery 100 in the fifth embodiment
  • FIG. 19 is the cover portion 12 , the first layer 40 and the second conductive portion 20 of the first conductive portion 10 in FIG. 18 Bottom view after assembly.
  • the structure of the battery 100 in the fifth embodiment is substantially the same as the structure of the battery 100 in the fourth embodiment. Face D is connected.
  • the first layer 40 is respectively connected to the third surface C and the fourth surface D.
  • the electrode assembly 30 When the battery 100 is placed in a preset environment for testing, for example, the battery 100 is fully charged to 4.2V, and placed at 65°C and 90°C. % humidity environment, the electrode assembly 30 generates steam, and the steam pushes the first layer 40, so that the first layer 40 abuts on the cover portion 12 of the first conductive portion 10 and the second portion 22 of the second conductive portion 20, The stability of the first layer 40 is further improved, and the sealing performance of the battery 100 is better. After 30 days, the voltage of the battery 100 is greater than 4.1V, and the performance of the electrode assembly 30 of the battery 100 is well maintained.
  • FIG. 20 is a schematic cross-sectional view of the battery 100 in the sixth embodiment.
  • the structure of the battery 100 in the sixth embodiment is substantially the same as that of the battery 100 in the fifth embodiment, except that the second portion 22 of the second conductive portion 20 is provided with the first layer 40 away from the first conductive portion 10 .
  • the second surface B of the first part 21 is provided with the first layer 40 , along the Z-axis direction, the first layer 40 provided on the second surface B and the second part 22 do not overlap, and opposite sides of the first part 21
  • the first layer 40 is provided in both, to increase the stability between the first layer 40 and the first part 21 , and to improve the sealing effect of the battery 100 .
  • FIG. 21 is a schematic cross-sectional view of the battery 100 in the seventh embodiment.
  • the structure of the battery 100 in the seventh embodiment is substantially the same as the structure of the battery 100 in the fifth embodiment, the difference is that the first layer 40 moves away from the second conductive part 20 from between the first conductive part 10 and the second conductive part 20
  • the second portion 22 extends along the surface of the cover portion 12 toward the outer sidewall of the concave portion 11 , and the extending portion of the first layer 40 is the second region 42 .
  • the outer side wall of the concave portion 11 is the surface of the concave portion 11 facing away from the electrode assembly 30 .
  • the extension path of the first layer 40 on the first conductive portion 10 is increased, the overall sealing performance is improved, and the possibility of liquid flowing into the interior of the battery 100 is reduced.
  • FIG. 22 is a schematic cross-sectional view of the battery 100 in the eighth embodiment.
  • the structure of the battery 100 in the eighth embodiment is substantially the same as the structure of the battery 100 in the seventh embodiment, the difference is that while the first layer 40 extends to the outer sidewall of the first conductive portion 10
  • the portion 21 faces away from the first conductive portion 10 and is provided with a first layer 40 , the first layer 40 extending along the X-axis direction and a distance opposite to the X-axis is flush with the first layer 40 on the outer sidewall of the first conductive portion 10 .
  • the arrangement of the first layer 40 in this embodiment further improves the sealing performance of the battery 100 .
  • FIG. 23 is a schematic cross-sectional view of the battery 100 in the ninth embodiment
  • FIG. 24 is the cover part 12 , the first layer 40 and the second conductive part 20 of the first conductive part 10 in FIG. 23 Bottom view of the assembled room.
  • the structure of the battery 100 in the ninth embodiment is substantially the same as the structure of the battery 100 in the first embodiment, the difference is that the first part 21 of the second conductive part 20 is located in the first conductive part 10 , for example, the first part 21 is located in the cover between the part 12 and the electrode assembly 30 .
  • the second part 22 protrudes from the opening part 121 in the direction away from the electrode assembly 30
  • the first layer 40 includes a part between the cover part 12 and the first part 21
  • the first layer is also provided on the outer side wall of the cover part 12 40
  • the first layer 40 is in contact with the second sidewall 221 of the second portion 22 .
  • the first metal part 311 is in contact with the first part 21 to realize electrical communication between the electrode assembly 30 and the second conductive part 20 .
  • the outer side wall of the cover portion 12 refers to the surface of the cover portion 12 facing away from the electrode assembly 30 .
  • the electrode assembly 30 When the battery 100 is placed in a preset environment for testing, for example, the battery 100 is fully charged to 4.2V, and placed in a 65°C, 90% humidity environment, the electrode assembly 30 generates steam, and the steam pushes the first part 21.
  • the first part 21 and the cover part 12 clamp the first layer 40 between them, increasing the tightness between the cover part 12, the first layer 40 and the first part 21, thereby improving the sealing of the battery 100 sex.
  • FIG. 25 is a schematic cross-sectional view of the battery 100 in the tenth embodiment
  • FIG. 26 is the cover portion 12 , the first layer 40 and the second conductive portion 20 of the first conductive portion 10 in FIG. 25 Bottom view after assembly.
  • the structure of the battery 100 in the tenth embodiment is substantially the same as the structure of the battery 100 in the ninth embodiment, the difference is that in the direction opposite to the Z-axis, the first layer 40 located on the outer side wall of the cover portion 12 extends for a greater distance than the second portion 22
  • the distance from the second side wall 221 of the first layer 40 is further extended to be flush with the outer side wall of the recess 11 along the X-axis direction and the opposite direction to the X-axis.
  • Part of the first layer 40 extends to the surface of the second part 22 away from the first part 21 , so that while the cover part 12 and the first part 21 clamp the first layer 40 , the first layer 40 can also be clamped on the cover part 12 to improve the sealing performance of the battery 100 .
  • FIG. 27 is a schematic three-dimensional structure diagram of the battery 100 in the eleventh embodiment
  • FIG. 28 is a top plan view of the battery 100 shown in FIG. 27
  • FIG. 29 is the battery shown in FIG. 28 100 is a schematic cross-sectional view along the B-B direction.
  • the structure of the battery 100 in the eleventh embodiment is substantially the same as the structure of the battery 100 in the fourth embodiment, the difference is that the second conductive part 20 in the eleventh embodiment does not have the second part 22 , but only includes the first part 21 , the first metal portion 311 is electrically connected to the first portion 21 through the opening portion 121 .
  • FIG. 30 is an exploded schematic view of the battery 100 shown in FIG. 27, wherein the dotted line in FIG. 30 is the structure of the first layer 40 which cannot be seen from the perspective of the exploded view
  • FIG. 31 is a schematic bottom view of the cover part 12 of the first conductive part 10 , the first layer 40 and the second conductive part 20 after assembly in FIG. 30 .
  • the first layer 40 is in contact with the fourth surface D of the cover portion 12 , so that the first layer 40 is clamped to the cover portion 12 , and the gap between the first layer 40 and the first conductive portion 10 is increased.
  • the stability of the connection improves the condition that the first layer 40 is separated from the first conductive portion 10 , thereby improving the sealing performance of the battery 100 .
  • FIG. 32 Please refer to FIG. 32 .
  • the content shown in FIG. 32 is based on the angle of FIG. 28 and reflects the connection of the first pole piece 31 , the first metal part 311 and the second conductive part 20 , wherein the first pole piece 31 and The second pole piece 32 is represented by a dashed line, the first metal portion 311 is represented by a solid line with two dots and broken, and the first portion 21 is represented by a thin solid line.
  • One end of the first metal portion 311 is connected to the first pole piece 31 , and the first metal portion 311 is bent and extended to be connected to the first portion 21 of the second conductive portion 20 .
  • FIG. 33 Please refer to FIG. 33 .
  • the content shown in FIG. 33 is based on the angle of FIG. 26 and reflects the connection of the first pole piece 31 and the first metal part 311 , wherein the first pole piece 31 and the second pole piece 32 adopt
  • the dotted line represents the first metal portion 311 is represented by a double-dotted solid line.
  • One end of the first metal portion 311 is connected to the first pole piece 31 , and the other end extends toward the second portion 22 along the X-axis direction.
  • FIG. 34 the content shown in FIG. 34 is based on the opposite direction to that of FIG. 28 , showing the connection of the second pole piece 32 , the second metal part 321 and the first conductive part 10 , that is, from a bottom view Observe, wherein, the first pole piece 31 and the second pole piece 32 are represented by dotted lines, and the second metal portion 321 is represented by a double-dotted solid line. One end of the second metal portion 321 is connected to the second pole piece 32 , and the second metal portion 321 is bent and extended and connected to the first wall 111 of the first conductive portion 10 .
  • FIG. 35 Please refer to FIG. 35 .
  • the content shown in FIG. 35 is based on the opposite direction to that of FIG. 28 , which reflects the connection between the second pole piece 32 and the second metal part 321 , that is, viewed from the bottom.
  • the pole piece 31 and the second pole piece 32 are represented by dashed lines, and the second metal portion 321 is represented by a solid line with double dots.
  • One end of the second metal portion 321 is connected to the second pole piece 32 , and the other end extends toward the second portion 22 in a direction opposite to the X axis.
  • FIG. 36 is a schematic cross-sectional view of the battery 100 in the twelfth embodiment.
  • the structure of the battery 100 in the twelfth embodiment is substantially the same as the structure of the battery 100 in the eleventh embodiment, the difference is that the first layer 40 is provided between the first part 21 and the cover part 12 , and is also provided on the first part 21 faces away from the surface of the cover portion 12 .
  • the first layer 40 extends along the X-axis direction and the opposite direction to the X-axis, and extends to be flush with the outer sidewall of the recess 11 .
  • the first layer 40 is clamped on the cover part 12, which increases the stability of the connection between the first layer 40 and the cover part 12.
  • the first layer 40 fixes the second conductive part 20, and lifts the electrode assembly 30 and the second conductive part.
  • the stability of the connection between the parts 20 increases the strength of the connection between the structures of the battery 100 when the sealing performance of the battery 100 is enhanced.
  • FIG. 37 is a schematic cross-sectional view of the battery 100 in the thirteenth embodiment.
  • the structure of the battery 100 in the thirteenth embodiment is substantially the same as the structure of the battery 100 in the twelfth embodiment, except that the first layer 40 provided between the first part 21 and the cover part 12 and the The portion 21 faces away from the first layer 40 of the cover portion 12 and extends along the X-axis direction for a distance that is flush with the outer edge of the first portion 21 .
  • the outer edge of the first portion 21 refers to the edge position of the first portion 21 away from the opening.
  • the first layer 40 is fastened to the cover 12 so that the battery 100 has a certain degree of sealing.
  • FIG. 38 is a schematic cross-sectional view of the battery 100 in the fourteenth embodiment.
  • the structure of the battery 100 in the fourteenth embodiment is substantially the same as the structure of the battery 100 in the eleventh embodiment, the difference is that the first layer 40 moves away from the second conductive portion from between the first conductive portion 10 and the second conductive portion 20
  • the first portion 21 of the portion 20 extends along the surface of the cover portion 12 toward the outer side wall of the recessed portion 11 .
  • the outer side wall of the concave portion 11 is the surface of the concave portion 11 facing away from the electrode assembly 30 .
  • the extension path of the first layer 40 on the first conductive portion 10 is increased, the overall sealing performance is improved, and the possibility of liquid flowing into the interior of the battery 100 is reduced.
  • FIG. 39 is a schematic cross-sectional view of the battery 100 in the fifteenth embodiment.
  • the structure of the battery 100 in the fifteenth embodiment is substantially the same as the structure of the battery 100 in the fourteenth embodiment.
  • a first layer 40 is provided on the first portion 21 facing away from the first conductive portion 10, and the first layer 40 extends along the X-axis direction and the distance opposite to the X-axis direction from the first layer 40 on the outer sidewall of the first conductive portion 10. flush.
  • the arrangement of the first layer 40 in this embodiment further improves the sealing performance of the battery 100 .
  • FIG. 40 is a schematic cross-sectional view of the battery 100 in the sixteenth embodiment.
  • the structure of the battery 100 in the sixteenth embodiment is substantially the same as that of the battery 100 in the first embodiment, except that the electrode assembly 30 includes a first electrode layer 33 , a second electrode layer 34 and a third layer 35 .
  • the first electrode layer 33 includes a first current collector 331 and a first active material layer 332 formed on the first current collector 331 .
  • the second electrode layer 34 includes a second current collector 341 and a second active material layer 342 formed on the second current collector 341 .
  • the third layer 35 is disposed between the first electrode layer 33 and the second electrode layer 34, and the third layer 35 has insulating properties.
  • the electrode assembly 30 is formed by winding the first electrode layer 33 , the second electrode layer 34 and the third layer 35 .
  • the first current collector 331 includes a third region 333 exposed from the first active material layer 332 , and the first conductive portion 10 and the first electrode layer 33 are connected through the third region 333 .
  • the second current collector 341 includes a fourth region 343 exposed from the second active material layer 342 , and the second conductive portion 20 and the second electrode layer 34 are connected through the fourth region 343 .
  • the first electrode layer 33 further includes a first metal part 334 connected to the first current collector 331 , and the first metal part 334 of the first electrode layer 33 and the second conductive part 20 are connected through a third region 333 .
  • the second electrode layer 34 further includes a second metal part 344 connected to the second current collector 341 , and the second metal part 344 of the second electrode layer 34 and the first wall 111 are connected through a fourth region 343 .
  • the second metal portion 344 of the second electrode layer 34 can also be replaced with the first sidewall 112 of the first conductive portion 10 to realize the connection between the second electrode layer 34 and the first conductive portion 10 . electrical connection between.
  • the first electrode layer 33 is equivalent to the first pole piece 31 in the first embodiment
  • the second electrode layer 34 is equivalent to the second pole piece 32 in the first embodiment
  • the third layer 35 is an isolation film for isolating the An electrode layer 33 and a second electrode layer 34 improve the contact between the first electrode layer 33 and the second electrode layer 34 .
  • FIG. 41 is a schematic bottom view of the battery 100 in the seventeenth embodiment.
  • the structure of the battery 100 in the seventeenth embodiment is substantially the same as the structure of the battery 100 in the first embodiment, except that in the seventeenth embodiment, the outer surface of the first wall 111 of the first conductive portion 10 is provided with a two-dimensional Code 60 and mark 70 , wherein the outer surface of the first wall 111 is the surface of the first wall 111 facing away from the electrode assembly 30 .
  • the outer surface of the first wall 111 further includes a third portion 80 , the third portion 80 is substantially disposed at the center O position of the first wall 111 , and the third portion 80 surrounds the center O position of the first wall 111 .
  • the two-dimensional code 60 is provided on the left side of the third part 80, and the mark 70 is provided on the upper, lower and right sides of the third part 80.
  • the mark 70 is text content, for example, the content can be related information related to the battery 100 , such as receiving basic information of the battery 100 .
  • the third portion 80 when the first wall 111 is viewed in the direction opposite to the Z axis, the third portion 80 includes an opening 81 , and the opening 81 is disposed opposite to the two-dimensional code 60 .
  • Setting the opening 81 can make it easier for the relevant staff or automated machines to identify the orientation of the battery 100.
  • the opening 81 is arranged opposite the two-dimensional code 60, so that the distance between the opening 81 and the two-dimensional code 60 can be closer, so that the relevant staff Or the automated machine recognizes the two-dimensional code 60 and the opening 81 in a shorter time.
  • the third part 80 is a metal layer, and the third part 80 adopts a metal layer to suppress the increase in resistance value during electrical connection when the first wall 111 of the battery 100 is connected to other wires or the like.
  • the two-dimensional code 60 stores information about the battery 100 , and the user can obtain the information by scanning the two-dimensional code 60 . Further, the two-dimensional code 60 can be formed by laser etching. Along the X-axis direction, the extended length of the two-dimensional code 60 is greater than the length of the third portion 80 along the X-axis direction.
  • FIG. 42 is a schematic bottom view of the battery 100 in FIG. 41 with the two-dimensional code 60 and another mark 70 . Wherein, the opening of the third part 80 is disposed in a direction away from the two-dimensional code 60 .
  • FIG. 43 is a schematic bottom view of the battery 100 in FIG. 40 with the two-dimensional code 60 and another mark 70 .
  • the opening of the third portion 80 is disposed toward the upper mark 70 .
  • FIG. 44 is an eighteenth embodiment of the present application.
  • the eighteenth embodiment provides an electronic device 200.
  • the electronic device 200 includes a main body 90 and a battery 100 disposed in the main body 90.
  • the battery 100 is any of the above The battery 100 in one embodiment.
  • the electronic device 200 includes the battery 100 in any of the above-mentioned embodiments, and thus has all the beneficial effects of the battery 100 , and details are not described herein again.
  • the electronic device 200 may be a mobile terminal, a smart wearable device, such as a Bluetooth headset or the like. It can be understood that, in other embodiments, the electronic device 200 is not limited to this, and can also be replaced with other structures.
  • the electronic device 200 is a Bluetooth headset
  • the body 90 is a headset structure.
  • the embodiment of the present application provides the battery 100 and the electronic device 200 , and the battery 100 seals the battery 100 by disposing the first layer 40 between the first conductive portion 10 and the second conductive portion 20 .
  • increasing the path and occupied space of the first layer 40 can further improve the sealing performance of the battery 100 .
  • the battery 100 still maintains the original volumetric energy density, thereby maintaining the battery 100 during use. stability and reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电池,包括第一导电部、电极组件、第二导电部和第一层,第一导电部包括凹部和盖部,凹部与盖部相接,且凹部包括第一壁以及与第一壁相接的第一侧壁,电极组件与第一导电部电连接,并配置于凹部内,第二导电部与电极组件电连接,沿第一方向观察,第二导电部与电极组件有重合部分,且第二导电部位于第一导电部内,第二导电部包括第一面和第二面,第二面背离第一导电部,第一层包括位于第一导电部和第二导电部之间的部分,且该部分设于第一面,第一层包含绝缘材料。本申请还涉及一种电子装置,通过采用上述的电池,其占用空间小,且使用的部件少易于制造。

Description

电池及电子装置 技术领域
本申请涉及电池制造技术领域,尤其涉及一种电池及电子装置。
背景技术
现有的扣式电池,如纽扣电池采用绝缘胶类物质粘接正负极两种外壳,同时起到绝缘和密封两种作用。若为了提升扣式电池的密封性而增加胶类物质设置的路径及空间,会造成电池体积能量密度的下降。
发明内容
有鉴于此,有必要提供一种电池及电子装置,旨在维持体积能量密度的情况下提升电池的密封性。
本申请的实施例提供一种电池,包括第一导电部、电极组件、第二导电部和第一层,所述第一导电部包括凹部和盖部,所述凹部与所述盖部相接,且所述凹部包括第一壁以及与所述第一壁相接的第一侧壁,所述电极组件与所述第一导电部电连接,并配置于所述凹部内,所述第二导电部与所述电极组件电连接,沿第一方向观察,所述第二导电部与所述电极组件有重合部分,且所述第二导电部位于所述第一导电部内,所述第二导电部包括第一面和第二面,所述第二面背离所述第一导电部,所述第一层包括位于所述第一导电部和所述第二导电部之间的且与所述第一面相接的部分,所述第一层包含绝缘材料。
采用上述的电池,将第一层设于第一导电部和第二导电部之间,以对第一导电部和第二导电部之间进行密封,抑制液体,例如水汽从第一导电部和第二导电部之间进入电池内部。第一层包含绝缘材料,能够改善第一导电部和第二导电部之间出现电连接,导致电池短路的情况。同时,设置第一层在第一导电部和第二导电部之间,维持电池的体积能量密度的情况下提升了电池的密封性。
一种可能实现的方式中,所述盖部具有开口部,所述第二导电部包括第一部和从所述第一部凸出的第二部,沿所述第一方向观察,所述第二部的投影至少有部分与所述开口部重合。
一种可能实现的方式中,沿第二方向观察,所述第二部离开所述开口部设置,所述第二方向垂直于所述第一方向。
一种可能实现的方式中,所述第一层与所述第二部相接。
一种可能实现的方式中,所述第一层与所述第二部分离设置。
一种可能实现的方式中,沿所述第一方向观察,所述第一层包围所述第二部。
一种可能实现的方式中,所述第二部具有远离所述第一部的第三面,所述第一层与所述第三面相接。
一种可能实现的方式中,所述第二部具有远离所述第一部的第三面,所述第一层以离开所述第三面的方式设置。
一种可能实现的方式中,所述第一部位于所述凹部外。
一种可能实现的方式中,所述盖部包括围设成所述开口部的第二壁,所述第一层与所述第二壁相接。
一种可能实现的方式中,所述盖部包括与所述第一壁相对的第四面,所述第一层与所述第四面相接。
一种可能实现的方式中,所述第一层以离开所述电极组件的方式设置。
一种可能实现的方式中,所述第一层与所述电极组件相接。
一种可能实现的方式中,所述盖部包括第二壁,且所述盖部具有开口部,所述第二壁围设成所述开口部,所述第一层与所述第二壁相接。
一种可能实现的方式中,所述盖部包括与所述第一壁相对的第四面,所述第一层与所述第四面相接。
一种可能实现的方式中,沿所述第一方向观察,所述第一层包括与所述第二导电部重合的第一区域和离开所述第二导电部的第二区域。
一种可能实现的方式中,所述电池还包括第二层,所述第二层包括绝缘材料,所述第二层设置于所述电极组件和所述盖部之间。
一种可能实现的方式中,所述电极组件包括第一极片和与所述第一极片及所述第二导电部连接的第一金属部,所述第二导电部和所述第一金属部包括相同的金属元素,所述第一极片为正极极片,所述相同的金属元素包括铝和/或锰。
一种可能实现的方式中,所述电极组件包括第一极片和与所述第一极片及所述第二导电部连接的第一金属部,所述第一金属部与所述第二部相接。
一种可能实现的方式中,所述电极组件包括第二极片和与所述第二极片和所述第一导电部连接的第二金属部,所述第一导电部和所述第二金属部包括相同的金属元素,所述第二极片为负极极片,所述相同的金属元素包括铁、铬、锰、镍或钼中的至少一种。
一种可能实现的方式中,所述盖部位于所述凹部外。
一种可能实现的方式中,沿所述第一方向观察,所述第二导电部的投影的面积为A1,所述第二导电部的投影与所述盖部的投影重合的面积为A2,满足1/5A1≤A2≤4/5A1。
一种可能实现的方式中,沿所述第一方向观察,所述第一层以离开所述开口部的方式设置。
一种可能实现的方式中,沿所述第一方向观察,所述第一层以离开所述盖部的外边缘的方式设置。
一种可能实现的方式中,所述第二导电部包括第一部和从所述第一部凸出的第二部,所述第二部通过所述开口部与所述电极组件连接。
一种可能实现的方式中,沿所述第一方向观察,所述第二部包括第二侧壁,及第二侧壁围设的第一顶面,所述第二侧壁沿所述第一方向倾斜。
一种可能实现的方式中,所述第二侧壁与所述第一顶面之间的夹角为钝角。
一种可能实现的方式中,所述电极组件包括第一金属部,所述第一金属部通过所述开口部与所述第二导电部连接。
一种可能实现的方式中,所述第二导电部包括第一部和从所述第一部凸出的第二部,沿所述第一方向观察,所述第二部包括第二侧壁,及第二侧壁围设的第一顶面,所述第二侧壁 沿所述第一方向倾斜。
一种可能实现的方式中,所述第二侧壁与所述第一顶面之间的夹角为钝角。
一种可能实现的方式中,所述电池还包括第二层,所述第二层包括绝缘材料,所述第二层设置于所述电极组件和所述盖部之间。
一种可能实现的方式中,所述电极组件还包括与所述第一壁相接的第二金属部。
一种可能实现的方式中,所述电极组件还包括与所述第一侧壁相接的第二金属部。
一种可能实现的方式中,所述电极组件包括第一电极层、第二电极层和第三层;所述第一电极层包括第一集流体和形成与所述第一集流体上的第一活性物质,所述第二电极层包括第二集流体和形成与所述第二集流体上的第二活性物质,所述第三层设置于所述第一电极层和所述第二电极层之间,且所述第三层具有绝缘性。
一种可能实现的方式中,所述第一集流体包括从所述第一活性物质层显露出的第三区域,所述第二导电部和所述第一电极层之间通过所述第三区域连接。
一种可能实现的方式中,所述第一电极层还包括与所述第一集流体连接的第一金属层,所述第一金属部,所述第二导电部和所述第一金属部之间通过所述第三区域连接。
一种可能实现的方式中,所述第二集流体包括从所述第二活性物质层显露出的第四区域,所述第二电极层还包括与所述第二集流体相接的第二金属部,所述第二金属部与所述第一壁之间通过所述第四区域连接。
一种可能实现的方式中,所述第二金属部与所述第一侧壁相接。
本申请的实施例还提供一种电子装置,所述电子装置包括上述中任一所述电池。
本申请提供的电池及电子装置,通过在第一导电部和第二导电部之间设置第一层,可对电池起到密封的作用,同时维持了电池原本的体积能量密度。
附图说明
图1为本申请第一实施例提供的电池的立体结构示意图。
图2为图1所示的电池的俯视示意图。
图3为图2所示的电池沿A-A方向的剖视示意图。
图4为图2所示的电池在另一实施例中沿A-A方向的剖视示意图。
图5为图2所示的电池在又一实施例中沿A-A方向的剖视示意图。
图6为显示与图3所示的电池中电极组件极性相反的结构。
图7为图1所示的电池的分解示意图。
图8为图7中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图9为在图2的基础上,体现第一极片、第一金属部与第二导电部的连接关系。
图10为在图2的基础上,体现第一极片与第一金属部的连接关系。
图11为在与图2相反方向的基础上,体现第二极片、第二金属部与第一导电部的连接关系。
图12为在与图2相反方向的基础上,体现第二极片与第二金属部的连接关系。
图13为在第二实施例中电池的剖视示意图。
图14为图13中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图15为在第三实施例中电池的剖视示意图。
图16为图15中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图17为第四实施例中电池的剖视示意图。
图18为第五实施例中电池的剖视示意图。
图19为图18中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图20为第六实施例中电池的剖视示意图。
图21为第七实施例中电池的剖视示意图。
图22为第八实施例中电池的剖视示意图。
图23为第九实施例中电池的剖视示意图。
图24为图23中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图25为第十实施例中电池的剖视示意图。
图26为图25中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图27为第十一实施例中电池的立体结构示意图。
图28为图27所示的电池的俯视示意图。
图29为图28所示的电池沿B-B方向的剖视示意图。
图30为图27所示的电池的分解示意图。
图31为图30中第二导电部、第一层及第一导电部的盖部之间组装后的仰视示意图。
图32为在图28的基础上,体现第一极片、第一金属部与第二导电部的连接关系。
图33为在图28的基础上,体现第一极片与第一金属部的连接关系。
图34为在图28的基础上,体现第二极片、第二金属部与第一导电部的连接关系。
图35为在图28的基础上,体现第二极片与第二金属部的连接关系。
图36为第十二实施例中电池的剖视示意图。
图37为第十三实施例中电池的剖视示意图。
图38为第十四实施例中电池的剖视示意图。
图39为第十五实施例中电池的剖视示意图。
图40为第十六实施例中电池的剖视示意图。
图41为第十七实施例中电池上设有二维码及标记的仰视示意图。
图42为图41中的电池设有二维码及另一标记的仰视示意图。
图43为图41中的电池设有二维码及又一标记的仰视示意图。
图44为第十八实施中提供的电子装置的立体结构示意图。
主要元件符号说明
电池                              100
第一导电部                        10
凹部                              11
第一壁                            111
第一侧壁                          112
盖部                              12
开口部                            121
第二壁                            122
第四面                            D
第五面                            E
第二导电部                        20
第一部                            21
第二部                            22
第二侧壁                          221
第一顶面                          222
第一面                            A
第二面                            B
第三面                            C
电极组件                          30
第一极片                          31
第一金属部                        311、334
第二极片                          32
第二金属部                        321、344
第一电极层                        33
第一集流体                        331
第一活性物质层                    332
第三区域                          333
第二电极层                        34
第二集流体                        341
第二活性物质层                    342
第四区域                          343
第三层                            35
第一层                            40
第一区域                          41
第二区域                          42
第二层                            50
二维码                            60
标记                              70
第三部                            80
开口                              81
中心                              O
电子装置                          200
本体                              90
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本申请的实施方式时使用“可”指“本申请的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本申请。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分,但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。
本申请的实施了提供一种电池,包括第一导电部、电极组件、第二导电部和第一层,第一导电部包括凹部和盖部,凹部与盖部相接,且凹部包括第一壁以及与第一壁相接的第一侧壁,电极组件与第一导电部电连接,并配置于凹部内,第二导电部与电极组件电连接,沿第一方向观察,第二导电部与电极组件有重合部分,且第二导电部位于第一导电部内,第二导电部包括第一面和第二面,第二面背离第一导电部,第一层包括位于第一导电部和第二导电部之间的且与第一面相接的部分,第一层包含绝缘材料。
采用上述的电池,将第一层设于第一导电部和第二导电部之间,以对第一导电部和第二导电部之间进行密封,抑制液体,例如水汽从第一导电部和第二导电部之间进入电池内容。第一层包含绝缘材料,能够改善第一导电部和第二导电部之间出现电连接,导致电池短路的情况。同时,设置第一层在第一导电部和第二导电部之间,维持电池的体积能量密度的情况下提升了电池的密封性。
本申请的实施例还提供一种电子装置,电子装置包括上述的电池。电池用以为电子装置提供电能,以使得电子装置能够运行。电池在维持原有的体积能量密度之外还提升了密封性,从而使得电子装置在采用该电池时安全性能提升。
下面将结合附图对一些实施例做出说明。在不冲突的情况下,下述的实施例及实施例中 的特征可以相互组合。
请参阅图1、图2和图3,本申请的第一实施例提供一种电池100,包括第一导电部10、第二导电部20、电极组件30和第一层40。在一实施例中,第一层40的制备材料包括高分子聚合物。在一实施例中,高分子聚合物包括聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)、聚酰亚胺(Polyimide,PI)、聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)或硅橡胶(Silicone rubber)中的至少一种。
电极组件30设于第一导电部10内,并与第一导电部10电连接,第二导电部20与电极组件30电连接。第一导电部10和第二导电部20共同收容电极组件30,使得电极组件30收容于电池100的内部,以对电极组件30进行保护。第一层40包括设于第一导电部10和第二导电部20之间的部分,该部分第一层40用于对第一导电部10和第二导电部20的连接处进行密封,采用该部分第一层40对第一导电部10和第二导电部20进行密封的同时,依然维持电池100原本的体积能量密度。
请参阅图3、图4和图7,第一导电部10包括凹部11和盖部12,凹部11与盖部12相连接。在一些实施例中,凹部11适配于电极组件30,减小凹部11所需占用的空间,提升电池100的空间利用率。
可以理解的是,在其他实施例中,凹部11的截面形状不限于,还可根据具体需要,替换为其他形状。
凹部11包括第一壁111以及与第一壁111相接的第一侧壁112,第一壁111与第一侧壁112大致垂直设置,其中,“大致垂直”应理解为包括第一壁111与第一侧壁112之间存在夹角的情况,该夹角的范围为±5°至±10°,以及第一壁111与第一侧壁112完全垂直的情况。电极组件30设置于第一壁111和第一侧壁112形成的空间内。进一步地,电极组件30设置于第一壁111、第一侧壁112、第二导电部20与第一层40所围设的空间内。
盖部12与第一侧壁112的端部相接,且与第一侧壁112垂直设置,盖部12与第一壁111存在重合的部分,以使得盖部12能够遮盖部12分电极组件30。
盖部12位于凹部11外,且包括第二壁122和开口部121,所述第二壁122与第一侧壁112的端部相接,且与第一侧壁112垂直设置。开口部121通过第二壁122围设形成,开口部121可形成于第二壁122的中心位置处,以便于第二导电部20的设置及第二导电部20与电极组件30的连接。
盖部12还包括第四面D,第四面D与第一壁111相对应。具体的,第四面D为第二壁122与第一壁111相对应的面,第四面D相较于第一层40更靠近电极组件30。
可以理解的是,在其他实施例中,开口部121的位置不限于此,例如,还可将其设置在第二壁122靠近第二侧壁221的位置处。
在一实施例中,凹部11和盖部12可为一体成型结构,以使第一导电部10能够更加便于制造。可以理解的是,在其他实施了中,凹部11和盖部12也可替换为相互连接的独立结构。具体的,在实际情况中,第一部21在Z方向上的厚度是大于第一层40的厚度的(具体可参照图3)。但一些情况中,为了使得电池100更加适用,第一部21在Z方向上的厚度也可等于或者小于第一层40的厚度。
请参阅图3、图4和图7,为了更好的对电池100的结构进行说明,将结合X、Y、Z坐 标轴对其进行说明,X、Y、Z坐标轴两两垂直。沿第一方向观察,第二导电部20与电极组件30有重合的部分,且第二导电部20位于第一导电部10内。其中,第一方向为沿Z轴方向。沿Z轴方向观察电池100,第二导电部20与电极组件30存在重合的部分,使得第二导电部20能够遮盖部分电极组件30。同时,沿Z轴方向观察电池100,第二导电部20的投影位于第一导电部10内,即沿Z轴方向观察,第二导电部20的面积小于第一导电部10的面积。
在一些实施例中,沿Z轴方向观察,第二导电部20的投影面积为A1,第二导电部20的投影与盖部12的投影重合的面积为A2,A1与A2之间满足1/5A1≤A2≤4/5A1,可以进一步提升电池100的体积能量密度。
第二导电部20包括第一部21和从第一部21凸出的第二部22,第一部21呈片状或板状结构,且与盖部12平行设置,其中,平行设置指第一部21与盖部12之间存在微小的夹角,例如夹角的范围为±5°。在该实施例中,第一部21位于凹部11外。进一步地,第一部21包括第一面A和第二面B,第一面A为靠近第一导电部10的面,第二面B为背离第一导电部10的面。第二部22从第一面A朝第一导电部10凸出。
请参阅图5,沿Z轴方向观察,第二导电部20和电极组件30通过在开口部121位置处连接,进一步的,第二导电部20位于凹部11的外侧,并且,第二导电部20以离开开口部121设置。第二部22的投影至少有部分与开口部121重合,且第二部22位于开口部121内。当第一导电部10和第二导电部20组装后,第二部22从开口部121凸伸入第一导电部10中,以能够与设于第一导电部10内的电极组件30连接。第二部22包括第三面C,第三面C远离第一部21,即沿Z轴方向,第三面C为第二部22的下端面,且第三面C朝向电极组件30。在一实施例中,第二部22包括第二侧壁221及第二侧壁221围设的第一顶面222,进一步地,第一顶面222等同于第三面C,第二侧壁221为与第一面A和第三面C连接的侧表面,该侧表面为斜面,进一步地,该侧表面由第一面A向第三面C倾斜,使得第二部呈上窄下宽的结构。可以理解的是,在其他实施例中,第二侧壁221也可为竖直的表面。
在一些实施例中,第二部22为极柱,极柱呈圆柱体结构,沿Z轴方向观察,第一顶面222与第二侧壁221垂直设置。例如,在另一实施例中,第二侧壁221沿Z轴方向倾斜,第二侧壁221与第一顶面222之间的夹角为钝角,第二部22呈圆台状结构,以在设置第一层40时,增加第一层40的延伸路径,提升电池100的密封性能。
可以理解的是,在其他实施例中,第二部22还可替换为其他具有等同功效或作用的结构。
请参阅图8,图8所示的内容为图5中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。盖部12遮盖住了第一层40和部分第二导电部20,第二导电部20的第二部22位于开口部121位置处,开口部121的投影大于第二部22的投影,从而显露出部分第二导电部20的第一部21。此图示中,第一层40未与第二部22相接,从而使得电池100具有良好的排气性能。
请参阅图3和图7,电极组件30设于第一导电部10内,且分别与第一导电部10和第二导电部20连接。电极组件30包括第一极片31、第二极片32和第三层35,第一极片31、第二极片32和第三层35层叠卷绕设置。具体的,在第一极片31、第二极片32及第三层35层叠设置后,再将层叠的第一极片31、第二极片32及第三层35进行卷绕,从而形成呈卷绕 形的结构。电极组件30还包括第一金属部311和第二金属部321,第一金属部311分别与第一极片31和第二导电部20连接,进一步地,第一金属部311与第二导电部20的第二部22连接。第二金属部321分别与第二极片32和第一导电部10连接,进一步地,第二金属部321与第一导电部10的第一壁111连接,在该实施例中,第一壁111采用导电材料制成,以在电极组件30与第一导电部10连接时,第一壁111可与外部用电的装置实现电连接,而第一侧壁112可采用导电材料制成。其中,第二金属部321沿X轴方向延伸的距离超过电极组件30的中心部,另外,沿X轴方向延伸的距离超过第二部22,增加第二金属部321的延伸距离,可增加第二金属部22与凹部11的接触面积,提升二者之间连接的稳定性。
在一实施例中,第二金属部321还可替换为与第一导电部10的第一侧壁112连接,在该实施例中,第一侧壁112采用导电材料制成,以在电极组件30与第一导电部10连接时,第一侧壁112可与外部用电装置实现电连接,其中,第一壁111可采用导电材料制成。
第一极片31为正极极片,第二极片32为负极极片。第一金属部311和第二导电部20包括相同的金属元素,当第一金属部311与第二导电部20的第二部22连接时,第一金属部311与第二部22包括相同的金属元素,相同的金属元素例如为铝和/或锰。第二金属部321与第一导电部10包括相同的金属元素,当第二金属部321与第一导电部10的第一壁111连接时,第一金属部311与第一壁111包括相同的金属元素,相同的金属元素例如包括铁、铬、锰、镍或钼中的至少一种。
上述的第一极片31由金属片及在金属片上涂覆导电材料层构成,进一步地,导电材料层为活性物质层。金属片可为集流体,以及可用于作为集流体的材料。其中,活性物质层包括钴酸锂、锰酸锂、磷酸铁锂、磷酸锰铁锂、镍钴锰酸锂、镍钴铝酸锂或镍锰酸锂中的至少一种,上述正极活性材料可以经过掺杂和/或包覆处理。
进一步地,第一极片31和第二极片32之间设置含有绝缘物质的第三层35,第三层35用以隔开第一极片31和第二极片32,避免第一极片31和第二极片32相接触而造成电池100发生短路的风险。在一实施例中,第三层35为隔离膜,隔离膜包括聚丙烯、聚乙烯材料中的至少一种。
在一些实施例中,第一金属部311通过开口部121与第二部22连接。第二部22位于开口部121时,第一金属部311的端部延伸至开口部121并与第二部22连接,以实现电极组件30与第二导电部20的电连通。
第一金属部311为正极极耳,第二金属部321为负极极耳,电极组件30通过极耳与第一导电部10和第二导电部20之间实现电连通。
请参阅图6,可以理解的是,在其他实施例中,第一极片31还可为负极极片,第二极片32可为正极极片。第一金属部311和第二金属部321所包括的金属材料也不限于此。
请参阅图9,图9所示的内容为在图2角度的基础上,体现第一极片31、第一金属部311和第二导电部20的连接情况,其中,第一极片31和第二极片32采用虚线表示,第一金属部311采用双点加断实线表示,第二部22采用细点划线表示。第一金属部311的一端与第一极片31连接,第一金属部311弯折延伸后与第二导电部20连接第二部22连接,且从俯视的角度观察,第二部22遮盖住部分第一金属部311。
请参阅图10,图10所示的内容为在图2角度的基础上,体现第一极片31和第一金属 部311的连接情况,其中,第一极片31和第二极片32采用虚线表示,第一金属部311采用双点加断实线表示。第一金属部311的一端与第一极片31连接,另一端沿X轴方向向第二部22延伸。
请参阅图11,图11所示的内容为在与图2角度相反方向的基础上,体现第二极片32、第二金属部321和第一导电部10的连接情况,即从仰视的角度观察,其中,第一极片31和第二极片32采用虚线表示,第二金属部321采用双点加断实线表示。第二金属部321的一端与第二极片32连接,第二金属部321弯折延伸后与第一导电部10的第一壁111连接。
请参阅图12,图12所示的内容为在与图2角度相反方向的基础上,体现第二极片32与第二金属部321的连接情况,即从仰视的角度观察,其中,第一极片31和第二极片32采用虚线表示,第二金属部321采用双点加断实线表示。第二金属部321的一端与第二极片32连接,另一端沿与X轴相反的方向向第二部22延伸。
请参阅图3、图4和图7,第一层40包括设于第一导电部10和第二导电部20之间的部分,且该部分设于第一面A和盖部12与第一面A相对应的表面,以对第一导电部10和第二导电部20之间进行密封。第一层40包括绝缘材料,以隔绝第一导电部10和第二导电部20,减少第一导电部10和第二导电部20之间出现电连通的情况。
,在一些实施例中,沿Z轴方向,第一层40包括与第二导电部20重合的第一区域41和离开第二导电部20的第二区域42。例如,第一层40位于第一导电部10和第二导电部20之间的部分为第一区域41,从第一区域41沿X轴方向或沿与X轴相反的方向延伸出的第一层40的区域为第二区域42。第二区域42增加了第一层40延伸的路径,提升了电池100的密封性。
进一步地,第一层40以离开盖部12外边缘的方式设置,即第一层40的第二区域42位于盖部12外边缘和第一部21的外边缘之间。此处所表述的“外边缘”指边沿位置,例如,盖部12的外边缘为盖部12与凹部11连接处的边沿位置,第一部21的外边缘指其远离第二部22的端部的边沿位置。
请参阅图3,第一层40设于盖部12和第一部21的第一面A,沿第二方向,例如,第二方向为沿X轴方向,第一层40以离开开口部121的方式设置,即第一层40未延伸至开口部121,第一层40与第二部22之间存在间隔。将第一层40设于第一导电部10和第二导电部20之间对二者进行密封之外,进一步地,盖部还包括第五面E,第一层40设置在第一面A和第五面E之间,从而加强电池100的安全性。
请参阅图4,沿X轴方向,第一层40延伸至开口部121,并与第二部22相接,,第二部22延伸至第二部22的第二侧壁221上。通过增加第一层40延伸的路径及增加第一层40所占用的空间,能够加强电池100的密封性,改善液体,例如水汽等进入电池100内部。
在一些实施例中,沿Z轴方向观察,第一层40包围第二部22。即沿Z轴方向,第一层40延伸的距离与第二部22的第二侧壁221的距离相同,进一步增加第一层40所占用的空间,及沿Z轴方向延伸的距离,从而进一步地提升了电池100的密封性能。
请参阅图4,在该实施例中,第一层40以离开电极组件30的方式设置。第一层40与电极组件30之间存在间隔,以能够在该间隔处设置其他结构,提升电池100的空间利用率。
在一些实施例中,第一层40与电极组件30相接。第一层40朝电极组件30延伸直至压 在电极组件30的表面,以使第一层40对电极组件30具有压紧力,电极组件30设于第一导电部10内时更加稳固。
请参阅图3和图4,在一些实施例中,电池100还包括第二层50,第二层50设置于电极组件30和盖部12之间,且第二层50包括绝缘材料。将包括有绝缘材料的第二层50设于电极组件30和盖板之间,当盖部12采用导电材料制成时,能够改善电极组件30与盖部12接触而出现短路的情况。
进一步地,第二层50为绝缘垫。可以理解的是,在其他实施例中,第二层50还可替换为具有等同功效或作用的结构,例如,还可将第二层50替换为绝缘漆,将其喷涂于盖部12或电极组件30上。
请参阅图13和图14,图11为在第二实施例中电池100的剖视示意图,图12为图11中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。第二实施例中的电池100结构与第一实施例中电池100结构大致相同,区别在于,第二层50与第二部22的第三面C相接。沿Z轴方向,第一层40延伸的距离大于第二部22的第二侧壁221的距离,且第一层40沿X轴方向及沿X轴相反的方向延伸,使得第一层40与第三面C相接。例如,第一层40与部分第三面C相接,而预留出空间,使得电极组件30能够与第二部22连接。
将第一层40与第三面C相接,当电池100放到预设的环境中进行测试时,例如,将电池100充满到4.2V,且放置在65℃、90%的湿度环境中,电极组件30产生蒸汽,蒸汽顶推第一层40,使得第一层40抵持于第二导电部20上,提升了第一层40设置的稳定性,电池100的密封性能更好,在30天后测试电池100的电压大于4.1V,电池100的电极组件30的性能维持的较好。
请参阅图15和图16,图15为在第三实施例中电池100的剖视示意图,图16为图15中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。第三实施例中的电池100结构与第一实施例中电池100结构大致相同,区别在于,沿Z轴方向,第一层40延伸的距离大于第二部22中第二侧壁221的距离,且第一层40以离开第三面C的方式设置,而是直接朝向电极组件30,以增加第一层40延伸的路径及空间,从而提升电池100的密封性能。
请参阅图17,图17为在第四实施例中电池100的剖视示意图。第四实施例中的电池100结构与第三实施例中的电池100结构大致相同,区别在于,第一层40沿X轴方向及与X轴相反的方向延伸,以与盖部12的第四面D相接。
将第一层40与第四面D相接,当电池100放到预设的环境中进行测试时,例如,将电池100充满到4.2V,且放置在65℃、90%的湿度环境中,电极组件30产生蒸汽,蒸汽顶推第一层40,使得第一层40抵持于第一导电部10的盖部12上,提升了第一层40设置的稳定性,电池100的密封性能更好,在30天后测试电池100的电压大于4.1V,电池100的电极组件30的性能维持的较好。
请参阅图18和图19,图18为在第五实施例中电池100的剖视示意图,图19为图18中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。第五实施例中的电池100结构与第四实施例中电池100结构大致相同,区别在于,第一层40同时与第 二部22的第三面C相接,及与盖部12的第四面D相接。
将第一层40分别与第三面C和第四面D相接,当电池100放到预设的环境中进行测试时,例如,将电池100充满到4.2V,且放置在65℃、90%的湿度环境中,电极组件30产生蒸汽,蒸汽顶推第一层40,使得第一层40抵持于第一导电部10的盖部12和第二导电部20的第二部22上,进一步提升了第一层40设置的稳定性,电池100的密封性能更好,在30天后测试电池100的电压大于4.1V,电池100的电极组件30的性能维持的较好。
请参阅图20,图20为在第六实施例中电池100的剖视示意图。第六实施例中的电池100结构与第五实施例中的电池100结构大致相同,区别在于,第二导电部20的第二部22背离第一导电部10设有第一层40。第一部21的第二面B设有第一层40,沿Z轴方向,设于第二面B的第一层40与第二部22之间未重叠,第一部21的相对两侧均设置第一层40,增加第一层40与第一部21之间的稳定性,提升电池100的密封效果。
请参阅图21,图21为在第七实施例中电池100的剖视示意图。第七实施例中的电池100结构与第五实施例中的电池100结构大致相同,区别在于,第一层40从第一导电部10和第二导电部20之间向远离第二导电部20的第二部22延伸,且沿着盖部12的表面向凹部11的外侧壁延伸,第一层40延伸的部分为第二区域42。其中,凹部11的外侧壁为凹部11背离电极组件30的表面。第一层40在第一导电部10上延伸的路径增加,提升整体的密封性,减少液体流入电池100内部的可能性。
请参阅图22,图22为第八实施例中电池100的剖视示意图。第八实施例中电池100结构与第七实施例中的电池100结构大致相同,区别在于,第一层40延伸至第一导电部10的外侧壁上的同时,第二导电部20的第一部21背离第一导电部10设有第一层40,该第一层40沿X轴方向及与X轴相反方向延伸的距离与第一导电部10外侧壁上的第一层40平齐。该实施例中第一层40的设置,进一步提升了电池100的密封性能。
请参阅图23和图24,图23为第九实施例中电池100的剖视示意图,图24为图23中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。第九实施例中电池100结构与第一实施例中的电池100结构大致相同,区别在于,第二导电部20的第一部21位于第一导电部10内,例如,第一部21位于盖部12和电极组件30之间。第二部22沿背离电极组件30的方向从开口部121凸出,第一层40包括位于盖部12和第一部21之间的部分,盖部12的外侧壁上也设有第一层40,第一层40与第二部22的第二侧壁221相接。第一金属部311与第一部21相接,以实现电极组件30与第二导电部20之间的电连通。其中,盖部12的外侧壁指盖部12背离电极组件30的表面。
当将电池100放到预设的环境中进行测试时,例如,将电池100充满到4.2V,且放置在65℃、90%的湿度环境中,电极组件30产生蒸汽,蒸汽顶推第一部21,第一部21和盖部12夹紧位于二者之间的第一层40,增加了盖部12、第一层40和第一部21之间的紧密型,从而提升电池100的密封性。
请参阅图25和图26,图25为在第十实施例中电池100的剖视示意图,图26为图25中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。第十实施例中的电池100结构与第九实施中电池100结构大致相同,区别在于,沿与Z轴相反的方向,位于盖部12外侧壁的第一层40延伸的距离大于第二部22的第二侧壁221的距离,且沿X轴 方向及与X轴相反的方向,第一层40进一步延伸至与凹部11的外侧壁平齐。部分第一层40延伸至第二部22背离第一部21的表面,从而使得盖部12和第一部21夹紧第一层40的同时,第一层40也能卡持于盖部12的相对两表面,以提升电池100的密封性。
请参阅图27、图28和图29,图27为第十一实施例中电池100的立体结构示意图,图28为图27所示的电池100的俯视示意图,图29为图28所示的电池100沿B-B方向的剖视示意图。第十一实施例中的电池100结构与第四实施例中的电池100结构大致相同,区别在于,第十一实施例中第二导电部20未设有第二部22,仅包括第一部21,第一金属部311通过开口部121与第一部21电连接。
请参阅图29、图30和图31,图30为图27所示的电池100的分解示意图,其中,图30中的虚线为从该分解图的角度无法看到的第一层40的结构,图31为图30中第一导电部10的盖部12、第一层40和第二导电部20之间组装后的仰视示意图。与第四实施例相同,第一层40与盖部12的第四面D相接,从而使得第一层40卡紧于盖部12,增加了第一层40与第一导电部10之间连接的稳定性,改善第一层40脱离第一导电部10的情况,从而提升电池100的密封性。
请参阅图32,图32所示的内容为在图28角度的基础上,体现第一极片31、第一金属部311和第二导电部20的连接情况,其中,第一极片31和第二极片32采用虚线表示,第一金属部311采用双点加断实线表示,第一部21采用细实线表示。第一金属部311的一端与第一极片31连接,第一金属部311弯折延伸后与第二导电部20连接第一部21连接。
请参阅图33,图33所示的内容为在图26角度的基础上,体现第一极片31和第一金属部311的连接情况,其中,第一极片31和第二极片32采用虚线表示,第一金属部311采用双点加断实线表示。第一金属部311的一端与第一极片31连接,另一端沿X轴方向向第二部22延伸。
请参阅图34,图34所示的内容为在与图28角度相反方向的基础上,体现第二极片32、第二金属部321和第一导电部10的连接情况,即从仰视的角度观察,其中,第一极片31和第二极片32采用虚线表示,第二金属部321采用双点加断实线表示。第二金属部321的一端与第二极片32连接,第二金属部321弯折延伸后与第一导电部10的第一壁111连接。
请参阅图35,图35所示的内容为在与图28角度相反方向的基础上,体现第二极片32与第二金属部321的连接情况,即从仰视的角度观察,其中,第一极片31和第二极片32采用虚线表示,第二金属部321采用双点加断实线表示。第二金属部321的一端与第二极片32连接,另一端沿与X轴相反的方向向第二部22延伸。
请参阅图36,图36为第十二实施例中电池100的剖视示意图。第十二实施例中电池100的结构与第十一实施例中的电池100结构大致相同,区别在于,第一层40设于第一部21和盖部12之间,还设置在第一部21背离盖部12的表面。第一层40沿X轴方向及与X轴相反的方向延伸,且延伸至与凹部11的外侧壁平齐。第一层40卡紧于盖部12上,增加了第一层40与盖部12之间连接的稳定性,同时,第一层40固定第二导电部20,提升电极组件30与第二导电部20之间连接的稳定性,在加强电池100密封性时,也加强了电池100结构之间各结构之间连接的强度。
请参阅图37,图37为第十三实施例中电池100的剖视示意图。第十三施例中电池100 的结构与第十二施例中的电池100结构大致相同,区别在于,设于第一部21和盖部12之间的第一层40,以及设于第一部21背离盖部12的第一层40,沿X轴方向,延伸的距离与第一部21的外边缘平齐。其中,第一部21的外边缘,指的是第一部21远离开口的边沿位置。
第一层40卡紧于盖部12,使得电池100具有一定的密封性。
请参阅图38,图38为第十四实施例中电池100的剖视示意图。第十四施例中电池100的结构与第十一施例中的电池100结构大致相同,区别在于,第一层40从第一导电部10和第二导电部20之间向远离第二导电部20的第一部21延伸,且沿着盖部12的表面向凹部11的外侧壁延伸。其中,凹部11的外侧壁为凹部11背离电极组件30的表面。第一层40在第一导电部10上延伸的路径增加,提升整体的密封性,减少液体流入电池100内部的可能性。
请参阅图39,图39为第十五实施例中电池100的剖视示意图。第十五施例中电池100的结构与第十四施例中的电池100结构大致相同,区别在于,第一层40延伸至第一导电部10的外侧壁上的同时,第二导电部20的第一部21背离第一导电部10设有第一层40,该第一层40沿X轴方向及与X轴相反方向延伸的距离与第一导电部10外侧壁上的第一层40平齐。该实施例中第一层40的设置,进一步提升了电池100的密封性能。
请参阅图40,图40为第十六实施例中电池100的剖视示意图。第十六施例中电池100的结构与第一施例中的电池100结构大致相同,区别在于,电极组件30包括第一电极层33、第二电极层34和第三层35。第一电极层33包括第一集流体331和形成于第一集流体331上的第一活性物质层332。第二电极层34包括第二集流体341和形成于第二集流体341上的第二活性物质层342。第三层35设置于第一电极层33和第二电极层34之间,且第三层35具有绝缘性。电极组件30通过第一电极层33、第二电极层34和第三层35卷绕形成。
第一集流体331包括从第一活性物质层332显露出的第三区域333,第一导电部10和第一电极层33之间通过第三区域333连接。第二集流体341包括从第二活性物质层342显露出的第四区域343,第二导电部20和第二电极层34之间通过第四区域343连接。
第一电极层33还包括与第一集流体331连接的第一金属部334,第一电极层33的第一金属部334和第二导电部20之间通过第三区域333连接。第二电极层34还包括与第二集流体341连接的第二金属部344,第二电极层34的第二金属部344和第一壁111之间通过第四区域343连接。
在一实施例中,第二电极层34的第二金属部344还可替换为与第一导电部10的第一侧壁112相连接,以实现第二电极层34和第一导电部10之间的电连通。
第一电极层33等同于第一实施例中的第一极片31,第二电极层34等同于第一实施例中的第二极片32,第三层35为隔离膜,用于隔绝第一电极层33和第二电极层34,改善第一电极层33和第二电极层34接触的情况。
请参阅图41,图41为第十七实施例中电池100的仰视示意图。第十七实施例中的电池100结构与第一实施例中的电池100结构大致相同,区别在于,第十七实施例中,第一导电部10的第一壁111的外表面设有二维码60及标记70,其中,第一壁111的外表面为第一壁111背离电极组件30的表面。
在一些实施例中第一壁111的外表面还包括第三部80,第三部80大致设于第一壁111的中心O位置处,且第三部80围绕第一壁111的中心O位置。二维码60设于第三部80的左 侧,而在第三部80的上、下端及右侧设有标记70。进一步的,标记70为文字内容,例如,该内容可为与电池100有关的相关信息,如接受电池100的基本信息等。
在该实施例中,沿与Z轴相反的方向观察第一壁111,第三部80包括开口81,且开口81与二维码60相对设置。设置开口81,可以使相关工作人员或者自动化机器更容易识别电池100的朝向,另外开口81与二维码60相对设置,可使开口81与二维码60的距离更近,从而使相关工作人员或者自动化机器在更短时间内识别出二维码60和开口81。在一些实施例中,第三部80为金属层,第三部80采用金属层可在电池100的第一壁111与其他导线等连接的场合下,抑制电连接时电阻值的增加。
二维码60中存储有关于电池100的信息,使用者通过扫描二维码60可获取信息,进一步地,二维码60可通过激光蚀刻而形成。沿X轴方向,二维码60延伸的长度大于第三部80沿X轴方向的长度。
请参阅图42,图42为图41中的电池100设有二维码60及另一标记70的仰视示意图。其中,第三部80的开口朝背离二维码60的方向设置。
请参阅图43,图43为图40中的电池100设有二维码60及又一标记70的仰视示意图。其中,第三部80的开口朝向上方的标记70设置。
请参阅图44,图44为本申请的第十八实施例,第十八实施例提供一种电子装置200,电子装置200包括本体90和设于本体90内的电池100,电池100为上述任一实施例中的电池100。电子装置200包括上述任一实施例中的电池100,因而具有该电池100的一切有益效果,在此,不再进行赘述。
电子装置200可为移动终端、智能穿戴设备,例如蓝牙耳机等结构。可以理解的是,在其他实施例中,电子装置200不限于此,还可替换为其他结构。当电子装置200为蓝牙耳机,本体90为耳机结构。
综上,本申请实施例中提供电池100及电子装置200,该电池100通过在第一导电部10和第二导电部20之间设置第一层40,以对电池100进行密封。一方面,增加第一层40的路径及占用空间能够进一步提升电池100的密封性,另一方面,设置第一层40,电池100依然维持原有的体积能量密度,从而保持电池100使用过程中的稳定性及可靠性。
另外,本技术领域的普通技术人员应当认识到,以上的实施例仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本申请公开的范围之内。

Claims (39)

  1. 一种电池,其特征在于,所述电池包括:
    第一导电部,包括凹部和盖部,所述凹部与所述盖部相接,且所述凹部包括第一壁以及与所述第一壁相接的第一侧壁;
    电极组件,与所述第一导电部电连接,并配置于所述凹部内;
    第二导电部,与所述电极组件电连接,沿第一方向观察,所述第二导电部与所述电极组件有重合部分,且所述第二导电部位于所述第一导电部内,所述第二导电部包括第一面和第二面,所述第二面背离所述第一导电部;
    第一层,包括位于所述第一导电部和所述第二导电部之间的且与所述第一面相接的部分,所述第一层包含绝缘材料。
  2. 如权利要求1所述的电池,其特征在于,所述盖部具有开口部,所述第二导电部包括第一部和从所述第一部凸出的第二部,沿所述第一方向观察,所述第二部的投影至少有部分与所述开口部重合。
  3. 如权利要求2所述的电池,其特征在于,沿第二方向观察,所述第二部离开所述开口部设置,所述第二方向垂直于所述第一方向。
  4. 如权利要求2所述的电池,其特征在于,所述第一层与所述第二部相接。
  5. 如权利要求2所述的电池,其特征在于,所述第一层与所述第二部分离设置。
  6. 如权利要求2所述的电池,其特征在于,沿所述第一方向观察,所述第一层包围所述第二部。
  7. 如权利要求2所述的电池,其特征在于,所述第二部具有远离所述第一部的第三面,所述第一层与所述第三面相接。
  8. 如权利要求2所述的电池,其特征在于,所述第二部具有远离所述第一部的第三面,所述第一层以离开所述第三面的方式设置。
  9. 如权利要求2所述的电池,其特征在于,所述第一部位于所述凹部外。
  10. 如权利要求4所述的电池,其特征在于,所述盖部包括围设成所述开口部的第二壁,所述第一层与所述第二壁相接。
  11. 如权利要求10所述的电池,其特征在于,所述盖部包括与所述第一壁相对的第四面,所述第一层与所述第四面相接。
  12. 如权利要求11所述的电池,其特征在于,所述第一层以离开所述电极组件的方式设置。
  13. 如权利要求11所述的电池,其特征在于,所述第一层与所述电极组件相接。
  14. 如权利要求1所述的电池,其特征在于,所述盖部包括第二壁,且所述盖部具有开口部,所述第二壁围设成所述开口部,所述第一层与所述第二壁相接。
  15. 如权利要求14所述的电池,其特征在于,所述盖部包括与所述第一壁相对的第四面,所述第一层与所述第四面相接。
  16. 如权利要求1所述的电池,其特征在于,沿所述第一方向观察,所述第一层包括与所述第二导电部重合的第一区域和离开所述第二导电部的第二区域。
  17. 如权利要求1所述的电池,其特征在于,所述电池还包括第二层,所述第二层包括绝 缘材料,所述第二层设置于所述电极组件和所述盖部之间。
  18. 如权利要求1所述的电池,其特征在于,所述电极组件包括第一极片和与所述第一极片及所述第二导电部连接的第一金属部;
    所述第二导电部和所述第一金属部包括相同的金属元素;
    所述第一极片为正极极片,所述相同的金属元素包括铝和/或锰。
  19. 如权利要求2所述的电池,其特征在于,所述电极组件包括第一极片和与所述第一极片及所述第二导电部连接的第一金属部,所述第一金属部与所述第二部相接。
  20. 如权利要求1所述的电池,其特征在于,所述电极组件包括第二极片和与所述第二极片和所述第一导电部连接的第二金属部;
    所述第一导电部和所述第二金属部包括相同的金属元素;
    所述第二极片为负极极片,所述相同的金属元素包括铁、铬、锰、镍或钼中的至少一种。
  21. 如权利要求1所述的电池,其特征在于,所述盖部位于所述凹部外。
  22. 如权利要求1所述的电池,其特征在于,沿所述第一方向观察,所述第二导电部的投影的面积为A1,所述第二导电部的投影与所述盖部的投影重合的面积为A2,满足1/5A1≤A2≤4/5A1。
  23. 如权利要求14所述的电池,其特征在于,沿所述第一方向观察,所述第一层以离开所述开口部的方式设置。
  24. 如权利要求23所述的电池,其特征在于,沿所述第一方向观察,所述第一层以离开所述盖部的外边缘的方式设置。
  25. 如权利要求14所述的电池,其特征在于,所述第二导电部包括第一部和从所述第一部凸出的第二部,所述第二部通过所述开口部与所述电极组件连接。
  26. 如权利要求25所述的电池,其特征在于,沿所述第一方向观察,所述第二部包括第二侧壁,及第二侧壁围设的第一顶面,所述第二侧壁沿所述第一方向倾斜。
  27. 如权利要求26所述的电池,其特征在于,所述第二侧壁与所述第一顶面之间的夹角为钝角。
  28. 如权利要求14所述的电池,其特征在于,所述电极组件包括第一金属部,所述第一金属部通过所述开口部与所述第二导电部连接。
  29. 如权利要求1所述的电池,其特征在于,所述第二导电部包括第一部和从所述第一部凸出的第二部,沿所述第一方向观察,所述第二部包括第二侧壁,及第二侧壁围设的第一顶面,所述第二侧壁沿所述第一方向倾斜。
  30. 如权利要求29所述的电池,其特征在于,所述第二侧壁与所述第一顶面之间的夹角为钝角。
  31. 如权利要求14所述的电池,其特征在于,所述电池还包括第二层,所述第二层包括绝缘材料,所述第二层设置于所述电极组件和所述盖部之间。
  32. 如权利要求1所述的电池,其特征在于,所述电极组件还包括与所述第一壁相接的第二金属部。
  33. 如权利要求1所述的电池,其特征在于,所述电极组件还包括与所述第一侧壁相接的第二金属部。
  34. 如权利要求1所述的电池,其特征在于,所述电极组件包括第一电极层、第二电极层和第三层;
    所述第一电极层包括第一集流体和形成于所述第一集流体上的第一活性物质;
    所述第二电极层包括第二集流体和形成于所述第二集流体上的第二活性物质;
    所述第三层设置于所述第一电极层和所述第二电极层之间,且所述第三层具有绝缘性。
  35. 如权利要求34所述的电池,其特征在于,所述第一集流体包括从所述第一活性物质层显露出的第三区域,所述第二导电部和所述第一电极层之间通过所述第三区域连接。
  36. 如权利要求35所述的电池,其特征在于,所述第一电极层还包括与所述第一集流体连接的第一金属部,所述第二导电部和所述第一金属部之间通过所述第三区域连接。
  37. 如权利要求34所述的电池,其特征在于,所述第二集流体包括从所述第二活性物质层显露出的第四区域,所述第二电极层还包括与所述第二集流体相接的第二金属部,所述第二金属部与所述第一壁之间通过所述第四区域连接。
  38. 如权利要求37所述的电池,其特征在于,所述第二金属部与所述第一侧壁相接。
  39. 一种电子装置,其特征在于,所述电子装置包括如权利要求1至38中任一项所述的电池。
PCT/CN2021/084749 2021-03-31 2021-03-31 电池及电子装置 WO2022205225A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180003255.1A CN113826250A (zh) 2021-03-31 2021-03-31 电池及电子装置
EP21933886.0A EP4318747A1 (en) 2021-03-31 2021-03-31 Battery and electronic device
PCT/CN2021/084749 WO2022205225A1 (zh) 2021-03-31 2021-03-31 电池及电子装置
US18/477,802 US20240021966A1 (en) 2021-03-31 2023-09-29 Battery and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084749 WO2022205225A1 (zh) 2021-03-31 2021-03-31 电池及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,802 Continuation US20240021966A1 (en) 2021-03-31 2023-09-29 Battery and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022205225A1 true WO2022205225A1 (zh) 2022-10-06

Family

ID=78918824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084749 WO2022205225A1 (zh) 2021-03-31 2021-03-31 电池及电子装置

Country Status (4)

Country Link
US (1) US20240021966A1 (zh)
EP (1) EP4318747A1 (zh)
CN (1) CN113826250A (zh)
WO (1) WO2022205225A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2502410Y (zh) * 2001-08-22 2002-07-24 武汉力兴电源股份有限公司 扣式锂离子电池
US20150147616A1 (en) * 2013-11-25 2015-05-28 Cornell University Button cell casings suitable for non-aqueous cells
CN212571147U (zh) * 2020-06-30 2021-02-19 瑞声科技(南京)有限公司 扣式电池
CN112531242A (zh) * 2020-12-04 2021-03-19 珠海冠宇电池股份有限公司 扣式电池及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564654B2 (en) * 2010-09-14 2017-02-07 Zhuhai Zhi Li Battery Co. Ltd. Rechargeable lithium ion button cell battery
EP3041062B1 (de) * 2014-12-29 2018-08-01 Wyon AG Elektrochemische zelle
CN108346758B (zh) * 2017-01-25 2020-12-15 兴能高科技股份有限公司 具塑料壳的可充式锂离子电池
CN111162210A (zh) * 2020-03-16 2020-05-15 惠州亿纬锂能股份有限公司 一种二次锂离子豆式电池及其制作方法
CN211404538U (zh) * 2020-03-30 2020-09-01 珠海冠宇电池股份有限公司 扣式电池的外壳组件、扣式电池以及电子产品
CN212323083U (zh) * 2020-07-14 2021-01-08 宁德新能源科技有限公司 电池和具有所述电池的用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2502410Y (zh) * 2001-08-22 2002-07-24 武汉力兴电源股份有限公司 扣式锂离子电池
US20150147616A1 (en) * 2013-11-25 2015-05-28 Cornell University Button cell casings suitable for non-aqueous cells
CN212571147U (zh) * 2020-06-30 2021-02-19 瑞声科技(南京)有限公司 扣式电池
CN112531242A (zh) * 2020-12-04 2021-03-19 珠海冠宇电池股份有限公司 扣式电池及电子设备

Also Published As

Publication number Publication date
CN113826250A (zh) 2021-12-21
US20240021966A1 (en) 2024-01-18
EP4318747A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
KR101572836B1 (ko) 단차 구조를 포함하는 전지셀
JP4440850B2 (ja) 二次電池
US9209435B2 (en) Rechargeable battery
CN107546343B (zh) 二次电池
US20090023058A1 (en) Pouch-type secondary battery
KR20130105271A (ko) 비대칭 구조의 전지셀 및 이를 포함하는 전지팩
US20140030564A1 (en) Rechargeable battery
US20150064502A1 (en) Battery pack
JP6457534B2 (ja) 不活性粒子がコーティングされている電極組立体を含む電池セル
JP2018081780A (ja) 電池
WO2022135282A1 (zh) 电池
US10326122B2 (en) Rechargeable battery
US20150024262A1 (en) Rechargeable battery
WO2022205225A1 (zh) 电池及电子装置
KR20140008236A (ko) 이차 전지
KR20170101007A (ko) 이차 전지
CN104810485B (zh) 电池组
CN209000959U (zh) 二次电池
KR101462043B1 (ko) 계단 구조의 전극조립체를 포함하는 전지셀
CN216850028U (zh) 一种电池
KR101846486B1 (ko) 일체형 양극리드 및 음극리드를 포함하는 전지셀
KR101577186B1 (ko) 전극리드의 위치 조절이 가능한 전지셀
JP6274687B1 (ja) 電気化学セル
JP2017532713A (ja) 階段構造の電極組立体に対応する突出部が形成されている電池ケースを含む電池セル
JP6733931B2 (ja) 電池パックの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933886

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021933886

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933886

Country of ref document: EP

Effective date: 20231031