WO2022205149A1 - 一种充电控制系统和充电场站 - Google Patents

一种充电控制系统和充电场站 Download PDF

Info

Publication number
WO2022205149A1
WO2022205149A1 PCT/CN2021/084621 CN2021084621W WO2022205149A1 WO 2022205149 A1 WO2022205149 A1 WO 2022205149A1 CN 2021084621 W CN2021084621 W CN 2021084621W WO 2022205149 A1 WO2022205149 A1 WO 2022205149A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
control system
power
unit
management unit
Prior art date
Application number
PCT/CN2021/084621
Other languages
English (en)
French (fr)
Inventor
姜代平
杨国毅
郭水保
赵悦
张瑞丰
杨贤明
陈世超
汪澄
刘刚
胡真
Original Assignee
浙江吉利控股集团有限公司
吉利汽车研究院(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 吉利汽车研究院(宁波)有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to CN202180092395.0A priority Critical patent/CN117098686A/zh
Priority to EP21933814.2A priority patent/EP4321372A1/en
Priority to PCT/CN2021/084621 priority patent/WO2022205149A1/zh
Publication of WO2022205149A1 publication Critical patent/WO2022205149A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to the technical field of charging control, in particular to a charging control system and a charging station.
  • the structure of charging pile or charging station mainly includes two types: integrated type and split type.
  • the integrated structure is that the control and charging control of the power module are integrated in a cabinet, which can be controlled by a controller.
  • the split structure mainly puts the function control in the module cabinet, and the charging control and business settlement are carried out in the terminal gun cabinet.
  • All controllers are coupled with each other and are strongly coupled with application scenarios and internal electrical components, making it necessary to develop different products for different application scenarios, resulting in long development cycles and high costs. , which is not conducive to the rapid deployment and operation and maintenance of charging piles or charging stations.
  • a charging control system and a charging station are proposed that overcome the above-mentioned problems or at least partially solve the above-mentioned problems.
  • One object of the present invention is to provide a charging control system with a layered control structure and a modular design, which can be quickly combined and deployed according to application scenarios, thereby saving development time and cost.
  • a further object of the present invention is to enhance the usability and robustness of the charging control system.
  • Another object of the present invention is to provide a charging station including the charging control system.
  • a charging control system including:
  • each of the charge control modules including a charge management unit as an electronic control unit;
  • each of the power control modules includes a power management unit serving as an electronic control unit and a power distribution unit connected to the power management unit;
  • the power management layer is an upper layer of the charging management layer, and the power management unit in each of the power control modules is connected to the charging management unit in at least one of the charging control modules;
  • Each of the charging management units is configured to be connected to at least one vehicle to be charged, receive a charging request from the vehicle to be charged, and send the charging request to the power management unit connected thereto;
  • the power management unit is configured to control the power distribution unit to distribute power to the charging management unit according to the scheduling instruction and the received charging request, and to monitor the charging management unit to use the allocated power to charge the to-be-charged The vehicle is charged to complete the charging power control.
  • each of the power management units is connected to the cloud, and is configured to receive the scheduling instruction from the cloud, collect state information of the charging control system and upload it to the cloud for business settlement, and the charging control
  • the state information of the system includes working state information of each unit and charging control and service information.
  • the charging control system further includes:
  • the business control module at the monitoring layer of the station including the station monitoring unit as the electronic control unit;
  • the site monitoring layer is an upper layer of the power management layer
  • the site monitoring unit is respectively connected to the power management unit in each of the power control modules, and is configured to issue the scheduling instruction to the power management unit, and collect the status information of the charging control system, so the The state information of the charging control system includes working state information of each unit and charging control and service information.
  • the site monitoring unit is connected to the cloud, and is configured to receive the scheduling instruction from the cloud for site management when it is normally connected to the cloud, and upload the collected charging to the cloud. Control system status information for business settlement.
  • the site monitoring unit is further configured to independently manage the site when the connection with the cloud is lost, and locally store the collected status information of the charging control system until the connection with the cloud is re-established. Then upload the status information of the charging control system.
  • the power management unit is further configured to perform the charging power control autonomously when the connection with the field monitoring unit is lost, and record the charging control and service information until it is reconnected with the field monitoring unit. After the connection is established, the charging control and service information is reported to the site monitoring unit.
  • the charging control system further includes:
  • At least one energy storage control module in the power management layer each of the energy storage control modules includes an energy management unit serving as an electronic control unit and an energy storage device connected to the energy management unit;
  • the energy management unit is respectively connected to each of the power management units, and is configured to cooperate with each of the power management units to control the energy storage device to perform energy storage and discharge;
  • the energy management unit is respectively connected to each of the power management units and the site monitoring unit, and is configured to be configured in the deployment of the site monitoring unit
  • the energy storage device is controlled to store and discharge energy under control and/or in cooperation with each of the power management units.
  • each of the power control modules further includes a plurality of power modules
  • the power distribution unit is configured to execute switching logic for the power module under the control of the power management unit to distribute power to the charging management unit.
  • each of the electronic control units operates in at least one of the following modes:
  • Upper layer deployment control mode according to the deployment control operation of the electronic control unit in the upper layer
  • Cooperative mode on the same floor cooperates with other ECUs on the same floor;
  • the priorities of the upper-layer deployment control mode, the same-layer cooperation mode, and the autonomous mode are sequentially decreased.
  • each of the power management units is further configured to automatically disconnect from the charging control system and stop the control of the power distribution unit and the charging management unit connected to the power distribution unit after the fault occurs.
  • each of the charging management units is further configured to automatically break away from the control of the power management unit connected to it and stop charging when it fails.
  • each of the energy management units is further configured to automatically disconnect from the charging control system and stop the control of the energy storage device connected to it after failure of itself.
  • the charging control system is installed in a charging field station, and the charging field station includes a camera device, a ground lock system and an access control system;
  • the site monitoring unit is respectively connected with the camera equipment, the ground lock system and the access control system, and is further configured to collect images of the camera equipment for environmental monitoring, and to monitor the ground lock system and the access control system. controlled by the access control system.
  • the power management unit is further configured to perform voltage isolation monitoring in response to the charging request.
  • the charging management unit is further configured to provide at least one of the following functions:
  • the interaction function with the vehicle to be charged the human-computer interaction function with the user, and the liquid cooling control function.
  • a charging station including the charging control system described in any one of the foregoing.
  • the charging control system adopts a layered control structure and a modular design, wherein the network structure of the charging control system includes a charging management layer and a power management layer, and may optionally also include a station monitoring layer; the charging control system
  • the module architecture includes a charging control module and a power control module, and optionally a service control module and an energy storage control module. In this way, the complete decoupling of the charging control system in terms of function, electrical arrangement, and physical space is achieved, so that it can be quickly combined and deployed according to application scenarios, saving development time and costs.
  • each module of the charging control system provided by the embodiment of the present invention adopts a combination of single-master control and multi-master automatic coordination, and can work in cooperation with each other or independently, with high system availability. Moreover, any module can be automatically disconnected from the control system after failure without affecting the work of other modules.
  • the system has high robustness and convenient maintenance.
  • FIG. 1 is a schematic structural block diagram of a charging control system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural block diagram of a charging control system according to another embodiment of the present invention.
  • FIG. 3 is a layered architecture diagram of a charging control system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a charging control system according to an embodiment of the present invention.
  • embodiments of the present invention provide a charging control system.
  • FIG. 1 shows a schematic structural block diagram of a charging control system 100 according to an embodiment of the present invention.
  • the charging control system 100 adopts a layered control architecture, and generally at least may include at least one charging control module 110 and at least one power control module 120 .
  • the layered control architecture of the charging control system 100 may at least include a charging management layer and a power management layer, and the power management layer is an upper layer of the charging management layer.
  • the at least one charging control module 110 is in the charging management layer, and each charging control module 110 includes a charging management unit (Charging Management Unit, abbreviated as CMU) 111 as an electronic control unit (Electronic Control Unit, referred to as ECU).
  • CMU Charging Management Unit
  • ECU Electronic Control Unit
  • the at least one power control module 120 is in the power management layer, and each power control module 120 includes a power management unit (Power Management Unit, abbreviated as PMU) 121 as an electronic control unit and a power distribution unit (Power Distribution Unit) connected to the power management unit 121. Distribution Unit, abbreviated as PDU) 122.
  • the power management unit 121 in each power control module 120 is connected to the charging management unit 111 in at least one charging control module 110 .
  • Each charging management unit 111 may be configured to be connected to at least one vehicle 130 to be charged, receive a charging request of the vehicle 130 to be charged, and send the charging request to the power management unit 121 connected thereto.
  • the power management unit 121 controls the power distribution unit 122 connected to the power management unit 121 to distribute power to the charging management unit 111 according to the scheduling instruction and the received charging request, and monitors the charging management unit 111 to use the allocated power to perform the charging of the vehicle 130 to be charged. charging to complete the charging power control. It should be noted that, the number of each component shown in FIG. 1 is only illustrative, and does not limit the present invention.
  • the charging control system 100 provided by the embodiment of the present invention adopts a layered control architecture and a modular design, wherein the network architecture of the charging control system 100 includes a charging management layer and a power management layer, and the module architecture of the charging control system 100 includes a charging control module 110 and a power management layer. Power control module 120 .
  • each module can be decoupled, realizing the complete decoupling of the charging control system 100 in terms of function, electrical arrangement, and physical space, so that it can be quickly combined and deployed according to application scenarios, saving development time and cost.
  • each power management unit 121 may be connected to the cloud (eg, a wireless connection or a wired Ethernet connection) to directly interact with the cloud.
  • the power management unit 121 receives the scheduling instruction from the cloud, collects the status information of the charging control system 100 and uploads it to the cloud for service settlement.
  • the status information of the charging control system 100 includes the working status information of each unit (specifically, the power management unit 121, the power distribution unit 122, the charging management unit 111, etc.) and charging control and service information (such as charging time, charging power consumption, charging user information, etc.).
  • FIG. 2 shows a schematic structural block diagram of a charging control system 100 according to another embodiment of the present invention. It should be noted that, the number of each component shown in FIG. 2 is only illustrative, and does not limit the present invention.
  • the network architecture of the charging control system 100 may further include a site monitoring layer, and the site monitoring layer is the upper layer of the power management layer.
  • the charging control system 100 may also include a service control module 140 .
  • the service control module 140 is located at the station monitoring layer, and includes a station monitor unit (Station Monitor Unit, SMU for short) 141 as an electronic control unit.
  • the station monitoring unit 141 is respectively connected to the power management unit 121 in each power control module 120 , and is configured to issue scheduling instructions to the power management unit 121 and collect status information of the charging control system 100 .
  • the status information of the charging control system 100 includes the working status information and charging control and service information of each unit (specifically, the station monitoring unit 141, the power management unit 121, the power distribution unit 122, the charging management unit 111, etc.) .
  • the site monitoring unit 141 may be connected to the cloud (eg, a wireless connection or a wired Ethernet connection).
  • the station monitoring unit 141 receives the scheduling instruction from the cloud for station management when it is normally connected to the cloud, and uploads the collected status information of the charging control system 100 to the cloud for business settlement.
  • the site monitoring unit 141 when the site monitoring unit 141 loses connection with the cloud, the site monitoring unit 141 can autonomously manage the site (at this time, the site monitoring unit 141 autonomously generates scheduling instructions), and locally stores the collected charging The status information of the control system 100 is not uploaded until the connection with the cloud is re-established.
  • the power management unit 121 when the power management unit 121 loses connection with the station monitoring unit 141, the power management unit 121 can also autonomously control the charging power to complete vehicle charging, and record the charging control and service information until the connection with the station The monitoring unit 141 re-establishes the connection and then reports the charging control and service information to the site monitoring unit 141 .
  • the charging control system 100 may further include at least one energy storage control module 150 in the power management layer.
  • Each energy storage control module 150 includes an energy management unit (Energy Management Unit, referred to as EMU) 151 as an electronic control unit and an energy storage device 152 (such as a battery, etc.) connected to the energy management unit 151.
  • EMU Energy Management Unit
  • the energy management unit 151 can be connected to each power management unit 121 respectively, and is configured to cooperate with each power management unit 121 to control the energy storage device 152 to perform energy storage and discharge, so as to It acts as a power bank and an energy balancer for the entire charging pile/station.
  • the energy management unit 151 may be connected to each of the power management units 121 and the station monitoring unit 141, respectively, and is configured to be under the deployment control of the station monitoring unit 141 and/or to communicate with each other.
  • the power management unit 121 controls the energy storage device 152 to store and discharge energy under cooperative operation, so as to function as a power bank and an energy balancer for the entire charging pile/station.
  • the working state information of each unit included in the state information of the charging control system 100 mentioned above also includes the working state of the energy management unit 151 . information.
  • each power control module 120 further includes a plurality of power modules 123 .
  • the power distribution unit 122 performs switching logic for the power module 123 under the control of the power management unit 121 to distribute power to the charging management unit 111 .
  • each electronic control unit of the charging control system 100 can use the upper-level deployment control At least one of the mode, the autonomous mode, and the peer-to-peer cooperative mode operates.
  • the upper-layer deployment control mode refers to the operation according to the deployment control of the upper-layer electronic control unit.
  • the power management unit 121 or the energy management unit 151 in the power management layer operates under the deployment control of the station monitoring unit 141 in the station monitoring layer
  • the charging management unit 111 in the charging management layer operates under the deployment control of the power management unit 121 .
  • the autonomous mode refers to the autonomous operation of the electronic control unit, for example, the site monitoring unit 141 autonomously manages the site when the connection with the cloud is lost.
  • Cooperative mode on the same layer means that the electronic control unit cooperates with other electronic control units on the same layer.
  • the energy management unit 151 can cooperate with the power management unit 121, or a power management unit 121 and the energy management unit 151 or other power management units. 121 Cooperative operation.
  • the above three operating modes coexist, and the priorities of the upper-layer deployment control mode, the same-layer cooperative mode, and the autonomous mode decrease in sequence, that is, the priority order is: upper-layer deployment control mode>same Layer Synergy Mode > Autonomous Mode.
  • each module of the charging control system 100 adopts a combination of single-master control (that is, dispatching control through a single station monitoring unit 141 ) and multi-master automatic coordination (that is, multiple electronic control units at the same layer operate in concert). They can work together or independently, enhancing system availability.
  • any power management unit 121 may automatically disengage from the charging control system 100 and stop control of the power distribution unit 122 and the charging management unit 111 connected thereto after its own failure. That is to say, the power control module 120 where the faulty power management unit 121 is located will automatically leave the control system 100 .
  • any charging management unit 111 can automatically disengage from the control of the power management unit 121 connected to it and stop charging after its own failure. That is to say, the charging control module 110 where the faulty charging management unit 111 is located will automatically leave the control system 100 .
  • any energy management unit 151 may automatically disengage from the charging control system 100 and stop control of the energy storage device 152 connected to it after its own failure. That is to say, the energy storage control module 150 where the faulty energy management unit 151 is located will automatically leave the control system 100 .
  • any module can be automatically disconnected from the control system 100 after failure without affecting the work of other modules, which enhances the robustness of the system and facilitates maintenance.
  • the repaired faulty module or the added new module can automatically enter the control system 100 to run, so as to realize "plug and play".
  • FIG. 3 shows a layered architecture diagram of the charging control system 100 according to an embodiment of the present invention
  • FIG. 4 shows a schematic structural diagram of the composition of the charging control system 100 according to an embodiment of the present invention.
  • the charging control system 100 according to a specific embodiment of the present invention will be described in more detail below with reference to FIG. 3 and FIG. 4 .
  • the charging control system 100 of this embodiment is mainly divided into three layers, namely, a station monitoring layer, a power management layer, and a charging management layer.
  • the function of the station monitoring layer is realized by the station monitoring unit 141, which mainly manages the entire station (for example, charging scheduling, business settlement, environmental monitoring, etc. of the station).
  • the site monitoring unit 141 communicates with the cloud platform (ie, the cloud) through an OTA (Over-the-Air, over-the-air) gateway.
  • the cloud platform can realize functions such as OTA upgrade, parameter issuance, instruction issuance, information monitoring, and data processing.
  • the cloud platform can further communicate with the client APP to realize human-computer interaction.
  • the site monitoring unit 141 can also perform other additional services.
  • the charging control system 100 may be installed at a charging station, and the charging station may include a camera device, a ground lock system, and an access control system.
  • the station monitoring unit 141 can be respectively connected with the camera equipment, the ground lock system and the access control system, and collects images of the camera equipment for environmental monitoring, and controls the ground lock system and the access control system.
  • the power management layer is composed of a plurality of power management units 121 and power distribution units 122 and an energy management unit 151 .
  • the power management unit 121 can perform network communication with the site monitoring unit 141 through the OTA gateway, and mainly realize functions such as power management, thermal management, electrical monitoring, and environmental monitoring. Specifically, in the electrical monitoring, the power management unit 121 may perform voltage insulation monitoring in response to a charging request from the charging management unit 111 . In addition, the power management unit 121 can also perform fault management when a fault occurs in itself, so as to realize automatic separation from the control system 100 after a fault.
  • the power distribution unit 122 mainly implements functions such as power switching logic control and power distribution.
  • the energy management unit 151 mainly implements functions such as energy storage management, energy distribution, and environmental monitoring.
  • the charging management layer is composed of a plurality of charging management units 111, and mainly realizes functions such as communication with the vehicle to be charged 130 (ie, vehicle-end interaction), charging control, liquid-cooling gun cooling system control (ie, liquid-cooling control), and human-computer interaction.
  • the charging management unit 111 can also perform fault management when a fault occurs in itself, so as to realize automatic separation from the control system 100 after a fault.
  • the ECUs on the same layer can accept the deployment control of the upper-layer ECUs, can also run autonomously, and can also coordinate with other ECUs on the same layer. Under normal operation, the above three operating modes coexist, and the priority order is: upper-layer ECU deployment control > same-layer ECU cooperative operation > autonomous operation. After a certain ECU loses the deployment control of the upper-layer ECU, it will automatically switch to cooperative operation or autonomous operation.
  • the power management unit 121 of the power management layer is also responsible for controlling the power distribution unit 122 to realize all functions of power management.
  • the energy management unit 151 controls the battery energy storage cabinet, and realizes energy storage and discharge under the deployment control of the site monitoring unit 141 on the upper layer and cooperates with the power management unit 121 on the same layer to provide energy storage and discharge for the entire charging pile/station. Power bank and energy balancer function.
  • FIG. 4 shows the composition structure of the charging control system 100 of this embodiment in more detail.
  • the service control module 140 is arranged in the power distribution cabinet (or low-voltage cabinet), each power control module 120 is arranged in the corresponding module cabinet, the energy control module is arranged in the energy storage cabinet, and each charging control module 110 is arranged in the corresponding gun in the cabinet.
  • the station monitoring unit SMU is responsible for the management of the entire station, upwardly responsible for communication with the cloud, uploading the status information of the charging control system 100 and receiving cloud scheduling instructions; downwards through Ethernet or CAN (Controller Area Network) bus connection
  • the power management unit PMU in the module cabinet and the energy management unit EMU in the energy storage cabinet collect the working status information of each PMU and EMU and perform scheduling control (such as energy charge and discharge control of the energy storage cabinet, power distribution control of each module cabinet Wait).
  • the PMU in the module cabinet is the core component of the charging control system 100, and is connected to the station monitoring unit SMU and other PMU/EMU through the CAN network or Ethernet, reporting working status information and receiving scheduling instructions, or communicating with other PMU/EMU.
  • Collaborative control There are two CAN networks downward from the PMU, one is connected to the power module in the module cabinet and the power distribution unit PDU to realize power distribution scheduling and module switching control, and the other is connected to the charging management unit CMU of the gun cabinet to realize the charging process.
  • the PMU also collects information such as voltage insulation through RS485 and other buses (such as collecting information from insulation detectors), providing necessary information for power control, charging interaction, and business settlement.
  • the CMU in the gun cabinet interacts with the vehicle for charging control, and interacts with the PMU to complete the charging process, while providing necessary human-computer interaction (such as information display), gun cabinet monitoring, and liquid-cooled gun thermal management.
  • a charging station can be configured with one or more energy storage cabinets and one or more module cabinets.
  • One module cabinet can be connected to one or more gun cabinets, and one gun cabinet can be connected to one or more vehicles to be charged (specifically, electric vehicles).
  • Gun cabinets, module cabinets and energy storage cabinets can be added or deleted according to the needs of the charging station.
  • the charging management unit CMU of each gun cabinet is controlled by the PMU of the module cabinet, and requests the PMU to output the required power to achieve charging after interacting with the vehicle.
  • the PMU monitors the work of the CMU and responds to the request of the CMU to complete insulation monitoring, power distribution, etc., and finally realize the charging function.
  • the PMU also needs to comprehensively control the PDU and each power module according to the request of each CMU, the scheduling instruction of the SMU, and the status of other PMUs and EMUs, so as to realize the distribution of the power of each power module to each gun cabinet, and then pass the gun cabinet.
  • the energy is transmitted to the BMS (Battery Management System) of the vehicle.
  • BMS Battery Management System
  • the SMU and the cloud lose communication, the SMU directly manages the site and completes all charging control and business information storage. After the connection with the cloud is established, it uploads the relevant charging control and business information and completes business settlement. Similarly, if the PMU loses connection with the SMU, each PMU can control the charging power to complete the charging, and record the charging data, and report the recorded charging data after the connection with the SMU is successful. If the PMU of a module cabinet or the EMU of the energy storage cabinet fails, it will automatically disconnect from the system and stop the power control of the module cabinet without affecting the work of other cabinets. If the CMU of the gun cabinet fails, the gun cabinet will automatically disconnect from the control system 100, stop charging, and will not affect the charging of other gun cabinets.
  • each module can be operated in combination or independently. From the lower layer to the upper layer, there are multiple independent vehicle charging connections, multiple independent gun cabinets, and multiple independent modules. The addition, deletion and damage of any module at the same level will not affect the operation of other modules. It can be quickly added, removed and freely combined for different scenarios to achieve rapid deployment, which greatly enhances the availability and robustness of the system.
  • an embodiment of the present invention further provides a charging station, including the charging control system 100 of any of the foregoing embodiments or a combination of embodiments.
  • the charging control system adopts a layered control structure and a modular design, wherein the network structure of the charging control system includes a charging management layer and a power management layer, and may optionally also include a station monitoring layer; the charging control system
  • the module architecture includes a charging control module and a power control module, and optionally a service control module and an energy storage control module. In this way, the complete decoupling of the charging control system in terms of function, electrical arrangement, and physical space is achieved, so that it can be quickly combined and deployed according to application scenarios, saving development time and costs.
  • each module of the charging control system provided by the embodiment of the present invention adopts a combination of single-master control and multi-master automatic coordination, and can work in cooperation with each other or independently, with high system availability. Moreover, any module can be automatically disconnected from the control system after failure without affecting the work of other modules.
  • the system has high robustness and convenient maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电控制系统和充电场站。充电控制系统包括:处于充电管理层的至少一个充电控制模块,各充电控制模块包括作为电控单元的充电管理单元;以及处于功率管理层的至少一个功率控制模块,各功率控制模块包括作为电控单元的功率管理单元和与功率管理单元连接的功率分配单元;其中,各充电管理单元配置为与至少一辆待充电车辆连接,接收待充电车辆的充电请求,并将充电请求发送至与之连接的功率管理单元;且功率管理单元配置为根据调度指令和接收的充电请求控制功率分配单元将功率分配给充电管理单元,并监控充电管理单元利用所分配的功率对待充电车辆进行充电,以完成充电功率控制。实现充电控制系统根据应用场景快速组合部署,节约开发时间和成本。

Description

一种充电控制系统和充电场站 技术领域
本发明涉及充电控制技术领域,特别是一种充电控制系统和充电场站。
背景技术
随着电动汽车的发展,充电桩或充电站的需求日益增长。当前充电桩或充电站的结构主要有一体式和分体式两种。一体式结构为功率模块的控制和充电控制集成在一个柜体里面,可以由一个控制器进行统一控制。分体式结构主要将功能控制放在模块柜中,充电控制和业务结算等放到终端枪柜进行。然而,这两种方案都必须定制化开发,所有控制器之间相互耦合,且和应用场景以及内部电气元件涉及强耦合,使得必须针对不同的应用场景开发不同产品,导致开发周期长、成本高,不利于充电桩或充电站的快速部署和运营维护。
发明内容
鉴于上述问题,提出了一种克服上述问题或者至少部分地解决上述问题的充电控制系统和充电场站。
本发明的一个目的在于提供一种具有分层控制架构和模块化设计的充电控制系统,可以根据应用场景快速组合部署,节约开发时间和成本。
本发明的一个进一步的目的是增强充电控制系统的可用性和鲁棒性。
本发明的另一个目的是提供一种包括该充电控制系统的充电场站。
特别地,根据本发明实施例的一方面,提供了一种充电控制系统,包括:
处于充电管理层的至少一个充电控制模块,各所述充电控制模块包括作为电控单元的充电管理单元;以及
处于功率管理层的至少一个功率控制模块,各所述功率控制模块包括作为电控单元的功率管理单元和与所述功率管理单元连接的功率分配单元;
其中,所述功率管理层为所述充电管理层的上层,每一所述功率控制模块中的所述功率管理单元与至少一个所述充电控制模块中的所述充电管理单元连接;
各所述充电管理单元配置为与至少一辆待充电车辆连接,接收所述待充 电车辆的充电请求,并将所述充电请求发送至与之连接的所述功率管理单元;且
所述功率管理单元配置为根据调度指令和接收的所述充电请求控制所述功率分配单元将功率分配给所述充电管理单元,并监控所述充电管理单元利用所分配的功率对所述待充电车辆进行充电,以完成充电功率控制。
可选地,各所述功率管理单元与云端连接,配置为从所述云端接收所述调度指令,采集所述充电控制系统的状态信息并上传至所述云端以进行业务结算,所述充电控制系统的状态信息包括各单元的工作状态信息以及充电控制和业务信息。
可选地,所述充电控制系统还包括:
处于场站监控层的业务控制模块,包括作为电控单元的场站监控单元;
所述场站监控层为所述功率管理层的上层;且
所述场站监控单元分别与各所述功率控制模块中的所述功率管理单元连接,配置为向所述功率管理单元下发所述调度指令,并采集所述充电控制系统的状态信息,所述充电控制系统的状态信息包括各单元的工作状态信息以及充电控制和业务信息。
可选地,所述场站监控单元与云端连接,配置为在与所述云端正常连接时从所述云端接收所述调度指令以进行场站管理,并向所述云端上传采集的所述充电控制系统的状态信息以进行业务结算。
可选地,所述场站监控单元还配置为在与所述云端失去连接时自主进行场站管理,并在本地存储采集的所述充电控制系统的状态信息,直到与所述云端重新建立连接后再上传所述充电控制系统的状态信息。
可选地,所述功率管理单元还配置为在与所述场站监控单元失去连接时自主进行所述充电功率控制,并记录所述充电控制和业务信息,直到与所述场站监控单元重新建立连接后再向所述场站监控单元上报所述充电控制和业务信息。
可选地,所述充电控制系统还包括:
处于所述功率管理层的至少一个储能控制模块,各所述储能控制模块包括作为电控单元的能量管理单元和与所述能量管理单元连接的储能装置;
在所述充电控制系统不包括所述场站监控层的情况下,所述能量管理单元分别与各所述功率管理单元连接,配置为与各所述功率管理单元协同控制 所述储能装置进行能量存储和放电;且
在所述充电控制系统包括所述场站监控层的情况下,所述能量管理单元分别与各所述功率管理单元和所述场站监控单元连接,配置为在所述场站监控单元的调配控制下和/或与各所述功率管理单元协同运行下控制所述储能装置进行能量存储和放电。
可选地,各所述功率控制模块还包括多个功率模块;且
所述功率分配单元配置为在所述功率管理单元的控制下执行对所述功率模块的投切逻辑以将功率分配给所述充电管理单元。
可选地,每一所述电控单元采用以下至少一种模式运行:
上层调配控制模式:根据上层的所述电控单元的调配控制运行;
自主模式:自主运行;
同层协同模式:与同一层的其他电控单元协同运行;并且
所述上层调配控制模式、所述同层协同模式和所述自主模式的优先级顺次降低。
可选地,各所述功率管理单元还配置为在自身出现故障后自动脱离所述充电控制系统并停止对与其连接的所述功率分配单元和所述充电管理单元的控制。
可选地,各所述充电管理单元还配置为在自身出现故障后自动脱离与其连接的所述功率管理单元的控制并停止充电。
可选地,各所述能量管理单元还配置为在自身出现故障后自动脱离所述充电控制系统并停止对与其连接的所述储能装置的控制。
可选地,所述充电控制系统安装于充电场站,所述充电场站包括摄像设备、地锁系统和门禁系统;
所述场站监控单元分别与所述摄像设备、所述地锁系统和所述门禁系统连接,并还配置为采集所述摄像设备的图像以进行环境监测,并对所述地锁系统和所述门禁系统进行控制。
可选地,所述功率管理单元还配置为响应所述充电请求进行电压绝缘监控。
可选地,所述充电管理单元还配置为提供以下功能中至少之一:
与所述待充电车辆的交互功能、与用户的人机交互功能、液冷控制功能。
根据本发明实施例的另一方面,还提供了一种充电场站,包括前文中任一项所述的充电控制系统。
本发明实施例提供的充电控制系统,采用分层控制架构和模块化设计,其中充电控制系统的网络架构包括充电管理层和功率管理层,可选地还可以包括场站监控层;充电控制系统的模块架构包括充电控制模块和功率控制模块,可选地还可以包括业务控制模块和储能控制模块。通过这种方式,实现了充电控制系统在功能、电气布置、物理空间上的完全解耦,使其可以根据应用场景快速组合部署,节约开发时间和成本。
进一步地,本发明实施例提供的充电控制系统的各模块采用单主控制和多主自动协调相结合的方式,可以相互协同工作,也可以独立工作,系统可用性高。并且,任何模块故障后可自动脱离控制系统而不影响其他模块工作,系统鲁棒性高,维修维护便利。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为根据本发明一个实施例的充电控制系统的示意性结构框图;
图2为根据本发明另一个实施例的充电控制系统的示意性结构框图;
图3为根据本发明一个实施例的充电控制系统的分层架构图;
图4为根据本发明一个实施例的充电控制系统的组成结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不 应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为解决或至少部分解决上述问题,本发明实施例提出了一种充电控制系统。
图1示出了根据本发明一个实施例的充电控制系统100的示意性结构框图。参见图1所示,充电控制系统100采用分层控制架构,且一般性地至少可以包括至少一个充电控制模块110和至少一个功率控制模块120。充电控制系统100的分层控制架构可至少包括充电管理层和功率管理层,功率管理层为充电管理层的上层。该至少一个充电控制模块110处于充电管理层,且各充电控制模块110包括作为电控单元(Electronic Control Unit,简称为ECU)的充电管理单元(Charging Management Unit,简称为CMU)111。该至少一个功率控制模块120处于功率管理层,且各功率控制模块120包括作为电控单元的功率管理单元(Power Management Unit,简称为PMU)121和与功率管理单元121连接的功率分配单元(Power Distribution Unit,简称为PDU)122。每一个功率控制模块120中的功率管理单元121与至少一个充电控制模块110中的充电管理单元111连接。各充电管理单元111可配置为与至少一辆待充电车辆130连接,接收待充电车辆130的充电请求,并将充电请求发送至与之连接的功率管理单元121。功率管理单元121根据调度指令和接收的充电请求控制与该功率管理单元121连接的功率分配单元122将功率分配给充电管理单元111,并监控充电管理单元111利用所分配的功率对待充电车辆130进行充电,以完成充电功率控制。需要说明的是,图1中所示的各部件的数量仅是示意性的,并不限制本发明。
本发明实施例提供的充电控制系统100采用分层控制架构和模块化设计,其中充电控制系统100的网络架构包括充电管理层和功率管理层,充电控制系统100的模块架构包括充电控制模块110和功率控制模块120。通过这种方式,可使各模块解耦,实现了充电控制系统100在功能、电气布置、物理空间上的完全解耦,使其可以根据应用场景快速组合部署,节约开发时间和成本。
在一个进一步的实施例中,各功率管理单元121可与云端连接(如无线连接或有线以太网连接),直接和云端交互。功率管理单元121从云端接收该调度指令,采集充电控制系统100的状态信息并上传至云端以进行业务结 算。本实施例中,充电控制系统100的状态信息包括各单元(具体如功率管理单元121、功率分配单元122、充电管理单元111等)的工作状态信息以及充电控制和业务信息(比如充电时间、充电耗费电量、充电用户信息等)。
图2示出了根据本发明另一个实施例的充电控制系统100的示意性结构框图。需要说明的是,图2中所示的各部件的数量仅是示意性的,并不限制本发明。
在本发明的一个实施例中,参见图2所示,充电控制系统100的网络架构还可以包括场站监控层,场站监控层为功率管理层的上层。充电控制系统100还可以包括业务控制模块140。业务控制模块140处于场站监控层,包括作为电控单元的场站监控单元(Station Monitor Unit,简称为SMU)141。场站监控单元141分别与各功率控制模块120中的功率管理单元121连接,配置为向功率管理单元121下发调度指令,并采集充电控制系统100的状态信息。本实施例中,充电控制系统100的状态信息包括各单元(具体如场站监控单元141、功率管理单元121、功率分配单元122、充电管理单元111等)的工作状态信息以及充电控制和业务信息。
在一个进一步的实施例中,场站监控单元141可与云端连接(如无线连接或有线以太网连接)。场站监控单元141在与云端正常连接时从云端接收该调度指令以进行场站管理,并向云端上传采集的充电控制系统100的状态信息以进行业务结算。
在一些实施例中,当场站监控单元141与云端失去连接时,场站监控单元141可自主进行场站管理(此时由场站监控单元141自主生成调度指令),并在本地存储采集的充电控制系统100的状态信息,直到与云端重新建立连接后再上传充电控制系统100的状态信息。
在另一些实施例中,当功率管理单元121与场站监控单元141失去连接时,功率管理单元121也可以自主进行充电功率控制以完成车辆充电,并记录充电控制和业务信息,直到与场站监控单元141重新建立连接后再向场站监控单元141上报充电控制和业务信息。
上述实施例中可以保证充电控制系统100在出现局部连接故障时仍然正常工作,并避免数据丢失。
在一个可选的实施例中,继续参见图2所示,充电控制系统100还可以包括处于功率管理层的至少一个储能控制模块150。各储能控制模块150包 括作为电控单元的能量管理单元(Energy Management Unit,简称为EMU)151和与能量管理单元151连接的储能装置152(如电池等)。在充电控制系统100不包括场站监控层的情况下,能量管理单元151可分别与各功率管理单元121连接,配置为与各功率管理单元121协同控制储能装置152进行能量存储和放电,以起到为整个充电桩/站充当充电宝和能量平衡器功能。在充电控制系统100包括场站监控层的情况下,能量管理单元151可分别与各功率管理单元121和场站监控单元141连接,配置为在场站监控单元141的调配控制下和/或与各功率管理单元121协同运行下控制储能装置152进行能量存储和放电,以起到为整个充电桩/站充当充电宝和能量平衡器功能。另外,需要说明的是,在充电控制系统100包括储能控制模块150的情况下,前文提及的充电控制系统100的状态信息包括的各单元的工作状态信息还包括能量管理单元151的工作状态信息。
在一个可选的实施例中,继续参见图2所示,各功率控制模块120还包括多个功率模块123。功率分配单元122在功率管理单元121的控制下执行对功率模块123的投切逻辑以将功率分配给充电管理单元111。
在本发明的一个优选的实施例中,充电控制系统100的每一个电控单元(具体如场站监控单元141、功率管理单元121、能量管理单元151、充电管理单元111)可采用上层调配控制模式、自主模式和同层协同模式中的至少一种模式运行。上层调配控制模式指根据上层的电控单元的调配控制运行,例如,处于功率管理层的功率管理单元121或能量管理单元151在处于场站监控层的场站监控单元141的调配控制下运行,或处于充电管理层的充电管理单元111在功率管理单元121的调配控制下运行。自主模式指电控单元自主运行,例如,场站监控单元141在与云端失去连接时自主进行场站管理。同层协同模式指电控单元与同一层的其他电控单元协同运行,例如,能量管理单元151可与功率管理单元121协同运行,或一功率管理单元121与能量管理单元151或其他功率管理单元121协同运行。在充电控制系统100正常运行情况下,上述三种运行模式并存,且上层调配控制模式、同层协同模式和自主模式的优先级顺次降低,即,优先级顺序为:上层调配控制模式>同层协同模式>自主模式。
本实施例中,充电控制系统100的各模块采用单主控制(即通过单个场站监控单元141调配控制)和多主自动协调(即同层多个电控单元协同运行) 相结合的方式,可以相互协同工作,也可以独立工作,增强了系统可用性。
在一些实施例中,任一功率管理单元121在自身出现故障后可自动脱离充电控制系统100并停止对与其连接的功率分配单元122和充电管理单元111的控制。也即是说,出现故障的功率管理单元121所在的功率控制模块120会自动脱离控制系统100。
在一些实施例中,任一充电管理单元111在自身出现故障后可自动脱离与其连接的功率管理单元121的控制并停止充电。也即是说,出现故障的充电管理单元111所在的充电控制模块110会自动脱离控制系统100。
在一些实施例中,任一能量管理单元151在自身出现故障后可自动脱离充电控制系统100并停止对与其连接的储能装置152的控制。也即是说,出现故障的能量管理单元151所在的储能控制模块150会自动脱离控制系统100。
通过这种设计,任何模块故障后可自动脱离控制系统100而不影响其他模块工作,增强了系统鲁棒性,便于进行维修维护。另外,修复后的故障模块或加入的新模块可自动进入控制系统100运行,实现“即插即用”。
图3示出了根据本发明一个实施例的充电控制系统100的分层架构图,图4示出了根据本发明一个实施例的充电控制系统100的组成结构示意图。下面结合图3和图4对本发明一个具体实施例的充电控制系统100进行更具体的说明。
如图3所示,本实施例的充电控制系统100主要分为三层,即场站监控层、功率管理层和充电管理层。场站监控层的功能由场站监控单元141实现,主要进行整个场站的管理(例如场站的充电调度、业务结算、环境监测等)。场站监控单元141通过OTA(Over-the-Air,空中下载)网关与云平台(即云端)通讯。云平台可实现OTA升级、参数下发、指令下发、信息监控、数据处理等功能。云平台还可以进一步与客户端APP通讯,实现人机交互。
场站监控单元141还可以进行其他附加服务。例如,充电控制系统100可安装于充电场站,充电场站可包括摄像设备、地锁系统和门禁系统。场站监控单元141可分别与摄像设备、地锁系统和门禁系统连接,并采集摄像设备的图像以进行环境监测,并对地锁系统和门禁系统进行控制。
功率管理层由多个功率管理单元121和功率分配单元122以及能量管理单元151组成。功率管理单元121可通过OTA网关与场站监控单元141进 行网络通讯,主要实现功率管理、热管理、电气监测、环境监测等功能。具体地,在电气监测中,功率管理单元121可响应充电管理单元111的充电请求进行电压绝缘监控。另外,功率管理单元121在自身发生故障时还可以进行故障管理,以实现故障后自动脱离控制系统100。功率分配单元122主要实现功率的投切逻辑控制、功率分配等功能。能量管理单元151主要实现储能管理、能量分配和环境监测等功能。
充电管理层由多个充电管理单元111组成,主要实现和待充电车辆130通讯(即车端交互)、充电控制、液冷枪冷却系统控制(即液冷控制)、人机交互等功能。充电管理单元111在自身发生故障时还可以进行故障管理,以实现故障后自动脱离控制系统100。
同一层的ECU可以接受上层ECU的调配控制,也可以自主运行,还可以与同层的其他ECU协调运行。正常运行情况下上述三种运行模式并存,优先级顺序为:上层ECU调配控制>同层ECU协同运行>自主运行。某一ECU失去上层ECU的调配控制后将自动转为协同运行或自主运行。功率管理层的功率管理单元121还负责对功率分配单元122进行控制,以实现功率管理的全部功能。能量管理单元151对电池储能柜进行控制,并在上层的场站监控单元141的调配控制下和与同层的功率管理单元121协同工作下实现能量储存和放电,给整个充电桩/站提供充电宝和能量平衡器功能。
图4更详细地表述了本实施例的充电控制系统100的组成结构。业务控制模块140设置在配电柜(或低压柜)中,各功率控制模块120设置在相应的模块柜中,能量控制模块设置在储能柜中,各充电控制模块110则设置在相应的枪柜中。
场站监控单元SMU负责整个场站管理,向上负责和云端通讯,上传充电控制系统100的状态信息和接收云端调度指令;向下通过以太网或CAN(Controller Area Network,控制器局域网)等总线连接模块柜中的功率管理单元PMU和储能柜中的能量管理单元EMU,收集各PMU和EMU的工作状态信息并进行调度控制(如储能柜的能量充放电控制、各模块柜的功率分配控制等)。
模块柜中的PMU为充电控制系统100的核心部件,分别通过CAN网络或以太网向上连接场站监控单元SMU和其他PMU/EMU,汇报工作状态信息和接收调度指令,或与其他PMU/EMU进行协作控制。PMU向下有两路 CAN网络,一路连接模块柜内的功率模块和功率分配单元PDU以实现功率的分配调度和模块投切控制,另外一路连接到枪柜的充电管理单元CMU,以实现充电过程的交互控制。PMU还通过RS485等总线进行电压绝缘等信息的采集(如采集绝缘检测仪的信息),为功率控制、充电交互、业务结算等提供必要的信息。枪柜中的CMU和车辆交互进行充电控制,并与PMU交互完成充电过程,同时提供必要的人机交互(例如信息显示)、枪柜监控、液冷枪热管理等功能。
如图4所示,枪柜和模块柜可以有多个。一个充电场站可以配置一个或多个储能柜,以及一个或多个模块柜。一个模块柜可以连接一个或多个枪柜,一个枪柜可以连接1台或多台待充电的车辆(具体为电动车)。枪柜、模块柜和储能柜可以按充电场站的需求进行增加或删减。每个枪柜的充电管理单元CMU受模块柜的PMU控制,并在与车辆交互后请求PMU输出需要的功率实现充电。PMU监控CMU工作并响应CMU的请求完成绝缘监控、功率分配等,最终实现充电功能。同时,PMU还要综合根据各个CMU的请求、SMU的调度指令、其他PMU和EMU的状态对PDU和各功率模块进行控制,实现将各功率模块的功率分配给各个枪柜,然后通过枪柜将能量传输给车辆的BMS(Battery Management System,电池管理系统)。
如果SMU和云端失去了通讯,SMU直接进行场站管理并完成所有充电控制和业务信息存储,待与云端建立连接后再上传相关充电控制和业务信息并完成业务结算。同样,如果PMU与SMU失去连接,各个PMU可以进行充电功率控制完成充电,并将充电数据记录下来,待与SMU连接成功后上报记录的充电数据。如果某个模块柜的PMU或储能柜的EMU出现故障,则其自动脱离系统并停止本模块柜的功率控制,不影响其他柜的工作。如果枪柜的CMU出现故障,则该枪柜自动脱离控制系统100,停止充电,不影响其他枪柜充电。
本实施例中,通过分层级设计和模块化设计,各个模块可以组合运行也可以独立运行,从下层到上层有多个独立的车辆充电连接、多个独立的枪柜、多个独立的模块柜,同层级的任何一个模块增删和损坏都不会影响其他模块的运行,针对不同场景可以快速增减、自由组合以实现快速部署,大大地增强了系统的可用性和鲁棒性。
基于同一技术构思,本发明实施例还提供了一种充电场站,包括前文任一实施例或实施例组合的充电控制系统100。
本发明实施例提供的充电控制系统,采用分层控制架构和模块化设计,其中充电控制系统的网络架构包括充电管理层和功率管理层,可选地还可以包括场站监控层;充电控制系统的模块架构包括充电控制模块和功率控制模块,可选地还可以包括业务控制模块和储能控制模块。通过这种方式,实现了充电控制系统在功能、电气布置、物理空间上的完全解耦,使其可以根据应用场景快速组合部署,节约开发时间和成本。
进一步地,本发明实施例提供的充电控制系统的各模块采用单主控制和多主自动协调相结合的方式,可以相互协同工作,也可以独立工作,系统可用性高。并且,任何模块故障后可自动脱离控制系统而不影响其他模块工作,系统鲁棒性高,维修维护便利。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (16)

  1. 一种充电控制系统,包括:
    处于充电管理层的至少一个充电控制模块,各所述充电控制模块包括作为电控单元的充电管理单元;以及
    处于功率管理层的至少一个功率控制模块,各所述功率控制模块包括作为电控单元的功率管理单元和与所述功率管理单元连接的功率分配单元;
    其中,所述功率管理层为所述充电管理层的上层,每一所述功率控制模块中的所述功率管理单元与至少一个所述充电控制模块中的所述充电管理单元连接;
    各所述充电管理单元配置为与至少一辆待充电车辆连接,接收所述待充电车辆的充电请求,并将所述充电请求发送至与之连接的所述功率管理单元;且
    所述功率管理单元配置为根据调度指令和接收的所述充电请求控制所述功率分配单元将功率分配给所述充电管理单元,并监控所述充电管理单元利用所分配的功率对所述待充电车辆进行充电,以完成充电功率控制。
  2. 根据权利要求1所述的充电控制系统,其中,各所述功率管理单元与云端连接,配置为从所述云端接收所述调度指令,采集所述充电控制系统的状态信息并上传至所述云端以进行业务结算,所述充电控制系统的状态信息包括各单元的工作状态信息以及充电控制和业务信息。
  3. 根据权利要求1所述的充电控制系统,还包括:
    处于场站监控层的业务控制模块,包括作为电控单元的场站监控单元;
    所述场站监控层为所述功率管理层的上层;且
    所述场站监控单元分别与各所述功率控制模块中的所述功率管理单元连接,配置为向所述功率管理单元下发所述调度指令,并采集所述充电控制系统的状态信息,所述充电控制系统的状态信息包括各单元的工作状态信息以及充电控制和业务信息。
  4. 根据权利要求3所述的充电控制系统,其中,所述场站监控单元与云端连接,配置为在与所述云端正常连接时从所述云端接收所述调度指令以进行场站管理,并向所述云端上传采集的所述充电控制系统的状态信息以进行业务结算。
  5. 根据权利要求4所述的充电控制系统,其中,所述场站监控单元还配置为在与所述云端失去连接时自主进行场站管理,并在本地存储采集的所述充电控制系统的状态信息,直到与所述云端重新建立连接后再上传所述充电控制系统的状态信息。
  6. 根据权利要求4所述的充电控制系统,其中,所述功率管理单元还配置为在与所述场站监控单元失去连接时自主进行所述充电功率控制,并记录所述充电控制和业务信息,直到与所述场站监控单元重新建立连接后再向所述场站监控单元上报所述充电控制和业务信息。
  7. 根据权利要求1或3所述的充电控制系统,还包括:
    处于所述功率管理层的至少一个储能控制模块,各所述储能控制模块包括作为电控单元的能量管理单元和与所述能量管理单元连接的储能装置;
    在所述充电控制系统不包括所述场站监控层的情况下,所述能量管理单元分别与各所述功率管理单元连接,配置为与各所述功率管理单元协同控制所述储能装置进行能量存储和放电;且
    在所述充电控制系统包括所述场站监控层的情况下,所述能量管理单元分别与各所述功率管理单元和所述场站监控单元连接,配置为在所述场站监控单元的调配控制下和/或与各所述功率管理单元协同运行下控制所述储能装置进行能量存储和放电。
  8. 根据权利要求1或3所述的充电控制系统,其中,各所述功率控制模块还包括多个功率模块;且
    所述功率分配单元配置为在所述功率管理单元的控制下执行对所述功率模块的投切逻辑以将功率分配给所述充电管理单元。
  9. 根据权利要求1或3所述的充电控制系统,其中,每一所述电控单元采用以下至少一种模式运行:
    上层调配控制模式:根据上层的所述电控单元的调配控制运行;
    自主模式:自主运行;
    同层协同模式:与同一层的其他电控单元协同运行;并且
    所述上层调配控制模式、所述同层协同模式和所述自主模式的优先级顺次降低。
  10. 根据权利要求1所述的充电控制系统,其中,各所述功率管理单元还配置为在自身出现故障后自动脱离所述充电控制系统并停止对与其连接 的所述功率分配单元和所述充电管理单元的控制。
  11. 根据权利要求1所述的充电控制系统,其中,各所述充电管理单元还配置为在自身出现故障后自动脱离与其连接的所述功率管理单元的控制并停止充电。
  12. 根据权利要求7所述的充电控制系统,其中,各所述能量管理单元还配置为在自身出现故障后自动脱离所述充电控制系统并停止对与其连接的所述储能装置的控制。
  13. 根据权利要求3所述的充电控制系统,其中,所述充电控制系统安装于充电场站,所述充电场站包括摄像设备、地锁系统和门禁系统;
    所述场站监控单元分别与所述摄像设备、所述地锁系统和所述门禁系统连接,并还配置为采集所述摄像设备的图像以进行环境监测,并对所述地锁系统和所述门禁系统进行控制。
  14. 根据权利要求1所述的充电控制系统,其中,所述功率管理单元还配置为响应所述充电请求进行电压绝缘监控。
  15. 根据权利要求1所述的充电控制系统,其中,所述充电管理单元还配置为提供以下功能中至少之一:
    与所述待充电车辆的交互功能、与用户的人机交互功能、液冷控制功能。
  16. 一种充电场站,包括根据权利要求1-15中任一项所述的充电控制系统。
PCT/CN2021/084621 2021-03-31 2021-03-31 一种充电控制系统和充电场站 WO2022205149A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180092395.0A CN117098686A (zh) 2021-03-31 2021-03-31 一种充电控制系统和充电场站
EP21933814.2A EP4321372A1 (en) 2021-03-31 2021-03-31 Charging control system and charging station
PCT/CN2021/084621 WO2022205149A1 (zh) 2021-03-31 2021-03-31 一种充电控制系统和充电场站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084621 WO2022205149A1 (zh) 2021-03-31 2021-03-31 一种充电控制系统和充电场站

Publications (1)

Publication Number Publication Date
WO2022205149A1 true WO2022205149A1 (zh) 2022-10-06

Family

ID=83457696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084621 WO2022205149A1 (zh) 2021-03-31 2021-03-31 一种充电控制系统和充电场站

Country Status (3)

Country Link
EP (1) EP4321372A1 (zh)
CN (1) CN117098686A (zh)
WO (1) WO2022205149A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055217A (zh) * 2010-10-27 2011-05-11 国家电网公司 电动汽车有序充电控制方法及系统
CN103559567A (zh) * 2013-07-18 2014-02-05 南方电网科学研究院有限责任公司 电网对电动汽车充电站的管理系统的管理方法
CN110497817A (zh) * 2019-09-05 2019-11-26 贵安新区配售电有限公司 一种集成式配充一体大功率直流充电堆控制方法及系统
CN110682804A (zh) * 2019-11-27 2020-01-14 湖南红太阳新能源科技有限公司 一种自动功率分配的直流充电装置及控制方法
CN110803051A (zh) * 2019-11-28 2020-02-18 南京米特能源科技有限公司 一种储能型充电桩及充电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055217A (zh) * 2010-10-27 2011-05-11 国家电网公司 电动汽车有序充电控制方法及系统
CN103559567A (zh) * 2013-07-18 2014-02-05 南方电网科学研究院有限责任公司 电网对电动汽车充电站的管理系统的管理方法
CN110497817A (zh) * 2019-09-05 2019-11-26 贵安新区配售电有限公司 一种集成式配充一体大功率直流充电堆控制方法及系统
CN110682804A (zh) * 2019-11-27 2020-01-14 湖南红太阳新能源科技有限公司 一种自动功率分配的直流充电装置及控制方法
CN110803051A (zh) * 2019-11-28 2020-02-18 南京米特能源科技有限公司 一种储能型充电桩及充电系统

Also Published As

Publication number Publication date
CN117098686A (zh) 2023-11-21
EP4321372A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2018210015A1 (zh) 充换电站及充换电控制系统
CN104795877B (zh) 电动汽车一体化直流充电机、系统及方法
CN106790436B (zh) 一种基于云架构的交通系统监控方法和控制中心云服务器
CN102810908B (zh) 通信基站电源并联监控方法及通信基站电源系统
CN104300604A (zh) 一种电动汽车充换电站监控系统
US11799140B2 (en) Controller for energy storage, system comprising the same, and methods of using the same
CN110789395A (zh) 一种多层式bms控制系统
CN103885411A (zh) 发电厂综合自动化系统
JP2021072682A (ja) 報知制御装置、移動体、電力システム、及び報知方法
CN112073224A (zh) 一种智能变电站间隔电气设备测控系统及方法
TW201431323A (zh) 電動車充電設備系統架構、電動車充電設備及用於電動車充電設備的控制裝置
JP2016208634A (ja) 充電システム
CN114161983A (zh) 一种电动车换电系统及电池包的充电方法
WO2022205149A1 (zh) 一种充电控制系统和充电场站
TW202212171A (zh) 用於在交通工具側控制多樁充電會話的系統和方法
CN111064273A (zh) 一种分布式微电网供电系统
CN115765194B (zh) 基于双监控网络的船舶电力监控系统
CN112542887B (zh) 一种基于虚拟机的松耦合架构多站融合监控系统
Lin et al. Modular power architectures for microgrid clusters
CN211405579U (zh) 一种一体化机柜智能备电系统
CN202282631U (zh) 电动汽车充换电站一体化电源监控系统
CN114583692B (zh) 分布式数字无感自迁移电源系统
US11667208B1 (en) Distributed on-demand elevated power in low power infrastructures
CN219392660U (zh) 一种扩容升级的配电自动化主站设计系统
CN201937618U (zh) 矿用隔爆型网络控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092395.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021933814

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021933814

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE