WO2022205111A1 - 一种伊喜替康衍生物的制备方法及其中间体 - Google Patents

一种伊喜替康衍生物的制备方法及其中间体 Download PDF

Info

Publication number
WO2022205111A1
WO2022205111A1 PCT/CN2021/084503 CN2021084503W WO2022205111A1 WO 2022205111 A1 WO2022205111 A1 WO 2022205111A1 CN 2021084503 W CN2021084503 W CN 2021084503W WO 2022205111 A1 WO2022205111 A1 WO 2022205111A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
preparation
solvent
reaction
Prior art date
Application number
PCT/CN2021/084503
Other languages
English (en)
French (fr)
Inventor
鲍彬
邱雪飞
沈磊
王逸凡
杨彤
张文伯
王宝霞
Original Assignee
上海复旦张江生物医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海复旦张江生物医药股份有限公司 filed Critical 上海复旦张江生物医药股份有限公司
Priority to PCT/CN2021/084503 priority Critical patent/WO2022205111A1/zh
Priority to CN202180093750.6A priority patent/CN116867789A/zh
Publication of WO2022205111A1 publication Critical patent/WO2022205111A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings

Definitions

  • the invention belongs to the field of pharmaceutical synthesis, and in particular relates to a preparation method of an ixitecan derivative and an intermediate thereof.
  • ADCs Antibody-drug conjugates
  • the basic building blocks of ADC drugs include antibodies, linkers, and effector molecules. Antibodies are used to transport effector molecules to the tumor site for enrichment, thereby killing tumor cells. Most of the traditional effector molecules are highly active tubulin inhibitors, which usually have large toxic and side effects, which limit the application of ADCs.
  • Immunomedics invented a new type of ADC drug IMMU-132 (ZL200980156218) with camptothecin compounds as effector molecules, which showed good anti-tumor effect.
  • Daiichi Sankyo invented another camptothecin compound as an effector.
  • the ADC drug DS-8201a (ZL201380053256.2) of the effector molecule also showed good anti-tumor effect.
  • DS-8201a is composed of "humanized HER2 antibody” and "a novel topoisomerase I inhibitor ixitecan derivative Dxd" via a cleavable tetrapeptide GGFG linker.
  • T-DM1 target HER2
  • DS-8201a has the characteristics of high DAR value (close to 8:1) and high plasma stability, and its cytotoxic small molecule Dxd Having strong membrane permeability produces a strong bystander effect.
  • the drug has been listed abroad. With its own design advantages, it is expected to achieve remarkable results in the treatment of HER2 mutant cancers including breast cancer, gastric cancer, colorectal cancer and lung cancer.
  • the excellent performance of DS-8201a makes the research and development of ADC drugs with Dxd (structure shown in formula I) as a cytotoxic small molecule become the focus of many pharmaceutical companies.
  • the preparation of Dxd has also become an important link in the development of this type of ADC drug.
  • the synthetic routes of Dxd that have been disclosed so far include the following synthetic routes 1 (ZL201380053256.2 Example 75 and WO2019236954A1 Example 12) and synthetic route 2 (ZL201380053256.2 Example 76):
  • the synthetic method of route 1 includes: reacting ixitecan mesylate and acetoxyacetyl chloride to obtain an acetate intermediate, and removing the acetyl group of the acetate intermediate under alkaline conditions to obtain the target product Dxd. There is racemization in the deacetylation of this method, resulting in impurities that are difficult to remove.
  • the synthetic method of route 2 includes: condensing ixitecan mesylate and glycolic acid in the presence of a condensation reagent to obtain the target product Dxd.
  • the method Dxd requires column chromatography purification, and Dxd has poor solubility in the eluent, is difficult to scale up, and is not suitable for industrial production.
  • the present invention provides a preparation method of the compound of formula I and an intermediate thereof.
  • the synthetic route product provided by the invention does not have racemization, the yield is high, the product purification process is easy to operate, the production cost can be reduced, the product purity can be improved, and the product is more suitable for industrial production.
  • the present invention provides a preparation method of a compound of formula I, which comprises the following steps: in a solvent, the compound of formula II is subjected to the following deprotection group reaction under the action of a reagent for deprotection to obtain a compound of formula I,
  • PG is a silyl protecting group or a benzyl protecting group.
  • the reaction conditions can be the conventional conditions for this type of reaction in the field, and the following conditions are preferred in the present invention.
  • the silyl-based protecting group can be a conventional silyl group used for hydroxyl protection in the art such as tert-butyldiphenylsilyl, tri-tert-butylsilyl, tert-butyldimethylsilyl, or triisopropylsilyl, preferably tert-butyldiphenylsilyl or tert-butyldimethylsilyl, more preferably tert-butyldiphenylsilyl
  • the benzyl protecting group in the preparation method of the compound of formula I, when PG is a benzyl protecting group, can be a conventional benzyl group used for hydroxyl protection in the art Such protecting groups are, for example, benzyl or p-methoxybenzyl, preferably benzyl.
  • PG is preferably a silyl protecting group, more preferably tert-butyldiphenylsilyl or tert-butyldimethylsilyl, Most preferred is tert-butyldiphenylsilyl.
  • the reagent for removing the protecting group may be tetraalkylammonium fluoride and acetic acid; wherein, the tetraalkylammonium fluoride It can be tetrabutylammonium fluoride, tetraethylammonium fluoride or tetramethylammonium fluoride, preferably tetrabutylammonium fluoride; the molar ratio of the tetraalkylammonium fluoride to the compound of formula II can be 1 -5, preferably 2-4, more preferably 2; the molar ratio of acetic acid to the compound of formula II can be 1-5, preferably 2-4, more preferably 2.
  • the solvent in the preparation method of the compound of formula I, can be a mixed solvent of a chlorinated alkane solvent and an alcohol solvent, and the chlorinated alkane solvent can be dichloromethane and/or dichloroethane, preferably dichloromethane; the alcohol solvent can be methanol and/or ethanol, preferably methanol; in the solvent, the volume ratio of the chlorinated alkane solvent and the alcohol solvent can be 50:1-10:1, preferably 20:1-15:1, more preferably 20:1.
  • the temperature of the deprotection reaction in the preparation method of the compound of formula I, can be a conventional temperature for such reactions in the field, for example, 20-30° C., preferably 20° C. -25°C, more preferably 25°C.
  • the process of the deprotection reaction can be carried out by conventional testing methods in the field (such as TLC, GC, HPLC or NMR, etc.) For monitoring, the reaction end point is generally determined that the compound of formula II is no longer detected.
  • the reaction time of the deprotection reaction may be 12 to 24 hours, preferably 16 to 20 hours, and more preferably 16 hours.
  • the preparation method of the compound of formula II can be further included, which comprises the following steps: in a solvent, the compound of formula III and the compound of formula IV are carried out in the presence of a condensing agent and a base.
  • the following condensation reaction gives the compound of formula II,
  • the reaction conditions can be the conventional conditions for this type of reaction in the field, and the following conditions are preferred in the present invention.
  • the compound of formula IV in the preparation method of the compound of formula II, in the condensation reaction, may be 2-((tert-butyldiphenylsilyl)oxy)acetic acid, 2-((tri-tert-butylsilyl)oxy)acetic acid, 2-((tert-butyldimethylsilyl)oxy)acetic acid or 2-((triisopropylsilyl)oxy)acetic acid, It is preferably 2-((tert-butyldiphenylsilyl)oxy)acetic acid or 2-((tert-butyldimethylsilyl)oxy)acetic acid, more preferably 2-((tert-butyl Diphenylsilyl)oxy)acetic acid.
  • the molar ratio of the compound of formula IV to the compound of formula III may be 1.0-3.0, preferably 1.5-2.0, and further Preferably it is 2.0.
  • the condensing agent in the preparation method of the compound of formula II, in the condensation reaction, may be a conventional condensing agent in the art, such as 4-(4,6-dimethylformaldehyde) Oxytriazin-2-yl)-4-methylmorpholine hydrochloride, N,N'-dicyclohexylcarbodiimide 1-(3-dimethylaminopropyl)-3-ethylcarbon Diimine in combination with 1-hydroxybenzotriazole, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazoprop[4,5-b]pyridine 3-oxidation
  • One or more of hexafluorophosphate and 1-[bis(dimethylamino)methylene]-1H-benzotriazolium 3-oxide hexafluorophosphate (the same below), preferably 4 -(4,6-Dimethoxytriazin-2-yl)-4-methylmorpholine hydrochloride
  • the molar ratio of the condensing agent to the compound of formula III may be 1.2-3.0, preferably 1.5-2.0, More preferably, it is 1.5.
  • the base in the preparation method of the compound of formula II, in the condensation reaction, can be a conventional base in the art, such as N,N-diisopropylethylamine, One or more of triethylamine and 4-dimethylaminopyridine, preferably N,N-diisopropylethylamine and/or 4-dimethylaminopyridine, more preferably N,N-diisopropyl Ethylamine.
  • a conventional base in the art such as N,N-diisopropylethylamine, One or more of triethylamine and 4-dimethylaminopyridine, preferably N,N-diisopropylethylamine and/or 4-dimethylaminopyridine, more preferably N,N-diisopropyl Ethylamine.
  • the molar ratio of the base to the compound of formula III may be 2.0-4.0, preferably 2.5-3.0, and further It is preferably 2.5.
  • the feeding method of the base in the preparation method of the compound of formula II, in the condensation reaction, can be a conventional feeding method for such reactions in the field, such as one-time addition, divided Batch addition or dropwise addition, preferably dropwise addition.
  • the solvent in the preparation method of the compound of formula II, in the condensation reaction, can be a conventional solvent for such reactions in the art, such as dichloromethane, dimethyl sulfoxide, One or more of N,N-dimethylformamide, chloroform and toluene, preferably dichloromethane and/or N,N-dimethylformamide, more preferably dichloromethane.
  • a conventional solvent for such reactions in the art such as dichloromethane, dimethyl sulfoxide, One or more of N,N-dimethylformamide, chloroform and toluene, preferably dichloromethane and/or N,N-dimethylformamide, more preferably dichloromethane.
  • the reaction temperature in the preparation method of the compound of formula II, in the condensation reaction, can be a temperature conventional for such reactions in the field, for example, 20-30° C., preferably 20-30° C. 20-25°C, more preferably 25°C.
  • the progress of the condensation reaction can be monitored by conventional testing methods in the field (such as TLC, GC, HPLC or NMR, etc.), generally The end point of the reaction was that the compound of formula III was no longer detected.
  • the reaction time of the condensation reaction may be 12-24 hours, preferably 16-20 hours, more preferably 16 hours.
  • the preparation method of the compound of formula II may include the following steps: adding the base to the mixed system of the compound of formula III, the compound of formula IV, the condensing agent and the solvent, to react.
  • the preparation method of the compound of formula IV can be further included, which comprises the following steps: in a solvent, the following reaction is carried out with glycolic acid and the compound of formula VI in the presence of a base to obtain the formula of formula IV compounds,
  • PG is as described above;
  • X is chlorine, bromine or iodine.
  • the reaction conditions can be conventional conditions for this type of reaction in the art, and the present invention preferably the following conditions.
  • X in the preparation method of the compound of formula IV, X can be chlorine.
  • the compound of formula VI in the preparation method of the compound of formula IV, can be tert-butyldiphenylchlorosilane, tri-tert-butylchlorosilane, tert-butyldimethylchlorosilane, Benzyl bromide or p-methoxybenzyl bromide is preferably tert-butyldiphenylchlorosilane or tri-tert-butylchlorosilane, more preferably tert-butyldiphenylchlorosilane.
  • the molar ratio of the compound of formula VI to glycolic acid can be 2.0-4.0, preferably 2.2-2.5, more preferably 2.2.
  • the base used in the preparation method of the compound of formula IV, can be a conventional base in the art, such as diisopropylethylamine, triethylamine and 4-dimethylaminopyridine One or more of them, preferably diisopropylethylamine and/or 4-dimethylaminopyridine, more preferably diisopropylethylamine.
  • the molar ratio of the base to glycolic acid used can be 2.0-6.0, preferably 3.0-4.0, more preferably 3.5.
  • the solvent in the preparation method of the compound of formula IV, can be a conventional solvent for such reactions in the field, such as dichloromethane, dimethyl sulfoxide, N,N-dimethyl sulfoxide One or more of methylformamide and chloroform, preferably dichloromethane and/or N,N-dimethylformamide, more preferably N,N-dimethylformamide.
  • the temperature at which the compound of formula VI is reacted with glycolic acid can be a conventional temperature for such reactions in the field, for example, 10-30° C., preferably 15° C. -30°C.
  • the reaction process of the compound of formula VI with glycolic acid can be carried out by conventional testing methods in the field (such as TLC, GC, HPLC or NMR, etc.) For monitoring, the reaction end point is generally determined that the compound of formula VI is no longer detected.
  • the reaction time of the reaction may be 1-10 hours, preferably 2-5 hours, more preferably 2 hours.
  • the preparation method of the compound of formula IV may include the following steps: in a mixed system of glycolic acid and the solvent, the base and the compound of formula VI are sequentially added and reacted.
  • the feeding temperature and feeding method of the compound of formula VI are in accordance with the conventional operations of this type of reaction in the art, for example, the feeding temperature can be controlled at 0-15 °C, preferably 0-10 °C, more preferably 0-5 °C or 5- 10°C; the feeding method can be batch feeding or dropwise addition, preferably dropwise addition.
  • the preparation method of the compound of formula IV after the reaction is completed, it further includes the step of acidifying the reaction solution with an acid, and the acid can be used in this field in the art
  • the conventional acid of operation such as hydrochloric acid and/or sulfuric acid, is preferably hydrochloric acid;
  • the concentration of the acid can be the conventional concentration of the acid in this type of operation in this area, such as 0.5-2mol/L, preferably 1-2mol/L, further It is preferably 1 mol/L; the amount of the acid can make the pH value of the reaction solution adjusted to 3-5, preferably 3-4, more preferably 3.
  • the preparation method of the compound of formula IV after the reaction is completed, before acidizing the reaction solution with an acid, it further includes the step of diluting the reaction solution with a solvent , wherein the solvent is a mixed solvent of water and an organic solvent; the organic solvent can be ethyl acetate and/or dichloromethane, preferably ethyl acetate; the volume ratio of the water and the organic solvent can be 1-5 , preferably 2.
  • the solvent is a mixed solvent of water and an organic solvent
  • the organic solvent can be ethyl acetate and/or dichloromethane, preferably ethyl acetate
  • the volume ratio of the water and the organic solvent can be 1-5 , preferably 2.
  • the present invention also provides a compound of formula II:
  • the compound of formula II is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
  • the present invention also provides a preparation method of compound II, which comprises the following steps: in a solvent, the compound of formula III and the compound of formula IV are subjected to the following condensation reaction in the presence of a condensing agent and a base to obtain the compound of formula II.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive improvement effect of the present invention is that: using the synthetic route and the intermediate of the present invention, a high-purity target product can be prepared in a high yield, and the involved target product will not undergo racemization and the purification process is easy to operate, so it is suitable for industrial production. .
  • the mass spectrometry adopts Waters Acquity Xevo G2-XS QTof UPLC/MS ultra-performance liquid chromatography high-resolution mass spectrometry system
  • the 1 H-NMR adopts Bruker AVANCE III 400MHz nuclear magnetic resonance apparatus or Bruker AVANCE III HD 300 MHz nuclear magnetic resonance apparatus , HPLC using Agilent 1260 high performance liquid chromatography.
  • room temperature/normal temperature refers to 20-25°C.
  • “Overnight” means 16-20 hours.
  • Comparative Example 1 Synthesize the compound of formula 1 according to the method of synthesis route 1 in the background technology
  • Step 2 Removing the acetyl group to obtain the compound of formula 1
  • step 1 The intermediate obtained in step 1 was dissolved in a mixed solvent of methanol (20 mL) and tetrahydrofuran (10 mL), 1 mol/L sodium hydroxide solution (4 mL) was added dropwise, and the resulting reaction solution was stirred at room temperature for 2 hours. TLC monitoring showed that The reaction is complete. 1 mol/L hydrochloric acid (4 mL) was added dropwise to the obtained reaction solution, and a solid was precipitated, which was filtered off with suction to obtain a pale yellow solid (70 mg, yield 22%).
  • the purities of the products obtained in Example 1 and Comparative Example 1 were respectively detected by high performance liquid chromatography, and it was found that in the products obtained in Comparative Example 1, the compound of formula 1 and the diastereomer of the compound of formula 1 that had configuration transformations at NH in the structure (the structure is shown in the following formula 5, the impurity at this place is that the product that the configuration conversion occurs at the NH place is confirmed by comparison with the compound reference substance of formula 5, and the reference substance is purchased from Shanghai Xiyao Pharmaceutical Technology Co., Ltd.) The ratio is 1: 1, while the proportion of compound 5 in the product obtained in Example 1 is less than 0.1%.
  • mobile phase A is 0.1% formic acid aqueous solution
  • mobile phase B is 0.1% formic acid acetonitrile solution
  • chromatographic column is Agilent ZORBAX Eclipse Plus C18, 3.5 ⁇ m, 4.6 ⁇ 100 mm
  • detection wavelength is 370 nm
  • the gradient is set as follows Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种伊喜替康衍生物的制备方法及其中间体。所述方法包括式(I)化合物的制备方法,其包括如下步骤:在溶剂中,将式(II)化合物在脱除保护基的试剂的作用下进行如下脱保护基反应,得到式I化合物;其中,PG为硅烷基类保护基或苄基类保护基。利用本发明的合成线路以及中间体可以以高收率制备高纯度的目标产物,并且涉及的目标产物不会发生消旋且纯化过程易于操作,从而适于工业化生产。

Description

一种伊喜替康衍生物的制备方法及其中间体 技术领域
本发明属于药物合成领域,具体涉及一种伊喜替康衍生物的制备方法及其中间体。
背景技术
抗体偶联药物(ADC)是近年来制药行业关注的热点之一。由于许多抗体药物在临床中的疗效不尽如人意,许多行业巨头越来越多地把目光转向ADC药物。ADC药物的基本模块包含抗体、连接子、效应分子,利用抗体将效应分子传输到肿瘤部位富集,从而杀死肿瘤细胞。传统的效应分子大都是高活性的微管蛋白抑制剂,通常有较大的毒副作用,限制了ADC的应用。近来Immunomedics公司发明了一种以喜树碱化合物作为效应分子的新型ADC药物IMMU-132(ZL200980156218),表现出了较好的抗肿瘤效果,第一三共发明了另一种喜树碱化合物作为效应分子的ADC药物DS-8201a(ZL201380053256.2),同样表现出较好的抗肿瘤效果。
DS-8201a是由“人源化HER2抗体”和“新型拓扑异构酶I抑制剂伊喜替康衍生物Dxd”经可切的四肽GGFG连接头偶联而成。与已上市的T-DM1相比,尽管两者都是靶向HER2的,但DS-8201a具有高DAR值(接近于8∶1)和高血浆稳定性的特点,且其细胞毒性小分子Dxd具有很强的膜通透性可产生强大的旁观者效应。目前该药已在国外上市,凭借其自身设计的优势,预计其将在包括乳腺癌、胃癌、结直肠癌及肺癌等在内的HER2突变癌种的治疗领域取得骄人的成绩。
DS-8201a的优异表现使得以Dxd(结构如式I所示)为细胞毒性小分子的ADC药物的研发成为不少药企关注的热点。Dxd的制备也成为该类ADC药物研发重要的环节。目前已经公开的Dxd的合成路线有如下所示的合成路线1(ZL201380053256.2实施例75和WO2019236954A1实施例12)和合成路线2(ZL201380053256.2实施例76):
合成路线1:
Figure PCTCN2021084503-appb-000001
路线1的合成方法包括:将伊喜替康甲磺酸盐和乙酰氧基乙酰氯反应得到乙酸酯中间体,在碱性条件下脱去乙酸酯中间体的乙酰基得到目标产物Dxd。该方法脱乙酰基存在消旋情况,产生难以去除的杂质。
合成路线2:
Figure PCTCN2021084503-appb-000002
路线2的合成方法包括:将伊喜替康甲磺酸盐和乙醇酸在缩合试剂存在下缩合得到目标产物Dxd。该方法Dxd需要柱层析纯化,而Dxd在洗脱剂中的溶解性较差,很难放大,不适于工业化生产。
因此,需要探索一条收率高、产物不会发生消旋且产物纯化过程易于操作的适于工业化生产的合成路线。
发明内容
为克服上述现有技术中存在的缺陷,本发明提供了一种式I化合物的制备方法及其中间体。本发明提供的合成路线产物不会发生消旋、收率高、产物纯化过程易于操作,能降低生产成本、提高产物纯度且更适于工业化生产。
Figure PCTCN2021084503-appb-000003
本发明提供了一种式I化合物的制备方法,其包括如下步骤:在溶剂中,将式II化合物在脱除保护基的试剂的作用下进行如下脱保护基反应,得到式I化合物,
Figure PCTCN2021084503-appb-000004
其中,PG为硅烷基类保护基或苄基类保护基。
所述式I化合物的制备方法中,所述反应的条件可以为本领域该类型反应的常规条件,本发明优选以下条件。
在本发明的一优选实施方案中,所述式I化合物的制备方法中,当PG为硅烷基类保护基时,所述硅烷基类保护基可以为本领域用于羟基保护的常规的硅烷基类保护基,例如为叔丁基二苯基硅基、三叔丁基硅基、叔丁基二甲基硅基、或三异丙基硅基,优选为叔丁基二苯基硅基或叔丁基二甲基硅基,进一步优选为叔丁基二苯基硅基
Figure PCTCN2021084503-appb-000005
在本发明的一优选实施方案中,所述式I化合物的制备方法中,当PG为苄基类保护基时,所述苄基类保护基可以为本领域用于羟基保护的常规的苄基类保护基,例如为苄基或对甲氧基苄基,优选为苄基。
在本发明的一优选实施方案中,所述式I化合物的制备方法中,PG优选为硅烷基类保护基,进一步优选为叔丁基二苯基硅基或叔丁基二甲基硅基,最优选为叔丁基二苯基硅基。
在本发明的一优选实施方案中,所述式I化合物的制备方法中,所述脱除保护基的试剂可以为四烷基氟化铵和乙酸;其中,所述四烷基基氟化铵可以为四丁基氟化铵、四乙基氟化铵或四甲基氟化铵,优选为四丁基氟化铵;所述四烷基氟化铵与式II化合物的摩尔比可以为1-5,优选为2-4,进一步优选为2;乙酸与式II化合物的摩尔比可以为1-5,优选为2-4,进一步优选为2。
在本发明的一优选实施方案中,所述式I化合物的制备方法中,所述溶剂可以为氯代烷烃类溶剂和醇类溶剂的混合溶剂,所述氯代烷烃类溶剂可以为二氯甲烷和/或二氯乙烷,优选为二氯甲烷;所述醇类溶剂可以为甲醇和/或乙醇,优选为甲醇;所述溶剂中,氯代烷烃类溶剂和醇类溶剂的体积比可以为50∶1-10∶1,优选为20∶1-15∶1,进一步优选为20∶1。
在本发明的一优选实施方案中,所述式I化合物的制备方法中,所述脱除保护基反应的温度可以为本领域此类反应常规的温度,例如为20-30℃,优选为20-25℃,进一步优选为25℃。
在本发明的一优选实施方案中,所述式I化合物的制备方法中,所述脱除保护基反应的进程可采用本领域中的常规测试方法(例如TLC、GC、HPLC或NMR等)进行监控,一般以不再检测到式II化合物作为反应终点。所述脱保护基反应的反应时间可以为12~24小时,优选为16~20小时,进一步优选为16小时。
本发明所述式I化合物的制备方法中,还可以进一步包含式II化合物的制备方法,其包括如下步骤:在溶剂中,将式III化合物和式IV化合物在缩合剂和碱存在的条件下进行如下缩合反应得到式II化合物,
Figure PCTCN2021084503-appb-000006
其中,PG的定义如前所述。
所述式II化合物的制备方法中,所述反应的条件可以为本领域该类型反应的常规条件,本发明优选以下条件。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,式IV化合物可以为2-((叔丁基二苯基甲硅烷基)氧基)乙酸、2-((三叔丁基甲硅烷基)氧基)乙酸、2-((叔丁基二甲基甲硅烷基)氧基)乙酸或2-((三异丙基硅烷基)氧基)乙酸,优选为2-((叔丁基二苯基甲硅烷基)氧基)乙酸或2-((叔丁基二甲基甲硅烷基)氧基)乙酸,进一步优选为2-((叔丁基二苯基甲硅烷基)氧基)乙酸。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,式IV化合物和式III化合物的投料摩尔比可以为1.0-3.0,优选为1.5-2.0,进一步优选为2.0。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述缩合剂可以为本领域中的常规缩合剂,例如4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐、N,N′-二环己基碳二亚胺1-(3-二甲基氨基丙基)-3-乙基碳二亚胺与1-羟基苯并三唑联用、1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑丙[4,5-b]吡啶3-氧化物六氟磷酸盐和1-[双(二甲氨基)亚甲基]-1H-苯并三唑鎓3-氧化物六氟磷酸盐中的一种或多种(下同),优选为 4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐、1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑丙[4,5-b]吡啶3-氧化物六氟磷酸盐和1-[双(二甲氨基)亚甲基]-1H-苯并三唑鎓3-氧化物六氟磷酸盐中的一种或多种,进一步优选为4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述缩合剂与式III化合物的投料摩尔比可以为1.2-3.0,优选为1.5-2.0,进一步优选为1.5。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述碱可以为本领域中的常规碱,例如N,N-二异丙基乙胺、三乙胺和4-二甲氨基吡啶中的一种或多种,优选为N,N-二异丙基乙胺和/或4-二甲氨基吡啶,进一步优选为N,N-二异丙基乙胺。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述碱与式III化合物的投料摩尔比可以为2.0-4.0,优选为2.5-3.0,进一步优选为2.5。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述碱的加料方式可以为本领域此类反应的常规加料方式,如一次性加入、分批加入或滴加,优选为滴加。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述溶剂可以为本领域此类反应的常规溶剂,例如二氯甲烷、二甲亚砜、N,N-二甲基甲酰胺、氯仿和甲苯中的一种或多种,优选为二氯甲烷和/或N,N-二甲基甲酰胺,进一步优选为二氯甲烷。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应中,所述反应温度可以为本领域此类反应常规的温度,例如为20-30℃,优选为20-25℃,进一步优选为25℃。
在本发明的一优选实施方案中,所述式II化合物的制备方法中,所述缩合反应的进程可采用本领域中的常规测试方法(例如TLC、GC、HPLC或NMR等)进行监控,一般以不再检测到式III化合物作为反应终点。所述缩合反应的反应时间可以为12-24小时,优选为16-20小时,进一步优选为16小时。
在本发明的一优选实施方案中,所述式II化合物的制备方法可以包括如下步骤:在式III化合物、式IV化合物、所述缩合剂和所述溶剂的混合体系中,加入所述碱,进行反应。
本发明所述式I化合物的制备方法中,还可以进一步包含式IV化合物的制备方法,其包括如下步骤:在溶剂中,将羟基乙酸和式VI化合物在碱存在的条件下进行如下反应得到式IV化合物,
Figure PCTCN2021084503-appb-000007
其中,PG如前所述;X为氯、溴或碘。
所述式IV化合物的制备方法中,所述反应的条件可以为本领域该类型反应的常规条件,本发明优选以下条件。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,X可以为氯。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,式VI化合物可以为叔丁基二苯基氯硅烷、三叔丁基氯硅烷、叔丁基二甲基氯硅烷、苄基溴或对甲氧基苄基溴,优选为叔丁基二苯基氯硅烷或三叔丁基氯硅烷,进一步优选为叔丁基二苯基氯硅烷。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,式VI化合物与羟基乙酸的投料摩尔比可以为2.0-4.0,优选为2.2-2.5,进一步优选为2.2。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,所用的碱可以为本领域中的常规碱,例如二异丙基乙胺、三乙胺和4-二甲氨基吡啶中的一种或多种,优选为二异丙基乙胺和/或4-二甲氨基吡啶,进一步优选为二异丙基乙胺。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,所用的碱与羟基乙酸的投料摩尔比可以为2.0-6.0,优选为3.0-4.0,进一步优选为3.5。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,所述溶剂可以为本领域此类反应的常规溶剂,例如二氯甲烷、二甲亚砜、N,N-二甲基甲酰胺和氯仿中的一种或多种,优选为二氯甲烷和/或N,N-二甲基甲酰胺,进一步优选为N,N-二甲基甲酰胺。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,式VI化合物与羟基乙酸反应的温度可以为本领域此类反应常规的温度,例如为10-30℃,优选为15-30℃。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,式VI化合物与羟基乙酸反应的进程可采用本领域中的常规测试方法(例如TLC、GC、HPLC或NMR等)进行监控,一般以不再检测到式VI化合物作为反应终点。所述反应的反应时间可以为1-10小时,优选为2-5小时,进一步优选为2小时。
在本发明的一优选实施方案中,所述式IV化合物的制备方法可以包括如下步骤:在羟基乙酸和所述溶剂的混合体系中,依次加入所述碱和式VI化合物,进行反应。其中,式VI化合物的加料温度和加料方式按照本领域中该类反应的常规操作,例如加料温度可以控制在0-15℃,优选为0-10℃,进一步优选为0-5℃或5-10℃;加料方式可以为分批加料或滴加,优选为滴加。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,所述反应结束后,还包括使用酸对反应液进行酸化处理的步骤,所述酸可以为本领域用于该类操作的常规酸,例如盐酸和/或硫酸,优选为盐酸;所述酸的浓度可以为本领域该类操作中酸的常规浓度,例如0.5-2mol/L,优选为1-2mol/L,进一步优选为1mol/L;所述酸的用量可以使所述反应液的pH值调至3-5,优选为3-4,进一步优选为3。
在本发明的一优选实施方案中,所述式IV化合物的制备方法中,所述反应结束后,在使用酸对反应液进行酸化处理前,还包括使用溶剂对所述反应液进行稀释的步骤,其中所述溶剂为水和有机溶剂的混合溶剂;所述有机溶剂可以为乙酸乙酯和/或二氯甲烷,优选为乙酸乙酯;所述水和有机溶剂的体积比可以为1-5,优选为2。
本发明还提供了一种式II化合物:
Figure PCTCN2021084503-appb-000008
其中,PG的定义如前所述。
在本发明的一优选实施方案中,所述式II化合物为
Figure PCTCN2021084503-appb-000009
本发明还提供了一种II化合物的制备方法,其包括如下步骤:在溶剂中,将式III化合物和式IV化合物在缩合剂和碱存在下进行如下缩合反应得到式II化合物。
Figure PCTCN2021084503-appb-000010
其中,PG的定义和所述缩合反应的反应条件均如前所述。
在本发明的一优选实施方案中,所述式I化合物的制备方法的线路如下:
Figure PCTCN2021084503-appb-000011
其中,R和X的定义以及各步反应的反应条件均如前所述。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:利用本发明的合成线路以及中间体可以以高收率制备高纯度的目标产物,并且涉及的目标产物不会发生消旋且纯化过程易于操作,从而适于工业化生产。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
以下实施例中,质谱采用Waters Acquity Xevo G2-XS QTof UPLC/MS超高效液相色谱高分辨质谱联用系统, 1H-NMR采用Bruker AVANCE III 400MHz核磁共振仪或Bruker  AVANCE III HD 300MHz核磁共振仪,HPLC采用Agilent 1260高效液相色谱仪。
以下实施例中,“室温/常温”是指20-25℃。“过夜”是指16-20小时。
实施例1:本发明的方法合成化合物1
步骤1:式4化合物的合成
Figure PCTCN2021084503-appb-000012
将乙醇酸(24g,0.316mol)溶于N,N-二甲基甲酰胺(480mL)中,再加入二异丙基乙胺(143g,1.105mol)。将所得混合物冷却至0-5℃。保持内温5-10℃下,搅拌条件下向混合物中滴加叔丁基二苯基氯硅烷(192g,0.694mol)。滴加完毕后所得反应液升温至15-30℃继续搅拌2小时。TLC检测反应完毕(展开剂:二氯甲烷∶甲醇=5∶1,体积比),高锰酸钾显色)。将所得反应液冷却至10℃后,加入1L水稀释,然后再加入500mL乙酸乙酯。所得混合体系搅拌条件下用约1N盐酸(480mL)将pH调至3后,用乙酸乙酯萃取两次(各500mL)。所得有机相合并后使用1.5L饱和食盐水洗涤三次,再加入硫酸钠干燥,最后过滤浓缩得无色液体(210g,收率120%,含残留物)。MS:m/z=315.1(M+H)。
步骤2:式2化合物的合成
Figure PCTCN2021084503-appb-000013
氮气保护下,将伊喜替康甲磺酸盐(18.7g,35.2mmol)、2-((叔丁基二苯基甲硅烷基)氧基)乙酸(22g,70.4mmol)和4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(15.6g,52.8mmol)分散于无水二氯甲烷(400mL)。室温下滴加N,N-二异丙基乙胺(14.5mL,88mmol),加完后,反应液室温下搅拌过夜。所得反应液减压浓缩除去溶剂,所得粗产品经柱层析(二氯甲烷∶甲醇=40∶1)纯化得到淡黄色固体式2化合物(25g,收率97%)。ESI-MS m/z:732.3(M+H)。
步骤3:式1化合物的合成
Figure PCTCN2021084503-appb-000014
氮气保护下,将化合物2(25g,34.2mmol)溶于二氯甲烷/甲醇(150mL,体积比为20∶1)混合溶剂中。室温下向溶液中依次加入乙酸(4mL,68.4mmol)和四丁基氟化铵(17.9g,68.4mmol),加完后,所得混合物在室温下搅拌过夜,溶液中有白色固体析出。将所得反应液过滤,所得滤饼用二氯甲烷洗2次后真空干燥得待白色固体式1化合物(16g,收率95%)。ESI-MS m/z:494.2(M+H), 1H NMR(400MHz,DMSO)68.39(d,J=8.9Hz,1H),7.77(d,J=11.0Hz,1H),7.30(s,1H),6.50(s,1H),5.62-5.55(m,1H),5.47(t,J=5.8Hz,1H),5.42(s,2H),5.26-5.09(m,2H),3.96(d,J=5.8Hz,2H),3.26-3.05(m,2H),2.39(s,3H),2.26-2.07(m,2H),1.93-1.78(m,2H),0.87(t,J=7.3Hz,3H)。
对比例1:按照背景技术中合成路线1的方法合成式1化合物
步骤1:合成乙酸酯中间体
Figure PCTCN2021084503-appb-000015
将依喜替康甲磺酸盐(350mg,0.66mmol)溶于无水N,N-二甲基甲酰胺(10mL)中,加入N,N-二异丙基乙胺(350uL,1.98mmol),乙酰氧基乙酰氯(0.1mL,0.79mmol),所得反应液在室温下搅拌反应1小时。反应完毕减压蒸馏去除溶剂,所得残留固体通过柱层析纯化(二氯甲烷∶甲醇=20∶1)得棕色固体(0.35g,收率99%)。
步骤2:脱去乙酰基得到式1化合物
Figure PCTCN2021084503-appb-000016
将步骤1所得的中间体溶解于甲醇(20mL)和四氢呋喃(10mL)混合溶剂中,滴加1mol/L的氢氧化钠溶液(4mL),所得反应液在室温下搅拌反应2小时,TLC监控显示反应完毕。向所得反应液中滴加1mol/L盐酸(4mL),有固体析出,抽滤得淡黄色固体(70mg,收率为22%)。
实施例2:目标化合物(式1化合物)的纯度测试
用高效液相色谱分别对实施例1和对比例1所得产物的纯度进行检测,发现对比例1所得的产物中式1化合物与式1化合物结构中NH处发生构型转化的非对映异构体(结构如下式5所示,该处的杂质为NH处发生构型转化的产物是和式5化合物对照品比对确认的,该对照品购自上海禧耀医药科技有限公司)比例为1∶1,而实施例1所得到的产物中化合物5所占的比例低于0.1%。
Figure PCTCN2021084503-appb-000017
所用液相条件:流动相A为0.1%的甲酸水溶液,流动相B为0.1%的甲酸乙腈溶液,色谱柱为安捷伦ZORBAX Eclipse Plus C18,3.5μm,4.6×100mm,检测波长为370nm,梯度设置如下表1。
表1:流动相梯度设置
时间(min) 流动相A% 流动相B%
0.00 90.0 10.0
1.70 90.0 10.0
11.70 30.0 70.0
11.80 0.0 100.0
15.70 0.0 100.0
15.80 90.0 10.0
20.00 90.0 10.0

Claims (12)

  1. 一种式I化合物的制备方法,其包括如下步骤:在溶剂中,将式II化合物在脱除保护基的试剂的作用下进行如下脱保护基反应,得到式I化合物,
    Figure PCTCN2021084503-appb-100001
    其中,PG为硅烷基类保护基或苄基类保护基。
  2. 如权利要求1所述的式I化合物的制备方法,其特征在于,
    当PG为硅烷基类保护基时,所述硅烷基类保护基为叔丁基二苯基硅基、三叔丁基硅基、叔丁基二甲基硅基、或三异丙基硅基;
    和/或,当PG为苄基类保护基时,所述苄基类保护基为苄基或对甲氧基苄基;
    和/或,所述式I化合物的制备方法中,所述脱除保护基的试剂为四烷基氟化铵和乙酸;
    和/或,所述式I化合物的制备方法中,所述溶剂为氯代烷烃类溶剂和醇类溶剂的混合溶剂;
    和/或,所述式I化合物的制备方法中,所述脱除保护基反应的温度为20-30℃;
    和/或,所述式I化合物的制备方法中,所述脱保护基反应的反应时间为12~24小时。
  3. 如权利要求2所述的式I化合物的制备方法,其特征在于,
    当PG为硅烷基类保护基时,所述硅烷基类保护基为叔丁基二苯基硅基或叔丁基二甲基硅基,优选为叔丁基二苯基硅基;
    和/或,当PG为苄基类保护基时,所述苄基类保护基为苄基;
    和/或,所述式I化合物的制备方法中,所述脱除保护基的试剂中,所述四烷基基氟化铵为四丁基氟化铵、四乙基氟化铵或四甲基氟化铵,优选为四丁基氟化铵;
    和/或,所述式I化合物的制备方法中,所述脱除保护基的试剂中,所述四烷基氟化铵与式II化合物的摩尔比为1-5,优选为2-4,进一步优选为2;
    和/或,所述式I化合物的制备方法中,所述脱除保护基的试剂中,所述乙酸与式II化合物的摩尔比为1-5,优选为2-4,进一步优选为2;
    和/或,所述式I化合物的制备方法中,所述溶剂中,所述氯代烷烃类溶剂为二氯甲 烷和/或二氯乙烷,优选为二氯甲烷;
    和/或,所述式I化合物的制备方法中,所述溶剂中,所述醇类溶剂为甲醇和/或乙醇,优选为甲醇;
    和/或,所述溶剂中,所述氯代烷烃类溶剂和醇类溶剂的体积比为50∶1-10∶1,优选为20∶1-15∶1,进一步优选为20∶1;
    和/或,所述式I化合物的制备方法中,所述脱除保护基反应的温度为20-25℃,优选为25℃;
    和/或,所述式I化合物的制备方法中,所述脱保护基反应的反应时间为16~20小时,优选为16小时。
  4. 如权利要求1至3中任一项所述的式I化合物的制备方法,其特征在于,其进一步包含式II化合物的制备方法,其包括如下步骤:在溶剂中,将式III化合物和式IV化合物在缩合剂和碱存在的条件下进行如下缩合反应得到式II化合物,
    Figure PCTCN2021084503-appb-100002
    其中,PG的定义如权利要求1至3中任一项所述。
  5. 如权利要求4所述的式I化合物的制备方法,其特征在于,
    所述式II化合物的制备方法中,所述缩合反应中,式IV化合物和式III化合物的投料摩尔比为1.0-3.0;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述缩合剂为4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐、N,N′-二环己基碳二亚胺1-(3-二甲基氨基丙基)-3-乙基碳二亚胺与1-羟基苯并三唑联用、1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑丙[4,5-b]吡啶3-氧化物六氟磷酸盐和1-[双(二甲氨基)亚甲基]-1H-苯并三唑鎓3-氧化物六氟磷酸盐中的一种或多种;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述缩合剂与式III化合物的投料摩尔比为1.2-3.0;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述碱为N,N-二异丙基乙胺、三乙胺和4-二甲氨基吡啶中的一种或多种;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述碱与式III化合物的 投料摩尔比为2.0-4.0;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述碱的加料方式为一次性加入、分批加入或滴加;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述溶剂为二氯甲烷、二甲亚砜、N,N-二甲基甲酰胺、氯仿和甲苯中的一种或多种;
    和/或,所述式II化合物的制备方法中,所述缩合反应的温度为20-30℃;
    和/或,所述式II化合物的制备方法中,所述缩合反应的反应时间为12-24小时;
    和/或,所述式II化合物的制备方法包括如下步骤:在式III化合物、式IV化合物、所述缩合剂和所述溶剂的混合体系中,加入所述碱,进行反应。
  6. 如权利要求5所述的式I化合物的制备方法,其特征在于,
    所述式II化合物的制备方法中,所述缩合反应中,式IV化合物和式III化合物的投料摩尔比为1.5-2.0,优选为2.0;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述缩合剂为4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述缩合剂与式III化合物的投料摩尔比为1.5-2.0,优选为1.5;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述碱为N,N-二异丙基乙胺;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述碱与式III化合物的投料摩尔比为为2.5-3.0,优选为2.5;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述碱的加料方式为滴加;
    和/或,所述式II化合物的制备方法中,所述缩合反应中,所述溶剂为二氯甲烷;
    和/或,所述式II化合物的制备方法中,所述缩合反应的温度为20-25℃,优选为25℃;
    和/或,所述式II化合物的制备方法中,所述缩合反应的反应时间为16-20小时,优选为16小时。
  7. 如权利要求4至6中任一项所述的式I化合物的制备方法,其特征在于,其包含式IV化合物的制备方法,其包括如下步骤:在溶剂中,将羟基乙酸和式VI化合物在碱存在的条件下进行如下反应得到式IV化合物,
    Figure PCTCN2021084503-appb-100003
    其中,PG如权利要求1至3中任一项所述;X为氯、溴或碘。
  8. 如权利要求7所述的式I化合物的制备方法,其特征在于,
    所述式IV化合物的制备方法中,X为氯;
    和/或,所述式IV化合物的制备方法中,式VI化合物与羟基乙酸的投料摩尔比为2.0-4.0;
    和/或,所述式IV化合物的制备方法中,所用的碱为二异丙基乙胺、三乙胺和4-二甲氨基吡啶中的一种或多种;
    和/或,所述式IV化合物的制备方法中,所用的碱与羟基乙酸的投料摩尔比为2.0-6.0;
    和/或,所述式IV化合物的制备方法中,所述溶剂为二氯甲烷、二甲亚砜、N,N-二甲基甲酰胺和氯仿中的一种或多种;
    和/或,在本发明的一优选实施方案中,所述式IV化合物的制备方法中,所述反应的反应时间为1-10小时;
    和/或,所述式IV化合物的制备方法包括如下步骤:在羟基乙酸和所述溶剂的混合体系中,依次加入所述碱和式VI化合物,进行反应;
    和/或,所述式IV化合物的制备方法中,所述反应结束后,还包括使用酸对反应液进行酸化处理的步骤,所述酸为盐酸和/或硫酸。
  9. 如权利要求8所述的式I化合物的制备方法,其特征在于,
    所述式IV化合物的制备方法中,式VI化合物与羟基乙酸的投料摩尔比为2.2-2.5,优选为2.2;
    和/或,所述式IV化合物的制备方法中,所用的碱为二异丙基乙胺;
    和/或,所述式IV化合物的制备方法中,所用的碱与羟基乙酸的投料摩尔比为3.0-4.0,优选为3.5;
    和/或,所述式IV化合物的制备方法中,所述溶剂为N,N-二甲基甲酰胺;
    和/或,所述式IV化合物的制备方法中,所述反应的反应时间为2-5小时,优选为2小时;
    和/或,所述式IV化合物的制备方法中,式VI化合物的加料温度为0-15℃,优选为0-10℃,进一步优选为0-5℃或5-10℃;
    和/或,所述式IV化合物的制备方法中,式VI化合物的加料方式为分批加料或滴加,优选为滴加;
    和/或,所述酸化处理的步骤中,所述酸的浓度为0.5-2mol/L,优选为1-2mol/L,进一步优选为1mol/L;
    和/或,所述酸化处理的步骤中,所述酸的用量使所述反应液的pH值调至3-5,优选为3-4,进一步优选为3;
    和/或,所述酸化处理的步骤前,还包括使用溶剂对所述反应液进行稀释的步骤,其中所述溶剂为水和有机溶剂的混合溶剂,其中,所述有机溶剂可以为乙酸乙酯和/或二氯甲烷,优选为乙酸乙酯,所述水和有机溶剂的体积比可以为1-5,优选为2。
  10. 一种式II化合物:
    Figure PCTCN2021084503-appb-100004
    其中,PG的定义如权利要求1至3中任一项所述。
  11. 如权利要求10所述的式II化合物,其特征在于,所述式II化合物为
    Figure PCTCN2021084503-appb-100005
  12. 一种II化合物的制备方法,其包括如下步骤:在溶剂中,将式III化合物和式IV化合物在缩合剂和碱存在下进行如下缩合反应得到式II化合物,
    Figure PCTCN2021084503-appb-100006
    其中,PG的定义如权利要求1至3中任一项所述,所述缩合反应的反应条件如权利要求4至9中任一项所述。
PCT/CN2021/084503 2021-03-31 2021-03-31 一种伊喜替康衍生物的制备方法及其中间体 WO2022205111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/084503 WO2022205111A1 (zh) 2021-03-31 2021-03-31 一种伊喜替康衍生物的制备方法及其中间体
CN202180093750.6A CN116867789A (zh) 2021-03-31 2021-03-31 一种伊喜替康衍生物的制备方法及其中间体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084503 WO2022205111A1 (zh) 2021-03-31 2021-03-31 一种伊喜替康衍生物的制备方法及其中间体

Publications (1)

Publication Number Publication Date
WO2022205111A1 true WO2022205111A1 (zh) 2022-10-06

Family

ID=83455420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084503 WO2022205111A1 (zh) 2021-03-31 2021-03-31 一种伊喜替康衍生物的制备方法及其中间体

Country Status (2)

Country Link
CN (1) CN116867789A (zh)
WO (1) WO2022205111A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829346A (zh) * 2014-01-31 2016-08-03 第三共株式会社 抗her2抗体-药物偶联物
CN111001012A (zh) * 2018-10-19 2020-04-14 四川百利药业有限责任公司 一种亲水碳酸酯型抗体偶联药物
CN111689980A (zh) * 2019-05-26 2020-09-22 四川百利药业有限责任公司 一种喜树碱药物及其抗体偶联物
CN112125915A (zh) * 2019-09-18 2020-12-25 四川百利药业有限责任公司 一种喜树碱衍生物及其偶联物
CN112138171A (zh) * 2019-06-28 2020-12-29 上海复旦张江生物医药股份有限公司 抗体偶联药物、其中间体、制备方法及应用
WO2020259258A1 (zh) * 2019-06-28 2020-12-30 上海复旦张江生物医药股份有限公司 一种抗体偶联药物、其中间体、制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829346A (zh) * 2014-01-31 2016-08-03 第三共株式会社 抗her2抗体-药物偶联物
CN111001012A (zh) * 2018-10-19 2020-04-14 四川百利药业有限责任公司 一种亲水碳酸酯型抗体偶联药物
CN111689980A (zh) * 2019-05-26 2020-09-22 四川百利药业有限责任公司 一种喜树碱药物及其抗体偶联物
CN112138171A (zh) * 2019-06-28 2020-12-29 上海复旦张江生物医药股份有限公司 抗体偶联药物、其中间体、制备方法及应用
WO2020259258A1 (zh) * 2019-06-28 2020-12-30 上海复旦张江生物医药股份有限公司 一种抗体偶联药物、其中间体、制备方法及应用
CN112125915A (zh) * 2019-09-18 2020-12-25 四川百利药业有限责任公司 一种喜树碱衍生物及其偶联物

Also Published As

Publication number Publication date
CN116867789A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JPS58154582A (ja) 新規なカンプトテシン誘導体およびその製造法
JP7365349B2 (ja) 一酸化窒素を供与するプロスタグランジン類似体の製造方法
CN110891947A (zh) 制备艾乐替尼或其药学上可接受的盐的方法
WO2022082329A1 (en) Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile
WO2020192129A1 (zh) 一种2-(3-(氮杂环丁烷-3-基)哌啶-1-基)乙基-1-醇的制备方法及其应用
WO2022205111A1 (zh) 一种伊喜替康衍生物的制备方法及其中间体
WO2020053795A2 (en) Process for the preparation of acalabrutinib and its intermediates
EP1852436A1 (en) Process for production of carbapenem derivative and crystalline intermediate therefor
CN115215921A (zh) 一种连接基药物偶联物的制备方法及其中间体
US6583285B1 (en) Process for preparing zolpidem
JP5960130B2 (ja) テセタキセルおよび関連化合物ならびに対応する合成中間体の調製
CA2445766A1 (en) Improved process for preparing zolpidem
JPH04330070A (ja) ラブダン類およびその製造方法
EP4389732A1 (en) Method for synthesizing 5,8-diamino-3,4-dihydro-2h-1-naphthalenone and intermediate compound used therein
RU2809821C2 (ru) Соединения на основе триазолопиримидина и их соли, композиции на их основе и пути их применения
EP1082290B1 (en) Process for the preparation of aceclofenac
CN104558106B (zh) 一种治疗丙肝药物的制备方法
WO2022204947A1 (zh) 一种连接基药物偶联物的制备方法及其中间体
WO2024140934A1 (zh) 一种连接基药物偶联物的制备方法及其中间体
CN115385926A (zh) 一种连接基药物偶联物的制备方法及其中间体
CN111196839B (zh) 一种硫链丝菌素衍生物及其制备方法
US7932381B2 (en) Process for producing carbapenem derivative and intermediate crystal therefor
CN116217654A (zh) 一种连接基药物偶联物的制备方法及其中间体
EP1489091A1 (en) Process for producing triterpene derivative
CN116178386A (zh) 一种连接基药物偶联物的制备方法及其中间体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093750.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933780

Country of ref document: EP

Kind code of ref document: A1