WO2022204989A1 - 电池组 - Google Patents

电池组 Download PDF

Info

Publication number
WO2022204989A1
WO2022204989A1 PCT/CN2021/084107 CN2021084107W WO2022204989A1 WO 2022204989 A1 WO2022204989 A1 WO 2022204989A1 CN 2021084107 W CN2021084107 W CN 2021084107W WO 2022204989 A1 WO2022204989 A1 WO 2022204989A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
accommodating cavity
pack according
group
Prior art date
Application number
PCT/CN2021/084107
Other languages
English (en)
French (fr)
Inventor
刘道林
丁宇
李晨晨
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/084107 priority Critical patent/WO2022204989A1/zh
Priority to CN202180005261.0A priority patent/CN114375522A/zh
Publication of WO2022204989A1 publication Critical patent/WO2022204989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and in particular, to a battery pack.
  • lithium-ion batteries are limited by the electrochemical system, and it is difficult for the open circuit voltage of the cell to exceed 5V, but there are many scenarios where the battery needs to use more than 5V.
  • the industry usually assembles and designs multiple finished battery cells, and obtains a high-voltage and high-capacity battery pack by connecting some of the battery cells in parallel and then connecting them in series. .
  • the battery pack obtained by the above method has a bracket inside, which is used for supporting a plurality of battery cells and fixing the intervals of each finished battery cell, which complicates the manufacturing process of the battery pack and lowers the energy density.
  • the embodiments of the present application provide a battery pack, which can simplify the manufacturing process and improve the energy density.
  • a battery pack includes a casing, a plurality of battery core bodies, a parallel assembly and a series assembly.
  • the casing has a casing body and a casing cover fastened with the casing body.
  • the shell body has a plurality of spaced accommodating cavity groups. At least one of the accommodating cavity groups includes two accommodating cavities that communicate with each other. Each accommodating cavity group corresponds to one of the shell covers, and the shell cover is used to inject electrolyte into the corresponding accommodating cavity group through the shell cover.
  • Each cell main body is accommodated in one of the accommodating cavities, and the cell main bodies in each of the accommodating cavity groups form a group of the cell main bodies.
  • the parallel assembly has an internal parallel assembly disposed on the casing, which connects the main battery cells in a group in parallel.
  • the series assembly connects a plurality of groups of the battery core bodies in series by connecting the parallel assemblies in series.
  • the parallel assembly further includes an external parallel assembly, and the external parallel connection assembly further parallelizes the plurality of groups of the cell main bodies connected in parallel through the internal parallel assembly.
  • the internal parallel assembly includes an adapter plate and a pole arranged on the casing, the adapter plate is connected in parallel with a group of the main battery cells, and the pole and the adapter are connected in parallel.
  • the chips are connected to each other, and the series components are connected in series with a plurality of groups of the battery core bodies through the poles.
  • the accommodating cavity penetrates through the casing body, and one set of accommodating cavities is closed by two oppositely arranged casing covers.
  • the distance between two adjacent battery core bodies in each group is smaller than the thickness of the shell body, and the receiving cavity group is communicated in an area adjacent to two adjacent battery core bodies .
  • the thickness of the wall between the two adjacent groups of the accommodating cavities is less than or equal to the thickness of the shell body.
  • the battery pack further includes a bracket, which is disposed in an area where the two accommodating cavities of the accommodating cavity group communicate with each other, and is used to assist in supporting the main body of the battery cell.
  • the receiving cavity has an arc-shaped inner wall.
  • the battery core body has an arc-shaped surface, and the arc-shaped inner wall matches the arc-shaped surface of the battery core body.
  • the arc of the arcuate inner wall of the receiving cavity at the end is greater than or equal to 180 degrees.
  • the side wall body of the main battery cell has two arc-shaped surfaces arranged opposite to each other and a main body surface arranged opposite to a plane,
  • the accommodating cavity also has a plane inner wall arranged oppositely, which is arranged corresponding to the main body surface of the battery core body, and the arc-shaped inner wall is connected to the oppositely arranged plane inner wall, and is connected with the arcuate inner wall of the battery core body.
  • the shaped surfaces are correspondingly arranged to position the main body of the battery cell.
  • the distance between the planar inner walls is 5% to 12% greater than the thickness of the cell main body.
  • the number of the accommodating cavities in each of the accommodating cavity groups is the same;
  • the number of the accommodating cavities in at least two of the accommodating cavity groups is different.
  • each of the receiving cavity groups is distributed along a straight line.
  • the casing is a metal casing or a plastic casing.
  • the side wall of the accommodating cavity pack can be used not only as a packaging material for the pack of batteries, but also as a bracket for the pack of batteries to support the pack of batteries.
  • the process is simplified, the cost is saved, the effective efficiency is improved, and the energy density of the battery pack can be improved.
  • FIG. 1 is a schematic structural diagram of an embodiment of a battery pack of the present application
  • FIG. 2 is an exploded view of a partial structure of an embodiment of the battery pack of the present application
  • FIG. 3 is a schematic structural diagram of an embodiment of a battery pack casing of the present application.
  • FIG. 4 is a partial structural schematic diagram of an embodiment of the battery pack of the present application.
  • FIG. 5 is an exploded view of a partial structure of an embodiment of the battery pack of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a battery pack of the present application.
  • FIG. 7 and 8 are schematic structural diagrams of different embodiments of the battery pack casing of the present application.
  • FIG. 9 is a schematic partial structure diagram of an embodiment of a battery pack of the present application.
  • FIG. 10 is a schematic partial structure diagram of an embodiment of a battery pack of the present application.
  • the structure of an embodiment of the battery pack 10 of the present application includes: a casing 100 , a plurality of cell main bodies 200 disposed in the casing 100 , and a parallel assembly for connecting the cell main bodies 200 300 , the series assembly 400 .
  • the casing 100 has a casing body 110 and a casing cover 120 fastened to the casing body 110 .
  • the housing body 110 has a plurality of accommodating cavity groups 111 arranged at intervals, and at least one accommodating cavity group 111 includes two accommodating cavities 112 that communicate with each other.
  • the accommodating cavity group 111 of each accommodating cavity 112 can accommodate a plurality of battery cell bodies 200 .
  • Each accommodating cavity group 111 corresponds to one of the case covers 120, and the case cover 120 is used to inject electrolyte into the corresponding accommodating cavity group 111 through it. Since the accommodating cavities 112 in each group are connected, the electrolyte can be injected into one in each receiving cavity 112 in the receiving cavity group 111 .
  • Each of the cell main bodies 200 is accommodated in one of the accommodating cavities 112 , and the cell main bodies 200 in each of the accommodating cavity groups 111 form a group of the cell main bodies 200 .
  • the cell main body 200 may be a wound structure, a laminated structure, or the like.
  • the cell body 200 adopts a cylindrical full-tab structure.
  • the two tabs of the cell main body 200 may both be drawn out from one end of the cell main body 200 , or may be drawn out from both ends of the cell main body 200 respectively.
  • the parallel assembly 300 and the series assembly 400 are both disposed on the casing 100 .
  • the parallel assembly 300 has an internal parallel assembly 310 for connecting the cell bodies 200 in one group in parallel; the series assembly 400 connects multiple groups of cell bodies 200 in series, that is, the multiple groups of cell bodies 200 that have been connected in parallel are connected in series.
  • the parallel assembly 300 may also have an external parallel assembly (not shown in the figure), and the external parallel connection assembly connects multiple groups of cell bodies 200 connected in parallel through the internal parallel assembly 300 in parallel.
  • the internal parallel assembly 300 includes a transition piece 310 and a pole 320 disposed on the housing 100 .
  • one end of the adapter sheet 310 is correspondingly connected with the tabs of the battery body 200 having the same polarity, so as to connect the battery body 200 in parallel.
  • the poles 320 on the cover 120 are connected; the poles 320 are connected with the series assembly 400 , so as to connect multiple groups of parallel cell main bodies 200 in series.
  • the cell main bodies 200 are firstly disposed in the casing 100 , so that each group of the cell main bodies 200 is correspondingly accommodated in one accommodating cavity group 111 .
  • Each group of cell main bodies 200 is connected in parallel through the parallel component 300 , and then multiple groups of cell main bodies 200 are connected in series through the series component 400 .
  • the electrolyte solution is injected into each of the accommodating cavity groups 111 through the cover 120 of the casing 100 , and the battery pack 10 is obtained through steps such as chemical formation.
  • the side wall of the accommodating cavity group 111 can be used not only as a packaging material for the battery pack, but also as a bracket for the battery pack to support the battery pack.
  • the process is simplified, the cost is saved, the effective efficiency is improved, and the energy density of the battery pack 10 can be improved.
  • Each receiving cavity 112 on the housing body 110 can be snap-fitted with only one housing cover 120 , or can be snap-fitted with two housing covers 120 .
  • the accommodating cavity 112 penetrates through the housing body 110 , the accommodating cavity 112 has no bottom, has two opposite openings, and is closed by the oppositely disposed housing cover 120 .
  • the accommodating cavity 112 has a bottom, and only one opening of the accommodating cavity 112 is closed by the cover 120 .
  • the accommodating cavity of the shell body may also have a bottom part and a part not have a bottom part.
  • each accommodating cavity group 111 closes the opening on one side of the accommodating cavity group 111 through a case cover 120 , wherein the explosion-proof valve and the sealing stud for sealing of each group of batteries are provided on the case cover 120 on.
  • the opening on one side of the accommodating cavity group 111 may also be closed by a plurality of shell covers 120 , and in this case, at least one of the shell covers 120 is provided with an explosion-proof valve and a sealing nail.
  • the number of the accommodating cavities 112 in the plurality of accommodating cavity groups 111 may be all the same, partially the same, or all different, and the plurality of accommodating cavity groups 111 are distributed along a straight line.
  • each containing cavity group 111 of the housing 100 has two containing cavities 112 , and the plurality of containing cavity groups 111 are distributed along a straight line.
  • the accommodating cavity group 111 includes a accommodating cavity group 111 having two accommodating cavities 112 , and a accommodating cavity group 111 having three accommodating cavities 112 , and the two are staggered in sequence, that is, two adjacent accommodating cavities 111 .
  • the accommodating cavity group 111 includes a accommodating cavity group 111 having two accommodating cavities 112 , and a accommodating cavity group 111 having three accommodating cavities 112 , and the accommodating cavity group 111 having two accommodating cavities 112 is adjacent to
  • the accommodating cavity groups 111 with three accommodating cavities 112 are arranged adjacently, and one accommodating cavity group 111 with two accommodating cavities 112 and one accommodating cavity group 111 with three accommodating cavities 112 are adjacently arranged.
  • the accommodating cavity groups 111 may also be distributed in other manners, such as along a curve, a circular arc, and the like.
  • two adjacent accommodating cavities 112 in the accommodating cavity group 111 communicate with each other in adjacent regions.
  • the communication area between the two accommodating cavities 112 may be that the communicating area between the two adjacent accommodating cavities 112 runs through the accommodating cavity 112 along the height direction of the accommodating cavities 112, that is, the adjacent areas are not shielded by the side walls of the housing; There may also be partial side walls between two adjacent receiving cavities 112.
  • the bottom areas of the two adjacent receiving cavities 112 are two disconnected areas, and the opening area is a connected area, so that the two receiving cavities 112 are connected. 112 Connected.
  • the communication area can not only prevent interference or extrusion between the main bodies 200 of the battery cells in the accommodating cavity group 111 , which is more convenient for assembly and production, and can improve the safety in use, but also can make the accommodating cavity group 111 inject more The electrolyte solution, thereby improving the life of the battery pack 10 .
  • the distance between two adjacent battery cell bodies 200 in each group is smaller than the thickness of the case body 110 , so as to improve the energy density of the battery.
  • the case body 110 may be a metal case body or a plastic case body.
  • the case body 110 is a metal case body 110 , it may be made of aluminum alloy material or stainless steel material to obtain higher energy density.
  • the thickness of the casing 110 is 0.3-3 mm, and when the casing 110 is plastic, the thickness is 2-3 mm.
  • the thickness of the case body 110 is 0.5 mm
  • the distance between two adjacent cell main bodies 200 is 0.3 mm.
  • the thickness of the shell body 110 is 1 mm
  • the distance between two adjacent cell main bodies 200 is 0.5 mm.
  • the wall thickness between two adjacent receiving cavity groups 111 is less than or equal to the thickness of the casing 110 , thereby ensuring the support strength of the battery pack 10 and improving the energy density of the battery pack 10 .
  • the thickness of the casing 110 is 0.7 mm
  • the wall thickness between the two receiving cavity groups 111 is 0.5 mm.
  • the thickness of the shell body 110 and the wall thickness between the two receiving cavity groups 111 are both 0.6 mm.
  • the receiving cavity 112 has an arc-shaped inner wall 113
  • the cell main body 200 has a matching arc-shaped surface, so that the casing 100 can position the cell main body 200 through the arc-shaped inner wall 113 . and fixing, thereby preventing the main body 200 from shaking during the assembly process, which affects subsequent welding and other processes.
  • the side surfaces of the battery cell main body 200 accommodated in the accommodating cavity may all be arc-shaped surfaces, or only part of the surfaces may be arc-shaped surfaces.
  • the cell main body 200 is a cylindrical cell, and the side surfaces thereof are all arc-shaped surfaces. In the embodiment shown in FIG.
  • the side surface of the cell body 200 has two oppositely arranged arc surfaces and two oppositely arranged flat main body surfaces.
  • the accommodating cavity 112 also has oppositely arranged planar inner walls 114 .
  • the arc-shaped inner wall 113 is connected to the opposite planar inner wall 114 and matches with the arc-shaped surface of the cell main body 200 to position the cell main body 200 .
  • the distance between the plane inner walls of the accommodating cavity 112 is 5% to 12% larger than the thickness of the cell body 200 .
  • the distance between the inner walls of the planes 112 can reduce the expansion and extrusion stress on the casing 100 , thereby prolonging the life of the battery pack 10 .
  • the accommodating cavity group 111 has a plurality of arc-shaped inner walls 113 , and the arcs of the plurality of arc-shaped inner walls in each accommodating cavity group 111 may be the same, partially the same, or different.
  • the arc of the inner wall of the accommodating cavity 112 located at the inner end of the accommodating cavity group 111 is greater than or equal to 180 degrees, so that the main body 200 of the battery cell is stably disposed in the accommodating cavity 112 .
  • the cavity 112 has oppositely arranged arc-shaped inner walls, so as to stabilize the cell body 200 disposed in the receiving cavity 112 .
  • the accommodating cavity group 111 has two arc-shaped inner walls 113 , and the arc of each arc-shaped inner wall is 250 degrees.
  • the accommodating cavity group 111 has three accommodating cavities 112 , wherein the arcuate inner walls 113 of the accommodating cavities 112 at both ends have an arc of 220 degrees, and the two arcuate inner walls 113 of the accommodating cavity 112 located in the middle have an arc of 220 degrees.
  • the arc is 115 degrees.
  • the battery pack 10 further includes a bracket 500 .
  • the bracket 500 is disposed in the communication area between the two receiving cavities 112 in the receiving cavity group 111 and is used to assist the main body 200 of the battery cells.
  • the edges thereof are all located in the communication area, so as to make full use of the space in the accommodating cavity group 111 .
  • the bracket 500 can also be partially extended into the receiving cavity 112 for receiving the cell body 200 .
  • the stent can have various shapes, for example, its cross section is circular, T-shaped, cross-shaped, arc-shaped, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例涉及一种电池组,包括:壳体、多个电芯主体、并联组件及串联组件,壳体具有壳身及与所述壳身扣合的壳盖,所述壳身具有多个间隔设置的收容腔组,至少一个所述收容腔组包括两个彼此连通的收容腔,所述壳盖用于通过其向所述收容腔组注入电解液;每个所述电芯主体收容于一个所述收容腔内,每个所述收容腔组内的所述电芯主体形成一组所述电芯主体;并联组件具有设置于所述壳体上的内部并联组件,其并联一组内的所述电芯主体;串联组件串联所述并联组件以串联多组所述电芯主体。上述电池组中,不仅无需通过外部支架进行固定,简化了工艺过程,节约了成本,提高了生效效率,而且能够提高电池组的能量密度。

Description

电池组 技术领域
本申请实施例涉及电池技术领域,特别是涉及一种电池组。
背景技术
目前锂离子电池受限于电化学体系的限制,电芯的开路电压很难超过5V,但电池需要用到超过5V的场景很多。为了得到较高的输出电压,同时获得较大的电池容量,业内通常以多个成品的电芯单元进行组装设计,通过电芯单元间的部分并联后再进行串联获得高电压高容量的电池组。
然而通过上述方式获得的电池组内部具有支架,其用于支撑多个电芯单元,并将各个成品电芯单元间隔固定,令电池组制作工艺复杂,且能量密度较低。
发明内容
鉴于上述问题,本申请实施例提供了一种电池组,能够简化制作工艺,并提高能量密度。
一种电池组,包括壳体、多个电芯主体、并联组件及串联组件。壳体具有壳身及与所述壳身扣合的壳盖。所述壳身具有多个间隔设置的收容腔组。至少一个所述收容腔组包括两个彼此连通的收容腔。每个收容腔组对应一个所述壳盖,所述壳盖用于通过其向对应的所述收容腔组注入电解液。每个电芯主体收容于一个所述收容腔内,每个所述收容腔组内的所述电芯主体形成一组所述电芯主体。并联组件具有设置于所述壳体上的内部并联组件,其并联一组内的所述电芯主体。串联组件通过串联所述并联组件来串联多组所述电芯主体。
其中一个实施例中,所述并联组件还包括外部并联组件,所述外部 并连接组件将通过所述内部并联组件并联的多组所述电芯主体再进行并联。
其中一个实施例中,所述内部并联组件包括设置于所述壳体上的转接片、极柱,所述转接片并联一组所述电芯主体,所述极柱与所述转接片相连接,所述串联组件通过所述极柱串联多组所述电芯主体。
其中一个实施例中,所述收容腔贯穿所述壳身,一个所述收容腔组通过两个相对设置的壳盖封闭。
其中一个实施例中,每组相邻两个所述电芯主体之间的距离小于所述壳身的厚度,且所述收容腔组在相邻两个所述电芯主体临近的区域相连通。
其中一个实施例中,相邻两个所述收容腔组之间的壁厚小于或等于所述壳身的厚度。
其中一个实施例中,所述电池组还包括支架,设置于所述收容腔组中两个所述收容腔连通的区域内,用于辅助支撑所述电芯主体。
其中一个实施例中,所述收容腔具有弧形内壁。
其中一个实施例中,所述电芯主体具有弧形面,所述弧形内壁与所述电芯主体的所述弧形面相匹配。
其中一个实施例中,位于端部的所述收容腔的所述弧形内壁的弧度大于或等于180度。
其中一个实施例中,所述电芯主的侧壁体具有相对设置的两个弧形面及相对设置的为平面的主体面,
所述收容腔还具有相对设置的平面内壁,与所述电芯主体的所述主体面对应设置,所述弧形内壁连接相对设置的所述平面内壁,且与所述电芯主体的弧形面对应设置,以对所述电芯主体定位。
其中一个实施例中,所述平面内壁之间的距离比所述电芯主体的厚度大5%~12%。
其中一个实施例中,每个所述收容腔组内的所述收容腔数量相同;
或者,至少两个所述收容腔组内的所述收容腔数量相异。
其中一个实施例中,每个所述收容腔组沿直线分布。
其中一个实施例中,所述壳体为金属壳体或塑料壳体。
上述电池组中,其收容腔组的侧壁既可以用来作为该组电池的包装材料,又可以作为该组电池的支架,以对该组电池进行支撑。这样,相比直接将成品电池进行串并联的电池组,不仅无需通过外部支架进行固定,简化了工艺过程,节约了成本,提高了生效效率,而且能够提高电池组的能量密度。
附图说明
为了更清楚地说明本申请具体实施例或现有技术中的技术方案,下面将对具体实施例或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本申请电池组一实施例的结构示意图;
图2为本申请电池组一实施例的局部结构分解图;
图3为本申请电池组壳身一实施例的结构示意图;
图4为本申请电池组一实施例的局部结构示意图;
图5为本申请电池组一实施例的局部结构分解图;
图6为本申请电池组一实施例的结构示意图;
图7、图8为本申请电池组壳身不同实施例的结构示意图;
图9为本申请电池组一实施例的局部结构示意图;
图10为本申请电池组一实施例的局部结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说 明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1至图4所示,本申请电池组10一实施例的结构包括:壳体100,设置于壳体100内的多个电芯主体200,以及用于连接电芯主体200的并联组件300、串联组件400。
壳体100具有壳身110及与壳身110扣合的壳盖120。其中,壳身110具有多个间隔设置的收容腔组111,至少一个收容腔组111包括两个彼此连通的收容腔112,其中每个收容腔112用于收容一个电芯主体200,即具有多个收容腔112的收容腔组111可收容多个电芯主体200。每个收容腔组111对应一个所述壳盖120,壳盖120用于通过其向对应收容腔组111内注入电解液,由于每组内的收容腔112相连通,因此电解液可注入到一个收容腔组111内的每个收容腔112内。
每个所述电芯主体200收容于一个所述收容腔112内,且每个所述收容腔组111内的所述电芯主体200形成一组所述电芯主体200。其中,电芯主体200可以为卷绕结构、叠片结构等。例如,电芯主体200采用圆柱全极耳结构。并且电芯主体200的两个极耳既可以均从电芯主体200的一端引出,也可以分别从电芯主体200的两端引出。
并联组件300、串联组件400均设置于壳体100上。其中,并联组件300具有内部并联组件310,用于并联一组内的电芯主体200;串联组件400串联多组电芯主体200,即将已进行并联的多组电芯主体200再进行串联。根据实际需要,并联组件300也可以具有外部并联组件(图未示),外部并连接组件将通过内部并联组件300并联的多组电芯主体200再进行并联。
具体地,如图4所示,内部并联组件300包括设置于壳体100上的转接片310及极柱320。其中,转接片、极柱均为两个,分别与电芯主 体的两个极耳对应连接。具体地,转接片310的一端与该组电芯主体200的具有相同极性的极耳对应连接,以并联一组电芯主体200,另一端设置于壳盖120上,并与设置于壳盖120上的极柱320相连接;极柱320与串联组件400相连接,以将多组并联的电芯主体200串联。需要说明的是,连接一组电芯主体200相同极性的转接片310既可以为一个,也可以为多个。
制作上述电池组10时,先将电芯主体200设置于壳体100内,以使每组电芯主体200对应收容于一个收容腔组111内。通过并联组件300对每组电芯主体200进行并联,再通过串联组件400对多组电芯主体200进行串联。接着通过壳体100的壳盖120向每个收容腔组111内注入电解液,经过化成等步骤得到电池组10。
上述电池组10中,其收容腔组111的侧壁既可以用来作为该组电池的包装材料,又可以作为该组电池的支架,以对该组电池进行支撑。这样,相比直接将成品电池进行串并联的电池组,不仅无需通过外部支架进行固定,简化了工艺过程,节约了成本,提高了生效效率,而且能够提高电池组10的能量密度。
请一并参阅图5、图6,壳身110上的每收容腔112既可以仅与一个壳盖120扣合连接,也可以与两个壳盖120扣合连接。如图1、图2所示实施例中,收容腔112贯穿壳身110,收容腔112无底部,具有相对的两个开口,通过相对设置的壳盖120封闭。如图5、图6所示实施例中,收容腔112具有底部,收容腔112仅具有的一个开口通过壳盖120封闭。需要说明的是,壳身的收容腔也可以部分具有底部、部分不具有底部。
一实施例中,每个收容腔组111通过一个壳盖120封闭收容腔组111位于一侧的开口,其中,每组电池用于防爆的防爆阀、用于密封的密封钉均设置于壳盖120上。其他实施例中,也可以通过多个壳盖120封闭收容腔组111位于一侧的开口,此时至少一个壳盖120上设有防爆阀、密封钉。
请一并参阅图7、图8,多个收容腔组111中收容腔112的数量既 可以全部相同,也可以部分相同,或全部相异,多个收容腔组111沿直线分布。具体地,如图1所示实施例中,壳体100的每个收容腔组111均具有两个收容腔112,多个收容腔组111沿直线分布。如图7所示实施例中,收容腔组111包括具有两个收容腔112的收容腔组111,及三个收容腔112的收容腔组111,两者依次交错分布,即相邻的两个收容腔组111一个具有两个收容腔112,一个具有三个收容腔112,以使多个收容腔组111紧密分布。如图8所示实施例中,收容腔组111包括具有两个收容腔112的收容腔组111,及三个收容腔112的收容腔组111,具有两个收容腔112的收容腔组111临近设置,具有三个收容腔112的收容腔组111临近设置,其中一个具有两个收容腔112的收容腔组111与一个具有三个收容腔112的收容腔组111临近设置。其他实施例中,收容腔组111也可以以其他方式分布,如沿曲线、圆弧分布等。
一实施例中,收容腔组111中的相邻的两个收容腔112在临近区域相连通。其中,两个收容腔112之间的连通区域既可以为相邻两个收容腔112之间的连通区域沿收容腔112的高度方向贯穿收容腔112,即相邻区域无壳体侧壁遮挡;也可为相邻两个收容腔112之间具有部分侧壁,例如,相邻两个收容腔112的底部区域为不连通的两个区域,开口区域为连通的区域,以使两个收容腔112连通。连通区域不仅可防止收容腔组111中的电芯主体200之间产生干涉或挤压,更便于组装生产,且能够提高使用时的安全性,而且还可以令收容腔组111内注入更多的电解液,进而提高电池组10的寿命。
一实施例中,每组相邻两个电芯主体200之间的距离小于壳身110的厚度,以提高电池的能量密度。其中,壳身110可为金属壳身或塑料壳身,当壳身110为金属壳身110时,可为铝合金材质或者不锈钢材质制成,以获得更高的能量密度。当壳身110为金属时,壳身110厚度为0.3~3毫米,当壳身110为塑料时,其厚度为2~3毫米。例如,壳身110的厚度为0.5毫米,相邻两个电芯主体200之间的距离为0.3毫米。再如,壳身110的厚度为1毫米,相邻两个电芯主体200之间的距离为0.5毫米。
一实施例中,相邻两个收容腔组111之间的壁厚小于或等于壳身110的厚度,进而在保证对电池组10的支撑强度的同时提高电池组10的能量密度。例如,壳身110的厚度为0.7毫米,两个收容腔组111之间的壁厚为0.5毫米。再如,壳身110的厚度、两个收容腔组111之间的壁厚均为0.6毫米。
请一并参阅图9,一实施例中,收容腔112具有弧形内壁113,电芯主体200具有与其匹配的弧形面,以使壳体100通过弧形内壁113对电芯主体200进行定位及固定,进而避免电芯主体200在装配过程中产生晃动,影响后续焊接等工序。其中,收容于收容腔内的电芯主体200的侧面既可以均为弧形面,也可以仅部分面为弧形面。具体地,如图2所示实施例中,电芯主体200为圆柱形电芯,其侧面均为弧形面。如图9所示实施例中,电芯主体200侧面具有两个相对设置的弧形面,及两个相对设置的为平面的主体面,此时收容腔112还具有相对设置的平面内壁114,弧形内壁113连接相对设置的平面内壁114,且与电芯主体200的弧形面匹配,以对电芯主体200定位,平面内壁114与电芯主体200的主体面对应设置。需要说明的是,图9所示实施例中,收容腔112的平面内壁之间的距离比电芯主体200的厚度大5%~12%,这是由于方形电芯容易膨胀,通过增加收容腔112平面内壁之间的距离可降低壳体100受到的膨胀挤压应力,进而延长电池组10寿命。
一实施例中,收容腔组111具有多个弧形内壁113,每个收容腔组111中的多个弧形内壁的弧度既可以均相同,也可以部分相同,或均相异。其中,位于收容腔组111内端部的收容腔112的弧形内壁的弧度大于或等于180度,以令电芯主体200稳定地设置于收容腔112内,位于收容腔组111内中部的收容腔112具有相对设置的弧形内壁,以稳定设置于收容腔112内的电芯主体200。
具体地,图1所示实施例中,收容腔组111具有两个弧形内壁113,每个弧形内壁的弧度均为250度。图5所示实施例中,收容腔组111具有三个收容腔112,其中位于两端收容腔112的弧形内壁113的弧度为220度,位于中间的收容腔112的两个弧形内壁113的弧度均为115度。
一实施例中,如图10所示实施例中,电池组10还包括支架500,支架500设置于收容腔组111中两个收容腔112的连通区域内,用于辅助支撑电芯主体200。本实施例中,其边缘均位于连通区域内,以充分利用收容腔组111内的空间。其他实施例中,支架500也可以部分延至用于收容电芯主体200的收容腔112内。进一步地,支架可具有多种形状,例如其横截面为圆形,T形、十字形、弧形等。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种电池组,其特征在于,包括:
    壳体,具有壳身及与所述壳身扣合的壳盖,所述壳身具有多个间隔设置的收容腔组,至少一个所述收容腔组包括两个彼此连通的收容腔,每个收容腔组对应一个所述壳盖,所述壳盖用于通过其向对应的所述收容腔组注入电解液;
    多个电芯主体,每个所述电芯主体收容于一个所述收容腔内,每个所述收容腔组内的所述电芯主体形成一组所述电芯主体;
    并联组件,具有设置于所述壳体上的内部并联组件,其并联一组内的所述电芯主体;及
    串联组件,串联所述并联组件以串联多组所述电芯主体。
  2. 根据权利要求1所述的电池组,其特征在于,所述并联组件还包括外部并联组件,所述外部并联组件将通过所述内部并联组件并联的多组所述电芯主体再进行并联。
  3. 根据权利要求1所述的电池组,其特征在于,所述内部并联组件包括设置于所述壳体上的转接片、极柱,所述转接片并联一组所述电芯主体,所述极柱与所述转接片相连接,所述串联组件通过所述极柱串联多组所述电芯主体。
  4. 根据权利要求1所述的电池组,其特征在于,所述收容腔贯穿所述壳身,一个所述收容腔组通过两个相对设置的壳盖封闭。
  5. 根据权利要求1所述的电池组,其特征在于,每组相邻两个所述电芯主体之间的距离小于所述壳身的厚度,且所述收容腔组在相邻两个所述电芯主体临近的区域相连通。
  6. 根据权利要求1所述的电池组,其特征在于,相邻两个所述收容腔组之间的壁厚小于或等于所述壳身的厚度。
  7. 根据权利要求1所述的电池组,其特征在于,所述电池组还包括支架,设置于所述收容腔组中两个所述收容腔连通的区域内,用于辅助支撑所述电芯主体。
  8. 根据权利要求1所述的电池组,其特征在于,所述收容腔具有弧形内壁。
  9. 根据权利要求8所述的电池组,其特征在于,所述电芯主体具有弧形面,所述弧形内壁与所述电芯主体的所述弧形面相匹配。
  10. 根据权利要求8所述的电池组,其特征在于,位于端部的所述收容腔的所述弧形内壁的弧度大于或等于180度。
  11. 根据权利要求8所述的电池组,其特征在于,所述电芯主的侧面体具有相对设置的两个弧形面及相对设置的为平面的主体面,
    所述收容腔还具有相对设置的平面内壁,与所述电芯主体的所述主体面对应设置,所述弧形内壁连接相对设置的所述平面内壁,且与所述电芯主体的弧形面对应设置,以对所述电芯主体定位。
  12. 根据权利要求11所述的电池组,其特征在于,所述平面内壁之间的距离比所述电芯主体的厚度大5%~12%。
  13. 根据权利要求1所述的电池组,其特征在于,每个所述收容腔组内的所述收容腔数量相同;
    或者,至少两个所述收容腔组内的所述收容腔数量相异。
  14. 根据权利要求1所述的电池组,其特征在于,每个所述收容腔组沿直线分布。
  15. 根据权利要求1所述的电池组,其特征在于,所述壳体为金属壳体或塑料壳体。
PCT/CN2021/084107 2021-03-30 2021-03-30 电池组 WO2022204989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/084107 WO2022204989A1 (zh) 2021-03-30 2021-03-30 电池组
CN202180005261.0A CN114375522A (zh) 2021-03-30 2021-03-30 电池组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084107 WO2022204989A1 (zh) 2021-03-30 2021-03-30 电池组

Publications (1)

Publication Number Publication Date
WO2022204989A1 true WO2022204989A1 (zh) 2022-10-06

Family

ID=81141283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084107 WO2022204989A1 (zh) 2021-03-30 2021-03-30 电池组

Country Status (2)

Country Link
CN (1) CN114375522A (zh)
WO (1) WO2022204989A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130013340A (ko) * 2011-07-28 2013-02-06 현대모비스 주식회사 차량용 배터리시스템
CN203690393U (zh) * 2014-01-16 2014-07-02 浙江超威创元实业有限公司 新型锂电池集成模块
CN106505169A (zh) * 2016-12-27 2017-03-15 宁德时代新能源科技股份有限公司 电池模组壳体结构及电池模组
CN107204419A (zh) * 2016-03-18 2017-09-26 宁德时代新能源科技股份有限公司 二次电池
CN207233804U (zh) * 2017-07-27 2018-04-13 东莞市沃泰通新能源有限公司 一种电池结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003749A1 (de) * 2011-02-08 2012-08-09 Sb Limotive Company Ltd. Batteriezellenmodul, Verfahren zur Herstellung des Batteriezellenmoduls sowie Kraftfahrzeug
CN210167397U (zh) * 2019-05-27 2020-03-20 广州雷利诺车业有限公司 电动摩托车及其电池组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130013340A (ko) * 2011-07-28 2013-02-06 현대모비스 주식회사 차량용 배터리시스템
CN203690393U (zh) * 2014-01-16 2014-07-02 浙江超威创元实业有限公司 新型锂电池集成模块
CN107204419A (zh) * 2016-03-18 2017-09-26 宁德时代新能源科技股份有限公司 二次电池
CN106505169A (zh) * 2016-12-27 2017-03-15 宁德时代新能源科技股份有限公司 电池模组壳体结构及电池模组
CN207233804U (zh) * 2017-07-27 2018-04-13 东莞市沃泰通新能源有限公司 一种电池结构

Also Published As

Publication number Publication date
CN114375522A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020140334A1 (zh) 一种电池单体组件、电池模块及电池包
US10615397B2 (en) Battery design with bussing integral to battery assembly
WO2022134055A1 (zh) 电池的箱体、电池、用电装置、制备箱体的方法和装置
US9941503B2 (en) Rechargeable battery having improved current density
US11532857B2 (en) Battery module
WO2021174403A1 (zh) 电池、电池模组、电池包、电动车、储能装置和电动工具
US20170054182A1 (en) Method for producing a battery cell and battery cell
WO2021190447A1 (zh) 框体、电池组及装置
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
JP2019160772A (ja) エンドプレート、ハウジング及び電池モジュール
WO2022204989A1 (zh) 电池组
CN209447946U (zh) 一种电池模块及电池包
US20230420788A1 (en) Battery
US20230238566A1 (en) Electrode Assembly and Secondary Battery
WO2023133749A1 (zh) 电池、用电设备、制备电池的方法和设备
CN113782918B (zh) 电芯及用电装置
CN110611060A (zh) 电池包
CN211643193U (zh) 锂电池电芯转移装置
CN209249497U (zh) 一种电池单体及电池模块
CN108140877B (zh) 二次电池
WO2023133747A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023130258A1 (zh) 电池、用电装置、制备电池的方法和装置
CN218569177U (zh) 一种电芯及电芯模组
WO2019095611A1 (zh) 电池的外壳结构
CN220984585U (zh) 电池单体、电池、用电装置和制备电池单体的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933670

Country of ref document: EP

Kind code of ref document: A1